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Abstract

Adaptive control is a very important field of system control and has attracted a lot of interest from
researchers in recent years. Linear system theory is very developed and there exist many excellent
adaptive control results for linear systems. On the other hand, most of real plants are nonlinear and
linear approximative models can not do well in the accuracy problem of these plants. Therefore,
many nonlinear black-box models (neural networks, waveletnetworks, adaptive fuzzy systems, etc.)
have been used to control of nonlinear systems. However, there are two problems for these nonlinear
models: the controller designing and the stability of corresponding control system. The controllers
based on these nonlinear models are more difficult to be obtained than based on the linear models.
Stability and accuracy of the control system for nonlinear systems are difficult to be ensured in one
method or one nonlinear model.

A quasi-linear black-box modeling scheme has been proposedwith which the techniques based
on well developed linear system theory could be extended to nonlinear systems. It constructs mod-
els consisting of two parts: a macro-part and a kernel-part.The macro-part is a user-friendly in-
terface constructed using the specific knowledge and the characteristics of network structure; the
efforts of this part are to introduce some properties favorable to certain applications, such as con-
troller designing. In this thesis, AutoRegressive eXogenous (ARX) model structure is chosen as
macro-part because of various useful linearity properties. This macro structure makes the proposed
controller easily get and use like based on ARX model. The kernel-part is a nonlinear black-box
model which is used to represent the complicated coefficients of macro-parts. In this thesis, neural
networks, radial basis function networks, and neural fuzzynetworks are chosen as the kernel-parts
which improve the control accuracy. Obviously, the above modeling scheme can construct different
macro-parts and kernel-parts with applying specific knowledge for different application interests.
However, the stability is still a problem which must be solved if the controllers based on the quasi-
linear black-box modeling scheme want to be used in the real world.

The motivation of this thesis is intended to research on adaptive control of nonlinear dynamical
systems based on the quasi-ARX black box models. According to the quasi-ARX modeling scheme,
several improved quasi-ARX black-box models are proposed for different nonlinear control require-
ment. The obtained quasi-ARX black-box model is consideredto have two properties: the linear
property and the nonlinear property. Based on the model characteristics, two controllers can be ob-
tained: one linear controller and one nonlinear controller. The linear controller is used to ensure the
control stability and the nonlinear controller is utilizedto improve the control accuracy. A switch-
ing mechanism is proposed between the two controllers. In the premise of stability, the switching

i



ii

mechanism will tend to choose the nonlinear controller for the accuracy. On the other hand, the
switching mechanism will return to linear controller to ensure stability when the stability of control
system is destroyed. Therefore, the stability and accuracyproblems in adaptive control process are
solved by one model following the quasi-ARX modeling scheme. Investigations are made to do
system identification, control design for nonlinear systems and stability analysis of control system
under the framework of linear control theory based on the newmodeling scheme.

A quasi-ARX neural network (NN) following the quasi-linearblack-box modeling scheme is
constructed and its application for stability adaptive control of nonlinear systems is proposed. The
obtained quasi-ARX NN model is divided into two parts: the linear part is used to ensure the
nonlinear control stability, and the nonlinear part is utilized to improve the control accuracy. One
linear controller is obtained based on the linear part and one nonlinear controller is given based
on the quasi-ARX NN model. In order to combine both the stability and universal approximation
capability, a 0/1 switching law is established in our proposed control system by a switching criterion
function based on system input-output variables and prediction errors. An adaptive controller is
designed for nonlinear dynamical systems based on the obtained quasi-ARX NN model and the
proposed switching mechanism, and its stability is analyzed. It is obviously the stability of adaptive
control system is proved in theory, and the accuracy of the proposed control method is higher than
linear method through the simulations. Therefore, the proposed controller is friendly interface,
stability, higher accuracy and adaptive.

Nevertheless, there are still some aspects needed to be improved in the above control method.
One is that the 0/1 hard switching method is not very smooth; the second is the assumption of
global boundedness also can be relaxed; the third is that theparameters of quasi-ARX NN model
to be adjusted on-line are highly nonlinear, which deteriorates the adaptability of control system.
Motivated by the above aspects, three improvements are given to the quasi-ARX model. Firstly, a
fuzzy switching mechanism is constructed based on the system switching criterion function which
is better than the 0/1 switching law. Secondly, ad-difference operator is used in the ARX-like ex-
pression of system to relax the assumption of global boundedness on higher-order nonlinear terms.
At finally, Radial Basis Function Network (RBFN) is used to replace the NN in the quasi-ARX
black-box model which is understandable in terms of parameters and is not a absolute black-box
model, compared with NN. The simulation includes two parts:the fuzzy switching control results
based on quasi-ARX NN model and the fuzzy switching control results based on quasi-ARX RBFN
model andd-difference operator. The simulation results show that theproposed control model and
method based on the three improvements have better control performance.

In real world, a lot of systems are MIMO with complicated coupling. Due to the difficulty of
decoupling problem, most of the control techniques developed for SISO systems cannot be extended
directly for MIMO systems. It is also a change for control system based on quasi-ARX black-box
model. Therefore, a MIMO quasi-ARX black-box model is proposed in this thesis and improves the
quasi-ARX model which can be used as the predictor of MIMO nonlinear systems. The adaptive
multivariable PID controller with a decoupling compensator and a feed-forward compensator is
presented for the control of nonlinear MIMO systems using the proposed MIMO quasi-ARX RBFN
prediction model. The parameters of such controller are selected based on the generalized minimum
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control variance. In this chapter, the corresponding stability analysis is given. The proposed control
method can satisfy accuracy, stability and decoupling requirements for MIMO nonlinear systems.

When NFN is used as kernel-part, variables and the order of the model increases, the complexity
of input-output designing the NFN also increases. In order to resolve this problem in the identifi-
cation process, a Nonlinear Principal Components Analysis(NPCA) network trained by Artificial
Neural Network (ANN) is introduced in quasi-ARX Neuro-Fuzzy Network (NFN) model, instead
of PCA network when the input variables of NFN are nonlinear correlation. Because the output
of NPCA network is used as the input of quasi-ARX NFN model, then the number of input is re-
duced. The control method is given based on the improved quasi-ARX NFN model with NPCA.
This method reduces the number of controller parameters andimproves the control performance of
the controller based on the quasi-ARX modeling.
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Preface

The common theme of this thesis is studying on a quasi-linearmodels, especially corresponding
controllers, their applications to adaptive control problems and their stability problem. The material
is organized in six chapters. Most of the material has been published or considered to publish in
journal papers and conference papers.

The material in Chapter 2 can be found in

• Lan Wang, Yu Cheng and Jinglu Hu, “Adaptive Control for Nonlinear Systems Based on
Quasi-ARX Neural Network”,in Proc. of World Congress on Nature and Biologically In-
spired Computing (NaBIC 2009), pp.1548–1551, Coimbatore, India, 2009.

• Lan Wang, Yu Cheng and Jinglu Hu, “Quasi-ARX neural networkand its application to adap-
tive control of nonlinear systems”,in Proc. of 15th International Symposium on Artificial Life
and Robotics (AROB 15th’10), pp.577–580, Bepu, Janpan, 2010.

The material in Chapter 2 has been extended into a journal paper

• Lan Wang, Yu Cheng and Jinglu Hu, “A Quasi-ARX Neural Network with Switching Mech-
anism to Adaptive Control of Nonlinear Systems”,SICE Journal of Control, Measurement,
and System Integration, Vol.3, No.4, pp.246–252, 2010.

The materials in Chapter 3 can be found in

• Lan Wang, Yu Cheng and Jinglu Hu, “Nonlinear Adaptive Control Using a Fuzzy Switching
Mechanism Based on Improved Quasi-ARX Neural Network”,in Proc. of The 2010 Inter-
national Joint Conference on Neural Networks (IJCNN2010), pp. 1–7, Barcelona, Spain,
2010.

• Lan Wang, Yu Cheng and Jinglu Hu, “Adaptive Switching Control Based on Quasi-ARX
RBFN Model”, in Proc. of 2011 International Conference on Computers, Communications,
Control and Automation (CCCA’2011), pp. 76–79, Hongkong, China, 2011.

which has been extended into a journal paper

• Lan Wang, Yu Cheng and Jinglu Hu, “Stabilizing Switching Adaptive Control for Nonlinear
System Based on Quasi-ARX RBFN Model”,IEEJ Transactions on Electrical and Electronic
Engineering (TEEE) (in press), Vol.7, No.4, 2012.
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The material in Chapter 4 can be found in

• Lan Wang, Yu Cheng and Jinglu Hu, “Multivariable Self-Tuning Control for Nonlinear MIMO
System Using Quasi-ARX RBFN Model”,in Proc. of The 30th Chinese Control Conference
(CCC’2011) pp. 3772–3776, Yantai, China, 2011.

which has been extended into a journal paper

• Lan Wang, Yu Cheng and Jinglu Hu, “A Quasi-ARX Model for Multivariable Decoupling
Control of Nonlinear MIMO System”, submitted toMathematical Problems in Engineering,
Accepted (Made On 2011-08-17).

The material in Chapter 5 has been presented in

• Lan Wang, Yu Cheng and Jinglu Hu, “An Improvement of Quasi-ARX Predictor to Control of
Nonlinear Systems Using Nonlinear PCA Network”,in Proc. of ICROS-SICE International
Joint Conference 2009, pp. 5095–5099, Fukuoka, Japan, 2009.

• Lan Wang, Yu Cheng and Jinglu Hu, “Nonlinear Adaptive Control Using Support Vector Re-
gression Based on Improved Quasi-ARX Model”,in Proc. of 2010 International Conference
on Modeling, Simulation and Control (ICMSC’10), pp.412–416, Cairo, Egypt, 2010.
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Glossary

Some notations may have different meaning locally.
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Chapter 1

Introduction and Motivation

1.1 Systems

A system is an object in which variables of different kinds interact and produce observable signals,

in loose terms[1]. Our interesting observable signals are output, and external signal which can be

manipulated are called input. The systems can be divided into linear and nonlinear systems by the

relation between input and output signals. Thanks to the simple frameworks and properties of linear

systems, they have been found in much real application and researched in system identification

control theory and signal processing[2, 3]. However, majority systems are nonlinear whose output

is not directly proportional to their input. The study of nonlinear systems have attracted much

attention from all fields of sciences and humanities. Because they have been everywhere in the

real world, such as food-webs, ecosystems, metabolic pathways and also include systems which

are founded and used by human, such as robot, aeronautical satellite, unpiloted avion, industrialized

machine and electric arc furnace. A part of nonlinear systems can be considered of an approximation

or combination of multiple linear systems[4, 5, 6]. Therefore, confronted with a kind of nonlinear

systems problem, it is indeed a happy circumstance when a solution can be obtained by linearizing.

The systems also can be divided into single-variant and multi-variant systems by the input/output

number of systems. A Single-Input and Single-Output (SISO)system is typically simpler than

Multiple-Input Multiple-Output (MIMO) systems which is shown in Fig.1.1, whereu(t) is input

variable andy(t) is output variable. The theory research on SISO systems has been started since

1960s, and many significant results have been obtained[7, 8,9, 10, 11]. Systems which have more

than one input and more than one output are known as MIMO systems [12, 13]. Then, the vectors

u(t) andy(t) are used to represent multiple inputs and multiple outputs with the desired number. As

we know, MIMO systems usually have a complicated dynamical coupling behavior which are not

1
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Figure 1.1: Schematic diagram of the SISO system.

several SISO systems side by side. Hence the traditional study on SISO systems can not directly to

implement on complicated MIMO systems.

1.2 System Identification

System identification is the theory of how mathematical models for dynamical systems are con-

structed from observed data[14]. Prior knowledge or assumptions about the systems which generate

the observed data guide the choice of model structure. It is general to distinguish under three levels

of prior knowledge, which have been given as follows [15]

• White Box models: This means that a system is perfectly known; it is possible to construct

the model entirely from prior knowledge and physical insight.

• Grey Box models: This means that some physical insight is available, but several parameters

still need to be determined from observed data.

• Black Box models: This means that no physical insight is available or used, but the model

structure is chosen from families which have good flexibility and have been “successful in the

past”.

1.2.1 Black-Box Modeling

A black box model is chosen when little prior knowledge is available and is a standard flexible

structure which can be used to approximate a lot of differentsystems. In order to describe the

system exactly, some reasonable assumptions about system is made. One common assumption is

that the unknown system is linear which is very useful for many problems but this is never true in

real applications. Linear system theory is very well developed and there are many results which can

be applied to the obtained linear models.

However, the linear assumption is strict for real world which has many nonlinear systems. In

recent years, nonlinear modeling and identification have attracted much attention from control and

system identification fields. Many nonlinear models have been proposed in the literatures: ‘classic’
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models derived from Volterra series or Winner series [16, 17], and nonlinear black-box models

based on the nonlinear nonparametric models (NNMs) such as Neural Networks (NNs)[18, 19,

20], Wavelet Networks (WNs) [21, 22], Neuro-fuzzy Networks(NFNs)[23, 24] and Radial Basis

Function Networks (RBFNs) [25, 26]. We can see that the nonlinear black box models is very paid

to the flexibility of the model structures. The structural linearity and simplicity, which are very

important and useful features have been ignored. That is, inthe literature, some authors have used

a “linear model + NN” type hybrid scheme to identify and control nonlinear system [27, 28, 29].

However its linear structures and nonlinear structures arecombined in a less effective and efficient

way. Recently, a hybrid quasi-linear black-box modeling scheme is given by incorporating a group

of certain NNMs into a linear structure[14]. The basic idea of such hybrid method is first to increase

the overall model flexibility by using NNMs and then to restrict the flexibility in the higher order

nonlinearity which can be to achieve the model simplicity [14].

It has been shown that a general nonlinear system can be expressed by a linear model whose

coefficients consist of constant parameters and nonlinear terms. In this model, a group of NNMs are

incorporated into the linear structure to represent the nonlinear terms. Since NNMs in the hybrid

structure is only one nonlinear term of the coefficients, therequirement of each NNM is reduced and

the flexibility of individual NNM also can be restricted to some extent. Therefore, some parameters

of NNMs can be determined by usinga priori knowledge. The efficient use of variousa priori

knowledge information will play an important role on the hybrid modeling. The model constructed

in this way is named as quasi-linear black-box model shown inFig.1.2, which has a linear structure,

flexibility and simplicity [14].

The quasi-linear black-box model which consists two parts:a macro-model part and a kernel

part was proposed in[24, 30]. ARX or ARMAX were used as the macro-model part which are a user-

friendly interface constructed using already known knowledge and the characteristic of structure.

The ordinary NN and NFN have been chosen as the kernel part which is used to parameterize the

coefficients of macro-model, respectively. The identification results based on the quasi-linear black-

box models for nonlinear systems have been got as in Refs.[31, 32, 33, 34].

1.3 Control technology and Control Theory

Control technology play an important role for the human progress during the 20th century. They

bring much positive impact and scientific methodology to resolve many challenges in today’s so-

ciety. They also establish the theoretical basis to achieved automatization, and propose advanced
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Figure 1.2: Hybrid quasi-linear black-box model.

control equipments and production technology for many industry fields. Especially, the widely used

digital computer makes wider application field for control science and technology.

Control theory that deals with influencing the behavior of dynamical systems is an interdisci-

plinary subfield of science, which originated in mathematics and engineering, and evolved into use

by the social sciences, like sociology, psychology, and criminology.

1.3.1 History and Development

The history and development of control theory has followed the control technical development to

heel, and even is running far ahead of engineering practice in some fields. There four main phase

for control under the different period as follows.

The first phase is Early Control. In this period, the development of control theory is based the

invention and improvement of control technology. Early control systems of various types supported

ancient civilizations, such as Clepsydra, Seismoscope, Jacquard loom and Speed Governor. J. Watt

designed centrifugal governor to control the speed of an engine in 1788. Therefore, a more formal

analysis just began with a dynamics analysis of the centrifugal governor which is conducted by the

physicist J. C. Maxwell in 1868 [35]. Then, Maxwell’s classmate E. J. Routh improved the analysis

results of Maxwell to the general case of linear systems in 1875, which brought a flurry of interest

in the field. In 1877, analyzed system stability using differential equations was analyzed by A.

Hurwitz, resulting in what is known as the Routh-Hurwitz theorem. J. M. Gray designed the first
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Figure 1.4: The structure of closed-loop control.

full automatic steamship in 1866.The general problem of the stability of motionwas accomplished

by A. M. Lyapunov as his doctoral thesis in 1892[36].

The second phase is The Pre-classical Period. Engineer N. Minorsky designed automatic steer-

ing systems for the US Navy, and published theoretical analysis of a Proportion Integration Differ-

entiation (PID) controller in 1922. The open-loop control schematic diagram is given by Fig.1.3.

The first widely practical version of the differential analyzer was constructed by H. L. Hazen and

V. Bush at MIT, 1928–1931. The revolutionized Negative Feedback Amplifier was invented by

electrical engineer H. S. Black in 1927[37]. The originatorof cybernetics N. Wiener defined the

notion of Feedback. The structure of closed-loop control isshown in Fig.1.4. Atmosphere pressure

feedback control system was made by E. Sperry and C. Mason. The stability is the master problem,

the differential equations with constant coefficients is mathematics tool and the control technology

and control theory are developed synchronously in this period.

The third phase is Classical Control. The classical Frequency Response methods was developed

by Nyquist and H. W. Bode[38]. In 1948, the bookCyberneticspublished by N. Wiener meant

that the Cybernetics appeared. MIT radiation laboratory founded Nichols Chart Design method,

and R. S. Philips introduced the effect of noise in servomechanisms. The Root Locus method

was proposed by W. Evans in 1948. Thus, the classical controltheory was finished which studied

on signal-input linear system expressed by transfer function and based on the frequency method

and Root Locus method. Many famous book were published in theperiod, such as E. D. Smith’s

Automatic Control Engineer, H. Bode’sNetwork Analysis and Feedback Amplifierand X. Qian’s

Engineering Cybernetics. It was an important part of guidance systems, fire-control systems and

electronics by World War II. The rapid development theory guides the industry developed at very

fast speed in this process.
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The forth phase is Modern Control. The world came in a peaceful development period. The

control of nuclear reactor and aerospace is more complexityand requirement than the classical con-

trol object, this led to the development of multi-variable control systems[39]. Furthermore, since

efficiency and optimality were paramount, Optimal Control method was proposed based on L. S.

Pontryagin’s Maximum Principle and R. Bellman’s dynamic programming. R. E. Kalman intro-

duced the state-space analysis systems, adaptive control system, controllability and so on, which is

the theory foundation of modern control [40, 41]. The development of gigantic supercomputers of-

fered the feasibility calculation. Although they could deal with the reactor and aerospace problem,

those were limited to use in the generic industry because of the complexity and investment. Hence,

many researcher still work on the frequency domain methods,in particular, N. H. Rosenbrock [42].

He transited multiple-variable system into several single-variable systems based on diagonal dom-

inant. This method brought the revival of the frequency domain methods. In the 70s, the methods

were appeared such as Sequence Return Difference method, Dyadic Expansions method and Char-

acteristic Locus Design method, which were considered as modern frequency domain methods [43].

Their basal idea was to use the classical control method by transiting multiple-variable into several

single-variable. In 1965, fuzzy set and fuzzy control was proposed by L. A. Zadeh [44]. And in

1967, K. J. Astrom proposed least squares identification which resolved linear system parameters

identification problem. R. W. brockett used differential geometry to study nonlinear control in 1976

and A. Isidori publishedNonlinear Control Systemsin 1985. H∞ robust control design was first

given by G.Zames in 1981. Some theory such as nonlinear system control has been running far

ahead of engineering practice.

1.3.2 Some Topics in control

Obviously, the stability of a general dynamical system is always main problem of the control theory

research. The study of a general dynamical system describedwith Lyapunov stability criteria is just

in theory. The overwhelming majority of obtained controller based on this study have never be used

in practice. The bounded-input bounded-output (BIBO) stable for a linear system means that output

will stay bounded for any bounded input. This theory has widely guided the controller design in

real world. Therefore, stability for nonlinear systems that combines a notion similar to Lyapunov

stability and BIBO stability have attracted much interest.

From the development of control, the linear control theory both as a branch of Engineering and

as modern Applied Mathematics has been successfully established. Still, the vast majority of real

systems is nonlinear. Although the nonlinear properties were dealt with by essentially patching
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together linear regimes, or linearize such classes of systems and applying linear techniques, in

many cases it can be achieve the accuracy requirement of nonlinear system control. Some nonlinear

control which directly use the NNM to design controller can never convenient usefulness for user.

In the real world, a lot of systems are MIMO with complicated coupling. Due to the diffi-

culty of decoupling problem, most of the control techniquesdeveloped for SISO systems cannot

be extended directly for MIMO systems by transiting multiple-variable into several single-variable.

Then, multivariable decoupling control is also the topic popular research direction.

1.3.3 Adaptive Control

In the early 1950, it was found that ordinary constant-gain,linear feedback control could not work

well in changed conditions. Therefore, adaptive control arisen for the requirement in connection

with the design of autopilots for high performance aircraft[45]. Adaptive control is one control

which involves modifying the control law to deal with the deed that the systems are slowly time-

varying, disturbance or uncertain. In the 1960s, there weremany contributions to control theory

which were important for the development of adaptive control, such as state space, stability theory,

stochastic control theory and dynamic programming. Systemidentification and parameter estima-

tion have also major developed. The stability of adaptive systems were correctly proved in the late

1970s and early 1980s, and it is possible to implement adaptive regulators simply and cheaply based

on the rapid and revolutionary progress in microelectronics. Till now, a mass of development of the

field is taking place, both on universities and industry [46,47, 48, 13, 49, 50]. Adaptive control

loops are widely used in aerospace, process control, ship steering, robotics and other industrial con-

trol systems. Therefore, it is no longer just an important theoretical subject of study, but is also

providing solutions to real-world problems.

Types of adaptive control strategies mainly conclude Gain Scheduling Regulators (GSRs), Self-

Tuning Regulators (STRs) and Model Reference Adaptive Controllers (MRAC, also know as an

MRAS or Model Reference Adaptive System). GSR is a parameterized set of linear controllers

which is one of the simplest and most intuitive forms of adaptive control. In operation the parameters

are measured and the controller in action is scheduled according to the parameters.

STRs Control

The basic idea of STRs: it is assumed that the regulator parameters are adjusted all the time, in an

adaptive system which is shown in Fig.1.5.y∗(t) is the desired output. The main parameters esti-

mation methods of STRs are gradient methods and least squaremethod and control design methods
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Figure 1.5: The self-tuning regulator principle.

are PID, pole-placement, LQG, predictive control, and so on. It was first given by Kalman in 1958.

Until 1973, Åström and Wittenmark first proposed STRs in 1973 [51]. Before 1975, STRs con-

troller are based minimum variance theory. The generalizedself-tuning controller was developed

by Clarke and Gawthrop [52] which resolved the main weaknessof STRs. The pole-assignment

STR algorithm based on the sub-optimal design was given which is better than above STRs except

optimization by Edrounds in 1978. However, there are some problem when the systems have nonlin-

earity and serious uncertainty. Since 1980s, developed neural networks has shown potential ability

to control the systems which are highly nonlinearity and serious uncertainty. Then, the research of

STRs control based neural network has attracted much attention because of its approximate arbi-

trary, learning uncertain, highly robustness and parallelprocessing, and so on.

MRAC

It is one important category of feedback adaptive control asin Fig.1.6. The general idea of MRAC

is to create a closed loop controller with parameters which can be updated to change the response

of the system. Local parameter optimization method is the main idea to design the controllers from

1958-1966, which would lead to unstably. Therefore, Lyapunov stability theory was introduced in

MRAC to resolve the stability problem by Butchart, Shachcloth, Park and Phillipson, from 1966

to 1972. But it is need that differentiation signals of all states or output. Augmented error signal

method and Popov super stability theory have been used only based on input signal. However, it is

difficult to that above methods need to direct get all system states. There two methods to use for the

problem: direct method and indirect method. Since 1980, neural network model was introduced to

MRAC.

There are many directions which adaptive control links withas in Fig 1.7. As we know, adaptive

control are strong ties to nonlinear systems theory.

Adaptive controller offers certain advantages over conventional controller, When the systems

to be controlled contain unknown parameters. Adaptive control theory has been developed into a
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Figure 1.7: The directions link with adaptive control.

considerable mature stage based on linear models [2, 53]. However, it is difficult to control in the

case of black-box type nonlinear systems. The difficulty is that a linear black-box model can not

obtain enough accuracy, while a suitable nonlinear model isvery difficult to find.

Hu et al.(1999) [30] proposes an adaptive predictor for general nonlinear systems based on the

use of a class of NF models. The NF-based predictor can be interpreted as a linear predictor net-

work consisting of a global linear predictor and several local linear predictors with interpolation. It

has two distinctive features as well as good prediction ability: its parameters have explicit meaning

useful for initial value setting in parameter adjustment; it may be transformed into a form linear for

the variables synthesized in control system, which makes deriving a control law straightforward. Hu

et al.(2004) [54] discusses quasi-ARX black-box model for the control of nonlinear systems. Con-

trast to a conventional method, the new method does not use NNdirectly as a nonlinear controller

or nonlinear prediction model, but use it indirectly via an ARX-like macro-model. The ARX-like

model incorporating NN is constructed in such a way that it has similar linear properties to linear

ARX model. The nonlinear controller is then designed in a similar way as designing a controller

based on a linear ARX model which is shown in Fig.1.8.
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Figure 1.8: Controller based on the hybrid quasi-ARX black-box model.

1.4 Challenges

Stability and accuracy of control system are two important problems which have been resolved

based on one model. When quasi-ARX black box models are used for nonlinear system control,

several challenge must be faced:

• Stability Problem

Stability problem must to be resolve if the control system want to be used in real world.

• Accuracy Problem

The controller should have better accuracy in the stable premise.

• Complicated plants

In fact, the controlled systems is more complicated such as unboundedness, Multi-Input and

Multi-Output (MIMO).

• Adaptive Control

The off-line control can not do well in the changing conditions. The proposed control law is

needed that adapts itself to such changing conditions.

• Identification problem

Identification problems include the choosing of model structure and parameter estimation. It

is necessary step before controlling.
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1.5 Goals of the Thesis

For complicated dynamical, the linear model cannot attain expectable control results and the classi-

cal nonlinear model cannot be stability. The challenges of the tasks will require novel modifications

of existing control models and methods. In this thesis, the improved adaptive stability controller

based on quasi-linear black-box model are developed and applied for nonlinear systems control.

More precisely, quasi-linear black-box model have linear part for stability of control and nonlinear

part for control performance. In order to combine both the stability and universal approximation

capability in our controller, a switching mechanism is introduced. The parameters of nonlinear part

can be determined bya prior knowledge. The identification process is also improved.

The work presented here aims to assess the performances of the proposed control system. The

thesis also shows how the proposed control method handle theaforementioned challenges.

1.6 Thesis Outlines and Main Contributions

This thesis presents our work that has been done over the lastthree years. It consists of six chap-

ters. Chapter 1 gives a background and an outline for the whole thesis. Chapter 2 introduces an

improved quasi-ARX NN model and discusses its application to adaptive switching control of non-

linear systems. Chapter 3 obtains a stabilizing fuzzy switching controller for nonlinear system based

on a quasi-ARX RBFN model, a fuzzy switching function and ad-difference operator. Chapter 4

proposes a MIMO quasi-ARX model, and a multivariable decoupling PID controller for MIMO

nonlinear systems based on the proposed model. Chapter 5 improves the quasi-ARX model based

NPCA network which resolve the dimension problem in identification process. Finally, Chapter 6

gives a summary for the whole thesis. The flow of this thesis isdepicted in Figure 1.9.

This thesis summarizes the research on quasi-linear black-box models, especially corresponding

controllers, their applications to adaptive control problems and their stability problem.

Chapter 2 introduces an improved quasi-ARX NN and discusses its application to adaptive control

of nonlinear systems. A switching mechanism is employed to improve the performance of the

controller based on the quasi-ARX NN prediction model whichhas linear and nonlinear parts.

An adaptive controller for a nonlinear system is established based on the proposed prediction

model and the switching law, and some stability analysis of the control system is shown.

The proposed adaptive control system is distinctive to other control systems in the following

issues:



12

Adaptive Control of Nonlinear 

Dynamic Systems Based on 

Quasi-ARX Models

Chapter 1 

Introduction and 

Motivation.

Chapter 6

Conclusions

Chapter 4

Quasi-ARX Model for MIMO 

System Control

Chapter 5

Identification of 

Quasi-ARX Model

Chapter 2

Quasi-ARX Model to 

Adaptive Control

Chapter 3

Stabilizing Fuzzy Switching 

Adaptive Control

Figure 1.9: Flow diagram of this thesis.

• The proposed controller is linear for the variables synthesized in control systems

• The parameters of the proposed controller have explicit meanings

• The proposed control system is only one prediction model which combines a switching

algorithm.

Chapter 3 explores a fuzzy switching adaptive control approach for nonlinear systems. The pro-

posed fuzzy switching adaptive control law is composed of a quasi-ARX RBFN prediction

model and a fuzzy switching mechanism. The quasi-ARX RBFN prediction model consists

of two parts: the linear part used for a linear controller to assure boundedness of the input

and output signals, and the RBFN nonlinear part used to improve the control accuracy. By

using the fuzzy switching scheme between the linear and nonlinear controllers to replace the

0/1 switching, it can realize a better balance between stability and accuracy. Theory analy-

sis and simulation results show the effectiveness of the proposed control method on stability,

accuracy and robustness.

The contributions related to this fuzzy switching adaptivecontrol are that:
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• The proposed control system is linear for the variable synthesized,u(t), including in the

regression vectorsψ(t) andΨ(t);

• The three predictors are obtained directly from only one identified quasi-ARX RBFN

model, and all are linear for the control variableu(t) to be synthesized in the control

system;

• The nonlinear control system could have quick response since only linear parameters

are adjusted on-line.

• The control system employs a fuzzy switching mechanism instead of a simple 0/1

switching.

• The control method of the previous control based the quasi-ARX model is off-line and

doesn’t give the stability analysis. The proposed control system is on-line and stability

which is ensured by a fuzzy witching mechanism.

Chapter 4 introduces a MIMO quasi-ARX model and a multivariable decoupling PID controller

for MIMO nonlinear systems based on the proposed model. The proposed MIMO quasi-ARX

model improves the performance of ordinary quasi-ARX model. The proposed controller

consists of a traditional PID controller with a decoupling compensator and a feed-forward

compensator for the nonlinear dynamics from the MIMO quasi-ARX model. Then an adap-

tive control algorithm is presented using the MIMO quasi-ARX RBFN prediction model and

some stability analysis of control system is shown.

The main contributions related to the MIMO quasi-ARX model and the nonlinear multivari-

able decoupling PID controller are that:

• The proposed method improve the quasi-ARX model to model the systems from SISO

to MIMO which is more complex.

• The proposed method uses RBFNs as nonlinear models which are linear in parameters

through fixing the nonlinear parameters bya priori knowledge. Incorporating the net-

work models with this property, the quasi-ARX models becomelinear-in-parameters.

• The proposed adaptive control algorithm is a decoupling control algorithms which deals

with coupling in nonlinear system based on linear methods and nonlinear networks.

• The proposed adaptive control algorithm based on the MIMO quasi-ARX RBFN pre-

diction model is stability which is proved in this chapter.
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Chapter 5 introduces a Nonlinear Principal Component Analysis (NPCA) to improve the iden-

tification of the quasi-ARX Neuro-fuzzy Networks (NFN) model. One part of the quasi-

ARX model is the ordinary NFN to parameterize the coefficients which faces to a problem

of high dimension. Because the controller shares the parameters with the quasi-ARX predic-

tion model, then the complexity will lead to the huger parameters for controller designing.

NPCA is used for this part to deal with this problem. The processes of modeling, parameter

estimating and control are given in detail.

The main contributions related to this model are shown as follows:

• However, variables and the order of the model increases, the complexity of as the num-

ber of input-output designing the NFN also increases. A Principal Components Analysis

(PCA) is introduced to reduce the dimension of the NFN.

• In fact, the input variables do not only depend on each otherlinearly. When nonlin-

ear correlations between variables exist, a NPCA will describe the data with greater

accuracy than PCA.

Chapter 6 concludes this work, summarizes the thesis and gives suggestions for further research.



Chapter 2

Adaptive Switching Control of
Nonlinear Systems Based on Quasi-ARX
Neural Network

2.1 Introduction

Adaptive control of complex nonlinear dynamical systems has attracted much attention and devel-

oped significantly during the last few decades. Many adaptive control methods have been proposed,

and the corresponding stability and convergence have been proved [55, 56, 57, 10, 58, 59, 60, 61, 62,

63]. Neural networks have been used to identify and control nonlinear dynamical systems because

of its ability to approximate arbitrary mapping to any desired accuracy [64, 65, 66, 67, 54, 22]. One

of the successful examples is that neural networks are used directly to identify and control nonlinear

systems [55, 66, 56, 48, 68].

However, from a user’s point of view, there are three major criticisms on those neural network

models. One is that their parameters do not have useful interpretations. The second is that they do

not have a friendly interface for controller design and system analysis [24, 54, 69, 70]. The third

one is that the result is local, i.e., the initial weights of aneural network have to be “close enough”

to the true ones in order for the stability result to hold [71].

To solve these problems, a quasi-ARX neural network model has been proposed which embod-

ied a macro-model part and a kernel part [54, 72]. The macro-model part is a user-friendly interface

constructed usinga priori knowledge [73] and the characteristic of network structure. In this chap-

ter, we will limit our discussion to a quasi-ARX approach. The linear ARX model has a various

useful linearity properties which will solve the former twoproblems. The kernel part is an ordinary

neural network, which is used to parameterize the coefficients of macro-model and is different from

15
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a nonlinear ARX model based directly on neural networks. Because of the nonlinear characteristics,

the quasi-ARX neural network can be used to identify and control nonlinear systems accurately. In

our previous research, an off-line control scheme is given and the effectiveness of the quasi-ARX

neural network is shown [54]. In the control system, the prediction model and controller share

the same parameters as in linear cases. However, an adaptivecontroller has not been proposed for

nonlinear systems control with the quasi-ARX model. What’smore, the stability analysis is also

lacked.

As we know, one of the successful approaches to solve the stability problem of neural network

based control system is to use multiple models adaptive switched control [74, 75, 71, 60, 76, 77].

Therefore, those prediction and control systems have more than one model which adds the com-

plexity of the control problem.

Motivated by the above discussion, an adaptive control law is proposed for nonlinear dynamical

systems based on the characteristic of quasi-ARX neural network structure, and then the control

system stability is proved. In this chapter, quasi-ARX neural network is divided into two parts:

the linear part is used to ensure the nonlinear control stability, and the nonlinear part is utilized to

improve the control accuracy. In order to combine both the stability and universal approximation

capability in our controller, a switching law is established based on system input-output variables

and prediction errors.

This chapter is organized as follows: In Section 2.2, the considered system is given. In Section

2.3, an improved quasi-ARX prediction model is introduced based on neural network and switch-

ing mechanism, then the parameters identification methods are given. Section 2.4 describes adaptive

control using the improved quasi-ARX prediction model and analyzes the stability under the switch-

ing criterion function. Then, numerical simulations are carried out to show the effectiveness of the

proposed model in Section 2.5. At last Section 2.6 gives someconclusions.

2.2 Problem Description

Consider a single-input-single-output (SISO) nonlinear time-invariant system whose input-output

relation described by:

y(t) = g(ϕ(t)) + v(t), (2.2.1)

ϕ(t) = [y(t− 1), ...y(t − n), u(t− d), ...,

u(t−m− d+ 1)]T
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wherey(t) denotes the output at timet (t = 1, 2, ...), u(t) the input,d the known integer time delay,

ϕ(t) the regression vector, andn ,m the system orders.g(·) is a smooth nonlinear function andv(t)

the system disturbance.

Now the following assumptions will be used:

Assumption 1: (i) g(·) is a continuous function, and at a small region aroundϕ(t) = 0, it is

C∞ continuous;

(ii) there is a reasonable unknown controller which may be expressed byu(t) = ρ̃(ξ̃(t)), where

ξ̃(t) = [y(t) ... y(t−n) u(t− 1) ... u(t−m) y∗(t+ 1) ... y∗(t+ 1− l)]T (y∗(t) denotes reference

output);

(iii) the system has a globally uniformly asymptotically stable zero dynamics.

2.3 Quasi-ARX Neural Network

2.3.1 Regression Form Representation

A general nonlinear system described by (2.2.1) can be represented in a regression which has been

shown in Ref.[24, 67].

UnderAssumption 1(i), the unknown nonlinear functiong(ϕ(t)) can be performed Taylor ex-

pansion in (2.2.1) on a small region aroundϕ(t) = 0:

y(t) = g(0) + g′(0)ϕ(t) +
1

2
ϕT (t)g′′(0)ϕ(t) + ... + v(t) (2.3.1)

where the prime denotes differentiation with respect toϕ(t), then introducing the notations:

y0 = g(0)

θ(ϕ(t)) =

(

g′(0) +
1

2
ϕT (t)g′′(0) + · · ·

)T

= [a1,t ... an,t b0,t ... bm−1,t]
T

where the coefficientsai,t = ai(ϕ(t)) (i = 1, .., n) andbj,t = bj(ϕ(t)) (j = 0, ...,m − 1) are

nonlinear functions ofϕ(t). A regression form of the system (2.2.1) is described by (2.3.2):

y(t) = y0 + ϕT (t)θ(ϕ(t)) + v(t). (2.3.2)

However,y(t) needs to be predicted using the input-output data availableup to timet − d in a

prediction model. Considering this, we hope that the coefficientsai,t andbj,t are calculable using
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the input-output data up to timet− d. For this reason, replace iterativelyy(t− l), l = 1, ..., d − 1

in the expressions ofai,t andbj,t with their predictions:

y(t− l) ⇒ ĝ(ϕ̂(t− l)), l = 1, ..., d − 1 (2.3.3)

whereĝ(·) is a predictor,ϕ̂(t − l) whose elementsy(t − k), l + 1 < k ≤ d − 1 are replaced by

their predictions, and define the new expressions of the coefficients by:

ai,t = ãi,t = ãi(φ(t− d)), bi,t = b̃i,t = b̃i(φ(t− d))

whereφ(t− d) = q−dφ(t) andφ(t) is a vector:

φ(t) = [y(t) ... y(t − n+ 1)u(t) ... u(t −m− d+ 2)]T . (2.3.4)

And q−1 is a backward shift operator, e.g.q−1u(t) = u(t− 1).

Now, two polynomialsA(q−1, φ(t)) andB(q−1, φ(t)) based on the coefficientsai,t andbj,t is

defined by:

A(q−1, φ(t)) = 1 − a1,tq
−1 − . . . − an,tq

−n

B(q−1, φ(t)) = b0,t + . . .+ bm−1,tq
−m+1

A similar-linear ARX model is developed:

A(q−1, φ(t))y(t) = y0 +B(q−1, φ(t))q−du(t− 1) + v(t). (2.3.5)

For a system described by (2.3.5), a representation is givenas in Ref.[54]:

y(t+ d) = yφ + α(q−1, φ(t))y(t) + β(q−1, φ(t))u(t) (2.3.6)

where

yφ =F (q−1, φ(t))y0,

α(q−1, φ(t)) =G(q−1, φ(t))) = α0,t + α1,tq
−1 + ...+ αn−1,tq

−n+1;

β(q−1, φ(t)) =F (q−1, φ(t))B(q−1, φ(t)) = β0,t+ β1,tq
−1 + ...+ βm+d−2,tq

−m−d+2,

andG(q−1, φ(t)), F (q−1, φ(t)) are unique polynomials satisfying:

F (q−1, φ(t))A(q−1, φ(t)) = 1 −G(q−1, φ(t))q−d. (2.3.7)
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As we know, the linear ARX model is linear in the input variable u(t), then an controller can

be obtained easily and shares parameters from the model. However, the model (2.3.6) is a general

one that is nonlinear in the variableu(t), because the coefficientsyφ, αi,t andβj,t are functions of

φ(t) whose elements containu(t), wherei = 0, ..., n − 1 andj = 0, ...,m + d − 2. To solve this

problem, anextra variablex(t) is introduced and replace the variableu(t) in φ(t) with an unknown

nonlinear functionρ(ξ(t)) where

ξ(t) = [y(t) ... y(t− n1 + 1) x(t+ d) ... x(t− n3 + d+ 1) u(t− 1) ... u(t− n2)]
T

including the extra variablex(t + d) as an element. UnderAssumption 1(ii), the functionρ(ξ(t))

is existent. Then we have a model expressed by:

y(t+ d) = yξ + α(q−1, ξ(t))y(t) + β(q−1, ξ(t))u(t) (2.3.8)

whereyξ is yφ whose variableu(t) is replaced bỹρ(·).

As we know, the system model can be considered to have two parts. One part is linear on input

and output variables and the model parameters is independent of ξ(t). The other part is nonlinear

on input and output variables which coefficients depend onξ(t). Define the new expressions of the

coefficients by:

αi,t = α̃i,t = α̃i,0 + α̃i(ξ(t)),

βj,t = β̃j,t = β̃i,0 + β̃j(ξ(t)).

Moreover, we typically letn1 = n, n2 = m+ d− 2, n3 = 1, which gets

ξ(t) = [y(t) ... y(t− n+ 1) x(t+ d) u(t− 1) ... u(t− d+ 2)].T

As we know, in a control system, the extra variablex(t + d) can be replaced with the reference

signaly∗(t+ d). Introducing the following marks:

Ψ(t) = [1 y(t)...y(t − n+ 1)u(t)...u(t −m− d+ 2)]T ;

Θξ = [yξ α0,t ... αny−1,t β0,t ... βnu+d−2]
T ,

we get the improved ARX-like macro-model expression by:

y(t+ d) = ΨT (t)Θξ. (2.3.9)

The coefficientsαi,t (i = 0, ..., n − 1) andβj,t (j = 0, ...,m + d − 2) can be considered as a

summation of two parts: the constant partαli andβlj , and the nonlinear function part onΨ(t) which
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are denotedαi,t−αli andβj,t−βlj . Then, the expression of system in the predictor form (3.2.6) can

be described by:

y(t+ d) = ΨT (t)θ + ΨT (t)Θn
ξ , (2.3.10)

whereθ = [αl0 ... α
l
n−1 β

l
0 ... β

l
m+d−2] and Θn

ξ = [(α0,t − αl0) ... (αn−1,t − αln−1) (β0,t −

βl0) ... (βm+d−2,t − βlm+d−2)]. ς(·) = ΨT (t)Θn
ξ

The following assumptions for the system are used as in Refs.[54, 71, 76]:

Assumption 2(i) The linear part parametersθ lie in a compact regionΣ; (ii) The nonlinear term

ς(·) is globally bounded, i.e.‖ ς(·) ‖≤ D and the bound is known.

2.3.2 Quasi-ARX Neural Network

The elements ofΘξ are unknown nonlinear function ofξ(t), which can be parameterized by neural-

fuzzy networks and neural networks as in Refs.[24, 72]. In this chapter, a neural network is chosen

which can deal with higher dimensional problems.

The quasi-ARX neural network model is expressed by the following equation after parameter-

izing Θξ with an MIMO neural network:

y(t+ d) = Ψ(t)TN (ξ(t),Ω)) (2.3.11)

whereN (·, ·, ·) is a generalized 3-layer neural network withn input nodes,M sigmoid hidden nodes

andn+ 1 linear output nodes1. The 3-layer neural network can be expressed by:

N (ξ(t),Ω) = θ +W 2Γ(W 1ξ(t) +B) (2.3.12)

whereΩ = {W 1, W 2, B, θ} is the parameters set of the neural network,W 1 ∈ RM×N , W 2 ∈

R(N+1)×M are the weight matrices of the first and second layers,B ∈ RM×1 is the bias vector of

hidden nodes,θ ∈ R(N+1)×1 is the bias vector of output nodes, andΓ(·) is the diagonal nonlinear

operator with identical sigmoid elementsσ (for example:σ(x) = 1−e−x

1+e−x ). ξ(t) is the input variables

of neural network which has been defined in the above section.

Then we can express the quasi-ARX neural network predictionmodel (2.3.9) in a form of:

y(t+ d) = ΨT (t)θ + ΨT (t) ·W 2Γ(W 1ξ(t) +B). (2.3.13)

1The number of input node isN = dim(ξ(t)) = n + m, the number of output node is equal todim(Ψ(t)) = N + 1
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2.3.3 Model Parameter Identification

From (2.3.13) we can see that the model parameters can be divided into two classes: the linear part

θ and the nonlinear partW 1, W 2, B. Different identification algorithms are used to estimate two

parts.

The linear part parameterθ is updated as:

θ̂(t) = θ̂(t− d) +
a(t)Ψ(t− d)e1(t)

1 + Ψ(t− d)TΨ(t− d)
(2.3.14)

whereθ̂(t) is the estimate ofθ at time instantt. And

a(t) =

{

1 if |e1(t)| > 2D
0 otherwise

(2.3.15)

wheree1(t) is the linear part error and is defined as follows:

e1(t) = y(t+ d) − Ψ(t)T θ̂(t). (2.3.16)

The nonlinear part parameters are adjusted by BP algorithm.The adjusted error of this part is

defined by:

e2(t) = y(t+ d) − Ψ(t)T θ̂(t) − ΨT (t)Ŵ 2(t)Γ(Ŵ 1(t)ξ(t) + B̂(t)) (2.3.17)

whereΘ̂(t) , {Ŵ 1(t), Ŵ 2(t), B̂(t)} are the estimates ofW 1,W 2 andB at time instant t, respec-

tively.

Similar to Ref.[71], no restriction is made on how the parametersΘ̂(t) are updated except they

always lie inside some pre-defined compact region~:

Θ̂(t) ∈ ~ ∀ t. (2.3.18)

2.3.4 Switching Criterion Function

Define the switching criterion function as follows:

Ji(t)=

t
∑

l=k

ai(l)(‖ ei(l) ‖
2 −4D2)

2(1 + ai(l)Ψ(l − k)TΨ(l − k))

+c ∗
t

∑

l=t−N+1

(1 − ai(l) ‖ ei(l) ‖
2), i = 1, 2. (2.3.19)
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Figure 2.1:A switching control to nonlinear system based on quasi-ARX neural network.

whereN is an integer,c ≥ 0 is a predefined constant, and

ai(t) =

{

1 if |ei(t)| > 2D
0 otherwise.

(2.3.20)

Now, give the expression of switching lawχt based on the switching criterion function:

χt =

{

1 if J1(t) > J2(t)
0 otherwise.

(2.3.21)

By comparingJ1(t) andJ2(t), decides when the nonlinear part is abandoned. IfJ1(t) > J2(t) the

nonlinear part is added, else only use linear part to identify.

2.4 Controller Design and Its Stability

2.4.1 Controller Design

To control a given system, the controller design includes two steps: the first step for identifying

the improved quasi-ARX prediction model; and the second step for deriving and implementing

control law. We can obtained the identified improved quasi-ARX prediction model from above

parts, expressed by:

ŷ(t+ d) = ΨT (t)Θ̂(ξ(t), χt) (2.4.1)

whereΘ̂(ξ(t), χt) = [ŷξ α̂0,ξ,χ ... α̂ny−1,ξ,χ β̂0,ξ,χ ... β̂nu+d−2,ξ,χ]
T , will be used for controller de-

sign. α̂i,ξ,χ = α̂li+, χtα̂
n
i,ξ, β̂i,ξ,χ = β̂li+, χtβ̂

n
i,ξ and[α̂ni,ξ, β̂ni,ξ] = Ŵ 2Γ(Ŵ 1ξ(t) + B̂).
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Figure 2.2: A switching control to nonlinear system between a quasi-ARXneural network and a linear
model.

Consider a minimum variance control with the criterion function as follows:

M(t+ 1) =

[

1

2
(y(t+ d) − y∗(t+ d))2 +

λ

2
u(t)2

]

(2.4.2)

whereλ is weighting factor for the control input.

The controller can be obtained by solving:

∂M(t+ 1)

∂u(t)
= 0 (2.4.3)

In the case where a conventional neural network is used as a prediction model, a controller can

not be derived directly from an identified model because of the nonlinearities. However, the im-

proved quasi-ARX neural network model is linear in the inputvariableu(t). Therefore, a controller

is derived from the proposed model:

u(t) =
β̂0,ξ,χ

β̂2
0,ξ,χ + λ

((β̂0,t − β̂(q−1, ξ(t), χt)q)u(t− 1)

+y∗(t+ 1) − α̂(q−1, ξ(t), χt)y(t) − ŷξ,χ). (2.4.4)
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where the controller parametersα̂i,ξ,χ andβ̂j,ξ,χ come from the predictor and the switching law.

Figure 2.1 shows the adaptive switching controller based onthe improved neural network pre-

diction model for unknown nonlinear systems and Fig.2.2 gives a switching control to nonlinear

system between linear model and quasi-ARX model. We can see that the identified model and

controller share their parametersα̂(t, ξ(t), χt) and β̂(t, ξ(t), χt). The switching lawχt firstly is

calculated from input and output signals and model errors, then is used in the controller.

The proposed controller has three distinctive features:

(1) it is linear for the variables synthesized in control systems;

(2) its parameters have explicit meanings;

(3) it is only one controller which combines a switching algorithm.

Give the stability analysis of the proposed nonlinear control system as follows:

Theorem: For the system (2.2.1) with adaptive controller (2.4.4), all the input and output signals

in the closed-loop system are bounded. Moreover, the tracking error of the system can converge on

zero when a properly neural network is determined.

Proof: Firstly, the model errore(t) is defined by:

e(t)=y(t+ d) − Ψ(t)T θ̂(t) − χtΨ
T (t) · Ŵ 2(t)Γ(Ŵ 1(t)ξ(t) + B̂(t))

=y∗(t+ d) − y(t+ d) (2.4.5)

Then subtractingθ0 from both sides of (2.3.14), and gives:

θ̃(t) = θ̃(t− d) −
a(t)Ψ(t− d)(Ψ(t− d)T θ̃(t− d) − ω(t))

1 + Ψ(t− d)TΨ(t− d)
(2.4.6)

whereθ̃(t) = θ̂(t) − θ0 andω(t) = y(t+ d) − Ψ(t)T θ̂(t).

Consider the following functional:

V (t) = ‖θ̃(t)‖2. (2.4.7)

Then, noting thata(t) = 0 or 1, and combined with (2.3.15) and (2.3.16), we can get as in Ref. [2]:

V (t)=V (t− d) −
2a(t)(e1(t) − ω(t))e1(t)

1 + Ψ(t− d)TΨ(t− d)
+
a(t)Ψ(t− d)TΨ(t− d)e1(t)

2

(1 + Ψ(t− d)TΨ(t− d))2

≤V (t− d) +
a(t)(2e1(t)ω(t))

1 + Ψ(t− d)TΨ(t− d)
−

a(t)e1(t)
2

1 + Ψ(t− d)TΨ(t− d)
(2.4.8)
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From2ab ≤ κa2 + b2/κ,∀κ, the following inequality holds:

V (t)≤V (t− d) +
a(t)(e21(t)/2 + 2ω2(t))

1 + Ψ(t− d)TΨ(t− d)
−

a(t)e1(t)
2

1 + Ψ(t− d)TΨ(t− d)

≤V (t− d) +
2a(t)D2

1 + Ψ(t− d)TΨ(t− d)
−

1

2

a(t)e1(t)
2

1 + Ψ(t− d)TΨ(t− d)
. (2.4.9)

In view of Eq.(2.4.9),{V (t)} is a nonincreasing sequence bounded below by zero. Moreover,

lim
N→∞

N
∑

t=1

a(t)(e1(t)
2 − 4D2)

2(1 + Ψ(t− d)TΨ(t− d))
<∞, (2.4.10)

and

lim
N→∞

a(t)(e1(t)
2 − 4D2)

2(1 + Ψ(t− d)TΨ(t− d))
→ 0. (2.4.11)

From the definition (2.3.16) ofe1(t) and (2.4.1), we have:

e1(t)=∆y(t) − ψT (t− d)θ̂(t− d) = y(t) − y(t− d) + y(t− d) − y∗(t)

=y(t) − y∗(t). (2.4.12)

Along with (2.4.12) and (iii) inAssumptions 1, there exist positivec1 andc2 as in [76] such that:

‖ ϕ(t− d+ 1) ‖≤ c1 + c2 max
0≤τ≤t

‖ e1(τ) ‖ (2.4.13)

It can be seen that the boundedness ofe1(t) determines the boundedness of the input and output

signals. Now it is assumed thate1(t) is unbounded. Then through (2.3.20), there isT > 0, when

t > T , ‖e1(t)‖ > 2D anda1(t) = 1, and the numerator in Eq.(2.4.11) is a positive scalar se-

quence. Therefore, there is a monotony increasing sequence‖e1(tn)‖ such thatlimt→∞ ‖e1(tn)‖

as in Ref.[76]. Since

a(tn)(e1(tn)
2 − 4D2)

2(1 + Ψ(tn − d)TΨ(tn − d))
≥

a(tn)(e1(tn)
2 − 4D2)

2(1 + (‖ϕ(tn − d+ 1)‖ + ‖ϕ(tn − 2d+ 2)‖)2)

≥
a(tn)(e1(tn)

2 − 4D2)

2(1 + (2c1 + 2c2 max0≤τ≤tn ‖ e1(τ) ‖)2)
=

a(tn)(e1(tn)
2 − 4D2)

2(1 + (2c1 + 2c2 ‖ e1(tn) ‖)2)
,

then,

lim
t→∞

a(tn)(e1(tn)
2 − 4D2)

2(1 + Ψ(tn − d)TΨ(tn − d))
≥

1

8c26
> 0. (2.4.14)

But it contradicts (2.4.11). Hence, the assumption is falseande1(t) is bounded.
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By the definition (2.3.17) ofe2(t), (2.4.1) and (iii) inAssumptions 1, there exist positive con-

stantsd1, d2 as in Ref.[76]:

‖ ϕ(t− d+ 1) ‖≤ d1 + d2 max
0≤τ≤t

‖ e2(τ) ‖ (2.4.15)

Along with (iii) of Assumptions 1 similar to Ref.[71],J1(t) is always bounded by (2.3.19) and

(2.4.10).J2(t) has two cases:

(i) Normal Case:J2(t) keeps to be small.

By the switching function (2.3.19),limN→∞
a2(t)(e2(t)2−4D2)

2(1+ψ(t−d)T ψ(t−d))
→ 0 holds on. With (2.4.15)

and similar to the boundedness proof ofe1(t), the errore2(t) is bounded. Sincee(t) = (1 −

χt)e1(t) + χte2(t), therefore,e(t) is bounded.

(ii) Abnormal Case:J2(t) becomes large gradually due to the overfitting of the quasi-ARX NN

predictor.

SinceJ1(t) is bounded. So there exists a constantt0 such thatχt = 0, ∀t > t0. The model also

has bounded errore(t).

By (2.4.5) and (iii) inAssumptions 1, there also exist positive constantsf1, f2 as in Ref.[76]:

‖ ϕ(t− d+ 1) ‖≤ f1 + f2 max
0≤τ≤t

‖ e(τ) ‖ (2.4.16)

From above inequalities and the boundedness ofe(t), the input and output of the closed-loop

switching control system are bounded.

Then through the switching function (2.3.19) and switchinglaw (2.3.21), it can be obtained that

the system chooses the controller corresponding to the smaller model error as the control input of

the system. Therefore, from the definitions ofe1(t) ande2(t), the tracking error of the system is

equivalent to the smaller model error.

The linear control system is always bounded. If a proper nonlinear model is chosen and the

accurate parameters is adjusted, the nonlinear control error e2(t) can converge on zero. It also exists

a constantT0 which satisfiesχt = 1, ∀t > T0. Then the tracking error of systemlimt→∞ ‖e(t)‖(=

limt→∞ ‖e2(t)‖) can converge on zero.
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2.5 Control Simulations

Example 1

Now consider a nonlinear SISO system:

y(t)=
exp(−y2(t− 2)) ∗ y(t− 1)

1 + u2(t− 3) + y2(t− 2)
+

(0.5 ∗ (u2(t− 2) + y2(t− 3))) ∗ y(t− 2)

1 + u2(t− 2) + y2(t− 1)

+
sin(u(t− 1) ∗ y(t− 3)) ∗ y(t− 3)

1 + u2(t− 1) + y2(t− 3)
+

sin(u(t− 1) ∗ y(t− 2)) ∗ y(t− 4)

1 + u2(t− 2) + y2(t− 2)

+u(t− 1) (2.5.1)

Case 1

The desired output in this example is a piecewise function.

y∗(t) =















0.6y∗(t− 1) + r(t− 1)
t ∈ [1, 100] ∪ [151, 200]

0.7sign(0.4493y∗(t− 1) + 0.57r(t − 1))
t ∈ [101, 150]

(2.5.2)

wherer(t) = 1.2 ∗ sin(2πt/25).

In this case, we will chose the switching control system between a linear model and a quasi-ARX

model as show in Fig2.2. At the quasi-ARX model part, a neuralnetwork with one hidden layer and

20 hidden nodes as in Ref.[54] is used and other parameters satisfym = 4, n = 3, c = 1 andN = 2.

The quasi-ARX model can be trained off-line by the hierarchical training algorithm as in Ref.[54].

This model is used on-line as an identifier which nonlinear part is adjusted by BP algorithm and

linear part by above section mentioned algorithm. The ARX model part,m = 4, n = 3. This model

is adopted on-line as an identifier by above section mentioned algorithm.

Figure 2.3 gives the results of Example 1. In Fig.2.3(a), thedot line is the desired output,

the solid line denotes the proposed method control outputy1(t) and dashed line shows the linear

control outputy0(t). The Fig.2.3(b) gives the control input where solid and dashed lines denote the

proposed method control and linear control input, respectively. The errors are shown in Fig.2.3(c).

The switching sequence is presented which 1 is nonlinear model and 0 is linear model in Fig.2.3(d).

Case 2

The desired output in this example is a piecewise function:

y∗(t) =

{

0.4493y∗(t− 1) + 0.57r(t − 1) t ∈ [1, 100] ∪ [151, 200]
0.7sign(0.4493y∗(t− 1) + 0.57r(t − 1)) t ∈ [101, 150]

(2.5.3)



28

20 40 60 80 100 120 140 160 180 200

−2

−1

0

1

2

(a) Proposed model control output(solid), linear control output(dashed) and reference (dotted)  t

y 0(t
) 

y 1(t
) 

an
d 

y*
(t

)

20 40 60 80 100 120 140 160 180 200

−1

−0.5

0

0.5

1

                (b) Proposed model control input(solid), linear control intput(dashed)                   t

u 0(t
) 

an
d 

u 1(t
)

20 40 60 80 100 120 140 160 180 200

−2

0

2

   (c)Proposed control error (solid) and linear control error (dashed)              t

C
on

tr
ol

 e
rr

or
s

20 40 60 80 100 120 140 160 180 200
−1

0

1

2

                              (d) 0/1 switching law                                           t

χ t

Figure 2.3:Switching control results of Example 1.
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wherer(t) = 1.2 ∗ sin(2πt/25).

To identify the system, we use the following quasi-ARX neural network model:

y1(t+ d) = ΨT (t)θ + ΨT (t) ·W 2Γ(W 1ξ(t) +B). (2.5.4)

In the nonlinear part, a neural network with one hidden layerand 20 hidden nodes is used

and other parameters satisfym = 4, n = 3, d = 1. The improved quasi-ARX model can be

firstly trained off-line by the hierarchical training algorithm as in Ref.[54]. Figure 2.4 shows the

performance when the adaptive controller (2.4.4) is used. The parameters of switching criterion

function are chosen to bec = 1.2 andN = 3.

In Fig.2.4(a), the dot line is the desired output, the solid line denotes the proposed method

control outputy1(t) and dashed line shows the linear control outputy0(t). Obviously, the control

output with the proposed method is nearly consistent with the desired output at most of the time.

The mean of linear control errors is -0.0364 and the varianceis 0.2930. The mean of the proposed

method control errors is 0.0035 and the variance is 0.0053. Therefore, our method is better than

linear control. The Fig.2.4(b) gives the control input where solid line and dashed line denotes

the proposed method control inputu1(t) and linear control inputu2(t), respectively. We can see

that the input signals have small fluctuation. The errors areshown in Fig.2.4(c). The switching

sequence is presented which 1 is model with nonlinear part and 0 is model without nonlinear part in

Fig.2.4(d)). From the Fig.2.4(d), even though the model with nonlinear part can often control very

well, it degrades sometimes and the model only with linear part has to work until the nonlinear part

can recover. Therefore, the linear part will work all the time, but the neural network part will work

under the switching sequence.

Example 2

The system is a nonlinear one governed by

y(t)=f [y(t− 1), y(t− 2), y(t − 3), u(t − 1), u(t − 2)] (2.5.5)

where

f [x1, x2, x3, x4, x5] =
x1x2x3x5(x3 − 1) + x4

1 + x2
2 + x2

3

.
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Case 1

e(t) ∈ N(0, 0.001) is a white noise. The desired output in this example is a piecewise function.

y∗(t) =















0.6y∗(t− 1) + r(t− 1)
t ∈ [1, 100] ∪ [151, 200]

0.7sign(0.4493y∗(t− 1) + 0.57r(t − 1))
t ∈ [101, 150]

(2.5.6)

wherer(t) = 1.2 ∗ sin(2πt/25). The algorithm is similar with Example 1 whose parameters satisfy

m = 3, n = 2, c = 1.5 andN = 3. and results is shown in Fig.2.5.

Case 2

The desired output in this example is a piecewise function.

y∗(t) =

{

0.6y∗(t− 1) + r(t− 1) t ∈ [1, 100] ∪ [151, 200]
0.7sign(0.4493y∗(t− 1) + 0.57r(t − 1)) t ∈ [101, 150]

(2.5.7)

wherer(t) = sin(2πt/25).

In the nonlinear part, a neural network with one hidden layerand 20 hidden nodes is used and

other parameters satisfym = 3, n = 2, d = 1. Figure 2.6 shows the performance when the adaptive

controller (2.4.4) is used. The parameters of switching criterion function are chosen to bec = 1.5

andN = 3.

Figure 2.6 gives the results of Example 2 whose marks are samewith Example 1. From the

Fig.2.6(a), the linear control output signals have larger amplitude and far away from the desired

output. However, the proposed control output is almost coincidence with the desired output. The

similar conclusion also can be get from errors. The mean of linear control errors is -0.1011 and the

variance is 0.0687. The mean of the proposed method control is -0.0090 and the variance is 0.0031.

The Fig.2.6(d) shows that the switching mechanism is efficient.

2.6 Conclusion

In this chapter, a new framework for the nonlinear system adaptive control is established based on

an improved quasi-ARX neural network which a switching algorithm is introduced. Different from

some relative work which established more than two prediction models and made switching among

so many corresponding controllers as in Ref. [71, 76], the proposed method is simpler and control-

easier because of the compact and efficient structure of control system. Simulations have been given

to show the effectiveness of the proposed method both on stability and accuracy.
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Chapter 3

Adaptive Fuzzy Switching Control of
Nonlinear Systems Based on Quasi-ARX
RBFN Model

3.1 Introduction

In the past decades, there has been a lot of interests in the stabilizing adaptive control of dynamical

systems [2, 78, 10]. Some adaptive control schemes for dynamical systems via linear control theory

have been obtained as in Refs.[79, 60, 80]. However, the stabilizing adaptive control of dynam-

ical systems is a difficult problem because the plants are always nonlinear in practical dynamical

systems. Hence, the performance of linear control models can not satisfy requirement. For this

reason, some nonlinear prediction models have been developed for nonlinear systems to overcome

the difficulty in predictor and controller design for nonlinear systems. Until now, Neural Networks

(NNs)[18, 19, 20], Wavelet Networks (WNs) [21, 22], Neuro-fuzzy Networks (NFNs)[23, 24] and

Radial Basis Function Networks (RBFNs) [25, 26] have been directly used to identify and control

nonlinear dynamical systems because of their abilities to approximate arbitrary mapping to any de-

sired accuracy. However, it still exists difficulties in parameter identification, controller design, and

stability guarantee, during using these control systems.

The multiple model system structure was firstly proposed in Ref.[71], which contains a lin-

ear model, a NN-based nonlinear model and a 0/1 switching mechanism. The system structure is

utilized to ensure the stability of control system and to improve the control performance. And in

Ref.[76], the assumption of global boundedness on higher-order nonlinear terms is relaxed by intro-

ducing ad-difference operator, and a rigorous analysis on the tracking error is presented. All these

control methods have to identify at least two models. To simplify the identification for control,

35
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in our previous work a quasi-ARX NN model with a switching mechanism has been studied for

nonlinear system adaptive control as in Refs.[81, 20], which is a combination of a linear part and a

following 0/1 switching nonlinear part. It can satisfy the stability and the performance requirement

by using only one model. Nevertheless, there are still some aspects needed to be improved in the

control method based on quasi-ARX NN model. One is that the 0/1 hard switching method is not

very smooth; the second is the assumption of global boundedness also can be relaxed; the third

is that the parameters of quasi-ARX NN model to be adjusted on-line are highly nonlinear, which

deteriorates the adaptability of control system.

In this chapter, ad-difference operator is used in the ARX-like expression of system to relax

the assumption of global boundedness on higher-order nonlinear terms as in Ref.[76]. And a fuzzy

switching mechanism is constructed based on the system switching criterion function. The corre-

sponding switching controller is obtained, which is different with the 0/1 switching law between

multiple models. The fuzzy switching mechanism has three situations: one is that the controller

becomes a linear controller when the fuzzy switching function value equals to 0 and the nonlinear

part is abandoned; another is that the fuzzy switching function value equals to 1 and the nonlinear

part is fully used; the third is that the fuzzy switching function value belongs to (0,1), in which

the control accuracy is improved with more emphasis on the nonlinear part, while the convergence

speed is improved with less emphasis on the control accuracy. This fuzzy switching mechanism is

also different with the normal fuzzy control as in [82, 83] because it is just used in the prediction

model and depends on a switching criterion function.

As we know, the quasi-ARX model embodies an ARX-like macro model part and a kernel

part [54, 72, 20]. The kernel part is an ordinary network model, such as NNs, WNs, NFNs and

RBFNs. to parameterize the nonlinear coefficients of macro-model Some types of the ordinary

network models, such as WNs, RBFNs, and NFNs, can be regardedas nonlinear models linear

in parameters through fixing the nonlinear parameters bya priori knowledge[84, 85, 86, 87, 67].

Incorporating the network models with this characteristic, the quasi-ARX model becomes linear-

in-parameters if those nonlinear parameters are determined off-line. During control process, only

linear parameters are adjusted on-line which can reduce response time of adaptive control. RBFNs

have been used for the nonlinear system control because of their simple topological structure and

precision in nonlinear approximation [25, 26, 88, 89]. Compared with NN, RBFN is understandable

in terms of parameters, then is introduced as the kernel partin the quasi-ARX model to replace the

NN which has been used in Refs. [71, 54, 76, 20].
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Motivated by the above discussions, a stabilizing switching control for nonlinear system is pro-

posed based on the quasi-ARX RBFN model, thed-difference operator and the fuzzy switching

mechanism. The parameters of quasi-ARX RBFN model are categorized into three types: the first

type of parameters for the linear part of model, the second type of linear parameters for the nonlinear

part of model and the third type of nonlinear parameters for the nonlinear part of model. The first

two types of linear parameters are all adjusted by a recursive Least Square (LS) algorithm on-line,

while the third type of nonlinear parameters is determined by applying an Affinity Propagation (AP)

clustering method off-line [90].

The chapter is organized as follows: Section 3.2 describes the nonlinear system considered,

and ad-different operator is used to obtain an ARX-like expression of system ind-different form.

Section 3.3 introduces a quasi-ARX RBFN prediction model whose parameters are identified by

AP clustering method and LS algorithms. Section 3.4 constructs a fuzzy switching adaptive control

system based on the quasi-ARX RBFN predictors, and analyzesthe stability of the control system.

Section 3.5 carries out numerical simulations to show the effectiveness of the proposed control

method. Finally, Section 3.6 presents the conclusions.

3.2 Problem Description

3.2.1 Systems

Consider a single-input-single-output (SISO) nonlinear time-invariant dynamical system with input-

output relation as:

y(t+ d)=g(ϕ(t)), (3.2.1)

ϕ(t)=[y(t+ d− 1), ...y(t + d− n), u(t) , ..., u(t−m+ 1)]T

wherey(t) denotes the output at timet (t = 1, 2, ...), u(t) the input,d the known integer time delay,

ϕ(t) the regression vector, andn ,m the system orders.g(·) is a smooth nonlinear function, and

at a small region aroundϕ(t) = 0, it is C∞ continuous. The origin is an equilibrium point, then

g(0) = 0.

3.2.2 ARX-Like Expression

Under the continuous condition, the unknown nonlinear function g(ϕ(t)) can be performed Taylor

expansion on a small region aroundϕ(t) = 0:

y(t+ d) = g′(0)ϕ(t) +
1

2
ϕT (t)g′′(0)ϕ(t) + ... (3.2.2)
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where the prime denotes differentiation with respect toϕ(t). Then the following notations are

introduced:

(g′(0)+
1

2
ϕT (t)g′′(0) + · · · )T = [a1,t ... an,t b0,t ... bm−1,t]

T

whereai,t = ai(ϕ(t)) (i = 1, .., n) andbj,t = bj(ϕ(t)) (j = 0, ...,m − 1) are nonlinear functions

of ϕ(t).

However, we need to gety(t + d) by using the input-output data up to timet in a model. The

coefficientsai,t, andbi,t, need to be calculable using the input-output data up to timet. To do so,

let us iteratively replacey(t+ l) in the expressions ofai,t andbj,t with functions:

y(t+ l) ⇒ g(ϕ̃(t+ l)), l = 1, ..., d − 1 (3.2.3)

whereϕ̃(t+ l) isϕ(t+ l) whose elementsy(t+ k), l+ 1 < k ≤ d− 1 are replaced by Equ.(3.2.3),

and define the new expressions of the coefficients by:

ai,t = ãi,t = ãi(φ(t)), bj,t = b̃j,t = b̃j(φ(t))

whereφ(t) is a vector:

φ(t) = [y(t) ... y(t − n+ 1)u(t) ... u(t −m− d+ 2)]T . (3.2.4)

Now, introduce two polynomialsA(q−1, φ(t)) andB(q−1, φ(t)) based on the coefficients, de-

fined by:

A(q−1, φ(t))=1 − a1,tq
−1 − . . . − an,tq

−n;

B(q−1, φ(t))=b0,t + . . .+ bm−1,tq
−m+1,

whereq−1 is a backward shift operator, e.g.q−1u(t) = u(t−1). Then, the nonlinear system (3.2.1)

can be equivalently represented as the following ARX-like expression:

A(q−1, φ(t))y(t + d) = B(q−1, φ(t))u(t). (3.2.5)

By the Equ.(3.2.5),y(t+ d) satisfies the following equation as in Ref.[54]:

y(t+ d) = α(q−1, φ(t))y(t) + β(q−1, φ(t))u(t), (3.2.6)

where

α(q−1, φ(t)) =G(q−1, φ(t))) = α0,t + α1,tq
−1 + ...+ αn−1,tq

−n+1; (3.2.7)

β(q−1, φ(t)) =F (q−1, φ(t))B(q−1, φ(t)),

= β0,t+ β1,tq
−1 + ...+ βm+d−2,tq

−m−d+2, (3.2.8)
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andG(q−1, φ(t)), F (q−1, φ(t)) are unique polynomials satisfying:

F (q−1, φ(t))A(q−1, φ(t)) = 1 −G(q−1, φ(t))q−d. (3.2.9)

3.2.3 D-difference Expression

The coefficientsαi,t (i = 0, ..., n − 1) andβj,t (j = 0, ...,m + d − 2) can be considered as a

summation of two parts: the constant partαli andβlj , and the nonlinear function part onφ(t) which

are denotedαi,t−αli andβj,t−βlj . Then, the expression of system in the predictor form (3.2.6) can

be described by:

y(t+ d)=φT (t)θ + φT (t)Θn
φ, (3.2.10)

whereθ = [αl0 ... α
l
n−1 β

l
0 ... β

l
m+d−2] and Θn

φ = [(α0,t − αl0) ... (αn−1,t − αln−1) (β0,t −

βl0) ... (βm+d−2,t − βlm+d−2)].

Apply ad-difference operator, defined by∆ = 1−qd, to (3.2.10). Then the following expression

of system ind-difference form can be obtained:

∆y(t+ d) = ψT (t)θ + ς(Ψ(t)), (3.2.11)

whereψ(t) = ∆φ(t). ς(Ψ(t)) = ΨT (t)θ̃nΨ = ∆φT (t)Θn
φ andΨ(t) = [y(t) ... y(t − d − n +

1) u(t) ... u(t−m− 2d+ 2)]T .

The following assumptions for the system are used as in Refs.[54, 71, 76]:

Assumption 1: (i) The system under consideration has a global representation (3.2.10); (ii)

The linear part parametersθ lie in a compact regionΣ; (iii) The system has a globally uniformly

asymptotically stable zero dynamics; (iv) The nonlinear difference termς(·) is globally bounded,

i.e. ‖ ς(·) ‖≤ D and the bound is known; (v) The system is controllable, in which a reasonable

unknown controller may be expressed byu(t) = ρ(ξ(t)), whereξ(t) is defined in Section (3.3.1).

3.3 Quasi-ARX RBFN Prediction Model

3.3.1 Quasi-ARX RBFN Model

As we know, a controller can be derived easily and can share parameters from the identified predic-

tion model, when the prediction model is linear in the input variableu(t). However, the Equ.(3.2.11)

is a general one which is nonlinear in the variableu(t), because thẽθnΨ are based onΨ(t) whose

elements containu(t). To solve this problem, anextra variablex(t)1 is introduced and an unknown

1Obviously, in a control system, the reference signaly∗(t + d) can be used as the extra variablex(t + d).
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nonlinear functionρ(ξ(t)) is used to replace the variableu(t) in θ̃nΨ, UnderAssumption 1(v), the

functionρ(ξ(t)) exists. Define:

ξ(t)=[y(t) ... y(t− n1) x(t+ d) ... x(t− n3 + d) u(t− 1) ... u(t− n2)]
T

including the extra variablex(t + d) as an element. A typical choice forn1, n2, andn3 in ξ(t) is

n1 = n+ d− 1, n2 = m+ 2d− 2 andn3 = 0. We can express the Equ.(3.2.11) by:

∆y(t+ d) = ψT (t)θ + ΨT (t)θnξ , (3.3.1)

whereθnξ = θ̃nΨ.

The elements ofθnξ are unknown nonlinear function ofΦ(t), which can be parameterized by

NN or RBFN. In this chapter, the RNFN is used which has local property.

θnξ =

M
∑

j=1

wjRj(ξ(t),Ωj), (3.3.2)

whereM is the number of RBFs,wj = [ω1j , ω2j, ..., ωNj ]
T the coefficient vector, andRj(ξ(t),Ωj)

the RBFs defined by:

Rj(ξ(t),Ωj) = e−λj‖ξ(t)−Zj‖2

j = 1, 2, ...,M, (3.3.3)

whereΩj = {λj , Zj} is the parameters set of the RBFN;Zj is the center vector of RBF andλj are

the scaling parameters;‖ • ‖2 denotes the vector two-norm. Then we can express the quasi-ARX

RBFN prediction model for (3.3.1) in a form of:

∆y(t+ d)=ψT (t)θ +
M
∑

j=1

ΨT (t)wjRj(ξ(t),Ωj). (3.3.4)

Now, introducing the following notations:

W =[ w1 w2 ... wM ] =









w11 w12 · · · w1M

· · ·
· · ·

wN1 wN2 · · · wNM









; (3.3.5)

N (ξ(t))=









e−λ1‖ξ(t)−Z1‖2

·
·

e−λM‖ξ(t)−ZM ‖2









, (3.3.6)



41

the quasi-ARX RBFN model is further expressed by

∆y(t+ d)=ψT (t)θ + ΨT (t)WN (ξ(t)) = ψT (t)θ + Ξ(t)TΘ, (3.3.7)

whereΘ = [ w11 ... wn1 ... w1M ... wnM ]T andΞ(t) = N (ξ(t)) ⊗ Ψ(t).

Remark 1 Comparing with Ref.[76], in which the model described by itsEqu.(16) is only an

approximate one, the quasi-ARX RBFN prediction model described by Equ.(3.3.4) is an accurate

model of the system ind-difference form (3.2.11).

3.3.2 Parameter Estimation

By (3.3.7), according to the parameter property, the model parameters are divided into three groups:

the linear parameterθ of the linear partψT (t)θ, the linear parameterΘ and the nonlinear parameter

Ωj of the nonlinear partΨT (t)WN (ξ(t)). The nonlinear parametersΩj are determined off-line. Let

us denote the estimation ofΩj by Ω̂j. In order to determine the centers and widths of the RBFN,

AP clustering method is employed. The centerZj is the arithmetic mean value of all training data in

each cluster. The widthλj is ̺ times the largest distances between all training data in each cluster.

The parametersθ andΘ are estimated by using on-line identification algorithms, respectively.

The linear parameterθ of linear part of model is updated as in Ref.[71]:

θ̂(t) = θ̂(t− d) +
a(t)ψ(t− d)e1(t)

1 + ψ(t− d)Tψ(t− d)
, (3.3.8)

whereθ̂(t) is the estimate ofθ at time instantt, which also denotes the parameter of a linear model

used to approximate the system ind-difference form. And

a(t) =

{

1 if |e1(t)| > 2D
0otherwise,

(3.3.9)

wheree1(t) denotes the error of the linear model, defined by

e1(t) = ∆y(t) − ψ(t− d)T θ̂(t− d). (3.3.10)

The linear parameterΘ of nonlinear part of the quasi-ARX model is updated by a LS algorithm:

Θ̂(t) = Θ̂(t− d) +
P (t)Ξ(t− d)e2(t)

1 + Ξ(t− d)TP (t)Ξ(t− d)
, (3.3.11)

whereΘ̂(t) is the estimate ofΘ at time instantt. Θ̂(0) = Θ0 is assigned with an appropriate initial

value.e2(t) is the error of quasi-ARX model, defined by

e2(t) = ∆y(t) − ψ(t− d)T θ̂(t− d) − ΞT (t− d)Θ̂(t− d). (3.3.12)
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And

P (t) =
P (t− d) − P T (t− d)Ξ(t− d)TΞ(t− d)P (t− d)

1 + Ξ(t− d)TP (t)Ξ(t− d)
. (3.3.13)

Similar to Ref.[71], no restriction is made on how the parameters Θ̂(t) are updated except they

always lie inside some pre-defined compact region~:

Θ̂(t) ∈ ~ ∀ t. (3.3.14)

3.4 Controller Design and Its Stability

3.4.1 Switching Criterion Function

Consider a similar switching criterion function as Ref.[71]:

Ji(t)=
t

∑

l=d

ai(l)(‖ ei(l) ‖
2 −4D2)

2(1 + ai(l)ψ(l − d)Tψ(l − d))

+c ∗
t

∑

l=t−N+1

(1 − ai(l) ‖ ei(l) ‖
2), i = 1, 2, (3.4.1)

whereN is an integer andc ≥ 0 is a predefined constant. And,

ai(t) =

{

1 if |ei(t)| > 2D
0otherwise.

(3.4.2)

It is obvious thata1(t) = a(t).

In most switching control methods based on two or more prediction models [71, 76, 20], hard

switching laws are used. That means that in those control systems, the linear and nonlinear predic-

tors are alternately used. However, the jumping switch willdecrease the precision and adaptability

of the control system. Motivated by the accuracy requirement, we introduce a fuzzy switching law

µt based on the criterion functionJ1(t) andJ2(t):

µt =







1 if η(t) > K
η(t) if k ≤ η(t) ≤ K
0 if η(t) < k,

(3.4.3)

whereK andk are positive constants which satisfyk ∈ (0, 0.5), K ∈ (0.5, 1) andη(t) is a function

of J1(t) andJ2(t) defined by

η(t) =
J1(t)

J1(t) + J2(t) + ǫ
∈ [0, 1], (3.4.4)

whereǫ is a very small positive constant. Whenµt = 0, Θ̂(t) = Θ0, which resetŝΘ(t) to its initial

value.
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3.4.2 Adaptive Controller

Designing a controller for the nonlinear system (3.2.1) includes two steps: the first step to identify

the quasi-ARX model; and the second step to derive and implement the control law. Based on the

identified quasi-ARX model (3.3.4), we construct a prediction model expressed by:

ŷ(t+ d)=(1 − µt)ŷl(t+ d) + µtŷn(t+ d) (3.4.5)

where

ŷl(t+ d)=ψT (t)θ̂(t) + y(t) (3.4.6)

ŷn(t+ d)=ψT (t)θ̂(t) +

M
∑

j=1

ΨT (t)ŵj(t)Rj(ξ(t), Ω̂j) + y(t). (3.4.7)

Consider a minimum variance control with the criterion function as follows:

M(t+ d) =
1

2
(y(t+ d) − y∗(t+ d))2, (3.4.8)

wherey∗(t) is a known bounded reference output. The optimal control lawminimizing (3.4.8) is:

y(t+ d) − y∗(t+ d) = 0. (3.4.9)

Then corresponding to the predictors (3.4.5)-(3.4.7), we can obtain the following controllers:

C : ψT (t)θ̂(t) + µt

M
∑

j=1

ΨT (t)ŵj(t)Rj(ξ(t), Ω̂j) = y∗(t+ d) − y(t), (3.4.10)

and two othersCl andCn corresponding to the extreme cases ofµt = 0 andµt = 1, respectively

Cl : ψT (t)θ̂(t) = y∗(t+ d) − y(t) (3.4.11)

Cn : ψT (t)θ̂(t) +

M
∑

j=1

ΨT (t)ŵj(t)Rj(ξ(t), Ω̂j) = y∗(t+ d) − y(t) (3.4.12)

Figure 3.1 shows the proposed adaptive fuzzy switching control system based on the quasi-ARX

RBFN for nonlinear systems. The control system has four distinctive features:

1) The control system (3.4.10) is linear for the variable synthesized,u(t), including in the re-

gression vectorsψ(t) andΨ(t);
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Figure 3.1:A nonlinear adaptive control system based on the quasi-ARX RBFN model and the fuzzy switch-
ing law.

2) The three predictors (3.4.5)-(3.4.7) are obtained directly from only one identified quasi-ARX

model, and all are linear for the control variableu(t) to be synthesized in the control system;

3) The nonlinear control system could have quick response since only linear parameters are

adjusted on-line;

4) The control system employs a fuzzy switching mechanism instead of a simple 0/1 switching.

3.4.3 Stability Analysis

Give the stability analysis of the proposed nonlinear control system as follows:

Theorem: For the system (3.2.1) with adaptive fuzzy switching controller (3.4.10), all the input

and output signals in the closed-loop system are bounded. Moreover, the tracking error of the system

can converge on zero when a properly RBFN is determined.

Proof: Defining θ̃(t) = θ̂(t) − θ and by the adaptation law (3.3.8), it follows that as described

in Refs.[71, 76]:

‖θ̃(t)‖2 ≤ ‖θ̃(t− d)‖2 −
a1(t)(‖e1(t)‖

2 − 4D2)

2(1 + ψT (t))ψ(t)
.

Similar to Refs.[71, 76], under the condition (3.4.2),θ̃(t) is bounded. Moreover, we can get:

lim
N→∞

N
∑

t=1

a1(t)(e1(t)
2 − 4D2)

2(1 + ψ(t− d)Tψ(t− d))
<∞, (3.4.13)
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and

lim
t→∞

a1(t)(e1(t)
2 − 4D2)

2(1 + ψ(t− d)Tψ(t− d))
→ 0. (3.4.14)

From the definition (3.3.10) ofe1(t) and (3.4.11), we have:

e1(t)=∆y(t) − ψT (t− d)θ̂(t− d)

=y(t) − y(t− d) + y(t− d) − y∗(t)

=y(t) − y∗(t). (3.4.15)

Along with (3.4.15) and (iii) inAssumptions 1, there exist positivec1 andc2 such that:

‖ ϕ(t− d+ 1) ‖≤ c1 + c2 max
0≤τ≤t

‖ e1(τ) ‖ (3.4.16)

From Ref.[76], ife1(t) is unbounded, then it will introduce the contradiction of (3.4.14) through

using (3.4.16). Therefore, we can get thate1(t) is bounded.

By the definition (3.3.12) ofe2(t), (3.4.12) and (iii) inAssumptions 1, there exist positive

constantsd1, d2 as in Ref.[76]:

‖ ϕ(t− d+ 1) ‖≤ d1 + d2 max
0≤τ≤t

‖ e2(τ) ‖ (3.4.17)

The errore(t) is defined as follows:

e(t)=∆y(t+ d) − ψT θ̂(t) − µt

M
∑

j=1

ΨT (t)ŵjRj(Φ(t), Ω̂j)

=y∗(t+ d) − y(t+ d). (3.4.18)

By (3.4.18) and (iii) inAssumptions 1, there also exist positive constantsf1, f2 as in Ref.[76]:

‖ ϕ(t− d+ 1) ‖≤ f1 + f2 max
0≤τ≤t

‖ e(τ) ‖ (3.4.19)

We can easily find that the second term in (3.4.1) is always bounded by (3.4.2). Therefore,J1(t)

is always bounded through employing (3.4.13).J2(t) has two cases:

(i) Normal Case:J2(t) keeps to be small.

By the switching function (3.4.1),limN→∞
a2(t)(e2(t)2−4D2)

2(1+ψ(t−d)T ψ(t−d))
→ 0 holds on. With (3.4.17)

and similar to the boundedness proof ofe1(t), the errore2(t) is bounded. Sincee(t) = (1 −

µt)e1(t) + µte2(t), therefore,e(t) is bounded.
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(ii) Abnormal Case:J2(t) becomes large gradually due to the overfitting of the quasi-ARX

RBFN predictor.

SinceJ1(t) is bounded, from Equ.(3.4.3) and (3.4.4) there exists a constant tk such thatη(t) <

k, µt = 0, ∀t > tk, so that the model errore(t) = e1(t). Therefore,e(t) is also bounded. On the

other hand, sincêΘ(t) is reset to the initial valueΘ0 whenµt = 0, e2(t) becomes smaller again.

J2(t) gradually returns to its Normal Case (i) by the switching criterion function (3.4.1).

From above inequality (3.4.19), sincee(t) is bounded, the input and output of the closed-loop

switching control system are bounded.

As in Ref.[76], the errorei(t), i = 1, 2, satisfieslimt→∞ ‖ ei(t) ‖≤ 2D. By the switching

criterion function (3.4.1), the second term determines thefuzzy switching control system, that is to

say, the tracking error of the system dependent on the model error only. For the model error, we

have:

e2(t)=∆y(t+ d) − ψT θ̂(t) −
M
∑

j=1

ΨT (t)ŵjRj(Φ(t), Ω̂j). (3.4.20)

The linear model is always bounded. If a proper nonlinear structure is chosen and the accu-

rate parameters is adjusted, for a predefined arbitrary small positive constantε, ‖e2(t)‖ < ε <

δK limt→∞ ‖e1(t)‖ can hold on. It also exists a constantTK satisfiesη(t) > K,µt = 1, ∀t > TK .

Then the tracking error of systemlimt→∞ ‖e(t)‖(= limt→∞ ‖e2(t)‖) can converge on zero.

Remark 2: In an abnormal case,J2(t) may become large. The condition ofΘ̂(t) ∈ ~ ∀ t in

Equ.(3.3.14) preventse2(t) andJ2(t) to become unbounded suddenly. On the other hand, increasing

J2(t) gradually leads toµt = 0, thenΘ̂(t) is reset to its initial valueΘ0 in the switching mechanism.

This makesJ2(t) gradually return to it normal case.

3.5 Control Simulations

In this section, we will divide into two cases to discuss the control performance.

3.5.1 Case One

In this case, we will use two example to show the effectiveness of the proposed fuzzy switching

based on NN.
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Figure 3.2:Control results for Example 1.

Example 1

Now consider a nonlinear SISO system:

y(t)=
exp(−y2(t− 2)) ∗ y(t− 1)

1 + u2(t− 3) + y2(t− 2)
+

(0.5 ∗ (u2(t− 2) + y2(t− 3))) ∗ y(t− 2)

1 + u2(t− 2) + y2(t− 1)

+
sin(u(t− 1) ∗ y(t− 3)) ∗ y(t− 3)

1 + u2(t− 1) + y2(t− 3)
+

sin(u(t− 1) ∗ y(t− 2)) ∗ y(t− 4)

1 + u2(t− 2) + y2(t− 2)

+u(t− 1) (3.5.1)

The desired output in this example is a piecewise function:

y∗(t) =

{

0.4493y∗(t− 1) + 0.57r(t − 1) t ∈ [1, 100] ∪ [151, 200]
1.4 ∗ sign(0.4493y∗(t− 1) + 0.57r(t − 1)) t ∈ [101, 150]

(3.5.2)

wherer(t) = 1.2 ∗ sin(2πt/25).

To identify the system, we use the following improved quasi-ARX neural network model:

y(t+ d) = ΨT (t)θ + ΨT (t) ·W2Γ(W1ξ(t) +B). (3.5.3)

In the nonlinear part, a NN with one hidden layer and 20 hiddennodes is used and other param-

eters are set asm = 4, n = 3, d = 1. The improved quasi-ARX model can be firstly trained off-line

by the hierarchical training algorithm as in Ref.[54]. Figure 3.2-3.4 show the performance when
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Figure 3.3:Control results for Example 1.

the proposed adaptive fuzzy switching controller is used. The parameters of switching criterion

function and fuzzy membership function are chosen asc = 1.5 ,N = 3,K = 0.9 andk = 0.1.

Table 3.1: Comparison results of errors

mean of errors variance of errors
linear control −0.0185 0.0551

switching control 0.0061 0.0365
proposed control 0.3305 ∗ 10−003 0.0051

In Fig.3.2(a), the red dot-solid line is the desired output,the blue solid line denotes the proposed

method control outputy(t) and green dashed line shows the linear control outputy0(t). Obviously,

the control output with the proposed method is nearly consistent with the desired output at most

of the time. Look at Fig.3.2(b), the red dot-solid line is thedesired output and the blue solid line

denotes the proposed method control outputy(t). The green dashed line shows the 0 or 1 switching

control outputy1(t). We can see that the proposed adaptive fuzzy switching controller can do better

than the 0/1 switching control in two points: one is the convergence speed and the other is the

adaptability. Figure 3.3(c) gives the control input where blue solid line, red dot-solid line and green
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dashed line denotes the proposed method control inputu(t), the linear control inputu0(t) and the

switching control inputu1(t), respectively. Obviously, the input signals have small fluctuation.

The errors are shown in Fig.3.3(d). Table 3.1 also gives the contrast of three methods errors. The

error of the proposed control system is smaller than the other methods. The switching sequence is

presented which 1 is model with nonlinear part and 0 is model without nonlinear part in Fig.3.4(e).

In the Fig.3.4(f), the fuzzy switching functionµt is shown. This figure can explain the reason

of the advantage of proposed method in convergence speed andadaptive activity. The switching

control use nonlinear part whent ∈ [100, 150] and abandon nonlinear part when the value of the 0/1

switching law is 0. However, the fuzzy switching law establishes a proportion controller between

linear and nonlinear control.

Example 2

The system is a nonlinear one governed by

y(t)=f [y(t− 1), y(t − 2), y(t − 3), u(t− 1), u(t − 2)] (3.5.4)

where

f [x1, x2, x3, x4, x5] =
x1x2x3x5(x3 − 1) + x4

1 + x2
2 + x2

3

.

The desired output in this example is a piecewise function.

y∗(t) =

{

0.6y∗(t− 1) + r(t− 1) t ∈ [1, 100] ∪ [151, 200]
0.7sign(0.4493y∗(t− 1) + 0.57r(t − 1)) t ∈ [101, 150]

(3.5.5)
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Figure 3.5:Control results for Example 2.

wherer(t) = sin(2πt/25).

In the nonlinear part, a neural network with one hidden layerand 20 hidden nodes is used and

other parameters satisfym = 3, n = 2, d = 1. Figure 4.4 shows the performance when the adaptive

controller is used. The parameters of switching criterion function and fuzzy switching function are

chosen to bec = 1.8 ,N = 3,K = 0.9 andk = 0.1.

Table 3.2: Comparison results of errors

mean of errors variance of errors
linear control −0.0929 0.0610

switching control −0.0051 0.0067
proposed control −0.0044 0.0032

Figure 3.5-3.7 give the results of Example 2 whose marks are same with Example 1. From the

Fig.3.5(a), the linear control output signals have larger amplitude and far away from the desired

output. However, the proposed control output is almost coincidence with the desired output. It also

can be found that the switching control results have some wobble at the last half time. The similar

conclusion also can be gotten from errors. The table 3.2 shows the contrast of three methods. The
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Figure 3.6:Control results for Example 2.

error of the proposed control system is smaller than the other methods. The Fig.3.7(f) shows that

the fuzzy switching function is efficient.

3.5.2 Case Two

In this case, we will use two example to show the effectiveness of the proposed control method

based on RBFN.

The system considered is a nonlinear one governed by

y(t)=g[y(t− 1), y(t− 2), y(t− 3), u(t − 1), u(t − 2)] + v(t), (3.5.6)

whereg(·) is the nonlinear function with a disturbance:

g[x1, x2, x3, x4, x5]=pt
x1x2x3x5(x3 − 1) + x4

1 + x2
2 + x2

3

+ qt ln(1 + 0.2x4). (3.5.7)

The two coefficientspt andqt of g(·) have a sudden change att = 101, described by

pt =

{

1 t ∈ [1, 100]
0.99 t ∈ [101, 200]

and

qt =

{

1 t ∈ [1, 100]
1.01 t ∈ [101, 200].
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Andv(t) is the system disturbance described byv(t) = (1+0.25q−1)ė(t) whereė(t) ∈ N(0, 0.005)

is a white noise. The desired output considered is a piecewise function, defined by

y∗(t) =

{

0.6y∗(t− 1) + sin(2π(t− 1)/25) t ∈ [1, 100] ∪ [151, 200]
0.7sign(0.4493y∗(t− 1) + 0.57 sin(2π(t− 1)/25)) t ∈ [101, 150].

(3.5.8)

Note that the origin of the system is an equilibrium point, but the high-order nonlinear part is not

bounded. A sudden change on the system and the system disturbance are introduced in order to

show the robustness of the proposed control method.

When identifying the system, the quasi-ARX RBFN predictionmodel (3.3.4) is used, in which

the number of RBF functionsM = 6, the model ordersm = 3 n = 2, the delayd = 1. And the

bound of the nonlinear difference term of the system is set toD = 0.05.

1) Estimation of nonlinear parameterΩj

The nonlinear parameter vectorsΩj = {Zj , λj}, j = 1, ...,M are first determined off-line. To

do so, the system is excited by a random sequence with the amplitude between -1 and 1 as in Ref.[67]

and 1000 input-output data set are recorded. Then an AP clustering algorithm is applied to the data

set for partitioning the input space ofξ(t) = [y(t) ... y(t−n) y∗(t+1) u(t−1) ... u(t−m)]T . After

clustering, 6 clusters are generated automatically in the input space, so thatM = 6. The parameter

vectorZj corresponds to the center of each cluster, whileλj is calculated by multiplying a constant

̺ = 0.2 to the largest distance of the data in each cluster. The results ofΩj = {Zj , λj}, j = 1, ..., 6

are shown in Tab. 3.3. What should be mentioned is that the nonlinear parameters are fixed during

the whole adaptive control procedure, even a sudden change occurs on the system.

2) Control without switching mechanism
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Table 3.3: Estimates of parametersΩj, j = 1, .., 6.

Z1 Z2 Z3 Z4 Z5 Z6

ξ1 −0.7004 0.3719 −0.4277 −0.1317 0.4906 0.7850
ξ2 −0.6574 −0.5189 0.5649 −0.5927 0.3156 0.7178
ξ3 −0.7166 −0.5581 0.5334 −0.7247 0.1906 −0.1573
ξ4 −0.7470 −0.3356 −0.3553 −0.7118 −0.4443 −0.3322
ξ5 −0.0894 −0.3522 −0.2988 0.2550 −0.2004 −0.0555
ξ6 −0.6441 0.4940 −0.7349 0.3924 0.5749 0.8512
ξ7 −0.7733 −0.7251 0.7189 −0.8273 0.5151 0.8512
λ 0.0185 0.0276 0.0318 0.0233 0.0286 0.0176

Table 3.4: Comparison results of the errors

mean of RMSEsa mean of variances
fuzzy switching method 0.0147 0.047
0/1 switching method 0.0201 0.082
linear control method 0.0240 0.105

aRoot mean spare errors (RMSEs) are calculated by RMSE(i)= 1

T

√

∑T

t=1
(yi(t) − y∗(t))2, where

T = 200, i = 1, .., 50.

For comparison, the system is first controlled using a linearadaptive controller based onC1

(3.4.11). The control results are shown in Fig.3.8. Figure 3.8(a) shows the control output (solid)

and the reference (dotted) and Fig. 3.8(b) shows the controlerror. We can see that the control result

based on linear controller is not impressing and the performance needs to be improved. Then a

nonlinear adaptive controller based onC2 (3.4.12) is applied to controlling the system. Although

the control accuracy is improved, the control system converges only in 16 out of 100 trials Monte

Carlo simulations. A stabilizing mechanism is required forthe nonlinear adaptive control system.

3) Control with switching mechanisms

The adaptive control with a fuzzy switching mechanism described in Section 4 is applied to con-

trolling the system. The parameters of switching criterionfunction and fuzzy membership function

are chosen asc = 1.5, N = 3, K = 0.9 andk = 0.1. WhenK = k = 0.5 the fuzzy switching

scheme reduces to a 0/1 switching scheme. Table 3.4 shows theaverage performance of a Monte

Carlo simulation with 50 trials. The results of two switching methods and linear control method

are proposed. We can see that the 0/1 switching control method gets smaller control error than the

linear control method, and the fuzzy switching method improves the control performance further.
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Figure 3.9 shows the control results, in which the comparisons between the proposed adaptive

fuzzy switching controller (3.4.10) and the 0/1 switching controller are shown. In Fig.3.9(a), the

dotted line (red) is the desired outputy∗(t), the solid line (green) is the control outputy1(t) of

the proposed fuzzy switching method, the dashed line (blue)is the control outputy2(t) of the 0/1

switching control method. Figure 3.9(b) gives the control errors where the solid line (green) and the

dashed line (blue) denote the control errorsy1(t) − y∗(t) of the proposed fuzzy switching method,

the control errorsy2(t) − y∗(t) of the 0/1 switching method, respectively. We can easily seethat

the proposed fuzzy switching method have approached a good result sincet = 10 which is faster

than the 0/1 switching method. The performance of the proposed fuzzy switching control method

is better than the 0/1 switching method whent ∈ [10, 100) ∪ (110, 200], and the robustness of the

proposed fuzzy switching control method is much better thanthe 0/1 switching method which have

be illustrated sincet = 100. Therefore, the proposed fuzzy switching method have a better control

result than the contrastive control method. Figure 3.9(c) gives the control input where the solid line

(green) and the dashed line (blue) denote the proposed fuzzyswitching method control inputu1(t),

the 0/1 switching control inputu2(t), respectively. Obviously, the input signals both of the proposed

fuzzy switching control and switching control are smootherwith very small fluctuation than linear

control method.
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Figure 3.9:Control results for Example.

The 0/1 switching sequence are shown in Fig.3.10(a), in which 1 is the model with nonlinear

part and 0 is the model without nonlinear part. In the Fig.3.10(b), the fuzzy switching function value

µt is shown. The 0/1 switching control use nonlinear part sincet = 3, while the nonlinear model

may not be identified accurately, then it deteriorates the control convergence speed and adaptive

activity. The switching control sequence changes between 0and 1 frequently since the system

have a disturbance. The switching control sequence equals to 0, and can not improve the control

performance if the nonlinear model may be accurate . The proposed fuzzy control sequenceµt ∈

[0, 1] whent ∈ [10, 30]∪[50, 60]∪[120, 130]∪[160, 180], improves convergence speed, performance

and robustness of the control system.

Remark 3: The nonlinear parametersZj andλj j = 1, ...,M of the RBFN part are determined

by a priori and only the linear parameterswj j = 1, ...,M are adjusted during control process. The

quasi-ARX RBFN prediction model used in the adaptive control is linear in the on-line adjustable

parameters. Therefore, the proposed adaptive control system needs less response time of adaptive

control and has more quick convergence speed than those using a nonlinear prediction model based

on NN. The time od the proposed method is only about ten seconds and the control method based

on NN is over five minutes with 200 steps.
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Figure 3.10:Switching sequences for Example.

3.6 Conclusions

In this chapter, a stabilizing switching controller for nonlinear system is designed based on a quasi-

ARX RBFN model and a fuzzy switching function. Different with some relative works, in which

more than two controllers are established and 0/1 switchingmechanism is designed[71, 76], the pro-

posed control method uses a smooth switching between a linear controller and a nonlinear controller

both of which are derived from the same identified quasi-ARX RBFN prediction model. It can sat-

isfy the stability, response and performance requirement with only one model used. Ad-difference

operator is used to relax the assumption of global boundedness on higher-order nonlinear terms as

in Ref.[76], which improves our previous work of Refs.[20].For parameterizing the coefficients

of the macro-model, a RBFN is used in the kernel part to replace NN, thus nonlinear parameters

of the proposed quasi-ARX RBFN prediction model can be determined bya priori knowledge,

then the prediction model only remains linear parameters tobe adjusted on-line. Simulations are

given to show the effectiveness of the proposed method on control stability, accuracy, response and

robustness.



Chapter 4

Multivariable Decoupling Control of
Nonlinear MIMO Systems Based on
MIMO Quasi-ARX Model

4.1 Introduction

Nonlinear system control has become a considerable topic inthe field of control engineering. Many

control results have been obtained for nonlinear Single-Input and Single-Output (SISO) systems

based on the black box models, such as Neural Networks (NNs),Wavelet Networks (WNs), Neuro-

Fuzzy Networks (NFNs) and Radial Basis Function Networks (RBFNs), because of their abilities

to approximate arbitrary mapping to any desired accuracy[66, 20, 21, 22, 23, 24, 25]. These black

box models have been directly used to identify and control nonlinear dynamical systems.

Due to the complexity of nonlinear Multi-Input and Multi-Output (MIMO) systems, most of

the control techniques developed for SISO systems cannot beextended directly for MIMO systems.

One of the main difficulties in MIMO nonlinear system controlis coupling problem. As such, it

is important to investigate the realization of decoupling control. Many adaptive decoupling control

algorithms have been proposed to deal with coupling in nonlinear system based on linear methods

and nonlinear networks [91, 92, 93, 94, 76]. Some decouplingcontrol methods of them are diffi-

cult not only to achieve accurate requirement and stability, but also to be implemented in industrial

applications. On the other hand, PID controller has been widely applied in controlling the SISO

system because of its simple structure and relatively easy industrial application[95, 96]. However,

PID controller can not be directly used for MIMO model. Lang,Gu & Chai[97] proposed a mul-

tivariable decoupling PID controller for MIMO linear systems based on the linear PID control and
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generalized minimum variance control law. What’s more, Zhai & Chai[98] presented a multivari-

able PID control method using neural network to deal with nonlinear multivariable processes. In

this control system, the nonlinear unmodeled part estimated by neural network is considered as a

black box. The initial weights of neural network, local minima and overfitting are the problems

which need to be resolved.

In our previous work, a quasi-AutoRegressive eXogenous (ARX) model with an ARX-like

macro model part and a kernel part was proposed, and a controller was designed for SISO sys-

tems [72, 54, 20, 99]. The kernel part is an ordinary network model, but it is used to parameterize

the nonlinear coefficients of macro model. As we know, RBFNs have played an important role

in control engineering, especially in nonlinear system control because of their simple topological

structure and precision in nonlinear approximation [88, 89]. Especially, RBFNs can be regarded as

nonlinear models which are linear in parameters when fixing the nonlinear parameters bya priori

knowledge[86, 87]. Incorporating the network models with this property, the quasi-ARX models

become linear-in-parameters. Therefore, the RBFNs are chosen to replace the NNs as in [20].

The SISO model and control methods based on quasi-ARX model can not be directly applied

to MIMO nonlinear systems. Motivated by the above discussions, an MIMO quasi-ARX model

is first proposed for MIMO nonlinear systems and then a nonlinear multivariable decoupling PID

controller is proposed based on the MIMO quasi-ARX model, which consists of a traditional PID

controller with a decoupling compensator and a feed-forward compensator for the nonlinear dy-

namics based on the MIMO quasi-ARX model. Then an adaptive controller is presented using the

MIMO quasi-ARX RBFN prediction model. The parameters of such controller is selected based on

the generalized minimum control variance. In this paper, quasi-ARX RBFN model is divided into

two parts: the linear part is used to guarantee the stabilityand decoupling, and the nonlinear part is

used to improve the accuracy.

The chapter is organized as follows: Section 4.2 describes the nonlinear MIMO system consid-

ered, and then a hybrid system expression is obtained and an MIMO quasi-ARX RBFN model is

proposed. In Section 4.3, a multivariable decoupling PID controller is got based on the proposed

model and generalized minimum variance control law. Then anadaptive control algorithm is pre-

sented using the MIMO quasi-ARX RBFN prediction model and the corresponding parameter esti-

mation methods are proposed in Section 4.4. Section 4.5 carries out numerical simulations to show

the effectiveness of the proposed control method. Finally,Section 4.6 presents the conclusions.
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4.2 An MIMO Quasi-ARX Model

4.2.1 Systems

Consider an MIMO nonlinear dynamical system with input-output relation as:

y(t+ d)=f(ϕ(t)), (4.2.1)

ϕ(t)=[y(t+ d− 1)T , ..., y(t+ d− ny)
T ,u(t)T , ...,u(t− nu + 1)T ]T

wherey = [y1, ..., yn]
T ∈ Rn andu = [u1, ..., un]

T ∈ Rn are system input and output vectors,

respectively,d the known integer time delay,ϕ(t) the regression vector, andny , nu the system

orders.f(·) = [f1(·), ..., fn(·)]
T is a vector-valued nonlinear function, and at a small regionaround

ϕ(t) = 0 (0 = [0, ..., 0]T ), they areC∞ continuous. The origin is an equilibrium point, then

f(0) = 0. The system is controllable, in which a reasonable unknown controller may be expressed

by u(t) = ρ(ξ(t)), whereξ(t) is defined in Section (4.2.4).

4.2.2 ARX-Like Expression

Under the continuous condition, the unknown nonlinear function fk(ϕ(t)), (i = 1, ..., n) can be

performed Taylor expansion on a small region aroundϕ(t) = 0:

yk(t+ d) = f ′k(0)ϕ(t) +
1

2
ϕT (t)f ′′k (0)ϕ(t) + ... (4.2.2)

where the prime denotes differentiation with respect toϕ(t). Then the following notations are

introduced:

(f ′k(0) +
1

2
ϕT (t)f ′′k (0) + · · · )T = [a1,k

1,t ...a
1,k
ny ,t

... an,kny,t
b1,k1,t ...b

1,k
nu,t

... bn,knu,t
]T

whereal,ki,t = al,ki (ϕ(t)) (i = 1, .., ny) and bl,kj,t = bl,kj (ϕ(t)) (j = 0, ..., nu − 1) are nonlinear

functions ofϕ(t).

However, we need to gety(t + d) by using the input-output data up to timet in a model. The

coefficientsal,ki,t andbl,kj,t need to be calculable using the input-output data up to timet. To do so, let

us iteratively replacey(t+ l) in the expressions ofal,ki,t andbl,kj,t with functions:

y(t+ s) ⇒ g(ϕ̃(t+ s)), s = 1, ..., d − 1 (4.2.3)

whereϕ̃(t+s) isϕ(t+s) whose elementsy(t+m), s+1 < m ≤ d−s are replaced by Equ.(4.2.3),

and define the new expressions of the coefficients by:

al,ki,t = ãl,ki,t = ãl,ki (φ(t)), bl,kj,t = b̃l,kj,t = b̃l,kj (φ(t))
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whereφ(t) is a vector:

φ(t) = [y(t)T ... y(t− ny + 1)T u(t)T ...u(t− nu − d+ 2)T ]T . (4.2.4)

Now, introduce two polynomial matricesA(q−1, φ(t)) and B(q−1, φ(t)) based on the coeffi-

cients, defined by:

A(q−1, φ(t))=I − a1,tq
−1 − . . . − any,tq

−ny ;

B(q−1, φ(t))=b0,t + . . .+ bnu−1,tq
−nu+1,

whereai,t = (al,ki,t )N×N , i = 1, .., ny andbj,t = (bl,kj,t)N×N , j = 1, .., nu. Then, the nonlinear

system (4.2.1) can be equivalently represented as the following ARX-like expression:

A(q−1, φ(t))y(t+ d) = B(q−1, φ(t))u(t). (4.2.5)

By the Equ.(4.2.5), lety(t+ d) satisfies the following equation:

y(t+ d) = A(q−1, φ(t))y(t) + B(q−1, φ(t))u(t), (4.2.6)

where

A(q−1, φ(t)) =A0,t +A1,tq
−1 + ...+Any−1,tq

−ny+1, (4.2.7)

B(q−1, φ(t)) = F(q−1, φ(t))B(q−1, φ(t)),

=B0,t+B1,tq
−1 + ...+Bnu+d−2,tq

−nu−d+2, (4.2.8)

Ai,t(i = 0, ..., ny − 1) andBj,t(j = 0, ..., nu + d− 2) are coefficient matrices. AndG(q−1, φ(t)),

F(q−1, φ(t)) are unique polynomials satisfying:

F(q−1, φ(t))A(q−1, φ(t)) = I −A(q−1, φ(t))q−d. (4.2.9)

4.2.3 Hybrid Expression

The coefficients matricesAi,t (i = 0, ..., ny − 1) andBj,t (j = 0, ..., nu + d− 2) can be considered

as a summation of two parts: the constant partAli andBl
j, and the nonlinear function part onφ(t)

which are denotedAni,t andBn
i,t. Then, the expression of system in the predictor form (4.2.6) can be

described by:

y(t+ d) =Al(q−1)y(t) + Bl(q−1)u(t) + An(q−1, φ(t))y(t) + Bn(q−1, φ(t))u(t) (4.2.10)
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where

Al(q−1) =Al0 +Al1q
−1 + ...+Alny−1q

−ny+1;

An(q−1, φ(t)) =Al0,t +Al1,tq
−1 + ...+Alny−1,tq

−ny+1;

Bl(q−1) =Bl
0 +Bl

1q
−1 + ...+Bl

ny−d+2q
−nu+d−2;

Bn(q−1, φ(t)) =Bl
0,t +Bl

1,tq
−1 + ...+Bl

ny−d+2,tq
−nu+d−2;

Similar with Ref.[98], the linear polynomial matrixBl(q−1) can be expressed asBl(q−1) =

B̄l(q−1) + ¯̄Bl(q−1) with B̄l(q−1) being diagonal and̄̄Bl(q−1) being a polynomial matrix with zero

diagonal elements.

Then, the linear and nonlinear expression of system (4.2.10) can be obtained as:

y(t+ d) =Al(q−1)y(t) + B̄l(q−1)u(t) + ¯̄Bl(q−1)u(t)

+An(q−1, φ(t))y(t) + Bn(q−1, φ(t))u(t) (4.2.11)

4.2.4 Quasi-ARX RBFN Model

Now, we will propose an MIMO quasi-ARX RBFN model. However, the v(φ(t)) are based onΨ(t)

whose elements containu(t). To solve this problem, anextra variablex(t)1 is introduced and an

unknown nonlinear functionρ(ξ(t)) is used to replace the variableu(t) in φ(t), Underassumption,

the functionρ(ξ(t)) exists. Define:

ξ(t) = [y(t)T ... y(t− n1)
T x(t+ d)T ...x(t− n3 + d)T u(t− 1)T ... u(t− n2)

T ]T

including the extra variablex(t + d) as an element. A typical choice forn1, n2, andn3 in ξ(t) is

n1 = ny − 1, n2 = nu + d− 2 andn3 = 0. We can express the Equ.(4.2.11) by:

y(t+ d) = ψT (t)Ω0 + ξT (t)θnξ , (4.2.12)

whereψT (t) = ϕ(t − d) and Ω0 = [Al0, ..., A
l
ny−1, B

l
0, ..., B

l
ny−d+2]. The elements ofθnξ are

unknown nonlinear function ofξ(t), which can be parameterized by NN or RBFN. In this chapter,

the RBFN is used which has local property:

θnξ =

M
∑

j=1

ΩjRj(pj , ξ(t)), (4.2.13)

1Obviously, in a control system, the reference signaly∗(t + d) can be used as the extra variablex(t + d).
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whereM is the number of RBFs.Ωj = [Ωj,1, ...,Ωj,n] is the coefficient matrix withΩj,i =

[ω1
j,i, ..., ω

N
j,i]

T , j = 1, ...,M . AndRj(ξ(t),Ωj) the RBFs defined by:

Rj(pj , ξ(t)) = e−σj‖ξ(t)−Xj‖2

, j = 1, 2, ...,M, (4.2.14)

wherepj = {σj ,Xj} is the parameters set of the RBFN;Xj is the center vector of RBF andσj are

the scaling parameters;‖ • ‖2 denotes the vector two-norm. Then we can express the quasi-ARX

RBFN prediction model for (4.2.12) in a form of:

y(t+ d) = ψT (t)Ω0 + ξT (t)

M
∑

j=1

ΩjRj(pj , ξ(t)), (4.2.15)

4.3 Controller Design

4.3.1 Nonlinear Multivariable Decoupling PID Controller

Introduce the following performance index:

M(t+ d)=‖y(t+ d) − R(q−1)y∗(t+ d) + S(q−1)u(t) + Q(q−1)u(t)‖, (4.3.1)

whereR andS are the diagonal weighting polynomial matrices, andQ is a weighting polynomial

matrix with diagonal elements.

The optimal control law minimizing (4.3.1) is:

y(t+ d) − R(q−1)y∗(t+ d) + S(q−1)u(t) + Q(q−1)u(t)= 0 (4.3.2)

Substituting (4.2.11) into (4.3.2), the following equation is obtained:

(B̄l(q−1) + Q(q−1))u(t)=R(q−1)y∗(t+ d) −Al(q−1)y(t) − ( ¯̄Bl(q−1) + S(q−1))u(t)

− (Bn(q−1, φ(t))u(t) + An(q−1, φ(t))y(t)). (4.3.3)

whereB̄l(q−1) + Q(q−1) = λ−1H̄(q−1), with λ = diag{λ1, ..λn} andH̄(q−1) = (1 − q−1) · I.

By introducingR(q−1) = Al(q−1) and B̄l(q−1)S(q−1) = Q(q−1) ¯̄Bl(q−1). whenny − 1 ≤ 2, a

nonlinear decoupling PID controller is obtained, similar to a traditional PID controller:

H̄(q−1)u(t) = λAl(q−1)e(t) − ¯̄H(q−1)u(t) − v(φ(t)). (4.3.4)

where ¯̄H(q−1) = λ( ¯̄Bl(q−1) + S(q−1)) andv(φ(t)) = λ(Bn(q−1, φ(t))u(t) + An(q−1, φ(t))y(t)).

e(t) = y∗(t+ d) − y(t).
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Figure 4.1: The multivariable decoupling PID control system based on MIMO quasi-ARX model.

The controller (4.3.4) is substituted into the system (4.3.2), the obtained closed-loop system

which is show in Fig.4.1 will be stable, and the decoupling control effect and tracking errors can be

eliminated.

A velocity-type form of the PID controller is given:

H̄(q−1)u(t)=Kp(e(t) − e(t− 1)) + KIe(t) + KD(e(t) − 2e(t− 1) + e(t− 2))

− ¯̄H(q−1)u(t) − v(φ(t)). (4.3.5)

The gain can be selected as:

Kp=−λ(2A2 +A1),

KI=λ(A0 +A1 +A2),

KD=λA2. (4.3.6)

where whenny = 1, A1 = A2 = 0, and whenny = 2, A2 = 0.

4.3.2 Parameter Estimation

Determining pj Using Knowledge Information

As mentioned earlier, we need the model is simplicity and flexibility simultaneously during the

modeling. However, the uncertain parameterspj increases the overall flexibility of model and then

restricts the flexibility in the higher order nonlinearity.Then, the scale and position parameters

pj of the basis function in the RBFN is determined using knowledge information. It is assumed

that the physical insight of the control plant is not available in a black-box modeling. Then, the
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prior knowledge information are mainly got from the obtained data and the errors. Some kinds of

knowledge information can be used as follows:

• the information about the operating region ofϕ(t) which can be got easily from the observed

data.

• the information concerning the structure of the nonlinearpart which can be obtained by using

various linear models to identify the system.

• the information about the relations among the elements inξ(t). This information can be

known whenξ(t) is chosen.

• the information concerning the size of the prediction errors and their relations with the region

of ξ(t) which may be got during the estimation.

A: A strategy for Determining p j

Now propose a method to initializepj and the following strategy is not only suitable for RBFN,

but also suitable for NFN and B-spline based models.

Denotes as follows:pj = [x̄j1 x̄
j
2 ... x̄

j
N , σj ]

T (j = 1, ...,M). N = dim(ξ(t)) is the dimension

of the inputs.ξ = [xi, i = 1, ..., N ] and the inputs region is mostly located inXmin ≤ ξ ≤ Xmax,

Xmin = [xi min, i = 1, ..., N ], Xmax = [xi max, i = 1, ..., N ]. The nodesare put into the input

hyperplane as shown in Fig.4.2. If the number of nodes corresponding toxi is denoted asni, the

total number of the nodes will beM = ΠN
i=1ni. Then, the parameterspj are chosen so that the

functionR(pj, ξ(t)) have appropriate shape and are put onto every nodes. A schematic diagram for

determiningpj for RBFN withN = 2 andM = 4 × 3 is shown in Fig.4.2.

B: Several Hints for ReducingM

The prior knowledge about the region[Xmin,Xmax] is the least information for determining the

scale and position parameterspj. However, when N is very large, the number M may be rather

large. Therefore, more obtained information can reduce thenumber of nodes or improve the node

assignment. The hints is given as follows:

• Hint A: If the system is linear inxi, ni can be equal to 1.

• Hint B: if no more information, we can assignn1 andnn+1 corresponding toy(t − 1) and

u(t− 1) with appropriate values, while set all otherni to 1.



65

RBFN

4

2x

3

2x

2

2x

1

2x

4

2x

3

2x

2

2x

1

2x

4

1x
3

1x
2

1x
1

1x

1minx 1maxx

2minx

2maxx

nodes

RBFN 4

1x
3

1x
2

1x
1

1x( )const !

X j

Figure 4.2: A schematic diagram for determiningpj for RBFN.

• Hint C: The nodes which can be replaced by employing interpolation of NNMS may be

removed from the hyperplane.

Estimation of Parameter VectorsΩ0

If the process is known,Ω0 is obtained by using Talyor expansion at its equilibrium; otherwise, it

can be replaced by its estimationsΩ̂0.

Estimation of Parameter VectorsΩj

Parameter vectorsΩj, (j = 1, ...,M) can be estimated by simplified multivariable Least-Squares

algorithm as in Ref.[2]. Now, introduce the notations:

Ω = [ΩT
1 , ...,Ω

T
M ]T , Φ(t) = [ξ(t)T ⊗ ΨT

R(t)]T , (4.3.7)

where the symbol⊗ denotes Kronecker production andΨT
R(t) = [Rj(pj , ξ(t)), j = 1, ...,M ], the

MIMO quasi-ARX model (4.2.10) can be expressed in a like-linear regression form:

y(t+ d) = ψT (t)Ω0 + ΦT (t)Ω. (4.3.8)
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The parameterΩ is updated by a LS algorithm while fixingpj andΩ0:

Ω̂(t) = Ω̂(t− d) +
P (t)Φ(t− d)e(t)

1 + Φ(t− d)TP (t)Φ(t− d)
, (4.3.9)

whereΩ̂(t) is the estimate ofΩ at time instantt. e(t) is the error vector of MIMO quasi-ARX

model, defined by

e(t) = y(t) − ψT (t)Ω0 − Φ(t− d)T Ω̂(t− d). (4.3.10)

And

P (t) =
P (t− d) − P T (t− d)Φ(t− d)TΦ(t− d)P (t− d)

1 + Φ(t− d)TP (t)Φ(t− d)
. (4.3.11)

4.4 Stability Analysis

There are some assumption made:

Assumption 1: (i) y∗(t) ia a bounded deterministic sequence; (ii)v(φ(t)) is globally bounded,

|v(φ(t))| ≤ ∆, where the boundary∆ is known; (iii) The choices ofλ andS(q−1) are such that

det{H̃(q−1)A(q−1) + q−dB̃(q−1)λAl(q−1))y(t+ d)} 6= 0.

Theorem For the MIMO nonlinear system (4.2.1) with the controller (4.3.5), together with the

parameters of the controller selected by Sec.(4.2), all thesignals in the closed-loop system described

above can be bounded, and the tracking error can be made less than any specified constantδ over a

compact set by properly choosing the structures and parameters of quasi-ARX RBFN model, that is

limt→∞ ‖y(t+ d) − y∗(t+ d)‖ ≤ ε.

Proof. The nonlinear part estimation error vector can be describedby:

ε(t) = v(φ(t+ d)) − ξT (t+ d)

M
∑

j=1

Ω̂(t+ d)jRj(pj , ξ(t+ d)). (4.4.1)

We can see that, if the nonlinear decoupling PID controller (4.3.5) is used to the system (4.2.11),

the following input-output dynamics are obtained as in Ref.[98]:

(H̃(q−1)A(q−1)+q−dB̃(q−1)λAl(q−1))y(t+ d) (4.4.2)

=B̃(q−1)λAl(q−1)y∗(t+ d) + H̃(q−1)v(φ(t+ d)) − B̃(q−1)v̂(φ(t+ d)),

(A(q−1)H(q−1)+q−dλA(q−1)Al(q−1))u(t+ d) (4.4.3)

=Ã(q−1)λAl(q−1)y∗(t+ d) − q−dλAl(q−1)v(φ(t+ d)) − A(q−1)v̂(φ(t+ d)),
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Substitute (4.4.1) into (4.4.2) and (4.4.3), the equationsare given as follows:

(H̃(q−1)A(q−1)+q−dB̃(q−1)λG(q−1))y(t+ d) = B̃(q−1)λG(q−1)y∗(t+ d) (4.4.4)

+(H̃(q−1) − B̃(q−1))v(φ(t+ d)) + B̃(q−1)ε(t),

(A(q−1)H(q−1)+q−dλA(q−1)Al(q−1))u(t+ d) = Ã(q−1)λAl(q−1)y∗(t+ d) (4.4.5)

−(q−dλAl(q−1) + A(q−1))v(φ(t+ d)) − A(q−1)ε(t),

From (4.4.4), (4.4.5) and Assumption 1, there exist constantsC1,C2,C3,C4 satisfying:

‖y(t+ d)‖≤C1 + C2 max
0≤τ≤t

‖ε(t)‖, (4.4.6)

‖u(t)‖≤C3 + C4 max
0≤τ≤t

‖ε(t)‖, (4.4.7)

Because the universal approximations of the RBFNs, the estimation errorε(t) can be achieved less

than any constantζ over a compact set by properly choosing their structures andparameters. It can

be got that:

‖ϕ(t+ d)‖≤C5 + C6 max
0≤τ≤t

‖ε(t)‖ ≤ C7 + C8ζ ≤ C9. (4.4.8)

whereC5, C6, C7, C8, C9 constants.

Then, the boundness of all the signals in the closed-loop system is got.

The tracking error of the system is obtained as:

e(t) = lim
t→∞

‖y(t+ d) − y∗(t+ d)‖ ≤ C (4.4.9)

whereC > 0 is a constant.

4.5 Numerical Simulations

In order to study the behavior of the proposed control method, some numerical simulations are

described in this section.
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4.5.1 Case One

The MIMO nonlinear system to be controlled is described by:

y1(t+ 1)=0.9y1(t) −
0.3y1(t− 1)

1 + y2
2(t− 1)

+ 0.4 sin(u1(t))

+0.7u1(t− 1) + 0.3u2(t) − 0.5u2(t− 1)

+v1(t)

y2(t+ 1)=−0.4 sin(y2
2(t)) − 0.1y2(t− 1) + u2(t− 1)

−0.3sin(u1(t)) + 0.2u1(t− 1)

+0.8 sin(u2(t)) + 0.5u2
2(t− 1) + v2(t). (4.5.1)

In this case,v1(t) and v2(t) are disturbance given byv1(t) = (1 + 0.25q−1)e(t) and v2(t) =

(1 + 0.25q−1)e(t), wheree(t) ∈ N(0, 0.001) is a white noise. The desired output of system is

giveny∗1(t) = sign(sin(2πt/50)) andy∗2(t) = 0.7.

The proposed control method in Section 3 and 4 is illustratedeffective in the control stability

and robustness. The order are chosen asny = nu = 2 and time delayd = 1. The regression

ϕ(t) = [y1(t − 1) y2(t − 1) y1(t − 2) y2(t − 2) u1(t − 1) u2(t − 1) u1(t − 2) u2(t − 2)]T and

ξ(t) = [y1(t−1) y2(t−1) y1(t−2) y2(t−2) y∗1(t) y
∗
1(t) y

∗
2(t) u1(t−2) u2(t−2)]T . Based on the

priori acknowledge, we chooseXmax = [2 2 2 2 4 1 4 1] andXmin = [−2−2−2 −2−4−1−4 −1].

The parameterspj can be determined by the proposed method in Section (4.3.2).

For comparison, under the same simulation conditions and with the same parameters value,the

control output results by the typical PID controller is showby Fig.4.3, where the PID controller

has neither the decoupling compensator nor the nonlinear part. The corresponding control inputs

are given in Fig.4.4. Figure 4.5 and 4.6 show the proposed control results and the Tab.4.1 gives the

comparison results of the errors. Obviously, the proposed controller has better control performance

than the typical one.

Table 4.1: Comparison results of errors based on two controlmethod

mean of errors variance of errors
y1(t) typical method 0.0317 0.1909
: proposed method −0.0033 0.2161
y2(t) typical method −0.0196 0.0377
: proposed method −0.0190 0.0282
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Figure 4.3: Control results of the typical PID control.

4.5.2 Case Two

The MIMO nonlinear system to be controlled is described by:

y1(t+ 1)=0.9y1(t) −
0.3y1(t− 1)

1 + y2
2(t− 1)

+ 0.4 sin(u1(t))

+0.7u1(t− 1) + 0.3u2(t) − 0.5u2(t− 1)

y2(t+ 1)=−0.4 sin(y2
2(t)) − 0.1y2(t− 1) + u2(t− 1)

−0.3 sin(u1(t)) + 0.2u1(t− 1)

+0.8 sin(u2(t)) + 0.5u2
2(t− 1), t ∈ [0, 150). (4.5.2)
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Figure 4.4: Corresponding control inputs of the PID controlmethod.

y1(t+ 1)=0.6y1(t) −
0.4y1(t− 1)

1 + y2
2(t− 1)

+ 0.4 sin(u1(t))

+0.6u1(t− 1) + 0.4u2(t) − 0.5u2(t− 1)

y2(t+ 1)=−0.5 sin(y2
2(t)) − 0.1y2(t− 1) + u2(t− 1)

−0.3 sin(u1(t)) + 0.3u1(t− 1)

+0.9 sin(u2(t)) + 0.5u2
2(t− 1), t ∈ [150,∞). (4.5.3)

In this example, a system disturbance appears whent = 150. The desired output of system is

giveny∗1(t) = sign(sin(πt/50)) andy∗2(t) = 0.7.

In this example, the proposed control method in Section 3 and4 is illustrated effective in the

control stability and robustness. The order are chosen asny = nu = 2 and time delayd = 1. The

regressionϕ(t) = [y1(t−1) y2(t−1) y1(t−2) y2(t−2) u1(t−1) u2(t−1) u1(t−2) u2(t−2)]T and

ξ(t) = [y1(t−1) y2(t−1) y1(t−2) y2(t−2) y∗1(t) y
∗
1(t) y

∗
2(t) u1(t−2) u2(t−2)]T . Based on the

priori acknowledge, we chooseXmax = [2 2 2 2 4 1 4 1] andXmin = [−2−2−2 −2−4−1−4 −1].

Under the same simulation conditions and with the same parameters value, the control output
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Figure 4.5: Control results of the proposed control method.

results by a typical PID controller is shown by Fig.4.7, where the PID controller has neither the

decoupling compensator nor the nonlinear part, for comparison. In Fig.4.7, the dashed line is the

desired output and the solid line denotes the proposed method control outputy1(t) andy2(t). The

corresponding control inputsu1(t) andu2(t) are given in Fig.4.8. The proposed method outputs and

corresponding control inputs are shown in Fig.4.9 and 4.10.We can see that our proposed method is

nearly consistent with the desired output at most of the timewhich is better than typical PID control

method whent ∈ [0, 150). Obviously, the control performance of our proposed methodis much

better than typical PID control method when the system has disturbance whent = 150. The input

signals have small fluctuation as shown in Fig.4.10.

Tab.4.2 gives the comparison results of the errors. Obviously, the mean and variance of errors

of the proposed method are smaller than the typical PID control method.
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Figure 4.6: Corresponding control inputs of the proposed control method.

4.6 Conclusions

In this chapter, an MIMO quasi-ARX model is first introduced,and a nonlinear multivariable de-

coupling PID controller is proposed based on the proposed model for MIMO nonlinear systems.

The proposed controller consists of a traditional PID controller with a decoupling compensator

and a feed-forward compensator for the nonlinear dynamics from the MIMO quasi-ARX model.

And an adaptive control system is presented using the MIMO quasi-ARX RBFN prediction model.

The parameters of such controller is selected based on the generalized minimum control variance.

The proposed control method has more simplicity structuresand better control performance. The

nonlinear part is not a black box whose parameters can be determined bya priori acknowledge.

Simulations are given to show the effectiveness of the proposed method on control accuracy and

robustness when a disturbance appears in the system.
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Figure 4.7: Control results of a typical PID control.
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Figure 4.8: Corresponding control inputs of the PID controlmethod.
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Table 4.2: Comparison results of errors based on two controlmethods

mean of errors variance of errors
y1(t) typical method 0.066 0.1612
: proposed method −0.0034 0.0108
y2(t) typical method −0.0063 0.1256
: proposed method −0.0029 0.0060
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Figure 4.9: Control results of the proposed control method.
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Figure 4.10: Corresponding control inputs of the proposed control method.
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Chapter 5

An Identification Method for
Quasi-ARX Model

5.1 Introduction

Today, nonlinear systems have received increasing attention from all fields of sciences and humani-

ties [66, 100, 30, 54, 22, 63, 101], and have been everywhere in the real world, such as food-webs,

ecosystems, metabolic pathways. They also include systemswhich are founded and used by human,

such as aeronautical satellite, unpiloted avion, industrialized machine (electric arc furnace). How to

accurately and handily control those complex systems has been the problem which we must face to.

At the last few years, Neural Networks (NNs) and Neuro-FuzzyNetworks (NFNs) have been used

to nonlinear modeling because they can learn any nonlinear mappings and got many good results

[30]-[22]. Whereas, a nonlinear model based directly on NNsor NFNs are not handiness to be used

for control and fault diagnosis.

To solve this problem, we have proposed a quasi-ARX modelingscheme which consists two

parts: a macro-part and a kernel-part[30]. The macro-part is a user-friendly interface constructed

using already known knowledge and the characteristic of network structure. Sometimes, linear

model is chosen such as ARX model. The format of its coefficients can be easy got. The kernel-part

is an ordinary NN or NFN, which is used to parameterize the coefficients of macro-model and is

different from a nonlinear ARX model based directly on NNs orNFNs. When NFN is used in the

kernel-part, the obtained quasi-ARX model is linear in the parameters to be estimated. This linearity

is a very useful feature from the viewpoint of control.

However, variables and the order of the model increases, thecomplexity of as the number of

input-output designing the NFN also increases. A linear Principal Components Analysis (PCA) is
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introduced to reduce the dimension of the NFN input on the assumption that the input variables

of NFN is linear correlation [101]. In fact, the input variables do not only depend on each other

linearly. When nonlinear correlations between variables exist, a Nonlinear Principal Components

Analysis (NPCA) will describe the data with greater accuracy than PCA [102, 103, 104].

Motivated by the above discussion, a NPCA network trained byArtificial Neural Network

(ANN) is used to reduce the dimension for the quasi-ARX modeling.

The rest of this chapter is organized as follows. In Section 5.2, the considered system is given

and the quasi-ARX modeling is introduced. Section 5.3 provides a predictor. Section 5.4 introduces

how to train NPCA and parameter adjustment. Then, numericalsimulations are carried out to show

the effectiveness of the proposed modeling approach in Section 5.5. At last Section 5.6 gives some

conclusion.

5.2 Problem Description and Modeling

5.2.1 Problem Description

Consider a single-input-single-output (SISO) black-box nonlinear

y(t)=g(ϕ(t)) + v(t), (5.2.1)

ϕ(t)=y(t− 1), ...y(t − n), u(t− d), ..., u(t−m− d+ 1)]T

wherey(t) denotes the output at timet (t = 1, 2, ...), u(t) the input,d the known integer time delay

(For simply, let d=1 in this chapter. Other conditions can begot following same method.),ϕ(t) the

regression vector, andv(t) the system disturbance.g(·) is a nonlinear function which satisfies the

following assumes[30]:

• g(·) is a continuous function, and atϕ(t) = 0 it is C∞ continuous.

• the input-output of system,u(t), y(t), are bounded, where the bounds are known asa priori.

• the system is controllable, where a reasonable unknown controller may be expressed by

u(t) = ρ(ξ(t)), whereξ(t) = [y(t) ... y(t−n) u(t−1) ... u(t−m) y∗(t+1) ... y∗(t+1−l)]T

(y∗(t) denotes reference output).

It needs to derive an explicit expression ofρ(·) to control the system (5.2.1). In this chapter, a

minimum prediction error adaptive controller is got through minimizing the criterion function as

follows:

M(t+ d) =

[

1

2
(y(t+ 1) − y∗(t+ 1))2 +

λ

2
u(t)2

]

(5.2.2)
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whereλ is a weighting factor for the control input.

The proposed controller has two distinctive features:

(1) it is linear for the variables synthesized in control systems;

(2) its parameters have explicit meanings.

5.2.2 Quasi-ARX Modeling

Through Taylor expansion of functiong(·) around the regionϕ(t) = 0

y(t)=g(0) + g′(0)ϕ(t) +
1

2
ϕT (t)g′′(0)ϕ(t) + ... + v(t) (5.2.3)

Let

θ(ϕ(t))=

(

g′(0) +
1

2
ϕT (t)g′′(0) + · · ·

)T

=[a1,t ... an,t b0,t ... bm−1,t]
T

where the coefficientsai,t = ai(ϕ(t)) andbi,t = bi(ϕ(t)) are nonlinear functions ofϕ(t). g(0)= 0

is assumed for simplicity. We can get a regression form of thesystem (5.2.1) is described by (5.2.4)

as in Ref.[30]:

y(t) = ϕT (t)θ(ϕ(t)) + v(t) (5.2.4)

A similar-linear ARX model (5.2.4) is developed as a macro-model:

A(q−1, ϕ(t))y(t) = B(q−1, ϕ(t))u(t − 1) + v(t) (5.2.5)

whereq−1 is the backward shift operator, e.g.q−1u(t) = u(t− 1).

A(q−1, ϕ(t))=1 − a1,tq
−1 − . . . − an,tq

−n

B(q−1, ϕ(t))=b0,t + . . .+ bm−1,tq
−m+1.

5.3 Prediction Based on Neurofuzzy and NPCA

Whend = 1, an 1 step predictor is given Ref.[105]:

y(t+ 1) = α(q−1, φ(t))y(t) + β(q−1, φ(t))u(t) (5.3.1)
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Figure 5.1: An image of the quasi-ARX model.

where

φ(t) = [y(t), ...y(t − n+ 1), u(t), ...u(t −m+ 1)]T

α(q−1, φ(t)) = α0,t + . . .+ αn−1,tq
−n−1

β(q−1, φ(t)) = β0,t + . . .+ βm−1,tq
−m+1.

The predictor based on Neurofuzzy and NPCA networks is shownas Fig.5.1.

The system described by Eq.(5.2.1) are assumed to be bounded, so we can parameterizeαi,t, βi,t

by using a class of neurofuzzy models:

αi,t=αi +

M
∑

j=1

ωijNf (pj ,x(φ(t)))

βk,t=βk +
M
∑

j=1

ωk+n,jNf (pj,x(φ(t)))

whereαi, (i = 0, 1, ..., n − 1), βk, (k = 0, 1, ...,m − 1) andωij are constant parameters.

Nf (·, ·) is the fuzzy “basis function” andpj is its parameter vector. From Ref.[100], the fuzzy

“basis function”Nf (·, ·) is expressed explicitly by

Nf (pj, x(φ(t))) =

∑M
j=1 ωij(∧

r
k=1 µAj

k

(xk(t)))
∑M

j=1(∧
r
k=1 µAj

k

(xk(t)))
(5.3.2)



81

wherer = dim(x(t)), and∧ is the minimum operator,M is the number of fuzzy rules,xk(t) are

the elements ofx(t), andµ
A

j

k

(·) is the membership function of fuzzy setAjk. The triangle function

is used as membership function.

The input variables of NFNx(t) is supposed to be the vectorφ(t). However, when the dimen-

sion ofφ(t) is large, for a simple designing method the number of fuzzy rule may increase dramat-

ically. To solve this problem, a NPCA network (5.3.3) is introduced to reduce the dimensionality

instead of PCA network, becauseφ(t) is a regression one whose elements are highly nonlinear

correlated. Express the NPCA network by:

x(φ(t)) = Q(W, φ(t)) (5.3.3)

whereQ(W, φ(t)) = W 2f(W 1φ(t) + B1) + B2. W = {W 1, B1,W 2, B2}, f(·) is sigmoidal

function (i.e.f(x) = 1
1+e−x ).

Following from the equations (5.2.1)-(5.3.3) and defining :

Ω0 = (αi, βk) i = 0, ..., n − 1; k = 0, ...,m − 1

Ωj = (ωi,j, ωk,j) i = 0, ..., n − 1; k = 0, ...,m − 1

We have a predictor expressed by:

y(t+ 1)=φT (t)Ω0 +
M
∑

j=1

Ωjφ
T (t)Nf (pj , Q(W, φ(t))) (5.3.4)

5.4 Implementation Aspects

In this section, we discuss some issues concerning the implementation of the predictor to adaptive

control of nonlinear systems.

5.4.1 Linearity for u(t)

In order to obtain a control law by differentiating the criterion function defined by (5.2.2)

∂M(t+ 1)

∂u(t)
= 0 =⇒ u(t)

the predictor must be linear with respect tou(t). However, the predictor described by (5.3.4) is not

the case because the coefficientsαi,t andβi,t are nonlinear functions ofx(ϕ(t)) that containsu(t)

as its element.
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Now, we will use the method from Ref.[30]. Because we have assumed that the system 1 is

controllable, where a reasonable unknown controller isu(t) = ρ(ξ(t)). we use this unknownρ(·)

to replace variableu(t) in the coefficientsai,t andbi,t

αi,t=αi(x(ϕ(t))) ≃ αi(φρ(t))
△
= αi(ξ(t))

βi,t=βi(x(ϕ(t))) ≃ βi(φρ(t))
△
= βi(ξ(t))

whereφρ(t) is φ(t) whose elementu(t) is replaced byρ(ξ(t)), that is,φρ(t) = [y(t) ... y(t− n +

1) ρ(ξ(t)) u(t− 1) ... u(t−m+ 1)]T . ξ(t) has a form of

ξ(t)=[y(t) ... y(t− n+ 1) u(t− 1) ... u(t−m+ 1) y∗(t+ 1)] (5.4.1)

It follows that the predictor is expressed by

y(t+ 1)=φT (t)Ω0 +
M
∑

j=1

Ωjφ
T (t)Nf (pj , Q(W, ξ(t)))(t)) (5.4.2)

which is linear w.r.tu(t).

Introduce the following notations

Θ=[ΩT
0 ,Ω

T
1 , ...,Ω

T
M ]

Φ(t)=[φT (t), φT (t)T ⊗ ξTNf
(t)]T

where the symbol⊗ denotes Kronecker production,ξTNf
(t) = [Nf (pj , Q(W, ξ(t)))(t), j = 1, ...,M ].

It follows that the predictor has a linear regression form expressed by

y(t+ 1) = ΦT (t)Θ. (5.4.3)

5.4.2 Parameter Adjustment

The predictor parameters must be adjusted on-line or off-line because they are unknown and can

not be calculated from system parameters for the relation between system parameters and predictor

parameters is unknown. Fortunately, many existing algorithm can be applied to our case without

loss their properties.

Based on (5.3.4), parameters are divided into three parts: theW of NPCA network is the 1st

part; pj of the NFN network is the 2nd part;Ωj(j = 0, ...,M) is the 3rd part. An algorithm

consisting of three parts is used to the parameter adjustment.
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(1) Adjusting Part 1

During control process, the parametersW are trained off-line firstly. An autoassociative network

is designed to train NPCA network as Fig.5.2 as in Ref.[106].ξ(t) is the input and output layers.

x(ξ(t)) is the second hind layer. WeightsW 1 W 2 W 3 W 4 and biasB1 B2 B3 B4 are updated by

rx

1x

1

, jiW
2

,klW
3

,srW

4

, pqW

t1 

tmn ! tmn !

t2 t2 

t1 

Figure 5.2: Network architecture for NPCA training with an autoassociative network.

using a BP algorithm which is same with Ref.[106]. After training, the input, first and second layers

are used for the input of NFN. Then we can get the input of NFN network by (5.3.3).

(2) Adjusting Part 2

Now to initializep.

pj = [x̄j1 x̄
j
2 ... x̄

j
r]
T (j = 1, ...,M)

It can be seen from Eq.(5.3.2) thatpj is a parameter vector associated with the partition of the

operating region as in Sec.4.3.2. The similar simple strategy is used for determining the parameters

pj. Only the least prior knowledge required for this method is the operating region of the input

vector of multi-input and multi-output neurofuzzy model. We can get the information from the

output of the trained NPCA network. Denotes:ξ(t) = [x1, x2, ...xr]
T . [Xmin,Xmax] which is the

operating region need to be known. Then the neurofuzzy modelcan be built in a way shown in

Fig.5.3, which shows the case wherer = 2 andM = 4 × 4. Obviously, the valuepj is easily
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determined based on a vector given by:

X̄ =









x1
1 x

2
1 · · · xn1

1

x1
2 x

2
2 · · · xn2

2

· · ·
x1
r x

2
r · · · xnr

r









; (5.4.4)
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Figure 5.3: Network architecture for NPCA training with an autoassociative network.

The efficient use of prior knowledge information for determining the parameterspj and the

orderM plays a key role in the quasi-ARMAX modeling [33], see Sec.4.3.2 for detail. The follows

are some points:

• The least prior knowledge required for determiningpj is the information about operating

region ofx(t) = [xi; i = 1, ..., r]T . That is,[Xmin,Xmax] should be known for the modeling

that the operating region is mostly located inXmin ≤ x(t) ≤ Xmax.
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• When NFNs described by (5.3.2) are used, the number of rulesisM =
∏ r

i=1 ni where the

number of fuzzy sets for variablexi is denotes asni. If dim(ϕ̃(t)) is large,M will be rather

large. Therefore, NPCA network is used to reduce the number of input ξ.

(3) Adjusting Part 3

In Adjusting part 2,Θ is adjusted while fixingp andW 1 B1 W 2 B2, which is performed by

minimizing the following criterion function

VN (Θ) =
1

2

N
∑

t=1

ǫ2(t) +
1

2
CαΘT (t)Θ(t) (5.4.5)

whereǫ(t) = y(t) − ΦT (t)Θ̂(t − 1) is the prediction error andCα is small positive value. IfCα

is chosen so small that the second term of Equ.(5.4.5) does not affect the convergence property of

adjusting algorithm, it is well known that the above minimization may be performed using many

existing methods available for linear adaptive predictor [2].

5.5 Control Simulations

5.5.1 Deriving and Implementing Control Law

Consider a minimum variance control, we can obtained a control law with respect tou(t):

u(t) =
β0,t

β2
0,t + λ

{[β0,t −B(q−1, x(t))q]u(t − 1)

−yx(t)) + y∗(t+ 1) −A(q−1, x(t))y(t)} (5.5.1)

A robust adaptive algorithm withdead zonewill be implemented which has been shown to be

effective for dealing with prediction error due to unmodeled dynamics [2]. Through analysis in

Sec.5.4.2,p andW 1 B1 W 2 B2 are fixed firstly, then the parameters of controller can be identified

on-line. It can not implement it if directly introduces NN asin Ref.[54].

5.5.2 Numerical Simulations

In this part, two examples will be carried out to show the effectiveness of the proposed scheme.

Example 1

The unknown system to be controlled is given in which the linear part of system is described by

G(q−1) =
0.7q−1 − 0.68q−2

1 − 1.72q−1 + 0.74q−2
(5.5.2)
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Figure 5.4: MSE betweeny(t) andy∗(t) calculated in a moving window for Example 1.

while the nonlinear element is a dead zone described by

z(t) =







u(t) − 1.75 if u(t) > 2
0.0625 × sign(u(t)) × u2(t) if |u(t)| ≤ 2
u(t) + 1.75 if u(t) < −2

The desired output of system is

y∗(t) =−0.2y∗(t− 1) + 0.63y∗(t− 2) + r(t− 1) + 0.8r(t− 2) (5.5.3)

wherer(t) = sin(2πt/25) + sin(2πt/10).

Estimation data are sampled when system is excited using random input sequence. Firstly, trains

the autoassociative network using the algorithm describedin Sec.5.4.1. We letn = 3,m = 2, r = 2,

and a 5-6-2-6-5 autoassociative network is chosen as training net. 5-6-2 network trained parameters

are used for NFN. We also train PCA network For comparison as in Ref.[101]. The other contrast

is n = 2,m = 2, from Ref.[105] under some prior knowledge. All parameter vectorpj is fixed to

its initial value.
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The Mean Square Errors (MSE) of three adaptive controller iscalculated respectively in a mov-

ing window:

MSE(t) =
1

L

t
∑

k=t−L+1

(y(k) − y∗(k))2 (5.5.4)

whereL was chosen to be100. Figure 5.4 shows the convergence properties of MSE, in which

solid green line is the result of the proposed predictor, dashed red line and dashed blue line are the

results of Ref.[105] and Ref.[101] respectively and the least figure ignores the red line because it is

too larger. It is clear that the proposed predictor has better performance than others.
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Figure 5.5: (Upper diagram) Controlled outputy(t) (solid red lines) and desired outputy∗(t)
(dashed green lines); (Lower diagram) Control inputu(t).

Figure 5.5 shows the controlled system output, reference output and control signal. It is clear

that the proposed nonlinear adaptive predictor can controlthis nonlinear very well. But Example 1

just show the well control ability of proposed method which don’t need some prior knowledge. We

will use it to reduce the dimension of the Example 2 control problem.
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Example 2

y(t)=
exp(−y2(t− 2)) ∗ y(t− 1)

1 + u2(t− 3) + y2(t− 2)
+

(0.5 ∗ (u2(t− 2) + y2(t− 3))) ∗ y(t− 2)

1 + u2(t− 2) + y2(t− 1)

+
sin(u(t− 1) ∗ y(t− 3)) ∗ y(t− 3)

1 + u2(t− 1) + y2(t− 3)
+

sin(u(t− 1) ∗ y(t− 2)) ∗ y(t− 4)

1 + u2(t− 2) + y2(t− 2)

+u(t− 1) + v(t) (5.5.5)

and the disturbancev(t) is described by

v(t) = (1 + 0.25q−1)e(t) (5.5.6)

wheree(t) ∈ N(0, 0.001) is a white noise.

The desired output in this example is

y∗(t) = 0.6y∗(t− 1) + r(t− 1) (5.5.7)

wherer(t) = sin(2πt/25)+sin(2πt/10). Estimation data are sampled when system is excited using

random input sequence. Firstly, trains the autoassociative network using the algorithm described in

Sec.5.4.1. We letn = 4,m = 3, r = 2, and a 7-6-2-6-7 autoassociative network is chosen as

training net. 7-6-2 network trained parameters are used forNFN input.

Three kind predictors are used to compare with our proposed method. In all figure, the solid

green line is the result of the proposed predictor and dashedred line is the result of compared

method. Firstly, directly choose(y(t−1), ...y(t−4), u(t−1), .., u(t−3)) as inputs of NFN, which

involves more than37 parameters and slow the on-line adaptive control speed. Fig.4.6 shows the

convergence properties of MSE.

Secondly, directly choose(y(t− 1), u(t − 1)) as inputs of NFN which is shown in Fig.5.7.

Finally, two methods are compared with us under two conditions: with or without noise. PCA

network has two output as the NFN input. The other is to choose(y(t−1), y(t−2), u(t−1), u(t−2))

as input which is same as Ref.[101]. Figure 5.8 and Fig.5.9 give the MSE without considering noise

and with noise, respectively. Figure 5.10 shows the controlled system output, reference output

and control signal. All results indicate that our method canreduce complexity and keep control

precision.
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Figure 5.6: MSE betweeny(t) andy∗(t) calculated in a moving window for Example 2.

5.6 Conclusion

Quasi-ARX modeling scheme based on ARX model and NFN not onlyhas accurate representation

ability, but also has a structure similar to linear ARX model. Because it is linear in the parame-

ters to be estimated. However, variables and the order of themodel increases, the complexity of

input-output designing the NFN also increases. A linear principal components analysis (PCA) is

introduced to reduce the dimension of the NFN input on the assumption that the input variables of

NFN is linear correlation. In fact, the input variables do not only depend on each other linearly.

In this chapter, A NPCA network is used to reduce the dimension for the quasi-ARX NFN model.

This method reduces the number of controller parameters andimproves the control performance

of the controller based on the quasi-ARX modeling. Numerical simulation results show that the

performance of the quasi-ARX model has been improved by introducing the NPCA network.
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Figure 5.7: MSE betweeny(t) andy∗(t) calculated in a moving window for Example 2.
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Figure 5.8: MSE betweeny(t) andy∗(t) calculated in a moving window without considering noise,
in which dashed red line and dashed blue line are the results of Ref.3 and Ref.7 respectively.
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Chapter 6

Conclusions

6.1 Summary

In this final chapter, a summary for whole thesis will be given.

Adaptive control have been studied as a classic research field since 1950s and adaptive control

based on the linear system theory has got great achievements, especially, in many real-world appli-

cations. Recently, with the development of neural network,wavelet network, radial basis function

network and some other nonlinear model, adaptive control have to face some new challenges. It is

difficult to ensure the stability of these control system, although it can give a higher accuracy control

performance. A quasi-linear black-box modeling scheme hasbeen constructed based on the linear

structure and the nonlinear model, so that the obtained nonlinear black-box models contain not only

the linearity properties which are useful, but also have good flexibility which is used to deal with

various nonlinear systems. In this thesis, quasi-ARX blackbox models are constructed and their

applications for the nonlinear dynamical systems control scheme are studied. Investigations have

made to identification, model analysis adaptive control design and stability analysis of nonlinear

systems under the framework of linear system theory, on the basis of the improved model structure.

The main work of the thesis has been described in Chapter 2, 3,4, and 5.

In Chapter 2, quasi-ARX neural network is divided into two parts: the linear part is used to

ensure the nonlinear control stability, and the nonlinear part is utilized to improve the control accu-

racy. In order to combine both the stability and universal approximation capability in our controller,

a switching law is established based on system input-outputvariables and prediction errors. An

adaptive control law is proposed for nonlinear dynamical systems and then the control system sta-

bility is proved. The proposed controller has three distinctive features:

(1) it is linear for the variables synthesized in control systems because of the linear structure.
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(2) its parameters have explicit meanings which shares fromthe predictor.

(3) it is only one controller which combines a switching algorithm.

In Chapter 3, a stabilizing switching controller for nonlinear system is designed based on a

quasi-ARX RBFN model and a fuzzy switching function. The proposed control method uses a

smooth switching between a linear controller and a nonlinear controller both of which are derived

from the same identified quasi-ARX RBFN prediction model. The effectiveness of the controller

has been confirmed through numerical simulations. The work in this chapter has contributions as

follows:

(1) The control system can satisfy the stability, response and performance requirement with only

one model used.

(2) A d-difference operator is used to relax the assumption of global boundedness on higher-order

nonlinear terms, which improves the work of Chapter 3.

(3) For parameterizing the coefficients of the macro-model,a RBFN is used in the kernel part to

replace NN, thus nonlinear parameters of the proposed quasi-ARX RBFN prediction model

can be determined bya priori knowledge.

(4) The prediction model only remains linear parameters to be adjusted on-line which reduces

the number of on-line adjusted parameters.

In Chapter 4, an MIMO quasi-ARX model is first introduced, anda nonlinear multivariable

decoupling PID controller is proposed based on the proposedmodel for MIMO nonlinear systems.

a traditional PID controller with a decoupling compensatorand a feed-forward compensator for

the nonlinear dynamical from the MIMO quasi-ARX model consist the proposed controller. Then,

an adaptive control system is constructed using the proposed MIMO quasi-ARX RBFN prediction

model. Generalized minimum control variance are used to getthe control law and the stability proof

is also given. The proposed controller has the following distinctive feature:

(1) It has more simplicity structures and better control performance.

(2) It has better properties for controlling the system withdisturbance (noise).

(3) Its nonlinear part is not a black box whose parameters canbe determined bya priori acknowl-

edge.
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(4) It is a stability controller.

The work in this chapter also shows that

(1) with the improved model structure, the control algorithm based on well developed linear

system theory could be extended to MIMO nonlinear systems.

(2) the linear structure of quasi-ARX model is used to resolve the decoupling problem and the

nonlinear part improves the control performance.

Chapter 5 introduces a NPCA network to reduce the dimension for the quasi-ARX modeling.

One part of the quasi-ARX model is the ordinary neurofuzzy network to parameterize the coeffi-

cients which faces to a problem of high dimension. A linear principal components analysis (PCA)

has been introduced to reduce the dimension of the NFN input on the assumption that the input

variables of NFN is linear correlation. In fact, the input variables do not only depend on each other

linearly. When nonlinear correlations between variables exist, a nonlinear principal components

analysis (NPCA) will describe the data with greater accuracy than PCA. This improves the perfor-

mance of the quasi-ARX model. Numerical simulation resultsshow that the performance of the

quasi- ARX model has been improved by introducing the NPCA network.

6.2 Topics for Future Research

Although a lot of progress has been made, there are still manyaspects that need further investiga-

tions.

• Other control methods as as PEM and GPC based on the quasi-linear model also can be used

for MIMO system control. The corresponding stability and decoupling problem should be

researched in the next step.

• Some parameters of the model is trained off-line to reduce the online feedback time. There-

fore, we will improved the on-line algorithm to low the feedback time down in the next work.

• Although our control system can deal with some kinds of disturbances, it cannot do will

when disturbance is larger. The robustness of the fuzzy switching adaptive control based on

quasi-linear model is key problem for us.

• In this thesis, we use a NPCA network is used to reduce the dimension for the quasi-ARX

modeling. However, a nonlinear network are introduced intoa kernel part of quasi-ARX
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model. Although linear part can be sure stability, the condition between two parts should be

made certain. That is our future work to be sure the proposed model stability.

• As we discuss in Chapter 5, variables and the order of the model increases, the complexity of

as the number of input-output designing the NFN also increases. Motivated by the discussion,

support vector regression can be used to deal with the complex calculations

• The control model can be used to resolve practical problem such as gene regulation network,

missile control in future research.



Bibliography

[1] L. Ljung, System Identification: Theory for the User, Second Edition, Prentice-Hall PTR,

Upper Saddle River, N.J., 1999.

[2] G.C. Goodwin and K.S. Sin, Adaptive Filtering Prediction and Control, Prentice-Hall, Inc.,

1984.

[3] C.T. Chen, Linear System Theory and Design, Oxford University Press, Inc. New York, USA,

1998.

[4] A.J. Krener and A. Isidori, “Linearization by output injection and nonlinear observers,” Sys-

tems and Control Letters, vol.3, no.1, pp.47–52, 1983.

[5] D.G. Kelly, “Stability in contractive nonlinear neuralnetworks,” IEEE Trans. on Biomedical

Engineering, vol.37, no.3, pp.231–242, 1990.

[6] O. Nelles, Nonlinear System Identification, Springer, Berlin, 2001.

[7] G.C. Goodwin, J.C. Murdoch, and R.L. Payne, “Optimal test signal design for linear S.I.S.O.

system identification,” International Journal of Control,vol.17, no.1, pp.45–55, 1973.

[8] W.L. Luyben, “Simple method for tuning SISO controllersin multivariable systems,” IMA

Journal of Mathematical Control and Information, vol.25, no.3, pp.654–660, 1986.

[9] A.Abdulaziz and M.Farsi, “Non-linear system identification and control based on neural and

self-tuning control,” INT J. of Adaptive Control and SignalProcessing, vol.7, pp.297–307,

1993.

[10] H. Lee and M. Tomizuka, “Robust adaptive control using auniversal approximator for SISO

nonlinear systems,” IEEE Transactions on Fuzzy Syatems, vol.8, no.1, pp.95–106, 2000.

97



98

[11] A. Levant, “Universal single-inputcsingle-output (SISO) sliding-mode controllers with finite-

time,” IEEE Transactions on Fuzzy Syatems, vol.46, no.9, pp.1447–1451, 2001.

[12] H.X. Li and S. Tong, “A hybrid adaptive fuzzy control fora class of nonlinear mimo systems,”

IEEE Transactions on Fuzzy Systems, vol.11, no.1, pp.24–34, 2003.

[13] S.S. Ge, J. Zhang, and T.H. Lee, “Adaptive neural network control for a class of MIMO

nonlinear systems with disturbances in discrete-time,” IEEE Trans. Systems, Man, and Cy-

bernetics, Part B: Cybernetics, vol.34, no.4, pp.1630–1645, 2004.

[14] J. Hu, Research on Hybrid Black-Box Modeling for Nonlinear Systems and Its Applications,

Ph.D. thesis, Kyushu Institute of Technology, Japan, 1997.
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