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Chapter 1

Introduction

1.1 Background

Probabilistic inference is a very important problem that arises in several applications includ-

ing channel coding theory, image processing and speech recognition. The probabilistic in-

ference problem is defined as follows. We assume that the unobservable random variables,

x = (x1, · · · , xN), are generated from the probability distribution p(x) and the observable ran-

dom variables, y, are generated from the conditional probability distribution p(y|x). Then, the
probabilistic inference problem is the problem of estimating x given y.

Depending on the criteria for evaluation, there are two optimum decision rules. One is the

maximum a posterior (MAP) probability estimator, which maximizes the posterior distribution

of unobservable variables for the given observable variables. Another is the maximum posterior

marginal (MPM) estimator, which maximizes the marginals of the posterior distributions of

unobservable variables for the given observable variables. With either rule, the optimum esti-

mation is generally computationally difficult, i.e., in general, the computational complexity of

these estimators is exponentially proportional to the number of unobservable variables.

A graphical model and probabilistic inference algorithms on the graph are used to tackle

the probabilistic inference problem. A graphical model is a probabilistic model that expresses

the statistical dependence structure of random variables in a graph. This model shows the

factorized structure of the probability distribution. Several types of models can be used as

graphical models, such as the Bayesian network, Markov random field, and factor graph. In this

thesis, we mainly deal with the factor graph. A factor graph is a bipartite graph that expresses

the factorization structure of the function. It contains some variable nodes, which correspond

to variables, function nodes, which correspond to functions, and edge connections between the

variable and function nodes.

The belief propagation (BP) algorithm is one of the most famous algorithms for solving

probabilistic inference problems through graphical models. We can define the BP algorithm for

the operations on the factor graph. The output of the algorithm coincides with the optimum

estimator if the graphical model has no cycles. The graphical model and BP algorithm have

1



2 1.2. Purpose of Research

provided excellent results when applied to error-correcting codes. Error-correcting codes are used

to reliably transmit information through a noisy channel. The best codes currently available

include turbo codes and low-density parity check (LDPC) codes, which are based on graphical

models. Employing the BP algorithm as the decoding algorithm for turbo codes or LDPC codes,

we can realize near-limit performance.

On the other hand, as an alternative decoding algorithm for LDPC codes, linear program-

ming (LP) based decoding algorithms are attracting considerable attention. Given that we can

consider the MAP estimation problem of binary linear codes as an instance of 0-1 integer pro-

gramming problem, the LP decoder solves the relaxation problem of the 0-1 integer programming

problem. Compared to the BP algorithm, the LP-based decoding algorithm has many attractive

features. For example, in combinatorial optimization, there are many methods to improve the

approximate performance of LP relaxation.

1.2 Purpose of Research

When the decoding problem of the binary linear code is considered as an example of the inference

problem of the graphical model, the factor graph corresponds to this problem has some specific

features. First, the functions in the factor graph can be classified in two classes. One is the

indicator function, which is a function defined on a set, indicating the membership of an element

in its subset; this function outputs value 1 for all elements of the subset and the value 0 for

all elements not in the subset. The other function is called the non-indicator function. Each

indicator function in the graph is connected to more than one variable node, while each non-

indicator function is connected to only one variable node. On the other hand, the factor graph for

general probabilistic inference problems except for the decoding problem of binary linear codes

possibly has non-indicator functions connected to more than one variable node. For example, if

we deal with the decoding problem of binary linear codes over the multiple-access channels, the

factor graph correspond to the problem has such non-indicator functions. For such problems,

we cannot obtain the inference algorithm based on LP in the same manner as we can for the

decoding problem of binary linear codes over the single-user memoryless channel.

Contribution of this thesis are as follows:

1. We extend the LP-based inference algorithm to the inference problem on graphical models

in addition to the decoding problem of binary linear codes over the single-user memoryless

channel.

2. We demonstrate the approach to decreasing the computational complexity of the inference

algorithms (LP-based and BP) by converting the graph structure.

3. We improve the LP-based inference algorithm using combinatorial optimization theory.

First, we developed the LP-based inference algorithm for the inference problems of the general

factor graph. In this problem, the graph has non-indicator functions that are connected to more
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than one variable node. We have resolved this problem by introducing some auxiliary variables

and changing the graph structure.

Second, we demonstrated that the computational complexity of the inference algorithms

based on LP or BP can be decreased. The computational complexity of these algorithms depends

on the structure of the factor graph. Since the structure of the factor graph depends on the way

the function is factorized, different factorization results in a different factor graph.

Third, we improved the LP-based inference algorithm using combinatorial optimization the-

ory. A feature of the LP-based inference algorithm is that if the optimum solution of the linear

program is an integer, the solution is guaranteed to be MAP estimate, however, if the optimum

solution is rational, it is not MAP estimate. Similar problems arising in general combinatorial op-

timization can be resolved using methods such as the branch-and-bound method, cutting-plane

method, and branch-and-cut method. In this thesis, we apply these methods to the inference

problem. We develop the inference algorithm based on the branch-and-cut algorithm.

This thesis is organized as follows.

In Chapter 2, we present some basic notations and discuss previous studies as preliminaries.

We first formulate the probabilistic inference problems. Next, we discuss the factor graph and

BP algorithm. Then, we formulate the decoding problems for various communication systems.

We also provide that those problems can be considered as the probabilistic inference problems.

Finally, we review the application of probabilistic inference algorithm for the decoding problems.

In Chapter 3, we provide the LP-based inference algorithm for general factor graphs. We first

present the LP-based inference algorithm for the factor graph that does not include multi-degree

non-indicator function nodes. Next, we propose the LP-based inference algorithm for the factor

graph that includes multi-degree non-indicator function nodes.

In Chapter 4, we show that the computational complexity of the inference algorithms can

be reduced by changing the factorization structure. First, we propose the BP algorithm based

multiuser detection algorithm for a DS-CDMA channel. Next, we provide the LP-based decoding

algorithm for Gaussian multiple-access channels.

In Chapter 5, we propose the branch-and-cut based decoding algorithm for the decoding

problem of linear block codes over single-user memoryless channels. Next, we provide some

numerical simulation results.

In Chapter 6, we conclude this thesis and discuss our future studies.





Chapter 2

Preliminaries

2.1 Probabilistic Inference Problem

In this section, we describe the formulation of probabilistic inference problem. Probabilistic in-

ference problem is defined as follows. LetXn, n = 1, 2, · · · , N be the random variables which take

the values in the finite set Xn, n = 1, 2, · · · , N with cardinality |Xn| and we denote those realiza-

tions as xn, n = 1, 2, · · · , N . We also define the set of random variables X , (X1, X2, · · · , XN)

and it’s realization x , (x1, x2, · · · , xN). The probability distribution function of x is denoted by

p(x). We assume that x is randomly generated according to the distribution p(x) and we can’t

observe it. Let Y = (Y1, Y2, · · · , YN) be the observable random variables and y = (y1, y2, · · · , yN)
be its realizations where Yn takes it’s value in Yn and it is generated according to the proba-

bility distribution p(y|x).1 The probabilistic inference problem is the problem to estimate the

unobservable variables x given the observations y.

According to the criteria for evaluation, there are two optimum decision rules. If we regard

Pr {x̂ 6= x} as the error probability, we can minimize it by output the estimator x̂ as

x̂ = arg max
x∈XN

p(x|y), (2.1)

where we define XN as X1 × X2 × · · · × XN . This estimator is called Maximum A Posterior

(MAP) estimator. On the other while, if we regard Pr(x̂n 6= xn), n = 1, 2, · · · , N as the error

probability, we can minimize it by output the estimator x̂n, n = 1, 2, · · · , N as

x̂n = arg max
xn∈Xn

p(xn|y) n = 1, 2, · · · , N, (2.2)

where p(xn|y) is defined as

p(xn|y) =
∑
x1∈X1

· · ·
∑

xn−1∈Xn−1

∑
xn+1∈Xn+1

· · ·
∑

xN∈XN

p(x|y). (2.3)

This estimator is called Maximum a Posterior Marginal (MPM) estimator.

1For simplicity, we assume that the number of unobservable variables and observable variables are equivalent.

It is easy to remove this assumption.

5



6 2.2. Factor Graph and Belief Propagation Algorithm

In general, the computational complexity of both the MAP estimator and MPM estimator

is O(2N) and hence we face the computational difficulty. To construct an efficient algorithm to

compute the optimum estimator, we should utilize the structure of the posterior distribution

p(x|y).

2.2 Factor Graph and Belief Propagation Algorithm

The Belief Propagation (BP) algorithm is one of the most famous algorithm to calculate the MAP

estimator or MPM estimator efficiently. In general, if we use the terminology ”BP algorithm”,

it indicates two algorithms. One is the Sum-Product (SP) algorithm and another is the Max-

Product (MP) algorithm.2 Both the SP algorithm and the MP algorithm can be defined on

the graph named ”factor graph” [1]. The factor graph is a graph that express the structure of

factorization of a function. If the factor graph correspond to the posterior distribution function

has no cycles, SP algorithm outputs the MPM estimate and MP algorithm outputs the MAP

estimate. On the other hand, if the factor graph has any cycles, both the SP algorithm and

MP algorithm don’t output the optimum estimate in general, however, it is known that these

algorithms perform well in many cases.3

2.2.1 Factor Graph

Let {X1, X2, . . . , XN} be a set of N discrete random variables and let xn be the possible realiza-

tions of random variable Xn. Let p(x|y) be the posterior probability distribution. We consider

the case when p(x|y) can be factorized into a product of functions as follows,

p(x|y) = 1

Z

∏
a∈A

fa(xa), (2.4)

where A is a discrete index set. For a ∈ A, we defined N (a) =
{
a0, a1, a|N (a)|−1

}
and xa =

(xa0 , xa1 , · · · , xa|N (a)|−1
). xa is an argument of fa and Z is a constant which is not affected by x.

Definition 2.1 [1] A factor graph is a bipartite graph that expresses the structure of the fac-

torization. A factor graph has variable nodes (drawn as a circle), which represent the variables

{xn}n=1,2,··· ,N , factor nodes (drawn as a square), which represent the functions {fa}a∈A, and
edge-connections between variable nodes xn and factor node fa if and only if xn is an argument

of fa.

Example 2.1 The graph in Fig. 2.1 is the factor graph corresponds to the posterior probability

function,

p(x1, x2, x3, x4|y) =
1

Z
fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4). (2.5)

2The MP algorithm is also called Mini-Sum algorithm since if we take the negative logarithm of the function,

the problem to seek the maximum is reduced to the problem to seek the minimum and the product operation is

changed to the summation operation.
3SP algorithm is also often used as an approximation algorithm to compute the MAP estimate.
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Figure 2.1: An example of factor graph for the posterior probability function, p(x1, x2, x3, x4|y) =
1
Z
fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4).

In this example, A = {A,B,C,D}, xA = (x1), xB = (x2), xC = (x1, x2, x3), and xD = (x3, x4).

2.2.2 The Sum-Product Algorithm

Sum-Product (SP) algorithm is an algorithm to (approximately) compute the marginal of a

function. Let p(xn|y) denote the marginal probability function obtained by marginalizing P (x|y)
onto the variable xn, i.e.,

p(xn|y) =
∑
x1∈X1

· · ·
∑

xn−1∈Xn−1

∑
xn+1∈Xn+1

· · ·
∑

xN∈XN

p(x|y). (2.6)

The algorithm can be defined in terms of the set of operations on the factor graph [1].

The SP algorithm consists of messages mn→a(xn) from variable nodes to their neighboring

factor nodes and messages ma→n(xn) from factor nodes to their neighboring variable nodes, and

beliefs qn(xn) of variable nodes. The messages and belief are vectors over the possible realizations

of xn.

The messages are updated as follows:

m(t)
a→n(xn) =

∑
xa\xn

fa(xa)
∏

n′∈N (a)\n

m
(t−1)
n′→a(xn′), (2.7)

m(t−1)
n→a (xn) = αn,a

∏
a′∈N (n)\a

m
(t−1)
a′→n(xn), (2.8)

where N (a) \n denotes all neighboring nodes of the node a except for the node n, and N (n) \ a
is defined in a similar way. The operation

∑
xa\xn

denotes a sum over all the variables xa except

for xn. Normalization constant αn,a is determined so that
∑

xn
mn→a(xn) = 1 holds. In general,
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the messages are initialized to m
(0)
a→n(xn) = 1 and m

(0)
n→a(xn) = 1 for all factor nodes a, variable

nodes n, and possible values of xn.

The beliefs are computed as

q(t)n (xn) = αn

∏
a∈N (n)

m(t)
a→n(xn), (2.9)

where αn is a normalization constant which is determined so that
∑

xn
qn(xn) = 1 holds. Mes-

sages are updated iteratively until they (hopefully) converge, then compute the beliefs from

(2.9) and use them as approximations to the exact marginal probability functions {p(xn|y)}.
The SP algorithm calculates the exact marginal probability functions when the factor graph has

no cycles.

In contrast with the case when the factor graph has no cycles, the results of the SP algo-

rithm to the factor graph with cycles cannot be exact marginal probability functions. However,

according to the research about the decoding problems for LDPC codes, the SP algorithm often

gives good approximation results, especially when the number of cycles is small.

2.3 Channel Models

2.3.1 Single-User Channel

An information source emits a digital signal called an information symbol. A sequence of

information symbols with length K called an information vector, which is denoted by b =

(b1, b2, · · · , bK) ∈ BK , where B is a finite set which represents the information symbol. The

encoding function is a mapping from BK to XN , where X denotes a finite set and N denotes

the length of the codeword. The range of the mapping is called a code, which is denoted by C,
and the elements in C is called the codewords. In general, the encoding function is an injection

mapping, i.e., there is a one-to-one correspondence between a information vector and codeword.

The transmitter encodes the information vector b ∈ BK to the codeword x ∈ C by using the

encoder. A codeword x ∈ C is sent to the destination through a noisy channel. The receiver

receives a noise-corrupted sequence y = (y1, y2, · · · , yN) ∈ YN , where Y is a set of received

signal.

The receiver estimates the transmitted information vector by using the information of given

received sequence. Since the encoding function is an injection, it is equivalent to estimate the

transmitted codeword. In this thesis, we assume that the decoder estimates the transmitted

codeword and this procedure is called decoding.

Probabilistic Model

We assume that the information vectors are generated according to a probability distribution

p(b) and the process of the noise generation on the channel is governed by a conditional proba-

bility distribution p(y|x). Since the information vector is considered as a random variable, the
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codeword x is also considered as a random variable. We denote the probability distribution of

x as p(x).

Assuming that the source coding is sufficiently implemented, we can assume that the infor-

mation vector b is uniformly distributed, i.e.,

p(b) =
1

|B|K
. (2.10)

According to the property of the encoding function, we can also describe the probability distri-

bution of x as

p(x) =

{
1/|B|K if x ∈ C
0 otherwise

. (2.11)

The channel is called memoryless when p(y|x) =
∏N

n=1 p(yn|xn) is satisfied, where p(yn|xn) is a
conditional probability distribution of the received symbol yn given the codeword symbol xn.

Example 2.2 Binary-Input Additive White Gaussian Noise (BIAWGN) Channel is widely used

as a model for the memoryless channel. Let the codeword alphabet X is {0, 1}. Each codeword

symbols is transformed by the binary-bipolar conversion, that is, each {0, 1} symbol is converted

to {+1,−1}. The converted signal of xn is denoted by x̃n. The received symbol yn takes on the

real values, i.e., Y = R. The received symbol yn is modeled as,

yn = xn + εn, (2.12)

where εn is a Gaussian random variable with zero mean and variance σ2. The conditional

probability distribution p(yn|xn) of the BIAWGN channel is denoted by

p(yn|xn) =
1√
2πσ2

exp

(
−(yn − x̃n)

2

2σ2

)
. (2.13)

2.3.2 Multiple-Access Channel

Multiple-access channel is a channel that some senders send information to a common receiver.

As an example, a communication system between a set of cell phones and base station can be

modeled as multiple-access channel. Here, we describe the U -user multiple-access channel.

Each user u encodes its information vector bu = (bu,1, bu,2, · · · , bu,Ku) ∈ BKu to XN , where

Ku is the length of the information vector of user u. The code of user u is denoted by Cu. The
receiver estimates the transmitted information vectors of codewords of all users.

Probabilistic Model

As in the case for single-user channel, we assume that the information vectors are generated

according to a uniform distribution, i.e.,

p(bu) =
1

|B|Ku
, u = 1, 2, · · · , U, (2.14)

p(xu) =

{
1/|B|Ku if xu ∈ Cu
0 otherwise

, u = 1, 2, · · · , U. (2.15)



10 2.4. Linear Block Codes

We also assume that the received vector y is generated from the conditional distribution

p(y|x1,x2, · · · ,xU). The channel is called memoryless when it holds p(y|x1,x2, · · · ,xU) =∏N
n=1 p(yn|x1,n, x2,n, · · · , xU,n), where p(yn|x1,n, x2,n, · · · , xU,n) is a conditional probability distri-

bution of the received symbol yn given the codeword symbols (x1,n, x2,n, · · · , xU,n).

Example 2.3 Gaussian multiple-access channel is widely used as a model for the memoryless

multiple-access channel. Let the codeword alphabet X is {0, 1}. Each codeword symbols is trans-

formed by the binary-bipolar conversion, that is, each {0, 1} symbol is converted to {+1,−1}.
The converted signal of xn is denoted by x̃n. The received symbol yn takes on the real values,

i.e., Y = R. The received symbol yn is modeled as,

yn =
U∑

u=1

x̃u,n + εn, (2.16)

where εn is a Gaussian random variable with zero mean and variance σ2. The conditional

probability distribution p(yn|x1,n, x2,n, · · · , xU,n) is denoted by

p(yn|x1,n, x2,n, · · · , xU,n) =
1√
2πσ2

exp

(
−(yn −

∑U
u=1 x̃u,n)

2

2σ2

)
. (2.17)

2.4 Linear Block Codes

Here, we describe about the linear block code. Let Fq be a finite field with q elements. We

assume that B = X = Fq. When a code is defined as a linear subspace of the vector space of

FN
q , it is called a linear code.

Linear block codes are linear codes such that an information vector is encoded independently

of the other information vectors. Since a linear block code C of length N over Fq is a subspace of

FN
q , there must exist K so that C has a dimension K. A K ×N matrix G is called a generator

matrix if whose rows form a linearly independent basis for K dimensional subspace of FN
q .

Conversely, given a matrix G ∈ FK×N
q of rank K we can associate with it the code C as

C =
{
x ∈ FN

q : x = bG, b ∈ FK
q

}
. (2.18)

The matrix H ∈ FM×N
q , whose dimension is N−K, is called parity check matrix when it satisfies

GHT = O. (2.19)

We can also define a code C by a parity check matrix H as

C =
{
x ∈ FN

q : HxT = 0T
}
. (2.20)

Let Hmn be the value of (m,n) element of H. We define the sets N (m) and M(n) as

N (m) = {n : Hmn 6= 0} , M(n) = {m : Hmn 6= 0} . (2.21)
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The m-th row of H indicates that
∑

n∈N (m) xn = 0. The constraint is called a parity-check

constraint.

Linear code is called binary linear code when the number of elements of the field q is 2. In

the case of binary linear code, we can consider F2 = {0, 1} defining addition and multiplication

by Table 2.1.

Table 2.1: Addition and multiplication tables for F2.

+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

2.5 Communication Systems and Channel Decoding Prob-

lems

The communication systems consist of coding/decoding scheme and channel model. Given

that there are various coding/decoding schemes and channel models, we can consider various

communication systems. In this section, we describe the communication systems which are dealt

in this thesis.

2.5.1 Decoding Problem of the Binary Linear Codes over Memory-

less Channels

Here, we consider the single-user communication system that the encoder employ the binary

linear codes and the channel is modeled as the memoryless channel which is depicted in fig. 2.2.

Figure 2.2: Single-user communication system with binary linear codes and memoryless channel.

The encoder encodes the information vector b ∈ {0, 1}K to the codeword x ∈ C, where C
is the binary linear code with parity check matrix H ∈ {0, 1}M×N . The transmitted codeword

x go through the memoryless channel p(y|x) =
∏N

n=1 p(yn|xn). The decoder receive the noise

corrupted sequence y and estimate the transmitted codeword x. First, we define the two kind

of error probability, block error probability and bit error probability.
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Definition 2.2 Let x̂ be the estimator for the transmitted codeword x. Then the block error

probability is defined as

PB = Pr {x̂ 6= x} . (2.22)

Let x̂n be the estimator for the n-th bit of transmitted codeword xn. Then the bit error proba-

bility is defined as

Pb,n = Pr {x̂n 6= xn} . (2.23)

In order to minimize the block error probability, the decoder must output the hypothesized

information vector x which maximizes the posterior probability p(x|y). This type of decoding

is called the Maximum a Posterior probability (MAP) decoding.

Definition 2.3 MAP decoding rule is to output x̂ which is defined as

x̂ = argmax
x∈C

p(x|y). (2.24)

If we assume that each codeword in C has an equal probability to be transmitted, the MAP

decoding is reduced to maximize the likelihood function p(y|x). This type of decoding rule is

called the Maximum Likelihood (ML) Decoding.

Definition 2.4 ML decoding rule is to output x̂ which is defined as

x̂ = argmax
x∈C

p(y|x). (2.25)

In a similar fashion, to minimize the bit error probability, the decoder must output the

hypothesized information symbol xn which maximizes the posterior marginal probability p(xn|y).
This type of decoding is called the Maximum a Posterior Marginal probability (MPM) decoding.

Definition 2.5 MPM decoding rule is to output x̂n which is defined as

x̂n = arg max
xn∈{0,1}

p(xn|y). (2.26)

MAP decoder minimizes the block error probability and MPM decoder minimizes the bit

error probability, however, the complexity of these decoders is exponentially proportional to the

length of the information vector, i.e., O(2K). Thus the MAP decoding and MPM decoding are

impractical.

2.5.2 Decoding Problems for Synchronous DS-CDMA System

When the spreading codes are used for the multiple-access channels, the communication system

is called Direct Sequence Code Division Multiple Access (DS-CDMA) system. First, we explain

the spreading code. We assume that B = X = {−1,+1} and the length of information vector
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K equals to 1. The spreading codes are the set of binary sequences which is defined by the

signature sequence s ∈
{
−1/

√
N,+1/

√
N
}N

. The spreading codes are defined as

C =

{
bs ∈

{
−1/

√
N,+1/

√
N
}N

: b ∈ {−1,+1}
}
. (2.27)

The encoder encodes the information bit b to bs.

Here, we consider a U -user synchronous DS-CDMA system which is depicted in 2.3.4

Figure 2.3: DS-CDMA model with Gaussian noise.

Each user u uses own signature sequence su ∈ {−1,+1}N to encodes its information symbol.

We also assume that the noise distribution is Gaussian. Then the received signal in a U -user

synchronous CDMA system is described as

yn =
U∑

u=1

busu,n + εn, (n = 1, 2, · · · , N), (2.28)

where yn is the received signal at chip interval n, and bu ∈ {−1, 1}, and {su,n : n = 1, 2, . . . , N}
denote the information bit and normalized unit energy signature sequence of user u respectively,

and filtered noise {εn} are Gaussian with 0 mean and variance σ2.

The decoding problem for the DS-CDMA system is often called the multiuser detection

problem and decoder is called the multiuser detector. The multiuser detection problem is the

problem to estimate the information bit sequence b = (b1, b2, · · · , bU) from the received signals

y = (y1, y2, · · · , yN). We assume that the detector knows the signature sequences of all users.

As in the case for the decoding problem of the binary linear codes over memoryless channels,

we define the two kind of error probabilities.

Definition 2.6 Let b̂ be the estimator for the transmitted bit sequence b. Then, the block

error probability for DS-CDMA is defined as

PB,CDMA = Pr
{
b̂ 6= b

}
(2.29)

4The system is called synchronous when a received symbol yn depends on only {x1,n, x2,n, · · · , xU,n}. Other-

wise, the system is called asynchronous. We consider only the synchronous systems in the thesis.



14 2.5. Communication Systems and Channel Decoding Problems

Let b̂u be the estimate of bu for all u = 1, 2, · · · , U . The bit error probability for DS-CDMA is

defined as

Pb,u,CDMA = Pr
{
b̂u 6= bu

}
(2.30)

We also define the MAP detector, ML detector and MPM detector as follows.

Definition 2.7 The MAP detector, ML detector and MPM detector are defined as the detectors

which output

b̂ = arg max
b∈{−1,+1}N

p(b|y), (2.31)

b̂ = arg max
b∈{−1,+1}N

p(y|b), (2.32)

b̂u = arg max
bu∈{−1,+1}

p(bu|y), (2.33)

respectively.

MAP detector minimizes the block error probability and MPM detector minimizes the bit

error probability, however, the complexity of those detectors are exponential in the number of

users O(2U). Therefore, these detectors are impractical when the number of users is large.

2.5.3 Decoding Problems of Binary Linear Codes over Memoryless

Multiple-Access Channels

Here, we describe the U -user multiple-access communication system that each user employ the

binary linear codes and the channel is memoryless which is depicted fig. 2.4.

Figure 2.4: Multiple-access channel with binary linear codes and memoryless channel.

Each encoder encodes the information vector bu to the codeword xu ∈ Cu, where Cu is the

binary linear code with parity check matrix H(u) ∈ {0, 1}Mu×N . All encoders sent the codewords

in parallel and the transmitted codewords (x1,x2, · · · ,xU) go through the memoryless multiple-

access channel p(y|x1,x2, · · · ,xU) =
∏N

n=1 p(yn|x1,n, x2,n, · · · , xU,n). The decoder receive the

sequence y and estimate the transmitted codewords (x1,x2, · · · ,xU). The error probabilities

are defined as follows.
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Definition 2.8 The block error probability and the bit error probability are defined as,5

PB,MAC = Pr {(x̂1, x̂2, · · · , x̂U) 6= (x1,x2, · · · ,xU)} (2.34)

Pb,u,n,MAC = Pr {x̂u,n 6= xu,n} (2.35)

The optimum decoding rules are defined as follows.

Definition 2.9 The MAP decoding rule and MPM decoding rule are defined as rules to output,

(x̂1, x̂2, · · · , x̂U) = arg max
(x1,x2,··· ,xU )∈C1×C2×···×CU

p(x1,x2, · · · ,xU |y), (2.36)

x̂u,n = arg max
xu,n∈{0,1}

p(xu,n|y), (2.37)

respectively.

MAP decoder minimizes the block error probability and MPM decoder minimizes the bit error

probability, however, the complexity of those decoders are O(2UN). Therefore, those decoders

are generally impractical.

2.6 Factor Graph Representations for Decoding Prob-

lems

In this section, we show that we can regard the decoding problems introduced in the previous

section as the probabilistic inference problems. We also present the factor graphs of the problems.

2.6.1 Factor Graph for the Decoding Problem of the Binary Linear

Codes over Memoryless Channels

The prior distribution p(x) is described in (2.11). We note that x is in C if and only if HxT =

0 mod 2 is satisfied. We can translate the condition to∑
n∈N (m)

xn = 0 mod 2, m = 1, 2, · · · ,M, (2.38)

where N (m) = {n : Hmn = 1}. As a result, the posterior distribution p(x|y) is factorized as

p(x|y) = 1

Z
p(y|x)p(x) (2.39)

=
1

Z

N∏
n=1

p(yn|xn)
M∏

m=1

fIj(xIm), (2.40)

5We can also consider the error probability, Pr {x̂u 6= xu}. However, if we want to minimize this probability,

we must solve the maximization problem and marginalization problem jointly. Since those kind of problems are

not the scope of our study, we do not deal with the problem in the thesis.
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where xIm is defined as xIm = (xn)n∈N (m) and fIm is defined as

fIm(xIm) =

{
1 if

∑
n∈N (m) xn = 0 mod 2,

0 otherwise.
m = 1, 2, · · · ,M. (2.41)

The factor graph for above factorization is depicted in Figure 2.5.

Figure 2.5: Factor graph for the decoding problem of binary linear codes over memoryless

channels.

2.6.2 Factor Graph for the Decoding Problem for Synchronous DS-

CDMA System

Based on the coding system and channel model (2.28), probability distribution p(y|x) is de-

scribed as

p(y|b) =
N∏

n=1

p(yn|b), (2.42)

p(yn|b) =
1√
2πσ2

exp

{
− 1

2σ2

(
yn −

U∑
u=1

busu,n

)}
. (2.43)

Given that the prior distribution p(b) is uniform, the posterior distribution p(y|x) is

p(b|y) = 1

Z

N∏
n=1

p(yn|b). (2.44)

The factor graph for above factorization is depicted in Figure 2.6.



Chapter 2. Preliminaries 17

Figure 2.6: Factor graph for the decoding problem for Synchronous DS-CDMA system.

2.6.3 Factor Graph for the Decoding Problem of Binary Linear Codes

over Memoryless Multiple-Access Channels

Since each encoder encodes the information vector independently, we can decompose the prior

distribution p(x1,x2, · · · ,xU) =
∏U

u=1 p(xu). Each component p(xu) is described as (2.15). As

in the case for the single-user channel case, the condition xu ∈ Cu is satisfied if and only if∑
n∈Nu(m)

xu,n = 0 mod 2, m = 1, 2, · · · ,Mu, (2.45)

where Nu(m) =
{
n : H

(u)
m,n = 1

}
.

As a result, the posterior distribution p(x1,x2, · · · ,xU |y) is given by

p(x1,x2, · · · ,xU |y) =
1

Z
p(y|x1,x2, · · · ,xU)

U∏
u=1

p(xu) (2.46)

=
1

Z

N∏
n=1

p(yn|x1,n, x2,n, · · · , xU,n)
U∏

u=1

Mu∏
m=1

fIu,m(xIu,m) (2.47)

where xIu,m = (xu,n)n∈Nu(m) and

fIu,m(xIu,m) =

{
1 if

∑
n∈Nu(m) xu,n = 0, mod 2

0 otherwise.
(2.48)

The factor graph for above factorization is depicted in Figure 2.7.

2.7 Decoding Algorithms based on the Sum-Product Al-

gorithm

In the previous section we showed that we can consider the decoding problems arising in various

communication systems can be considered as the probabilistic inference problems. We also
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Figure 2.7: Factor graph for the decoding problem of binary linear codes over memoryless

multiple-access channels.

showed the factor graphs correspond to those problems. Given that the SP algorithm is defined

as the set of operations on the factor graph, we can apply the SP algorithm to those problems.

In this section we describe the decoding algorithms based on the SP algorithm.

2.7.1 Sum-Product Algorithm based Decoding Algorithm for the Bi-

nary Linear Codes over Memoryless Channels

We describe the procedure of the SP decoding proposed in [2]. This procedure calculates the

messages in the logarithmic domain and it simplifies the factor node process by considering the

binary parity check constraints.

Initialization:

For all pairs (m,n) such that Hmn = 1,{
q
0,(0)
mn = p(yn|0)
q
1,(0)
mn = p(yn|1).

(2.49)

Factor Node Process:

For all pairs (m,n) such that Hmn = 1,{
r
0,(t)
mn = ((1 + δ

(t)
mn)/2)

r
1,(t)
mn = ((1− δ

(t)
mn)/2).

(2.50)

where

δ(t)mn =
∏

n′∈Nc(m)\n

(q
0,(t)
mn′ − q

1,(t)
mn′ ). (2.51)



Chapter 2. Preliminaries 19

Variable Node Process:

For all pairs (m,n) such that Hmn = 1,{
q
0,(t)
mn = αmnp(yn|0)

∏
m′∈Nv(n)\m r

0,(t−1)
m′n

q
1,(t)
mn = αmnp(yn|1)

∏
m′∈Nv(n)\m r

1,(t−1)
m′n

(2.52)

where αmn is a normalizing constant such that q
0,(t)
mn + q

1,(t)
mn = 1.

Marginalization Process:

For all pairs (m,n) such that Hmn = 1,{
q
0,(t)
n = αnp(yn|0)

∏
m′∈Nv(n)

r
0,(t)
m′n

q
1,(t)
n = αnp(yn|1)

∏
m′∈Nv(n)

r
1,(t)
m′n

(2.53)

where αn is a normalizing constant such that q
0,(t)
n + q

1,(t)
n = 1.

Decoding Process:

For all n,

x̂n =

{
0 q

0,(t)
n ≥ q

1,(t)
n

1 q
0,(t)
n < q

1,(t)
n .

(2.54)

If Hx = 0 or the number of iterations exceeds a predetermined value, then this algorithm halts,

else go to the factor node process.

2.7.2 Sum-Product Algorithm based Decoding Algorithm for the

DS-CDMA System

According to (2.33), it is easy to see that the detection problem can be regarded as a probabilistic

inference problem. To that end, Tanaka and Okada suggested to apply BP algorithm for the

detection problem [3].

They used factorization (2.44). Corresponding factor graph is expressed as Fig.2.6. The

factor graph would be a complete bipartite graph and U variable nodes represent the information

bits and N factor nodes represent the likelihood functions for received chip.

Applying SP algorithm for the factor graph, message updating rules are described as

m(t)
n→u(bu = ±1) =

∑
{bu′ :u′ 6=u}

{
P (yn|bu=±1, {bu′ :u′ 6= u})

∏
u′ 6=u

m
(t−1)
u′→n(bu)

}
, (2.55)

m(t−1)
u→n (bu = ±1) =

∏
n′ 6=n

m
(t−1)
n′→u(bu = ±1), (2.56)

and beliefs are computed as

q(t)u (bu = ±1) = αu

∏
n

m(t)
n→u(bu = ±1), (2.57)
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where αu is determined so that q
(t)
u (bu = +1) + q

(t)
u (bu = −1) = 1 holds.

Although the SP algorithm is defined as above, it requires O(2U−1) operations to compute

(2.55). Consequently, Tanaka and Okada reduced the computational complexity by approximat-

ing the algorithm. In their approximation, instead of using soft bits nu→n(bu) in (2.55), they use

the following hard bits

b̂(t)u = sgn
[
q(t)u (bu = +1)− q(t)u (bu = −1)

]
, (2.58)

where sgn(a) = 1 if a > 0 and else sgn(a) = −1. Resulting approximation is described as

m(t)
n→u(bu=±1) ≈ p

(
rn|bu=±1,

{
b̂
(t−1)
u′ : u′ 6=u

})
. (2.59)

As a result, the following update rule for the temporary decision b̂
(t)
u of information bits at

iteration stage t is derived [3]:

b̂(t)u = sgn

[
hu −

∑
u′ 6=u

Wuu′ b̂
(t−1)
u′

]
, (2.60)

where

hu =
N∑

n=1

su,nyn, Wuu′ =
N∑

n=1

su,nsu′,n, (2.61)

hu is the output of the matched filter for user u, and Wuu′ is the uu′-element of the cross

correlation matrix W of the signature sequences.

In [3], it is indicated that the above update rule is the same rule as Parallel Interference

Canceller (PIC) [4]. The computational complexity of PIC is O(U2).

2.7.3 Sum-Product Algorithm based Decoding Algorithm for the Bi-

nary Linear Codes over Memoryless Multiple-Access Channels

In [5] [6] [7], the authors presented frameworks for the design of LDPC codes and SP algorithm

based decoding for multiple-access channels.

Here we describe the SP decoding algorithm for multiple-access channels.6 First, we describe

the SP algorithm for the subgraph corresponding to the code of user u. The algorithm takes as

input the temporary approximate posterior probabilities of all users
{(
q
(0)
u,n, q

(1)
u,n

)}
u=1,2,··· ,U

and

outputs the updated approximate posterior probability
(
q
(0)
u,n, q

(1)
u,n

)
of user u.

SP algorithm for the subgraph corresponding to the code of user u

6In the papers [5] [6] [7], the authors don’t describe the algorithm detail. Therefore the algorithm described

here is an original one.
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Initialization:

For n = 1, 2, · · · , N ,

e0u,n = α

 ∑
(xu′,n)u′ 6=u∈{0,1}

U−1

Pr
(
yn|xu,n = 0, (xu′,n)u′ 6=u

) ∏
u′ 6=u

q
(xu′,n)

u′,n

 , (2.62)

e1u,n = α

 ∑
(xu′,n)u6=u∈{0,1}U−1

Pr
(
yn|xu,n = 1, (xu′,n)u′ 6=u

) ∏
u′ 6=u

q
(xu′,n)

u′,n

 , (2.63)

For all pairs (m,n) such that H
(u)
m,n = 1,

q0,(0)mn,u = e0u,n, (2.64)

q1,(0)mn,u = e1u,n. (2.65)

Factor node process:

For all pairs (m,n) such that H
(u)
m,n = 1,

r0,(t)mn,u = ((1 + δ(t)mn,u)/2), (2.66)

r1,(t)mn,u = ((1− δ(t)mn,u)/2), (2.67)

where

δ(t)mn,u =
∏

n′∈Nu(m)\n

(
q
0,(t)
mn′,u − q

1,(t)
mn′,u

)
. (2.68)

Variable node process:

For all pairs (m,n) such that H
(u)
m,n = 1,

q0,(t+1)
mn,u = α

e0u,n ∏
m′∈Mu(n)\m

r
0,(t)
m′n,u

 , (2.69)

q1,(t+1)
mn,u = α

e1u,n ∏
m′∈Mu(n)\j

r
1,(t)
m′n,u

 . (2.70)

where Mu(n) =
{
m : H

(u)
m,n = 1

}
. The algorithm iteratively process the factor node process and

variable node process for a predetermined number. The algorithm then outputs the approximate

posterior probability as,

q0,(t)u,n = α

e0u,n ∏
m∈Mu(n)

r0,(t)mn,u

 , (2.71)

q1,(t)u,n = α

e0u,n ∏
m∈Mu(n)

r1,(t)mn,u

 . (2.72)
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Channels

The SP algorithm for multiple-access channels is described as follows.

SP algorithm for multiple-access channels

Initialization:

For u = 1, 2, · · · , U and n = 1, 2, · · · , N ,

q0,(0)u,n = q1,(0)u,n = 1/2. (2.73)

Main loop:

for t = 1, 2, · · · , T1 do

for u = 1, 2, · · · , U do

Implement the SP algorithm for the subgraph corresponding to the code of user u. The

number of iterations is set to T2.

end for

end for

Decoding process:

For all u = 1, 2, · · · , U and n = 1, 2, · · · , N ,

x̂u,n =

{
0 q

0,(t)
u,n ≥ q

1,(t)
u,n

1 q
0,(t)
u,n < q

1,(t)
u,n

(2.74)

2.8 Linear Programming based Decoding Algorithm for

Binary Linear Codes over Memoryless Channels

Recently, Feldman et al. proposed the linear programming based decoding algorithm for binary

linear codes over memoryless channels [8]. In this section we described the algorithm. Remember

that the ML decoding problem is defined as

argmax
x∈C

p(y|x) = argmax
x∈C

N∑
n=1

ln p(yn|xn). (2.75)

This problem is equivalent to the following linear programming problem

minimize γTx

subject to x ∈ conv(C),
(2.76)

where conv(C) is the convex hull of all codewords in C and γ = (γ1, γ2, · · · , γN) is the vector of

log-likelihood ratios defined as

γn = ln

(
p(yn|xn = 0)

p(yn|xn = 1)

)
. (2.77)

Given that (2.76) is a linear programming (LP) problem, it is solvable in polynomial time

on the number of variables and constraints, however, generally the number of constraints is
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exponential in the code length n. As an approximation to ML decoding , Feldman et al. proposed

a relaxed version of the problem [8]. They consider the convex hull of the local codewords defined

by each row of the parity check matrix. The intersection of them defines the polytope P . The

LP decoder minimizes γTx over the polytope P . The LP decoder has the property that if it

outputs an integer solution, it is guaranteed to be an ML codeword. This property is called ML

certificate property.

We provide an explicit inequality description of the relaxed polytope P which is explained

in [8]. For every check m = 1, 2, · · · ,M , every configuration of the set of neighboring variables

N (m) must satisfy the following constraints for all subsets S ⊆ N (m), |S| is odd,∑
n∈S

xn −
∑

n∈N (m)\S

xn ≤ |S| − 1. (2.78)

We also need to add a set of 2N box inequalities, i.e.,

0 ≤ xn ≤ 1 n = 1, 2, · · · , N. (2.79)

As a result, relaxed LP is described as follows:

minimize γTx

subject to 0 ≤ xn ≤ 1, n = 1, 2, · · · , N,
m = 1, 2, · · · ,M, ∀S s.t. S ⊆ N (m), |S| is odd,∑

n∈S xn −
∑

n∈N (m)\S xn ≤ |S| − 1.

(2.80)

The number of constraints in the problem is reduced to
∑M

m=1 2
|N (m)|−1 + 2N .

2.9 Contribution of the Thesis

In chapter we review the problem setting of the probabilistic inference problems and SP al-

gorithm which (approximately) solve the problem efficiently. We also have seen that various

channel decoding problems can be considered as instances of the probabilistic inference prob-

lems. As a consequence, we can consider to apply the SP algorithm to those decoding problems.

In fact, SP algorithm effectively works for the decoding problem of binary linear codes over

memoryless channels. We can apply the SP algorithm for other problems that are expressed

by the factor graph. On the other hand, the LP-based decoding algorithm for the decoding

problem of binary linear codes over memoryless channels is recently developed. It is known that

the LP-based decoding algorithm has many attractive features. Then the question is prompted.

“Can we extend the LP-based inference algorithm for general probabilistic inference problems

?”. In chapter 3, we show that the answer of the question is “Yes”. We will provide the LP-based

inference algorithm for general factor graphs. Based on the work, we can apply the LP-based in-

ference algorithms for various decoding problems which include decoding problem on DS-CDMA

systems and decoding problem of binary linear codes over memoryless multiple-access channels.
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Compared to the SP algorithm, the LP-based inference algorithm have many desirable proper-

ties. For example, the output of the LP-based inference algorithm is integer, it is guaranteed to

be optimal.

The both of the SP algorithm and LP-based inference algorithm have the complexity expo-

nentially proportional to the number of variable nodes connected to factor node. Therefore those

algorithm are impractical in many cases. For example, we have seen that we can’t apply the SP

algorithm for the multiuser detection problems for DS-CDMA systems. In chapter 4, we can

reduce the computational complexity of those algorithms for some cases by converting the factor

graph structure. We will show that we can apply the SP algorithm for the multiuser detection

problems for DS-CDMA systems. We also present the reduced complexity LP-based decoding

algorithms for the decoding problem of binary linear codes over the Gaussian multiple-access

channels.

The LP-based inference algorithm have the attractive feature that if the output of the algo-

rithm is an integer, it is guaranteed to be optimal. In other words, if the output of the algorithm

is not an integer, we can prove the output is not optimal. By utilizing the property, we can

propose the improved algorithm. In chapter 5, we propose a new decoding algorithm for binary

linear codes over memoryless channels. The proposed algorithm is based on the branch-and-cut

algorithm, which is originally proposed in the theory of combinatorial optimization.



Chapter 3

Linear Programming based Inference

Algorithm for General Factor Graph

3.1 Introduction

In this chapter, we present the linear programming (LP) -based inference algorithm for general

factor graph. In chapter 2, we saw that the decoding problem of the binary linear code can

be considered as an example of the probabilistic inference problem. The Sum-Product (SP)

algorithm is the algorithm defined on the factor graph and it outputs the optimum solution

when the factor graph has no cycles. When the factor graph has any cycles, the SP algorithm

does not output the optimum solution, however, the effectiveness of the algorithm for that

situation is examined through numerical simulations or analyses.

On the other hand the LP decoding is also an effective decoding algorithm. There are

many important connections between the LP decoding and the sum-product decoding. The LP

decoding has been attracting much attention from its mathematical tractability.

If we consider the decoding problem as an example of the probabilistic inference problem,

the factor graph corresponds to the problem has some specific structures. First, we can see that

the functions in the factor graph can be classified into two classes, indicator functions (which

has the range {0, 1} and it indicates membership is in a set or not) and non-indicator functions

(functions other than the indicator function). Second, each non-indicator function is connected

to only one variable node. The factor graph corresponds to the general probabilistic inference

problems possibly has non-indicator functions which are connected to more than one variable

node (We call such functions multi-degree non-indicator function). For example, if we describe

the factor graph corresponds to the decoding problem of binary linear code for multiple-access

channels, the graph has such functions. For such problems, we couldn’t obtain the inference

algorithm based on the LP in the same manner as the derivation of LP decoding.

In this chapter, we develop the LP-based inference algorithm for the factor graph which

has the multi-degree non-indicator functions. The basic idea is to reduce the problem to the

inference problem that the factor graph corresponds to the problem does not have the multi-

25



26 3.2. Reformulation of the Probabilistic Inference Problem

degree non-indicator functions connected to more than one variable node.

The rest of the chapter is organized as follows. In section 3.2, we reformulate the probabilistic

inference problem. In section 3.3, we demonstrate how the LP-based inference algorithm is

derived. Then we develop the LP-based inference algorithm in section 3.4. We give a conclusion

in section 3.6.

3.2 Reformulation of the Probabilistic Inference Problem

In this section, we reformulate the probabilistic inference problem. We assume that the functions

fa, a ∈ A in the factorization (2.4) are classified into two classes. One is the indicator function

and the another is the non-indicator function. Describing the indicator functions in fa, a ∈ A
as fIj , j ∈ J and the non-indicator functions as fRl

, l ∈ L, the factorization (2.4) is reduced to

1

Z
p(y|x)p(x) = 1

Z

∏
j∈J

fIj(xIj)
∏
l∈L

fRl
(xRl

) (3.1)

For each j ∈ J and l ∈ L, let N (j) =
{
j1, j2, · · · , j|N (j)|

}
and N (l) =

{
l1, l2, · · · , l|N (l)|

}
denote

the indices of the membership of the function fIj and fRl
, respectively. More specifically, xIj

and xRl
are defined as xIj = (xj1 , xj2 , · · · , xj|N (j)|) and xRl

= (xl1 , xl2 , · · · , xl|N (l)|), respectively.

Since we deal with the probability distribution function, we can assume that the range of the

non-indicator functions fRl
, l ∈ L are nonnegative real values. We define the function g(x) as

g(x) =
∏
j∈J

fIj(xIj)
∏
l∈L

fRl
(xl). (3.2)

3.3 Linear Programming Inference for the Factor Graph

without Multi-degree Non-Indicator Function Nodes

Here we consider the case that each non-indicator function in (3.2) is connected only one variable

node. We call the functions which are connected more than two variable node multi-degree

function. Such problem is arising in the decoding problem of binary or non-binary linear codes

for single user memoryless channel [8][9].

3.3.1 Transformation to the Linear Programming Problem

When the argument of the non-indicator function is one, g(x) can be described as

g(x) =
∏
j∈J

fIj(xIj)
∏
n∈L

fRn(xn), (3.3)

where L ⊆ {1, 2, · · · , N}. Then the problem to find x ∈ XN which maximizes g is translated as

minimize
∑

n∈L − ln fRn(xn)

subject to fIj(xIj) = 1, ∀j ∈ J .
(3.4)
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If there is no x which satisfy the constraints in the above optimization problem, the value of g

is 0 for all x ∈ X .

Then we show that how the above problem is reduce to the LP problem. For each xn, we

define the mapping {φn:α}α∈Xn
as

φn:α(xn) =

{
1 if xn = α

0 otherwise
n = 1, 2, · · · , N, ∀α ∈ Xn. (3.5)

We also define the mapping φn : Xn → {0, 1}|Xn| andΦ : X → {0, 1}d as φn(xn) = (φn:α(xn))α∈Xn

and Φ(x) = (φn(xn))n=1,2,··· ,N , where d =
∑N

n=1 |Xn|. Furthermore we define (λn:α)n∈L, α∈Xn
as

λn:α = − ln fRn(α), n = 1, 2, · · · , N, α ∈ Xn. (3.6)

Then the optimization problem in (3.4) is equivalent to the following problem.

minimize
∑

n∈L
∑

α∈Xn
λn:αφn:α(xn)

subject to fIj(xIj) = 1, j ∈ J .
(3.7)

We define the variable τn and τ as

τn =
(
τn:1, τn:2, · · · , τn:|Xn|

)
∈ {0, 1}|Xn| n = 1, 2, · · · , N, (3.8)

τ = (τ1, τ2, · · · , τN). (3.9)

We also define the set Pj, j ∈ J and P as

Pj =
{
(φn(xn))n∈N (j) : fIj(xIj) = 1

}
, (3.10)

P =
{
τ ∈ {0, 1}d : Projj(τ ) ∈ Pj, ∀j ∈ J

}
, (3.11)

where Projj(·) is a projection to the coordinate indexed by Nj, i.e., Projj(τ ) = (τn)n∈Nj
. We

further define the polytope Q as

Q = conv(P), (3.12)

where conv(·) denotes the operation to take the convex hull of a set. When τ is a vertex of

the polytope Q, the variables x given by Φ−1(τ ) satisfies all constraints in (3.7), where Φ−1 is

the inverse mapping of Φ. Then to solve the optimization problem (3.4) is reduced to solve the

following optimization problem;

minimize
∑

n∈L
∑

α∈Xn
λn:ατn:α

subject to τ ∈ Q
(3.13)

The equalities or inequalities which describe the polytope P are depend on the form of the

indicator functions fIj , j ∈ J . Let τ ∗ be the optimum solution of the problem (3.13), then the

optimum solution of the original optimization problem (3.4) is given by Φ−1(τ ∗).
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3.3.2 Derivation of the Relaxed Problem

In general, the number of hyperplanes which express the polytope Q is the exponentially pro-

portional to N . Therefore it is impractical to solve the LP problem (3.13). Then we define the

following polytope,

Q̃ =
{
τ ∈ [0, 1]d : Projj(τ ) ∈ conv(Pj), ∀j ∈ J

}
. (3.14)

Then the following theorem holds.

Theorem 3.1

Q ⊆ Q̃ (3.15)

Q∩ {0, 1}d = Q̃ ∩ {0, 1}d (3.16)

Proof : First we prove the first part of the theorem. Let τ ∈ Q, then τ can be described as the

convex combination of some vectors τ (c) ∈ P , c = 1, 2, · · · , C, that is,

τ = ω1τ
(1) + ω2τ

(2) + · · ·+ ωCτ
(C) (3.17)

where {ωc}c=1,2,··· ,C are coefficients of the convex combination and they satisfy
∑C

c=1 ωc = 1 and

0 ≤ ωc ≤ 1, c = 1, 2, · · · , C. From the definition of P , if τ (c) ∈ P then it satisfies Projj(τ
(c)) ∈ Pj

for all j ∈ J . Then we have

Projj(τ ) = Projj

(
C∑
c=1

ωcτ
(c)

)

=
C∑
c=1

ωcProjj(τ
(c)) ∈ conv(Pj). (3.18)

Above relation is satisfied for all j ∈ J , and hence τ ∈ Q̃.

Next we prove the second part of the theorem. From the first part of the theorem, we

have Q
⋂

{0, 1}d ⊆ Q̃
⋂
{0, 1}d, we then prove Q

⋂
{0, 1}d ⊇ Q̃

⋂
{0, 1}d. We assume that

τ ∈ Q̃
⋂
{0, 1}d. From the definition of Q̃, it holds Projj(τ ) ∈ conv(Pj),∀j ∈ J . However, it

satisfies that conv(Pj)
⋂

{0, 1}d = Pj for all j ∈ J , and therefore Projj(τ ) ∈ Pj, ∀j ∈ J and

τ ∈ P ⊆ Q. �
According to the theorem, if the optimum solution τ of the following problem is an integer,

then x obtained from the inverse mapping x = Φ−1(τ ) is also the optimum solution of the

optimization problem (3.4).

minimize
∑

n∈L
∑

α∈Xn
λn:ατn:α

subject to τ ∈ Q̃
(3.19)

The expression of Q̃ depends on the functions fIj , j ∈ J as in the case for Q.
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Example 3.1 (Decoding of the binary linear codes [8]) Let H be the parity check matrix

{0, 1}M×N and C be a code with parity check matrix H, that is,

C =
{
x ∈ {0, 1}N : HTx = 0 mod 2

}
. (3.20)

Assume that the codeword c = (c1, c2, · · · , cN) is transmitted through the channel and the

decoder receives y = (y1, y2, · · · , yN). Furthermore the channel is modeled as p(y|x) and it is

memoryless, i.e.,

p(y|x) =
N∏

n=1

p(yn|xn). (3.21)

Then the maximum likelihood decoding problem is defined as

x̂ = argmax
x∈C

p(y|x) (3.22)

= arg max
x∈{0,1}N

M∏
m=1

fIm(xIm)
N∏

n=1

fRn(xn), (3.23)

where fIm and fRn are defined as

fIm(xIm) =

{
1 if

∑
n∈Nc(m) xn = 0 mod 2

0 otherwise
m = 1, 2, · · · ,M (3.24)

fRn(xn) = p(yn|xn), n = 1, 2, · · · , N, (3.25)

If we apply the LP relaxation (3.19) to this problem, the optimization variable τ consists of

(τn:0, τn:1) for each n = 1, 2, · · · , N . We obtain the following LP:

minimize
∑N

n=1

∑
α∈{0,1} λn:ατn:α

subject to τ ∈ Q̃
, (3.26)

We then derive the explicit form of the relaxed polytope Q̃. The relax polytope is defined as

Q̃ =
{
τ ∈ [0, 1]2N : Projm(τ ) ∈ conv(Pm), ∀m = 1, 2, · · · ,M

}
(3.27)

Pm =
{
(φn(xn))n∈N (m) : fIm(xIm) = 1

}
(3.28)

Let β denotes the elements in Pm, where β = (βn)n∈N (m) and βn = (βn:0, βn:1). The polytope

conv (Pm) is the set of the convex combinations of all β ∈ Pm. Let ωm,β be the convex combi-

nation coefficient for β, then the condition Projm(τ ) ∈ conv(Pm) is equivalent to the condition

that Projm(τ ) satisfies followings.{
τn:1 =

∑
β∈Pm:βn:1=1 ωm,β

τn:0 =
∑

β∈Pm:βn:0=1 ωm,β

∀n ∈ N (m), (3.29)∑
β∈Pm

ωm,β = 1, (3.30)

0 ≤ ωm,β ≤ 1 ∀β ∈ Pm. (3.31)
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We can reduce the number of variables by susbstituting the constraints τn:0 = 1− τn:1. It is also

possible to remove the variables ωm,β by Fourier-Motzkin elimination [10], so as to obtain an

equivalent LP that is described only in terms of the vectors (τ1:1, τ2:1, · · · , τN :1). As the result of

such operations, we obtain the following LP:

minimize
∑N

n=1 (λn:1 − λn:0) τn:1

subject to m = 1, 2, · · · ,M, ∀S s.t. S ⊆ N (m), |S| is odd.∑
n∈S τn:1 −

∑
n∈N (m)\S τn:1 ≤ |S| − 1

0 ≤ τn:1 ≤ 1, n = 1, 2, · · · , N.

(3.32)

Given that τn:1 = 1 if xn = 1 and τn:1 = 0 if xn = 0, we can replace τn:1 by xn. Then the LP is

described as,

minimize
∑N

n=1 (λn:1 − λn:0)xn

subject to m = 1, 2, · · · ,M, ∀S s.t. S ⊆ N (m), |S| is odd.∑
n∈S xn −

∑
n∈N (m)\S xn ≤ |S| − 1

0 ≤ xn ≤ 1, n = 1, 2, · · · , N

. (3.33)

This LP is equivalent to the formulation which is derived in [8]. (Which is also described in

chapter 2 of the thesis.)

3.4 Linear Programming Inference for the Factor Graph

with Multi-degree Non-indicator Function Nodes

Here we develop the LP-based inference algorithm for the factor graph which has the multi-degree

non-indicator function nodes. The basic idea is to reduce the problem to solve the maximization

problem corresponds to the factor graph without multi-degree non-indicator function nodes.

3.4.1 Derivation of the Linear Programming Problem

For each xRl
, l ∈ L, we define the set Wl = Xl1 ×Xl2 × · · · ×Xl|N (l)| and variable wl which takes

value in Wl. We also define the following function for wl and xRl
,

fI′l (wl,xRl
) =

{
1 if wl = xRl

0 otherwise
l ∈ L. (3.34)

Furthermore we also define w = (wl)l∈L ∈ W , where W = ×l∈LWl, and the function of x and

w as

g′(x,w) =
∏
j∈J

fIj(xIj)
∏
l∈L

fI′l (wl,xRl
)
∏
l∈L

fRl
(wl). (3.35)

Then there is a relation between g and g′.

Theorem 3.2 Let (x∗,w∗) maximizes the function g′, then x∗ maximizes the function g.
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Proof: Assume that there exists x′ such that x′ 6= x∗ and g(x′) > g(x∗). We set w′
l as

w′
l = (x′l1 , x

′
l2
, · · · , x′l|N (l)|

). (3.36)

Then it holds that f ′(xRl
,wl) = 1 for all l ∈ L. Then it is satisfied that

g′(x′,w′) = g(x′) > g(x∗) = g′(x∗,w∗), (3.37)

however, it contradicts to the assumption that (x∗,w∗) maximizes g′. �
According to the above theorem, if we want to solve the maximization problem for g, it is

sufficient to solve the maximization problem for g′. Furthermore the non-indicator functions in

g′ are only {fRl
}l∈L and we can treat them as a functions connected to one variable node wl.

Therefore we can derive the LP in the similar manner of the previous section. The optimization

problem that we should solve is described as

minimize −
∑

l∈L ln fRl
(wl)

subject to fIj(xIj) = 1, ∀j ∈ J
fI′l (wl,xRl

) = 1, ∀l ∈ L.
(3.38)

Here, we derive the LP formulation of the problem as in the previous section. For each xn

we define the mapping φn as defined in the previous section. For each wl, we also define the

mapping {φl:β}β as

φl:β(wl) =

{
1 if wl = β

0 otherwise
l ∈ L,β ∈ Wl (3.39)

We define φl(wl) = (φl:β(β))β∈Wl
and Φ(x,w) =

(
(φn(xn))n=1,2,··· ,N , (φl(wl))l∈L

)
. We also

define (λl:β)β∈Wl
as

λl:β = − ln fRl
(β), β ∈ Wl (3.40)

The optimization problem in (3.38) is reduced to the following problem.

minimize
∑

l∈L
∑

β λl:βφl:β(wl)

subject to fIj(xIj) = 1, ∀j ∈ J
fI′l (wl,xRl

) = 1, ∀l ∈ L
(3.41)

We define the variables τl and τ as

τl = (τl:1, τl:2, · · · , τl:|Wl|) ∈ {0, 1}|Wl| , l ∈ L (3.42)

τ =
(
(τn)n=1,2,··· ,N , (τl)l∈L

)
(3.43)

The length of variable τ is d =
∑N

n=1 |Xn| +
∑

l∈L |Wl|. For all j ∈ J , l ∈ L, we define Pj and

Pl as

Pj =
{
(φn(xn))n∈N (j) : fIj(xIj) = 1

}
(3.44)

Pl =
{(
φl(wl), (φn(xn))n∈N (l)

)
: fIl(wl,xRl

) = 1
}

(3.45)
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We also define the polytope P ′ as

P ′ =
{
τ ∈ {0, 1}d : Projj(τ ) ∈ Pj, ∀j ∈ J , Projl(τ ) ∈ Pl, ∀l ∈ L

}
(3.46)

where Projl(τ ) =
(
τl, (τn)n∈N (l)

)
. Then the linear programming problem corresponds to the

maximization problem in (3.38) is described as

minimize
∑

l∈L
∑

β∈Wl
λl:βτl:β

subject to τ ∈ Q′,
(3.47)

where Q′ = conv(P ′).

The relaxed polytope is defined as

Q̃′ =
{
τ ∈ [0, 1]d : Projj(τ ) ∈ conv(Pj), ∀j ∈ J , Projl(τ ) ∈ conv(Pl), ∀l ∈ L

}
(3.48)

and the relaxed problem is

minimize
∑

l∈L
∑

β∈Wl
λl:βτl:β

subject to τ ∈ Q̃′.
(3.49)

As the consequence of the theorem 3.1, the following lemma is holds.

Lemma 3.1

Q′ ⊆ Q̃′ (3.50)

Q′ ∩ {0, 1}d
′
= Q̃′ ∩ {0, 1}d

′
(3.51)

Proof Direct consequence of the theorem 3.1. �
According to the lemma, the optimum solution (x,w) which maximizes the function g′ is

obtained from the inverse mapping Φ−1 of τ when τ is an integer.

3.5 Application to the Decoding Problem of Binary Lin-

ear Codes over Multiple-Access Channel

3.5.1 Multiple-Access Channel Model and Decoding Problem

Then the ML decoding problem is defined as

(x̂1, x̂2, · · · , x̂U) = arg max
x1∈C1,x2∈C2,··· ,xK∈CU

p(y|x1,x2, · · · ,xU). (3.52)

If the prior distributions of the codewords are uniform, the ML decoding rule is optimal with

respect to the following decoding error probability

Pe = Pr {(x̂1, x̂2, · · · , x̂U) 6= (x1,x2, · · · ,xU)} . (3.53)
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For the U of binary N -length vectors x1,x2, · · · ,xU , we define the binary vector x with length

UN as x = (x1 x2 · · · xU). Then the ML decoding problem defined in (3.52) is equivalent to

x̂ = argmax
x∈C̄

p(y|x). (3.54)

where,

C = {x = (x1,x2, · · · ,xU) : x1 ∈ C1,x2 ∈ C2, · · · ,xU ∈ CU} . (3.55)

We define the xRn as xRn = (x1,n, x2,n, · · · , xU,n), n = 1, 2, · · · , N . This is the set of codeword

symbols at time n when the x is the set of transmitted codewords. According to the memoryless

property of the channel, it satisfies that

p(y|x1,x2, · · · ,xU) =
N∏

n=1

p(yn|xRn). (3.56)

We define the function fRn(xRn) as

fRn(xRn) = p(yn|xRn). (3.57)

Then we can describe the ML decoding problem as

x̂ = argmax
x∈C̄

p(y|x) (3.58)

= arg max
x∈{0,1}UN

N∏
n=1

fRn(xRn)
U∏

u=1

Mu∏
m=1

fIu,m(xIu,m). (3.59)

where

fIu,m(xIu,m) =

{
1 if

∑
n∈Nu(m) xu,n = 0 mod 2,

0 otherwise.
(3.60)

and Nu(m) =
{
n : Hu

m,n 6= 0
}
, xIu,m = (xu,n)n∈Nu(m).

3.5.2 Derivation of the Linear Programming based Decoder

According to the derivation in the previous section, we should solve the maximization problem

of the function g′, which is defined as

g′(x,w) =
N∏

n=1

fRn(wn)
U∏

u=1

Mu∏
m=1

fIu,m(xIu,m)
N∏

n=1

fI′n(wn,xRn), (3.61)

where wn are variables which takes those values in Wn = {0, 1}U and the functions fI′n are

defined as

fI′n(wn,xRn) =

{
1 if wn = xRn

0 otherwise
n = 1, 2, · · · , N. (3.62)
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We define the variables to obtain the LP. Let τu,n = (τu,n:α)α∈{0,1} and τn = (τn:β)β∈{0,1}U

and τ =
(
(τu,n)u=1,2,··· ,U, n=1,2,··· ,N , (τn)n=1,2,··· ,N

)
. The length of τ is d = 2UN + 2UN . Then

we obtain the following LP problem:

minimize
∑N

n=1

∑
β∈{0,1}U λn:βτn:β

subject to τ ∈ Q
(3.63)

where λn:β and Q are defined as

λn:β = − ln fRn(β), (3.64)

Q = conv(P), (3.65)

P =
{
τ ∈ {0, 1}d : Proju,m(τ ) ∈ PIu,m , u = 1, 2, · · · , U, m = 1, 2, · · · ,Mu,

Projn(τ ) ∈ PI′n , n = 1, 2, · · · , N
}

(3.66)

PIu,m =
{
(φn(xn))n∈Nu(m) : fIu,m(xIu,m) = 1

}
(3.67)

PI′n =
{(
φn(wn), (φn(xn))n=1,2,··· ,N

)
: fI′n(wn,xRn) = 1

}
, (3.68)

where Proju,m(τ ) = (τn)n∈Nu(m) and Projn(τ ) =
(
τn, (τu,n)u=1,2,··· ,U

)
.

The relaxed problem is described as

minimize
∑N

n=1

∑
β∈{0,1}U λn:βτn:β

subject to τ ∈ Q̃
(3.69)

where Q̃ is

Q̃ =
{
τ ∈ {0, 1}d : Proju,m(τ ) ∈ conv(PIu,m), u = 1, 2, · · · , U, m = 1, 2, · · · ,Mu

Projn(τ ) ∈ conv(PI′n), n = 1, 2, · · · , N
}

(3.70)

According to the results for single-user channels, conv
(
PIu,m

)
is described as∑

n∈S

τu,n:1 −
∑

n∈Nu(m)\S

τu,n:1 ≤ |S| − 1, ∀S ⊆ Nu(m) s.t. |S| is odd (3.71)

0 ≤ τu,n:1 ≤ 1, ∀n ∈ Nu(m) (3.72)

The polytope conv
(
PI′n

)
is described as{

τu,n:1 =
∑

β:βu=1 τn:β

τu,n:0 =
∑

β:βu=0 τn:β
u = 1, 2, · · · , U (3.73)

0 ≤ τn:β ≤ 1, ∀β ∈ {0, 1}U (3.74)∑
β∈{0,1}U

τn:β = 1 (3.75)
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We can eliminate the variables τu,n:0 by substituting the constraints τu,n:0 = 1− τu,n:1. Summa-

rizing the results, the relaxed LP problem for the ML decoding over multiple-access channels is

described as

minimize
∑N

n=1

∑
β∈{0,1}U λn:βτn:β

subject to τu,n:1 =
∑

β:βu=1 τn:β, ∀u = 1, 2, · · · , U, n = 1, 2, · · · , N
0 ≤ τn:β ≤ 1, ∀n = 1, 2, · · · , N, β ∈ {0, 1}U∑

β τn:β = 1, ∀n = 1, 2, · · · , N,
∀u = 1, 2, · · · , U, m = 1, 2, · · · ,Mu, S ⊆ Nu(m) s.t. |S| is odd∑

n∈S τu,n:1 −
∑

n∈Nu(m)\S τu,n:1 ≤ |S| − 1

(3.76)

In this formulation, the number of variables is O(2UN) and the number of constraints is O(2UN+∑
uMu2

d
(u)
max) where d

(u)
max is the maximum row Hamming weight of parity check matrix H(u). We

can solve the problem by LP solver such as the simplex method or interior-point method. The

decoding algorithm works as follows. The decoder solves the LP problem (3.76). If τu,n:1 ∈ {0, 1}
for all u and n, output τu,n:1 as the ML estimates of xu,n. If there are any non-integer elements

in τ , the decoder declare a decoding failure.

3.6 Concluding Remarks

In this chapter, we construct the linear programming (LP) -based inference algorithms for general

factor graphs. The LP-based inference algorithm for the factor graph which does not include the

multi-degree non-indicator function nodes, which are the nodes correspond to the non-indicator

function that connected to more than one variable node, had been proposed in the past research.

However, general probabilistic inference problem possibly has any multi-degree non-indicator

functions. We extended that we can apply the LP based inference algorithm for such problems.

The proposed algorithm has the ML certificate property as in the case for the past research.

As an application, we proposed the LP based decoding algorithm for binary linear codes

over memoryless multiple-access channels. We deal with the problem again in Chapter 4. We

will show that we can possibly reduce the computational complexity of the inference algorithm

for certain class of multiple-access channels. It would be interesting to improve the inference

algorithm by using the combinatorial optimization algorithms. We will deal with such algorithms

in Chapter 5.





Chapter 4

Transformation of the Factor Graph

and its Application

4.1 Introduction

In this chapter, we show that we can reduce the computational complexity of the inference

algorithms by changing the factorization structure of the posterior distribution. In general, the

computational complexity of the inference algorithms based on the Sum-Product (SP) and the

Linear Programming (LP) are exponential order in the degree of the factor node, where degree

is a number of nodes which are connected to the factor node. We investigate the factor graph

structure for the decoding problems for the Direct Sequence Code Division Multiple Access

Channel (DS-CDMA) and the Multiple Access Channel (MAC) with binary linear codes. This

enables us to implement the SP algorithm for the decoding problem for the DS-CDMA, it was

believed that it is impossible to apply the SP algorithm to the problem. We also show that the

outputs of the LP for the two different factorizations for the MAC with binary linear codes are

equivalent.

4.2 Application to DS-CDMA Channel Model

In a direct sequence code division multiple access (DS-CDMA) wireless communication environ-

ment, multiuser detection is an important demodulation technique.

The Maximum Posterior Marginal (MPM) detector is optimum with respect to the bit error

rate [11], but the computational complexity of the detector increases exponentially with the num-

ber of users. In this section, we illustrates the application of the SP algorithm for approximate

MPM detector.

Since the detection problem can be regarded as a probabilistic inference problem, it is nat-

ural to attempt to apply the SP algorithm to the problem. Previously, the idea to apply the

SP algorithm to the multiuser detection problem was already suggested in [3]. But it has been

reported that hence the computational complexity of the resulting algorithm increases expo-

37
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Figure 4.1: An example of the factor graph for the detection problem factorizing with outputs

of matched filter and cross correlations (U = 4).

nentially with the number of users, it is impossible to apply the SP algorithm to the detection

problem. This is also described in chapter 2 of the thesis. Thus main interest in [3] is the parallel

interference canceller (PIC) rather than the SP itself. That paper indicates that PIC is derived

as an approximation of SP.

In this chapter, we suggest that the SP algorithm can be applied to the detection problem

by converting the factor graph structure. The form of the proposed factor graph is depend on

the signature sequences and in some cases the graph has only few cycles. In such cases, the

proposed algorithm is expected to perform a attractive behavior.

4.2.1 Sum-Product Algorithm based Detector

We suggest that we can change the structure of the factor graph using the outputs of matched

filter and cross correlation functions, and as a result, SP algorithm can be applied.

In general, there are various ways to factorize the function and the structure of the factor

graph is not unique. The posterior function (2.44) can be factorize into the following form

p(b|r) = 1

Z

U∏
u=1

exp

(
buhu
σ2

) ∏
u<u′

exp

(
−bubu

′Wuu′

σ2

)
, (4.1)

where hu and Wuu′ are defined in (2.61). According to above factorization, factor graph is

expressed as Fig. 4.1.

In the proposed factor graph, factor node corresponds to a function fu(bu) = exp(buhu/σ
2)

is only connected to variable node bu for each u, and factor node corresponds to a function

fuu′(bu, bu′) = exp(−bubu′Wuu′/σ2) is connected between two different variable nodes bu and bu′ .
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The proposed factor graph seemingly has many cycles, however, the number of cycles will

descend for some cases. If Wuu′ = 0, then the value of the function fuu′ does not depend on its

argument and takes value 1. Consequently we can eliminate the corresponding factor node.

Applying SP algorithm for the proposed factor graph, the algorithm is described as follows.

Messages from factor node fuu′ to variable nodes bu, bu′ are updated as (for all u′ > u)

m
(t)
uu′→u(bu) =

∑
bu′

fuu′(bu, bu′) ·m(t−1)
u′→uu′(bu′), (4.2)

m
(t)
uu′→u′(bu′) =

∑
bu

fuu′(bu, bu′) ·m(t−1)
u→uu′(bu). (4.3)

On the other hand, messages from variable node bu, bu′ to factor node fuu′ are updated as (for

all u′ > u)

m
(t−1)
u→uu′(bu) =fu(bu)

u−1∏
v=1

m(t−1)
vu→u

U∏
v=u+1

m
(t−1)
uv′→u′ , (4.4)

m
(t−1)
u′→uu′(bu′) =fu′(bu′)

u′−1∏
v=1

m
(t−1)
vu′→u′

U∏
v=u′+1

m(t−1)
uv→u. (4.5)

At last, beliefs are computed as

q(t)u (bu) = αufu(bu)
∏
u′<u

m
(t)
u′u→u(bu)

∏
u′>u

m
(t)
uu′→u(bu). (4.6)

Since computational complexity of the above algorithm is O(U3), the algorithm is practical.

4.2.2 Simulations

Simulations Conditions

We compare MPM detector, PIC and SP detector with the bit error rate. Monte Carlo simula-

tions of 10 million runs are used to approximate the detectors’ bit error rate. Three kind of the

signature sequences are used.

In the first example, we simulated a 7-user system with

W =
1

8



8 4 0 0 −2 0 0

4 8 0 0 −2 0 0

0 0 8 4 −2 4 0

0 0 4 8 −2 0 −4

−2 −2 −2 −2 8 2 2

0 0 4 0 2 8 0

0 0 0 −4 2 0 8


, (4.7)

where W is the sample cross correlation matrix {Wuu′}. In this example, the length of the

signature sequences equals 8. There are many 0 elements in the matrix, the number of cycles in

the proposed factor graph is relatively small.
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Figure 4.2: The Detector Performance for the 7 user System with the cross correlation matrix

is given in (4.7).

In the second example, we simulated a 7-user system with

W =
1

8



8 0 −4 −2 −2 0 −2

0 8 0 −2 2 0 −2

−4 0 8 2 −2 4 6

−2 −2 2 8 0 2 4

−2 2 −2 0 8 2 −4

0 0 4 2 2 8 2

−2 −2 6 4 −4 2 8


, (4.8)

In this example, the length of the signature sequences equals 8.

In the third example, we simulated a 7-user system with Shift-M sequences which length

equals 7. The sequences has the property that Wuu′ = −1/N, ∀u 6= u′ [12].

Results and Discussions

Figures 4.2, 4.3 and 4.4 shows the bit error rates of the detectors versus the signal-to-noise ratio

(SNR).
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Figure 4.3: The Detector Performance for the 7 user System with the cross correlation matrix

is given in (4.8).

In the first example, performance of the SP detector is near to that of the optimum MPM

detector. From the result, we can say that not only for the decoding problem of the LDPC

codes, the SP algorithm also performs a desirable behavior for the multiuser detection problem

when the factor graph has only few cycles.

In the all results, the SP detector’s performance is improved compared to the PIC. We can

give two possibility for the result. One is that the PIC uses the hard bits instead of the soft bits.

In generally, using hard bits instead of the soft bits causes performance degradation.

Second possibility is the form of the factor graph. According to the research about decoding

problem for LDPC codes [2], the performance of the SP algorithm for the graph which has many

cycles may not be good, especially when there are cycles of the length 4. If we regard the PIC

as an approximation to the SP, the number of cycles of the proposed factor graph is less than

that of the PIC. Moreover, there are no cycles of the length 4 in the factor graph for the SP

detector while there are many in that of the PIC.

Although the proposed factor graph has many cycles in the third example, we can see that

the performance of the SP detector is near to the performance of the MPM detector. On the

other hand, the performance of the SP detector is bad when the factor graph has many cycles
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Figure 4.4: The Detector Performance for the 7 user System using the Shift M Sequences.

and the absolute values of the cross correlations are large like the second example. This shows

that even when the factor graph has many cycles, if the absolute value of the cross correlations

are small, the SP detector would give a good performance.

4.3 Application to Gaussian Multiple-Access Channel Model

Gaussian MAC model is a particular class of the MAC model which is described in section 3.5.

According to the formulation 3.5, the computational complexity of the inference based on the

LP is O(2U). We show that we can reduce the computational complexity to O(U2) by changing

the factorization structure of the posterior distribution.
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4.3.1 Gaussian Multiple-Access Channel Model

Gaussian MAC is modeled as 1

y =
U∑

u=1

aux̃u + ε, (4.9)

where au is the amplitude of the user u and ε is a Gaussian random variable ε ∼ N (0, σ2I).

We used a notation x̃ to represent the bipolar version of a binary vector x and it is given by

x̃ = 1− 2x. The likelihood function p(y|x1,x2, · · · ,xU) is given by2

p(y|xRn) =
N∏

n=1

p(yn|xRn), (4.10)

p(yn|xRn) =
1√
2πσ2

exp


(
yn −

∑U
u=1 aux̃u,n

)2
2σ2

 . (4.11)

4.3.2 Factor Graph for Gaussian Multiple-Access Channel

We assume that the prior distribution p(x) is uniform. Then the ML decoding problem is

described as

x̂ = argmax
x∈C

N∏
n=1

p(yn|xRn), (4.12)

= arg max
x∈{0,1}UN

N∏
n=1

p(yn|xRn)
U∏

u=1

Mu∏
m=1

fIu,m(xu,m). (4.13)

Then the factor graph corresponds to the above formulation, the degree of the function node

corresponds to the function p(yn|xRn) is U , therefore the computational complexity of the LP

based inference algorithm for the above problem is O(2U).

However, we can reduce the computational complexity of the problem by changing the fac-

torization. The function p(yn|xRn) is expanded as

p(yn|xRn) =
1

Z
exp

(
yn −

∑U
u=1 aux̃u,n

)2
σ2

(4.14)

=
1

Z

U∏
u=1

exp

(
−ynaux̃u,n

σ2

) ∏
u′>u

exp

(
auau′ x̃u,nx̃u′,n

σ2

)
(4.15)

We define the function fRu,n and fR(u,u′),n as

fRu,n(xu,n) = exp

(
−ynaux̃u,n

σ2

)
, u = 1, 2, · · · , U, n = 1, 2, · · · , N (4.16)

fR(u,u′),n(xu,n, xu′n) = exp

(
auau′x̃u,nx̃u′,n

σ2

)
, u′ > u, n = 1, 2, · · · , N. (4.17)

1We use the same notation as in section 3.5
2Remember that xRn = (x1,n, x2,n, · · ·xU,n).
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Then the ML decoding problem for Gaussian multiple-access channels is described as,

x̂ = arg max
x∈{0,1}UN

N∏
n=1

(
U∏

u=1

fRu,n(xu,n)
∏
u′>u

fR(u,u′),n(xu,n, xu′,n)

)
U∏

u=1

Mu∏
m=1

fIu,m(xu,m). (4.18)

The degree of the function node fRu,n is 1 for all u and n, and the degree of the function node

fR(u,u′),n is 2. Given that the number of the function fRu,n is UN and of the function fR(u,u′),n is

(N(U2 − U)/2), the computational complexity of the LP based decoding algorithm is reduced

to O(U2).

4.3.3 Linear Programming Decoding for Gaussian Multiple-Access

Channel

Here, we derive the relaxed LP formulation for the Gaussian multiple-access channels. The LP

formulation for Gaussian multiple-access channels is described as,

minimize
∑N

n=1

∑U
u=1 2auynτu,n:1−∑N

n=1

∑
u′>u auau′

{(
τ(u,u′),n:00 + τ(u,u′),n:11

)
−
(
τ(u,u′),n:01 + τ(u,u′),n:10

)}
subject to ∀(u, u′) ∈ U , n = 1, 2, · · · , N,

τu,n:1 = τ(u,u′),n:10 + τ(u,u′),n:11, τu′,n:1 = τ(u,u′),n:01 + τ(u,u′),n:11∑
β∈{0,1}2 τ(u,u′),n:β = 1,

0 ≤ τ(u,u′),n:β ≤ 1, ∀β ∈ {0, 1}2

u = 1, 2, · · · , U, m = 1, 2, · · · ,Mu, ∀S s.t. S ⊆ Nu(m) and |S| is odd,∑
n∈S τu,n:1 −

∑
n∈Nu(m)\S τu,n:1 ≤ |S| − 1.

(4.19)

The number of variables in the problem (4.19) is O(U2N) and the number of constraints is

O(U2N +
∑

uMu2
d
(u)
max). Therefore the LP problem (4.19) can be solved efficiently than the LP

problem (3.76).

4.3.4 Simulations

In this section, we present an example of a simulation. The simulation conditions are as follows:

• The channel model is the Gaussian multiple-access channel described in (4.9)

• U = 2

• The amplitudes are set to a1 = 1.0, a2 = 1.5

• The two user codes C1, C2 are the (60, 30) and (100, 50) LDPC codes that satisfy C1∩C2 =

{0}

Fig. 4.5 and 4.6 show the decoding error probabilities of the LP and SP decoders, respectively.

In these simulations, we measure the Eb/N0 by the ratio of the average power
∑

u a
2
u/U to

the power of the noise σ2. In general, if the factor-graph has any cycles, the SP algorithm
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Figure 4.5: Decoding error probability of LP and SP decoders for (60, 30) LDPC codes.

performance is sensitive to the number of iterations and the order in which the computations

are carried out through the nodes. This problem is known as the scheduling problem. The

algorithm detail is described in —-.

The iteration number is set to (T1, T2) = (10, 10) and (T1, T2) = (20, 20) for the (60, 30) codes

and (T1, T2) = (20, 20) and (T1, T2) = (30, 30) for the (100, 50) codes. Table 4.1 and 4.2 show the

average decoding times of the SP and LP decoders, respectively. We see that the performance of

the LP decoder is almost the same as that of the SP decoder. This result is similar to the case

of single-user channels. We expect that the performance of the LP decoder will be improved by

employing the cutting-plane method [13] or the mixed-integer programming method [14], as in

the case for single-user channels.

4.4 Concluding Remarks

This chapter we show that we can reduce the computational complexity of the inference algo-

rithms by changing the factorization structure of the posterior distribution. First, we investi-

gated the factor graph structure for the decoding problem for the DS-CDMA channels. The

decoding problem for the DS-CDMA channels is called multiuser detection. The idea to apply
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Figure 4.6: Decoding error probability of LP and SP decoders for (100, 50) LDPC codes.

BP algorithm to the multiuser detection problem was already suggested, but it had been be-

lieved that it is impossible to apply BP algorithm directly to the detection problem. We showed

that we can reduce the computational complexity of BP algorithm for the detection problem

by converting the graph structure and as a result, BP algorithm can be applied directly to the

detection problem. Simulation results showed that BP detector provides better bit error rate

than PIC, especially when the factor graph of the detection problem has no loop or has only

a few cycles. There are several research problems that have not been addressed in this thesis.

Firstly, we assume the synchronous CDMA model. In general, it is difficult to fully synchronize.

It is desirable to extend BP algorithm to the asynchronous case. Secondly, the form of the pro-

posed factor graph is depend on the signature sequences. It is desirable to derive a construction

algorithm of the signature sequences such that corresponding factor graph has no cycles or has

a few cycles.

We also investigated the factor graph structure for the decoding problem for the binary linear

codes over Gaussian multiple-access channels. Based on the fact, we can reduce the computa-

tional complexity of the LP decoder for Gaussian multiple-access channels. The construction of

codes that are suitable for LP decoding will be an aim of future work. It would be interesting

to further reduce the time complexity and/or improve the error correcting performance of the
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Table 4.1: Average decoding times (in ms) of SP and LP decoders for (60, 30) LDPC codes with

Eb/N0 = 6.0 dB.

SP (T1 = 10, T2 = 10) SP (T1 = 20, T2 = 20) LP

0.0520 0.1762 0.1403

Table 4.2: Average decoding times (in ms) of SP and LP decoders for (100, 50) LDPC codes

with Eb/N0 = 6.0 dB.

SP (T1 = 20, T2 = 20) SP (T1 = 30, T2 = 30) LP

0.2818 0.6259 0.4235

decoder.





Chapter 5

Application of Combinatorial

Optimization Algorithm for the

Inference Problem

5.1 Introduction

In this chapter, we consider to apply the combinatorial optimization algorithm for the proba-

bilistic inference problem. We deal with the Maximum likelihood (ML) decoding problem of

linear block codes over the memoryless channels. Since it is an NP-hard problem in general,

there are many researches about the algorithms to approximately solve the problem. ML de-

coding problem can be described as an integer linear programming (ILP). LP decoder relaxes

the integer constraints of the ILP and solve a linear programming over the relaxed codeword

polytope.

Branch-and-bound method is one of the work to improve the performance of LP relaxation.

It adaptively adds integer constraints to the original LP and solve them. Although the compu-

tational complexity of the branch-and-bound method grows exponentially with the number of

enforced integer constraints, the output of the algorithm is guaranteed to be the integer. The

decoding algorithms based on the branch-and-bound method are developed in [15] [14].

Another way to improve the performance of relaxed LP is to use cutting-plane methods

which iteratively refine a feasible set by means of linear inequalities, termed cuts. LP decoding

algorithms based on cutting-plane methods have been discussed in [16][13][17].

In this chapter, we consider the branch-and-cut based ML decoding algorithm. Branch-

and-cut method is a hybrid of cutting-plane and branch-and-bound methods [18]. It starts by

solving a linear programming and implements cutting-plane method to the current solution. The

branch-and-cut method is widely used to solve ILP. It is important to consider how to select the

technical components in the branch-and-bound method and branch-and-cut method. We show

that the performance of the decoder based on the branch-and-bound method or branch-and-cut

method depends on the selection of those technical components.

49



50 5.2. Cutting Plane Method and Branch-and-Bound Method

5.2 Cutting Plane Method and Branch-and-BoundMethod

5.2.1 Cutting Plane Method

If an inequality a′Tx ≤ b′ is satisfied for all x ∈ C, the inequality is called ”valid inequality”. A

valid inequality becomes a ”cut” for x̂ if the inequality is violated at x̂. Cutting-plane methods

iterate the process that search any cuts and add them to the problem and re-solve the updated

problem. There are various way to find a cut for x̂. In [13, 17, 16], they proposed to construct

a cut for the ML decoding problem based on the redundant parity checks, which are the sum of

two original parity checks. The ALP decoding algorithm presented in [16] is an LP solver based

on the cutting plane method. It starts from the simple initial problem that the optimization

variables xi are only constrained 0 ≤ xi ≤ 1, and iteratively adds cuts which are contained in the

set of constraints. An efficient algorithm to find cuts from the set of constraints is presented in

[16]. Taghavi et al. also presented an algorithm to construct cuts from redundant parity checks.

The algorithm is described as follows [16]:

Algorithm:Redundant Parity Check Search Algorithm

Step.1 Having a solution x, prune the Tanner graph by removing all the variable nodes with

integer values.

Step.2 Starting from an arbitrary check node, randomly walk through the pruned graph until

a cycle is found.

Step.3 Create an RPC by combining the rows of the parity-check matrix corresponding to the

check nodes in the cycle.

Step.4 If this RPC does not introduce a cut, go to Step.2.

5.2.2 Branch-and-Bound Method

Branch-and-bound method adds integer constraints into the LP. The processes of the algorithm

can be expressed in tree search. Added integer constraints are expressed as paths in the tree

and different linear programming problem is allocated to each node. The top node is called the

root node, which is at level 0. The original LP problem is allocated to the root node. Each node

has two branches, labeled by 0 and 1, respectively, and nodes at level n − 1 have no branches.

Each branch corresponds to an integer constraint xn = l where n ∈ {1, · · · , N}, l ∈ {0, 1}. The
child problem, which is a problem allocated to a child node of a node, is obtained by adding an

integer constraint corresponding to a branch from its parent node. The example is illustrated

in Fig. 5.1.
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Figure 5.1: Integer constraints are expressed in a tree. One branch corresponds to one integer

constraint. For example, the bold path corresponds to the constraints x2 = 1, x1 = 0, x3 = 0

5.3 Branch-and-Cut Method

The branch-and-cut method is a hybrid of cutting-plane and branch-and-bound method [18].

The algorithm is described as follows:

Algorithm 2

Step.1 Set a root node in the node list L and initialize x∗ = 0, z∗ = 0.

Step.2 Get and remove a node from the node list L. If L = {φ}, output x∗ as a optimum

solution.

Step.3 Let K be the indices of the non-integer variables in the solution of LP correspond to the

node selected in Step.2. Select a branching variable xn, n ∈ K. Create two child nodes and

allocate LPs, which are obtained by adding a constraint xn = 0 or xn = 1, respectively.

Step.4 Solve two child problems created in Step.3. Let x̃ be the solution of a problem and z̃

be the objective value.
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• If x̃ is non-integer and z̃ < z∗. Implement the cutting-plane method and add cuts

found in the cutting-plane method to the problem. Let x′ and z′ be the solution

and objective value of the problem after the cutting plane method is implemented,

respectively. If x′ is non-integer and z′ < z∗, add the node to L. Else if x′ is integer

and z′ < z∗, update x∗ := x′, z∗ := z′. Remove nodes in L whose objective value is

greater than z∗.

• If x̃ is integer and z̃ < z∗, update x∗ := x̃, z∗ := z̃. Remove nodes in L whose

objective value is greater than z∗.

The difference between the branch-and-bound method and branch-and-cut method is that

the branch-and-cut method implements the cutting-plane method in Step.4. In Step.2, there

are some choices to select a node from the node list. Breadth-first search, Depth-first search

and Priority-first search are well-known strategy. In [14, 15], the authors proposed the branch-

and-bound method based decoder and they used only the breadth-first search or the depth-first

search. However, the priority-first search should be a powerful searching strategy. If we use the

priority-first search strategy, the node on the top of the list, which has the smallest objective

value of the corresponding LP problem, is selected in Step.2.

The number of nodes visited in the algorithm also changes according to the choice of the

branching variable in the generating process of child problem in Step.3. In the algorithm pro-

posed in [14, 15], the choice of the branching variable is determined according to the value of

optimization variables. In [14], the branching variable is determined by

n
′
= argmin

n
|x′n − 0.5| (5.1)

where x′n is nth element of x′, which is the optimum solution of the problem allocated to the

parent node.

5.4 Simulation Results

In this section we compare some decoding algorithms through numerical simulations. Simulation

results are based on three regular LDPC codes which details are shown in Table 5.1 (denoted

by ”Code 1-3”). wc and wr denote a column weight and a row weight of a parity-check matrix,

respectively. We assume the additive white Gaussian noise (AWGN) channel. The results are

the average of 10000 experiments. ALP algorithm presented in [16] is used to solve LP problems.

ALP algorithm solves many LPs and therefore it requires other LP solver. We used GLPK [19]

as LP solver. Simulations were run on 2.4GHz Intel Core 2 duo processors.

5.4.1 Searching Strategy

First, we see the difference of the average numbers of the visited nodes which is caused by the

choice of searching strategy in Step.2. We compare the three algorithms, which are based on
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Table 5.1: Details of the codes

n Rate (wc, wr)

Code 1 60 0.5 (3, 6)

Code 2 100 0.5 (3, 6)

Code 3 100 0.7 (3, 10)

branch-and-cut decoder and the choice of branching variable is determined according to (5.1).

The cutting-plane method is implemented based on the algorithm 1 proposed in [16] and we

fix the number of iterations in algorithm 1 to 10. The difference among the algorithms is only

searching strategy in Step.2 and they are breadth-first search, depth-first search and priority-first

search. The average number of visited nodes of the algorithms are shown in Fig.5.2-5.4. For

high SNR, there isn’t so much difference in the number of visited nodes among the algorithms,

however, for low SNR, the algorithm employing the priority-first search is superior to the other

algorithms.

Since the operations other than search are also needed for the algorithms, it is not fair to

compare the complexity only in the number of visited nodes. For the proposed priority-first

employing algorithm, the algorithm must search the node whose objective value is the smallest

in the node list L. The time complexity of this operation is the linear order of the number of

nodes in the node list L and it is very small compared to the time complexity of solving the

LPs. In Fig. 5.5, we provide the decoding time of the algorithms versus SNR for the code 1.

We can see that the algorithm employing the priority-first search is still superior to the other

algorithms.

5.4.2 Effect of Cutting-Plane Method

Here, we compare the branch-and-bound decoder and branch-and-cut decoder. Both algorithm

employ the priority-first-search and the choices of branching variables are determined based on

(5.1). The cutting-plane method is implemented based on the algorithm 1 proposed in [16]

and we fix the number of iterations in algorithm 1 to Cmax. We compare the decoding times

for different value of Cmax. Fig. 5.6-5.8, provides the decoding times of the algorithms versus

SNR. We can see that the average decoding time of the branch-and-cut decoder is superior to

branch-and-bound decoder. We can also see that cutting-plane method produce a large effect in

low SNR setting.

5.4.3 Performance Comparison to LP Decoding

Here we compare the word-error rate (WER) of ALP decoding to ML decoding. The performance

of ML decoding is obtained by our branch-and-cut algorithm. The estimates of the ALP WER

and the ML WER is plotted in Fig.5.9. We can see that there is a large gap between the ALP
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Figure 5.2: The average number of visited nodes for the code 1 as a function of SNR.
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Figure 5.3: The average number of visited nodes for the code 2 as a function of SNR.
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Figure 5.4: The average number of visited nodes for the code 3 as a function of SNR.
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Figure 5.5: The average decoding time for the code 1 as a function of SNR.
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Figure 5.6: The efficiency of cutting-plane method (result for the the code 1).

SNR 1.0 1.5 2.0 2.5 3.0
average decoding time

of ALP (ms)
6.3 4.6 3.5 2.4 1.7

average decoding time

of branch-and-cut

(ms)

385.5 185.3 92.4 39.0 12.2

Table 5.2: Average decoding time of ALP and Branch-and-cut algorithm for the code 1.

WER and the ML WER.

We are also interest in the computation requirement of branch-and-cut decoding. In Table

5.2 we provide the average decoding times of ALP and branch-and-cut decoding. In the low

SNR setting, the branch-and-cut decoding requires dozen of times time.

5.5 Concluding Remakrs

In this chapter we present a branch-and-cut decoding of linear block codes. Since the branch-

and-cut method is an extension of the branch-and-bound method and cutting-plane method, the

proposed decoding algorithm is an extension of the decoding algorithm based on those methods.

We also show that we can reduce the time complexity of the ML decoding by tune-up the

algorithm. However, the algorithm is still time consuming especially for low SNR setting. There
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Figure 5.7: The efficiency of cutting-plane method (result for the the code 2).

is a possibility to reduce the time complexity further by making efforts, for example, use other

LP solver, implement other cutting plane method, change the choice of branching variable, mix

the searching strategy, and so on. It is a future work.

The algorithms used in this chapter are applicable for other probabilistic inference problems.

We expect that these algorithms work well for such problems. The application for other problems

are also a future work.
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Chapter 6

Concluding Remarks and Future Works

6.1 Concluding Remarks

In this thesis, we consider the probabilistic inference problems for graphical models. These

problems are very important since they arise in many applications. Finding the maximum a

posterior probability (MAP) estimator and/or maximum a posterior marginal (MPM) estimator

is often the main step in solving probabilistic inference problems. In general, the problem of

obtaining the MAP and/or MPM estimator is computationally difficult unless the problem has

a special structure. Therefore, several studies have been conducted on statistical models that

have a high expression ability and a structure with which the MAP and/or MPM estimator

can be found in a practical manner. Graphical models are widely used to capture the complex

dependencies among random variables. It is also important to develop the algorithms that

calculate the MAP and/or MPM estimator efficiently.

The contribution of this thesis to resolving the probabilistic inference problems are as follows:

(a) Development of the linear programming based inference algorithms for gen-

eral probabilistic inference problems (Chapter 3)

In chapter 3, we extended the linear programming decoding algorithm, which is originally

proposed as the decoding algorithm for binary linear codes over the single-user memoryless

channel, to general probabilistic inference problems. If we regard the decoding problem of binary

linear codes for the memoryless channel as an example of the probabilistic inference problem, the

factor graph corresponding to the problem does not have any non-indicator functions connected

to more than one variable node. On the other hand, the factor graph corresponding to the general

probabilistic inference problem possibly has some such non-indicator functions. We showed that

even if the factor graph has some non-indicator functions connected to more than one variable

node, the LP-based inference algorithm can be applied by altering the graph structure. Based

on this proposition, we applied the LP-based inference algorithm to various problems. As an

example of the problem where the factor graph has some non-indicator functions connected to

more than one variable node, we considered the decoding problem of the binary linear code over

multiple-access channel.

59
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(b) Reduction of the computational complexity of the inference algorithms (Chap-

ter 4)

In chapter 4, we showed that we can reduce the computational complexity of the inference

algorithms by changing the factorization structure of the posterior distribution. First, we pro-

posed the new factorization structure for the decoding problem for the DS-CDMA model. It has

been believed that it is impossible to implement the SP algorithm for the decoding problem for

the DS-CDMA model, however, the new factorization enabled us to implement the SP algorithm

for the problem. Second, we construct the factor graph for the Gaussian multiple-access channel.

Since the Gaussian multiple-access channel is one of the particular model of the multiple-access

channels, we can apply the method described in chapter 3, however, its computational complex-

ity is the exponential order of the number of users. We show that we can construct the another

factor graph for the decoding problem for Gaussian multiple-access channel and obtain the an-

other linear programming formulation. The computational complexity to solve the obtained

linear programming is the polynomial order of the number of users.

(c) The application of the combinatorial optimization algorithms for the proba-

bilistic inference problems (Chapter 5)

In chapter 5, we studied the application of the combinatorial optimization algorithms for

probabilistic inference problems. We dealt with the decoding problem of binary linear codes for

single-user memoryless channel. In previous studies, application of the branch-and-bound and

cutting plane methods had been proposed for solving the decoding problem. We proposed a

decoding algorithm based on the branch-and-cut method, which is a hybrid of the branch-and-

bound method and the cutting plane method. The numerical simulation results show that the

performance of the proposed algorithm is better than that of previous algorithms.

6.2 Future Works

Here, we discuss some applications not considered or achieved in this study and which need to

be addressed in future works.

(a) Application to various probabilistic inference problems

Originally, LP-based inference algorithm is proposed as an approximation algorithm for the

maximum likelihood (ML) decoding of binary linear codes over memoryless channels. Based

on the results of this thesis, we can apply the algorithm for other problems. However, it is

not obvious whether the LP-based inference algorithm is always efficient. It has been shown in

previous studies that the performance of the LP-based inference algorithm for the ML decoding

of the linear codes over memoryless channels is almost the same as that of the SP algorithm. This

thesis confirms that both algorithms have similar performance. According to these results, we

expect that the LP-based inference algorithm works well for the problems that can be effectively

handled by the SP algorithm. The SP algorithm is used for many applications such as image

processing and resolving computer vision problems [20] [21] [22]. In the future, we plan to use

the LP-based inference algorithm in these applications.



Chapter 6. Concluding Remarks and Future Works 61

(b) Analysis of the performance of the inference algorithm

Recently, some analytical studies have been conducted on the performance of the LP-based

inference algorithm for solving the decoding problem of the linear codes over memoryless channels

[23] [24]. Contrary to the case of the SP algorithm, the performance of which was analytically

studied only for the case when the code length is infinite [25], the performance of the LP-based

algorithm was analytically studied for the case when the code length is finite. The finite code

length analysis is one of the advantages of the LP-based algorithm over the SP algorithm. We

need to study the performance of the LP based inference algorithm for many cases other than

the decoding problem of the linear codes over the memoryless channels. For example, we need

to guarantee the probability of the decoding error of the LP based decoding algorithm for linear

codes over multiple-access channels, which is dealt with in chapters 3 and 4 of this thesis.

(c) Development of a sophisticated algorithm

In this thesis, we dealt with the LP relaxation for probabilistic inference problems. LP

relaxation can be considered as one of the techniques to approximately solve the integer pro-

gramming. There are many algorithms for approximately solving the integer programming, one

of which is semi-definite programming (SDP) relaxation. The SDP relaxation based inference

algorithm may possibly be effective in solving probabilistic inference problems. This algorithm

is effective in solving the MAP decoding problem in the DS-CDMA model [26]. Hence, study

on the inference algorithms based on the SDP seems a worthwhile endeavor.

Although we are not concerned with the LP solver, we consider it is important to develop a

practical LP solver. In recent years, some efficient LP solvers for the decoding problem of linear

codes over single-user memoryless channels have been proposed [16] [27]. These solvers utilize

the structure of the problem. We aim to develop an efficient LP solver that is suitable for other

problems.





Appendix A

Linear Programming Inference for

Pairwise Markov Random Field

Wainwright et al. had proposed the LP-based inference algorithm for a certain class of the

graphical model named Pairwise Markov Random Field (MRF) [28]. We can express the pairwise

MRF by factor graph. We can say that the pairwise MRF is the model that corresponding factor

graph has the property that degrees of all function nodes are at most 2. The objective function

of the inference problem for the pairwise MRF is described as

g(x) =
∏
s∈V

fs(xs)
∏

(s,t)∈E

fst(xs, xt) (A.1)

where V = {1, 2, · · · , N} and E ⊆ V × V . As in the chapter 3 of the thesis, they define the

functions φs:α, φst:β and the variables λs:α, λst:β as

φs:α(xs) =

{
1 if xs = α

0 otherwise
∀s ∈ V, ∀α ∈ Xs, (A.2)

φst:β(xs, xt)(xs, xt) =

{
1 if (xs, xt) = β

0 otherwise
∀(s, t) ∈ E, ∀β ∈ Xs ×Xt, (A.3)

λs:α = − ln fs(α) ∀s ∈ V, ∀α ∈ Xs, (A.4)

λst:β = − ln fst(β), ∀(s, t) ∈ E, ∀β ∈ Xs ×Xt, (A.5)

where β = (β1, β2). Then it satisfies

− ln g(x) =
∑
s∈V

∑
α∈Xs

λs:αφs:α(xs) +
∑

(s,t)∈E

∑
β∈Xs×Xt

λst:βφst:β(xs, xt). (A.6)
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Therefore the problem to find x that maximizes g(x) is equivalent to the problem to find x that

minimizes (A.6). Wainwright et al. presented the relaxed LP problem defined as

minimize
∑
s∈V

∑
α∈Xs

λs:ατs:α +
∑

(s,t)∈E

∑
β∈Xs×Xt

λst:βλst:βτst:β (A.7)

subject to
∑
α∈Xs

τs:α = 1, ∀s ∈ V (A.8)∑
β1∈Xs

τst:β = τt:β2 ∀(s, t) ∈ E, ∀β2 ∈ Xt (A.9)∑
β2∈Xt

τst:β = τs:β1 ∀(s, t) ∈ E, ∀β1 ∈ Xs (A.10)

They showed that if the solution of the LP is an integer, it is guaranteed to be optimal.

They also show that any factor graph with discrete random variables can be converted to an

equivalent pairwise MRF. The idea used in their derivation is very similar to the way we took

in chapter 3 of the thesis. It suffices to show that how to convert a function f123 defined on a

triplet {x1, x2, x3} into a pairwise form. They introduced an auxiliary node A, and associate

with it random variable z that takes value in the Cartesian product space X1 × X2 × X3. Each

configuration of z can be identified with a triplet (z1, z2, z3). For each s ∈ {1, 2, 3}, they define

a pairwise function ψAs as ψAs(z, xs) = f123(z1, z2, z3)
1/3I[zs = xs] (the function I[zs = xs] takes

value 1 if and only if zs = xs). Then it satisfies

f123(x1, x2, x3) =
∑
z

3∏
s=1

ψAs(z, xs). (A.11)
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