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Abstract

As global financial innovation opens innumerable risks and opportunities,

the economic markets are evolving from highly localized trading places to-

ward global platforms for risk sharing. In this context, devising global in-

vestment strategies that tackle the increased market complexity and boost

the sustainable economic growth is becoming a key issue in public and cor-

porate agendas. And to a large degree, the recent financial crisis has also

enforced the need of enhancing the resiliency of the global investment sys-

tems to mitigate the risk exposure to reasonable levels.

Traditional Finance has created global investment strategies that maximize

return and minimize risk by focusing on interdependent risks and distribu-

tional assumptions ofModern Portfolio Theory(MPT). Over the last decade,

recent studies have also integrated investor’s behaviors and risk preferences

in order to get more accurate models and reasonable economic performances.

Developing global investment models also involves the systematic quest of

the margin of safety, or a favorable difference between the price and the

intrinsic value. Although this variable might not be quantified with exact

precision, it may be approximated through the underlying relationships in

financial markets and the real economy. In this context, key factors such as

multiple risks, global asset classes, and intrinsic value creation play crucial

roles.

This thesis aims at incorporating these variables while complementing upon

Genetic Network Programming(GNP) and Value Investing(VI) principles to

build global and diversified portfolios that tackle risk misspricing and be-

havioral bias involved in speculative investing. The principles of VI uses

the factors related with the margin of safety to create wealth over the long

term; and GNP is a robust search architecture that enables the improved

exploration ability of the factors that determine the margin of safety. The
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juncture of both constructs implies designing an improved heuristic to as-

sess the interdependent risk in the context of traditional finance. This field

has received limited attention compared with portfolio trading and opti-

mization, and should contribute to building the value investing models of

the next generation that are commensurate with the new realities of global

risk interdependence.

Therefore, the objective of this thesis is to develop algorithms for build-

ing global investment models, which are able to diversify the risks while

allocating the scarce economic resources in multiple asset classes, spread in

developed financial markets, by using the principles of evolution of GNP

and pricing of VI. The following chapters are organized as follows:

Chapter 1 presents the motivations, the aims and the structure of this

thesis.

Chapter 2 proposes a methodology to build optimal asset selection models

using Genetic Network Programming (GNP), which builds network oriented

risk pricing models embedded with intrinsic and extrinsic risk factors. The

basic idea of GNP is to build flexible decision making networks to assess,

through risk factors, how valuable and attractive the assets in financial

markets are. The number and the type of risk factors relevant to build the

risk pricing model are decided by the evolutionary principles of GNP. The

proposed methodology is compared to relevant benchmarks used in financial

practice, such as the widely known value, growth and capitalization indexing

strategies.

Chapter 3 introduces a methodology to build robust asset selection models

by using Robust Genetic Programming(r-GNP). The basic idea of r-GNP is

inspired by how evolvabilty and robustness are complementary properties in

the development of biological organizations, that is, individuals have better

chances to survive and have better generalization ability if they acquire and

accumulate crucible experiences when they are exposed to a relevant set of

environments/experiences. Simulations show that the generalization ability

of r-GNP has benefits over the standard GNP approach and the benchmarks

used in financial practice.

Chapter 4 introduces a methodology to build adaptive asset selection

models by using Genetic Network Programming with Changing Structures

ix



(GNP-cs). The basic idea of this system comes from biologically adaptable

systems which incorporate control functions in their organization to moni-

tor and guide the self-adaptation to the changing environments. The unique

point of GNP-cs is to introduce a guiding control mechanism to self-change

the structure for the asset selection depending on the fluctuations in the

real economy. GNP-cs is compared to the standard GNP approach and

benchmarks used in financial practice.

Chapter 5 proposes a methodology to build optimal asset allocation mod-

els by using Genetic Relation Algorithm (GRA). The basic idea of GRA

is inspired by how compact networks survive by focusing on partial and

relevant relationships. Thus, GRA models the asset portfolios though undi-

rected network structures where each node in the network represents fi-

nancial assets, such as stocks, bonds and currencies, and each relationship

focuses on the systematic risk, in terms of portfolio beta. Which nodes and

which connections are relevant are decided by the evolutionary structure

of GRA, which is compared to relevant benchmarks in the asset allocation

context.

Chapter 6 introduces a methodology to build optimal portfolio diversifica-

tion models by using Genetic Relation Algorithm with Variable Size (GRA-

vs). The basic idea of GRA-vs comes from biological organizations that

expand/shrink their internal structure during the period of evolution to

systematically enhance their survivorship ability. vs-GRA has the role of

building flexible portfolio structures considering variable size structures dur-

ing the evolution process, in which the expansion/shrinkage is guided prob-

abilistically using diversity metrics. vs-GRA is compared with the standard

GRA in the portfolio allocation problem.

Chapter 7 concludes the thesis by highlighting the remarks of each chapter.

x



CHAPTER

1

Introduction

1.1 Background

Over the last decade, much work has done in terms of Modern Portfolio Theory to

tackle risk management problems in global investment strategies. Studies are mainly

based on mean-variance analysis and market-investor rationality assumptions, which

are firmly integrated into a discipline of econometric models of uncertainty. Recent

studies have also integrated investor’s behaviors and risk preferences in order to get

more accurate models and reasonable economic performances.

However, a crucial insight behind risk management is that it needs to assure a pri-

mary reason in investment: to create value in the long term. In this context, key factors

such as multiple risks, asset classes, and intrinsic value creation play crucial roles. This

thesis aims at incorporating these variables while complementing upon Genetic Network

Programming(GNP) and Value Investing(VI) principles to get well diversified portfo-

lios and to tackle risk-misspricing and behavioral bias involved in speculative investing.

This field received limited attention in comparison with portfolio trading and optimiza-

tion, and contributes to building the investing models in the next generation, which

commensurates with the new realities of increasing financial complexity and global risk

interdependence.

1



1.2 Contents

1.2 Contents

1.2.1 Objective

This thesis develops algorithms for making investment models, which are able to di-

versify the risks while allocating the scarce economic resources in multiple asset classes

spread in developed financial markets, by using the principles of evolution of GNP and

pricing of VI.

1.2.2 Research topics

• Chapter 2 proposes a methodology to build asset selection models using Genetic

Network Programming(GNP), which builds the risk pricing models based on in-

trinsic and extrinsic risk factors by using the evolutionary structures of GNP.

The number and type of factors needed to build the risk pricing model is decided

by evolution. The proposed methodology is compared with relevant benchmarks

used in financial practice. It is found from simulations that GNP-based asset

selection outperforms the benchmarks in terms of wealth accumulation over the

long term, implying an improved ability to identify undervalued opportunities.

• Chapter 3 introduces a methodology to build robust asset selection models by

using Robust Genetic Network Programming r-GNP). The basic idea of r-GNP is

inspired by how evolvabilty and robustness are complementary properties in the

development of biological organizations, that is, individuals have better chances to

survive and better generalization ability if they acquire and accumulate different

meaningful experiences when they are exposed to a relevant set of environments.

Simulations show that the generalization ability of r-GNP brings benefits on

return, risk and liquidity over the standard GNP approach and the benchmarks

used in financial practice.

• Chapter 4 introduces a methodology to build adaptive asset selection models by

using Genetic Network Programming with Changing Structures. The basic idea

comes from biologically adaptable systems which incorporate control functions

in their organization to monitor and guide the self-adaptation to the changing

environments. The unique point of GNP-cs is to introduce a guiding control

mechanism to self-change the structure for the asset selection depending on the

fluctuations in the real economy. Simulations show that the adaptive mechanism

2



1.2 Contents

of GNP-cs brings benefits in wealth accumulation over the long term over the

standard GNP and benchmarks used in financial practice.

• Chapter 5 proposes a methodology to build asset allocation models by using Ge-

netic Relation Algorithm(GRA). The basic idea of GRA is to model a portfolio

in an undirected graph structure that focuses on risk relationships to capture

the systematic risk. GRA is compared to relevant benchmarks for in the asset

allocation context. It is found from simulations that evolving asset allocation

structures through GRA has benefits in profit accumulation over a global mar-

ket index (DJ Gloabl 1800) and standard portfolio optimization techniques in

Traditional Finance and Computer Science literature.

• Chapter 6 presents a methodology to build portfolio diversification models by

using Genetic Relation Algorithm with Variable Size(GRA-vs). The basic idea

of GRA-vs comes from biological organizations that expand/shrink their struc-

ture during the evolution process and systematically enhance their survivorship

ability. vs-GRA has the role of building flexible portfolio structures considering

the variable size during the evolution, which are guided probabilistically using

diversity metrics. vs-GRA is compared with the standard GRA approach, which

shows that the flexibility of GRA has benefits to decide on the optimal spread over

asset classes, sectors and countries, implying an improved return performances

over the long term.

3



CHAPTER

2

Asset Selection with Genetic Network

Programming

2.1 Aims of the Proposed Method

This chapter:

• Introduces a methodology to build asset selection models using Genetic Network

Programming(GNP).

– The methodology uses evolutionary computing and value investing principles

to find the optimal asset selection models.

– Judgment and processing nodes in the network structure of GNP use the

intrinsic and the extrinsic risk factors to decide on the asset selection deci-

sion.

– The fitness function is designed to asses return, risk and liquidity as main

objectives.

• Compares the proposed scheme with benchmarks used in financial practice through

simulations.

4



2.2 Background

– Simulations use the assets listed in the Russell Developed Index.

– Simulations are executed through sliding time periods between Jan 2000 and

Dec 2010.

– Benchmarks include widely known indexing strategies such as Value, Capi-

talization and Growth.

2.2 Background

Financial markets are continuously evolving from highly localized trading places toward

sophisticated and intertwined global platforms. This fact has brought significant chal-

lenges for global risk management and, particularly, for asset selection practices. The

attractive and non-toxic assets are to be identified so that the health of the financial

markets, the smooth return premium for institutional investors and the competitive

edge for businesses are safeguarded.

Apart from portfolio optimization, asset selection is primarily concerned with the

task of identifying prospective assets from financial markets for investment purposes.

Depending on the asset composition, formal practices of asset selection include active

and passive strategies.

• Active strategies assume that the underlying value of each asset(or a group of

them) can be estimated though explicit risk pricing models, which incorporate

either fundamentals and/or stock market elements to separate the undervalued

assets from the overvalued financial assets. Remarkable models include the Value

Investing approach(1), the Mean Variance model(2), the Capital Asset Pricing

Model (3), the Option Valuation model(43) and the Multiple Valuation(MV)

approach(5). The advantage of this strategy is that companies that have po-

tential to grow in the future can be identified through the individually developed

pricing models. On the other hand, although the pricing models developed inde-

pendently may lead to less correlative issues since individual thinking may not

be correlated with the market behavior, and human intervention may also incite

behavioral bias and thus make models miss-price risk.

• Passive strategies assume that the prospective assets are grouped in leading fi-

nancial market indexes. All forms of indexing, including the frequently used

long-only 130/30 (6), are examples under this category. For example, a simple
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passive strategy would replicate the S&P 500 index in an investable portfolio of

500 assets with weights proportional to their market capitalization. The advan-

tage of this approach lies in the conservatism to protect individual investors from

making mistakes in stock markets. However, since strategies tend to be correlated

in terms that thinking/trading is correlated, systemic risk is an issue.

The models mentioned above shed light on important building blocks in the finance;

however, the active and passive strategies may endure some limitations such as:

• Pricing issues. Conventional strategies require fixed a-priori measure definitions

to price the risk exposure or the expected return of assets. Widely known mea-

sures include variance(2), value at risk, price to book(1) and the book to market

ratio(7). Nevertheless, complex factors such as financial innovation and bounded

rationality of investors call the presence of dynamic measures to avoid risk mis-

pricing issues(8, 9, 10).

• Structural issues. In the last two decades, AI techniques have emerged to aid

the asset selection task. However, structural issues such as the trees’s bloating

problem of GP, the strings’ inability to express underlying relationships of GA

and the black box issue of Neural Networks undermine their efficiency or legibility

to deal with risk pricing issues.

In order to tackle these issues, this chapter introduces an asset selection model

based on Genetic Network Programming(GNP)(11), which is one of the first models

that tackle the asset selection problem by using evolutionary networks.

2.3 Definitions

An asset selection strategy has the role of identifying the prospective assets from the

financial markets, which can be generally characterized by:

Prospective Assetst = f(ICt,Mt,mt), (2.1)

mt = f(History≤t,Modeling Theoryt,Expectationst) (2.2)

The notation of f() means ”is a function of ”. The above suggests that the prospec-

tive assets at time period t depends on the investor’s characteristics ICt at time period
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t, the investment universe in the financial market Mt at time period t, and the as-

set selection solution mt at time period t; which in turn depends on the History≤t of

the underlying risk factors of every asset i ∈ Mt for the periods up to time period t,

the Modeling Theory t to represent and build mt, and the Expectationst of the future

prospects of every asset i ∈Mt.

Assuming that,

• ICt represents the features of a risk averse investor,

• Mt is the market index M at time period t,

• History≤t is given by fundamentals and market related factors of every asset

i ∈M for the periods up to time period t as shown in Table 2.1, and

• Expectationst is given by the Market Values MVt(prices) of every asset i ∈M at

time period t,

Thus, in order to find the Prospective Assetst at time period t, we need explicit

Modeling Theory t; that is, how to represent the asset selection solution mt, and how

to build the optimal solution m∗
t . These questions will be discussed next.

2.4 Genetic Network Programming on Asset Selection

2.4.1 Basic Concept

The basic idea of this chapter is to use evolutionary networks to build solutions (mt)

as risk pricing models to evaluate the assets in a financial market M by using the value

investing principles: which is to consider the asset value and attractiveness into the

GNP in the context of asset selection.

2.4.2 Main Features

In the context of asset selection, the proposed approach contributes to the following

features:

• The compact network of reusable nodes in the GNP structure balances the aspects

of the asset value and attractiveness in the selection mechanism. To put it more

bluntly, it means introducing the concepts of evolution when building an asset

selection model through an active indexing strategy; which implies designing an

improved heuristic to asses risk in the context of traditional finance.
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• GNP enables a parallel search mechanism of evaluation measures which may be

unimaginable for financial experts, overcoming local optima or bias issues in for-

mal asset selection approaches. Designing a compact network through GNP has

implications for building a compact asset selection model, which could also mini-

mize financial behavioral anomalies such as conservatism and representativeness

in expert based approaches(12).

• Compared to other evolutionary algorithms, the GNP’s network structure avoids

the bloating and black box issues, making the asset selection process efficient and

legible.

The different points from the conventional financial engineering methods are the

following:

• The asset selection using GNP is an extension of the passive strategy in the sense

that it considers the market index M as an investable universe(6). However, in-

stead of relying on the full set, we aim at identifying a basket of prospective assets

from M by using the asset selection models built upon the evolvability concepts

of GNP. To put it more bluntly, not only the optimal combination of metrics,

but also the set of prospective assets for investment is decided by evolution of

GNP. This scheme has implications on building not only the enhanced but also

the robust indexing strategies.

• Second, The asset selection using GNP is an active strategy in the sense that

it builds explicit models for risk pricing. Instead of using ratios(1), statistical

equations(2), compounded indexes(3), pricing rules(13), trees structures (14),

and more recently, syntaxes(15), we propose using the networks that incorporate

not only the intrinsic, but also the extrinsic risk factors embedded in judgment

and processing nodes. This scheme implies an exhaustive tool for the building

risk pricing models.

2.4.3 Structure of GNP for Asset Selection

Every GNP individual is a solution mt, and is expressed in a graph structure which

contains nodes connected by directed edges, as shown in Fig. 2.1. Concretely, there

are four elements embedded in every GNP individual:

• A single start node indicates the first node to be executed.
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• The judgement nodes evaluate the value and attractiveness of assets.

• The processing nodes makes the asset selection decision based on evaluation re-

sults of judgment nodes, i.e. whether to add assets or not in the Asset pool.

Gene structure

Each node in the GNP individual is encoded in a gene structure, whose complete

set shapes the asset selection model. To illustrate this mechanism, Fig. 2.2 shows the

encoding scheme of a node r, whose elements are defined by the following:

• Node type(NTr) which defines the type of node r, where NTr = 0 implies that

node r is a starting node, NTr = 1 implies that node r is a judgement node and

NTr = 2 implies that node r is a processing node.

• Intrinsic factor component(IFr) which stores the identification number of the

financial metric quantifying intrinsic factors and their thresholds to decide how

valuable an asset is. For example, if NTr = 1 and IFr = 2, then node r refers to

I2 in Metric Library.

• Extrinsic factor component(EFr) which stores the identification number of the

financial metric quantifying extrinsic factors and their thresholds to decide how

attractive an asset is. For example, if NTr = 1 and EFr = 3, then node r refers

to E3 in Metric Library.

• Connections(Crs) which defines the node connected from node r using the sth

branch according to the arguments of node r in the graph structure.

• Delay time(dr and drs) which represent the delay times in node r and connection

Crs, respectively. The delay times limit the number of judgment nodes to be

executed, preventing from the loops in the route transitions.

Judgment node

To give a balanced view about the risks that assets may be exposed to, the judgment

nodes are explicitly designed to evaluate both the intrinsic and extrinsic factors that

determine the asset’s expected return.

• Intrinsic factors quantify the asset value and growth as fundamental financial

metrics(16, 17, 18). For instance, the management quality and the firm value
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Figure 2.2: Gene structure of GNP for Asset Selection

chain efficiency are implicitly measured by these metrics. We use relevant metrics

in finance literature and practice, as shown in Table 2.1.

To evaluate the intrinsic factors, each judgment node has two components: a

metric and a threshold. While the metric component picks up financial informa-

tion using one of the metrics in Table 2.1, the threshold divides the metric into

high and low levels. For instance, the left side of Fig. 2.1 shows the judgement

mechanism of asset i by judgment node p. In our example, IFpi is the metric and

IF T
p is its threshold. Each metric is normalized in the range of 0 and 1 to allow

the comparison and aggregation among different metrics.

• Extrinsic factors quantify the asset attractiveness as market driven factors. Met-

rics under this category focus on the interactions of agents in specific financial

markets that significantly influence the asset expected return. Concretely speak-

ing, we use components of return, volatility and liquidity, as shown in Table 2.1.

To evaluate the extrinsic factors, each judgment node has a normalized metric

EFpi and its threshold EF T
p , as described in Fig. 2.1.

The judgment nodes combine the normalized metrics and the thresholds of the

intrinsic and extrinsic factors into if-then type decision functions, in which four areas
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are determined, as shown in Fig. 2.1

Table 2.1: Metric Library in GNP

Id. Description

Intrinsic factors

I1 Dividend to price

I2 Earnings to price

I3 Cash flow to price

I4 Book value to price

I5 Sales to price

I6 Short term change in earnings to price(3 months)

I7 Long term change in earnings to price(2 years)

I8 Short term change in cash flow to price(3 months)

I9 Earnings surprise

I10 Profit margin(Net operating income to sales)

I11 Return on assets(Net operating income to total assets)

Extrinsic factors

E1 Excess return to S&P500

E2 Excess return to risk free asset

E3 Rate of return

E4 Sharpe Ratio

E5 Beta

E6 Volatility of return rate

E7 Volatility of beta

E8 Market price per share

E9 Trading volume

E10 Turn over ratio

E11 Bid ask ratio

Processing node

After the evaluations of the judgment node, the processing nodes perform the deci-

sion making on the asset selection in two phases. Fig. 2.1 shows the decision making

mechanism of processing node q to deal with asset i:

• First, compute how valuable and attractive asset i is, i.e., IFqi and EFqi by using

the judgement nodes in transition TN , which is defined as the judgment nodes

from the previous processing node to the current processing node q.

IFqi =
1

|TN |
∑
p∈TN

IFpi, (2.3)

EFqi =
1

|TN |
∑
p∈TN

EFpi, (2.4)
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where TN is the set of suffixes of judgement nodes in the transition; IFpi and

EFpi are the intrinsic and extrinsic factors in judgement node p ∈ TN that

drive the expected return and risk exposure for asset i; and IFqi and EFqi are

the intrinsic and extrinsic factors to perform the decision of selecting asset i by

processing node q.

• Second, perform the decision on selecting asset i:

• [Deterministic selection]

Select asset i into asset pool.

If IFqi ≥ IF T
q and EFqi ≥ EF T

q .

• [Probabilistic selection]

Select asset i in asset pool with the probability of ϵ1.

If IFqi ≥ IF T
q and EFqi < EF T

q .

• [Probabilistic selection]

Select asset i in asset pool with the probability of ϵ2.

If IFqi < IF T
q and EFqi ≥ EF T

q .

• [No selection]

Discard asset i.

If IFqi < IF T
q and EFqi < EF T

q .

The deterministic selection concentrates on identifying the assets which are highly

valuable and attractive, while the probabilistic selection is designed to enhance the

exploration ability of GNP to find undervalued or overvalued assets in financial

markets, i.e., opportunities of mispriced positions as a consequence of financial

market inefficiency factors(17, 18).

2.4.4 Fitness function of GNP

By using the information in the judgment and processing nodes, every GNP individual

selects a group of assets from the market universe M into the Asset pool Am. Thus,

evaluating the fitness of the GNP individual implies measuring the economic perfor-

mance of the Asset pool in a specified time period, i.e., buying and holding the selected
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assets of the Asset pool throughout time period t. Thus, to guide the evolution mecha-

nism in the training period, the fitness of a GNP individual measures the performance

as follows:

Fm =
σAm .βAm

(RAm −RF ).LAm

, (2.5)

RAm =
1

|Am|
∑
i∈Am

(P f
i − P o

i + divi)

P o
i

, (2.6)

LAm =
1

|Am|
∑
i∈Am

MCi, (2.7)

where,

Am : set of suffixes of assets in Asset Pool Am

selected by model m at time period t.

RAm : average return of Am at time period t.

P o
i : the opening price of asset i at the beginning of time period t.

P f
i : the closing price of asset i at the end of time period t.

divi : the dividends paid by asset i at time period t.

σAm : the standard deviation of the returns of the assets in Am

at time period t.

βAm : the average beta coefficient of Am relative to market M

at time period t.

RF : average risk free rate defined by 3-month U.S. Treasury Bill

at time period t.

LAm : average liquidity level of Am at time period t.

MCit : the normalized market capitalization of asset i in time period t.

The lower fitness values are preferred over the larger ones. The advantages of using

Fm as the fitness function are as follows:

• It measures the market and volatility risk exposure. While standard deviation

σAm conventionally measures the volatility of returns as the risk inherent to each

asset, beta βAm captures the systematic risk, which is the component associated

with aggregated returns in dependant financial markets(19).
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• It maximizes liquidity per unit of risk, avoiding the asset exposure to liquidity risk

issues when financial markets turn volatile or distressed. The works of Amihud

and Mendelson(20), and Hill (9) show additional discussions on liquidity risk.

2.4.5 Genetic Operators of GNP

To make evolution successful toward the optimal solutions m∗
t , which means exhaustive

and effective asset selection, the graph structure and parameters in the GNP individ-

uals are evolved through generations. Basically, the selection, crossover and mutation

operators perform this task.

Selection

Tournament selection is carried out. The elite individual, i.e., the one with the best

fitness function, is moved to the next generation. Tournament selection is used because

selection pressure can be easily adjusted by the tournament size.

Crossover

Crossover generates two offspring by exchanging the information in two parent

individuals. As shown in Fig. 2.3, the following procedure is carried out:

• Select two GNP parent individuals by tournament selection.

• Select the nodes in GNP parent individuals with the probability of Pc.

• Exchange the selected nodes in parent individuals.

• New individuals consist of the new population in the next generation.

Mutation

Mutation generates a new individual by changing parameters in a parent individual.

As shown in Fig. 2.4, the following procedure is executed:

• Select a GNP parent individual with tournament selection.

• Perform mutation operation to node r of the individual:

– Node Type. NTr is selected with the probability of Pm and changed to a

different one.

– Node Measure.

∗ Intrinsic factor measure. IFr is selected with the probability of Pm and

changed to other variable in the metric library.
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Figure 2.3: Crossover operation in GNP for Asset Selection

∗ Extrinsic factor measure. EFr is selected with the probability of Pm

and changed to other variable in the metric library

– Node Threshold.

∗ Intrinsic measure threshold. IF T
r is changed to other value with the

probability of Pm.

∗ Extrinsic measure threshold. EF T
r is changed to other value with the

probability of Pm.

– Node connection. Crs is selected with the probability of Pm and reconnected

to a different node.

• New individuals consist of the new population in the next generation.
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2.5 Simulations

2.5.1 Problem definition

An optimal subset Am of common stocks is to be picked up from an investable market

universe, which is defined as a stock market index M . The resulting subset is hypothet-

ically invested using a buy and hold strategy over 1 month. Investment performance

of GNP is compared with other common styles used in financial practice.

2.5.2 Investment Universe

The market index M consists of 2372 assets listed in the Russell Developed Index, which

is a result of a pre-filtering process to avoid the assets with the following features: (1)

with less than 3 years of data history, (2) lacking of market prices during the selection

period, (3) with limited market capitalization and/or limited economic relevance(e.g.

micro-cap stocks), and (3) with high correlation and reduced heterogeneity in the in-

vestment universe.

We choose the Russell Developed Index as the investment universe due to the fact

that the representative assets from developed financial markets in U.S., Europe and

Asia are identified in a single index, allowing better scope for diversification when

performing the asset selection in a global scale.

The benchmarks considered for this paper include: the standard and widely used

indexing strategies based on value and growth strategies(16, 17, 18, 21). All methods,

including the proposed one, focus on long-only strategies.

2.5.3 Time Span

The total time span T for simulation is from Jan. 3rd of 2000 to Dec. 31st of 2009,

which is divided in time periods t ∈ T , each consisting of |TR| time units for training,

followed by |TE| units for testing. Each period time period t ∈ T lags |TE| time units

one another, as the example that Fig. 2.5 shows. During the training phase of every

time period t, GNP obtains the optimal asset selection modelm∗
t ; and during the testing

phase, GNP obtains m∗
t to select subset Am of prospective assets from market index

M , which in turn is traded using a buy and hold strategy over |TE| time units.

This time span is used because relevant financial collapses occurred in this period

of time, providing better opportunities to compare the proposed method with other

benchmarks in financial practice.
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Figure 2.5: The time span used for simulations

2.5.4 Parameters

Table 2.2 shows the parameters for simulations, in which 30 independent runs are

executed. The number of GNP individuals is 200, where 79 individuals are generated

by crossover, 120 are generated by mutation and one is the elite individual. The

probability of crossover and mutation are 0.1 and 0.01, respectively. The initial capital

is $10, 000. The base currency for the fitness evaluation is the dollar.

2.5.5 Performance

Fig. 2.6 shows the average accumulated returns during the testing periods. Wealth

means initial capital plus cumulative monthly returns: the initial wealth is 1(initial cap-

ital is 100%) and subsequent losses/gains are added/deducted in every testing period.

The variables labeled as Value, Growth and Cap refers to the cumulative wealth of the

assets selected by the growth, value and capitalization strategies. All methods include

dividends, and assume the policy for reinvesting profits and no frictional expenses. We

can see that GNP has better performance in terms of the return accumulation during
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Table 2.2: Simulation Parameters

Item Description Value

GE the number of generations for GNP evolution 200

I the number of individuals in GNP 200

IC the number of individuals by crossover 79

IM the number of individuals by mutation 120

IE the number of elite individuals 1

Pm probability of mutation 0.01

Pc probability of crossover 0.1

JN the number of judgement nodes 25

PN the number of processing nodes 12

SN start nodes 1

|TR| time span for training 2 years

|TE| time span for testing 1 month

the testing period.

All methods show competitive and smooth cash flow generation, showing their effec-

tiveness for the asset selection purpose. In the same line as Chan(21) and Brush(17),

value based selection beats the growth based selection, showing its effectiveness for

searching areas with mispriced positions. GNP-based asset selection outperforms smoothly

the value based selection approach, implying a better ability to search undervalued po-

sitions.

2.6 Summary

In this chapter, an evolutionary based approach for the asset selection using GNP has

been proposed. GNP evolves the value and attractiveness as selection measures. How

many and what kind of measures are needed is decided by evolution. It is clarified from

simulations that the proposed approach selects the prospective and valuable assets from

the developed financial markets effectively.

However, since our approach is trained using historical financial information, it lacks

of generalization ability, which means the overfitting of the GNP-based asset selection

model to historical data. In finance, it means overreliance that the past economic

performance can be extrapolated into the future. To tackle this issue, the next chapter
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2.6 Summary

Figure 2.6: Accumulative wealth by GNP and the benchmarks

proposes a method to improve the generalization ability in the proposed asset selection

model.
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CHAPTER

3

Robust Asset Selection with Genetic

Network Programming

3.1 Aims of the Proposed Method

This chapter:

• Introduces a methodology to enhance the generalization ability of the asset selec-

tion models based on Robust Genetic Network Programming(r-GNP).

– The methodology introduces robustness principles into the evolvability con-

cept of the standard GNP, where individuals use multiple and divergent(noisy)

environments to enhance systematically the survivorship ability during the

evolution process.

– The robust fitness function evaluates not only the main performance func-

tion, but also the variability of performance through the environments in

the evolution process of the standard GNP.

– To track the dynamic optimum, r-GNP stores recent past optimal solutions

through an explicit memory mechanism in time periods.

22



3.2 Introduction

– The aim of r-GNP is to stress-test the GNP-based asset selection models to

avoid the overfitting to historical risk factors.

• Compares to the standard GNP approach and benchmarks used in financial prac-

tice.

3.2 Introduction

An asset selection model based on Genetic Network Programming(GNP) was proposed

in the previous chapter. Although this is a population based scheme, implying not

only the ability to avoid failing in local optimal due to its parallel-like search mecha-

nism, but also the ability to handle uncertainty in optimization relatively well(22), it

conventionally assumes that single and deterministic environments are relevant when

searching for the optimum. This assumption leads to overfitting issues, implying the

limited generalization ability, and lack of robustness to unseen cases in highly uncertain

environments, which is the case of global financial markets.

To tackle this issue, we need to consider the fact that the robustness is a comple-

mentary property in evolution of complex organizations and living systems. Research

on the robustness over different fields have shown certain commonalities. For instance,

studies in Biology(23), Operations Research(24), Evolutionary Computation(25) and

Finance(26) consider that an individual is robust if it is insensitive to small changes

caused by internal and/or external variables.

Our interest in this chapter is to enhance the robustness of the asset selection task

of our previous work(27), for which Robust Genetic Network Programming(r-GNP) is

proposed to build generalized models and avoid overfitting issues in unseen uncertain

environments. The basic idea of r-GNP comes from Robust Universal Learning Net-

works(28), which uses the second order derivatives of the main evaluation function with

respect to inputs to improve the generalization ability of connected networks.

3.3 Robust Genetic Network Programming on Asset Se-

lection

3.3.1 Basic Concept

r-GNP is essentially an algorithm inspired by nature, in which a population of candidate

solutions are exposed to heterogeneous environments and evolved through darwinian
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principles of selection, reproduction and survival. Thus, a solution is optimal if it is able

to survive in multiple environments continuously. More specifically, r-GNP incorporates

the concept of the robustness into the evolvability property of the conventional GNP

for the asset selection problem in the following forms.

• Training more. By adding multiple and divergent environments during evolu-

tion,

• Adding perturbation. By adding noises to the newly generated environments,

• Tracking the dynamic optimum. By using accumulative strategies of indi-

viduals through sliding time frames.

The first two approaches aim at improving the generalization ability of the indi-

viduals for unexperienced environments, and thus avoiding the overfitting issues of

conventional evolutionary algorithms when trained in a single environment. In place

of using multiple environments, other strategies exist as well. We could also enlarge

the population size(24) or use adaptive genetic operators(14). However, for these ap-

proaches, the overfitting to a single training environment is still a potential issue since

the individuals are not exposed to divergent training cases, which is essential for im-

proving the generalization ability, thus improving the performance in unseen testing

cases(29, 30).

The third approach aims at adapting to the continuous changes in the environments,

which is important in applications where the optimum changes as time goes on.

3.3.2 Main Features

• r-GNP is a new scheme to enhance the robustness of the asset selection mod-

els; in which not only an strategy for tracking the dynamic optimum, but also a

technique for creating the non-parametric and perturbed scenarios are integrated

into a population based optimization algorithm. r-GNP evaluates the asset selec-

tion models against changing and divergent scenarios extensively, which improves

the model’s generalization ability. In Finance, it implies departing from the ex-

clusive use of distributional assumptions for stress testing(31) and evading the

extrapolation of the past performance into the future(behavioral issues).
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• r-GNP uses accumulative strategies through time frames to track the optimum

in dynamic environments. Instead of re-starting the evolution when the market

environment changes, useful information from the recent past time frames is used

for further evaluation. This feature enables adjusting the risk exposure of the

asset selection models to the changing market conditions.

3.3.3 Basic Algorithm

Outline

r-GNP is designed to find solutions in a lifelong optimization context, where a

time-variant problem over a period of time T is given. Algorithm 1 shows its basic

procedures, and Fig. 3.1 shows its main components.

TRAINING TESTING

Optimal

solution m* 

Evolution 

SOLUTION 

POOL

Store/Retrieve

best solutions

ENVIRONMENTS

Multiple and Divergent

Fitness calculation

Time-variant 

Problem

Next 

time period 

U Eo EA
{    }

Figure 3.1: Main components of r-GNP

The algorithm of r-GNP follows the standard training-testing mechanism:

• During the TRAINING phase, the optimal solution m∗
t at time period t is evolved

and stored/retrieved into/from the Solution Pool continuously by using not only

the original(given) training environment Eo, but also the set EA of artificially

generated environments. Thus, the robust fitness Fm of the candidate solution

m depends not only its the fitness function Fm
o in the original environment Eo,
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Algorithm 1: Basic algorithm for r-GNP

input : A time-variant problem over a time span T

1 Solution Pool ← Ø ;

2 for each time period t in T do

/* Training */

3 Eo ← Training environment(t) ;

4 EA ← Create artificial environments(Eo), where

EA = {E1, E2, ..., Eg, ..., E|G|} and Eg is the g − th artificially generated

environment for time period t, and G is the suffixes of environments;

5 Create a Population P of |I| solutions by retrieving up to the |ISP | best
solutions from the Solution Pool, and generating the rest randomly, where

mt is a solution candidate in P in time period t.

6 while termination condition is not met do

7 Evaluate the fitness Fm
o and Fm

g of each solution mt in the

environment Eo and each artificial environment Eg, respectively;

8 Calculate the robust fitness Fm = Fm
o + λSm

A of each solution mt,

where λ is a coefficient of user’s aversion to volatility performance;

and Sm
A =

√
1

|G|
∑
g∈G

(Fm
o − Fm

g )2, is the fitness deviation of each

solution m ∈ P in the set of environments EA;

9 Store the best solution mt into the Solution Pool ;

10 Evolve the Population P ;

/* Testing */

11 m∗
t ← Pick the best solution mt out of the current population P ;

12 Etest ← Testing environment(t) ;

13 Test(m∗
t ,Etest);

but also depends on its derived fitness function Sm
A in the set of artificial environ-

ments EA. Whereas, the function Fm
o is the main objective evaluation function

related to the problem itself, the function Sm
A is related to the notions of stability,
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3.3 Robust Genetic Network Programming on Asset Selection

smoothness and robustness of the candidate solution m. Evolving the population

P of candidate solutions implies following the conventional selection, crossover

and mutation of GNP in the previous chapter.

• During the TESTING phase, the optimal solution m∗
t is validated by using the

given testing environment Etest.

Asset Selection with r-GNP

In order to find the optimal model m∗
t , Algorithm 1 evolves a population P of

candidate models mt for every time period t. However, in order to deal with the asset

selection problem using r-GNP, we need to use the following elements that are peculiar

in this chapter:

Environment Eo

The environment Eo is the original(given) training environment defined by the time

series:

Eo = {X1, X2, ..., Xh, ..., X(|TR|)} (3.1)

where, Xh is the h-th data point of History≤t and the Expectationst during time

period t, and |TR| is the length of the time series at time period t in the training phase.

Fig. 3.2 shows an example of the environment Eo at time period t.

X1 X |TR|X2 X |TE|
... ...

|TR|+

TRAINING 

ENVIRONMENT

EtestEo

TIME PERIOD t

TESTING 

ENVIRONMENT

Figure 3.2: Explanation of time period t

Environment Etest

The environment Etest is the original testing environment defined by the time series:

Etest = {X|TR|+1, X|TR|+2, ..., X(|TR|+|TE|)} (3.2)

where, |TE| is the length of the time series at time period t in the testing phase. Fig.

3.2 shows an example of the environment Etest at time period t.

Artificial Environments EA
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3.3 Robust Genetic Network Programming on Asset Selection

The set EA of artificial environments is created by Algorithm 2, whose input is

environment Eo and output is set EA of artificially generated environments. The basic

idea of this scheme is based on the block bootstrapping technique, which creates artificial

scenarios for stress-testing by re-sampling consecutive blocks(sequential points in the

time series) randomly(32). To estimate the block size l correctly, we refer to Hall et

al.(33).

Generally speaking, conventional methods create multiple artificial environments

either by using a longer period of time which is usually divided into training, validation

and testing(machine learning perspective); or by using distributional assumptions of

the time series, such as Monte Carlo or generalized ARCH(31)(parametric perspective).

However, Algorithm 2 has the advantage of creating not only multiple, but also diver-

gent environments, acting as unexperienced events that might be unimaginable for the

machine learning or the parametric perspective. Divergent environments are useful to

evaluate the internal structure of mt and avoid its overfitting to historical data.

Algorithm 2: Create artificial environments(EA)

input : A training environment Eo = {X1, X2, ..., Xh, ..., X(|TR|)}
output: EA = {E1, E2, ..., Eg, ..., E|G|}.

1 Divide Eo into b disjoint blocks, where Eo = {B1, B2, ..., Bk, ..., Bb},
where Bk = {X(k−1).l+1, X(k−1).l+2, ..., Xk.l} refers to the k-th block,

and l refers to the size of each block;

2 EA ← Ø ;

3 for g ← 1 to |G| do
4 Eg ← Ø ;

5 Choose Eg = {B∗
1 , B

∗
2 , ..., B

∗
k, ..., B

∗
b } by re-sampling

{B1, B2, ..., Bk, ..., Bb} randomly, where

B∗
k = {X∗

(k−1).l+1, X
∗
(k−1).l+2, ..., X

∗
k.l};

6 Add gaussian noise η to every data point of Eg;

7 EA ← EA ∪ {Eg} ;

8 return EA

Fitness Fm
o

The fitness Fm
o is the performance of the subset that solution mt is able to select,

thus is measured by the conventional fitness function of GNP in Eq. (2.5).
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Fitness Fm
g

The procedure to calculate fitness Fm
g of solution mt in environment Eg is the same

as the procedure to calculate fitness Fm
o , in which environment Eg is used instead of

Eo.

Evolve Population P

Evolving population P implies following the conventional operators of GNP, which

is selection, crossover, mutation in Section 2.4.5.

3.4 Simulations

3.4.1 Problem

The same as chapter 1, indicated in Section 2.5.1, that is, an optimal subset Am of

common stocks is to be picked up from an investable market universe, which is defined

as a stock market index M . The resulting subset is hypothetically invested using a

buy and hold strategy over a period of |TE| units of time. Investment performance of

r-GNP is compared with the standard GNP approach and other common styles used

in financial practice.

3.4.2 Investment Universe

The same as chapter 1, indicated in Section 2.5.2. In this chapter, more financial

metrics are used, which are grouped into intrinsic and extrinsic factors as shown in

Fig. 3.3. These variables represent a relevant set of four broad investment areas: value,

growth, profitability, and momentum.

3.4.3 Time Span

The same as Chapter 1, indicated in Section 2.5.3, that is the total time span T for

simulation is from Jan. 3rd of 2000 to Dec. 31st of 2009, which is divided in time

periods t ∈ T , each consisting of |TR| time units for training, followed by |TE| units
for testing. Each period time period t ∈ T lags |TE| time units one another, as the

example that Fig. 2.5 shows. During the training phase of every time period t, r-GNP

obtains the optimal asset selection model m∗
t ; and during the testing phase, r-GNP

obtains m∗
t to select subset Am of prospective assets from market index M , which in

turn is traded using a buy and hold strategy over |TE| time units.
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Intrinsic Measures 
IF1  Dividend to price 

   IF2  Earnings to price 
   IF3  Cash flow to price 
   IF4  Book value to price 
   IF5  Sales to price 
   IF6  Earnings surprise 
   IF7  Return on Equity share 
   IF8  Return on Assets 
   IF9  Capital turnover 
   IF10  Profit margin 
   IF11  Short term change in IF1(1 month) 
   IF12  Long term change in IF2(1 year) 
   IF13  Short term change in IF3(1 month) 
   IF14  Long term change in IF3(1 year) 
   IF15  Short term change in IF4(1 month) 
   IF16  Long term change in IF4(1 year) 
   IF17  Short term change in IF5(1 month) 
   IF18  Long term change in IF5(1 year) 
   IF19  Long term change in IF7(1 year) 
   IF20  Long term change in IF8(1 year) 
   IF21  Long term change in IF9(1 year) 
 

Extrinsic Measures 

  EF1 Excess return to S&P500 

  EF2 Excess return to risk free asset 

  EF3 Rate of return 

  EF4 Sharpe Ratio 

  EF5 Stirling Ratio 

  EF6 Volatility of return rate 

  EF7 Beta of return 

  EF8 Volatility of beta 

  EF9 Conditional value at risk 

  EF10 Market capitalization 

  EF11 Trading volume 

  EF12 Turn over ratio 

  EF13 Bid ask ratio 

  EF14 Price per share 

  EF15 Short term volatility of IF3(1 month) 

  EF16 Long term volatility of IF3(1 year) 

  EF17 Short term volatility of IF4(1 month) 

  EF18 Long term volatility of IF4(1 year) 

  EF19 Short term change of EF1 (1 month) 

  EF20 Long term change of EF1 (1 year) 

  EF21 Short term price momentum (1 month) 

  EF22 Long term price momentum (1 year) 

  EF23 14-Day MACD 

  EF24 26-Day MACD 

  EF25 14-Day RSI 

  EF26 20-Day Lane's Stochastic Indicator 

 

Extrinsic Measures Intrinsic Measures 

Figure 3.3: Metric Library

3.4.4 Parameters

Each simulation has 30 independent runs, and it is executed for every time period

t. The parameter settings for both r-GNP and GNP are shown in Table 3.1. The

terminal condition for Algorithm 1 is 500 generations, the population size is 301, where

100 individuals are generated by crossover, 200 are generated by mutation and 1 is

the elite individual. The number of judgment and processing nodes are 48 and 24,

respectively; whose delay times are 1 and 8 units. The maximum delay time is set at 8,

which means that the transition through nodes ends when at least 1 processing node or

8 judgment nodes are used. Individuals with internal loops cannot execute a processing
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node, thus their uncompetitive fitness values will automatically exclude them from the

population during the evolution of Algorithm 1. Other parameters exclusive in r-GNP

include the number of solutions retrieved from the Solution Pool, the gaussian noise and

the number of artificial environments which are set considering the reasonable balance

of exploration and exploitation to converge to the optimal fitness values.

The parameters for the asset selection algorithm include the coefficient λ of user’s

aversion to volatility performance, which is set at 1 considering risk averse investors.

The length of the training period is set at 2 years, and the testing period at 1 month,

with policy for reinvesting and no frictional expenses. The initial capital K is $10, 000,

in which the base currency for the fitness evaluation is the dollar.

Table 3.1: Parameters for r-GNP and GNP

Item Description Value

GE the terminal condition 500 generations

|I| the number of individuals 301

IC cross the number of individuals by crossover 100

IMmut the number of individuals by mutation 200

IE elite the number of elite individuals 1

Pm the probability of mutation 0.01

Pc the probability of crossover 0.1

JN the number of judgement nodes 48 nodes

PN the number of processing nodes 24 nodes

SN the number of start nodes 1 node

dj the time delay of each judgement node 1 unit

dp the time delay of each processing node 8 units

dc the time delay of each branch 0 unit

Max delay the maximum time delay 8 units

|ISP | the number of retrieved individuals from the Solution Pool 10

λ user’s aversion to volatility performance (r-GNP only) 1

η the gaussian noise in artificial environments (r-GNP only) 0.025

|G| the number of artificial environments (r-GNP only) 45

|TR| the length for training 2 years

|TE| the length for testing 1 month

3.4.5 Performance on the Training Phase

To show the influence of the probability of ϵ1 and ϵ2 on the fitness performance of r-

GNP and GNP, Fig. 3.4 shows the average best fitness over the training phases of time

span T . The parameters of ϵ1 and ϵ2 control the proportion of the selected valuable

and attractive assets. A low/high value of ϵ1 suggests that few/many valuable assets
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are selected; similarly, a low/high value of ϵ2 suggests that few/many attractive assets

are selected.

Fig. 3.4 suggests that areas with better fitness performance relate to higher values

of ϵ1 and lower values of ϵ2, which implies that the prospective assets are more exposed

to the intrinsic risk factors than exposed to the extrinsic risk factors. In finance, it

has implications on developing risk pricing models that focus more on the underlying

intrinsic value of the assets, rather than on the extrinsic growth or price momentum.

In addition, Fig. 3.4 suggests that, on average, r-GNP has better chances to find the

solutions with improved fitness performance. This is because r-GNP not only penalizes

the volatility of the performance in multiple and divergent training environments, but

also retrieves the partial solutions from the recent past; so the optimal solutions with

small performance deviation are obtained in the last generation. Since the standard

GNP neither penalizes the volatility of performance nor uses multiple environments for

training, GNP tends to be trapped in local optima; which is a direct consequence of

the overfitting to a single training environment. To compare both methods in further

simulations, the probability of ϵ1 and ϵ2 are set at 0.75 and 0.25, respectively.

3.4.6 Performance on the Testing Phase

Performance in monthly holding periods

To compare the performance of the monthly testing periods, Fig. 3.5 - Fig. 3.7

summarizes the return performance and the number of assets held during the monthly

testing periods(|TE| = 1). Fig. 3.5 (a) shows that in the long term, the wealth behaves

like the standard indexing strategies because of using the same investment universe.

Wealth means initial capital plus cumulative monthly returns: the initial wealth is 1(ini-

tial capital is 100%) and subsequent losses/gains are added/deducted in every testing

period. Fig. 3.5 (a) suggests that, on average, the generalization ability of r-GNP does

yield wealth benefits over the standard GNP, the value and growth strategies. From the

financial view point, since r-GNP penalizes volatility over the divergent environments,

which are generated using a nonparametric scheme to avoid the form of the probability

distribution of the time series, a type of stress-testing mechanism is realized, which is

useful to avoid the extrapolation of historic performance into future horizons.

A year by year comparison is more readily displayed in Fig. 3.5 (b), which shows

the annual accumulated returns in the proposed method and the benchmarks. Fig.

3.5 (b) exhibits gains for return performance of r-GNP over the standard GNP, value
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3.4 Simulations

a) Average of the best fitness in r-GNP b) Average of the best fitness in GNP

Note: Averages are over all the training periods of time span T, the larger the better.

1/$

Figure 3.4: Influence of ϵ1 and ϵ1 on Fo

and growth strategies. However there are periods such as 2005 and 2006 where r-GNP

can underperform the standard GNP. A reason linked to this fact is that GNP uses its

overfitting to historical data as an advantage during periods of time with high growth,

such as 2005 and 2006. From a financial viewpoint, it implies that GNP is prone to

select the assets that are likely to gain economic momentum in the short term because

of relying on the recent past growth performance to identify future economic factors

that drive the asset’s expected return.

A month by month return comparison is shown in Fig. 3.6, which shows the monthly

returns of r-GNP, standard GNP, value and growth strategies. In most of the cases,

r-GNP shows increased gains or decreased losses, and the closer view shows that the

average monthly return of r-GNP is 1.33% with a standard deviation of 5.64%; the

average monthly return of GNP is 1.03% with standard deviation of 5.68%; the average
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monthly return of the value strategy is 0.65% with standard deviation of 5.66%; and

the average monthly return of the growth strategy is 0.44% with standard deviation of

5.34%. It is well-known in Modern Portfolio Theory that a portfolio with a large number

of assets has improved diversification benefits, and thus lower standard deviation of

returns. One might attribute the relatively low standard deviation of r-GNP due to

the large number of assets that it selects. However, r-GNP uses fewer assets than

GNP, as shown in Fig. 3.7. On average, r-GNP has 290 assets with standard deviation

of 38, and GNP has 381 assets with standard deviation of 43. In this context, r-

GNP resembles an enhanced long-only indexing strategy for which the model based on

composite risk factors is more flexible than the conventional fixed indexing strategies.

The implications of these results in finance lie in the possibility to find miss-pricing

opportunities in developing robust risk pricing models that keep the simplicity of the

buy and hold indexes without loosening the long-only constraint.

Figure 3.7: Monthly number of assets held in r-GNP and GNP when

|TE| = 1 month.

Performance in different holding periods

To compare the performance over longer periods of time, that is, relaxing the con-

straint of the buy and hold over 1 month period, Fig. 3.8 - Fig. 3.10 summarizes the

annual return performance of r-GNP, standard GNP, value and growth strategies in

different holding periods, i.e., |TE| is extended to 12, 24, 48, 60, 72, 84 and 96 months.

Fig. 3.8 (a) summarizes the average of the annual returns of r-GNP, GNP and
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benchmarks through different holding periods, which shows that r-GNP yields better

returns on average. A more closer comparison of the average annual returns in different

holding cases is provided in Fig. 3.9 and Fig. 3.10, which shows the annual average

returns of r-GNP, GNP and benchmarks. A case by case comparison shows that the

generalization ability of r-GNP has benefits in increased return performance in most

of the testing cases involving longer periods of time. It is because r-GNP avoids the

overreliance on the historical performance and focuses more on stressed risk factors

that can be useful to estimate and explain the underlying value of the business linked

to the assets for a longer period of time.

Apart from return differences, Fig. 3.11 (a) shows the performance in terms of risk,

and Fig. 3.11 (b) shows the performance in terms of liquidity, where risk and liquidity

imply the volatility of annual return rates and the average market capitalization during

the testing phase for the different holding periods. Not surprisingly, Fig. 3.11 suggests

that the feature of r-GNP to penalize the volatility of the fitness performance over

divergent training environments brings benefits not only to minimize the volatility of

annual returns over the testing cases, but also to improve the average market capital-

ization, that is, the price at the end of the holding period multiplied by the number of

shares held in each selected asset.

To compare which risk factors r-GNP uses most, Fig. 3.12 shows the average usage

ratio, and Fig. 3.13 shows the average threshold values over the holding periods of

1, 12, 24, 48, 60, 72, 84 and 96 months. Fig. 3.13 shows that about 52% of the

intrinsic factors, and 35% of the extrinsic factors, respectively, have their threshold

values above 0.5. It suggests that r-GNP evaluates the exposure to the intrinsic factors

more exhaustively.

In addition, Fig. 3.12 shows that, on average, the first half of the intrinsic risk

factors (IF1 to IF11) are used for 60.81% of the times, and the second half of the

extrinsic risk factors (EF13 to EF27) are used for 52.79% of the times. The metrics

that measure the long term changes in both the intrinsic and extrinsic factors are

used for 25.4% of the times on average; while the metrics that measure the short term

changes are used for 6.72% of the times. It means that r-GNP focuses more on the

common intrinsic factors relative to long term price changes. In finance, it implies

the possibility of finding miss-pricing opportunities by focusing more on the long term

view of price changes relative to fundamental factors; and if the pricing of an asset or

forecasting of the excess returns(risk premiums) are involved, investors should look at

the price change relative to intrinsic factors over more than one year.
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3.5 Summary

3.5 Summary

In this chapter, a robust evolutionary strategy for the asset selection using r-GNP is

proposed. One of the key points of r-GNP is that it is inspired by how evolution and

robustness play important roles in the individual development. Biological organizations

have better chances to survive if they acquire and accumulate different meaningful

experiences when they are exposed to a relevant set of environments.

• Instead of using a single environment during evolution(training algorithm), r-

GNP uses multiple and divergent environments which serve as crucible experi-

ences to validate their internal structure of the individuals(asset selection models).

This schema has a direct effect on avoiding the overfitting problem to historical

data and improving the generalization ability in the individual’s structure.

• In order to adapt to the changing market conditions, r-GNP uses accumulative

strategies through time periods to track the dynamic optimum in the Solution

Pool. Instead of re-starting the evolution when environmental changes occur,

useful information from the recent past are used for further evaluation. This

schema is useful to track the dynamic optimum when the current environment

resembles the recent past history.

Simulations using assets in developed markets show that the generalization ability

of r-GNP: (1) enlarges the search space for the optimal asset selection models, (2)

outperforms the standard GNP, value and growth strategies in the long term, and (3)

focuses more on the intrinsic risk factors relative to the changing extrinsic factor over

the long term, which implies avoiding the overfitting to short term historical data. It

brings practical implications in finance to capture wealth by focusing more on the long

term patterns of prices relative to stressed fundamental factors, without loosening the

simplicity of the standard long-only strategies.

Additional improvements on how to design robust and holistic risk management

should be addressed. The architecture of r-GNP could be enhanced to consider different

sources and levels of risks, such as those coming from the real economic fluctuations.

Such system would imply a proactive way to handle risk, and guide the asset selection

adaptively. The next chapter proposes a complementary approach to the concept of

robustness, which is the case of the adaptive asset selection.
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CHAPTER

4

Adaptive Asset Selection with

Genetic Network Programming with

Changing Structures

4.1 Aims of the Proposed Method

This chapter:

• Introduces a methodology to enhance the adaptability of the asset selection mod-

els based on Genetic Network Programming with Changing Structures (GNP-cs).

– The methodology implements a control and operational functions to realize

the adaptability to changing environments; where the control function mon-

itors the occurrence of environmental changes, in terms of economic fluc-

tuations, and the operational function devises strategies, in terms of asset

selection models, to deal with the detected changes.

– Both the control and operational function are built upon jointly evolved

functionally distributed systems, where the evaluation function considers
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not only the accuracy of the prediction of the economic fluctuations(control

function), but also the return, risk and liquidity of the asset selection strate-

gies(operational function).

• Compares the proposed scheme with the standard GNP approach and benchmarks

used in financial practice.

– Simulations use the assets listed in the Russell 3000 Index.

– Simulations are executed through sliding time periods between Jan 1995 and

Dec 2010.

– Benchmarks include widely known indexing strategies such as Value, and

Growth.

4.2 Background

The main advantage of using nature-inspired methods, such as GNP, to build asset

selection models is that they exploit the information extensively and exhaustively, which

is supported by the recent developments in financial innovation in the last decade(13,

14, 15, 34, 35, 36, 37, 38, 39).

However, there has been a gap between the practice and real financial world in

terms of not only using constant strategies, but also dealing with historical information

as permanent factors; when they should be treated as temporal, as suggested by the

social nature of markets.

In the previous chapter we demonstrated that models overfitted to historical data

may prone to be risky when used in future horizons, specially in periods of financial

distress. Considering the fluctuations in the economy is to take different strategies to

guide the asset selection in accord with the changing dynamics in financial markets and

the real economy. This approach is consistent with biologically adaptable organisms and

offers a natural way to handle the risk while distributing the scarce economic resources

in financial assets. Thus, an approach that changes and adapts to the situations of the

markets(whether real or financial) is more likely to bring positive results.

This chapter proposes an evolutionary approach for the adaptive asset selection

based onGenetic Network Programming with changing structures(GNP-cs). The unique

point is to introduce a guiding control mechanism to self-change the structure for asset
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selection depending on the fluctuations in the economy. The basic idea comes from bi-

ologically adaptable systems which incorporate control functions in their organization

that monitor and guide the self-adaptation to the changing environments.

4.3 Genetic Network Programming with Changing Struc-

tures on Asset Selection

4.3.1 Basic Concept

GNP-cs is essentially an evolutionary computing algorithm with self adaptive properties

that handles the modeling and optimization of a decision making system in complex

and changing environments. GNP-cs uses control and operational functions in a collab-

orative manner to ensure the self-adaptability of the decision making system, namely

Control GNP and Operational GNP, respectively, as shown in Fig. 4.1.

• The control function(Control GNP) monitors the changes in the environments

and issues the relevant signals according to the perceived change. This system

answers the question of what is happening outside in the environment.

• The operational function(Operational GNP) selects and executes the strategy for

the decision making to deal with the perceived signals. This system answers the

question of what action to do given the current state and recent changes in the

environment.

Both functions are basically supported by GNP systems(11), whose structures are

modeled and evolved according to evolutionary computing principles.

4.3.2 Main Features

The distinguishing features of GNP-cs from other evolutionary based asset selection

schemes are the following points:

• GNP-cs incorporates an evolutionary based control mechanism, which is intro-

duced into our previous work(40), and whose advantages involve enlarging the

search space over the economic factors that determine the intrinsic value of the

assets, and enhancing the adaptability to external changes in the economy.
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Figure 4.1: Basic idea of GNP-cs model

• GNP-cs covers flexible solutions over longer periods of time. Instead of using

heuristics or statistical-based techniques to tackle the economic fluctuations, we

deal with a compact network structure to guide the current asset selection strate-

gies depending on the changes of the environments.

Although the conventional GNP system(11) also aims at handling complex deci-

sion making problems in dynamic environments, the proposed approach differs in the

following points:

• GNP-cs incorporates an implicit guiding mechanism in the form of a control

function, whose aim is to self modify the decision making structure depending

on the changes of the environment. This feature enhances the adaptability and

flexibility when building the optimum model based on a large scale GNP.

• GNP-cs is based on jointly evolved functionally distributed systems, implying

an improved exploration ability and less internal loops in conventional GNP. The

genotype in GNP-cs is defined as the concatenation of the genotypes of the Control

GNP and the Operational GNP systems.
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4.3.3 Basic Algorithm

Outline

An ideal asset selection model would be able not only to monitor the changing eco-

nomic cycles, but also to execute the asset selection strategy considering the margin of

safety. We use GNP with changing structure(GNP-cs) to separate the control system-

atically from the operational task. In our context, control means continuous monitoring

of the state of the economic cycle, while operation means choosing and executing the

adequate strategy for asset selection. Thus, the general scheme of the GNP-cs system

for asset selection includes the following components as shown in Fig. 4.2:

• Control GNP, which is a component that monitors the changes in the current

state of the economy. The inputs for this component include relevant indicators

measuring the U.S. real economic activity as shown in Table 4.1. The output

of this system is a signal s indicating the state of the economic cycle, i.e., s =

{Ex,Co}, where {Ex} refers to Economic expansion and {Co} refers to Economic

contraction.

• Operational GNP, which is a component that chooses and executes the strategy

for asset selection. The inputs for this component include the issued signal s from

the Control GNP and financial metrics such as fundamentals and market oriented

asset information as shown in Table 2.1. The output of this system is a subset

Am representing the prospective assets stored in the Asset Pool.

Table 4.1: Economic variables used by Control GNP

Id. Description Source

Leading indicators

e1 Dwellings started (number) Bureau of the Census

e2 Net new orders for durable goods ($) Bureau of the Census

e3 Share prices: NYSE composite Bureau of the Census

e4 Consumer sentiment index University of Michigan

e5 Weekly manufacturing time (hours) Bureau of Labor Statistics

e6 Purchasing managers index(%) Institute of Supply Management

e7 Spread of interest rates(%) Federal Reserve

Coincident indicators

e8 Payroll employment Bureau of Labor Statistics

e9 Personal income Bureau of Economic Analysis

e10 Index of Industrial Production Federal Reserve
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It is important to note that not all variables in Table 4.1 and Table 2.1 are used.

The way on how the Control GNP issues the signal s, the Operational GNP issues the

asset set Am, and how these systems are built up is explained in the next.

Control GNP

In order to issue signal s, the structure of the Control GNP incorporates judgment

and processing functions, whose mechanisms are detailed in the following.

• Judgement nodes

The judgment nodes in the Control GNP asses the change in the state of the

economy by using leading public U.S. economic indicators as shown in Table 4.1.

Each judgment node p is associated with economic variable ep in Table 4.1, and

calculates the following:

Ep(t) =
200(ept − ep(t−1))

(ept + ep(t−1))
, (4.1)

where,

Ep(t) : normalized symmetric variation of variable ep in

judgment node p during time period t.

ept : value of variable ep during time period t.

In the case that ep refers to a variable which is measured in percentage terms (such

as e6 in Table 4.1), the simple arithmetic difference ept − ep(t−1) is computed to

calculate Ep(t).

Each judgement node p has two branches; and the next branch depends on the

if-then judgment on the variable change Ep(t) against its threshold ET
p . If Ep(t)

is greater or equal to ET
p then Branch I is followed; otherwise Branch II. Then,

the subsequent judgment node p′ is determined, which forms the node transition

NT as Fig. 4.2 shows. In order to avoid internal loops, we set 5 as the maximum

number of judgment nodes in the transition NT .
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• Processing nodes

The processing nodes issue the signal s related to the current state of the economy,

i.e., s = {Ex,Co}. To cope with this task, every processing node q in the Control

GNP uses the information on the judgment nodes in the node transition NT as

follows:

– First, compute the average normalized change in node transition NT .

eq =
1

|NT |
∑
p∈NT

ep, (4.2)

where, NT is the set of suffixes of judgement nodes in node transition NT ;

and eq is the average of the change used to issue the signal s by processing

node q.

– Second, issue the signal s related with the episode in the economic cycle:

∗ Expansion. If eq ≥ eTq then issue signal {Ex}.

∗ Contraction. If eq < eTq then issue signal {Co}.

– Third, the issued signal s is used by the Operational GNP.

• Genotype

The genotype of node a in a Control GNP individual includes the node type NTa,

the variable ea, its threshold eTa , time delay da and connections with other nodes

Caa′ as shown in Fig. 4.2. These elements are changed to other values at random

by mutation(11).

Operational GNP

The structure of the Operational GNP is based on chapter 1.

Asset Selection algorithm

The optimization of the GNP-cs system uses the training - testing scheme to

build and evaluate solutions with in-sample and out-of-sample data, respectively. This

scheme consists of the following concepts:
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(1) Training

Training implies using in-sample data to evolve the GNP-cs individuals until a

terminal condition is satisfied. Concretely speaking, during the training phase of GNP-

cs:

• The Control GNP issues signal s indicating the environmental change, which

is used by the Operational GNP to evolve sub-strategies considering the issued

signal s.

• The Operational GNP evolves two substructures: one for periods in economic

expansion and other for periods in economic contraction, namely O-GNP(Ex) and

O-GNP(Co), respectively. Each substructure is evolved in different environmental

dynamics, which is to say O-GNP(Ex) and O-GNP(Co) are evolved when the

Control GNP issues the signal {Ex} and {Co}, respectively.

• The quality of both the signal s and evolved sub-strategies determines the fitness

value fcs of the GNP-cs individual.

• Genetic operators are applied locally, i.e. crossover and mutation are executed

only among the Control GNP genotypes, or among the Operational GNP geno-

types.

The advantage of handling substructures in the Operational GNP lies in acquiring

quite different strategies in order to evaluate the assets independently through expan-

sion and contraction periods in the real economy, which in turn involves higher rule

exploration to better estimate the underlying value of common assets in the financial

market M .

The quality of GNP-cs individuals is measured by the fitness function fcs, which is

defined by:

fcs = hcfc + hofo, (4.3)

fc =

|TR|∑
t=1

IECt, (4.4)
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IECt =

{
0 if Yt = Ft

1 if Yt ̸= Ft
(4.5)

where,

fcs : fitness of GNP-cs individual.

fc : fitness of Control GNP.

fo : fitness of Operational GNP defined by Eq. 2.5.

hc, ho : coefficient for collaborative relationship.

|TR| : number of training months.

IECt : incorrectly estimated economic cycle during time period t.

Yt : economic cycle estimated by Control GNP during time period t.

Ft : economic cycle estimated by OECD(41) during time period t.

Smaller fitness values are preferred. The values of hc and ho must be positive and

greater than zero to consider an implicit collaborative relationship; which are set at 1.0

in this chapter.

(2) Testing

Testing implies evaluating the performance of the best GNP-cs individuals in the

last generation with out-of-sample data. Concretely speaking, during the testing :

• The Control GNP issues a signal s, which is used by the Operational GNP to

select its optimal evolved sub-strategy. In the case that the Control GNP is-

sues a signal {Ex}, the Operational GNP uses the substructure evolved for ex-

pansion periods(O-GNP(Ex)), otherwise the strategy for contraction periods(O-

GNP(Co)).

• The chosen substructure in the Operational GNP evaluates every asset i in M in-

dependently by using the judgment and processing functions explained in section

2.4.3.

4.4 Simulation Results

4.4.1 Problem

The same as chapter 2, indicated in Section 2.5.1.
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4.4.2 Investment Universe

In our study, the investment universe M is the set of common assets in the Russell

3000 Index, representing approximately 98% of the investable U.S. security market.

4.4.3 Time Span

The Time span performed for simulations is between 1995 and 2010. Each experiment

consists of two-year training and one-year testing. For example, the first experiment to

build an optimal asset selection model based on GNP-cs consists of a training phase

between Jan-1995 and Dec-1996; and a testing phase between Jan-1997 and Dec-1997.

All subsequent experiments’ training and testing are lagged by one year through the

sliding time windows to consider recent arrived data and avoid overfitting issues.

4.4.4 Parameters

Simulation settings for both the standard GNP and GNP-cs are shown in Table 4.2.

Table 4.2: Parameter Settings

Description Value

The number of generations 500

The number of individuals 200

Crossover size 79

Mutation size 120

Elite individuals 1

Mutation probability 0.01

Crossover probability 0.1

The number of judgement nodes

- Control GNP 10

- Operational GNP 22

The number of processing nodes

- Control GNP 5

- Operational GNP 10
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4.4.5 Performance

(1) Training : Fig. 4.3 plots the average of the best fitness values over 30 indepen-

dent runs in the training period, showing the convergence to the optimal asset selection

models based on GNP-cs and GNP. We can see that both systems converge to the op-

timal solutions as the generations go on. Comparing the quality of solutions of GNP-cs

and GNP in the last generation, we can observe that GNP-cs converge to more effec-

tive solutions than GNP; which is supported by the p-value of 0.00082 of a one side

t-test, implying its significant difference. We believe that the improved performance

of GNP-cs during the training period is mainly due to its higher exploration ability

which results from combining functionally distributed systems with an implicit collab-

orative scheme, such as the Control GNP and Operational GNP, implying the use of

evolutionary based building blocks to tackle the asset selection problem.

Figure 4.3: Average of best fitness values

(2) Testing : Fig. 4.4 shows the accumulated wealth over all the experiments’

testing periods, i.e., 168 months between Jan-1997 and Dec-2010. The initial wealth is

represented by the totality of the initial funds(100%) in Dec-1996(the initial date of the

first testing period); and subsequent monthly returns in the form of gains or losses are

accumulated. Fig. 4.5 shows the average yearly return rate and the standard deviation.

The results and analysis are summarized in the following:

• The Value approach outperforms the Growth and the Broad indexes in terms of
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the long term wealth and short term yearly return rate, as Fig. 4.4 and Fig. 4.5

show, respectively. The reason is not because it is a riskier strategy, since its

volatility is lower than the Growth and Broad styles as shown in Fig. 4.5. It is

because the undervalued assets generally lie in the areas of high intrinsic value

per share, e.g., high Earnings per share ratios. Since the Value approach searches

in these areas, the undervalued assets are identified reasonably well.

• Both GNP and GNP-cs significantly outperform theValue based approach. Mainly,

it is because of the following features. First, the optimal combination of factors,

whether intrinsic or extrinsic, is decided by evolutionary computing approach,

implying a more robust scheme to build the models for asset selection, in con-

trast to the fixed compounded index methodology of the Value approach. Second,

whether an asset is selected or not is decided by the judgement and processing

functions in the evolved network structure of GNP and GNP-cs, implying a more

exhaustive risk pricing mechanism, in contrast to the ranking mechanism of the

Value approach.

• GNP-cs significantly outperforms the selected benchmarks during long periods of

time during the testing period, mainly due to its enhanced adaptability. Tracking

changes in the economic cycles by the Control GNP and guiding systematically

the strategies for asset selection in the Operational GNP implies an enhanced risk

management ability, since the changing factors concerned with the real economy

are reflected not only in the state of financial markets but also in the investors’s

return performance as shown in Fig. 4.5.

4.5 Summary

This chapter has introduced a novel approach for the asset selection based on Genetic

Network Programming with changing structures(GNP-cs).

The distinguishing point from the conventional approaches is the inclusion of an

evolutionary based control mechanism to monitor the changing external environments

and guide the decision making for the asset selection. This feature brings not only

the benefits in return performances as shown by the simulation studies, but also the

following implications for building risk pricing models of the next generation:
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Figure 4.4: Comparison of GNP-cs and GNP in terms of wealth accumu-

lation in the testing period

Figure 4.5: Comparison between GNP-cs and GNP in terms of yearly

return and volatility rates

• Better adaptability and flexibility of the risk management strategies when finan-

cial markets turn uncertain and volatile.

• Exhaustiveness in asset pricing, and thus the avoidance of behavioral issues in-
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volved in speculative investing.

Further assessment is being addressed. Although the proposed approach relies on

the market factors and fundamentals as sources of risk, other risk sources should be

systematically evaluated.

Up to now, Chapters 1 to 3 have discussed how to model and build the risk pricing

mechanisms in the form of asset selection models; which have the role of identifying a

set of fairly prospective assets to invest with equal importance, which means allocating

the investor’s capital with equal proportion to the selected assets. The next chapter

relaxes this assumption and introduces a methodology to build optimal asset allocation

models.
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CHAPTER

5

Asset Allocation with Genetic Relation

Algorithm

5.1 Aims of the Proposed Method

This chapter:

• Introduces a methodology to build asset allocation models using Genetic Relation

Algorithm(GRA).

– The methodology builds optimal asset portfolios by using evolutionary undi-

rected network structures.

– Each node in the network models financial assets, such as stocks, bonds

and currencies, and each relationship measures the systematic risk between

assets.

– The evolution process uses accumulative strategies through generations and

time frames to enhance the search for optimal portfolios by using the elite

assets that performed well over the recent past.
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– The fitness function is designed to asses return, risk and liquidity as main

objective functions.

• Compares the proposed approach to relevant benchmarks for the asset allocation

context.

– Simulations use relevant stocks, bonds and currencies in America, Europe

and Asia.

– Simulations are executed through sliding time periods between Jan 2000 and

Jan 2007.

– Benchmarks include not only widely known asset allocation techniques, such

as the Black Litterman model, Genetic Algorithm-based CAPM model, Neu-

ral Network-based Markowitz model, and Stochastic CAPM model, but also

a global indexing model such as DJ Global 1800.

5.2 Background

Basically, the asset allocation consists of distributing a set of resources into several

assets taking account of reasonable balance between the investors’ needs and the return

performances. The risk and asset allocation has been studied widely. The important

contributions in finance include Mean Variance model by Markowitz(2); Indifference

Theory by Modigliani(42); Capital Asset Pricing model(3); Options-pricing model(43);

Arbitrage Pricing Theory(44) ; Binomial Option Pricing model(45); and a framework

for the risk management including hedging(46). Moreover, an important outcome in

the banking sector, Basel II Accord(31), encourages developing the robust risk and

capital allocation models.

Recent advances in Neural Networks(56), Evolutionary Methods(48), Fuzzy Systems(49)

and MonteCarlo Simulation(50) also deal with the issues such as tasks of the risk and

asset allocation. Commonly studied cases include index forecasting, automated trading

and asset pricing(48, 49).

Despite regular advances, the risk and capital allocation may also endure some

limitations such as:

• Market risk. Risk is formally evaluated as variance, loss probability or Value at

Risk methods(31). This schema leads to the underestimation issues of the finan-

cial risk at the systematic level(8, 9). The systematic risk is the risk component
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that affects a large number of assets due to the interdependencies in financial

markets, and is claimed to be a common factor in financial collapses(8, 9, 10).

• Liquidity risk. Liquidity is often measured with the market capitalization rates.

Liquidity becomes an issue when things turn sour in financial markets(10, 31).

The investor needs to assure that money will be there when needed. Being locked

up with illiquid assets makes significant distinction between attaining acceptable

return rates and losing much more at the end. Much of the advances have been

done in order to improve the liquidity features for financial markets. However, a

few has been done in the context of risk and asset allocation.

In order to deal with the above issues, this chapter proposes an asset allocation

model by using Genetic Relation Algorithm(GRA),

5.3 Previous definitions

5.3.1 Portfolio

A portfolio P is defined as a set of n assets, where xi represents the proportion of the

capital invested in asset i.

5.3.2 Return components

The economic dimension of the assets and portfolios are defined by their return com-

ponents. This subsection describes the return components in detail.

Return at asset level

Stocks reveal the degree of ownership(share) for a company and are often key factors

in the daily operations of the stock market. The return rate provided by stock i

is defined by the opening and closing prices and dividends paid using the following

equation.

RS
it = (Pit

f − P o
it + divit)/Pit

o, (5.1)

where, RS
it is the return rate of stock i during the time period t; Pit

o is the opening

price of stock i at the beginning of time period t; Pit
f is the closing price of stock i at

the end of time period t; and divit is the dividend of stock i during time period t.
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Bonds show the ownership of a payment contract. The return rate provided by

bond i is defined by the coupons, which is the interest of the initial invested money,

and face value, or the amount of redemption at maturity of bond using the following

equation.

RB
it = (FV f

it − Ioit + Cit)/I
o
it, (5.2)

where, RB
it is the return rate of bond i during time period t; Ioit is the initial money

invested in bond i at the beginning of time period t; FV f
it is the face value given by

bond i at the end of time period t; and Cit is the coupon received by bond i during

time period t.

Currencies show the ownership of the fast interchangeability and ensure the real

purchasing power. The return rate is measured using the spot value, which is the

current exchange rate, and the forward points, which is the value added or deduced

from the spot exchange rate by the following equation.

RC
it = (Sit

f − Sit
o − fit)/Sit

o, (5.3)

where, RC
it is the return rate of currency i during time period t; Sit

o is the opening

spot rate of currency i at the beginning of time period t; Sit
f is the ending spot rate

of currency i at the end of time period t; and fit is the forward points of currency i

during time period t.

Market m is a platform that enables the asset trading and risk transfer. In this

chapter, we consider stock, bond and foreign exchange markets. The return of market

m is calculated by an index value, which is a passive track measuring return changes.

Rmt = (Indext − Indext−1 +Divd)/Indext−1, (5.4)

where, Rmt is the return of the market index during time period t; Indext is the

level of the market index at the end of time period t; Indext−1 is the level of the market

index at the end of the of time period t − 1; Divd is the dividend paid by the index

during the time period t.

Return at portfolio level

The return component of portfolio P is expressed by the following:
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RPt =

n∑
i=1

xi.Rit, (5.5)

where, RPt is the return performance of P during the period of time t; n is the

number of assets in portfolio P ; xi is the proportion invested in asset i; and Rit is the

return of asset i during the period of time t, in Eqs. (5.1), (5.2) and (5.3).

5.3.3 Systematic risk components

The beta concept is a relevant construct in Modern Portfolio Theory and captures the

systematic risk component of the assets and portfolios. Higher asset beta values imply

higher levels of volatility and viceversa. For example, the asset with the beta being 0.5

has half of the systematic risk of the market; and the asset with the beta being 2 has

twice of the systematic risk of the market.

The beta also exhibits the degree of independence and sensitivity of the asset prices.

Positive betas indicate that the asset follows the market behavior. Very positive or very

negative values indicate the strong price sensitivity in contrast to the market’s behavior.

The beta equal to 0 shows the independence from the market.

Betas at asset level

The beta of asset i measures the risk added to portfolio P as the correlation of the

asset values with a reference market. The beta is widely used in the asset valuation. In

our approach, the beta sheds light on unfamiliar properties as an investment diversifier.

The beta coefficient of asset i is defined by:

βit =
Covt(Rit, Rmt)

V art(Rmt)
, (5.6)

where, βit is the beta coefficient of asset i during time period t; Ritis the return rate

of asset i during time period t; Rmt is the return rate of market m during time period

t; Covt() is the covariance during time period t; and V art() is the variance during time

period t.

In order to capture the risk added to portfolio P by asset i and asset j we use the

following measure, which shows the independence and sensitivity by a pair of assets in

contrast to Eq. (5.6) :

β(ij)t = xiβit + xjβjt, (5.7)
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where, β(ij)t is the relational beta between asset i and asset j during time period t;

xi is the proportion invested in asset i; and βit is the individual beta of asset i during

the period of time t.

Betas at portfolio level

In order to measure the average correlation between the portfolio performance and

movements in the referential markets, the following coefficient is used:

βPt =
1

|A(P )|
∑

i∈A(P )

1

|A(Pi)|
∑

j∈A(Pi)

β(ij)t , (5.8)

where, βPt is the beta coefficient of portfolio P during time period t; A(P ) is the

set of suffixes of assets in P ; A(Pi) is the set of suffixes of assets whose link is defined

from asset i in P .

5.3.4 Liquidity components

This subsection describes the liquidity components for the portfolio construction.

Liquidity at asset level

An ideal liquid asset is the one which is traded frequently in large quantities and

with little price impact(9). The trading volume (V it) captures the price impact and

trading size factors; the turn over ratio (T it) measures the price impact and trading

time features; the bid ask ratio (Bit) captures the price impact and trading time factors;

and the market capitalization (M it) captures the trading size factors. The following

metric is used to measure the liquidity level of asset i:

Lit = wV V it + wTT it + wBBit + wMM it, (5.9)

where,

Lit: liquidity index of asset i during time period t.

V it: trading volume of asset i during time period t.

T it: turn over ratio of asset i during time period t.

Bit: bid ask ratio of asset i during time period t.

M it: market capitalization of asset i during time period t.

wV : importance weight of trading volume.

wT : importance weight of turn over ratio.

wB: importance weight of bid ask ratio.
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wM: importance weight of market capitalization.

The weighing values (wV , wT , wB, wM ) consider the investor’s interest for trading

volume, turn over ratio, bid ask ratio and market capitalization, respectively. In this

chapter, equal importance is given to all measures.

Variables such as V it, T it, Bit and M it range between 0 and 1, and are normalized

with the following equation:

lit =
lit −minklkt

maxklkt −minklkt
, (5.10)

where, lit is any of the normalized liquidity metrics defined by Eq. (5.9). Minimum

and maximum values are computed considering a set of k assets during time period t.

Liquidity at portfolio level

Having calculated liquidity measures at asset levels, the following measures the

liquidity level of portfolio P :

LPt =

n∑
i=1

xi.Lit, (5.11)

where, LPt is the liquidity level of portfolio P during time period t; n is the number

of assets in portfolio P ; xi is the proportion invested in asset i; and Lit is the liquidity

level of asset i during time period t.

5.4 Genetic Relation Algorithm on Asset Allocation

5.4.1 Basic Concept

GRA is a graph based evolutionary computing algorithm derived from Genetic Network

Programming(11), which has been proposed as a rule pruning mechanism in datamining

applications(51).

In this chapter, GRA is used as a tool to model and optimize asset portfolios

considering the return, risk relationship and liquidity principles among a set of asset

classes, such as stocks, currencies and bonds(Fig. 5.1). Unlike strings for solution

representation in GA and trees in GP, GRA has the ability to express complex events

compactly in directed/undirected node graph structures.
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Figure 5.1: Outline of vs-GRA for portfolio diversification

5.4.2 Main Features

The main features of the proposed approach are described as follows:

• The proposed framework finds the competitive asset portfolios not only under

risk and return profiles, but also integrating the liquidity aspects. This feature

enables the strong basis for mitigating the liquidity risk in the methods such as

Mean Variance model by Markowitz and Capital Asset Pricing Model(CAPM).

• The proposed framework evolves the complex and ill portfolio structures toward

compact and effective ones through a legible and evolvable graph structure, evad-

ing black box issues and exhaustive mathematical properties needed for encoding

in other natural inspired algorithms.

• A measure for the systematic risk and relational beta portfolio, enhances the

portfolio of risk assessment. The beta is a relevant construct in Modern Portfolio

Theory. In the proposed approach, beta portfolio is easily calculated by the GRA

structure.

• The GRA-based risk and asset allocation finds the effective asset portfolios and

store them in a functional pool. Whereas, in conventional approaches the final

result of the optimization is restricted to the optimum portfolio only. This feature

makes the flexible portfolio optimization in markets with high volatility.
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• Unlike Markowitz or CAPM based models, where a single and representative

market is identified a priori, the proposed approach performs an unbiased diver-

sification of investments considering the multiple financial markets in reference.

5.4.3 Structure of GRA

GRA models a portfolio individual as an intertwined graph(Fig. 5.2). The gene infor-

mation contains the following information

• The identification IDi of asset i,

• The function Fi that represents the type of asset i such as stocks, bonds or

currencies,

• The node size xi that represents the proportion of the capital invested to asset i,

• The connections β(i1)t , β(i2)t , β(in)t of asset i to asset 1, 2,...,n in time period t

that represent the relational beta coefficient among assets(19).

• Ci1, Ci2, ..., Cin define the suffixes of assets whose link is defined from asset i.

• The portfolio individual has n assets. In this paper we set n at 30 assets(52).

5.4.4 Fitness function of GRA

The fitness function of the GRA individual is defined by the following equation:

Ff =
(βf − β)2

(Rf −RFf )(Lf )
, (5.12)

where,

Ff : fitness during the fth training time frame.

βf : beta coefficient during the fth training time frame.

β : user defined beta value.

Rf : return performance during the fth training

time frame.

RFf : average risk free rate defined by 3-month U.S.

Treasury Bill during the fth training time frame.

Lf : liquidity level, i.e., an average of trading volume,
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Figure 5.2: Basic structure of GRA portfolio individual

turn over ratio, bid ask ratio and

market capitalization during the fth

training time frame.

Attitudes toward risk can be controlled by parameter β, in which higher values

imply strong risk seeking attitudes and low values imply strong risk aversion attitudes.

The fitness function in GRA optimizes not only the excess return for investors; but

also liquidity and market risk exposure at a portfolio level(19).

The main reasons for having quite different fitness functions for the GRA-based

asset allocation and the GNP based asset selection relate to the context and purpose.

Whereas the fitness of a GRA individual depends on the performance of its allocation

strategy, which is mainly determined by the type and proportion of each prospective

asset of the Asset Pool in the portfolio, the fitness of a GNP individual depends on the

performance of the set of assets that is able to select, which is mainly determined by

the risk pricing model. Separating the selection task from the allocation task provides

a mechanism not only to enhance the transparency of the investment cycle, but also to
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Figure 5.3: Time frames for GRA training and testing

evaluate the financial risk factors systematically.

5.4.5 Genetic Operators in GRA

Selection

We preserve the elite portfolio individuals through the accumulation mechanisms(53);

and generate the new portfolio offspring through crossover and mutation in GRA.

Fig. 5.4 shows the role of the Initial Asset Pool, which is to store the initial asset

candidates for the portfolio optimization. The role of the Generational Asset Pool

(GAP) is to preserve the elite portfolio individuals during generations with training

data; while the Frame Asset Pool stores the elite assets after testing with unseen data.

As shown in Fig. 5.4, the best individual is obtained by evolution and accumulation

mechanisms. In every generation, a% of the elite portfolio individuals (P1, P2, ... , PI)

are stored in GAP. This process is repeated until the last GE − th generation. The

elite individual from the evolution is validated against newly arrived unseen testing

data. a% of elite assets with good performance are updated in FAP after the testing

procedure.

Crossover

The crossover mechanism facilitates the asset rebalancing considering the liquidity

features in the portfolio individuals (Fig. 5.5):
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Figure 5.4: Accumulation mechanism through generations
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• Using tournament selection, select two parent portfolio individuals (G1
P and

G2
P ).

• Crossover nodes are selected with the probability of Pc.

• Gene information is exchanged among the corresponding crossover nodes in parent

individuals.

• New offspring individuals, G1
s andG2

s, become available for the next generations.
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Figure 5.5: Crossover operation in GRA

The following probability is used to generate the offspring according to the liquidity

index in each portfolio individual:

Pc = 1− 1

|A(G)|
∑

i∈A(G)

Lit, (5.13)

where, Pc is the probability of crossover of node i; G denotes GRA individual; A(G)

is the set of suffixes of assets in G; and Lit is the liquidity index of asset i during time

period t.
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Since crossover operator tends to break the building blocks of the evolution process,

the role of Eq. (5.13) is to preserve the liquidity features in elite portfolio individuals

during the crossover operation.

Mutation

Mutation makes the portfolio rebalancing possible. The offspring is generated by

changing both the connections and nodes of assets as follows (see Fig. 5.6):

• Using tournament selection, select the parent portfolio individual (GP ).

• Mutation Operation.

Node connection. Select connections with probability Pm and change them.

Node function. Select nodes with probability Pm, and changed them.

• New individual GS becomes available for the next generation.
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Figure 5.6: Mutation operation in GRA
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5.4.6 Time frames mechanism

Time frames (Tf , tf ) are defined for the training and testing in time frame f as shown

in Fig. 5.3. The period of time Tf is for the training phase, or portfolio optimization,

whereas tf is for the testing phase, or portfolio validation.

Asset accumulation through time frames is performed consecutively. For example,

if asset b performs well in testing phase tf , then it implies that asset b will be preserved

as a candidate in the next training phase Tf+1; i.e., asset b will participate in the

evolution process of GRA during Tf+1. The general schema for the asset accumulation

through time frames is depicted in Fig. 5.7.

In this chapter, time frames have the role of including newly arrived non-stationary

information into the optimization process of GRA; from another point of view, time

frames check the stability and the value of the optimal portfolios, and avoid the over-

fitting problem for the portfolio optimization in relatively short time period.

5.4.7 Basic algorithm

Selection phase

This chapter focuses on the asset allocation problem in which an Initial Asset Pool

containing a set of prospective assets is needed. It has been demonstrated from simula-

tions that the methods for asset selection proposed in previous chapters identifies the

Initial Asset Pool effectively. However, in order to avoid influence/bias on the perfor-

mance of the asset allocation, the proposed algorithm and benchmarks(in simulation)

use a more simple/conventional asset selection mechanism, that is, based on ranking

with a priority metric.

We use an iterative procedure to pick up a fairly small competitive assets from

the financial markets, where, in each asset class Ac and market Mk (Ac ∈ Mk), the

following priority metric PiS of asset i is evaluated. Assets with the high PiS are added

into Initial Asset Pool (IAP ). Then, without asset i, priority values of remaining assets

in Mk are evaluated. The procedure is repeated until we reach the size of IAP .

PiS is defined as follows:

PiS =
1 + LiS

(1 + βiS)(σβiS
)
, (5.14)
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Figure 5.7: Accumulation mechanism through time frames
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where, PiS is the priority of asset i during the time frame of S; LiS is the liquidity

index of asset i during the time frame of S; βiS is the beta coefficient of asset i during

the time frame of S; and σβiS
is the standard deviation of beta coefficient βiS .

The advantages of using PiS as the selection metric are as follows: (1) PiS captures

the systematic risk exposure in long term periods; (2) PiS minimizes the asset exposure

to the liquidity risk factors in volatile times; (3) PiS uses the feature that the liquid

and less risky assets have good expected return profiles in long term periods; and (4)

PiS avoids the noise by averaging the past return rates in volatile times.

Training phase

During the training phase, GRA evolves the optimal portfolios through time frames.

Testing phase

The testing phase has the role of validating the optimal portfolio P during the

testing phase tf , where P is the best individual in the last generation of Tf . Since the

training and testing phase are closely linked by the feedback, an investment performance

metric, i.e., Eq. (5.15), is defined to accumulate the a% of the assets in P after tf ,

i.e., the assets with outstanding features of return performance, systematic risk and

volatility:

PMitf =
(Ritf −Rftf )

(1 + βitf )(σRitf
)
, (5.15)

where, PMitf is the performance of asset i in P during tf ; Ritf is the return of

asset i during tf ; Rftf is the average risk free rate defined by 3 month U.S. Treasury

Bill during tf ; βitf is the beta of asset i during tf ; and σRitf
is the standard deviation

of the return of asset i during tf .

The benefits of PMitf as the selection metric are as follows: (1) PMitf captures the

systematic risk exposure, return premium and volatility during the short term period;

(2) PMitf uses the low volatile, less risky and high yielded assets for the next short

term periods. See Yakov(20), Hill (9) and Sharpe(3) for additional discussions.

It is important to note that Eq. (5.12), Eq. (5.14) and Eq. (5.15) are used in

different contexts and different periods of time. Eq. (5.12) is effective for the portfolio

evaluation in the the evolutionary process; Eq. (5.14) is effective for the assets evalua-

tion in the long term periods; and Eq. (5.15) is useful for the assets evaluation in the

short term periods.
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5.5 Simulation Results

5.5.1 Problem

An Initial Asset Pool is to be picked up from an Investment Universe, which is defined

as leading stock indexes, Treasury Bills and currencies detailed later. The Initial Asset

Pool is used to build optimal GRA-based portfolios that allocate a capital K into a

set of of n assets. The resulting portfolios are hypothetically invested using a buy and

hold strategy over 1 week. Investment performance of GRA is compared with other

asset allocation algorithms and a global financial index.

5.5.2 Investment Universe

Data used for selection, training and testing belong to listed stocks, bonds and curren-

cies in relevant financial markets in the global scale. Three assets classes are used in

the proposed approach, i.e. stocks, bonds and currencies. Daily opening and closing

prices of stocks which belong to American, European and Asian indexes are picked up.

American indexes include S&P500, DOW, NASDAQ, NYSE, and Rusell 3000. Euro-

pean indexes include S&P EUROPE, S&P 350 and S&P GLOBAL 1500. Nikkei is

the index chosen in Asian sector. In the same manner, rates and yields of Treasury

Bills from U.S.A., Japan, Germany and France with 3-month and 6-month coupons are

used. Finally, initial spot and end prices from foreign exchange rates for dollar, euro

and yen are employed.

In addition, during the selection mechanism, assets with the following features are

eliminated: (1) with less than 3 years of data history; (2) lacking of market prices

during the selection period; (3) with a limited market capitalization and and/or lim-

ited economic relevance(e.g. micro-cap stocks); (4) with high correlated and reduced

heterogeneity in the investment universe.

5.5.3 Time Span

The proposed approach needs the use of three phases which are selection, training and

testing, as denoted in previous sections. The phases are selected according the dates

shown in Table 5.1. Selection phase is carried out from 05/01/2000 to 04/01/2003;

training phase is performed between 05/01/2003 and 28/12/2006; and testing phase

is performed between 08/01/2005 and 04/01/2007. In all time frames, the minimal

time unit for data processing is a day and for data testing is a week. In accordance
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Table 5.1: Dates for selection, training and testing phases

Phase Starting date Ending date Total days

Selection phase 05/01/2000 04/01/2003 1079

Training phase 05/01/2003 28/12/2006 1433

Testing phase 08/01/2005 04/01/2007 716

Table 5.2: Parameters for simulation

Item Description Value

n the number of assets in portfolio 30

IAP initial asset pool size 2500

FAP frame asset pool size 250

a% ratio of elite assets accumulation 10%

GE the number of generations for GRA evolution 300

I the number of individuals in GRA 250

IC the number of individuals by crossover 139

IM the number of individuals by mutation 110

IE the number of elite individuals 1

Pm Probability of mutation 0.25

with Table 5.1, selection is consisted of 1079 days, training period is 1433 days, and

esting period is 716 days or 103 testing weeks. It implies that in one simulation, 103

portfolios(P ) are trained and tested, which means the number of time frames F = 103.

5.5.4 Parameters

The simulation settings is shown in Table 5.2. For simulations, 30 independent runs

are executed and a selection phase followed by various training and testing phases was

done per every simulation.

5.5.5 Performance

Training results

The effect of the number of connections in GRA on the fitness behavior is also

analyzed. Fig. 5.8 shows the fitness curves of the elite portfolios during the training

period. From this figure, we can see that added connections in GRA individuals causes

slow fitness convergence. The important reason for this phenomenon is that the GRA

structures become complex when the number of connections increases. In all cases,

the fitness values converge reasonably well thorough generations. The fitness curves of

other individuals have the same tendency.
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Figure 5.8: Fitness behavior when of GRA with different number of connections

Testing results

In order to show the efficiency of the proposed method, other methods are compared

with the proposed method. In the literature of financial research, there is little focus on

the optimization of the global asset portfolios considering simultaneously risk, return

and liquidity criterion. Benchmarks were selected due to their performance reliability,

practical implication and significance in the finance and computing science contexts.

The first benchmark is a stochastic approach for international portfolios (Stochastic

CAPM)(54). The second benchmark is a CAPM approach with GA(GA-CAPM) (55).

The third benchmark is a hybrid heuristic method based on Markowitz and Neural

Networks(NN-Markwoitz)(56). The fourth benchmark is a purely financial approach

for the global portfolio optimization based on the Markwoitz and CAPM ideas (Black-

Litterman)(57). The fifth schema is a passive index of liquid and high yield global

assets, which is Dow Jones STOXX Global 1800 Index.

Figure 5.9 shows the average profit accumulation over 30 independent simulations

in the proposed algorithm and the above mentioned benchmarks. All benchmarks

accumulate profits reasonably well during the testing period. This phenomenon is

related to the fact that all benchmarks have an explicit mechanism to include the

best return yielding assets during the testing time. Additionally, by the glance of

Fig. 5.9, we can see that the proposed method outperforms other benchmarks in the

profit accumulation criteria. Jointly with Dow Jones STOXX Global 1800 Index, the
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Figure 5.9: Comparison of profit accumulation of GRA and different benchmarks

proposed framework accumulates profits steadily along the testing period. The main

reason for this is explained by the fact that the assets selected under these frameworks

integrate liquidity measures; while others lack this mechanism.

5.6 Summary

In this chapter, GRA is used as a tool for building asset allocation models. GRA focuses

on asset relationships to capture the systematic risk, offers a wider view of liquidity

to enable fast, quick and liquid investment transactions. GRA enables dynamic and

flexible diversification through time frames, asset accumulative strategies and multiple

markets of reference in the global view. Compared to relevant benchmarks in the

finance and computer science literature, GRA shows competitive results in terms of

return, risk and liquidity at reasonable computational effort.

However, the proposed approach relies on a fixed set of assets in the optimal port-

folio structure. Keeping the size fixed has potential issues such as failing at a local

optima and over-concentrating the risks in a narrowed and undiversified portfolio of

assets. The next chapter introduces a methodology that relaxes the fixed size assump-

tion in portfolio structure and builds flexible portfolios to diversify investments more

effectively.

80



CHAPTER

6

Portfolio Diversification with

Variable Size Genetic Relation Algorithm

6.1 Aims of the Proposed Method

This chapter:

• Introduces a methodology to build portfolio diversification models using Genetic

Relation Algorithm with Variable Size(vs-GRA).

– The methodology is based on variable size evolution, where individuals shrink/expand

their structure to enhance the survivorship during the evolution process even

when environments turn out distressed, which is the case of financial down-

turns.

– The shrinkage/expansion, implemented through variable size crossover and

mutation, is guided probabilistically, rather than randomly, to guide toward

the contribution of diversification benefits during the evolution process.

– The objective of vs-GRA is to decide the optimal scope for portfolio di-

versification, that is, which asset class, which industry and geography to
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allocate/spread investor’s capital is decided by the evolution of vs-GRA.

• Compares the proposed approach to the standard GRA.

– Simulations use the assets listed in the Russell Developed Index.

– Simulations are executed through sliding time periods between Jan 2005 and

Dec 2009.

– Benchmarks include the Russell Developed Index and the standard GRA.

6.2 Introduction

The previous chapter introduced a methodology to build optimal asset allocation mod-

els using Genetic Relation Algorithm(GRA). This chapter focuses on building diversi-

fication models.

Diversification consists of building a portfolio by spreading capitals systematically

among diverse asset classes and segmented financial markets, so the robust portfolio

can realize the optimal combination of diverse risk sources. Previous research has

shown that the proper diversification of the risk brings benefits for the robust portfolio

management in the sense that:

• Diversification mitigates the individual volatility risk, which mainly comes from

the asset price fluctuations in changing economic conditions.

• Diversification also decreases the uncertainty in financial markets by getting syn-

ergies of different risk sources in diverse asset classes.

Since uncertainty and risk are two core issues in finance, portfolio diversification

has a long-standing history both in financial research and practice. The theoretical

base of diversification points some investment practices in the the last century, par-

ticularly when investors started to place their money in plural asset classes instead

of an individual one, so that their investments were protected against unstable as-

set price movements of highly changing economic cycles(1). Following this behavior,

Markowitz formalized the diversification problem of grouping plural number of assets

in a mean-variance portfolio framework, in which a rational investor would maximize

the expected return for a given level of risk, or minimize the risk for a given level

of expected return(2). Similarly, considering heterogeneous asset classes, other insti-

tutional investors included bonds in their portfolios to reduce volatility and improve
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their liquidity levels(58). An example of this practice is the classical 40/60 fixed rule

to mix bonds and stocks. Another example is the Capital Market Line of Sharpe(3),

who demonstrated that rational investors obtain safer returns compared to the mean-

variance efficient frontier by combining bonds and stocks in risk averse portfolios. As

financial innovation rendered new investable products such as derivatives, options, fu-

ture contracts and swaps, the idea of diversification turned into hedging risk, which

rapidly dominated investment practice as a form of insurance. Along with these devel-

opments and being driven by market integration and deregulation forces, institutional

investors headed towards geographically disperse financial markets and different eco-

nomic sectors in order to gain diversification benefits(8, 10). Nowadays, the current

strand on portfolio diversification practice mainly points the practice of of hedge funds

and institutional banks in the form of indexing , which is a technique used to allo-

cate investments into a large number of assets considering factors that determine the

expected return performance, such as fundamentals or market values.

Despite the fact that portfolio diversification was reported as a positive practice

in financial risk management, two forces prevent it from achieving consistent results

through long term periods.

• First, due to over-concentration and investor home bias issues, dealing with port-

folio diversification systematically is a scarce practice in finance. It means con-

centrating on risk in a limited number of assets and being exposed to price fluc-

tuations and behavioral responses of investors’ decision making(10, 59). Thus, it

is vital to build the robust systems that can handle the portfolio diversification

systematically not only to protect investors’ interest, but also to ensure the health

of our economy.

• Second, recent studies have shown that the cost of accessing diversification is

higher than its potential benefits, making it a selective practice in which only

companies with high market value in developed financial markets have better

access to diversification, which means the better control of the risk inherent in

their businesses’ cash flows(8, 10). Thus, there exists a high potential in the

future to spread the practice to small and emerging markets and evolve into a

state of more intertwined and robust economy.

83



6.2 Introduction

Although the idea of portfolio diversification is conceptually simple, defining the

effective scope is an important issue. The scope for diversification defines which asset

classes, which sectors and which geography should be included in a portfolio of assets.

Generally speaking, institutional investors define the scope for diversification using

statistical analysis of historical data and models with strong mathematics(59). For

example, in a classical model, the full covariance or correlation matrix is taken into

account, where optimizing a portfolio of assets with low mutual correlation, or low

covariance, is the main goal(2). However, driven by inherent behavioral biases and

restrictive mathematical assumptions of the common practice, risk misspricing tested

the conventional money allocation schemes during the latest financial meltdown and

rendered the diversification practice ineffective(60).

A promising way to define the optimal diversification scope is through the use of

computational intelligence techniques, which have the ability to handle the information

more extensively. Such techniques are inspired by nature dynamics in most cases, and

proved to be suitable for complex real-world optimization problems. A representative

group of such kind of techniques is under the label of evolutionary optimization and

include methods such as Genetic Algorithms(GA)(61), Genetic Programming(GP)(62),

Grammatical Evolution (GE), Evolution Strategies(ES) and Genetic Network Program-

ming(GNP)(11), which are population based evolutionary schemes with enhanced ro-

bustness against single point optimization techniques(63).

Since defining the effective scope for diversification is a complex search problem,

which not only should consider intertwined financial markets, but also the correlated

economic sectors, all the techniques from the above group are not always suitable. For

instance, GA is not only unable to represent the underlying relationships in financial

markets, but also its size grows when the complexity of the problem being tackled is

higher. Furthermore, GP and GE suffer from bloating issues, which are related to the

increase of the solution complexity without performance contribution.

This chapter proposes a unique approach for portfolio diversification based on vari-

able size Genetic Relation Algorithm(vs-GRA), which belongs to the class of variable

size evolutionary algorithms(vs-EA). The role of vs-GRA in this chapter is to model

and optimize the scope for portfolio diversification considering return, risk relationships

and liquidity features for the investment purpose.
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6.3 Variable Size Genetic Relation Algorithm(vs-GRA)

on Portfolio Diversification

6.3.1 Basic Concept

In general terms, the aim of vs-GRA is to obtain a compact set of diverse events

from an observed environment in a dynamic manner. In the portfolio diversification

context, an event refers to an asset, and environments refer to financial markets. We

use three kind of asset classes, i.e. stocks, bonds and currencies. Additionally, we use

the attractive assets in developed financial markets as the market environment. Thus,

vs-GRA aims at finding compact diversified portfolios that allocate a given amount of

money dynamically.

This chapter is based on previous work on asset allocation, in which compact port-

folios are optimized using GRA with accumulative strategies(52). The distinctive point

in this chapter is that the optimal scope of portfolio diversification is determined by

evolutionary principles rather than by users’ choices. In (52), the portfolio contains

a fixed number of assets and the scope for diversification is not explicitly addressed,

which might imply limitations such as over-concentration of risks in a narrowed and

undiversified portfolio of assets. To deal with these issues, vs-GRA allows the evolu-

tion guided by diversification benefits in sectors and countries, in which variable size

individuals bring advantages on population diversity, over-fitting avoidance and fitness

improvement due to the increased exploration ability.

The components of the proposed approach for asset allocation under diversification

principles are the following:

• The Selection Mechanism picks up the attractive and valuable assets from finan-

cial market indexes into an Frame Asset Pool.

• The Portfolio Diversification builds a portfolio to diversify the risk into a set of

diverse and attractive asset classes.

In this chapter, the Selection Mechanism is based on active indexing and GNP(Chapter

1), in which assets from defined market indexes are evaluated exhaustively by us-

ing fundamentals and market based financial metrics embedded into GNP structures.

Therefore, the optimal subset of attractive assets and financial metrics to use are auto-

matically decided by evolution, assisting investor’s decision making. On the other hand,
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once prospective assets are identified, vs-GRA takes the role of building the portfolio

diversification models.

6.3.2 Main Features

• The proposed scheme provides a basis for evolving the scope for portfolio diversi-

fication, so which asset classes, which sectors and which geography to consider in

the portfolio structure is decided by evolution instead of arbitrary choice of users

or conventional indexing techniques. This feature evades the behavioral bias in

portfolio allocation even when financial markets turn out to be highly volatile.

• vs-GRA models and optimizes the portfolios for diversification using the graph

structures, avoiding black box issues and exhaustive mathematical assumptions

in conventional models, which are based on pure statistics or physics.

• vs-GRA permits handling variable size individuals, allowing the better explo-

ration ability in the search space within the portfolio diversification context.

Whereas, in the conventional GRA algorithm, the size is fixed by users’ choices.

Compared with GP and GE, the change of the size is systematically controlled

during evolution so that benefits on portfolio diversification are ensured.

6.3.3 Evolution of vs-GRA

As any other evolutionary algorithm, vs-GRA also includes genetic operators such as

selection, crossover and mutation to evolve a population of initialized individuals toward

the optimal ones, as shown in Fig. 6.1.

The evolutionary process of Fig. 6.1 is also called training period, which is repeated

until a terminal condition is met, i.e., a defined number of generations in this chapter.

Once evolution is carried out, the best individual in the last generation is tested using a

subsequent time period, called testing period. A time frame is a time window composed

of a training and testing period. Asset accumulation through time frames is performed

consecutively to track the optimum in the near coming future without the need of

re-initializing the optimization process(52, 64).

The initialization of the population considers disperse geographical locations and

diverse economic sectors. Every individual is initialized by selecting an asset from each

geographic location and from each economic sector randomly as Fig. 6.2 shows. A

market niche is the set M of m geographically disperse market indexes. Each element
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Figure 6.1: Flowchart of vs-GRA

ofM is a set S including s economic sectors. In our previous approach, the initialization

takes no explicit consideration of locations nor economic sectors. The objective of the

diversified initialization is to avoid initial overconcentration in geographical regions or

industrial sectors.

After initializing the population of individuals, evolution is carried out iteratively by

replacing the current population with new individuals obtained by selection, crossover

and mutation operators, which are described in later subsections.

Although previous studies on variable size evolutionary algorithms (vs-EA) take a

more realistic view of evolution, i.e., individuals change their genosize and complexity

through generations, they implicitly assume that the change of the size occurs ran-

domly. We take a different approach, i.e., individuals change their size guided by the
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Figure 6.2: Initialization of vs-GRA individuals

contribution to diversification benefits, so that nodes are added to or deleted from the

individual probabilistically rather than randomly.

Selection

The selection operator preserves a group of the better individuals from the individual

pool, where the individuals of the population are updated continuously generation by

generation(53). Better individuals are selected by tournament selection. Thus, the

selection operator is a dynamic memory tracking the better individuals in potential

areas of the search space.

Crossover

In a similar manner to sexual reproduction in biology, the crossover operator gen-

erates new offspring considering parent individuals. The crossover of vs-GRA is based

on principles of speciation adaptation genetic algorithm(SAGA)(65) and synapsing

variable-length crossover(SLCV)(66), which are also variable size evolutionary algo-
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rithms that perform variable size crossover to enhance the exploration ability in the

search space. SAGA is based on individual mutual matching, where randomly chosen

nodes in each individual are mutually tested to decide what nodes should be exchanged.

However, in SAGA the selection of the crossover point is chosen at random, and its

genomes are still inflexible rigid arrays of data, having a small effect on the improve-

ment of the exploration ability. On the other hand, SLCV is a more restrictive operator

in the sense that it chooses the initial crossover point based on similarity among parent

genomes, in which only different nodes among parent individuals are exchanged and

similar nodes are preserved. Consequently, genomes in SLVC are flexible arrays of data.

However, the exchanging procedure is still executed at random, which might have an

effect only on increasing the genome size, but not on improving the individual fitness.

Concretely speaking, Algorithm 3 describes the procedure to generate two indi-

viduals. Instead of taking a randomized approach to decide which nodes are to be

exchanged, we take a probabilistic approach based on fundamental concepts of re-

strictiveness of SLCV and mutual matching of SAGA. An example of the crossover

procedure is shown in Fig. 6.3.

• Restrictiveness means that only different nodes in both parent individuals are con-

sidered as the candidates of exchange nodes. In Fig. 6.3, the nodes {a1, a2, ..., a6}
and {b1, b2, b3} are the assets which P1 and P2 do not share in common and thus

are considered as potential candidates to exchange. Meanwhile, the nodes A and

B are the assets which P1 and P2 share in common, thus not considered by the

restrictive crossover.

• Mutual matching means that every candidate node in each parent individual is

tested in the other parent individual, thus, every node i has a probability PE
i to

be selected as an exchanging node. Which nodes are to be exchanged is decided

by comparing each PE
i and a threshold PE

∗ in Algorithm 1. For example, in

Fig. 6.3, {a1, a2, a3} and {b1} are selected as exchanging nodes in P1 and P2,

respectively.

The probability PE
i of exchanging node i is based on the contribution to individual

diversity, and is calculated using the following equation:

PE
i = w1αi

u1 + w2ϕi
u2 , (6.1)
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6.3 Variable Size Genetic Relation Algorithm(vs-GRA)
on Portfolio Diversification

Algorithm 3: Crossover operator for vs-GRA

1 Select two individuals P1 and P2 executing tournament

selection twice

2 for each different node i in each individual do

3 if PE
i ≥ PE

∗ then

4 Move node i to another individual

5 else

6 Take no action

7 New individuals become available for the population in the next

generation

where,

αi : normalized diversity change after

excluding node i (asset i) from individual P1,

ϕi : normalized diversity change after

including node i (asset i) in individual P2,

u1, u2 : constant power for crossover probability,

w1, w2 : equally distributed importance weight,

like w1 = w2 = 0.5.

The value of αi shows the normalized variation △Ei of entropy values in P1 when

asset i is excluded from its composition. Similarly, ϕi shows the normalized variation

△Ei of entropy values in P2 when asset i is included in its composition. The variation

of entropy values is calculated using the following equation:

△Ei =
E∗

P − EP

EP
, (6.2)

where,

E∗
P : diversity measure of individual P after

excluding/including asset i in P ,

EP : diversity measure of individual P before

excluding/including asset i in P .

91



6.3 Variable Size Genetic Relation Algorithm(vs-GRA)
on Portfolio Diversification

EP =
∑
c∈C

xc ln
1

xc
+

∑
s∈S

xs ln
1

xs
, (6.3)

where,

C : set of suffixes of countries,

S : set of suffixes of sectors,

xc : proportion of the money that individual P

allocates to country c,

xs : proportion of the money that individual P

allocates to sector s.

The above is a compounded measure for portfolio diversification, in which the di-

versity to the country and sector allocation is considered. Thus, the proportions xc and

xs are the total money allocation that portfolio P makes to country c and sector s, re-

spectively. As we can see, the diversity measure is based on entropy concepts borrowed

from Information Theory. Although there exists other metrics such as the Herfindahl

or Gini Index that quantify how diversified a given portfolio P is, previous studies have

shown that the entropy based metric provides a reasonable and effective approxima-

tion to the benefits of diversifying investments in international finance context(67, 68).

Although recent studies favor country diversification rather than the industry based

diversification approach(69, 70), we consider the diversification over countries to be as

important as the diversification over industries(sectors), for which the optimal struc-

ture would be determined by the evolution of vs-GRA.

Mutation

Simulating asexual reproduction of individuals in biology, the mutation procedure

generates an offspring from a single parent individual. Concretely speaking, Algorithm.

4 shows the procedure to generate an individual using a parent individual.

The mutation procedure not only changes the information parameters of the indi-

vidual, but also alters its size by probabilistically shrinking (expanding) the genosize

of the individual by deleting (adding) a single node from (to) the individual as Fig.

6.3 shows. The probability P add
i and P del

i of adding and deleting node i, respectively,

depends on the extent of the diversity contribution to the individual. The following

equations are used to calculate these values:
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Algorithm 4: Mutation operator for vs-GRA

1 Select an individual P using tournament selection

2 Change connections: Select connections with the

probability of Pm and reconnect to a different node

3 Change function: Select node functions Fi and change

to other function with the probability of Pm

4 for asset i ∈ AP do /* Add node */

5 Select i from the frame asset pool AP with the

probability of P add
i

6 Add i to the individual P

7 Set its connections to other nodes at random

8

9 for asset i ∈ P do /* Delete node */

10 Select i with the probability of P del
i

11 Delete i from the individual P

12

13 New individual become available for the population in the

next generation

P add
i = γi

v1 , (6.4)

P del
i = ηi

v2 , (6.5)

where,

γi : normalized diversity change when including node i

from the frame asset pool AP into individual P ,

ηi : normalized diversity change when excluding node i

from individual P ,

v1 : constant power for adding probability,

v2 : constant power for deleting probability.
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Mutation and crossover have complementary roles throughout generations. By test-

ing each crossover node in each parent individual, crossover not only combines beneficial

mutations that occur in different parent individuals, but also avoids detrimental muta-

tions that occur in one parent individual and not in the others.

Similarly, the mutation operator aims at avoiding detrimental crossover by adding

and deleting nodes. The add procedure picks the candidate assets from the frame asset

pool AP to incorporate into the individual, so that portfolio diversity is improved.

Although we use the AP as a set of candidate assets, it can be changed easily to any

other asset set that the investor has interest in. The delete procedure removes needless

nodes in the individual that have poor contribution to the portfolio diversity.

6.4 Simulation Results

6.4.1 Problem

A Selection Mechanism is performed to first identify a set of prospective assets into a

Frame Asset Pool by using the asset selection algorithm proposed in Chapter 2. The

resulting set, along with relevant bonds and currencies in the Investment Universe, are

used to build flexible portfolio diversification structures to allocate a capital K into the

given subset of asset classes. The resulting portfolios are hypothetically invested using

a buy and hold strategy over 1 month.

6.4.2 Investment Universe

Three assets classes are used in the proposed approach, i.e. stocks, bonds and curren-

cies.

• The stock market index M consists of 2372 assets listed in the Russell Developed

Index.

• As for bonds, rates and yields of Treasury Bills from U.S.A., Japan, Germany

and France with 3-month and 6-month coupons are used.

• As for currencies, initial spot and end prices from foreign exchange rates for dollar,

euro and yen are used.
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6.4 Simulation Results

6.4.3 Time Span

To validate the effectiveness of the proposed approach, we perform simulations from

2005 to 2009. As we focus on the buy side of the investment cycle in this paper, the

testing phase is executed for one month period, in which we buy and hold the obtained

portfolio in the evolution phase. Thus, the training and testing periods are shown in

Table 6.1, implying 48 periods of the training and testing.

Table 6.1: Dates for simulation

Period Starting date Ending date

Training period 01/03/2005 11/27/2009

Testing period 01/02/2006 12/31/2009

6.4.4 Parameters

A simulation run consists of executing the training and testing under the sliding time

windows approach. The training phase consists of the evolution of vs-GRA using data

of one year period, in which the the parameters for evolution is shown in Table 6.2.

The initial capital is $10, 000. The base currency for the fitness evaluation is the dollar.

Other parameters include a risk averse investor, policy for reinvesting profits and no

tax expenses.

Table 6.2: Parameters of vs-GRA and GRA

Item Description Value

GE the number of generations for GRA evolution 300

I the number of individuals in GRA 200

IC the number of individuals by crossover 75

IM the number of individuals by mutation 120

IE the number of elite individuals 5

Pm probability of mutation 0.25

PE
∗ threshold for crossover 0.25

TS tournament size 7

u1, u2, v1, v2 constant power for crossover and mutation 0.5

6.4.5 Performance

As for the training period, the convergence rate of the average best fitness values over 20

independent runs is shown in Fig. 6.4. Bars represent the standard deviation with 2σ.

We can observe that vs-GRA obtains better values during the training. We believe this
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occurs due to the fact that vs-GRA is able to allow the variable size during the evolution,

implying that the search space is enlarged rather than fixed in the conventional GRA.

Figure 6.4: Convergence of the average best fitness values

Fig. 6.5 shows the averaged monthly accumulated return performance, i.e., the

economic performance of the proposed method in the testing period over 48 months.

Dec-05 represents the initial date when investors hold the capital of 100%; subsequent

gains/losses are added/deleted from the initial capital until the last testing month in

Dec-09. We can see from Fig. 6.5 that vs-GRA accumulates return considerably well

during 2006 and a large part of 2007, which clearly represents upward trends in financial

markets. On the other hand, vs-GRA is also affected by the systemic crisis in 2008 and

2009, however, even in such an event, it is able to keep positive but low accumulated

return rates.

To show the performance of both systems in a period of financial crisis, Feb-09 is

chosen for the analysis because, during this period, the majority of financial markets

had the worst return performance as shown in Fig. 6.5. Fig. 6.6 shows the performance

comparison, asset class, sector composition, countries and equity holdings of the elite

individuals in Feb-09. We can see from Fig. 6.6 that the performance of GRA with

different sizes is dominated by the performance of vs-GRA with 238 assets, which is

automatically determined for Feb-09. This gives an idea that merely changing the indi-
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6.4 Simulation Results

Figure 6.5: Average accumulated return rate in the testing period

vidual size in the standard GRA is not enough to build robust portfolios. Additionally,

we can see that the standard GRA tends to have overconcentrated allocations on top

equities, top performing sectors or leading countries. This is natural since GRA lacks

of an explicit diversification mechanism and the size is fixed by the user choice. Thus,

the risk of overconcentration of investments on asset classes, countries or sectors leads

to the suboptimal portfolios in GRA.

To show the performance of both systems in the whole testing period, Fig. 6.7

compares vs-GRA against the standard GRA considering different portfolio sizes in

terms of average return, volatility and Sharpe Ratio. The Sharpe ratio is a measure of

the return per unit of risk, which is obtained by averaging the division of the monthly

rate of return by the monthly standard deviation(71). We can see from Fig. 6.7 that

GRA reduces its volatility when the size is larger, which is consistent with similar

findings(2, 3, 59). However, vs-GRA obtains better returns than the standard GRA

even if GRA increases its size to 500 assets. This result is because vs-GRA keeps the

individual size flexible to optimize the diversification through variable length crossover

and mutation, i.e., the robust spread of the investment over asset classes, sectors and

countries is decided by evolution. Since GRA lacks of explicit diversification mechanism,

it tends to have highly concentrated allocations as shown in Fig. 6.6.
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6.4 Simulation Results

(a) Average rate of return and volatility 

(b) Average Sharpe Ratio

Figure 6.7: Performance of vs-GRA and GRA with different sizes

In terms of the performance comparison, the average monthly Sharpe ratios is shown

in Fig. 6.8 and the average annualized/monthly return and volatility rates are shown

in Table 6.3. We can note easily that vs-GRA is able to keep higher Sharpe ratios than

the conventional GRA in the asset allocation context. As vs-GRA manages a flexible

number of assets in the portfolio structure, it is able to minimize the volatility risk

expressed by return standard deviations.

Table 6.3: Economic comparison in the testing period

Metric Russell Index GRA vs-GRA

Average monthly return(%) 1.42 1.59 1.64

Average monthly volatility(%) 5.87 5.39 4.96

Average annualized return(%) 15.78 18.81 21.55

Average annualized volatility(%) 20.36 18.67 17.19
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6.5 Summary

Figure 6.8: Average Sharpe ratios in the testing period

6.5 Summary

This chapter has introduced a novel method for diversifying investments in globally

located assets. vs-GRA has the role of building portfolio structures considering the

variable size during the evolution, which are guided probabilistically using portfolio

diversity metrics in the portfolio. In this sense, the optimal structure for portfolio

diversification is decided by the evolution.

It has been observed from simulations that considering the optimal structures for

diversification reduces the impact of losses even when financial markets turn distressed.

However, as our method relies on entropy based measures for mapping the risk

exposure of portfolios, other sources of the risk need to be considered, and the future

research should aim at designing holistic risk management frameworks.
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CHAPTER

7

Conclusions

This thesis has provided algorithms for making investment models, which are able

to diversify the risks while allocating the scarce economic resources in multiple asset

classes spread in developed financial markets, by using the principles of evolution of

Genetic Network Programming(GNP) and pricing of Value Investing

Chapter 2 has proposed an algorithm to build optimal asset selection models in

the form of risk pricing mechanisms by using the evolutionary computing principles of

Genetic Network Programming and value investing principles; where the judgment and

processing nodes in the network structure of GNP use the intrinsic and the extrinsic

risk factors to decide on the asset selection decision. Moreover, the number, type and

combination of required/relevant risk factors are decided by the evolution structure

of GNP. The resulting output of the GNP-based algorithm is a subset of prospective

assets that can be invested with equal proportion over a defined period of time using

a simple buy and hold and strategy. The proposed algorithm has suggested through

simulations that making risk pricing mechanisms considering the intrinsic and extrin-

sic factors embedded in evolutionary networks of GNP brings advantages in return

performance over the standard value, growth and capitalization indexing strategies. It

has implications on improving the resiliency of the conventional indexing strategies in
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finance by relaxing the assumption that ranking and fixed number of risk factors are

relevant to find misspricing opportunities.

Chapter 3 has proposed an algorithm to stress-test the asset selection models by

using the juncture of evolutionary and robustness principles in Robust Genetic Network

Programming(r-GNP); where the fitness evaluates not only the the main performance

function, but also the deviation of performances over multiple and divergent environ-

ments(scenarios generated by block bootstrapping technique with noises). The resulting

output of the r-GNP algorithm is a robust asset selection model with improved gen-

eralization ability, which means the avoidance of the extrapolation of historical risk

factors when applied to future horizons. From simulations, it has been observed that

the generalization ability of r-GNP has advantages not only in terms of return, but also

in terms of risk and liquidity, implying better prospects to avoid the overfitting issues in

the conventional GNP. The results bring relevant implications in finance, that is, stress-

testing risk pricing models by using the robust evolutionary framework of r-GNP, brings

benefits to avoid extrapolating historical performance into future horizons(behavioral

bias).

Chapter 4 has proposed an algorithm to enhance the adaptability of the asset

selection models based on Genetic Network Programming with Changing Structures

(GNP-cs), which implements control and operational functions. The control function

monitors the occurrence of environmental changes, in terms of economic fluctuations,

and the operational function devises strategies, in terms of asset selection models, to

deal with the detected changes. The evolution of GNP-cs is executed using jointly

evolved functionally distributed systems, where the fitness function considers the accu-

racy of the control function and the economic performance of the operational function.

It has been observed from simulations that GNP-cs has benefits in return enhancement.

It has implications not only on building adaptive economic systems that can better con-

sider the fluctuations in the markets, but also on finding the misspricing opportunities

in macroeconomic factors, while building an asset selection model.

Chapter 5 has proposed an algorithm to build the optimal asset allocation models

by using the evolutionary undirected network structures of Genetic Relation Algo-

rithm(GRA), where each node in the network of GRA models financial assets, such as

stock, bond or currency, and each relationship measures the systematic risk between a

pair of assets. The evolution of GRA considers accumulative strategies through recent

generations/time frames to aid the search for the optimal portfolios when the recent

past resembles the characteristics of the future horizons. It has been observed from
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simulations that the GRA-based asset allocation models outperformed other portfolio

optimization algorithms and conventional strategies in Finance, such as Makowitz and

CAPM. It means that considering a partial set of systematic risk relationships when

building portfolios by using GRA brings benefits on minimizing the portfolio’s market

risk, expressed in the portfolio beta, and has implications on lessening the portfolio’s

correlation with the market indexes.

Chapter 6 has proposed an algorithm to build portfolio diversification models

using Genetic Relation Algorithm with Variable Size(vs-GRA), which shrink/expand

the structure of individuals to enhance the survivorship during the evolution process.

The shrinkage/expansion is implemented through variable size crossover and mutation,

which are guided probabilistically to guide toward the contribution of diversification

benefits during the evolution process. It has been observed from simulations that GRA-

vs has benefits on building flexible asset allocation structures, which in turn diversify

the risk over multiple asset classes, such as stocks, bonds and currencies, economic

sectors and geography more effectively than the standard GRA approach. In finance

it has implications on leaving the conventional view that large portfolio sizes diversify

risk effectively.

Further studies should be addressed. Although the proposed scheme relies on mar-

ket factors and fundamentals as sources of risk, other sources of risk should be sys-

tematically evaluated. As financial integration opens new uncertain markets, such as

the case of emerging markets, the future research should aim at designing holistic risk

management frameworks.
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[56] A. Fernández and S. Gómez, ”Portfolio selection using neural networks”,

Computers & Operations Research, Vol. 34, Issue 4, pp. 1177-1191, 2007. 61,

79

[57] F. Black and R. Litterman, ”Global Portfolio Optimization”, Financial An-

alysts Journal, Vol. 48, No. 5, pp. 28-43, 1992. 79

[58] H. Grubel, ”Internationally diversified portfolios: welfare gains and capital

flows”, American Economic Review, Vol. 58, pp. 1299-1314, 1968. 83

[59] A. Hastings and H. Nordby, ”Benefits of Global Diversification on a Real

Estate Portfolio,” Journal of Portfolio Management, Vol. 33, No. 5, pp. 53-62,

New York, 2006. 83, 84, 97

109



REFERENCES

[60] W. Bennet and C. Conan, ”Risk management lessons worth remembering

from the credit crisis of 2007-2009”, Journal of Portfolio Management, Vol.

36, No. 3, pp. 21-44, 2010. 84

[61] J. H. Holland, Adaptation in Natural and Artificial Systems Ann Arbor,

University of Michigan Press, 1975. 84

[62] J. R. Koza, Genetic Programming, on the programming of computers by

means of natural selection, Cambridge, Mass.: MIT Press, 1992. 84

[63] A. Bennet, ”Benefits of a Population: Five Mechanisms That Advantage

Population-Based Algorithms”, IEEE. Transactions on Evolutionary Compu-

tation, Vol. 14, No. 4, pp. 500-517, 2010. 84

[64] Y. Jin and J. Branke, ”Evolutionary optimization in uncertain environments

- A survey”, IEEE. Transactions on Evolutionary Computation, Vol. 9, No.

3, pp. 303-317, 2005. 86

[65] I. Harvey, R. Manner and B. Manderick, ”The SAGA cross: The mechanics

of crossover for variable-length genetic algorithms”, Parallel Problem Solving

from Nature, Vol. 2, pp. 269-278, 1992. 88

[66] B. Hutt and K. Warwick, ”Synapsing variable-length crossover: meaningful

crossover for variable-length genomes”, IEEE. Transactions on Evolutionary

Computation, Vol. 11, No. 1, pp. 118-131, 2007. 88

[67] P. Krokhmal, M. Zabarankin and S. Uryasev, ”Modeling and optimization

of risk”, Surveys in Operations Research and Management Science, Vol. 16,

pp. 49-66, 2011. 92

[68] K. Gembat and F. Kodama, ”Diversification dynamics of the Japanese in-

dustry”, Research Policy, Vol. 30, pp. 1165-1184, 2001. 92

[69] R. Elsas, A. Hackethal and M. Holzhaüser, ”The anatomy of bank diversifi-
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