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Chapter 1

Introduction

Individual authentication increases in importance as network technology advances.

IC passports, SIM cards, and ID cards used in entering and leaving management

systems are dependent on their embedded LSI chips for keeping their security.

These LSI chips achieve secure communication and reject counterfeit cards. The

LSI chip usually includes cryptography circuits and encrypt/decrypt important

data such as ID numbers and electronic money information.

There are symmetric-key cryptography and public-key cryptography as cryp-

tography circuits inside LSI chips. Symmetric-key cryptography such as DES [4]

and AES [5] are very popular and widely used. They make use of the same secret

key in encryption and decryption. However, it may be difficult to securely share

the same secret key, such as in communicating on the Internet. Public-key cryp-

tography, on the other hand, makes use of different keys to encrypt and decrypt

data so that it solves the key sharing problem of symmetric-key cryptography. One

of the most popular public-key cryptography algorithms is RSA [6], which is used

by many secure technologies such as secure key agreement and digital signature.

An elliptic curve cryptography (ECC) [7, 8] is well known as a public-key cryp-

tography with low cost and high throughput. Public-key cryptography is used by

many security applications to achieve secure communication. However, there is a

1



2 CHAPTER 1. INTRODUCTION

threat that a secret key may be retrieved in cryptography LSI circuits.

A scan path is one of the most important testing techniques. In a scan path,

registers inside an LSI are connected serially so that they can be controlled and

observed directly from outside the LSI. Then test efficiency can be increased sig-

nificantly. On the other hand, one can obtain register data easily by using a scan

path, which implies that one can retrieve a secret key in a cryptography LSI. This

is called a “scan-based attack”, The scan-based attack is a method to retrieve a

secret key from the scanned data obtained from the scan path in the cryptogra-

phy LSI. The scan-based attack has attracted attention over the years as new side

channel attack.

One of the difficulties in the scan-based attack is how to retrieve a secret key

from scanned data obtained from a cryptography LSI. In a scan path, registers

inside a circuit have to be connected so that its interconnection length will be

shortened to satisfy timing constraints. This means that no one but a scan-path

designer knows correspondence between registers and the scanned data. In order to

succeed the scan-based attack against the cryptography LSI, an attacker needs to

retrieve a secret key from the scanned data almost “randomly” connected. Yang

et al. first showed a scan-based attack against DES in 2004 and retrieved a se-

cret key in DES [9]. They also presented the scan-based attack against AES in

2006 [10]. Yang et al. proposes the method to make use of the hamming weight of

the scanned data storing intermediate values during encryption/decryption. This

is because this method only needs the correspondence between the scanned data

and intermediate values, but does not need the bit-to-bit correspondence between

them. To calculate the hamming weight of the scanned data for analysis, Yang’s

method needs to specify the position of registers storing the intermediate values so

that Yang et al. needs to observe the change of the intermediate values.

However, Yang’s method assumes the following two points below for the obser-

vation.
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RAM Random

Generator

MPU

Internal Bus

I/O

Con-
troller

Crypto-

circuit

Figure 1.1: Architecture of a security LSI.

Assumption 1: A scan path does not include random elements caused by mem-

ories, processors, I/Os, and control circuits other than registers of cryptog-

raphy circuits storing the intermediate values.

Assumption 2: An attacker knows when the registers store the intermediate

values necessary for analysis.

An cryptography circuit is not implemented onto an LSI by itself. It is implemented

onto an LSI with its memories, processors, I/Os, and control circuits (Figure 1.1).

It is quite possible that a scan path includes random elements caused by memories,

processors, I/Os, and control circuits other than registers of cryptography circuits

storing the intermediate values. In that case, an attacker cannot know when the

registers store the intermediate values necessary for analysis. If he/she do not have

both Assumption 1 and Assumption 2 above, it is very hard to retrieve a secret

key by using Yang’s method.

In this dissertation, we propose new scan-based attacks against AES, RSA, and

ECC. Our proposed new scan-based attack method against AES has an advantage

that we do not need the correspondence between the scanned data and the registers

of cryptography circuits storing the intermediate values, and further, we do not

have to know when the registers store the intermediate values necessary for analysis.

In addition to these advantages, we successfully reduce considerably the number of



4 CHAPTER 1. INTRODUCTION

input to retrieve a secret key. Therefore, our proposed scan-based attack against

AES is more practical and powerful than Yang’s method is. The algorithm of our

scan-based attack can retrieve a secret key of RSA and ECC circuits as well as AES.

Scan-based attacks against public-key cryptography have not been presented yet.

We propose the world’s first scan-based attacks against public-key cryptography

circuits. RSA circuit is more complicated than AES one, and an ECC algorithm is

much more complicated than the RSA one. However, our scan-based attacks are

almost independent of a scan-path structure, so that we successfully retrieve secret

keys inside them by using only 30 through 40 of input.

The purpose of our proposed attacking method is, not to make secure scan

architecture ineffective but to retrieve a secret key using scanned data in an cryp-

tography circuit with as few limitations as possible. In fact, our scan-based attack

method without any modification might not work against cryptography LSIs using

some secure scan architecture. However, some secure scan architecture cannot pre-

vent from our proposed scan-based attacks. Sengar’s secure scan architecture [2] in-

serts inverters between registers randomly in order to modify scanned data. Testers

can do scan path test because they know positions of inserted inverters, but at-

tackers do not know them and cannot turn modified scanned data back to normal.

However, inserted inverters whether invert or not the scanned data, whose modi-

fied pattern of a particular register is only two. Because our proposed attacking

method checks the same value corresponding the secret key whether exists or not

in columns of the scanned data, Sengar’s method is not effective against our pro-

posed scan-based attacks. In order to prevent our proposed scan-based attacks

from retrieving a secret key, we propose a new secure scan architecture named

state-dependent configurable secure scan path. We insert some state-dependent

scan flip-flops (SDSFFs) between registers. The SDSFF dynamically changes in-

verted positions so that our secure scan architecture prevents a secret key from

scan-based attacks effectively.

This dissertation is organized as follows:
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Chapter 2 [Scan-based Attack against AES] describes our proposed scan-

based attack against AES. We explain the algorithm and the architecture of AES

at first. AES is one of the most popular symmetric-key cryptography algorithm

and it is used by many security applications. We introduce Yang’s scan-based at-

tack against AES as a conventional method. We propose the new algorithm of a

scan-based attack against AES in this chapter. We experiment with scanned data

obtained from AES C simulator. Chapter 3 [Scan-based Attack against RSA]

describes our proposed scan-based attack against RSA. We explain the algorithm

and the architecture of RSA. RSA is the first public-key algorithm in practical

use, which is used by many secure technologies such as secure key agreement and

digital signature. Second, we explain the correspondence between a secret key

and intermediate values during decryption, and then we propose the world’s first

scan-based attack against RSA. We experiment with scanned data obtained from

RSA C simulator. Chapter 4 [Scan-based Attack against ECC] describes our

proposed scan-based attack against elliptic curve cryptography (ECC). We explain

the algorithm and the architecture of ECC at first. ECC is one of the public-key

algorithm, whose merit is superior cryptography strength. 160-bit key size of ECC

is as the same security level as 1,024-bit key size of RSA. Second, we explain the

algorithm to retrieve a secret-key from intermediate values during a scalar multi-

plication of ECC, and then we propose the world’s first scan-based attack against

ECC. We experiment with scanned data obtained from ECC gate-level simulator.

Chapter 5 [State-dependent Secure Scan Architecture] describes our pro-

posed secure scan architecture. Secure scan architecture is important technique

in order to prevent scan-based attacks. We explain our proposed state-dependent

scan flip-flops (SDSFFs) and the architecture of secure scan path using them. We

experiment with state-dependent secure scan path in order to validate the effec-

tiveness and area overhead. Chapter 6 [Conclusion] summarizes our research

and indicates future works.



Chapter 2

Scan-based Attack againt AES

In this chapter, we propose a scan-based attack method against AES which re-

trieves a secret key, even if its scan path includes random elements other than the

128-bit register storing the round function output in AES. Our proposed method

checks whether data specific to the secret key exists or not in the scanned data.

Unlike Yang’s method, our method is not influenced by other registers since we only

focus on 1-bit register value. Then our method can attack an AES cryptography

LSI, even if its scan path contains registers other then AES circuits.

If a secret key on an AES cryptography LSI is retrieved by using our proposed

method, attackers may make a counterfeit smart card and steal money by using it.

They also may have an unauthorized access to the Internet and do an expensive

shopping. It is worth pointing out that there is vulnerability in the scan path of

an AES-based cryptography LSI.

2.1 AES encryption algorithm

The Advanced Encryption Standard (AES) is a symmetric-key encryption stan-

dard announced in 2001 as FIPS PUB 197 [5] by National Institute of Standards

and Technology (NIST). The AES is expected to completely replace the Data En-

6



2.1. AES ENCRYPTION ALGORITHM 7

cryption Standard (DES) [4], and it has been already used by many cryptography

applications.

The AES algorithm encrypts and decrypts 128-bit data using a 128-bit, 192-bit,

or 256-bit secret key. The AES algorithm is shown in Figure 2.1. See [5] in the

detailed algorithm. After an input data is XORed to the initial round key (which

is called the pre-round function), the AES algorithm encrypts it by applying the

round function to it 10, 12, or 14 times, depending on the key bit length. The

round function uses the round keys generated using the key expansion process as

shown in Figure 2.2.

Assume that a secret key has a length of 128 bits. Hereafter, all the variables

and round keys in the AES algorithm have a length of 128 bits. Each of the

variables and round keys is shown by the 4 × 4 matrix, each of whose elements

is 8-bit data. For example, let a be a 128-bit plaintext. Then it is composed of

a0,0, a0,1, · · · , a3,3, each of which is an element of a which is a 8-bit data (or a byte

data) as in Figure 2.1. In this chapter, similar notations will be applied to other

variables and round keys.

By applying the key expansion process to the 128-bit secret key, we have the

11 round keys, RK0, · · · , RK10, whereby the first one is the initial round key and

each of the others are used for each of the 10 round functions. Each round func-

tion other than the final one is composed of SubBytes, ShiftRows, MixColumns,

and AddRoundKeys and the final one is composed of SubByes, ShiftRows, and

AddRoundKeys.
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Figure 2.1: AES algorithm.
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2.1.1 SubBytes: c = SubBytes(b)

The SubBytes function is a non-linear byte-wise substitution using the S-box which

is expressed as follows:

1. Compute the multiplicative inverse in the finite field GF(28), whose irre-

ducible polynomial is m(x) = x8 + x4 + x3 + x + 1.

2. Apply the affine transformation over GF(2).

2.1.2 ShiftRows: d = ShiftRows(c)

In the ShiftRows function, each row in the input are cyclically shifted as follows:

1. The first row is not shifted,

2. The second row is shifted to the left by one byte,

3. The third row is shifted to the left by two bytes, and,

4. The fourth row is shifted to the left by three bytes.

2.1.3 MixColumns: e = MixColumns(d)

The MixColumns function is a column-by-column linear function whereby we con-

sider each column in the input as a four-term polynomial over GF(28). It can be

written as a matrix multiplication as in Eqn (2.1).
e0,k

e1,k

e2,k

e3,k

 =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




d0,k

d1,k

d2,k

d3,k

 (2.1)

where 0 ≤ k ≤ 3.
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2.1.4 AddRoundKey: f = AddRoundKey(e,RKℓ)

In the AddRoundKey function, the input is XORed to the round key bit by bit.

2.2 Scan-based attack

The purpose of a scan-based attack is to retrieve the secret key from scanned data in

a cryptography circuit. Throughout this chapter, we focus on AES as a cryptogra-

phy. AES encryption repeats the round function 10 times when the size of a secret

key is 128 bits. The round function uses the 11 round keys RK0, RK1, · · · , RK10

which are generated from a secret key using the key expansion process as in Fig-

ure 2.2. If one of the 11 round keys is known, its secret key can be easily computed.

A scan-based attack against AES retrieves one of the 11 round keys from scanned

data and then computes the secret key using it.

As an AES cryptography, an architecture as in [11] can be used. Assume that

128-bit plaintext a is given. As in Figure 2.1, the result b is obtained by XORing a

with the round key RK0 (pre-round function). The result goes into the 1st round

function. The output of the 1st round function is stored into the 128-bit register

R and it goes into the 2nd round function. When the secret key bit length is 128,

the loop counts are 10.

In the AES cryptography LSI [11], the following three points are assumed:

1. Attackers can input any plaintext to the AES cryptography LSI.

2. Attackers can obtain scanned data from the scan path.

3. Connection sequence in the scan path is random and unknown.

In [12], two more points are assumed in addition to the points above, which is

described in Section 2.3. The main contribution of this chapter is to propose a

new scan-based attack which just assumes the above three points.
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2.2.1 Scan path test

A scan path connects registers in an circuit serially so that a tester can observe

the register values inside the circuit easily. The scan path is widely used in recent

circuit implementations due to its testability and easiness.

Scan path test needs to replace standard flip-flops(FFs) with scan flip-flops(SFFs).

An SFF usually consists of an FF and a multiplexer. The multiplexer output pin is

connected to the FF input pin. It selects one from its two inputs. When the select

line of the multiplexer is 0, it outputs the combinational circuits output. When the

select line of the multiplexer is 1, it outputs the SFF output. A scan path model

is shown in Figure 2.3. Control pin is used to choose between the system mode

or the test mode. While Control pin is 0, normal operation is performed in the

system mode as shown in Figure 2.4. While Control pin is 1, SFFs are connected

serially and we obtain scanned data stored in each FF from the scan out as shown

in Figure 2.5.

We call three operations at test mode as ”Scan In”, ”Capture”, and ”Scan Out”

and we can control and observe internal states of cryptography circuits through

the scan path.

Scan In: Input test patterns to scan FFs inside circuits at test mode.

Capture: Operate normally at system mode.

Scan Out: Observe values of FF inside circuits at test mode.

Testers prepare test patterns for input and anticipated output patterns corresponds

to input patterns. They input test patterns in ”Scan In” at test mode, and operate

circuits at one or some cycles in ”Capture” at system mode, and obtain scanned

data in ”Scan Out” at test mode. If scanned data corresponds with anticipated

output patterns, they find the circuits operates accurately.
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2.2. SCAN-BASED ATTACK 13

2.2.2 Problems to retrieve the round keys

Let a be a plaintext, RKℓ be the round keys, Round be the round function for

1st loop to 10th loop, and Round final be the last round function, where ℓ in

RKℓ shows the loop count in the Figure 2.1. Then the round function output fℓ

at Round ℓ is expressed as in Eqn. (2.2).

f1 = Round(RK1, a⊕RK0)

fℓ = Round(RKℓ, fℓ−1) (2 ≤ ℓ ≤ 9)

f10 = Round final(RK10, f9)

(2.2)

In Round 1, a ⊕ RK0 shows the pre-round function. At Round 1, the round

function output f1 is given by a function of the plain text a, the round key RK0,

and the round key RK1. At Round 2 or later (2 ≤ ℓ ≤ 10), the round function

output fℓ is given by a function of fℓ−1 and the round key RKℓ.

As indicated above, fℓ is influenced by RK0, RK1, · · · , RKℓ. This means that

it is best for us to analyze the round function output f1 at Round 1 because f1 is

given by Round(RK1, a ⊕ RK0), which only includes a, RK0, and RK1. Since

the round function output f1 is stored in the register R at several clocks after the

plaintext is inputted, it may be obtained from the scanned data.

However, there are the following three problems to solve in order to retrieve

the round key RK0 from the scanned data:

Problem 1: The round function output f1 includes the two round keys RK0 and

RK1.

Problem 2: The round key RK0 is a 128-bit data. The number of possible values

of RK0 becomes 2128 and it is impractical to perform exhaustive search for

all of them.

Problem 3: The bit-to-bit correspondence between the scanned data and the reg-

ister R is unknown.
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2.2.3 Eliminating the round key RK1 rrom the round func-

tion output f1

In order to solve the Problem 1 in Section 2.2.2, the round key RK1 have to be

eliminated from the round function output f1. The AddRoundKey is the last sub-

function of the 1st round function. In the AddRoundKey, its input e is XORed to

the round key RK1 and then we have the round function output. Consider that,

if the two identical values are XORed, we will have zero.

Let a1 and a2 be two plaintexts, e1 and e2 be their MixColumns outputs, f 1
1

and f 2
1 be the round function outputs, respectively. As shown in Eqn. (2.3), the

result of f 1
1 ⊕ f 2

1 is independent of the round key RK1. e1 ⊕ e2 can be computed

with only the two plaintexts a1 and a2, and the round key RK0, not using RK1.

f 1
1 ⊕ f 2

1 = (e1 ⊕RK1) ⊕ (e2 ⊕RK1)

= e1 ⊕RK1 ⊕ e2 ⊕RK1

= e1 ⊕ e2 ⊕RK1 ⊕RK1

= e1 ⊕ e2 (2.3)

By using e1 ⊕ e2, we can eliminate RK1 from the round function output.

2.2.4 Obtaining the data dependent on the single element

in RK0

Problem 2 can be solved as follows: Let us consider to retrieve the round key RK0

from two plaintexts a1 and a2, and their XORed MixColumns outputs e1 ⊕ e2.

First assume that it is possible to find anyhow the round function outputs f 1
1

and f 2
1 for the plaintexts a1 and a2, respectively, from the scanned data. Then, the

simplest retrieving method is to perform exhaustive search for all possible values

for RK0. However, the number of possible values of RK0 becomes 2128 and it is

impractical to perform exhaustive search for all possible values for RK0.
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This problem is solved by generating the data which only depends on a single

element of RK0. Let a1 and a2 be two plaintexts which has the same values except

for their first element a10,0 and a20,0 as in Eqn. (2.4):

a1 =


a10,0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , a2 =


a20,0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (2.4)

If a1 and a2 defined above are given to the round function, we have the two round

function outputs f 1
1 and f 2

1 at Round 1. As in Figure 2.6, only the first column of

f 1
1 ⊕ f 2

1 depends on a10,0, a
2
0,0, and RK00,0. The other columns of f 1

1 ⊕ f 2
1 becomes

zero. The number of possible values of RK00,0 becomes at most 28 = 256 and then

it is very practical to perform exhaustive search for all possible values for RK00,0.

All other elements of the round key RK0 can be retrieved in the same way.
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2.2.5 Correspondence between the round function output

and the scanned data

In fact, Problem 3 is essential in the scan-based attack. In a scan chain, registers

inside a circuit have to be connected so that its interconnection length will be short

for satisfying constraints. This means that no one but a scan-chain designer knows

correspondence between registers and scanned data. Attackers cannot compare the

expected data with the scanned data and cannot retrieve the round key RK0.

Yang et al. proposed the solution for this problem as in Section 2.2.6

2.2.6 Yang’s method

In order to solve Problem 3, Yang et al. proposes the method to make use of the

hamming weight of the first column of f 1
1 ⊕ f 2

1 to retrieve the round key RK0 [12].

This is because this method only needs the correspondence between the first column

of f 1
1 or f 2

1 and the scanned data, but does not need the bit-to-bit correspondence

between them.

Retrieving b0,0 with the hamming weight

The output b of the pre-round function is obtained by XORing a plaintext a and

the round key RK0. On the contrary, RK0 is calculated by a ⊕ b. From the

viewpoint of the first element (0, 0), the following equation can be obtained:

a0,0 ⊕ b0,0 = a0,0 ⊕ (a0,0 ⊕RK00,0)

= (a0,0 ⊕ a0,0) ⊕RK00,0

= RK00,0 (2.5)

This means that, retrieving RK00,0 is equivalent to retrieving b0,0. Now consider

to retrieve b0,0 from the round function output f1 at Round 1.

First, consider the relation between b and the round function output f1 at

Round 1. Assume that b1 and b2 which has the same values except for their first
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Table 2.1: Relation of the hamming weight of the first column of f 1
1 ⊕ f 2

1 and

(b10,0, b
2
0,0).

Hamming weight (b10,0, b
2
0,0)

9 226, 227

12 242, 243

23 122, 123

24 130, 131

elements b10,0 and b20,0 are obtained. Let us further assume that b10,0 and b20,0 satisfy

Eqn. (2.6) below:b10,0

b20,0

 =

 2m

2m + 1

 or

b10,0

b20,0

 =

2m + 1

2m

 (2.6)

where 0 ≤ m ≤ 127. The round function outputs f 1
1 for b1 and f 2

1 for b2 can be

calculated and then f 1
1 ⊕ f 2

1 is obtained. As shown in Figure 2.6, the first column

of f 1
1 ⊕ f 2

1 depends on b10,0 and b20,0 and the other elements becomes zero.

Since the number of possible values of (b10,0, b
2
0,0) satisfying Eqn. (2.6) becomes

merely 27 = 128, all possible values of (b10,0, b
2
0,0) can be evaluated and the hamming

weight of the first column of f 1
1 ⊕ f 2

1 for each of them can be calculated. If and

only if (b10,0, b
2
0,0) is (226, 227), the hamming weight of the first column of f 1

1 ⊕ f 2
1

becomes 9. Then, if the hamming weight of the first column of f 1
1 ⊕ f 2

1 for two

plaintexts a1 and a2 becomes 9, (b10,0, b
2
0,0) can be (226, 227). There are four such

cases which are summarized in Table 2.1.

Hence, there are still two problems remaining to be solved:

Problem (i): The correspondence between the first column of the round function

output and the scanned data is unknown.

Problem (ii): Two plaintexts a1 and a2 are required such that, if the pre-round

function is applied to them, b10,0 and b20,0 satisfy Eqn. (2.6).
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Specifying the rirst column of the round function in the scanned data

In order to solve Problem (i), the 32 1-bit registers storing the first column of the

round function output at Round 1 must be specified in the scanned data.

By applying the method described in the Section 2.2.4, the first column of the

round function output depends on the plaintext element a0,0. Several plaintexts

which have the same values except for the element a0,0 are inputted into the AES

circuit and, after Round 1 is over, their scanned data sets are picked up and

compared one another. If one of the scanned data is different from another one,

a0,0 causes the differences. The positions in which the bit data is different give the

32 1-bit registers storing the first column of the round function output at Round

1 in the scanned data, because their positions are the same even if the input is

different.

Selection of the plaintext elements a10,0 and a20,0

Consider to solve Problem (ii). Let a1 and a2 be two plaintexts which have the

same value except for their first elements a10,0 and a20,0 defined as in Eqn. (2.7)

below. a10,0

a20,0

 =

 2t

2t + 1

 or

a10,0

a20,0

 =

2t + 1

2t

 (2.7)

where 0 ≤ t ≤ 127. If a10,0 is XORed to RK00,0 and also a20,0 is XORed to RK00,0,

we can have the Eqn. (2.8) below regardless of the value in RK0:a10,0 ⊕RK00,0

a20,0 ⊕RK00,0

 =

 2m

2m + 1

 or

2m + 1

2m


=

b10,0

b20,0

 (2.8)

where 0 ≤ m ≤ 127. Then the two plaintexts a1 and a2 are prepared which have

the same value except for their first elements satisfying Eqn. (2.7).
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Number of plaintexts to retrieve RK0 with Yang’s method

Yang et al. shows that six plaintexts on average and 15 plaintexts in the worst case

are required for specifying the 32 1-bit registers in the scanned data in Section 2.2.6.

Since RK0 is composed of four columns, then 4 × 6 = 24 plaintexts on average

and 4 × 15 = 60 plaintexts in the worst case are required. Let us consider how

many plaintexts are required to retrieve RK0. The number of possible patterns

for a1 and a2 which satisfies the discussion in Section 2.2.6 is 128. We have four

hamming weight values of 9, 12, 23, and 24, which lead to retrieving RK0. Thus,

the number of required plaintexts to retrieve one of the elements in RK0 becomes

128/4 = 32 on average and 128 − 4 = 124 in the worst case. Since the number of

the elements in RK0 is 16, the number of plaintexts to retrieve all the elements in

RK0 becomes 32 × 16 = 512 on average and 128 × 16 = 1, 984 in the worst case.

Overall, 24 + 512 = 536 plaintexts on average and 60 + 1, 984 = 2, 044 plaintexts

in the worst case are required to retrieve RK0 by using Yang’s method.
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2.3 Proposed method

In addition to the assumptions described in the Section 2.2.1, Yang’s method as-

sumes the following two more points below when specifying the first column of the

round function in the scanned data.

Assumption 1: A scan path does not include random elements caused by mem-

ories, processors, I/Os, and control circuits other than the register R storing

the round function output.

Assumption 2: We know when the round function output at Round 1 is stored

in the register R.

An AES circuit is not implemented onto an LSI by itself. It is implemented

onto an LSI with its memories, processors, I/Os, and control circuits (Figure 2.7).

It is quite possible that a scan path includes random elements caused by memories,

processors, I/Os, and control circuits other than the register R storing the round

function output.

Further, we cannot know when the round function output at Round 1 is stored

into the register R. After a plaintext is inputted, we may require one clock cycle

to obtain the round function output at Round 1 but may require several clock

cycles to obtain it depending on the AES architecture. If we do not have both

Assumption 1 and Assumption 2 above, it is very hard to retrieve a secret key by

using Yang’s method.

In this section, we propose a new scan-based attack method whereby we do not

need the correspondence between the scanned data sd and the register R storing

the round function output, and further, we do not have to know when the round

function output at Round 1 is stored in the register R. In that sense, it is more

practical and powerful attack than Yang’s method.

Our method focuses on the round key element RK00,0 which only has 28 possible

values. First, we assume one value k for RK00,0 and calculate specific informa-
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tion to k, which is called a discriminator to RK00,0. Second, we retrieve several

scanned data sd0, · · · , sdn and check if they include the discriminator or not. If

sd0, · · · , sdn include the discriminator, k is equal to RK00,0. If they do not include

the discriminator, k is not equal to RK00,0. We can ignore registers other than the

register R storing the round function output, since the discriminator is unique to

RK00,0.

Even if we do not know when the round function output at Round 1 is stored

into the register R, we can retrieve the scanned data several times and connect

them as a single one. We can retrieve RK00,0 when the register R storing the

round function output at Round 1 is included anywhere in the scanned data.

2.3.1 Discriminator of RK00,0

Assume that we have two plaintexts a1 and a2 whose first element (0, 0) has a

different value but other elements have the same values. Let f 1
1 and f 2

1 be the

round function outputs at Round 1 for a1 and a2, respectively. By calculating

f 1
1 ⊕ f 2

2 as in Figure 2.6, the four elements of 32-bit data in the first column

only depend on a10,0, a
2
0,0, and RK00,0 and the other elements become zero. The

four elements of 32-bit data in the first column of f 1
1 ⊕ f 2

2 can be shown as in
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Eqns. (2.9)–(2.11):
f 1
0,0 ⊕ f 2

0,0

f 1
1,0 ⊕ f 2

1,0

f 1
2,0 ⊕ f 2

2,0

f 1
3,0 ⊕ f 2

3,0

 =


e10,0 ⊕ e20,0

e11,0 ⊕ e21,0

e12,0 ⊕ e22,0

e13,0 ⊕ e23,0



=


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




d10,0 ⊕ d20,0

d11,0 ⊕ d21,0

d12,0 ⊕ d22,0

d13,0 ⊕ d23,0

 (2.9)

Since the two plaintexts a1 and a2 have the same value except for their first element,

we have d10,0 ̸= d20,0, d
1
1,0 = d21,0, d

1
2,0 = d22,0, and d13,0 = d23,0 as in Figure 2.6. Then

we have:

=


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




d10,0 ⊕ d20,0

0

0

0

 (2.10)

At ShiftRows, we have c0,0 = d0,0, c1,0 = d1,0, c2,0 = d2,0, and c3,0 = d3,0. Then we

have:

=


02(c10,0 ⊕ c20,0)

c10,0 ⊕ c20,0

c10,0 ⊕ c20,0

03(c10,0 ⊕ c20,0)

 (2.11)

Eqns. (2.9)–(2.11) show that the four elements of 32-bit data in f 1
1 ⊕ f 2

1 can be

calculated by XORing the SubByte outputs c10,0 and c20,0, where c10,0 is derived from

a10,0 ⊕ RK00,0 and c20,0 is derived from a20,0 ⊕ RK00,0. The 8-bit value of c10,0 ⊕ c20,0

depends on only a10,0, a
2
0,0 and RK00,0 and, if we can give a10,0 and a20,0 systematically,

c10,0 ⊕ c20,0 can be used as a candidate of discriminators to retrieve RK00,0.

Now we propose our discriminator to retrieve RK00,0.
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Figure 2.8: A discriminator for retrieving RK00,0.

D1: First we assume one value k for RK00,0. Then let a00,0 be zero and aq0,0 (q =

1, · · · , n) be a 8-bit arbitrary non-zero value such that ap0,0 ̸= aq0,0 (p ̸= q).

D2: We calculate c00,0 ⊕ cq0,0 using a00,0, a
q
0,0 (q = 1, · · · , n), and the assumed value

k for RK00,0, by applying the pre-round function and SubBytes to them.

D3: We focus on each bit of c00,0⊕ cq0,0 (q = 1, · · · , n). As shown in Figure 2.8, the

LSB of c00,0 ⊕ cq0,0 (q = 1, · · · , n) will give us n-bit data which is dependent

on a00,0, a
1
0,0 · · · an0,0, and k. We employ this n-bit data as the discriminator to

retrieve RK00,0 and it is denoted by Dk.

2.3.2 Retrieving RK00,0 using our discriminator

Using the n-bit discriminator proposed in Section 2.3.1, we retrieve the round key

element RK00,0 as follows: Let aq0,0 (1, · · · , n) be the 8-bit data which is determined

at Step D1 in Section 5.1 to calculate the discriminator Dk. Then we can have the

(n + 1) plaintexts as shown in Eqn. (2.12).

a0 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , aq =


aq0,0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 (2.12)
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Scan chain

Figure 2.9: n-bit data based on sd0 ⊕ sdq (q = 1, · · · , n).

where q = 1, · · · , n. Assume that we have the scanned data sd0, sd1, · · · , sdn

which include the round function output at Round 1 anywhere for a0, a1, · · · , an,

respectively. sd0, sd1, · · · , sdn can include any register values, such as those in

other circuits. Then we focus on each bit of sd0 ⊕ sdq (q = 1, · · · , n). Since each

bit of sd0, sd1, · · · , sdn always has the particular register value, we can have a set

of n-bit data which corresponds to the particular register as in Figure 2.9.

At that time, if there exists the discriminator Dk in a set of the n-bit data,

the assumed value k for RK00,0 is correct since Dk appears in the n-bit data only

when the calculation of c00,0 ⊕ cq0,0 for q = 1, · · · , n is correct. This means that we

succeed to retrieve RK00,0. Otherwise, the assumed value k for RK00,0 is incorrect

and we try the next value for RK00,0.

2.3.3 Retrieving RK0 using our method

Overall process to retrieve RK0 with our method is shown as follows:

P1: Calculation of discriminators.
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• Let a0,0 be zero and aq0,0 (q = 1, · · · , n) be a 8-bit arbitrary non-zero

value such that ap0,0 ̸= aq0,0 (p ̸= q).

• Calculate the discriminator Dk for each k (k = 0, · · · , 255) of all 256

patterns of RK00,0.

P2: Obtaining scanned data.

• Let a0 and aq (q = 1, · · · , n) be 128-bit plaintexts whose (0, 0) element

is a00,0 and aq0,0 (q = 1, · · · , n) determined at Step P1, respectively, and

the other elements are all zero.

• Obtain scanned data sd0 and sdq (q = 1, · · · , n) including the round

function output at Round 1 using a00,0 and aq0,0 (q = 1, · · · , n).

• Calculate sd0 ⊕ sdq (q = 1, · · · , n) from the scanned data sd0 and

sdq (q = 1, · · · , n).

P3: Retrieving RK00,0.

• Check if the discriminator Dk (k = 0, · · · , 255) exists in a set of n-bit

data obtained from sd0 ⊕ sdq (q = 1, · · · , n). If Dk exisits, then RK00,0

is retrieved as k.

P4: Retrieving RK0.

• Retrieve the other elements in RK0 by repeating the above steps.

Our method retrieves RK0 by checking whether the discriminator Dk exists in

each bit of sd0⊕sdq (q = 1, · · · , n) or not. When the number of plaintexts prepared

in Steps P1 and P2 above is large enough, our method successfully retrieve the

round key RK0 if the register R storing the round function output at Round 1

is included anywhere in the scanned data. The scanned data may include data

in other circuits, the round function outputs at Round 2 and later, and/or round

function output before Round 1 (that will be zero or anything).
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The number of required plaintexts to retrieve is calculated as follows: First,

our method requires (n + 1) plaintexts to retrieve one element of RK0. However,

since the plaintext a0 only consists of zero as in Eqn. (2.12), this plaintext will

be commonly used to retrieve the other elements in RK0. Then we can retrieve

each element other than the first one in RK0 by using n plaintexts. In summary,

retrieving the round key RK0 requires n + 1 + 15n = 16n + 1 plaintexts in total

by using our proposed method.

As in Section 2.4, the number n of required plaintexts to correctly retrieve a

single element in RK0 will be 16 to 20.
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Figure 2.10: Discriminators D0
k, D

1
k, · · · , D7

k for retrieving RK00,0.

2.3.4 Reduction of plaintexts to retrieve RK0

Now, we consider to reduce plaintexts required by our proposed method to retrieve

the round key RK0.

As described in Section 2.3.1, our discriminator Dk is a n-bit data composed

of the LSB of c00,0 ⊕ cq0,0 (q = 1, · · · , n). However, since c00,0 ⊕ c10,0 is a 8-bit data,

we can also have 8 n-bit data, each of which is composed of each bit of c00,0 ⊕

cq0,0 (q = 1, · · · , n) (See Figure 2.10). These 8 n-bit data can also be used as a set

of discriminators {D0
k, · · · , D7

k} for the value k.

If they all can be found in the scanned data, we can conclude that RK00,0

is k. But if one of them cannot be found in the scanned data, RK00,0 is not k.

Then we can reduce the number of required plaintexts smaller than our original

one proposed in Section 2.3.3.

As in Section 2.4, the number n of required plaintexts to correctly retrieve a

single element in RK0 will be reduced to 14 to 18.

2.4 Performance analysis

In this section, we simulate our proposed method and analyze the number of plain-

texts required to retrieve the round key RK0. We have conducted three types of

experiments:
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1. The AES architecture model is the one in [11] and the size of the secret key

is 128 bits, which is the same condition as Yang’s method [12]. The scan

path includes only the register R storing the round function output.

2. The scan path includes the register R storing the round function output at

Round 1 and also registers other than R.

3. The scan path includes the round function output at Round 1 and those at

Round 2 through Round 10.

In each experiment, we generate randomly 10,000 secret keys and retrieve each of

them using our method (Section 2.3.3) and our improved method (Section 2.3.4).

Then we calculate the number of plaintexts required to correctly retrieve each of

them.

Experiment 1 In Experiment 1, our method can retrieve the round key element

RK00,0 by using 16 plaintexts on average and 20 plaintexts in the worst case.

When retrieving all the elements in the round key RK0, we need 16×16+1 = 257

plaintexts on average and 20 × 16 + 1 = 321 plaintexts in the worst case. Our

improved method described in Section 2.3.4 can retrieve the round key element

RK00,0 by using 14 plaintexts on average and 18 plaintexts in the worst case.

When retrieving all the elements in the round key RK0, we need 14×16+1 = 225

plaintexts on average and 16 × 16 + 1 = 257 plaintexts in the worst case.

As described in Section 2.2.6, Yang’s method requires 536 plaintexts on aver-

age. Our method achieves 48% reduction of the number of the required plaintexts

experimentally.

Figure 2.11 summarizes the number of required plaintexts on average to retrieve

RK0 comparing Yang’s method and our methods.

Experiment 2 In Experiment 2, we first obtain the scanned data composed

of the 128-bit register R only and then add random bits to it. Total bit length
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of scanned data is 128 (no extra data is added) to 4,096 (3,968-bit extra data is

added). We calculate the number of required plaintexts by using our improved

method in Section 2.3.4 to correctly retrieve the round key RK0. Figure 2.12

shows the experimental results.

Generally saying, if several plaintexts which have the same value except for

their first element are given to the AES cryptography LSI, they affect not only the

register R storing the round function output but also the registers in other circuit

elements such as memories and peripheral circuits. Since the scanned data will

include several “extra” data in them, the extra data can be randomly changed by

inputting these plaintexts.

Yang’s method assumes in Section 2.2.6 that several plaintexts which have the

same value except for their first element affect the only round function output, but

which is not the case in a practical AES cryptography LSI.

On the other hand, the experimental results show that our method can suc-

cessfully retrieve the round key even if the scanned data includes the random data

other than the register R storing the round function output. Even if the scanned

data includes the 3,968-bit random data other than the round function output,

our improved method is capable to retrieve the round key RK0 only requiring

20 × 16 + 1 = 321 plaintexts on average and 23 × 16 + 1 = 369 plaintexts in the

worst case.

Experiment 3 Figure 2.13 shows the number of required plaintexts to retrieve

the scanned data including the round function output at Round 1 only, and the

number of required plaintexts to retrieve the scanned data including the round

function output at Round 1 through Round 10.

As in Experiment 2, Yang’s method assumes in Section 2.2.6 that several plain-

texts which have the same value except for their first element affect the only round

function output at Round 1. If the scanned data includes not only the round func-

tion output at Round 1 but also round function outputs at Round 2 through 10,



2.5. CONCLUDING REMARKS 31

these input plaintexts affect all of these round function outputs. This means that

we cannot find out the positions storing the first column of the round function

output Round 1 unlike the discussion in Section 2.2.6.

On the other hand, even if the scanned data includes the round function output

other than Round 1, the experimental results show that our method can success-

fully retrieve the round key. Even if the scanned data includes all of the round

function output, our improved method is capable to retrieve the round key RK0

only requiring 19 × 16 + 1 = 305 plaintexts on average and 22 × 16 + 1 = 353

plaintexts in the worst case.

2.5 Concluding remarks

The scan-based attack proposed by Yang et al. is an effective attack but has dis-

advantages that they assume too ideal AES cryptography LSI. In contrast, our

proposed method can perform scan-based attack without such assumptions. Our

method does not have to know when the round function output is stored in the reg-

ister R. Our method can retrieve the round key RK0 even if its scan path includes

random elements caused by memories, processors, I/Os, and control circuits other

than the register R storing the round function output. Furthermore, our method

can reduce the number of plaintexts by 48% compared with Yang’s method. Our

method is more practical and powerful than Yang’s method.
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Figure 2.11: Number of plaintexts required to retrieve RK0 or RK00,0 on average.
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Figure 2.12: The experimental results for Experiment 2.
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Figure 2.13: The experimental results for Experiment 3.



Chapter 3

Scan-based Attack againt RSA

In this chapter, we propose a scan-based attack against an RSA circuit, which

is almost independent of a scan-path structure. The proposed method is based

on detecting intermediate values calculated in an RSA circuit. We focus on a 1-

bit time-sequence which is specific to some intermediate value. We call it a scan

signature because its value shows their existence in the scanned data obtained from

an RSA circuit. By checking whether a scan signature is included in the scanned

data or not, we can retrieve a secret key in the target RSA circuit even if we do

not know a scan path structure, as long as a scan path is implemented on an RSA

circuit and it includes at least 1-bit of each intermediate value.

3.1 RSA Algorithm

RSA cryptography [6] was made public in 1978 by Ronald Linn Rivest, Adi Shamir,

Leonard Max Adleman. The RSA is known as the first algorithm which makes

public-key cryptography practicable. It is commonly used to acheive not only

encryption/decription but also a digital signature and a digital authentication,

so that most cryptography LSIs in the market implement and calculate the RSA

cryptography.

33
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The security of an RSA cryptography depends on the difficulty of factoring

large numbers. To decrypt a ciphertext of an RSA cryptography will be almost

impossible on the assumption that no efficient algorithm exists for solving it.

3.1.1 Encryption and decryption

An RSA algorithm encrypts a plaintext with a public key (n, e) and decrypts a

ciphertext with a secret key (n, d). Let us select two distinct prime numbers p and

q. We calculate n by multiplying p by q, which is used as the modulus for both a

public key and a secret key. To determine exponents of them, we calculate φ(pq)1

for multiplying (p− 1) by (q − 1).

Let us select an integer e satisfying the conditions that 1 < e < φ(pq) and, e

and φ(pq) is coprime, where e is an exponent of a public key. Let us determine an

integer d satisfying the congruence relation de ≡ 1 mod φ(pq). That is to say, the

public key consists of the modulus n and the exponent e. The private key consists

of the modulus n and the exponent d.

Let us consider that Alice secretly sends a message m to Bob. First, Alice re-

ceives his public key (n, e). Second, she calculates the ciphertext c with Eqn. (3.1).

c = me mod n (3.1)

Then Alice transmits c to Bob. Bob decrypts c by using his private key and receive

her message m. Eqn. (3.2) represents a decryption computation.

m ≡ cd mod n (3.2)

3.1.2 Binary method

The bit length of an RSA key must be more than 1,024 bits because its security

depends on its key length. It is currently recommended that n be at least 2,048

1φ() is Euler’s totient function.
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Algorithm 1 Binary method (MSB to LSB).

Input: c, d, and n.

Output: cd mod n.

i = L− 1.

m = 1.

while i ≥ 0 do

m = m2 mod n.

if di = 1 then

m = m× c mod n.

end if

i = i− 1.

end while

return m.

m = 1 m=1 c mod n2 m=c mod n2
m=(c ) c mod n2 2 m=(c ) c mod n

25

c c c

Figure 3.1: Binary method example (d = 10112).

bits long [13]. This means that the exponent d in Eqn. (3.2) is at least 1,024

bits long. When we decrypt a cyphertext, its computation amount becomes quite

large without modification. Since modulo exponentiation dominates the execution

time of decrypting a cyphertext, efficient algorithms have been proposed. The

binary method [14], as shown in Algorithm 1, is one of the most typical exponent

algorithms. In Algorithm 1, the exponent d is represented by d = dL−12
L−1 +

dL−22
L−2 + · · ·+ d12 + d0, where L shows the maximum key bit length. Figure 3.1

shows an example of the binary method in case of d = 10112.
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3.2 Scan-based attack against RSA

A scan path connects registers in an circuit serially and makes us access to them

directly so that a tester can observe register values inside the circuit easily. We

explain a scan path test in detail at Section 2.2.1.

The purpose of a scan-based attack against RSA is to retrieve a secret exponent

d from scanned data in an RSA circuit. Scan-based attack here requires several

assumptions as in the previous researches in [9, 10, 15, 16], which are summarized

as shown below:

1. Attackers can encrypt/decrypt arbitrary data using the secret key on a target

RSA circuit.

2. Attackers can obtain scanned data from a target RSA circuit.

3. Scanned data is not modified with compactors aimed at test efficiency.

4. Attackers know that the binary method in Algorithm 1 is used in a target

RSA circuit.

5. Attackers also know the modulus n used in a target RSA circuit.2

In addition to these, they need to be able to predict the intermediate values of the

binary method using an off-line simulation.

In this section, we explain the scan-based attack against an RSA circuit (Section

3.2.1) and its problems in a practical case (Section 3.2.2).

3.2.1 Retrieving a secret exponent using intermediate val-

ues [1]

In order to retrieve a secret exponent d, we have to solve the integer factorization

in RSA. If the bit length of a secret exponent d is more than 1,024 bits or more
2Note that, since the public key consists of the modulus n and the public exponent e, attackers

can easily know the modulus n.



3.2. SCAN-BASED ATTACK AGAINST RSA 37

than 2,048 bits, it is impossible to solve this problem within a realistic time. How-

ever, if we know all the “intermediate values” during the binary method shown in

Algorithm 1, we can retrieve a secret exponent d in a polynomial time [1].

Let d = dL−12
L−1 + dL−22

L−2 + · · ·+ d12 + d0, where L is the maximum key bit

length of d. Assume that all the intermediate values in Algorithm 1 are obtained.

Let m(i) be the intermediate value of m at the end of loop i in Algorithm 1.

Assume also that dL−1, dL−2, · · · , di+1 are already retrieved. An attacker tries to

reveal the next bit di. In this case, m(i) is equal to Eqn. (3.3) below, if and only

if di = 0:

c
∑L−1

j=i+1 dj2
j−i

mod n. (3.3)

Similarly, m(i) is equal to Eqn. (3.4) below, if and only if di = 1:

c
∑L−1

j=i+1 dj2
j−i+1 mod n. (3.4)

Based on the above discussion, we employ SF (i) defined by Eqn. (4.4) as a

selective function for RSA:

SF (i) = c
∑ℓ−1

j=i+1 dj2
j−i+1 mod n. (3.5)

ℓ represents a significant key length, or key length in left-align representation, i.e.,

the secret exponent can be represented by

d = dL−12
L−1 + · · · + d12 + d0

∣∣
dL−1=0,...,dℓ=0

= dℓ−12
ℓ−1 + · · · + d12 + d0. (3.6)

When using the selective function for RSA above, we have to know in advance

dℓ−1, dℓ−2, · · · , di+1.

SF (i) ̸= SF (j) always holds true for i ̸= j for 0 ≤ i, j ≤ ℓ−1. Given a message

c and bit values of secret component dℓ−1, dℓ−2, · · · , di+1, we assume that di = 1

and check whether SF (i) appears somewhere in intermediate values. If it appears

in them, we really determine di as one. If not, we determine di as zero.
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Example 1 Let us consider that the public key (n, e) = (101111001, 1011) and the secret

key (n, d) = (101111001, 10111). The maximum key length L is 8 bits and the secret

exponent d = 10111, i.e, d7 = 0, d6 = 0, d5 = 0, d4 = 1, d3 = 0, d2 = 1, d1 = 1, d0 = 1.

We assume that we do not know d and a significant key length ℓ. The intermediate values

in Algorithm 1 are summarized in Table 3.2 when we use a message c = 10011100, whose

parameters are shown in Table 3.1.

Now we try to retrieve the 8-bit secret exponent d using intermediate values.

First we try to retrieve the first bit dℓ−1 (i = ℓ−1). We find dℓ−1 = 1 by the definition

of a significant key length ℓ. Then SF (ℓ− 1) is calculated as SF (ℓ− 1) = c = 10011100.

Since 10011100 appears in Table 3.2, we confirm that dℓ−1 is retrieved as one. Now we

assume that the secret exponent d = 1. We compare m(ℓ− 1) = (c1 mod n) = 10011100

with the binary method result 10001111. Since they are not equal, d ̸= 1.

Next, we try to retrieve the second bit dℓ−2 (i = ℓ − 2). We have already known

that dℓ−1 = 1. We assume here that dℓ−2 = 1. In this case, SF (ℓ − 2) is calculated as

SF (ℓ − 2) = 11010. Since 11010 does not appear in Table 3.2, then dℓ−2 is retrieved

not as one but as zero, i.e., dℓ−2 = 0. Now we assume that d = 10. We compare

m(ℓ−2) = (c10 mod n) = (m(ℓ−1)2 mod n) = 11010000 with the binary method result

10001111. Since they are not equal, d ̸= 10.

Next, we try to retrieve the third bit dℓ−3 (i = ℓ − 3). We have already known that

dℓ−1 = 1 and dℓ−2 = 0. We assume here that dℓ−3 = 1. In this case, SF (ℓ − 3) is

calculated as SF (ℓ − 3) = 10000010. Since 10000010 appears in Table 3.2, then dℓ−3 is

retrieved as one, i.e., dℓ−3 = 1. Now we assume that d = 101. We compare m(ℓ− 3) =

(c101 mod n) = SF (ℓ − 3) = 10000010 with the binary method result 10001111. Since

they are not equal, d ̸= 101.

Next, we try to retrieve the fourth bit dℓ−4 (i = ℓ − 4). We have already known

that dℓ−1 = 1, dℓ−2 = 0 and dℓ−3 = 1. We assume here that dℓ−4 = 1. In this case,

SF (ℓ− 4) is calculated as SF (ℓ− 4) = 100111. Since 100111 appears in Table 3.2, then

dℓ−1 is retrieved as one, i.e., dℓ−4 = 1. Now we assume that d = 1011. We compare

m(ℓ−4) = (c1011 mod n) = SF (ℓ−4) = 100111 with the binary method result 10001111.

Since they are not equal, d ̸= 1011.
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We have already known that dℓ−1 = 1, dℓ−2 = 0, dℓ−3 = 1 and dℓ−4=1. We assume

here that dℓ−5 = 1. SF (ℓ− 5) is calculated as SF (ℓ− 5) = 10001111 (i = ℓ− 5). Since

10001111 appears in Table 3.2, then dℓ−5 is retrieved as one, i.e., dℓ−5 = 1. Now we

assume that d = 10111. We compare m(ℓ−5) = (c10111 mod n) = SF (ℓ−5) = 10001111

with the binary method result 10001111. Since they are equal to each other, we find that

the secret exponent d is 10111 and a significant bit ℓ is five.

3.2.2 Problems to retrieve a secret key using scan path

If we retrieve an L-bit secret exponent d using an exhaustive search, we have to try

2L possible values to do it. On the other hand, the method explained in Section

3.2.1 retrieves a secret exponent one-bit by one-bit from MSB to LSB. It tries at

most 2L possible values to retrieve an L-bit secret exponent. Further, the method

just checks whether SF (i) exists in the intermediate value m(i) in Algorithm 1.

In order to apply this method to a scan-based attack, we have to know which

registers store intermediate values, i.e., we have to know correspondence between

scanned data and SF (i).

However, scan paths are usually designed automatically by EDA tools so that

nearby registers are connected together to shorten the scan path length. Only de-

signers can know the correspondence between scanned data and registers and thus

retrieved scanned data can be considered to be “random” for attackers. Therefore,

it is very difficult to find out the values of SF (i) in scanned data for attackers.

Messerges [1] only shows the correspondence between intermediate values and

a bit of a secret exponent. It does not indicate the method how to discover the

intermediate value from scanned data. For that reason, its analysis method cannot

directly apply to scan-based attacks against an RSA LSI.

We have to find out only SF (i) somehow in the scanned data to retrieve a

secret exponent d using the method in Section 3.2.1.



40 CHAPTER 3. SCAN-BASED ATTACK AGAINT RSA

Table 3.1: Example parameters in Algorithm 1.

Maximum key length L 8 bits

Modulus n 101111001

Public exponent e 1011

Secret exponent d 10111

Table 3.2: Intermediate values at the end of i-th loop of Algorithm 1 (message

c = 100111002).

i di m2 m

7 0 1 1

6 0 1 1

5 0 1 1

4 1 1 10011100

3 0 11010000 11010000

2 1 100011110 10000010

1 1 100111000 100111

0 1 1101 10001111

3.3 Analysis scanned data

In order to solve the problem that attackers do not know the correspondence be-

tween registers of the scanned data and ones storing intermediate values during

the binary method, we focus on the general property on scan paths: a bit position

of a particular register r in a scanned data when giving one input data is exactly

the same as that when giving another input data. This is clearly true, since a scan

path is fixed in an LSI chip and the order of connected registers in its scan path is

unchanged.

If we execute the binary method for each of N messages on an RSA circuit, a

bit pattern of a particular bit position in scanned data for these N messages gives
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N -bit data. Based on the above property, this N -bit data may give a bit pattern

of a particular bit in an intermediate value when we give each of these N messages

to the RSA circuit.

We can calculate SF (i) from the same N messages and dℓ−1 down to d0 of

the secret exponent d by using an off-line simulation. By picking up a particular

bit (LSB, for example) in each of SF (i) values for N messages, we also have an

N -bit data (see Figure 3.2). If N is large enough, this N -bit data gives information

completely unique to SF (i). We can use this N -bit data as a scan signature SSi

to SF (i) in scanned data.

Our main idea in this section is that we find out a scan signature SSi to SF (i)

in scanned data (see Figure 3.3) to retrieve the secret exponent d from dℓ−1 down

to d0. If an N -bit scan signature SSi appears in the scanned data for N messages,

di is determined as one. If not, it is determined as zero.

In the rest of this section, we firstly propose a scan signature SSi to SF (i).

Secondly we propose an overall method to retrieve a secret exponent d using scan

signatures. Thirdly we analyze the probabilities of successfully retrieving a secret

exponent by using our method.
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SF(i) = 0 0 1 … 1 1 … 0 1 1

SF(i) = 1 1 1 … 0 1 … 0 1 1

SF(i) = 0 1 1 … 0 0 … 1 0 0

SF(i) = 0 1 1 … 0 1 … 1 1 0

SF(i) = 1 0 0 … 1 0 … 1 0 1

SF(i) = 0 1 0 … 1 1 … 1 1 0

(N bits)

Input: SF(i) (1 r N),

Output: Scan Signature SS

SS

L bits

Figure 3.2: Scan signature SSi.

…001100001011……110011011000……010000111110…

…111100101100……101101000110……010101001101…

…101110011110……101110011110……110111010110…

…111000101101……111000101101……001110100101…

…010111001110……010111001110……000110001111…

…001000101101……001000101101……011010101000…

sd =

sd =

sd =

sd =

sd =

sd =

Size of scan path

N bits

FF

th

FF

th

FF

th

Scan path

All cycles during binary method

Figure 3.3: Scanned data.
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3.3.1 Calculating a scan signature to SF (i)

Assume that N messages c1, · · · , cN are given. Also assume that we have already

known dℓ−1, · · · , di+1 for a secret exponent d. Let SF (i)r be the selective function

for RSA when giving the message cr for 1 ≤ r ≤ N . Assuming that di = 1, we can

calculate SF (i)r for 1 ≤ r ≤ N .

Let us focus on a particular bit of SF (i)r. If N is large enough, a set of these

bits for SF (i)r (1 ≤ r ≤ N) gives information unique to SF (i)r. By using it,

we can check whether SF (i)r are calculated or not in the target. As Figure 3.2

shows, we define a scan signature SSi to be a set of SF (i)r LSBs for the sake of

convenience.

If SSi appears in scanned data, di is determined as one. If not, di is determined

as zero. After di is correctly determined, we can continue to determine the next

bit of the secret exponent d in the same way.

Our proposed method has an advantage compared to conventional scan-based

attacks [9, 10]. Our method is effective in the case of partial scan architecture. As

long as a scan path includes at least 1-bit of each intermediate value, we can check

whether the scan signature exists or not in the scanned data.

3.3.2 Scanned data analysis method

First we prepare N messages c1, · · · , cN and give them to an RSA circuit. For each

of these messages, we obtain all the scanned data from the scan out of the RSA

circuit until it outputs the binary method result. As Figure 3.3 shows, the size

of scanned data for each of these messages is (“scan path length” × “number of

binary method cycles.”)

Now we check whether a scan signature SSi to SF (i) appears in the obtained

scanned data under the assumption that we do not know a secret exponent d in

the RSA circuit as follows:

Step 1: Prepare N messages c1, c2, · · · , cN , where cr ̸= cs for 1 ≤ r, s ≤ N and
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r ̸= s.

Step 2: Input cr (1 ≤ r ≤ N) into the target RSA circuit and obtain scanned

data every one cycle while the binary method works, until the RSA circuit

outputs the result. Let sdr denote the obtained scanned data for the message

cr (1 ≤ r ≤ N).

Step 3: From the definition, we have dℓ−1 = 1. Compare m(ℓ− 1) = (c1 mod n)

with its binary method result. If they are equal, then we find that the secret

exponent d is one and stop. If not, go to the next step.

Step 4: Calculate SF (ℓ − 2)r assuming dℓ−2 = 1 for each cr (1 ≤ r ≤ N) and

obtain the scan signature SSℓ−2.

Step 5: Check whether the scan signature SSℓ−2 exists in the scanned data sd1, · · · , sdN ,

which includes the scanned data in all the cycles while the binary method

runs. If it exists, then we can find out that dℓ−2 is equal to 1, and if it does

not exist, then we can find out that dℓ−2 is equal to 0.

Step 6: Calculate m(ℓ − 2) = ((c1)
dℓ−1×2+dℓ−2 mod n) and compare it with its

binary method result. If they are equal, then we find that the secret exponent

d is retrieved and terminate the analysis flow.

Step 7: We determine dℓ−3, dℓ−4, · · · in the same way as Step 4–Step 6 until the

analysis flow is terminated at Step 6.

We show the example below to explain how the method above works.

Example 2 As in Example 1, let us consider that the public key (n, e) = (101111001, 11)

and the secret key (n, d) = (101111001, 10111). The maximum key length L is 8 bits and

the secret exponent d = 1011110 = 101112, i.e, d7 = 0, d6 = 0, d5 = 0, d4 = 1, d3 = 0,

d2 = 1, d1 = 1, d0 = 1. We assume that we do not know d and a significant key length ℓ.

The parameters are shown in Table 3.1. Assume that the cycle counts of binary method

are 16 and the size of the scan path is 128 in the target RSA circuit.
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(Step 1) First we prepare 8 messages c1, c2, · · · , c8, where cr ̸= cs for 1 ≤ r, s ≤ 8

and r ̸= s. The target RSA circuit executes the binary method as in Table 3.2.

(Step 2) We input cr (1 ≤ r ≤ 8) into the target RSA circuit and obtain scanned

data every one cycle while the binary method works, until the RSA circuit outputs the

result. Let sdr denote the obtained scanned data for the messages cr (1 ≤ r ≤ 8). The

total size of scanned data is 16× 128 = 2, 048 (see Figure 3.4).

(Step 3) Let us start to determine dℓ−1. We find dℓ−1 = 1 by the definition of ℓ. It

is not necessary to check whether dℓ−1 = 1 or not, but we can check it as follows: we

calculate SF (ℓ−1)r = cr for each cr (1 ≤ r ≤ 8) and obtain the scan signature SSℓ−1 (see

Figure 3.5). As Figure 3.5 (a) shows, the scan signature SSℓ−1 becomes “11101001”.

Since we find out that the scan signature SSℓ−1 exists in bit patterns of scanned data

sdr (1 ≤ r ≤ 8) in Figure 3.4, we confirm that dℓ−1 is retrieved as one, i.e., dℓ−1 = 1.

Now we assume that d = 1. We compare m(ℓ − 1) = ((c1)
1 mod n) with its binary

method result. In case they are not equal, d ̸= 1.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine dℓ−2. We calculate

SF (ℓ − 2)r assuming dℓ−2 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature

SSℓ−2 (see Figure 3.5 (b)). As Figure 3.5 (b) shows, the scan signature SSℓ−2 becomes

“01111100”. Since we find out that the scan signature SSℓ−2 does not exist in bit patterns

of scanned data sdr (1 ≤ r ≤ 8) in Figure 3.4, we can determine that dℓ−2 is equal to

zero, i.e., dℓ−2 = 0. Now we assume that d = 10. We compare m(ℓ − 2) = (m(ℓ − 1)2

mod n) with its binary method result. In case they are not equal, d ̸= 10.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine dℓ−3. We calculate

SF (ℓ − 3)r assuming dℓ−3 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature

SSℓ−3 (see Figure 3.5 (c)). As Figure 3.5 (c) shows, the scan signature SSℓ−3 becomes

“00010110”. Since we find out that the scan signature SSℓ−3 exists in bit patterns of

scanned data sdr (1 ≤ r ≤ 8) in Figure 3.4, we can determine that dℓ−3 is equal to one,

i.e., dℓ−3 = 1. Now we assume that d = 101. We compare m(ℓ − 3) = (m(ℓ − 2)2 × c1

mod n) = SF (ℓ− 3)1 with its binary method result. In case they are not equal, d ̸= 101.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine dℓ−4. We calculate

SF (ℓ − 4)r assuming dℓ−4 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature
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sd =

sd =

sd =

sd =

sd =

sd =

sd =

sd =

16 x 128 = 2,048 bits

8 bits

……101110011110……1011…1101…1110…

……001110111101……1010…0110…0110…

……101110111100……0011…0111…0111…

……110011001111……0110…1100…0100…

……100011110000……0011…0110…0110…

……101000100110……1111…1111…0110…

……011011000000……0111…0111…0100…

……110010111010……1011…0100…1111…

SS SS SS SS

Figure 3.4: Scanned data example.

SSℓ−4 (see Figure 3.5 (d)). As Figure 3.5 (d) shows, the scan signature SSℓ−4 becomes

“01101110”. Since we find out that the scan signature SSℓ−4 exists in bit patterns of

scanned data sdr (1 ≤ r ≤ 8), we can determine that dℓ−4 is equal to one, i.e., dℓ−4 = 1.

Now we assume that d = 1011. We compare m(ℓ − 4) = (m(ℓ − 3)2 × c1 mod n) =

SF (ℓ− 4)1 with its binary method result. In case they are not equal, d ̸= 1011.

(Step 4, Step 5, Step 6, and Step 7) Finally let us determine dℓ−5. We calculate

SF (ℓ − 5)r assuming dℓ−5 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature

SSℓ−5 (see Figure 3.5 (e)). As Figure 3.5 (e) shows, the scan signature SSℓ−5 becomes

“11101101”. Since we find out that the scan signature SSℓ−5 exists in bit patterns of

scanned data sdr (1 ≤ r ≤ 8), we can determine that dℓ−5 is equal to one, i.e., dℓ−5 = 1.

Now we assume that d = 10111. We compare m(ℓ − 5) = (m(ℓ − 4)2 × c1 mod n) =

SF (ℓ− 5)1 with its binary method result. In case they are equal to each other, we find

that the secret exponent d is 10111 and a significant bit ℓ is five.
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Input: SF( -1) (1 r 8)

Output: Scan signature SS

SF( -1) = 1 0 1 1 0 0 1 1

SF( -1) = 1 0 0 1 1 0 0 1

SF( -1) = 0 0 1 0 1 1 0 1

SF( -1) = 0 1 0 1 0 0 1 0

SF( -1) = 1 0 1 0 1 1 0 1

SF( -1) = 0 0 0 1 0 0 1 0

SF( -1) = 1 1 1 1 1 0 0 0

SF( -1) = 0 0 0 1 1 0 0 1

SS

(a) Scan signature

SF( -2) = 0 0 0 0 1 0 1 0

SF( -2) = 1 1 1 1 0 1 0 1

SF( -2) = 0 1 1 0 0 1 1 1

SF( -2) = 1 1 0 0 1 1 0 1

SF( -2) = 1 1 0 0 1 0 1 1

SF( -2) = 0 0 1 1 1 0 1 1

SF( -2) = 0 1 1 0 0 1 1 0

SF( -2) = 0 1 1 1 0 1 0 0

Input: SF( -2) (1 r 8)

Output: Scan signature SS

SS

(b) Scan signature

Input: SF( -3) (1 r 8)

Output: Scan signature SS

SF( -3) = 0 1 1 0 0 1 1 0

SF( -3) = 1 1 1 1 1 0 0 0

SF( -3) = 0 1 1 0 0 1 0 0

SF( -3) = 1 0 0 1 0 0 1 1

SF( -3) = 0 0 0 0 1 1 0 0

SF( -3) = 0 0 0 1 0 0 1 1

SF( -3) = 0 1 1 1 0 0 0 1

SF( -3) = 0 0 0 1 1 0 0 0

SS

(c) Scan signature

SF( -4) = 1 1 0 0 1 0 1 0

SF( -4) = 0 1 0 1 1 1 0 1

SF( -4) = 1 1 1 0 0 1 1 1

SF( -4) = 0 1 1 0 0 1 0 0

SF( -4) = 1 1 0 1 1 0 1 1

SF( -4) = 1 0 1 1 0 0 1 1

SF( -4) = 0 1 1 0 0 1 1 1

SF( -4) = 1 0 1 1 0 0 0 0

Input: SF( -4) (1 r 8)

Output: Scan signature SS

SS

(d) Scan signature

SF( -5) = 0 0 1 0 1 1 1 1

SF( -5) = 0 0 0 1 1 0 0 1

SF( -5) = 0 0 1 0 0 1 0 1

SF( -5) = 0 1 1 1 0 1 0 0

SF( -5) = 0 1 1 1 1 0 1 1

SF( -5) = 1 0 1 0 0 0 0 1

SF( -5) = 0 1 1 0 1 1 1 0

SF( -5) = 1 0 1 1 1 0 1 1

Input: SF( -5) (1 r 8)

Output: Scan signature SS

SS

(e) Scan signature

Figure 3.5: Example of scan signatures.
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3.3.3 Possibility of successfully retrieving a secret key

Given that the scan size is α bits and the cycle counts to obtain the binary method

result is T . Assume that scanned data are completely random data.

Even though SF (i)r for 1 ≤ r ≤ N is not calculated in the target RSA circuit,

its scan signature may exist in scanned data. When αT < 2N , the probability that

the scan signature SSi to SF (i)r exists in somewhere in bit patterns of scanned

data sdr (1 ≤ r ≤ N) is αT/2N despite we do not calculate SF (i)r.

Sufficiently large N can decrease the probability that we mistakenly find out

the scan signature SSi in scanned data. For instance, if α is 3,072, T is 1,024, and

N is 303, then the probability that we mistakenly find out the scan signature SSi

in scanned data is 3, 072 × 1, 024/230 ≃ 2.93 × 10−3. If α is 6,144, T is 2,048, and

N is 35, then the probability that we mistakenly find out the scan signature SSi

in scanned data is 6, 144 × 2, 048/235 ≃ 3.66 × 10−4.

3.4 Experiments and analysis

We have implemented our analysis method proposed in Section 3.3 in the C lan-

guage on Red Hat Enterprise Linux 5.5, AMD Opteron 2360SE 2.5GHz, and 16GB

memories and performed the following experiments:

1. First, we have generated secret exponents randomly. Thousand of them have

a bit length of 1,024 and 2,048, respectively. The other hundred of them have

a bit length of 4,096.

2. Next, we have given each of the secret exponents into the target RSA circuit

based on Algorithm 1 and obtained scanned data. The target RSA circuit

obtains binary method results in 1,024 cycles for a 1,024-bit secret exponent,

in 2,048 cycles for a 2,048-bit secret exponent, and in 4,096 cycles for a 4,096-

bit secret exponent. Scan path length for a 1,024-bit secret exponent is 3,072
3These values are derived from the experiments in Section 3.4.
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Table 3.3: Secret exponent example.

4-th secret exponent d

1,024 bits 0x3AD29CF2FC6CB6B0C010B17DF98C5081

4E4585225AC42E8ECB7BB1847498D62F

BA696CDD226EE9195F4E58A89321721F

021C4511E6C994301363706058FF3765

E29EEBA03E370A201BA5B60A356682A5

1D05EE10DF8CB75D7B4578B3D29A515E

2F86DEC487AB6BCD88C7351908D71851

6C11B2419BD8C05739214E6CF44D12F

bits, that for a 2,048-bit secret exponent is 6,144 bits, and that for a 4,096-

bit secret exponent is 12,192 bits. Then total size of the obtained scanned

data for 1,024-bit secret exponent is 3, 072 × 1, 024 = 3, 145, 728 bits, that

for 2,048-bit secret exponent is 6, 144 × 2, 048 = 12, 582, 912 bits, and that

for 4,096-bit secret exponent is 12, 192 × 4, 096 = 49, 938, 432 bits

3. Finally, we have retrieved each of the secret exponents by our proposed anal-

ysis method using the obtained scanned data.

Figure 3.6 and Table 3.4 show the results. Figure 3.6 shows the number N of

required messages to retrieve each secret exponent when giving each of the secret

exponents. For example, the 4th 1,024-bit secret exponent is shown in Table 3.3.

In order to retrieve this secret exponent, we need 29 messages, i.e., n = 29. In this

case, we can successfully retrieve the 4th secret exponent using 29 messages but

fail to retrieve it using 28 messages or less.

Throughout this experiment, the required number of messages is approximately

29.5 on average for 1,024-bit secret exponents and is approximately 32 for 2,048-bit

secret exponents and is approximately 37 for 4,096-bit secret exponents.
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Table 3.4: Experimental results.

Key bit length bit 1,024 2,048 4,096

# of retrieving secret exponents 1,000 1,000 100

# of required messages (average) 29.5 32 37
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Figure 3.6: Number of required messages to retrieve secret exponents.

3.5 Discussions

We consider secure scan architecture proposed so far against our proposed scan-

based attack.

Firstly, the secure scan architecture proposed in [2] cannot protect our proposed

method from retrieving a secret key. [2] inserts some inverters into a scan path to

invert scanned data. However, since inverted positions of scanned data are always

fixed, the value of a 1-bit register sequence is only changed to its inverted value.

By checking whether SSi or inverted SSi exist in the scanned data, our proposed

method can easily make it ineffective.

Inoue’s secure scan architecture [3] adds unrelated data to scanned data to

confuse attackers. A sequence of scanned data to which unrelated data are added

is fixed and it is not always true that they confuse all the bits to protect the scanned

data in order to reduce area overhead. If the register storing scan signature SSi is
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not confused, our proposed method can easily make it ineffective, too.

Secondly, [10, 17, 18, 19, 20, 21, 22, 23, 24] require authentication to transfer

between system mode and test mode, and their security depends on authentication

methods. If authentication would be broken-through and attackers could obtain

scanned data, a secret key in an RSA circuit could be retrieved by using our

proposed method. We consider that authentication strength is a different issue

from the purpose of this chapter.

Finally, [25, 26, 27] use a compactor so as not to output scanned data corre-

sponding to registers directly. [28] proposes AES-based BIST, whereby there is no

need for scan path test. However, applying these methods effectively to an RSA

circuit is quite unclear because these methods are implemented only on an AES

circuit or just on a sample circuit not for cryptography.

3.6 Concluding remarks

Our proposed scan-based attack can effectively retrieve a secret key in an RSA

circuit, since we just focus on the variation of 1-bit of intermediate values named

a scan signature. By monitoring it in the scan path, we can find out the register

position specific to intermediate values. The experimental results demonstrate that

a 1,024-bit secret key can be retrieved by using 29.5 messages, a 2,048-bit secret

key by using 32 input, and a 4,096-bit secret key can be retrieved by using 37

messages.



Chapter 4

Scan-based Attack againt ECC

In this chapter, we propose a scan-based attack against elliptic curve cryptography

(ECC) which is almost independent of a scan-path structure1.

An elliptic curve cryptography (ECC) [7, 8] is well known as a public-key cryp-

tography with low cost and high throughput. Finite field arithmetic is used in ECC

where field multiplication requires most of the time in decryption and encryption

and thus many research have been done in field multiplication [29, 30, 31, 32, 33].

Also many research on an ECC circuit implementation are reported as in [31, 32,

33, 34, 35, 36, 37, 38, 39]. For instance, architectures including memories storing

all ECC parameters and field multipliers which can execute the arbitrary polyno-

mial reduction are proposed in [31, 33] for high-throughput ECC applications. On

the contrary, architectures including minimal memories storing fixed polynomial

reduction and a field-dedicated multiplier are proposed in [32, 38] for low-area and

low-cost ECC applications.

Retrieving a secret key in a security LSI chip by using a scan path, we have to

find out positions of registers storing the secret key in the scan path. There are,

however, many architectures and implementations as above in ECC and then there

can be many scan-path structures as well. This means that it is very difficult to

1The preliminary version of this chapter appeared in [16].

52
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find out positions of registers storing a secret key in a scan path in the ECC circuit.

In other words, it is very difficult to retrieve a secret key from the scanned data.

For that reason, scan-based attacks against symmetric-key cryptography succeed

as reported in [9, 10, 15], but a scan-based attack against public-key cryptography

such as ECC has not been proposed yet.

The proposed method is based on detecting intermediate values calculated in

an ECC circuit. We focus on a 1-bit sequence which is specific to some interme-

diate values. Then we check whether data dependent on this intermediate value is

included in the scanned data. As long as a scan path is implemented on the ECC

circuit and it includes at least 1-bit of each intermediate value, we can retrieve a

secret key in the target ECC circuit even if we do not know a scan path structure.

The proposed method reveals the vulnerability of a scan path in the ECC circuit.

4.1 Elliptic curve cryptography

An elliptic curve cryptography makes use of the difficulty in solving the discrete

logarithm problem defined in the elliptic curve additive group. This problem is

called the elliptic curve discrete logarithm problem (ECDLP). The 160-bit key in

ECC provides the equivalent security level as the 1024-bit key in RSA [6]. An ECC

circuit can have higher throughput and smaller area than an RSA circuit. This

section briefly explains ECC [7, 8].

4.1.1 Elliptic curve arithmetic

An elliptic curve E with non-supersingular over a field F2m is defined by Eqn. (4.1).

E : y2 + xy = x3 + ax2 + b. (4.1)

Let E(F2m) be a group of points on the elliptic curve E. E(F2m) has the four

properties shown below and forms a group.
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Figure 4.1: Point Addition P1 +P2 =

Q.

Figure 4.2: Point Doubling 2P = Q.

1. Identity. ∞ ∈ E(F2m) is called the identity and it satisfies P +∞ = ∞+P =

P for all P ∈ E(F2m).

2. Negatives. If P = (x, y) ∈ E(F2m), then (x, y) + (x, x + y) = ∞. The point

(x, x + y) is denoted by −P and is called the negative of P .

3. Point addition. Let P1 = (x1, y1) ∈ E(F2m) and P2 = (x2, y2) ∈ E(F2m),

where P1 ̸= ±P2. Then P1 + P2 = (x3, y3) = Q ∈ E(F2m), where

x3 = λ2 + λ + x1 + x2 + a

y3 = λ(x1 + x3) + x3 + y1

with λ = (y1 + y2) / (x1 + x2). Figure 4.1 shows the point addition.

4. Point doubling. Let P = (x1, y1) ∈ E(F2m), where P ̸= −P . Then 2P =

(x3, y3) = Q ∈ E(F2m) where

x3 = λ2 + λ + a = x2
1 +

b

x2
1

y3 = x2
1 + λx3 + x3

with λ = x1 + y1/x1. Figure 4.2 shows the point doubling.
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4.1.2 Point multiplication

Let k be an m-bit integer and denoted as k = km−12
m−1+km−22

m−2+· · ·+k12+k0.

A point multiplication is defined by computing kP with k and P ∈ E(F2m). The

point multiplication is calculated in polynomial time by using point addition and

point doubling. Given P , Q, where Q is a result of the point multiplication with

k and P . To determine an integer k satisfying the equation [kP ≡ Q mod f(z)]2

is an elliptic curve discrete logarithm problem (ECDLP). Solving the elliptic curve

discrete logarithm problem requires exponential time. If the integer k is large

enough, the point multiplication Q = kP can be calculated easily. However deter-

mining k from the point P and Q ∈ E(F2m) requires very long time. Q can be

used as a public key and k can be used as a secret key in ECC.

The point multiplication kP dominates the execution time of ECC so that

several efficient algorithms have been proposed. Montgomery method [40] is one of

point multiplication algorithms. This algorithm has two advantages. One is that

it does not require any extra storage with a low calculation time. The other is that

the same operations are performed in every iteration of the main loop, therefore it

has a resistance against power analysis attacks [41].

The Montgomery method is first proposed in [40] and shown in Algorithm 2.

It converts affine coordinate (x, y) into projective coordinates (X,Y, Z) to reduce

total calculation amount. Algorithms in [42, 43, 44, 45] are also based on the

original Montgomery method. In this algorithm, the secret key k is written as

2m−1 + km−22
m−2 + · · · + k12 + k0. km−1 will be always one to achieve the same

number of iterations in the main loop.

2f(z) is an irreducible polynomial.
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Algorithm 2 Montgomery method

Input: k = (1, km−2, . . . , k1, k0)2, P ∈ E(F2m)

Output: Q0 = kP

1: Q0 ⇐ P

2: Q1 ⇐ 2P

3: for i = m− 2 to 0 do

4: Q1−ki ⇐ Q0 + Q1

5: Qki ⇐ 2Qki

6: end for

7: return Q0

4.2 Attack against elliptic curve cryptography

A scan path connects registers in an circuit serially so that a tester can observe

the register values inside the circuit easily. The scan path is widely used in recent

circuit implementations due to its testability and easiness. We explain a scan path

test in detail at Section 2.2.1.

The purpose of a scan-based attack is to retrieve a secret key from scanned

data in an ECC circuit. Scan-based attack here requires several assumptions as in

the previous research in [9, 10, 15] which are summarized as shown below:

1. Attackers can input an arbitrary point P = (x, y) ∈ E(F2m) into a target

ECC circuit.

2. Attackers can obtain scanned data from the target circuit.

In this section, we explain the scan-based attack against ECC.
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4.2.1 Retrieving a secret key using intermediate values dur-

ing the point multiplication

In order to retrieve a secret key k, we have to solve the discrete logarithm problem

in the elliptic curve additive group. If the bit length of secret key k is more than

160, it is impossible to solve this problem within realistic time. However, if we

know all the “intermediate values” during the point multiplication in Algorithm 2,

we can retrieve a secret key k in a polynomial time [46].

Let k = km−12
m−1+km−22

m−2+· · ·+k12+k0. Assume that all the intermediate

values in Algorithm 2 are obtained. Let Q0(i) and Q1(i) be the intermediate values

of Q0 and Q1 at the end of loop i in Algorithm 2, respectively.

Assume also that km−1, km−2, · · · , ki+1 are already retrieved. An attacker tries

to reveal the next bit ki. In this case, if and only if ki = 0, either Q0(i − 1) or

Q1(i− 1) is equal to Eqn. (4.2) below:(
m−1∑
j=i

kj2
j−i+1 + 1

)
P. (4.2)

Similarly, if and only if ki = 1, either Q0(i− 1) or Q1(i− 1) is equal to Eqn. (4.3)

below: (
m−1∑
j=i

kj2
j−i+1 + 3

)
P. (4.3)

In [46], differential power analysis attack is proposed based on the above ECC

properties. Notice that, Q0(i − 1) ̸= Q1(i − 1) for any 1 ≤ i ≤ m − 1 and that

Q0(i− 1) ̸= Q0(j − 1) and Q1(i− 1) ̸= Q1(j − 1) for 1 ≤ i, j ≤ m− 1 and i ̸= j.

Based on the above discussion, we employ V (i) defined by Eqn. (4.4) as a

selective function:

V (i) =

(
m−1∑
j=i

kj2
j−i+1 + 1

)
. (4.4)

When using the selective function above, we have to know km−1, km−2, · · · , ki+1.

In addition to that, we assume that ki = 0. V (i) ̸= V (j) always holds true for
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Table 4.1: Intermediate values at the end of i-th loop of Algorithm 2 with input

P and k = 1010.

i Q0 Q1

3 P 2P

2 2P 3P

1 5P 6P

0 10P ∗1 11P

*1: The result of the point multiplication.

i ̸= j for 1 ≤ i, j ≤ m − 1. Given a point P over the elliptic curve E and

km−1, km−2, · · · , ki+1, we assume that ki = 0 and check whether V (i)P appears

somewhere in intermediate values. If it appears in them, we determine ki as zero.

If not, we determine ki as one.

Finally, the LSB of a secret key k is determined by using the final point multi-

plication result. Since a point multiplication result Q = kP is a public key itself,

it must be obtained easily.

Example 3 Let us consider that the 4-bit secret key k = 1010 = 10102, i.e, k3 = 1,

k2 = 0, k1 = 1, k0 = 0, and m = 4 but assume that we do not know k except for its bit

length. The intermediate values Q0(i) and Q1(i) in Algorithm 2 are summarized in 4.1.

Now we try to retrieve the 4-bit secret key k using intermediate values. Since we

know that k has four bits, k can be written as k = xxxx, where x shows the unknown bit.

In Algorithm 2, MSB of k is defined by one. Then k = 1xxx.

Next we try to retrieve the second bit k2 (i = 2) of k. The MSB of k is one by

definition (k3 = 1). We assume here that k2 = 0. Then V (1) is calculated as V (1) = 5.

Since 5P appears in 4.1, then k2 is retrieved as zero, i.e., k = 10xx.

After that we try to retrieve the third bit k1 (i = 1) of k. We have already known

that k3 = 1 and k2 = 0. We assume here that k1 = 0. V (0) is calculated as V (0) = 9.

Since 9P does not appear in 4.1, then k1 is retrieved as one, i.e., k = 101x.

Finally, we can have the point multiplication result 10P as in Table 4.1. If k = 1010,
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then kP = 10P . If k = 1011, then kP = 11P . Since the result is 10P , then we can have

k = 1010.

4.2.2 Problems to retrieve a secret key using a scan path

If we retrieve an m-bit secret key using an exhaustive search, we have to try 2m

possible values to do it. On the other hand, the method explained in Section 4.2.1

retrieves a secret key one-bit by one-bit from MSB to LSB. It tries at most 2m

possible values to retrieve an m-bit secret key. Further, the method just checks

whether V (i)P is in intermediate values of Algorithm 2.

In order to apply this method to a scan-based attack, we have to know which

registers store intermediate values, i.e., we have to know correspondence between

scanned data and (Q0, Q1).

However, a scan path is usually designed automatically by CAD tools so that

nearby registers are connected together to shorten the scan path length. Only de-

signers can know the correspondence between scanned data and registers and thus

retrieved scanned data can be considered to be “random” for attackers. Therefore,

it is very difficult to find out the values of V (i)P in scanned data for attackers. As

indicated before, an ECC circuit have very complicated architecture, its scan path

can include too many registers other than those storing intermediate values.

We have to find out only V (i)P somehow in the scanned data to retrieve a

secret key k using the method in Section 4.2.1.

4.3 Analysis scanned data obtained from an ECC

circuit

In order to solve the problem that attackers do not know the correspondence be-

tween registers of the scanned data and ones storing intermediate values during

point multiplication, we focus on the general property on a scan path below:
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Property 1 A bit position of a particular register r in a scanned data when giving

one input data is exactly the same as that when giving another input data.

This property is clearly true, since a scan path is fixed in an LSI chip and the order

of connected registers in its scan path is unchanged.

If we execute point multiplication for each of n points on an ECC circuit, a bit

pattern of a particular bit position in scanned data for these n points gives n-bit

data. Based on the above property, this n-bit data also may give a bit pattern of

a particular bit in some intermediate values when we give each of these n points

to the ECC circuit.

By using the same n points we can calculate V (i)P from km−2 down to k1 of

the secret key k. By picking up a particular bit (LSB, for example) in each of

V (i)P values for n points, we also have an n-bit data. If n is large enough, this

n-bit data gives information completely unique to V (i)P . We can use this n-bit

data as a discriminator Di to V (i)P in scanned data.

Our main idea in this section is that we find out a discriminator Di to V (i)P

in scanned data to retrieve the secret key k from km−2 down to k1. If an n-bit

discriminator Di appears in the scanned data for n points, ki is determined as

zero. If not, it is determined as one.

In the rest of this section, we firstly propose a discriminator Di to V (i)P . Sec-

ondly we propose an overall method to retrieve a secret key k using discriminators.

Thirdly we analyze the probabilities of successfully retrieving a secret key by using

our method.

4.3.1 Calculating a discriminator to V (i)P

Assume that n points P1, · · · , Pn over the elliptic curve E are given. Also assume

that we have already known km−2, · · · , ki+1 for a secret key k. Assuming that

ki = 0, we can calculate V (i)Pr for 1 ≤ r ≤ n. As Figure 4.3 shows, we define a
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discriminator Di to be a set of LSBs of V (i)Pr
3. If n is large enough, the discrim-

inator Di must give information unique to V (i)Pr for 1 ≤ r ≤ n. Consequently, if

Di appears in scanned data, ki is determined as zero. If not, ki is determined as

one. After ki is determined, we can continue to determine next bit of the secret

key k in the same way.

Our proposed method has two advantages compared to conventional scan based

attacks [9, 10]. One is that our method is effective in the case of partial scan

architecture. As long as a scan path includes at least 1-bit of each intermediate

value, we can check whether the discriminator whether exists or not in the scanned

data.

The other is that our method can crack the secure scan technique by [2], which

inserts inverters into the internal scan path to complicate the scan structure. It

protects Yang’s method [9, 10] with low area cost. However, the value of a 1-bit

register sequence is only changed to its inverted value. The variation of scanned

data obtained by [2] is not enough to prevent our proposed method from retrieving

a secret key. The detailed discussion will be described in Section 4.4.4.

3Since V (i)Pr shows the point in XZ-plane, it has its X-coordinate and Z-coordinate. In our

method, we just pick up LSB of its X-coordinate as in Figure 4.3.
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V(i)P = 1 0 0 … 1 0 … 0 1 0

V(i)P = 0 1 1 … 1 1 … 1 1 1

V(i)P = 0 0 1 … 0 0 … 1 1 0

V(i)P = 0 1 1 … 0 1 … 0 1 1

V(i)P = 1 0 1 … 1 1 … 1 0 1

V(i)P = 1 1 0 … 1 0 … 0 0 0

(n bits)

Input: P  E(F ) (1 r n), V(i)

Output: Discriminator D

D

2m bits

Z-coordinate X-coordinate

Figure 4.3: Discriminator Di.

sd =

sd =

sd =

sd =

sd =

sd =

Size of scan path

n bits

FF

th

FF

th

FF

th

Scan path

……101100001111……

……100101100100……

……101110011110……

……111000101101……

……010111001110……

……001000101101……

Number of
point

multiplication
cycles

1 st

……111001010011……

……100101100100……

……101110011110……

……111000101101……

……010111001110……

……001000101101……

……111100110010……

……100101100100……

……101110011110……

……111000101101……

……010111001110……

……001000101101……

Figure 4.4: Scanned data.
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4.3.2 Scanned data analysis method

First we prepare n points P1, · · · , Pn over the elliptic curve E and give them to

an ECC circuit. For each of these points, we obtain all the scanned data from the

scan out of the ECC circuit until the ECC circuit outputs the point multiplication

result. As Figure 4.4 shows, the size of scanned data for each of these points is

(“scan path length” × “number of point multiplication cycles.”)

Now we check whether a discriminator Di to V (i)P appears in the obtained

scanned data under the assumption that we do not know a secret key k in the ECC

circuit as follows:

1. Prepare n points P1, P2, · · · , Pn ∈ E(F2m), where Pr ̸= Ps for 1 ≤ r, s ≤ n

and r ̸= s.

2. Input Pr (1 ≤ r ≤ n) into the target ECC circuit and obtain scanned data

every one cycle during point multiplication until the ECC circuit outputs the

result. Let sdr denote the obtained scanned data for the point Pr (1 ≤ r ≤ n).

3. Calculate V (m−2)Pr assuming km−2 = 0 for each Pr (1 ≤ r ≤ n) and obtain

the discriminator Dm−2 to V (m− 2)Pr.

4. Check whether the discriminator Dm−2 exists in the scanned data sd1, · · · , sdn.

If it exists, then we can find out that km−2 is equal to 0, and if it does not

exist, then we can find out that km−2 is equal to 1.

5. We can determine km−3, km−4, · · · , k1 in the same way as Step 4.

6. k0 (LSB of a secret key k) is determined by comparing the expected kP value

with the point multiplication result outputted by the ECC circuit.

We show the example below to explain how the method above works.

Example 4 As in Example 1, let us consider that the 4-bit secret key k = 1010 = 10102,

i.e, k3 = 1, k2 = 0, k1 = 1, k0 = 0, and m = 4 but assume that we do not know k except
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for its bit length and k3 = 1. k can be written as k = 1xxx, where x shows an unknown

bit. Assume that the cycle counts of point multiplication are 4 and the size of the scan

path is 62 in the target ECC circuit.

First we prepare 8 points P1, P2, · · · , P8 ∈ E(F24), where Pr ̸= Ps for 1 ≤ r, s ≤ 8

and r ̸= s. The target ECC circuit executes the point multiplication as in Table 4.1.

We input Pr (1 ≤ r ≤ 8) into the target ECC circuit and obtain scanned data every

one cycle during point multiplication until the ECC circuit outputs the result. Let sdr

denote the obtained scanned data for the point Pr (1 ≤ r ≤ 8). The total size of scanned

data is 4× 62 = 248 (see Figure 4.5).

The MSB of k is one by definition (k3 = 1). Let us start to determine k2. We

calculate V (2)Pr = 5Pr assuming k2 = 0 for each Pr (1 ≤ r ≤ 8) and obtain the

discriminator D2 to 5Pr (see Figure 4.6). As Figure 4.6 shows, the discriminator D2

becomes “10011011”. Since we find out that the discriminator D2 exists in bit patterns

of scanned data sdr(1 ≤ r ≤ 8) in Figure 4.5, we can determine that k2 is equal to zero,

i.e., k = 10xx.

Next let us determine k1. We calculate V (1)Pr = 9Pr assuming k1 = 0 for each Pr

(1 ≤ r ≤ 8) and obtain the discriminator D1 to 9Pr (see Figure 4.7). As Figure 4.7

shows, the discriminator D1 becomes “01010100”. Since we find out that the discrimi-

nator D1 does not exist in bit patterns of scanned data sdr(1 ≤ r ≤ 8) in Figure 4.5, we

can determine that k1 is equal to one, i.e., k = 101x.

Finally let us determine k0. If k = 1010, then kP = 10P . If k = 1011, then

kP = 11P . We calculate 10P1 and 11P1 and compare each of them with the point

multiplication result kP1. The point multiplication result obtained by the ECC circuit is

10P1 and we can determine that k0 is equal to zero, i.e., k = 1010. Therefore we can

retrieve the secret key k = 1010 = 10102.
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sd =

sd =

sd =

sd =

sd =

sd =

sd =

sd =

4 x 62 = 248

8 bits

……100111011010……

……010111001100……

……001110101011……

……101110011101……

……010110110110……

……101101101011……

……111010111010……

……001101010111……

D

Figure 4.5: Scanned data example.

Input: P  E(F ) (1 r 8), V(2)=5

Output: Discriminator D

5P = 0 0 1 1 0 0 0 1

5P = 1 1 0 0 1 1 0 0

5P = 0 1 1 1 1 0 1 0

5P = 0 1 0 1 1 1 0 1

5P = 1 1 1 1 1 0 0 1

5P = 1 0 1 0 1 0 0 0

5P = 1 1 0 0 0 0 1 1

5P = 0 1 1 0 0 1 1 1

D

Z-coordinate X-coordinate

Figure 4.6: Discriminator D2.

Input: P  E(F ) (1 r 8), V(1)=9

Output: Discriminator D

9P = 1 1 1 0 1 0 1 0

9P = 0 1 1 0 0 1 0 1

9P = 1 0 0 0 0 0 1 0

9P = 0 1 0 0 1 1 1 1

9P = 0 1 1 0 1 1 1 0

9P = 1 1 0 1 0 1 0 1

9P = 1 0 1 1 1 0 1 0

9P = 0 1 0 1 0 0 0 0

D

Z-coordinate X-coordinate

Figure 4.7: Discriminator D1.
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4.3.3 Possibility of successfully retrieving a secret key

Given that the scan size is α bits and the cycle counts to obtain point multiplication

is T . Assume that scanned data are completely random data.

Even though V (i)Pr for 1 ≤ r ≤ n is not calculated in the target ECC architec-

ture, its discriminator may exist in scanned data. When αT < 2n, the probability

that the discriminator Di to V (i)Pr exists in somewhere in bit patterns of scanned

data sdr (1 ≤ r ≤ n) is αT/2n despite V (i)Pr does not calculate.

Sufficiently large n can decrease the probability that we mistakenly find out

the discriminator Di in scanned data. For instance, If α is 2,520, T is 15,137, and

n is 32 4, then the probability that we mistakenly find out the discriminator Di in

scanned data is 2, 520 × 15, 137/232 ≃ 8.88 × 10−3, which is low enough. If α is

25,200, T is 15,137, and n is 36, then the probability that we mistakenly find out

the discriminator Di in scanned data is 25, 200 × 15, 137/236 ≃ 5.55 × 10−3, which

is also low enough.

4.4 Experiments and performance analysis

Let us analyze the number of points n required to retrieve a secret key k by using

our proposed method. n must be large enough to be unique to V (i)Pr (1 ≤ r ≤ n).

But it must be small enough to make retrieving time as short as possible.

In this section, we retrieve some secret keys in the practical ECC architecture to

determine the appropriate number of points n by using our method. We generate

randomly 1,000 secret keys and retrieve each of them. Then we calculate the

number of points required to correctly retrieve the secret keys.

4These values are derived from the experiments in Section 4.3.
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4.4.1 Architecture of an elliptic curve cryptography circuit

Block diagram of the target ECC architecture for our scan-based attack is shown

as in Figure 4.8 and Figure 4.9. Its architecture is based on [34, 47] and it executes

point multiplication using the López’s method [43], an improved version of the

Montgomery method. The method requires only one inversion and reduces the

number of the multiplications compared with other point multiplication algorithms.

The ECC architecture has an adder, a multiplier and a square unit over F2m .

These computing units can operate in parallel so that they can improve throughput

effectively. Registers are used for input data, temporary data, and parameters for

ECC. The ECC architecture also has registers for a secret key k and attackers

cannot access these registers directly. In this ECC architecture, its secret key k

can be set to be an arbitrary value beforehand.

We have designed the ECC architecture in Verilog HDL and synthesized it using

Synopsys Design Compiler A-2007.12-SP3 with STARC 90nm process library. A

scan path has been implemented automatically using Synopsys DFT Compiler. We

have obtained scanned data from the gate-level ECC circuit using HDL simulator

Synopsys VCS-MX B-2008.125.

The implementation result indicates that the delay time is 1.66 ns, the area

is 32.5k gates and the total number of registers is 2,520 bits. Using this ECC

architecture, the point multiplication requires 15,137 cycles.

5This work is supported by VLSI Design and Education Center(VDEC), the University of

Tokyo in the collaboration with Synopsys Corporation and with STARC.
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Figure 4.8: Block diagram of the elliptic curve cryptography (Data path).
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Figure 4.9: Block diagram of the elliptic curve cryptography (Controller).



70 CHAPTER 4. SCAN-BASED ATTACK AGAINT ECC

4.4.2 Target scan path architecture

For simplicity, the scan path used by our experiment just includes all the registers

in the target ECC architecture. This means that it also includes the shift registers

storing the secret key and registers for the controller in our experiment. However,

we assume that attackers just attack scanned data in the data path in the ECC

circuit. This is because of the following reasons:

A controller architecture depends on implementation approach and is essentially

unrelated to cryptography algorithm. For example, our ECC circuit uses a state

machine as a controller but the ECC architecture in [31] uses a user-configurable

circuit as a controller. Unlike cryptography algorithm, the controller architecture

does not have to be open, and it is very hard for attackers to know what kind of

controllers are used in a cryptography circuit.

On the other hand, a modern cryptography algorithm has to be open to check

its security and we need to know it to realize a secure communication. Attackers

can easily know cryptography algorithm used by a target cryptography LSI.

Our proposed attacking method is based on an ECC algorithm and attackers

know its algorithm using a target ECC LSI much easier than its controller architec-

ture. We can say that scan-based attacks analyzing a data path is more practical

than those analyzing a controller.

4.4.3 Results

We have implemented the analysis method proposed in Section 4.3 in C on the

SuSE Linux 9, Intel Xeon 3.4GHz, and 4GB memories and performed the following

experiments.

First, we have generated 1,000 secret keys randomly. Each of the generated

secret keys has a bit length of 163. Next, we have given each of the 1,000 secret

keys into the target ECC circuit and obtained scanned data. Total size of the

obtained scanned data for each secret key is 2, 520 × 15, 137 = 38, 145, 240 bits.
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Table 4.2: The experimental results

Key bit length bit 163

Number of retrieving keys 1,000

Number of required points (Average) 29

Number of required points (Worst) 36

Retrieving time second ≤40
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Figure 4.10: Number of required points to retrieve secret keys.

Using these scanned data, we have retrieved each of the secret keys by using our

proposed analysis method. Figure 4.10 and 4.2 show the retrieving results. Fig-

ure 4.10 shows a histogram which demonstrates the number n of required points

to retrieve each secret key versus its frequency. For example, the 572th secret key

is 0x7e5f91be081095bf9eb1bc5d1e46f0001cb1d7b32. In order to retrieve this secret

key, we need 28 points, i.e., n is 28. In this case, we can successfully retrieve

the 572nd secret key using 28 points but fail to retrieve it using 27 points or less.

Throughout this experiment, the required number of points is 29 on average and

36 in the worst case. A retrieving time is at most 40 seconds when analyzing one

secret key.
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4.4.4 Discussions

Some secure scan architecture without consideration of a 1-bit sequence which is

specific to some intermediate values cannot protect against our method. Here, we

consider secure scan architecture against our proposed scan-based attack proposed

so far.

Firstly, the most straightforward method against our proposed scan-based at-

tack is to keep scan path open after testing the chip. However, scan path can be

reconnected and be accessed by cracking the package [48].

Secondly, the secure scan architecture proposed in [2] cannot protect against

our proposed method from retrieving a secret key. [2] inserts some inverters into

a scan path to invert scanned data as shown in Figure 4.11. However, since the

value of a 1-bit register sequence is only changed to its inverted value, the variation

of scanned data is not enough to prevent attackers from checking whether the

discriminator exists or not. For instance, assume that the discriminator Di is

10100 . . . 1 and we check whether the discriminator Di exists or not in the scanned

data sd1, sd2, · · · , sdn modified by [2] as shown in Figure 4.11. If the discriminator

Di exists in the modified scanned data, we can successfully find out that ki is zero.

If not, we check whether the inverted discriminator Di−inv = 01011 . . . 1 exists or

not. If the inverted discriminator Di−inv exists in the modified scanned data, we

can find out that ki is zero. If the inverted discriminator Di−inv does not exist, we

can find out that ki is one.

[3] adds unrelated data to scanned data to confuse attackers as shown in Fig-

ure 4.12. However, a sequence of scanned data to which unrelated data are added

is fixed in each LSI chip and it just confuses only a part of scanned data to achieve

lower area overhead. In other words, unmodified bits exist in the scanned data

sd1, sd2, · · · , sdn modified by [3]. In this case, if the discriminator Di exists in

the modified scanned data, we can successfully find out that ki is zero. If not,

we check whether the disicriminator D1
i calculated when ki is one exists or not
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in the modified scanned data because a discriminator is defined as not only when

ki is zero but also when ki is one. If the discriminator D1
i exists in the modified

scanned data, we can successfully find out that ki is one. Even if these discrimi-

nators do not exist in the modified scanned data, we can use other discriminators

like Di1, Di2, · · · as shown in Figure 4.12, which are defined as a set of other bits

of V (i)Pr for 1 ≤ r ≤ n. If one of these other discriminators exists in the modified

scanned data, we can find out that ki is zero. Consequently, [3] cannot completely

protect against our method.

Thirdly, [17, 18, 19, 20, 21, 22, 23, 24] require authentication to transfer between

system mode and test mode, and their security depends on authentication methods.

If authentication would be broken-through and attackers could obtain scanned

data, a secret key in an ECC LSI could be retrieved by using our proposed method.

We consider that authentication strength is a different issue from the purpose of

this chapter.

Yang’s method [10] limits transition between test mode and system mode to

prevent attackers from obtaining scanned data during encryption/decryption using

the secret key in their cryptography circuit. However, it could not support in-field

testing required for high reliable LSI.

Finally,[25, 26, 27] use a compactor so as not to output scanned data corre-

sponding to registers directly. [28] proposes AES-based BIST, whereby there is no

need for scan path test. However, applying these methods effectively to an ECC

LSI is quite unclear because these methods implement only an AES circuit or just

a sample circuit not for cryptography.
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Figure 4.11: Scanned data modified by [2].
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Figure 4.12: Scanned data modified by [3].
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4.5 Concluding remarks

We have focused on a scan-based attack against an ECC circuit. Three scan-

based attacks against symmetric-key cryptography are reported [9, 10, 15] but

those against public-key cryptography are not reported yet. Since public-key cryp-

tography are more complex than symmetric-key cryptography, scan-based attacks

against symmetric-key cryptography cannot directly applied to retrieve a secret

key in public-key cryptography circuit.

Our proposed scan-based attack can effectively retrieve a secret key k in an

ECC circuit, since we just focus on the variation of 1-bit of intermediate values.

By monitoring it in the scan path, we can find out the register position specific

to intermediate values. The experimental results demonstrate that a secret key in

a practical ECC circuit architecture can be retrieved by using 29 points over the

elliptic curve E within 40 seconds. We can say that the proposed method reveals

the vulnerability of a scan path in an ECC circuit.

In this chapter, we deal with an elliptic curve cryptography over GF (2m). But

even if we deal with an elliptic curve cryptography over GF (p), where p is prime,

the intermediate values during the point multiplication are determined by its inputs

and a secret key, and consequently, our proposed method can retrieve a secret key

in the similar way.



Chapter 5

State-dependent secure scan

architecture

In this chapter, we propose a new secure scan architecture having tolerability

against [15] by changing structure of a scan path dynamically even after it is

designed.

A test for manufactured chips individually is very important for offering high

quality LSI chips. Recently, circuit size dramatically increases because process

technology makes remarkable progress and CAD tools become widespread. We

have to consider a test for LSI when we design circuits because it is more and more

difficult to test a whole circuit completely.

Scan test is a powerful and popular test technique because it achieves high

fault coverage and is implemented easily. Scan test architecture is designed by

connecting scan FFs(flip-flops) inside circuit, which are registers for a scan test. in

series, which is called a scan path. It has input and output pins outsides the chip

to control and observe the internal states of the circuit.

Since FF is accessible from outside circuit in a scan path, there is a threat for

obtaining confidential information such as a secret key which is used for cryptog-

raphy circuits. In fact, scan based attacks are already proposed [9, 12, 15], which

76
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retrieves the secret key by analyzing scanned data obtained from a cryptography

circuit. It is non-straightforward to analyze, because the connection of scan FFs is

almost random by each layout. However, scan based attacks solve this connection

problem using the characteristic of a scan path.

Secure scan architecture to defend scan based attacks is divided into 2 patterns.

One is a restriction that no one can obtain original scanned data without permis-

sion. Only testers can obtain them for test. This method requires a circuit and a

controller for restriction but security settings can be reasonably flexible [12, 19, 23].

However, there are 3 demerits as follows: the circuit and the controller needs to

be re-designed for each cryptography circuit, area overhead for the circuit and the

controller is too large, and if attackers access a scan path with permission, it is

easy to retrieve a secret key by using scan-based attacks.

The other method is making secret information unretrieveable for attackers

even if they can access a scan path. [2] changes inputs and outputs of a scan path

in inside circuit. Even if attackers obtain scanned data, they do not understand

the internal states without modification, and consequently, they cannot use scan-

based attacks. This method does not require a controller and only requires simple

circuits to change data. It also builds a secure scan path automatically by using

CAD tools, and furthermore, it can be adapted to any intellectual property easier.

This method has more advantages compared to the first method. However, there

is 1 demerit as follows: [2] cannot defend a certain scan-based attack. The scan-

based attack proposed by [15] can retrieve a secret key even by using scanned data

changed by [2].

To defend the scan-based attack [15], our proposed method use a State-dependent

Scan FF(SDSFF) we propose changes an scan FF output using a latch memorizing

a past value of the scan FF. Our proposed method can change a security level

flexibly by considering objective circuits, and it also does not need any controller,

and then, area overhead is small.
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5.1 Scan-based attacks

A scan-based attack is one of side channel attacks based on information gained

from the physical implementation of a cryptography. A scan path comprises scan

FFs connected one another in serial. We explain a scan path test in detail at

Section 2.2.1.

By using ”Scan In”, ”Capture”, and ”Scan Out” through a scan path, which

is same procedures as test, attackers obtain scanned data to know the internal

states of a cryptography circuits. [9, 12] proposed the method to make use of the

hamming weight of scanned data to find out the internal states. This method only

needs the correspondence between the first column of AES and the scanned data,

but does not need the bit-to-bit correspondence between them.

On the other hand, [15] proposes a scan-based attack which is almost inde-

pendent of a scan-path structure. This method checks whether a 1-bit sequence

which is specific to some intermediate values is included or not in scanned data.

As long as a scan path is implemented on an AES circuit and it includes at least

1-bit of each intermediate value, [15] can retrieve a secret key even if the scan path

structure is unknown.

5.2 Secure scan architecture

Secure scan architecture for scan based attacks can be divided into 2 types.

Method1: Make scan path unusable for attacker by private controller limita-

tion.

Method2: Make scan path usable for anyone, but make secret information

undecodable.

Generally, a security level will be threatened when mode jump occurs such as

”system mode” to ”test mode” or ”test mode” to ”system mode”. For this reason,
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method 1 protects circuits from scan based attacks by restricting mode jumps using

a test controller [12, 19, 23].

[12] proposes mirror key register (MKR) architecture to protect secret informa-

tion from attacker. A secret key, which is stored with ROM in a cryptography chip,

only loaded at system mode in secure mode. Testers make a cryptography chip

jump to insecure mode from secure mode for test and that occurs only a power off

reset. Therefore, attackers cannot obtain scanned data during operation. However,

the same number of mirror key registers as the number of scan FFs which hold

target data are required, so this method has large area overhead.

[19] can automatically detect whether or not a scan path comes to a test mode

using Spy Scan FF (SpySFF) inside a scan path. All mode jumps are restricted

so that secret information is safe, but this condition makes primal required test

unexecutable. For this reason, mode jump by enable signal tree is permitted. This

exception is a technique that mode jump is permitted only when output of some

scan FF inside scan path is equal to designated patterns. However, re-designing of

test controller is required for each circuit, also area overhead is large.

In [23], Scan Out is permitted only when M keys (a length is N bits) input

to specific N FFs as test vector to test start. N FFs which are used as keys are

randomly chosen, and is decided at system design timing. As long as N -bit key

does not input to FFs in specific order for M times, no one can obtain inside

information. Probability that attackers find N -bit key is 1/2N , with M times

input, makes final probability of 1/2MN . Also, M and N can be chosen freely, and

then a security level can be chosen flexibly. On the other hand, area overhead will

be larger because we need to design a controller for checking input keys M times.

[2] protects secret information by making scanned data change undecodable.

This can be done by inserting a number of inverters randomly into a scan path.

There are 2 patterns of which inverter is inserted or is not inserted for each scan

FF. If the number of all scan FF is m, the number of structures that a scan path

can take will be 2m. Therefore, it is substantially safe because attackers only obtain
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structure of the scan path in probability of 1/2n and required impractical time for

decoding. It does not need test controller, and consequently area overhead is very

small, and it is easy to implement by using CAD tools automatically. However, it

has a problem that output is fixed for each bit of scanned data. Because places

of inverters is fixed after chip layout has designed, [2] cannot defend attacking

method [15] which just focuses on 1-bit of register inside a scan path.

5.3 Proposed method

We propose new secure scan architecture whose path dynamically changes to have

tolerability against the scan-based attack [15]. The attack method uses a charac-

teristic that the structure of scan path is fixed once implemented. To protect a

secret key against the attack method, we change the output value of a scan FF by

XOR’ing with the past output value of it. To store the past output value of the

scan FF, we propose a State-dependent Scan FF (SDSFF). The SDSFF changes

the output value of a scan FF with internal states of a circuit.

As shown in Figure 5.1, the SDSFF stores the output value of the scan FF

(SFF1) in a latch when a load signal is enable. The output value S for the next

scan FF (SFF2) is calculated by XOR’ing the output value A of the latch with the

output value B of scan FF1. The value A dynamically changes after the circuits

implemented at the timing when the load signal is enable, and the value S changed

at the same time accordingly. The values among A, B, and the output value S for

scan FF2 is shown Figure 5.1.

If testers use our proposed method, they replace some normal scan FFs with

SDSFFs. Scanned data are changed by SDSFFs, but testers can generate test

patterns and corresponded output patterns because testers know which scan FFs

are replaced with SDSFFs. Attackers, however, do not know which scan FFs are

replaced in a cryptographic circuit, and then, they do not know how scanned data

they obtained are changed. For this reason, our proposed method can defend the
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Figure 5.1: State-dependent Scan FF(SDSFF).

scan-based attack [15] and other attack methods [9, 12], too.

We discuss a test algorithm using our proposed method. The output of a scan

FF changes dynamically by updating the value A with Load signal at the timing

when moving from a test mode to a system mode. We show the timing chart

between a clock signal, Se signal, and Load signal is shown in Figure 5.2. We

defined that an cryptography LSI is operated in a system mode when Se signal is

0 and it is operated in a test mode when Se signal is 1.

While Se signal is 1, scan data shift one by one with every clock cycle, We

input test patterns to scan FFs of scan path. After inputting them, we change Se

signal to 0, which represents system mode. At the same time, Load signal changes

to 1, and a latch of a SDSFF stores output value A of a scan FF1. Load signal

changes to 0 again before the next clock rising occurs. After the clock rises in the

system mode, and as executed results are stored in scan FF, we make Se signal 1

to observe the internal state of the cryptographic circuit. It is important that the

output value A of the latch is updated at every timing to move from the test mode

to the system mode. Thereby, structure of scan path is not fixed.

Testers can decode scanned data as they know which scan FFs are replaced

with SDSFFs and the output value A of the latch. Attackers do not know where

SDSFFs insert of a scan path and then they also do not know which bits of scanned

data inverted, thereby they cannot decode and analyze scanned data to retrieve a
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secret key. We show the example below to explain how scanned data decode.

Example 5 Let us consider that a scan path model which consists of four SDSFFs

and one DFF for I/O as shown in Figure 5.3. We assume that four scan FFs stores

D1D2D3D4 and four latches of them stores 0101, which means that the data through

SDSFF A1 and A3 are inverted. We input 1001 as a test pattern to the scan path and

show change in scanned data in Table 5.1.

At the rising of the 1st clock cycle, four scan FFs store 1D3D2D1. A1 inverts D2

to D2 when D2 passes through the SDSFF1. We obtain D0, which A3 inverts D0 to D0

when D0 pass through the SDSFF3. We input 0 to the scan path.

At the rising of the 2nd clock cycle, four scan FFs store 01D3D2. A1 inverts D3 to

D3 when D3 passes through the SDSFF1. We obtain D1, which A3 inverts D1 to D1

when D1 pass through the SDSFF3. We input 0 to the scan path.

At the rising of the 3rd clock cycle, four scan FFs store 000D3. A1 inverts 1 to 0

when it is passed through the SDSFF1. We obtain D2, which A3 inverts D2 to D2 when

D2 pass through the SDSFF3. We input 1 to the scan path.

At the rising of the 4th clock cycle, four scan FFs store 1010. A1 inverts 0 to 1 when
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it is passed through the SDSFF1. We obtain D3, which A3 inverts D3 to D3 when D3

pass through the SDSFF3.

Before the 5th clock cycle is rising, we change Se signal to 0 and move to a system

mode. At the same time, four latches store 1010, and thereby positions inverting bit

is changed. At the rising of the 5th clock cycle, four scan FFs store executing results

D′
3D

′
2D

′
1D

′
0. We input 1001 as the same test pattern as the first time.

At the rising of the 6th clock cycle, four scan FFs store 1D′
3D

′
2D

′
1. A0 inverts D′

3

to D′
3 when D′

3 passes through the SDSFF0 and A2 inverts D′
1 to D′

1 when D′
1 passes

through the SDSFF2. We obtain D′
0 and input 0 to the scan path.

At the rising of the 7th clock cycle, four scan FFs store 01D′
3D

′
2. A0 inverts 0 to 1

when it is passed through the SDSFF0 and A2 inverts D′
2 to D′

2 when D′
2 passes through

the SDSFF2. We obtain D′
1 and input 0 to the scan path.

A0 inverts 0 to 1 when it is passed through the SDSFF0 and At the rising of the 8th

clock cycle, four scan FFs store 000D′
3. A2 inverts D′

3 to D′
3 when D′

3 passes through

the SDSFF2. We obtain D′
2 and input 1 to the scan path.

At the rising of the 9th clock cycle, four scan FFs store 1111. A0 inverts 0 to 1 when

it is passed through the SDSFF0 and A2 inverts 0 to 1 when it is passed through the

SDSFF2. We obtain D′
3.

5.4 Implementation and Results

We have implemented our proposed method to an AES cryptography circuit in

Verilog-HDL and have synthesized it using Synopsys Design Compiler Z-2007.03-

SP4 with 90nm process library1. The AES cryptography circuit has 716 registers

in total and the length of scan path is 716, too. We have replaced n normal scan

FFs in a scan path with n proposed SDSFFs and have showed area after synthesize

to compared with other scan path methods.

1This work is supported by VLSI Design and Education Center (VDEC), the University of

Tokyo in the collaboration with Synopsys Corporation and with STARC.
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Table 5.1: Values in Example 1.

Clock Cycle A0 A1 A2 A3 Scan In B0 B1 B2 B3 Scan Out

1 D3 D2 D1 D0 –

1st 0 1 D3 D2 D1 D0

2nd Scan shift 0 1 0 1 0 0 1 D3 D2 D1

3rd 1 0 0 0 D3 D2

4th – 1 0 1 0 D3

Load 1 0 1 0 – 1 0 1 0 –

5th Capture 1 0 1 0 – D′
3 D′

2 D′
1 D′

0 –

1 D′
3 D′

2 D′
1 D′

0 –

6th 0 1 D′
3 D′

2 D′
1 D′

0

7th Scan shift 1 0 1 0 0 0 0 D′
3 D′

2 D′
1

8th 1 0 1 0 D′
3 D′

2

9th – 1 1 1 1 D′
3

Load 1 1 1 1 – 1 1 1 1 –

10th Capture 1 1 1 1 – D′′
3 D′′

2 D′′
1 D′′

0 –

The circuit area is 19,030 gates when scan path is not implemented. Imple-

menting scan path, the area increases 19,594 gates. Inserting 358 inverters among

scan path to implement [2], we have 19,863 gates. The increased amount compared

with normal scan path is 269 gates.

To implement our proposed method, we replace normal scan FFs with 45, 60,

90, 179, 358, 716 SDSFFs, and increased amounts compared with normal scan path

are 203, 270, 405, 806, 1,611, 3,218, respectively. A SDSFF uses a latch and an

XOR gate, and it is bigger than [2] using an inverter accordingly. In our method,

when we replace 60 scan FFs with SDSFFs, area is as same as [2], over 60 scan

FFs makes larger area than [2].
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Table 5.2: Implementation results for an AES cryptography circuit.

Modified Scan FFs Area gates Area Overhead gates

No Scan – 19030 —

Normal Scan – 19594 0

[2] 358 19863 269(1.4%)

716 22812 3218(16%)

358 21205 1611(8.2%)

Proposed method 179 20400 806(4.1%)

90 19999 405(2.1%)

60 19864 270(1.4%)

45 19797 203(1.0%)

Table 5.3: Security comparison.

[2] Proposed method

Possible patterns against [12] patterns 2n 2n

Possible patterns against [15] patterns 2 2n

If attackers obtain scanned data to retrieve a secret key using the scan-based

attack, they have to find out the position of SDSFFs in scan path of a cryptography

circuit. The more the number of SDSFFs is, the more difficult to find out the posi-

tion of SDSFFs. Suppose the number of SDSFFs to replace is n, the combination

number of possible scan path architecture will be 2n, which means, the probability

of specifying structure of scan path by attacker will be 1/2n. We can adjust the

security level against attack methods and by increasing replaced SDSFFs.
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5.5 Concluding Remarks

In this chapter, we have proposed secure scan architecture using SDSFF. We fo-

cused on the point that scan based attack cannot attack when scan path structure

changes dynamically. By using this point, we used a latch for saving past state to

change scan path structure dynamically. We have evaluated the security level and

validity by implemented to an AES cryptography circuit.



Chapter 6

Conclusion

In this dissertation, I proposed new scan-based attacks against AES, RSA and

ECC and a new secure scan architecture.

Scan-based attacks whereby we do not need the correspondence between the

scanned data and the registers of cryptography ciruits storing the intermediate val-

ues, and further, we do not have to know when the registers store the intermediate

values necessary for analysis.

Conventinal scan-based attacks such as Yang’s method [12] has following prob-

lems so that it is much difficult to retrieve a secret key in practical security LSIs.

1. A security LSI consists of many circuit other than the cryptography circuit,

such as a microprocessor, memory and a controller. Scan path in the security

LSI generally includes not only registers of the cryptography circuit but also

many registers of other circuits.

2. Attackers cannot know the timing when intermediate values corresponding

to the secret key are stored in registers.

In order to solve these problems, we focus on the general property on scan paths

below:

87
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Property 2 A bit position of a particular register r in a scanned data when giving

one input data is exactly the same as that when giving another input data.

This property is clearly true, since a scan path is fixed in an LSI chip and the order

of connected registers in its scan path is unchanged.

A bit pattern of a particular bit position in scanned data for n intermediate

values gives n-bit data. Based on the above property, this n-bit data also may give

a bit pattern of a particular bit in these intermediate values when we give each of

these n inputs to the cryptography circuit.

By using the same n inputs, we can calculate intermediate values correspond-

ing to the secret key. By picking up a particular bit (LSB, for example) in each of

intermediate values for n inputs, we also have an n-bit value. If n is large enough,

this n-bit value gives information completely unique to intermediates values corre-

sponding to the secret key. We can use this n-bit value as a discriminator Di to

intermediates values corresponding to the secret key in scanned data. Methodology

to retrieve the secret key is following steps.

1. Prepare n inputs.

2. Calculate the cryptography algorithm with one of the n inputs by using the

target cryptography circuit and obtain scanned data every one cycle until

the crypgtography circuit outputs the result.

3. Calculate a discriminator from intermediate values corresponding to the se-

cret key.

4. Check whether the discriminator exists in the scanned data. If it exists or

not, then we can determine the particular bit of the secret key.

5. We can determine other bits of the secret key in the same way as Step 3-4.

Our proposed scan-based attack against AES retrieves the secret key in the

AES circuit by using only 225 inputs. We success to reduce the number of inputs
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by as much as half compared to Yang’s AES scan-based attack. In addition, we

experiment with scanned data adding random bits to it. Total bit length of scanned

data is 128 (no extra data is added) to 4096 (3968-bit extra data is added). Even if

the scanned data includes the 3,968-bit random data other than the round function

output, our improved method is capable to decipher the secret key 321 inputs on

average and 369 inputs in the worst case.

Our proposed scan-based attack against RSA succeeds in retrieving the secret

key in the RSA circuit. We experiment three pattern of key bit length, 1,024 bits,

2,048 bits and 4,096 bits. Requiring the average number of inputs is 29.5, 32 and

37, respectively.

Our proposed scan-based attack against ECC succeeds in retrieving the secret

key in the ECC circuit. We experiment 1,000 secret keys generated randomly and

we retrieve all of the secret keys. Key size is 163 bits and the scan path length

is 2,520 bits and the point multiplication requires 15,137 cycles. Requiring the

number of inputs is 29 on average and 36 in the worst case.

State-dependent configurable secure scan architecture achieves effecitive coun-

termeasure against scan-based attacks. By subsititing State-dependent scan flip-

flop(SDSFF) for some scan flip-flops, scanned data is changed depend on its state.

Increased area by using SDSFF to prevent scan-based attacks is only 5 through

10 % against cryptography circuit. If attackers obtain scanned data to retrieve

a secret key using the scan-based attack, they have to find out the position of

SDSFFs in scan path of a cryptography circuit. Suppose the number of SDSFFs

to replace is n, the combination number of possible scan path architecture will be

2n, which means, the probability of specifying structure of scan path by attacker

will be 1/2n.
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6.1 Future works

My future works are summarized as follows:

1. Proposing a theory about the number of input required for retrieving a secret

key.

2. New scan-based attack against compressed scanned data.

3. Experimental evaluation using our proposed method against scanned data

modified by countermeasures.

4. New scan-based attack against other crytography algorithm.

We reveal the number of input required for retrieving secret keys against some

cryptography circuits. However, these numbers are obtained by experimantal re-

sults, so we have not understood the reason why our scan-based attack against

ECC requires the number of inputs is 29 on average and 36 in the worst case

for retrieving the secret key in the ECC circuit. By developing a theory about

the number of input required for retrieving a secret key, our proposed scan-based

attacks must be more effective methods.

All of scan-based attacks are based on the assumption that scanned data is

directly output from registers. In practice, compressing scanned data is sometimes

used in order to reduce the time of scan test. If a scan-based attack by using

compressed scanned data is possible, it must be more practical attacking method.

Some countermeasure against scan-based attack are reported, but all of them

do not experiment with practical circuits. Experiment of scan-based attacks using

modified scanned data by countermeasure is important.

Scan-based attacks are powerful and threat against cryptography circuits. How-

ever, effective attacking method against some cryptogaphy algorithm are not found

out. Camellia [49], for instance, which is one of symmetric-key cryptography algo-

rithm, cannot not be attacked because side-channel attacks have not been reported
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yet. Algorithm of Camellia considers countermeasure against side-channel attacks

so that a scan-based attack against Camellia is difficult, too. Scan-based attacks

against Camellia is worth researching.
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