
Abstract
The TCP/IP networking model was originally

designed with a focus on connectivity adhering to layering
principle. While this principle has facilitated the speedy
expansion of the Internet, it also prevents application
layer services from carrying out service optimization
and customization due to the lack of current status from
lower layers. The purpose of this research is to propose a
new TCP/IP networking architecture that can facilitate
the sharing of information across layers’ borders. Object
oriented design will be used to analyze and develop the
new architecture. Some examples on the application and
coverage for future development of the new architecture
will also be discussed.

Keywords: Layering principle, cross-layer, service optimization,
 service customization

1 Introduction

At the inception of the Internet, the main concern
was connectivity [1]. Therefore, much effort has been spent
in designing a simple networking stack with the main
objective of providing end-to-end data transfer capability.

With the original focus on connectivity, conventional
IP networking implementation is more suitable for routers
than end-hosts and it facilitates very well the phenomenal
development of the Internet. At the end-hosts, as the kernel
hides the underlying workings of the networking subsystem,
communication application development is rather simple.
The application just requests to open the connection
and the rest are managed by the subsystem without the
knowledge of the application. This model supports well
simple services such as email, news group, World Wide
Web pages or real-time IRC and multimedia. However, for
flexible or reliable services, such as fault-intolerant session-
based applications, service developers must rely on special
and often very complex mechanisms [13] [16] [25] [26]
due to the almost zero support from the networking stack.

Things get even worse when less reliable wireless
access technologies, together with them are nomadic-related
issues, become widely available. The TCP/IP architecture is
built on the assumption that the terminal's access point to
the network was static, with stable electrical signal, therefore

IP addresses are used for both routing and identification,
and loss is due mostly to congestion.

As mobile access introduces more volatile properties to
communication sessions such as change of subnet, unstable
transmission quality, together with the proliferation of new
and more demanding ubiquitous services, it is time that the
conventional model of self-contained, status-hiding layering
approach of the Internet be revised to provide applications
with more information and control of the underlying
operations to better adapt to the changes of the Internet
realm as shown in Table 1.

Table 1　The change of the Internet paradigm

Conventional Internet Advanced Internet

Feature Fixed and static Mobile and dynamic

End devices Desktops Smart phones, tablets

Connection
type Wired, few types, slow Wireless, many types,

very fast

Data and
Traffic

Homogenous traffic,
low volume

Heterogeneous traffic,
exponentially growth

Service Some few major text
based services

Va r i o u s r e a l - t i m e
interactive multimedia
services

In the next part of the paper, we will discuss further
about the need for a new approach to the layering
architecture of the Internet. Based on this discussion, we
will design the new approach (called the Inter-Lay scheme)
using object-oriented design in chapter 3 and chapter 4
discusses some related works and compares this research
with them, as well as provides information on some possible
application and how the proposed scheme can provide
for possible changes of the Internet. Chapter 5 concludes
the research with final conclusions and future works. In
addition, the test questions to find the suitable network
parameters to be exposed will be discussed in the appendix
section.

2 The issues with the original layering
approach

The ARPAnet began with just one core protocol, the
Transmission Control Program (TCP), which was formally
described in RFC 675 in 1974. In 1977, it was proposed
that TCP should be further divided in a layered and
modular way into two protocols, one serves as host level end

13

Object-Oriented Approach to a New Cross-Layer
 Information Manipulation Model for TCP/IP Architecture

Vu Truong THANH and Yoshiyori URANO

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286936842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to end transport protocol (the TCP layer), and the other for
routing packets through the network to the destination (the
IP layer) [5]. The result was the creation of the TCP/IP
architecture using layering principles [1].

TCP/IP stack follows strict layering principles,
which in general requires that the operations and internal
states of each layer are known only to the layer itself, and
a layer communicates only to adjacent layers. The main
advantage of this layered architecture is that it facilitates
the incremental development and improvement of
communication services, because it helps localize the scope
of change to a single layer, making it easier to find, try and
implement improvements or corrections in each layer.

This localization of changes and incremental
development were very important in the early development
stage when there was almost no information on how
the architecture would behave in different settings and
environment. For example, TCP congestion control
algorithm was refined many times as the network
experienced various new types of communications services
and networking technologies.

The disadvantage of layer enclosure is that except the
Protocol Data Unit (PDU), higher layers have virtually
no status information from lower layers therefore it has
to accept general assumption that lowers layers are doing
their jobs well, without knowing how well the lower layers
are doing their job, or whether any critical changes have
happened to the lower layers. This prevents the higher layers
from choosing the operation mode that is most appropriate
to the current condition, which hinders the development of
more flexible, optimized and customizable applications. In
other words, it might be beneficial for higher layers to learn
more information from lower layers to optimize as well as
to provide seamless operations to end-user communication
services.

For example, in Mobile IP, the cross-layer information
of a prominent L2 handoff from the Data-Link layer helps
IP layer to prepare for the handoff to a new Foreign Agent
in advance, so that the handoff process is faster and possibly
seamless [6]. Another example is that due to data-hiding,
buffer size between layers were not synchronized, therefore
small chunks of data were being written to the TCP buffer,
which led to sub-optimal performance [7]. Or if there is a
way for the application to be informed that the TCP layer
is constantly experience congestion, it can cooperate by
reducing its transmission rate for example by using a slower
codec.

On the other hand, lower layers such as the Data
Link layer can make a better decision when performing
a handover if it receives the preferences of the above
applications.

Moreover, the Coupling Principle [2] states that as

things (in this context they are communication services)
get larger, they often exhibit increased interdependence
between components (here components are layers). So as
the TCP/IP architecture has already matured and been
tested thoroughly (even IP next Generation, IPv6 is being
rolled out in large scale), it is reasonable now to reduce the
rigid requirements of the strict layering principle, and to
allow a layer to expose more internal data/states to other
layers in order to give user applications more flexibilities
and customizations.

The following chapter 3 will describe such a new
TCP/IP networking stack architecture that can facilitate
cross-layer boundary communications. The new architecture
is proposed to be implemented with Object Oriented (OO)
Technology to facilitate the development process.

3 Cross-layer data provision networking
model

In this part, a new layering architecture is proposed, in
which lower layers will reveal selected internal information
to higher layers, either adjacent or several layers away. This
new and more complex architecture would be deployed in
end devices to support service development, while routers
continue to use the traditional version of the TCP/IP
architecture, because the new model adds extra capabilities
and complexity indented for user applications that do not
exist in routers.

3.1. Selection of object oriented design for
the cross-layer architecture

As a practical guideline for real-world development
of the networking stack, we will base our discussion on the
implementation of TCP/IP networking stack for Linux, as
Unix-like systems are becoming more and more popular
especially to mobile devices, and the fact that modern
Operating Systems (OSs) are similar in capabilities so it can
be extended easily to other platforms.

Cur rent l y the TCP/IP ne twork ing s t ack i s
implemented in structured programming fashion, where
the operations are carried out in sequential procedures.
However, keeping the existing programming model, and
adding codes to expose a layer’s internal parameters will
be risky as variables are accessed directly, there is no way
to guarantee the integrity of network parameters even in a
read-only procedure in the case of structured programming
and therefore unwarranted changes to the internal states of
the networking subsystem might happen with unpredictable
consequences. If OO Programming is used then the
get() method allows for the exposure of internal data of a
layer without the danger of (mistakenly) altering the data
natively. Another aspect is that with conventional procedural
programming, whenever the parameter is accessed or

14

updated, the codes for basic protection mechanisms (for
authorization, integrity check etc.) will have to be repeated,
while in OO programming, all of these basic protection
is carried out only once in the set() and get() method for
the parameter, and whenever the parameter is accessed or
updated, the protection mechanism will be automatically
applied.

So implementing the architecture in OO programming
not only reduces the complexity of the implementation,
workload and potential errors, but it also has the potential
to reduce the size of the executable code.

There are also some more advantages in applying OO
paradigm to the new cross-layer communication model as
follows:
- The layering approach (and protocols) and OO

technology have the same principles, namely self-
contained internal attributes, interactions using pre-
defined interfaces, the modification of one entity
does not affect other existing entities. As the data/
operation of each layer are extensively analyzed and
documented, converting TCP/IP layer to object should
be straightforward.

- The new cross-layer communication architecture
concentrates on data to be provided cross-layer. This
data-centric purpose obviously means suitability with
OO Programming. Moreover these data should be
accessed and modified with utmost discretion which can
be easily done by OO Programming natively.

- Unlike the existing networking model, the cross-layer
model is dynamic, and is expected to be updated when
new features or capabilities become available. To include
a new feature, it is much easier to add an extra attribute
or method to a protocol class in OO Programming than
to find the right place and right mechanism in procedural
programming.

- As new protocols are being introduced into TCP/IP to
accommodate new communication requirements, the
ability of OO to reuse common codes with inheritance
and polymorphism will make it easier when realizing
these new protocols into real codes. For example, a
common class for reliable transport layer protocol with
all the common virtual methods (such as bind(), listen(),
accept(), connect() … with the connect() method containing
the virtual hand-shake() method) can be use as a template
to develop TCP and the newer SCTP (Stream Control
Transmission Protocol) of which the original methods
will be overridden with the correct input parameter using
polymorphism.

- As new protocols and features are constantly introduced,
the networking subsystem will have to be actively and
continuously maintained for a very long period of time.
The advantage of OO Programming documentation will

make the succession process among programmers more
smoothly.

- Because the query and update activities are carried out
independently among classes, we can assign the object
of each class in Figure 1 below in a separate thread, and
as multi-processor CPU are popular nowadays, each
object can be executed in a separate processor which will
improve the overall performance.

- By using OO design translation tools, as well as
consulting existing OO reference framework for protocols
such as one described in [9], the implementation of this
new layering architecture would be made easier.

For the above arguments, we will use OO technology
to develop the cross-layer enabled networking architecture.
In this model the protocols of each layer is conceptualized
into classes. The overall system is depicted in Figure 1.
The model also needs some supplement classes such as
buffers for PDU which are not depicted in the figure for
simplification.

In this model, each layer will be represented by
a generic class with all the basic functionalities and
parameters of that layer, and a specific protocol class will
inherit the generic layer class and add the attributes and
functionalities specific to itself. The network parameters
of the protocol become the corresponding attributes of
the class. Note that while the class contains all parameters
of the protocol, in this discussion we only concern the
parameters that should be revealed across layers. For Data
Link layer, the object might be designed as a wrapper object
of the device driver.

Moreover, a protocol can be mapped individually to a
class, or if there is a group of protocols that share common
major properties, they can be mapped into one class. For
example, the IEEE 802.11 a, g family maybe mapped
into one single object if their differences in operating
frequency and modulation techniques are out of interest of
applications. For the application layer, as the applications
interact with the networking subsystems via the socket, the
application layer of the TCP/IP stack will be represented by
the socket class.

15

Figure 1. The new TCP/IP architecture

There are two types of attributes for a protocol class.
One is real-time attribute, where the current value of the
layer’s parameter is of importance, and the other is event
attribute, where the importance is not the instant value but
whether that value has crossed above or below a certain
value (which generates an event) or an external event is
received, such as the Explicit Congestion Notification
(ECN). For example, the current sequence number of TCP
object is real-time attribute, but the round-trip time (RTT)
of a packet is only important when it is greater than that
of the round-trip time timeout (RTO). As an event can
happen anytime during a certain period, other protocol
objects (including the applications) cannot read the event
arbitrarily but will register/de-register to be notified of the
event for a certain period. The event can be associated with
additional information when be informed to other protocol
objects.

Each real-time attribute will be associated with a get()
method as a mean for the upper layer to learn the value
of the associated parameter. The implementation of the
get() method will decide how to calculate the value of the
associated parameter, and special attention is required so
that the calculation process does not accidentally alter or
damage the system.

While most of the attributes will be read-only (i.e.,
associated with only a get() method), a few real-time
attributes will be also assigned with a set() method to adjust
that attribute to a value suitable with the judgment of the
higher layer on the current state of the connection, and the
set() method is more appropriate to real-time attributes.
The event attributes are not suitable for set() method and in
the case the system needs to initiate some processing related
to an event, it should be implemented as a separate method.
Because of the potential damage that could be caused if the
set() method is not carried out correctly, discussion on the
set() method will be given in full separately in section 3.3
below.

The actions or procedures that a protocol performs
in its execution are implemented as methods of the
corresponding class. For example the Mobile IP object can
contain an RO() method that once called, it will perform
route optimization procedure to a given destination. These
methods will be called “action() method”, and they can be
invoked by other layers as well. Apart from those intrinsic
action() methods of the protocol, a protocol class will
include the methods to manipulate the PDU, especially
the protocol headers, as well as method to prepend/append
certain information to the PDU.

And because the action() method also has the potential
to affect the operation of the system, they will be discussed
more in section 3.3 together with the set() method.

3.2. The InterLay object
In the proposed model, the protocol object will

perform all functionalities of the relevant protocol. The only
extra processing are set() and get() method. On the other
hand, all activities related to cross-layer communications
will be handled by the object of the InterLay class. Through
the InterLay object, protocol objects of any higher layer (i.e.
not limited to the Application layer) can query and update
certain parameters of protocol objects from lower layers.

As shown in figure 1, the InterLay is divided into 3
functional groups: the Policy Engine (PE), the Enforcer
and the Informer.

The Policy Engine
The PE communicates with external entities for

supplement policies and information using standard
protocols (Diameter, COPS, MIH …). It also performs all
necessary permission and integrity checks when updating a
network parameter, normally to guarantee that the update
does not negatively affect the networking subsystem or
other processes. The Policy Engine can also be equipped
with a rate-control mechanism to monitor and limit
the access rate to a certain parameter (i.e. rate of calling
the get()/set() for that parameter), as well as the overall
request to the InterLay object of a certain application to a
reasonable number. This number can be decided based on
the nature of the parameter, for example the limit for fast
changing parameter can bet set higher for slow changing
parameter.

For event-based attribute, the PE also accepts
registrations/de-registration from other protocol objects
for events coming from the Informer, and complements
the handler for the event with any extra processing that is
required by the registration/de-registration activities.

For real-time attributes, each is associated with a
certain priority, and a requesting protocol object will also be
assigned with a certain priority. Excluding the application
layer, in general higher layer protocol has a higher priority
than a lower one because it has more comprehensive view
of the current condition. The priority of an application
object is highest for parameter that is dedicated to itself (i.e.
parameters from layer 4 (L4) protocol object created by the
application) and an application object has a default lowest
priority for parameters of layer 2 and layer 3. On the other
hand, the priority of requests coming from external policies
can be set on a case-by-case basis.

An update request for the value of an attribute is
served only if its priority (equal to that of the requesting
object) is higher or equal to the current priority of the
parameter, and requests with equal priority will be executed
in chronological order of arrival (i.e. late request overrides
earlier one). As higher priority overrides lower ones, the
kernel can protect a certain parameter by setting its priority

16

to the highest exclusive priority with infinite lifetime.
The immediate priority of an attribute is set to equal

to that of the last accepted request (however a request is
given a lifetime, and after that period the request’s veto
right on the attribute is obsolete, and the priority of the
parameter returns to that of the default value).

The network subsystems may provide an interface for
the users to explicitly set the priority of a certain layer’s
protocol object or application.

The Enforcer
The Enforcer performs actual changes of real-

time parameters as requested by the PE, with necessary
corresponding processing of other parameters/procedures.
It also contains action() methods to react to a event which is
also triggered by the PE.

The Informer
The Informer provides objects of other layers with

current value of real-time parameters at request time.
Note that for fast changing parameter, the value might
be outdated when reaching the requesting object. It also
informs Policy Engine of event and adds the handler from
the PE to the notification changes for that event.

Also, the Informer may cache the value of the
parameter that is judged to be static (for example the Home
Address in Mobile IP protocol) so that the InterLay has to
call the get() function for that parameter only once at the
first time the parameter is requested. This will improve the
performance of the networking subsystem.

The InterLay class also contains primitive methods,
which are basic building blocks that perform supplementary
actions to assist the invocation of the get()/set() and action()
methods of the protocol objects. These primitive methods
may perform, for example, integrity or authentication
checks.

The Interlay resides in the kernel space therefore it can
interact directly with lower layer protocol objects. However,
for higher layer (namely the application layer) standard
interface (i.e. service access point-SAP) with standardized
APIs should be defined to allow the access to InterLay’s
functionalities.

InterLay object and lower layers
Lower layers mean transport layer and those below.

Because Interlay and lower layers belong to the same kernel
module, it can call directly set() and get() for real-time
attributes.

For event attributes, InterLay can get events from
lower layers by taking advantage of kernel’s notif ication
chains [27]. There are two ways to use notif ication chains.
One is to register relevant action blocks from the Enforcer
directly to the notification chains of the event, and the other
is to introduce a method at the PE that will take care of the
necessary processing. The advantage of the first approach

is its simplicity in implementation, while the latter one can
provide not only linear chain of reaction but also reaction
with condition and loop.

InterLay object and application layer
Socket resides at the user space therefore it cannot

interact directly with the InterLay object. Also, the
relationship is asymmetric: InterLay provides information
on and receives instruction of what to do with lower layers.

For real-time attribute, the socket can query directly
the Informer through the standardized interface, while for
events the socket should register for the event with the
PE when it needs to be informed about that event. The
registration will have a certain lifetime, or the socket can
actively deregister (to improve overall performance)

The Policy Engine also provides the application with
an interface to exchange application-specific policies (to
simplify the operation of PE, it does not exchange policy
directly with the application server of a specific application).

Separating cross-layer related processing to a separate
InterLay object instead of exposing directly the networking
parameters via protocol objects has several advantages. The
protocol objects can concentrates on doing its main job
therefore we can reuse existing algorithms and (possibly)
code which allows even faster development. And because
InterLay does not differentiate between layers, a standard
procedure can be established to add/modify/remove access
to the parameters of all layers. Moreover, no complex
mechanism to prevent deadlocks among competitive
requestors is necessary because all accesses to set() and
action() methods are carried out via Interlay. Finally, if the
InterLay object is implemented as a separate kernel module
and interacts with the networking subsystem through
standardized kernel mechanisms (such as kernel symbol
table in Linux) then any failure in the InterLay object will
only affect the additional cross-layer functionality but the
conventional networking functionality remains intact, thus
increase the reliability of the communications system close
to that of the conventional networking model.

New system calls for InterLay scheme
Several new system calls should be defined to

realize the service access points (SAP) that carry out the
interactions between the socket and the InterLay objects.
Each network parameters or action() method that is
exposed by the InterLay will be given a unique predefined
(DWORD) code to be used with the system calls, and
there are 3 separate naming domains: one is for real-time
parameter, one is for event parameter and one for action()
method.

A new net_set_param() socket API function is used at
the SAP1 interface, which allows the socket object to assign
new value to the real-time attributes of lower layer objects
(normally the Transport) through PE. net_set_param()

17

requires a set of 2 input parameters: {the predefined code
of the network parameter, the new value}. It invokes the
InterLay.set_param() method of the PE functional group
with two more additional function parameters: the caller’s
process ID and the socket identifier (i.e. the socket’s address
tuple). The InterLay.set_param() will use the caller Process
ID to find the priority of the request (either the default
value for application or an explicit value set by the user) and
perform priority test or any other necessary authorization
test and if everything is OK it will ask the Enforcer to
invoke the set() method for the protocol object’s attribute
that corresponds to the requested network parameter’s code
and socket’s identifier.

A new net_get_param() socket API function is used
at the SAP2 interface, which allows the socket object
to query the value of a real-time attribute of lower layer
objects through the Informer. The net_get_param() requires
the predefined code of the network parameter as input
parameter and invokes the InterLay.get_param() method
of the Informer functional group with two more additional
function parameters: the caller’s process ID and the socket
identifier (i.e. the socket’s address tuple). InterLay.get_
param() will invoke the get() method for the protocol
object’s attribute that corresponds to the requested network
parameter’s code (and socket’s identifier if Transport Layer
information is requested) and returned the value to the
requesting application.

A new net_invoke_action() socket API function is
used at the SAP1 interface to allow the application to
invoke an action() method of a protocol object, with one
function parameter which is {the predefined code for the
concerned action() method}. The ivk_net_action() system
call will be mapped to the InterLay.ivk_action() with two
more additional function parameters: the caller’s process
ID and the socket identifier (i.e. the socket’s address
tuple) will be called by the application by indicating a
predefined flag, and the application can call a sequence of
action() by indicating the corresponding sequence of flags.
The InterLay.ivk_action() method will use the caller Process
ID to find the priority of the request (either the default
value for application or a explicit value set by the user) and
perform priority test or any other necessary authorization
test and if everything is OK it will ask the Enforcer to
invoke the action() method of the appropriate protocol
object.

A new net_reg_event() system call is used at the
SAP1 interface to allow the application to registered for a
specific event. The net_reg_event() function will take the
predefined code for the concerned event and (optionally the
socket identifier -i.e. the socket’s address tuple- if the event
belongs to Transport protocol object) as input parameters.
The PE functional group of the InterLay will add the ID

of the calling process to the handler of the concerned event.
When the concerned event happens, the InterLay can
inform the application using any appropriate Inter Process
Communication mechanism.

Note that net_set_param(), net_get_param(), and net_
invoke_action() are implemented as socket API functions
while net_reg_event() is implemented as general system
call due to the fact that an application might create several
connections at the same time and a L2/L3 event is common
to all of them.

3.3. On the set() and action() methods
In most cases, real-time attributes are exposed by

only a get() method. This read-only access protects the
networking subsystem from potential error caused by
incorrect implementation or being mistakenly set to a
wrong value.

However, there are cases where it would be beneficial
if the upper layers can change a certain attribute with a
set() method, because when upper layers know the exact
condition of the networking subsystem, there might be a
need for them to change the state of the lower layers to
a specific value for optimization or seamless operation.
Because kernel modules are developed with more stringent
quality management and testing, there would be no
adversary effects when parameters of lower layer protocols
are updated by either Transport or Network protocol objects
(because these objects belongs to the kernel). However,
there is no such guarantee for the development process of
user applications, therefore socket objects should be limited
to manipulate only attributes that affect the specific session
created by itself. This ensures that any improper use of the
set() method will only affect sessions belonging to calling
applications but not those belonging to other applications.
In other words, this means that the socket object should
normally not be able to manipulate set() method of
attributes belonging to layer 3 (L3) object and below or
otherwise it will affect all ongoing sessions.

Also, it is clear that the set() method should not
be applied directly to protocol’s attribute that has value
obtained through negotiation with the other peer without
re-negotiation with that specific peer. For example, the
TCP protocol should not expose set() method for the MSS
(Maximum Segment Size) attribute, but a MSS_renegotiate
(new size) action method that carries out the re-negotiation
of MSS will be provided instead.

For the action() method, it should be exposed by
the InterLay only if it does not affect other ongoing
connections except that belong to the requestor. For
example, IP protocol of layer 3 can expose the action()
method for route optimization procedure, but the method
should affects only the binding cache for the destination

18

associated with the requesting socket only.

4 Discussion and analysis

4.1. Related works
Cross-layer exchange of protocol data has been

extensively researched to optimize the utility function of
end to end throughput in ad-hoc network [19] [20] or
optimize the exchange of information and conserving
energy in sensor network [21] [22].

Ad-hoc network related approach generally combines
information from different layers to coordinate the
transmission among peers to maximize the utility function
for all participants. For example in [19], the authors propose
a practical cross-layer optimization (CLO) design that takes
into consideration some component namely source rate
control, hop-by-hop flow control, MAC scheduling and
prioritization, link-aware and congestion-aware routing to
maximize the utility function of the whole network close to
theoretical level.

An optimization agent is proposed in [21] in wireless
sensor network, as a medium for layers to communicate. It
contains a database to store essential information about the
network condition such as node identification number, hop
count, energy level, and link status. The information will
be accessible and used by protocols in all layers to optimize
its operation for parameters such as transmit power, coding
rate or data rate transmissions to suit a specific application.
The research in [22] proposes a new sensor network
architecture called X-Lisa, which standardizes cross-
layer information-sharing and organized the information
shared between layers. In X-Lisa, protocols are provided
with status of active queries in the network so that they
can adapt their behaviors accordingly, which improves the
overall performance.

In [23] the authors investigate the combination
of APP-MAC-PHY layers to find optimal modulation
scheme for multimedia data, as well as to optimize power
consumption.

Media Independent Handover architecture [31]
bears resemblance to the InterLay scheme, however MIH
confines to handover related activities only while InterLay
can support new and extra functionalities for all kind
operations at all layers, and in practice InterLay can replace
the functionalities of MIH.

In summary, the existing researches on cross layer
application examine the benefit of cross-layer design from
the performance approach by asking different layers to
adapt itself according to the current status of the network
on a case-by-case basis while the coverage of InterLay
scheme is much more broader to better adapt to the changes
of the Internet realm as described in chapter I.

4.2. Coverage of InterLay scheme
In this section we will examine how the InterLay can

cover existing and future modifications to the TCP/IP
networking stack. Due to the development of the Internet
explained in Table 1, mobility, fault-tolerant and security are
the new add-ons to the original TCP/IP networking model.

InterLay scheme and TCP mobility
Mobility can be introduced in IP layer [28], or the

TCP layer. In [18] we have proposed the mobile TCP
socket that supports mobility for TCP session. Basically,
this mobile socket provide an interface to change (i.e.
the set() method) the PCB (Protocol Control Blocks)
parameters to maintain TCP session across address
changes. We have proved that the inter-layer exchange of
information provide some advantages to other approaches,
namely (i) the maintenance of TCP session across handoff
is carried out only if the application finds it beneficial,
and (ii) the maintenance process can make use of existing
security association, which reduce overhead (both traffic
and processing) and latency.

InterLay scheme and TCP fault-tolerant across local
networking subsystem restart

Similar to the mobility above, the manipulation of the
PCB can be used to save the TCP session over the restart of
the subsystem.

Suppose that the networking subsystem (NS) is about
to restart due to some errors, and it can communicate with
active sockets before restarting. The preservation of the
TCP session is carried out as follows (see figure 2):

Step 1: The application that wishes to have its
connections to be fault-tolerant registers for the NET-

RESTART-EVENT in advance with the InterLay using the
socket’s net_reg_event()

Step 2: The NS informs the registered applications
with the imminent PRE-NET-RESTART-EVENT through the
InterLay.

Step 3: The application requests the NS to freeze
the sending/receiving activities for the socket, by calling
the net_invoke_action() system call with the pre-assigned
FREEZE code as parameter.

Step 4: After confirming that the calling socket has
the right to the concerned TCP session, the PE requests the
Enforcer to invoke the TCP_object.act_freeze() method that
turns on a FREEZE_FLG. TCP_object is the TCP object that
is created by the concerned socket. Because the TCP object
is required to check that the FREEZE_FLG to be off before
sending or receiving a datagram to/from the IP object, this
will freeze the sending/receiving activities. However, the
socket will continue to read data that is already in the buffer
until it is empty because those data have been ACKed.

Step 5: The application calls the socket’s net_get_
param(), with the TCP-TCB parameter code to get the TCB

19

of the socket.
Step 6: The Informer will query the TCP_object.get_

TCB() and returns the result to the applications. (The
returned result contains all the status information of the
TCB, as well as any unsent buffer.)

Step 7: The application calls the socket’s net_get_
param() with the IP-PCB parameter code to get the PCB of
the socket

Step 8: The Informer will query the IP_object.get_
PCB() for the concerned socket, and returns the result to
the applications. (The returned result contains all the status
information of the PCB.)

Step 9: Now the NS will restart itself and the
application will delete the socket instance.

Step 10: After the NS is restarted, the NET-RESTARTED-

EVENT is sent to all applications that registered for the NET-

RESTART-EVENT. (The list of those applications is stored by
the NS before restarting.)

Step 11: The application responses by creating a socket
with the socket() function.

Step 12: The application then requests the InterLay
to update the Internet PCB for the created socket with the
net_set_param() function and 2 input parameters, one is the
IP-PCB parameter code for the PCB and the other is the
*pcb value that is returned in step 7 above.

Step 13: The PE will inform the Enforcer to invoke

the IP_object.update_PCB() action method.
Step 14: The application then requests the InterLay

to update the TCP’s TCB for the created socket with the
net_set_param() function and 2 input parameters, one is the
TCP-TCB parameter code for the TCB and the other is the
*tcb value that is returned in step 5 above.

Step 15: The PE will inform the Enforcer to invoke
the TCP_object.update_TCB() action method.

The application now can issue send() and receive()
requests to the socket. Note that the application might need
to send three datagrams with the same ACKed number so
that the other end retransmits any lost data.

Note that this scheme is extendable to the case of
UDP (with no need for step 5 and 14, and any data sent
by the other end during the period will be lost), as well as
to the case the OS reboots provided that the application is
given enough time to perform the above procedures and the
restoration process is fast enough so that the connection is
not aborted first by the other end.

InterLay scheme and SHIM layer
Because the InterLay scheme allows for prepending

extra information to the PDU, it can easily handle SHIM-
layer type of modification, such as that of Host Identity
Protocol [29]. Moreover, using this prepending ability,
we can create tunnels without the need to introduce new
protocols such as [30].

InterLay scheme and Route optimization
By exposing the internal activities of a protocol to

outside layers, we can provide even more flexibility to
the end user application. For example, in Mobile IPv6,
when route optimization (RO) is used then even if the
communication session is short and small, RO signaling
is still being carried out, which creates processing and
signaling overhead. This is especially can be troublesome
if, for example, the Correspondent Host is a popular http
server with many small html pages, such as microblogging
service, or if the Mobile Host is moving fast from one
access point to another.

If InterLay scheme is used, then the application
will be provided with a interface to a action() method at
the MIP protocol object, which accepts the destination
(CH’s) IP address as parameter, that performs the RO
procedure to that destination. The advantage of this
approach is that the application is the one that knows
about its communication need the most, therefore it can
make the best decision. For example RO is activated only
if the application decides that its communication session
is traffic-heavy or long-lived. In addition, the Data Link
(i.e. network driver) object can provide a get() method to
inform the application about the handoff frequency, and
the application can further decide that if the frequency of
handoff is high then RO should not be activated.

20

Figure 2. The interaction diagram for TCP’s fault-
tolerance procedure (dotted lines are
returning value for net_get_param())

12. net_set_param(IP-PCB, *pcb from
step 7 above), 13. IP_object.

 set_PCB(*pcb)

6. TCP_object.
 get_TCB()

1. net_ reg_event(NET-RESTART-EVENT) (PE)

Application
(socket)

2. PRE-NET-RESTART-EVENT happens

3. net_invoke_action(FREEZE)

5. net_ get_param(TCP-TCB)

7. net_ get_param(IP-PCB)

Network
Subsystem

4. TCP_object.
act freeze()

8. IP_object.
 get_PCB()

10. NET-RESTARTED-EVENT happens

14. net_set_param(TCP-TCB, *tcb from
step 5 above), 15. TCP_object.

 set_TCB(*tcb)

(PE)

(Enforcer)

(Informer)

(Informer)
Result for net_ get_param(TCP-TCB)

(Informer)

(Informer)

9. NS restarts
(PE)

Result for net_ get_param(IP-PCB)

11. socket()

(PE)

Restart exchanging data with other end

(PE)

(Enforcer)

(Enforcer)

InterLay

4.3. Discussion and analyses
From the above discussion and analysis, we can see

that the research in this paper allows for the networking
subsystem and user application not only to be able to
adapt the performance according to lower layers status,
but it also allows (i) more choices beside performance
(such as arbitration decision for route optimization) and
(ii) coverage for future changes and requirements (for
example, it can support new extensions to original TCP/
IP model such as TCP mobility, SHIM-layer activities, IP
tunneling … without difficulty). For example the InterLay
scheme can support new requirements without requiring
development of new protocols at the networking subsystems
for mobility and fault tolerance. This can support the
timely development and deployment of future services,
because the application designers now do not have to wait
first for a new protocol to be established, standardized and
implemented in the OS kernel to enable the newly emerged
changes and requirements.

However, eventually a new protocol that standardizes
the new requirements will be rolled out. In this case the
application designers can just update their application
with the new protocol, and the abilities of the InterLay
object will continuously be used to serve other newly arisen
problems.

Moreover, because the InterLay object is designed as
a separate object, the main advantage of layering principle,
namely the modification/revision of a protocol would not
affect other protocols of the protocol stack, is maintained.
For example, if a parameter of a protocol is obsolete (or
introduced), and the TCP/IP stack is revised to remove/
add the parameter, then only the called to the set()/get() of
the parameter is affected. In this case only the application
that uses the removed (or added) parameter has to be
updated, which is also a practice applied to conventional
TCP/IP implementation. As such, the InterLay imposes no
additional limitations on the flexibility development of the
TCP/IP networking family.

Moreover, as the research in [24] has pointed out, one
important question with cross-layer design idea is “How
do the different cross-layer design proposals coexist with
one another?” Because this research proposes to provide
not only attributes (and associated set() and get() method)
but also action() methods, it can serve as a general platform
for other proposals to implement their algorithm upon. For
example, the algorithms proposed in [19] can be inserted
as action() methods in relevant protocols in this new TCP/
IP architecture, together with exposing needed information
among layers, and then we have a ready-to-deploy
implementation of the networking subsystem that supports
the ideas in [19].

In terms of operation speed between OO programming

and conventional procedural programming, the TCP/IP
stack will experience the following extra overhead in OO
programming:

(i) The extra overhead to create and destroy the objects
belonging to Layer 2, 3, and 4.

(ii) The extra overhead to look-up the implementation
of the virtual functions (in the so called v-table) that carry
out the sending/receiving data in each respective object.

(iii) The extra overhead to look-up the implementation
of any other virtual function that performs any other
functions for that protocol.

Because objects of Layer 2 and Layer 3 are created
when TCP/IP Networking Subsystem (NS) in the kernel is
initiated and destroyed when the NS is shutting down, the
overhead of (i) for objects of Layer 2 and Layer 3 does not
affect the performance of the NS. Layer 4 object is created
or destroyed whenever a transport session is established
or tear down, but because at user terminals new session
is created sporadically, the effect on the performance is
negligible.

Because the major activities of the TCP/IP stacks are
to move the data (PDU) up and down the protocol stack,
the overhead in (iii) should be neglect-able, and the main
extra overhead will come with (ii).

However, the look-up of the v-table takes only several
CPU cycles [32] [33], so the impact of this extra load
on modern CPU should not be noticeable. Moreover,
optimization techniques such as loading the v-table into the
CPU cache (which is common for Just-In-Time compilers)
will reduce the look-up time to one or two cycle, further
reducing the impact of this overhead.

As for performance of the InterLay object, because
this object will be called sporadically, and because it is
normally called via system call, which is already processing
intensive, the extra overhead incurred by OO programming
is negligible.

5 Conclusion

5.1. Major contributions
The Internet has the characteristic of “dump network,

intelligent end devices”. However, the current layering
model does not allow the “intelligent use” of underlying
network status and functions by the end-user applications.
This research aims at resolving this problem. The research
explores and provides the case for the need of a new
architecture of TCP/IP which allows protocol’s internal
activities and states to be access across layers, especially by
the user application. As a result, a new architecture called
InterLay is introduced to provide cross-layer manipulation
in TCP/IP networking stack. Several examples are provided
to signify the usefulness and advantages of the new
architecture in chapter 4.

21

The research proposes the mapping of the cross-
layer model to object-oriented design. This streamlines the
development of the new architecture abstraction into real
implementation, by making use of existing OO conversion
tools and framework for protocol development. Moreover,
the OO design turns the proposed new architecture into
an implementation platform for other ideas on cross-layer
design, as explained in the end of chapter 4. And by the
introduction of the InterLay object, we can separate the
set()/get() method of a protocol object from the procedure
of interacting with protocol objects, reducing the possibility
of bugs.

And although the discussion focuses on TCP/IP
protocol suite, it is general enough to be extended to other
networking model that uses layering approach as well. In
this sense, it is also useful to be used as a reference model
for the design of new network architecture in the future.
Moreover, it can also be used as a guideline for embedded
system where customization and optimization are very
crucial.

5.2. Future works
Future works include more detailed specifications to

realize the OO design of the new architecture using OO
conversion tools and other existing OO framework for
protocol design and development, as well as creation of
more applications based on the InterLay scheme.

REFERENCES
[1] D.D.Clark, “The Design Philosophy of the DARPA Internet

Protocols”, Proc SIGCOMM 88, ACM CCR Vol 18, Number
4, pp. 106-114 1988 (reprinted in ACM CCR Vol 25, Number
1, 1995, pp. 102-111)

[2] R. Bush et. al, “Some Internet Architectural Guidelines and
Philosophy”, RFC 3439, 2002

[3] D. D. Clark, “Architectural Considerations for a New
Generation of Protocols”, Proc. SIGCOMM'90, pp. 200-208,
1990

[4] International Standards, “Open Systems Interconnection
-Basic Reference Model Organization - Information
Processing”, International Standard 7498-1

[5] Jon Postel, “Comments on Internet Protocol and TCP”,
Internet Engineering Note number 2 (IEN 2)

[6] K. E. Malki et al, “Low-Latency Handoffs in Mobile Ipv4”,
RFC 4881, 2007

[7] J. Crowcroft et. al, “Is Layering Hamful”, IEEE Network
Magazine, pp. 20-24, 1992

[8] Seunghun Oh, et al., “Seamless Fast Handoff in Mobile IPv4
Using Layer-2 Triggers”, Second International Conference on
Systems and Networks Communications, August 2007

[9] Stefan Böcking, “Object-oriented Network Protocols”, Proc.
INFOCOM '97, pp. 1245-1252 vol.3, 1997

[10] Snoeren, A.C. et al., “Reconsidering Internet mobility”, Proc.
8th Workshop on Hot Topics in Operating Systems, pp. 41-
46, 2001.

[11] Landfeldt, B. et al., “SLM, a framework for session layer
mobility management”, 8th International Conference on
Computer Communications and Networks, pp. 452-456,
1999.

[12] R. Moskowitz et. al,“Host Identity Protocol (HIP)
Architecture”, RFC 4423, 2006

[13] Teraoka,F. et al., “Host migration transparency in IP
networks: the VIP approach”, ACM SIGCOMM Computer
Communication Review, Volume 23, Pp.: 45-65, 1993

[14] FUNATO D et al., “TCP Redirection for Adaptive Mobility
Support in Stateful Applications”, IEICE transactions on
information and systems, pp. 831-837, 1999

[15] A. C. Snoeren et al., “An end-to-end approach to host
mobility”, Proceedings 6th ACM International Conference on
Mobile Computing and Networking, pp. 155-166, 2000

[16] Vassilis Prevelakis and Sotiris Ioannidis, “Preserving TCP
Connections Across Host Address Changes”, Lecture Notes
in Computer Science, Springer Berlin/Heidelberg, pp. 299-
310, 2006

[17] D. Tennenhouse, “Layered multiplexing considered harmful",
Proceedings of the IFIP Workshop on Protocols for High-
Speed Networks, Rudin ed., North Holland Publishers, pp.
143–148, 1989

[18] Vu Truong Thanh, Yoshiyori Urano, “Mobile TCP socket for
secure applications”, The 12th International Conference on
Advanced Communication Technology (ICACT), 2010

[19] Warrier, Ajit et al., “Cross-layer optimization made
practical”, Fourth International Conference on Broadband
Communications, Networks and Systems, pp. 733 -742, 2007

[20] Lijun Chen, Stevenh. Low, Mung Chiang, John C. Doyle,
“Optimal cross-layer congestion control, routing and
scheduling design in ad hoc wireless networks”, In Proc. IEEE
INFOCOM, pp. 1-13, 2006

[21] Weilian Su and Tat L. Lim, “Cross-layer design and
optimisation for wireless sensor networks”, International Journal
of Sensor Networks, Volume 6, Number 1, pp. 3-12, 2009

[22] Christophe J. Merlin, “Adaptability in Wireless Sensor
Networks Through Cross-Layer Protocols and Architectures”,
PhD Dissertation, University of Rochester, New York, 2009

[23] M. V. Schaar and N. S. Shankar, “Cross-layer wireless
multimedia transmission: Challenges, principles, and new
paradigms,” IEEE Wireless Communications, Vol.12, Issue 4,
pp. 50-58, 2005

[24] Vineet Srivastava and Mehul Motani, “Cross-Layer Design:
A Survey and the Road Ahead”, IEEE Communications
Magazine, Vol. 43 Issue 12, pp. 112-119, 2005

[25] E. Kohler et. al, “Datagram Congestion Control Protocol”,
RFC 4340, 2006

[26] R. Stewart, Ed., “Stream Control Transmission Protocol”,
RFC 4960, 2007

[27] Christian Benvenuti, “Understanding Linux Network
Internals”, ISBN: 978-0-596-00255-8, O'Reilly Media, 2005

[28] C. Perkins et. al, “IP Mobility Support for IPv4”, RFC 3344,
2002

[29] R. Moskowitz et. al, “Host Identity Protocol (HIP)
Architecture”, RFC 4423, 2006

[30] W. Simpson, “IP in IP tunnelling”, RFC 1853, 1995
[31] IEEE 802.21 WG, IEEE Draft Standard for Local and

Metropolitan Area. Networks: “Media Independent Handover
Services”, IEEE P802.21/D10.0, 2008

[32] Xavier Leroy, “Compilation techniques for functional and

22

object oriented languages”, PLDI tutorial, 1998
[33] Marcin Chady, How C++ Works, Radical Entertainment

INC. available online at: http://pages.cpsc.ucalgary.
ca/~bdstephe/585_W11/d403_C++.pdf

APPENDIX
 Exposing new network parameters to the InterLay object

would require recompilation of the networking subsystems and that
would be inconvenience. Therefore the more comprehensive the list
of parameters to be exposed the better. However, not all parameters
would be used across layers, and exclude them would reduce the
size of InterLay object meaning less development work, lower
possibility of failure due to smaller size. As a result, we need to find
a method to find as many as possible of the suitable parameters to
be exposed.

In order to find the right parameters, we propose to define
the test questions to determine whether a parameter should be
exposed. The test questions are defined to find the parameters that
improve performance or flexibility of the connection. From current
and foreseeable network’s capabilities vs. services’ demands, we
propose the following three test questions.

●Question #1: Does the information signal a critical change of
condition of the network?

The relevance of this question is that if the information about
a critical change of condition of the network is available, it allows
higher layers (including user applications) to tune its activities to
the current or near future condition of the network.

 The information can be either calculated from a direct
parameter/attribute of the layer or the information it received. For
example, the application can switch to a slower codec to reduce the
sending data rate if congestion is judged as imminent when the
TCP layer either reports that the calculated RTT shows a time-out
event has occurred, or if the TCP layer receives an ECN (Explicit
Congestion Notification) from its peer.

On the other hand, the information can be the result of an
operation of the protocol. For example, the successful change of
IP address can trigger some appropriate action from the higher
layers, such as updating flows parameters or renegotiation of QoS
for the existing flow(s), etc. Another example is when the wireless
signal reaches a threshold so that an L2 handoff to another base
station is imminent, the L2 can either inform this threshold event
immediately (which gives more time for upper layers to prepare),
or wait until the network interface has successfully connected and
been authenticated to the new base station.

●Question #2: Does the information a static parameter that
regulates the performance of the transfer?

A layer can have many state variables; some are threshold
type, such as RTT, while others are real-time and static, such as
MSS, buffer size. Real-time static information can be used to
synchronize between parameter of different layers etc.

Threshold parameters are not useful by its direct reading, but
when it is associated with a threshold value, then it can either be
regarded as a static parameter (and belongs to this question), or it
can be categorized as belonging to question #1.

For example, the RTT by its straight value is not of much
use, but if it passes the threshold that generates an RTO event,
the event can be regarded as a signal of the change in network
condition (e.g. becoming congested) which then belongs to
category of question #1 above.

●Question #3: Is the information a parameter that helps to
identify the connection or its current progress?

 This question is relevant with more advance or future
capabilities of the networking subsystem, such as fault-tolerant/
failsafe/failover of connection, or session mobility, QoS, security,
etc. Currently, a session is still identified by IP addresses. However,
a separate ID would make it easier for issues such as mobility [12]
[13]. Also, checkpoint and acknowledged sequence number are
good example of markers for progress of a communication session.

One example of the application of this question is that it
is very complicated to provide reliable service across failure for
TCP sessions within the current model of TCP/IP. However,
if the application keeps track of the real-time static parameters
(those from question #2) as well as the current progress (such as
last checkpoint, sequence number) then it will be easier for the
application to restore the relevant session after a reboot.

The previous 3 test questions come from current and
foreseeable network’s capabilities and services’ demands, and they
need to be constantly examined to find out new test questions and
attributes/action() method to serve in different types of system
or service scenarios. However, the principles of the test questions
are universal enough so that when new service demands/network
capabilities arise new test questions can be introduced.

By applying the above questions to each layer, we can
summarize the list of some major parameters from famous
networks protocols in each layer that should be revealed to the
applications and other higher layers in the following tables (if the
first column is checked then the parameter is an event parameter).

For layer 2 (Data Link Layer) (Note: the first 7 parameters come
from MIH [31]

R/E Proto.
Family Param.Name Usage/Purpose

* Wireless Link Up The link is active and ready

* Wireless Link going up Support the preference of a
network

* Wireless Link Down Link cannot be used for data
transmission

* Wireless Link Going
Down

A link down event might be fired
soon → should start prepare for
HO

* Wireless
Link quality
 reaches
threshold

Link quality is under a pre-
conf ig . th re s . f o r a l ong
time→ should start prepare for
HO

* Wireless Better quality
AP avail.

An Access Point with a better
s ignal is avai lable. Might
provide higher data rate

* Wireless Link Handover
Complete

Notification of a fresh handoff.
The app. m igh t need t o
readjust its data rate

All Type of access
technology

(WIRED/WIRELESS/3G)
→ the application can infer
in general the rate, QoS,
Security…

Wired
 tech.

Electrical
Signal Stability

Preventing route damping in
routers

All MAC Support ID creation/
manipulation activities

23

For layer 3 (IP Layer)

R/E Pro.Fa Param.Name Usage/Purpose

All IP
 version

Source IP
address

Useful to restore connection
over network subsystem
reboot or adhoc handover

All IP
version

Dest. IP
 address

Useful to restore connection
over network subsystem reboot
or adhoc handover

All MIP
version CoA

Know the current attachment
point for any adhoc route
optimization

IPSec Security
 association

Useful to restore security
connection over network
subsystem reboot …

For layer 4 (Transport Layer)
R/E Pro.Fa Param.Name Usage/Purpose

All MSS To support Application Level
Framing

All Source Port Adhoc Mobility support

All Destination
 Port Adhoc Mobility support

TCP Sequence
Number

Adhoc Fault-Tolerant activities
etc…

* TCP ECN received Application tuning such as
changing codec etc.

* TCP RTO event
The app. knows that a RTO
just has taken place so it can
adjust its sending rate

TCP Window size Adhoc adjustment of transmit
rate by application

For layer 5 (i.e. equal to Session layer in OSI reference model):
R/E Pro.Fa Param.Name Usage/Purpose

N/A Checkpointing value Fault-Tolerant activities
etc…

N/A Session ID Fault-Tolerant, handoff
activities etc

In addition, some useful action() methods for IP protocol are
described as follows

Pro.Fa Method Name Usage/Purpose
IP MTU_change() Used to renegotiate the MTU

after adhoc handover of IP
connection

IP Route_Optimized() Used to perform RO to a
selected destination for a
selected IP connection

24

