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Preface 

 

This research introduces lens aberration correction methods using digital image processing for 

spherical single lens system embedded in cell phone cameras. This provides a new idea for future cell 

phone camera because the number of lens elements has been reduced to one and the ISP (Image 

Signal Processor) will process vast data for aberration correction. The current cell phone cameras, 

however, use compound lens that is three or more elements of lens structure, in which the lens 

aberrations can be corrected optically but the thickness of the imaging system will unavoidably 

increase. This newly proposed single lens imaging system can reduce the thickness of the cell phone 

body to an unprecedented level if proper lens is used, such as high refractive index lens with thinner 

CT (Central Thickness), while still obtains high quality images with few aberrations provided a 

powerful real time ISP is embedded. The objective of this research is to realize ultra-thin cell phone 

camera body (in this research 4.5mm overall thickness from the center of lens’ front surface to the 

image sensor is achieved compared to 7~10mm thickness of this part for most of the current cell 

phone cameras. We are currently developing a plano-convex single lens system that can further reduce 

this distance to approximately 1.0 mm), competitive wide field angle (maximum 96 degree, currently 

is approximately 50 degree or below for normal cell phone cameras) and low optical aberrations 

achieved by our proposed digital image processing techniques in this research. 

 

However, single lens imaging system results in dramatic aberrations compared to compound lens 

system in that the latter can reduce or eliminate lens aberrations by assembling together two or more 

single lenses that have different curvature of surfaces or refractive indices (hence different dispersion 

of light beams), which should also be aberration complementary. For example, achromatic doublet is 

utilized to correct chromatic aberrations by attaching a double-convex crown lens which has low 

refractive index and low dispersion with a double-concave flint lens that have high refractive index 

and high dispersion; and an anastigmatic optical system can effectively eliminate spherical aberrations, 

coma and astigmatism by using compound lens groups. Therefore, a single lens imaging system has to 

rely on other methods to correct aberrations. This research found that the spherical single lens 

aberrations can be corrected by proposed innovative digital image processing techniques as follows: 

forward and backward mapping method and field-dependent coefficient method for distortion 

correction; improved first-order chromatic aberration equations for lateral chromatic aberration 

correction and the polar coordinate domain deconvolution technique for radially blurred image 

restoration.  

 

Firstly, forward mapping and backward mapping proposed for distortion correction differ in that the 

former obtains the distortion-corrected image from the distorted image while the latter maps pixels 

from a distortion-free, ideal image to a distorted image. We found that the backward mapping is 

superior to forward mapping because 1) no pixel vacancies will be created after distortion correction, 

thus the additional interpolation process is unnecessary; 2) higher precision of pixel values is 

obtainable because bilinear interpolation is used compared to nearest neighbor interpolation used in 

forward mapping method. The other technique: field angle dependent coefficient, is proposed because 

the traditional third order distortion component of the Seidel aberration equation is not accurate to 

represent distortion value for high field angle (e.g. we demonstrated that half field angle 48 

degree will result in 0.3710mm deviation from the real distortion value if third order distortion 

equation is used). As the name suggested, this technique considers distortion coefficient S as a 

function of field angle (thus the image height) rather than a constant. Simulation results indicated that 

field angle dependent coefficient method surpasses Seidel aberration third order distortion component, 

which showed only 5 × 10−4mm maximum deviation from the real distortion value.  

 



 

6 

 

Secondly, we proposed an improved first-order (paraxial) chromatic aberration equation to correct 

lateral chromatic aberration (LCA). This method suggests that the distance from intersection point of 

the chief ray and the first lens surface to the optical axis should be a function of real image height of 

the reference color beams so that the traditional paraxial chromatic aberration equation becomes a 

higher order polynomial equation. Therefore the accuracy of the real chromatic aberration 

representation increased compared to traditional first-order equation. Satisfactory results were 

obtained by image simulation: maximum deviation 2.511 × 10−6mm   from the real LAT values 

between Fraunhofer F line (486.1nm light beams) and C line (656.2nm light beams) compared to 

0.0027mm of the first order case and maximum deviation 2.99 × 10−6mm from the real LAT values 

between F line and d line (587.6nm light beams) compared to 0.0019mm of the first order case. The 

other kind of chromatic aberration: axial chromatic aberration (ACA) cannot be corrected by this 

technique, because it results in color blur on the image plane, whose correction methods fall into the 

image deblurring area.  

 

Thirdly, the blur restoration (or deblurring) technique was introduced to solve the problem of 

radially variant blurring which is inherent defect of spherical single lens system. This is a novel 

method because the restoration is realized by deconvolving polar blurred image and polar Point 

Spread Functions (PSFs) converted from Cartesian coordinate system. The merit of this method is that 

the restoration in polar coordinate domain simplifies the matrix calculation between image and PSF 

by using locally invariant PSFs. Restoration in Cartesian coordinate domain, however, is very 

complicated in matrix manipulation because PSFs are spatially variant everywhere. We carried out 

image simulation on both computer generated gray scale images (produced by 656.3nm light beams) 

and natural color photographs (produced by light beams ranges from 410nm to 700nm) and the 

deblurring results were satisfactory.  

 

Finally, a real double convex spherical single lens camera module has been designed and fabricated 

to testify the aberration correction algorithms proposed in this study. The distortion and chromatic 

aberration are almost undetectable compared to blur effect due to the limitation of the maximum 

semi-field angle. Therefore, we only evaluate the blur restoration algorithm on this system. 

Experiment results suggest that the blur restoration algorithm is also effective for the real system for 

both monochromatic and RGB images. 
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Abbreviations and Significant Notation 

 

 

 

Abbreviations 
 

ACA      axial chromatic aberration 

AE        auto exposure 

AF        auto focus 

AWB      auto white balance 

BFL       back focal length 

BTTB     Block Toeplitz with Toeplitz Blocks 

BTCB     Block Toeplitz with Circulant Blocks 

BCCB      Block Circulant with Circulant Blocks 

CT        central thickness 

ED        effective diameter  

EFL       effective focal length 

HMFA     half maximum field angle 

ISP        image signal processor 

LCA      lateral chromatic aberration 

MFA      maximum field angle 

MSE      Mean Square Error  

PIR       polar image resolution 

PSF       point spread function 

SVPSF     spatially variant point spread function 

SIPSF     spatially invariant point spread function 

 

 

Significant Notation 

 

Chapter 1 

 

𝑅1         radius of curvature 

𝑃          front principal point 

𝑃′          rear principal point 

𝐹′          rear foci 

𝜔          half (semi) field angle 

FNo.        F number 

�̅�′          paraxial (ideal) image height  

𝑓′          effective focal length 

           

Chapter 2 

 

�̅�′          paraxial (ideal) chief ray height 

𝑦′          real chief ray height 

 

Chapter 3  

 

�̅�′          paraxial (ideal) image height 

𝑦′          real image height 
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△ 𝑦𝑑𝑖𝑠𝑡
′           third order distortion 

△ 𝑦𝑑𝑖𝑠𝑡_𝑟𝑒𝑎𝑙
′       real distortion 

S               distortion coefficient 

𝑓′              effective focal length 

𝑆′        distortion coefficient determined by visually measuring the distorted image 

𝑝1, 𝑝𝑚           integer pixel in the distorted image 

𝑝𝑛1, 𝑝𝑛𝑚         decimal pixel around 𝑝1 and 𝑝𝑚 in the distorted image 

𝑝𝑛′             integer pixel in the corrected image 

𝑥1, 𝑦1           coordinate index of pixel p1 

𝑥m, 𝑦m          coordinate index s of pixel pm 

𝑥𝑛1, 𝑦𝑛1         coordinate index s of pixel 𝑝𝑛1  
𝑥𝑛𝑚, 𝑦𝑛𝑚        coordinate index of pixel 𝑝𝑛𝑚 
𝑝𝑣1, 𝑝𝑣𝑚        pixel value of 𝑝1 and 𝑝𝑚 

𝑝𝑣𝑛1, 𝑝𝑣𝑛𝑚      pixel value of 𝑝𝑛1 and 𝑝𝑛𝑚 

𝑝𝑣𝑛′             pixel value of 𝑝𝑛′  
 

 

 

Chapter 4 

 

Δ𝑠𝐹𝐶
′             first order ACA between Fraunhofer F line and C line light beams 

Δ𝑠𝐹𝑑
′              first order ACA between Fraunhofer F line and d line light beams 

𝛽                magnification of the lens system 

Δ𝑓𝐹𝐶             displacement of focal lengths between F and C line light beams 

Δ𝑓𝐹𝑑             displacement of focal lengths between F and d line light beams 

Δ𝑦𝐹𝐶
′              first order LCA between F line and C line light beams 

Δ𝑦𝐹𝑑
′              first order LCA between F line and d line light beams 

Δ𝑦𝐹𝐶_𝑟𝑒𝑎𝑙
′          real LCA between F line and C line light beams 

Δ𝑦𝐹𝑑_𝑟𝑒𝑎𝑙
′          real LCA between F line and d line light beams 

𝑘1, 𝑘2           first order chromatic aberration coefficients 

𝑓𝑑               focal length of the reference ray 

∗               distance from the intersection point of the chief ray and the first lens surface to  

                                  optical axis 

𝐷𝑒𝑣𝐹𝐶 , 𝐷𝑒𝑣𝐹𝑑     deviation between LCA calculated by first or third order equation and real  

                                  LCA 

 

 

 

Chapter 5 

 

[H]               matrix of the point spread function 

[𝜙𝑓]              signal convariance 

[𝜙𝑛]              noise convariance 

*t                conjugate transpose 

𝛾                 reciprocal Lagrangian multiplier 

[Q]               linear operator 

[I]                identity matrix 

𝑔𝑐𝑖,𝑗              Cartesian pixel of the blurred image, whose index is (i ,j) 

𝑔𝑝𝑟,𝜃              polar pixel of the blurred image, whose index is (r, 𝜃) 
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𝑖𝑐 , 𝑗𝑐             index of Cartesian image center on image coordinate system 

q                number of equal parts that the whole circle of polar coordinate system is divided 

𝑟′, 𝜃′             polar image index on PSF coordinate system 

𝑖′, 𝑗′             Cartesian image index on PSF coordinate system 

𝑟psfo, 𝜃psfo        index of polar PSF origin on image coordinate system 

𝑟psfo
′ , 𝜃psfo

′         index of polar PSF origin on PSF coordinate system 

 𝑖psfc , 𝑗psfc       index of Cartesian PSF center on image coordinate system 

𝑖psfc
′ , 𝑗psfc

′         index of Cartesian PSF center on PSF coordinate system 

𝑟o, 𝜃o            index of polar image origin on image coordinate system 

𝛽                bandwidth of the BTCB matrix 

𝐹 ̃               deblurred image column vector 

T                PSF BTCB matrix 

𝛼                regularization parameter  

L                BTCB matrix of regularization operator 

�̃�𝑒               extended deblurred image column vector 

𝐶𝑇               BCCB matrix padded from T 

𝐶𝐿               BCCB matrix padded from L 

𝐺𝑒               extended blurred image column vector 

Ft                unitary discrete Fourier transform matrix 

Λ𝑇, Λ𝐿           diagonal matrices including the eigenvalues of 𝐶𝑇, 𝐶𝐿 

𝑐𝑇               the first column of 𝐶𝑇 

𝑐𝐿               the first column of 𝐶𝐿 

./                component-wise division 

.                 component-wise multiplication 

 

 

 

Chapter 6 

 

r                dimension of semi-diagonal 

f                 effective focal length 

𝜃                maximum semi-field angle 

𝑖𝑐 , 𝑗𝑐             index of Cartesian image center on image coordinate system 

q                number of equal parts that the whole circle of polar coordinate system is divided 

k                variable that determines radial resolution of the blurred polar image 

𝑟′, 𝜃′             polar image index on PSF coordinate system 

𝑖′, 𝑗′             Cartesian image index on PSF coordinate system 

𝑟psfo, 𝜃psfo        index of polar PSF origin on image coordinate system 

𝑟psfo
′ , 𝜃psfo

′         index of polar PSF origin on PSF coordinate system 

 𝑖psfc , 𝑗psfc       index of Cartesian PSF center on image coordinate system 

𝑖psfc
′ , 𝑗psfc

′         index of Cartesian PSF center on PSF coordinate system 
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Chapter 1 Introduction 

 
1.1  History and future of cellular phone camera 

The world first camera embedded cellular phone, named VP-210, was designed and manufactured 

by Kyocera, and was pushed to the cell phone market by Willcom in Sep.,1999. Although the 

integrated camera has very low specifications compared to present cell phone cameras such as a 

resolution of 110,000 pixels (0.1Megapixels) CMOS image sensor, it indeed marked the beginning of 

a new era of cellular phone. It then followed by J-SH04 designed and manufactured by SHARP, 

which is also a 0.1 Mega CMOS sensor camera phone. From then on, competitors proposed high spec 

integrated cameras successively and their performance are approaching the level of stand-alone digital 

cameras. Nowadays, most of the cell phones have at least one integrated camera with at least 

3Megapixels image sensor and other features such as optical or digital zooming, wide view angle, 

auto exposure (AE), auto focus (AF), auto white balance (AWB) and the image stabilization functions, 

etc. It can be predicted that the future cell phone camera should have higher resolution, wider view 

angle, lower power consumption and more features that enable high quality photographing. 

 

Although the performance of the current integrated cameras in cell phones is comparable with that 

of the stand-alone digital cameras, people neglect one important factor: thickness of the imaging 

system will increase correspondingly, which is undesirable in case of cell phone camera. Almost all 

current cell phone cameras adopt the compound lens structure which consists of fixed or movable 

single lens elements. The main reason to use compound lens is that the optical aberration can be 

effectively reduced or eliminated. For example, an achromatic doublet lens can minimize chromatic 

aberration because a pair of aberration complementary lenses is used: a double convex crown lens 

with low refractive index and low dispersion and a double-concave flint lens that have high refractive 

index and high dispersion. An anastigmatic optical system, which consists of several compound lenses 

between which there is always space, can effectively eliminate spherical aberrations, coma and 

astigmatism. The other purpose is to realize optical zooming. Like stand-alone digital cameras, this 

feature already becomes a standard requirement for cell phone camera. However, it needs an 

additional space for the movable lens that is driven by a motor, which further increases overall 

thickness. On the other hand, high power consumption cannot be avoided if the driving mechanisms 

are not miniaturized for cell phone camera. Therefore, the total compound lens imaging system cannot 

be made very thin.  

 

Future cell phone cameras have to take the thickness and power consumption into consideration. To 

reduce the thickness of the camera lens system, many novel ideas have been proposed during the last 

decades. One idea is to use liquid lens instead of glass or plastic lens. French company Varioptic has 

designed a tunable-focal length liquid lens that incorporates zooming function without enlarging the 

overall size of the lens system [1-1]. The zoom function is based on “electrowetting” technology and 

realized by applying different voltages to electrodes beside which there are two immiscible liquids: 

water (conducting liquid) and oil (insulating liquid). The liquid lens shows divergent characteristic 

when 0V is applied while convergent characteristic when 40 V is applied. S. Kuiper and B.H. W. 

Hendriks in Philips proposed a similar liquid lens camera in which the voltage for modifying the 

focus length ranges from 0~50V [1-2]. Those liquid lens systems have the merit to reduce the camera 

thickness and power consumption because the zoom function is not realized by driving a moveable 

lens. However, some drawbacks also prevent them from mass production: 1) the difficulty of mass 

production, which leads to high manufacturing cost; 2) temperature dependency has to be taken into 

account. Weisong Wang has presented another focal length adjustable system that does not use a 

mechanical driving force but a flexible polymer microlens that can change its shape. The lens shape 

changes when a microheater heats up a thermal fluid under the microlens by applying voltage to the 



Chapter 1 Introduction 

13 

 

heater [1-3]. The focal length is then changeable because the lens curvature changes. The other 

proposal is to use miniaturized camera module specifically designed for cell phone camera. This has 

been well studied and new technologies have been proposed to replace old ones: such as linear motor, 

voice coil motor and piezoelectric motor to replace DC motor and step motor. For instance, a small 

autofocus (AF) actuator for cell phone camera using conductive polyimide as a flexible diaphragm 

has been proposed, which shows an overall size of only 10×10×3.95mm and low power consumption 

[1-4]. Besides, another promising approach was born recently to reduce the thickness of cell phone 

camera: the use of aspherical lens. Since the non-spherical surface of the lens, spherical aberration is 

avoidable by a single aspheric lens. Correction of coma, astigmatism, field curvature, distortion and 

chromatic aberration, however, has to rely on stacking additional lenses to the lens system [1-5] [1-6]. 

The cost of manufacturing, which was a barrier that prevent aspherical lens from mass production 

previously, can be reduced now by using plastic lens rather than glass material. Moreover, the liquid 

lens, deformable lens and the miniaturized camera module mentioned above all can be combined with 

the aspherical lens to further reduce the overall thickness.  

 

The above proposed future lens systems all provided possible ways to reduce thickness and power 

consumption of the camera system, though there are some drawbacks. Most of them successfully 

reduced the overall thickness and realized AF and zooming features, but the optical aberrations of 

those systems are not well addressed and evaluated. In this research, we propose another novel 

approach for future cell phone camera that uses only one element of spherical single lens. The 

proposed single lens system can reduce the system thickness and correct optical aberrations by digital 

image processing techniques. In the future, this aberration correction method could be realized by the 

cell phone ISP. And the AF feature is also feasible for this system by slightly moving the single lens 

element along the optical axis but the optical zooming feature is not possible, which poses a new topic 

for the future development of this system. However, we can use digital zooming to replace optical 

zooming at this stage.  

 

1.2 Development of lens aberration correction technologies.  

Lens aberrations (or optical aberrations) exist for almost all kinds of lens. It is a phenomenon that 

light from a point source on the object side of the imaging system fails to converge to single point on 

the image plane at the image side. Generally, there are two categories of aberrations: monochromatic 

aberration and chromatic aberration (or polychromatic aberration). The first category, which is 

produced from mono-wavelength light beams, consists of spherical aberration, coma, astigmatism, 

field curvature and geometrical distortion. The second category, including axial chromatic aberration 

(ACA) and lateral chromatic aberration (LCA), comes from light beams with wide range of 

wavelengths. The degree of aberrations for a lens depends on two main factors: 1) lens effective 

diameter (ED); 2) field angle [1-7]. The larger the value of ED or field angle, the stronger the 

aberrations appear on the image plane.  

 

Conventional approaches of aberrations correction rely on careful optical design. The compound 

lens mentioned in section 1.1 can effectively minimize all sorts of aberrations if appropriate lens is 

selected. Spherical aberration can be minimized by using aspheric lens, gradient index (GRIN) lens, 

symmetric doublets and plano-convex lens which its convex surface faces the light source. Coma can 

be corrected by spaced doublet with central stop. Astigmatism, Petzval field curvature could also be 

minimized using spaced doublet. Besides, spherical aberration, coma and astigmatism can be 

eliminated simultaneously by using anastigmatic optical system. Distortion correction can be achieved 

by symmetric doublet such as orthoscopic doublet. As to chromatic aberrations, achromatic doublet 

could minimize them effectively. It should be emphasized that aberration correction by optical means 

is never limited to the approaches mentioned above. New types of lens, new materials and new 

combination of lenses are proposed continuously in this field. For instance, hybrid lens containing 
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fluorite is proved to be highly effective for chromatic aberration correction, the superachromat 

commonly use such a hybrid lens to achieve the best chromatic aberration correction effect for a wide 

range of wavelengths (between 365nm and 1014nm)[1-8]. Diffractive optical elements that are highly 

dispersive are also proved to be effective for chromatic aberration correction [1-9].  

 

In recent years, another approach of aberration correction has seen rapid development: the digital 

image processing techniques. Correction software as a post processing method for computer or digital 

cameras has already been released nowadays. For example, PT Lens is a lens aberration correction 

software that can correct barrel and pincushion distortion, lateral chromatic aberration. It also 

incorporated features such as correction of vignetting and perspective, etc. The famous image 

processing software Photoshop also incorporated similar features. Blur can also be restored by 

software such as Focus Magic, which can correct not only defocused image but also motion blurred 

image. On the other hand, some compact digital camera has already incorporated automatic correction 

of lens aberrations such as Nikon’s DSLR series. 

 

In this research, we also propose digital image processing methods to correct lens aberration, but 

they are specifically designed for a spherical single lens imaging system, strictly adhere to the 

performance of the designed single lens. The final objective of our research, however, is to realize real 

time aberration correction using image signal processor (ISP) embedded in a cell phone camera, 

though it is not possible by using present technology (especially blur restoration for radially variant 

blurred image which will be introduced in detail in Chapter 5). The main reason lays in that the 

current ISP is not powerful enough to process vast data required for the corrections. Therefore, the 

proposed methods were evaluated by software simulation and experiment using PC at this stage.  

 

1.3  Application of digital image processing techniques for cellular phone camera.  

Digital image processing technology has seen great development since 1960s, in which period the 

photograph of Mars taken by NASA’s Marinet 4 used this technology for the first time in human 

history. The application fields of digital image processing cover space exploration, satellite remote 

sensing (such as Earth Resources Technology Satellite or ERTS), Geographical Information 

System(GIS), medical imaging diagnostic system (such as CT, MRI, X-ray etc.), car navigation 

system, stand-alone digital camera, handheld device with embedded camera, Computer Graphics, 

Virtual Reality, Artificial Intelligence, and so on [1-10].  

In digital cameras or portable devices with embedded camera such as cell phone cameras, digital 

image processing already becomes the indispensable technology. Digital image processing is achieved 

by image signal processor or ISP in digital cameras and cell phone cameras. As to the current ISP, the 

main features include color interpolation or RGB interpolation, color correction, gamma correction, 

color conversion, AE/AWB/AF control, lens shading correction, dynamic control, noise reduction, 

image stabilization, etc. Unlike traditional digital camera, cell phone camera needs CMOS sensor 

rather than CCD sensor to lower the power consumption and sensor size. Unfortunately, CMOS 

sensor has its inherent defect that results in poorer image quality than CCD sensors [1-11]. Therefore, 

those features of ISP mentioned above are more important to ensure good quality of image for CMOS 

sensors. Many novel ideas have been proposed regarding the design and manufacturing of ISP for 

CMOS sensors. A real-time image enhancement preprocessor for CMOS image sensor with 0.6μm 

technology was proposed ten years ago by Korean researchers. The proposed processor incorporates a 

spatially adaptive contrast enhancement block with other feature blocks such as color interpolation, 

color correction, gamma correction and automatic exposure control. The preprocessor built on FPGA 

chip operates at 30 frames/sec so that real time is achievable [1-12]. Kim Kimo and In-Cheol Park 

investigated a similar signal processor for CMOS sensor with 0.18μm technology, in which they 

combines white balancing, color correction and color conversion blocks into single block. This 

significantly reduced hardware area and power consumption by 23.8% and 31.1%, respectively, 
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without perceptible performance degradation [1-11].  

 

On the other hand, the aberration correction features are seldom embedded in current ISP because 

aberrations are almost minimized by using compound lens. However, there are still some approaches 

proposed to further enhance image quality by digitally compensating for aberrations, but most of them 

incorporate only one correction block. The ISP designed exclusively for single lens imaging system of 

cell phone needs more than one image processing blocks for aberration correction because aberrations 

are extremely intensive compared to compound lens system. It should include distortion correction 

block, chromatic aberration block and the blur restoration block, together with the main image 

processing blocks mentioned in previous paragraph. We will describe the methodologies for these 

aberration correction features in the following chapters in detail.  

 

1.4  Objectives of this research  

One objective of this research is to design a spherical single lens imaging system to replace the 

compound lens system so that the thickness of the cell phone camera can be reduced. The other 

objective is to design aberration correction methodologies for geometrical distortion, chromatic 

aberration and radially variant blurring using digital image processing. The final destination: realizing 

a real-time correction ISP for single lens cell phone camera, is not possible at the time of writing 

because the limitation of ISP processing capability.  

The design objective of single lens should meet the following requirements: 1)spherical lens with 

double convex or plano-convex surfaces; 2) glass material with high refractive index therefore short 

focal length is achievable; 3) high field angle; 4)central thickness should also be thin enough so as to 

reduce overall height of the cell phone camera module. 

A cross section of the single lens used throughout this research is illustrated in Fig.1.1 and its 

specifications are shown in Tab.1.1 

 

 

Fig.1.1  Spherical double convex single lens design 



 

16 

 

 

 

The corresponding lens specification is listed in Tab.1.1 

                           

Tab.1.1 Singlet lens specification 

   ED(mm)           0.94 

   CT (mm)           2.3 

   EFL (mm)           3.0 

   BFL (mm)           2.21 

   𝑅1 = − 𝑅1 (mm)           3.5 

 Half Maximum Field Angle  (degree)           48 

   FNo.           3.2 

   Glass           SF5 

 

The meaning of each notation in Fig.1.1 and Tab.1.1 is as follows: 

ED:  Effective Diameter or entrance pupil  

CT:   Central Thickness 

EFL:  Effective Focal Length 

BFL:  Back Focal Length  

  𝑅1:   Radius of curvature 

  𝑃 :   Front principal point 

  𝑃′:    Rear principal point 

  𝐹′:    Rear foci 

   𝜔:    Half field angle 

   

On the position of image plane, a virtual image sensor is positioned, whose diagonal size and pixel 

size can be detected by CODE V after the above lens specifications are determined. For distortion 

correction, we assume a 8 Mega (3264×2448) image sensor (Fig.1.2) with pixel size 1.4𝜇m ×
1.4𝜇m in order to evaluate proposed method for high resolution image. For chromatic aberration 

correction, we attached a virtual square image sensor whose dimension is 4.1mm × 4.1mm and 

each pixel has a 5.3𝜇m × 5.3𝜇m  dimension. The resolution of the virtual sensor reduced to 

768×768 because of the processing time on the image simulation stage. It will take less than 2 

minutes to correct an image with chromatic aberrations at this resolution, while it will take hours to 

process a high resolution image. For example, we have measured that about 1 hour and 40 minutes is 

needed to process a 8 Mega (3264×2448) image. The image sensor used in blur restoration also has a 

square area, (refer to Fig.1.4) and low resolution virtual image sensor (1024×1024) is used due to fast 

processing speed compared to high resolution image. The sensor size is smaller than previous two 

sensors. Note that the semi-diagonal corresponds to the half maximum field angle (HMFA) for all 

three cases. However, HMFA is only 21 degree in Fig.1.4 due to software limitation. This will be 

explained in Chapter 5. 
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Fig.1.2 Image sensor used in distortion correction 

 

 

 

 

 

 

 
Fig.1.3 Image sensor used in chromatic aberration correction 
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Fig.1.4 Image sensor used in radially variant blur restoration  

 

It should be emphasized that EFL, BFL and FNo. in Tab.1.1 are measured and calculated in terms 

of d line of Fraunhofer Lines light beams, whose wavelength is 587.6nm. It is therefore the reference 

ray for further analysis of our single lens system throughout this research. Other wavelengths will 

slightly modify those values. Additionally, the object distance is regarded as infinite. 

 

It is necessary to explain how the lens parameters in Tab.1.1 are determined. The ED, CT, EFL, 

BFL, 𝑅1 and glass material in Tab.1.1 are determined by referring up to date commercial lens 

catalogue and selected the parameters that are most suitable for future cell phone camera size. The 

reason of choosing SF5 rather than BK7 is that the former possesses higher refractive index that is 

easier to bend light beams than the latter, which can shorten the distance between foci and lens, hence 

shorten the overall height of the imaging system. FNo.in Tab.1.1 is determined by the following 

equation 

              𝐹𝑁𝑜.=
𝐸𝐹𝐿

𝐸𝐷
                                      (1.1) 

 

The determination of half maximum field angle can be divided into two steps: 

Step 1.  Calculate maximum field angle using paraxial equation for infinite object 

 

𝑦 ′̅ = 𝑓′tanω                                       (1.2) 

 

where 𝑦 ′̅ indicates paraxial image height,  𝑓′ is the effective focal length (EFL) and ω is the half 

field angle. The equation with respect to half maximum field angle can then be derived from (1.2) 

 

𝑦 ′̅
max

= 𝑓′tan 𝜔max                                (1.3) 

 

where in this case 𝑦 ′̅
max

 equals half of the diagonal of the image plane. 

In our case,  

𝜔max = arctan (
𝑦 ′̅
max

𝑓′
) = (

2.9

3
) = 44.03 degree 

 

Step 2.  Determine real maximum field angle by examining if the output image fit to the size of 

image sensor perfectly.  
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Although the maximum field angle for paraxial case has been calculated, the real maximum field 

angle should not equal to this because the accuracy of the paraxial equation (1.2) will fall dramatically 

as the field angle increases. As a result, the output image will not fit to the image sensor perfectly. 

(For example, the semi-diagonal is 2.58mm and the pixel size is 4.75μm× 4.75μm for the chromatic 

aberration correction if we use 44.03 degree as the maximum field angle.)  Therefore, we increased 

the half field angle and found that when the angle increases to 48 degree, the output image size and 

the image sensor size will perfectly match.  

 

On the other hand, these requirements of specification for future cell phone camera are actually 

contradictory because decreasing the thickness of the lens system will lead to larger maximum field 

angle, which consequently increases optical aberrations. This can be proved via equation (1.3) and the 

property of single lens. From equation (1.3) we could tell that increasing maximum field angle will 

lead to shorter EFL, which means the thickness of the lens system is reduced. However, this is where 

the problem begins. According to property of single lens, the optical aberrations will increase as the 

field angle increases. And most importantly, the paraxial aberrations and the famous third order Seidel 

aberrations are no longer applicable in terms of large field angle. In other words, we could not use 

paraxial aberration equations or third order Seidel aberration equations to correct optical aberrations 

any more. This is easy to understand because the paraxial aberrations and Seidel aberrations are all 

derived by approximating Snell’s Law (𝑛 𝑠𝑖𝑛 𝜃 = 𝑛′ 𝑠𝑖𝑛 𝜃′), the difference lays in that the former is a 

first order approximation ( 𝑛 𝜃 = 𝑛′𝜃′ ) and the latter uses more accurate third order 

approximation 𝑛(𝜃 − 𝜃3 3!⁄ ) = 𝑛′(𝜃′ − 𝜃′
3
3!⁄ ).We can examine the deviations of the first order 

approximation and the third order approximation from the sinusoidal function for different angles in 

Tab.1.2. Obviously, larger angle results in greater deviations. The deviation of the third order 

approximation is smaller than that of the first order approximation.  

 

 

 

 

 

Tab.1.2 Sinusoidal function and its first order and third order approximations 

    𝜃(degree)      𝑠𝑖𝑛 𝜃      𝜃(rad)   𝜃 − 𝜃3 3!⁄  

    1      0.0175     0.0175    0.0175 

    3      0.0523     0.0524    0.0523 

    5      0.0872     0.0873    0.0872 

    10      0.1736     0.1745    0.1736 

    15      0.2588     0.2618    0.2588 

    20      0.3420     0.3491 0.3420 

    30      0.5000     0.5236    0.4997 

    50      0.7660     0.8727    0.7619 

 

Because of the above reason, the calculation results of paraxial aberration and third order aberration 

will deviate too much from the real aberration value of the lens system in case of large field angle, 

which increases the difficulty of aberration correction problem. To deal with the problem, we have to 

modify the first order and third order aberration equations to make them applicable to large field angle. 

In Chapter 3 and 4 we introduce an improved distortion term of the third order Seidel aberration 

equation using field-dependent coefficient for distortion correction and an improved first order 

equation for lateral chromatic aberration correction, respectively. 

 

Therefore, the objectives of distortion correction and chromatic aberration correction are to find out 

higher order equations that can accurately represent real aberration values, which will be far more 
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accurate than values calculated by traditional paraxial and third order Seidel equations so as to obtain 

satisfactory results both visually and quantitatively. On the other hand, the objective of radially variant 

blur restoration is to investigate a polar domain locally invariant PSF restoration method that can 

simplify the matrix manipulation between image and PSF. In the following chapters, the proposed 

algorithms for the three aberration correction tasks will be introduced and evaluated in detail.  

 

1.5 Originality of this research  

As we already introduced in section 1.1, there are several approaches to realize future cell phone 

camera system that is not only in small dimension, requires low power consumption, but also 

incorporates optical zooming and AF features. However, there is no such literature that depicts a 

single lens imaging system in camera, not even in conventional digital camera, because it is well 

known that this system can introduce significant optical aberrations. Therefore, it is very meaningful 

to propose an optional approach for future cell phone camera, design such a system and investigate 

original methods exclusively for single lens system to solve the aberration correction problems.  

 

Therefore, the originality of this research can be concluded as follows: 

1) Single lens structure  

 

Current and most of the proposed future cell phone camera include more than one lens element to 

correct aberrations optically, even though they use liquid lens or aspheric lens etc. to reduce 

overall thickness. The proposed system, however, use one element of spherical double convex 

single lens and no additional lens are required.  

 

2) Improvement of traditional third order Seidel aberration equation and paraxial chromatic 

aberration equation 

 

Unlike compound lens system, the single lens system will produce intensive aberrations, 

especially at high field angle. The difficulty of aberration correction for single lens requires 

improvement of current aberration equations. Since the maximum field angle of the lens system 

reaches 96 degree, Seidel third-order aberration equation is not able to accurately represent real 

distortion value. We found that the relationship between distortion coefficient and paraxial image 

height can be better represented by a third order polynomial equation. The paraxial image height is 

also a function of field angle. So the field angle dependent distortion coefficient method was 

devised. The other method proposed is the backward mapping method, which is directly 

influenced by the obtained field angle dependent coefficient polynomial.  

 

As to the chromatic aberration correction, the maximum field angle is also 96 degree, the 

traditional paraxial chromatic aberration equation (or first order equation) is not applicable in this 

case. It is found that the distance from the intersection point of chief ray and first lens surface to 

the optical axis can be considered as a function of real image height. Therefore, we improved the 

first order equation and found that the relationship between them can be better represented by 

third order polynomial.  

 

3) Deconvolution between polar blurred image and polar PSF for the restoration of radially variant   

blurred image produced by the single lens system 

 

Researchers have already studied one kind of radial blur caused by moving the camera 

perpendicular to the object, but few have studied on the radial blur caused by inherent defect of a 

single lens system. Because of the special distribution of blur: a radially variant blur produced by 

spherical single lens, we considered a new method of blur restoration. Compared to traditional 
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method that deconvolves blurred image and PSF in Cartesian coordinate, the proposed method 

carries out deconvolution using polar blurred image and polar PSF. The proposed method can 

simplify matrix manipulation between image and PSF due to the use of locally invariant PSFs.  

 

Finally, it should be emphasized that the current system requires further development such as  

incorporating optical zooming feature. In addition, the current research has already proved to be 

successful at the simulation stage, which will be introduced in the following chapters. It is expected 

that the proposed methods can be implemented on a real-time ISP of cell phone in the future.  
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Chapter2 Comparison between conventional and new 

optical imaging systems 

 
2.1 Introduction 

In Chapter 2, the merit and demerit of the newly proposed single lens imaging system will be  

depicted and compared with the conventional compound lens imaging system. Firstly, we illustrate 

some patent lens systems that use compound lens structure and specify their overall thickness and 

maximum field angle. In comparison, we also give some single lens system with double convex or 

plano-convex single lens element that is selected from up-to-date commercial lens catalogue in order 

to show theoretically how slim the proposed single lens system could be made. Secondly, in order to 

show how strong the aberration of single lens systems compared to compound lens systems, the 

aberration of both systems will be illustrated and compared quantitatively by using aberration curves 

and visually by PSF distribution image and 2D image simulations. Finally, we give some simulation 

results using our proposed aberration correction methods by digital image processing to indicate the 

feasibility to compensate for single lens aberrations, even if the conventional optical method is not 

used.  

 

2.2 Structure comparison between conventional and newly proposed optical imaging system 

This section compares structures of many types of patent compound lens systems used in digital 

cameras with the newly proposed single lens systems.  

 

First of all, three compound lens systems are selected. The lens structures 2D plot using CODE V 

are illustrated in Fig.2.1 to Fig.2.3 and their specifications are shown from Tab.2.1. to Tab.2.3. The 

object distance is considered infinite for each of the three systems. The red, green, blue (and also 

brown for Fig.2.3) lines in Fig.2.1 to Fig.2.3 indicate light beams coming from point light sources on 

the object with increased field angles. For example, the red lines indicate light beams coming from a 

point light source on the optical axis (field angle is 0 degree). In Tab.2.1 to Tab.2.3, we observe 3 

parameters: 1) the number of optical elements, 2) overall thickness from center of the first lens front 

surface to the image plane and 3) the maximum field angle.  
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Compound lens system 1: USA patent 2559875 HERZBERGE 

   

 
Fig.2.1 Structure of compound lens system (USA patent 2559875 HERZBERGE) 

 

 

 

 

 

 

Tab.2.1 Specifications of compound lens system(USA patent 2559875 HERZBERGE) 

No.of lens elements 5 

Overall thickness (mm) (from center of the first lens front surface to image plane) 117 

Maximum field angle (degree) 60 
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USA   PATENT 2559875  HERZBERGE Scale: 120.00 ORA  23-Sep-10 

0.21    MM   
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Compound lens system 2: USA Patent 2518719 M.REISS 

 
Fig.2.2 Structure of compound lens system (USA patent 2518719 M.REISS) 

 

 

 

 

 

Tab.2.2 Specifications of compound lens system (USA patent 2518719 M.REISS) 

No.of lens elements 4 

Overall thickness (mm) (from center of the first lens front surface to image plane) 119 

Maximum field angle (degree) 80 
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Compound lens system 3: USA Patent 4892398 90690 KUDO 

 
Fig.2.3 Structure of compound lens system (USA patent 4892398 90690 KUDO) 

 

 

Tab.2.3 Specifications of compound lens system (USA patent 4892398 90690 KUDO) 

No.of lens elements 3 

Overall thickness (mm) (from center of the first lens front surface to image plane) 115 

Maximum field angle (degree) 60 

 

 

Then, we give some single lens structures that are double-convex or plano-convex in Fig.2.4 to 2.6, 

in order to compare with the compound lens system structures. The selection criterion for single lens 

is: low central thickness (CT), low effective focal length (EFL) and should be available on the newest 

commercial lens catalogue. The purpose of the single lens system design is to realize competitively 

low overall thickness and high field angle. The object distance is also considered infinite. In Tab.2.4 

to Tab.2.6, we list 9 parameters: 1) overall thickness from center of the single lens front surface to the 

image plane; 2) the maximum field angle; 3) glass material with its refractive index in terms of 

587.6nm light beams (The reason to show the glass material is that it greatly affects the EFL of single 

lens, hence the overall thickness of the imaging system.);4) Effective focal length or EFL; 5) Back 

focal length or BFL; 6) Lens diameter;7) Central Thickness (CT); 8) Entrance pupil diameter and 9) F 

No. . 

 

 

 

 

18:24:32

USA   PATENT 4892398  90690  KUDO Scale: 1.20 ORA  23-Sep-10 

20.83   MM   
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 Single lens system 1:  

 
Fig.2.4 Structure of the single lens system with double convex surfaces 

 

 

 

 

 

Tab.2.4 Specifications of the single lens system  

Overall thickness (mm) (from center of the single lens front surface to image plane) 4.5 

Maximum field angle (degree) 96 

Glass material (Refractive index) SF5(1.673) 

Effective focal length or EFL(mm) 3.00 

Back focal length or BFL(mm) 2.21 

Lens diameter(mm) 3.0 

Central Thickness (CT) 2.3 

Entrance pupil diameter (mm) 0.94 

F No. 3.2 
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Single lens double convex Scale: 22.00      24-Sep-10 
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Single lens system 2: 

 
Fig.2.5 Structure of the single lens system with plano convex surfaces 

 

 

 

 

 

 

Tab.2.5 Specifications of the single lens system  

Overall thickness (mm) (from center of the single lens front surface to image plane) 1.4 

Maximum field angle (degree) 96 

Glass material(Refractive index) LaSF9(1.850) 

Effective focal length or EFL(mm) 1.0 

Back focal length or BFL (mm) 0.57 

Lens diameter(mm) 1.5 

Central Thickness (CT) 0.8 

Entrance pupil diameter (mm) 0.1 

F No. 10.0 
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Single lens system plano convex 1 Scale: 67.00      26-Sep-10 

0.37    MM   
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Single lens system 3: 

 
Fig.2.6 Structure of the single lens system with plano convex surfaces 

 

Tab.2.6 Specifications of the single lens system  

Overall thickness (mm) (from center of the single lens front surface to image 

plane) 

1.0 

Maximum field angle (degree) 96 

Glass material(Refractive index) LaSF9(1.850) 

Effective focal length or EFL(mm) 0.6 

Back focal length or BFL(mm) 0.17 

Lens diameter(mm) 1.0 

Central Thickness (CT) 0.8 

Entrance pupil (mm) 0.1 

F No. 6.0 

 

It is evident by observing Fig.2.1 to Fig.2.3 and Tab.2.1 to Tab.2.3 that the patent lenses all  

showed satisfactory aberration correction capability by using compound lens, which can be observed 

from the foci of the low and high field angle light beams on the image plane (They are not positioned 

in front of or in the back of the image plane). The maximum number of optical elements is 5 and the 

minimum is 3. Additionally, they all showed high field angle capability: the largest reaches 80° for 

the USA patent lens 2518719 M.REISS shown in Fig.2.2 and the smallest value 60° are obtained by 

US patent lens shown in Fig.2.1 and Fig.2.3. However, the overall thickness from center of the first 

lens front surface to image plane is extremely long: the maximum distance reaches 119mm for the 

USA patent lens 2518719 M.REISS. In comparison to these compound lens systems, our newly 

proposed single lens systems showed competitive overall thickness and maximum field angle. In 

Fig.2.4, the overall thickness of the double convex system is 4.5mm, which is achieved by using glass 

22:51:39

Single lens system plano convex 2 Scale: 100.00      26-Sep-10 

0.25    MM   
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material with relatively high refractive index: SF5 and low CT (2.3mm). The EFL and BFL for this 

system are 3.00mm and 2.21mm, respectively. According to Fig.2.5 and Fig.2.6, the overall thickness 

could be further shortened by using plano-convex surfaces and higher refractive index glass LaSF9. 

The overall thickness is obtained by adding BFL and CT of the lens. Ultra-thin thickness of the lens 

system is achieved for plano-convex lens 1 (1.4mm) and plano-convex lens 2(1.0mm). The high field 

angle range (0~96 degree) is still obtainable by sacrificing the diameter of entrance pupil. The central 

area around the optical axis showed no spherical aberrations because the entrance pupil is relatively 

very small compared to lens diameter. Therefore sharp image could be formed around image center. 

However, the other aberrations such as distortion, field curvature and lateral chromatic aberration 

(LCA) are very strong compared to compound lens aberrations and become extremely strong when 

the field angle reaches highest value. For example, the field curvature can be observed by the foci of 

low and high field angle light beams: the light beams coming from the off axis point source failed to 

focus on the image plane but in front of it and the higher the field angle the longer the distance 

between foci and image plane. This phenomenon results in an image with increased blur pattern from 

image center. In the next section, comparison of aberrations between the compound lens systems and 

the single lens systems will be illustrated quantitatively in aberration curves and visually in PSF 

distribution image and 2D image simulation.  

 

2.3 Comparison of optical aberrations between conventional and newly proposed optical 

imaging system 

Firstly, we give the following curves showing distortion and lateral chromatic aberration (LCA) for 

the three compound lens systems and the three single lens systems. Distortion will lead to geometrical 

deformation from the normal image and LCA results in displacement between different colors on the 

image plane. These two aberrations are not related to image blur. Other optical aberrations: spherical 

aberration, coma, astigmatism, field curvature and axial chromatic aberration (ACA) all result in blur 

on the image plane, so that they can be represented by PSF distribution images shown in Fig.2.10. 

The values are calculated by real ray tracing, so that it is neither first order values nor third order 

Seidel aberration values. In order to unify the maximum field angle for comparison, we only measure 

distortion and LCA that belongs to half field angle lower than 30 degree for all the six imaging 

systems.  

 

The distortion values are measured in terms of the reference light beams whose wavelength is 

587.6nm. In Fig.2.7, the horizontal axis shows semi field angle (or half field angle) and the vertical 

axis shows the distortion in percentage. The distortion is calculated by obtaining the difference 

between real chief ray height and paraxial chief ray height on the image plane and then divided by the 

paraxial chief ray height. Suppose the paraxial chief ray height is 𝑦 ′̅ and the real chief ray height is 

𝑦′, then we have 

                             
' '

100%
'

y y
dist

y


                                 (2.1) 

It can be observed from Fig.2.7 that distortion values of the compound lens systems are much 

smaller than that of the single lens systems. The maximum distortion among compound lens systems 

is approximately -1.9%, while the minimum distortion among single lens system already surpasses 

this value, reaching up to approximately -4.3%. The maximum distortion -8.2% for single lens 

systems is obtained by single lens 1 at field angle 30 degree. As the field angle increases, the 

distortion will further increase as well. We have measured that the distortion value rises up to -23.0% 

at the maximum semi field angle 48 degree for the double convex single lens system, which is very 

large for an imaging system. 
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Fig.2.7 Comparison of distortion among compound lens systems and single lens systems 

 

 

 

Similarly, the graphs showing LCA for the three compound lens systems and the three single lens 

systems are illustrated in Fig.2.8 and Fig.2.9. The LCA values are measured between chief rays of 

Fraunhofer F line (486.1nm) and C line (656.3nm) light beams, and between chief rays of F line and d 

line (587.6nm) light beams. Therefore, two graphs are drawn separately. The horizontal axis is the 

semi field angle and the vertical axis indicates LCA values in millimeters. The LCA between F line 

and C line light beams are larger than that between F line and d line light beams for all the six systems 

because the wavelength difference of the former is relatively larger than the latter. Except the 

compound lens 3, the other two compound lens systems all showed smaller LCA values than the 

single lens systems. The curves depicting compound lens 1 and compound lens 2 almost overlapped 

with each other, showing LCA values very close to zero. The maximum LCA: -0.2μm and -0.1μm is 

obtained at semi field angle 30 degree for compound lens 2. As an exception, the LCA values of 

compound lens 3 show very unstable variation: being positive when the field angle is lower than 22.5 

degree and negative when it is above 22.5 degree, and the maximum LCA even exceeded that of 

single lens 1, which is possible for certain kind of lens system. Besides compound lens 3, the LCA of 

single lens 1 surpasses all the others, showing maximum LCA -0.017mm and -0.012mm at semi field 

angle 30 degree. The LCA of single lens 2 and 3 overlapped with each other, showing near equivalent 

values. 
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Fig.2.8 LCA comparison between F line and C line light beams among compound lens systems and 

single lens systems 

 

    
 

Fig.2.9 LCA comparison between F line and d line light beams among compound lens systems and 

single lens systems 

 

Finally, the Point Spread Function (PSF) distribution images that are result of all blur-forming 

aberrations (coma, astigmatism, field curvature and the axial chromatic aberration) are shown in 

Fig.2.10. In addition, we give the 2D image simulation results in Fig.2.11, in which a photograph of a 

visually normal two dimensional image is “taken” by these lens systems. The resulting image includes 

all optical aberrations mentioned above. Two test images are simulated: one with rectangular frames 

in order to show distortion and LCA, the other includes small English characters in order to show 

radially variant blurring effect. 
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(a) Compound lens 1        (b) Compound lens 2          (c) Compound lens 3 

 

 
(d) Single lens 1              (e) Single lens 2              (f) Single lens 3 

 

Fig. 2.10  PSF distribution of the compound lens systems and the single lens systems 

 

 

     
(a)         (b)          (c)          (d)         (e)         (f)          (g) 

 
    (h)                  (i)                  (j)                  (k) 
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         (l)                (m)                 (n)                  (o) 

 
         (p)                 (q)                  (r)                (s) 

 

Fig.2.11   2D image simulation results of test image 1 for the compound lens systems and the 

single lens systems: (a) original image; (b) (c) (d) (e) (f) (g) image produced by compound lens 

system 1, 2, 3 and single lens system 1,2,3, respectively; (h) (i) zoom in of area 1 and 2 for 

compound lens system 1; (j) (k) zoom in of area 1 and 2 for compound lens system 2; (l) (m) zoom 

in of area 1 and 2 for compound lens system 3; (n) (o) zoom in of area 1 and 2 for single lens system 

1; (p) (q) zoom in of area 1 and 2 for single lens system 2; (r) (s) zoom in of area 1 and 2 for single 

lens system 3. 

 

  
(a)                  (b)                  (c)                   (d) 

   

         (e)                  (f)                  (g) 

 

Fig.2.12   2D image simulation results of test image 2 for the compound lens systems and the 

single lens systems: (a) original image; (b) (c) (d) (e) (f) (g) image produced by compound lens 

system 1,2,3 and single lens system 1,2,3, respectively. 
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The PSF distribution images shown in Fig.2.10 demonstrate that all compound lens systems 

produce sharp point images for low and high field angle regions. Nevertheless, the PSFs of single lens 

systems indicate radially increasing blur effect from image center to image borders, which is a result 

of field curvature phenomenon that is already explained in Section 2.2. The PSFs at high field angles 

are more intensive for the spherical double convex system shown in Fig.2.10 (d) than the two 

plano-convex systems shown in Fig.2.10 (e) and (f), indicating that fewer aberrations can be obtained 

by using plano-convex system. This can also be confirmed in the 2D image simulation results in Fig. 

2.12.  

 

2D simulation on test image 1 shown in Fig.2.11 is to visually examine distortion and LCA of the 

compound lens systems and single lens systems. According to Fig.2.11 (b) to (g), strong distortion can 

be easily observed on high field regions of single lens systems, whereas distortion of compound lens 

systems can barely be observed. Among the single lens systems, the strongest distortion was obtained 

by (e): the double convex system. This is consistent with the result of distortion curves shown in 

Fig.2.7. In order to show LCA, we enlarged areas where the LCA is relatively strong for the six 

optical systems. The areas to be enlarged are marked with number “1” and “2” in Fig.2.11 (a). The 

corresponding enlarged images are given from Fig.2.11 (h) to (s). As is expected, single lens systems 

obtained stronger LCA than compound lens systems, which can be perceived by blue color on the 

inner fringe of the rectangular frames. The strongest LCA among single lens systems belongs to the 

double convex lens, which can also be observed from LCA curves shown in Fig.2.8 and Fig.2.9. 

 

  2D simulation on test image 2 shown in Fig.2.12 is to visually examine radially variant blur effect 

of the single lens systems. Obviously, the resulting images of the compound lens systems showed 

little blur effect compared with those of the single lens systems. Among all the single lens systems, 

although the low field regions are visually normal, the high field regions are strongly blurred and 

distorted, which is understandable with the help of PSF distribution images in Fig.2.10. 

 

2.4 The feasibility to compensate for single lens aberrations using digital image processing 

techniques 

This section demonstrates the feasibility of correcting aberrations for single lens system using the 

proposed image digital processing methods rather than using the compound lens. As the detailed 

description of results will be given on the following chapters, we only show briefly the resulting 

images. The simulation of aberration correction is carried out based on the aberration values of the 

double convex single lens, the plano-convex systems will not be addressed here. 

 

The resulting images of distortion correction and LCA correction for test image 1 are shown in 

Fig.2.13 to Fig.2.15. 

      
       (a)distorted                (b) distortion corrected 

Fig.2.13 Comparison between distorted image and corrected image 
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(a) before LCA correction           (b) LCA corrected 

Fig.2.14 Image comparison before and after LCA correction for region 1 

 

      
(c) before LCA correction           (d) LCA corrected 

Fig.2.15 Image comparison before and after LCA correction for region 2 

 

As to the restoration of radially blurred image, we set the maximum field angle to 21 degree 

because of the software limitation, which says the PSF will become inaccurate when the field angle is 

larger than 21 degree. This will be further discussed in Chapter 5.   

 

Image restorations of two monochromatic images are shown in Fig.2.16.  

    
(a) blurred             (b) restored            (c)blurred             (d)restored 

Fig.2.16 Radially blurred image restoration for two monochromatic images 

 

2.5 Conclusion 

In conclusion, this chapter compared the structure of three compound lens systems and three single 

lens systems and showed that the overall thickness from center of the first lens front surface to image 

plane can be reduced to approximately 1.0mm by using plano-convex single lens whereas this 

distance of the current cell phone cameras are 7~10mm. The maximum field angle (MFA) can be 

increased to 96 degree if the entrance pupil diameter is relatively small compared to lens diameter. In 

spite of a special case such as compound lens system 3, distortion and LCA curves indicated that the 

distortion and LCA values of single lens systems all exceeded that of the compound lens systems. PSF 
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distribution images and 2D image simulation results showed more intensive radial blur effect at high 

field angle regions for single lens systems than compound lens systems. The resulting images for 

distortion, LCA correction and image restoration demonstrated that optical aberrations produced by 

single lens systems can be minimized by digital image processing techniques, even if optical means is 

not used. 

 

  Finally, a table showing merit and demerit of compound lens systems and single lens systems is as 

follows:                    

 

Tab.2.7 Merit and demerit of two lens systems 

  Conventional compound lens system Proposed single lens system 

Merit Few optical aberrations by optical 

correction 

  Thinner and slimmer 

      Demerit Overall thickness is very long Significant optical aberrations 

(But can be minimized by 

digital image processing 

techniques) 
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Chapter 3 Correction of distortion 

3.1 Introduction 

This chapter introduces distortion correction methods for single lens systems. Before introducing 

our methods, it is necessary to briefly present the research background of this field of study. In the 

literatures of geometrical distortion correction, researchers have proposed many algorithms aiming at 

compensating for lens distortion digitally. For example, polynomial warping correction method is 

known as the most widely used distortion correction method, in which a polynomial equation of 

degree N is determined by a set of control points in the first step. Then the polynomial equation 

coefficients were calculated from the control points by least-squares minimization. Finally, use the 

polynomial equation to transfer the points from the distorted image to a corrected image [3-1]. 

Another simple mathematical model for lens distortion correction was introduced by H. Ojanen [3-2], 

which is applicable to three types of lens distortion: barrel distortion, pincushion distortion and the 

combination of the two basic types. The correction was done by building up a composite mapping 

function between the object plane and the film plane, taking consideration not only the undistortion 

function but also other functions that are needed to compensate for inaccuracies in the test setup and 

using least-squares method to choose the undistortion parameters. On the other hand, some algorithms 

are dedicated to applying to specific imaging systems. For instance, field mapping and point spread 

function (PSF) mapping were proposed and compared to correct intensity distortion and geometrical 

distortion in Echo-planar imaging (EPI) system [3-3] and a geometrical distortion correction method 

based on image normalization was introduced by M.Alghoniemy, which can be applied to image 

watermarking systems that are vulnerable to geometric attacks [3-4]. Methodologies for barrel 

distortion correction in electronic endoscope images suggest that the non-linear inhomogeneous 

distorted images due to wide-angle configuration of the camera lens can be corrected by building up a 

correction model and estimating the correction parameters [3-5],[3-6].   

 

Additionally, as an indispensable process after our integer mapping method that will be introduced 

in the following sections, interpolation plays a crucial role in determination of the values of pixel 

vacancies and restoring the pixel continuity of the distortion-corrected image. Therefore, a brief 

review on the development of interpolation methods is very helpful to understand our texture 

dependent interpolation method proposed in [3-17]. Many interpolation techniques have been 

proposed by predecessors in this field of research. The well-known and most commonly used should 

be the polynomial interpolation, in which case the basic idea is to represent an unknown pixel value 

by a polynomial, solving polynomial equation set to obtain the coefficients of polynomial. Then 

compute the unknown pixel value by substituting the vertical and horizontal coordinates into the 

polynomial equation. The number of coefficients should be equal to that of the polynomial equations, 

in other words, to the number of neighboring pixels that are used to calculate coefficients. Application 

of polynomial interpolation other than image processing was also introduced to estimate heights of a 

continuous surface for the DEM (Digital Elevation Model) [3-7]. In the literature of linear and 

space-invariant interpolation, the commonest interpolation methods are nearest neighbor interpolation, 

bilinear interpolation and bicubic interpolation, whose mathematical expressions can be derived by 

adding or reducing the number of coefficients of the polynomial equation. In the Video and Image 

Processing Blockset of Matlab, nearest neighbor interpolation is implemented by obtaining nearby 

translated pixel values, bilinear interpolation is implemented by obtaining weighted average of the 

two translated pixel values on either side of the input pixel. Bicubic interpolation is implemented 

similarly by obtaining weighted average of the four translated pixel values on either side of the input 

pixel. Another algorithm depicted that the bilinear interpolation creates new pixels based on color 

averages from both the horizontal and vertical neighbors of the area to be resized, and the bicubic 

interpolation creates new pixels based upon weighted average from horizontal, vertical and diagonal 

directions. Much smoother images can be obtained by Cubic Splines or B-splines, which was first 
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introduced by H.C.Andrews and C.L.Patterson in 1976[3-8] and a detailed mathematical analysis was 

proposed by H.S.Hou and H.C. Andrews in 1978[3-9]. There are other superior interpolation schemes 

such as isophote-oriented methods, which usually employ a PDE (Partial Differential Equation) 

iterative interpolation, mainly proposed to avoid zigzagging artifacts around edge introduced by 

traditional linear interpolation methods[3-10] to [3-13]. Comparison among different interpolation 

methods [3-14] and [3-15] were documented to provide a comprehensive reference by which we are 

able to pick up an optimal method for a specific application. 

 

In this chapter, the original method “Field angle dependent distortion coefficient” will be described 

firstly. This method was proposed because the distortion component of the traditional third order 

Seidel aberration is not accurate to represent real distortion values in case of high field angles. For 

example, the double convex single lens system depicted in Chapter 2 results in 0.3710mm deviation 

from the real distortion value at half field angle 48 degree if third order distortion component is 

utilized. Therefore, improvement should be made to the third order distortion component in order to 

correct distortion precisely. Secondly, forward mapping and backward mapping methods will be 

introduced and compared. The former obtains the distortion-corrected image from the distorted image 

while the latter maps image pixels from a virtual distortion-free, ideal image to a distorted image. The 

latter is superior to the former because of two reasons: 1) no pixel vacancies will be created after 

distortion, thus the additional interpolation process is unnecessary; 2) higher precision of pixel values 

is obtainable because bilinear interpolation is employed rather than nearest neighbor interpolation 

used in forward mapping method. Finally, simulation results of the proposed techniques of distortion 

correction will be discussed.  

   

3.2 Methods  

3.2.1 Distortion coefficient depending on field angles  

The algorithm to correct distortion is based on the famous third order Seidel aberration theory but 

with some improvement because the maximum field angle in our lens design is very high. The Seidel 

third order aberration approximates the Snell’s Law 𝑛 𝑠𝑖𝑛 𝜃 = 𝑛′ 𝑠𝑖𝑛 𝜃′ to   𝑛(𝜃 − 𝜃3 3!⁄ ) =

𝑛′(𝜃′ − 𝜃′
3
3!⁄ ), therefore higher precision can be obtained when we calculate optical aberrations 

than the paraxial approximation 𝑛𝜃 = 𝑛′𝜃′.  

The distortion component of the third order Seidel aberration equation can be expressed as follows 

[3-16] 

     

3
' 'disty S y 

                                     (3.1) 

The real distortion occurring on the image plane can be expressed as  

                          
'

_ ' 'dist realy y y  
                                (3.2) 

The third order distortion approximately equals to the real distortion when the field angle is not too 

high, which can be written as follows 
3

' ' 'S y y y                                      (3.3) 

In equations (3.1) to (3.3), Δ𝑦𝑑𝑖𝑠𝑡
′  and Δ𝑦𝑑𝑖𝑠𝑡_𝑟𝑒𝑎𝑙

′    mean third order distortion and real distortion, 

respectively. 𝑦 ′̅means the ideal image height and 𝑦′is real image height, which is distorted from the 

ideal image height �̅�′. S indicates distortion coefficient. When the field angle is very high, equation 

(3.3) has to be modified, otherwise the accuracy of the third order distortion will decline dramatically 

and no longer equals to right side of the equation. To precisely represent the distortion value at every 

field angle, we regard distortion coefficient S as a continuously changing value rather than a constant. 

In other words, S should be considered as a function of 𝑦 ′̅, or  𝑆 = 𝑓(𝑦 ′̅). We found that the relation 

between 𝑆  and �̅�′ can be better represented by polynomial approximation than other curve 

approximation. Therefore, we calculated 𝑆 by rewriting equation (3.3) for different field angles as 
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different sample points using the real distortion Δ𝑦𝑑𝑖𝑠𝑡_𝑟𝑒𝑎𝑙
′  and ideal image height 𝑦 ′̅.  

'

_

3

'

dist realy
S

y




                                 (3.4) 

In this equation, the values of real distortion Δ𝑦𝑑𝑖𝑠𝑡_𝑟𝑒𝑎𝑙
′  can be directly read out by optical design 

software CODE V when the single lens system is built up. And the ideal image height 𝑦 ′̅ can be 

calculated by equation (3.5).  
'' tany f                                    (3.5) 

This equation is known as the paraxial equation that calculates the image height when the object 

distance is infinite. 𝜔 is the half field angle, 𝑓′ indicates Effective Focal Length(EFL) and 𝑦 ′̅ 
means paraxial image height (also ideal image height). 

 

Take the double convex single lens for example, when the half field angle reaches maximum (48 

degree), 𝑦 ′̅ is 3.332mm. The value of real distortion Δ𝑦𝑑𝑖𝑠𝑡_𝑟𝑒𝑎𝑙
′  is -0.7682mm. Therefore S is 

-0.0208(1/mm2). Then we made a third order polynomial approximation between S and 𝑦 ′̅. By 

doing this we can calculate S for all field angles, not only the sample points. The sample data, 

relationship curve and the corresponding third order polynomial equation will be given in Section 3.3.  

 

3.2.2 Comparison between forward and backward mapping methods. 

1) Forward mapping method: 

The forward mapping method, as its name suggests, maps image pixels from a distorted image to 

an ideal distortion-free image. It can be further divided into integer pixel mapping and decimal pixel 

mapping methods. Fig.3.1 illustrates the schema of the two forward mapping methods:  

 
(a) Integer pixel mapping 

 
(b) Decimal pixel mapping 

Fig.3.1  Schema of the forward mapping method 

 

The solid dot in Fig.3.1 means pixel of the original distorted image and the mapped pixel in the 

corrected image. The hollow dot means pixel vacancy that is created by using forward mapping 

method. Fig.3.1(a) shows that an integer pixel in the original distorted image is mapped to the 

corresponding position in a corrected image. However, pixel vacancies appear around the mapped 
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pixel. Therefore data interpolation has to be employed to fill up those vacancies. We proposed a 

texture dependent interpolation method [3-17] that determines the value of a pixel vacancy by texture 

around the pixel. This interpolation can be classified into 16 cases and the pixel value is obtained by 

nearest neighbor, linear interpolation or bilinear interpolation according to specific cases. The decimal 

pixel mapping method shown in Fig.3.1 (b), however, does not create vacancies if sufficient decimal 

pixels are defined around the integer pixel in the original distorted image. In other words, the hollow 

dots shown in Fig.3.1 (a) have their corresponding positions that are provided by decimal pixels. In 

the following paragraphs, we will introduce the two methods in details.  

 

The equation that determines the pixel position on a distortion-free ideal image for both integer 

mapping and decimal mapping can be expressed as follows:  

                                        

'
'

' '31

y
y

S y



                       (3.6) 

This equation is a modified version of equation (3.3). The reason to modify (3.3) is that usually we 

only have a geometrically distorted image in hand and hope to know the value of ideal image height 

𝑦 ′̅ from the distorted image height 𝑦′, that is, 𝑦 ′̅ = 𝑓( 𝑦′). However, according to equation (3.3) we 

know that obtaining 𝑦′ ̅̅̅̅ from 𝑦′ is not an easy task as we have to deal with the cubic root. Therefore, 

we rewrote (3.3) to  𝑆′𝑦′
3
𝑦 ′̅ =  𝑦′ − 𝑦 ′̅ and further to 𝑆′𝑦′

3
= ( 𝑦′ − 𝑦 ′̅)/𝑦 ′̅ to avoid dealing with 

cubic root so that simplified the forward mapping equation to 𝑦 ′̅ =  𝑦′/(1 + 𝑆′𝑦′
3
) . Here 

𝑆′𝑦′
3
= ( 𝑦′ − 𝑦 ′̅)/𝑦 ′̅ also represents third order distortion value in percentage. Note that 𝑆′ does 

not mean the third order distortion coefficient of Seidel aberration anymore. In our previous study 

[3-17] to [3-20], we did not consider the lens design process, only showed how the geometrically 

distorted image can be corrected by correction algorithm, where 𝑆′ in the modified equation can be 

easily determined by visually measuring the distorted image. If we take account of the lens design 

process, the equation 𝑆′𝑦′
3
= ( 𝑦′ − 𝑦 ′̅)/𝑦 ′̅ is not useful anymore because the third order distortion 

coefficient 𝑆 has to be calculated from lens design data.  

 

The interpolation after the integer pixel mapping process is called the texture dependent 

interpolation method. This interpolation is actually a case dependent (or case analysis) method that 

can be categorized into 16 cases based on the following fundamental methods:  

 
Fig.3.2 Interpolation grid: the central pixel 9 is determined by the nearest pixels: 1 to 4 . 
All pixels in this grid are equally spaced. 

 

(1) Nearest Neighbor  

                 9 1h h  or 9 2h h  or 9 3h h   or 9 4h h                          (3.7) 

(2) Linear interpolation 

1 3
9

2

h h
h


   or 2 4

9
2

h h
h


  or 1 2

9
2

h h
h


  or                            
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2 3
9

2

h h
h


   or 3 4

9
2

h h
h


  or 4 1

9
2

h h
h


                   (3.8) 

(3) Bilinear Interpolation 

                

1 2 3 4
9

4

h h h h
h

  
                                          (3.9) 

The 16 cases of texture dependent interpolation can be further divided into 5 groups:  

○1  Four pixels located on the vertical and horizontal neighbors are all non-zeros, in which case we 

carry out bilinear interpolation using values of the four pixels (one case in all). For example, 123 

and 4 in Fig.3.2 are all non-zero pixels, therefore we obtain the value of 9 by (3.9). 

○2 Three pixels located on the vertical and horizontal neighbors are non-zeros and one zero pixel, in 

which case we carry out linear interpolation using values of the two non-zero pixels that align with the 

central pixel (4 cases in all). For example, only 1 in Fig.3.2 is zero pixel, therefore we obtain the 

value of 9by 9 = (2 + 4)/2 of (3.8). 

○3  Two pixels located on the vertical and horizontal neighbors are non-zeros and two zero pixels. 

Whether the two non-zero pixels are opposite to each other, or they are next to each other, we carry 

out linear interpolation using their values (6 cases in all). For example, 1 and 3 in Fig.3.2 are 

non-zero pixels, then 9 can be obtained by 9 = (1 + 3)/2 of (3.8) or 1and 2 are non-zero 

pixels, then 9can be obtained by 9 = (1 + 2)/2 of (3.8). 

○4 One pixel located on the vertical or horizontal neighbors is non-zero and three zero pixels, in which 

case we carry out nearest neighbor using value of the non-zero pixel (4 cases in all). For example, 1 

in Fig.3.2 is the non-zero pixel, therefore 9 can be obtained by 9 = 1 of (3.7).                

○5 There is no non-zero pixel at all (one case in all) on the vertical or horizontal neighbors, in which 

case the interpolation will not be carried out. For example, 9 in Fig.3.2 will be zero if 1 to 4 

are all zero pixels.  

 

It should be emphasized that the texture dependent interpolation only takes use of the nearest four 

pixels so that the pixels on the diagonal directions will not be taken into account. 

 

To assure the proposed algorithm can interpolate any kinds of image, including those with almost 

all zero valued pixels (but have few dots being non-zeros), we add 1 to all pixels before the correction 

process, and subtract 1 from all pixels after the interpolation process. Doing so will avoid 

misunderstanding about two kinds of zero valued pixels. The first kind of zeros belong to the original 

image (before correction process), and the second kind are vacancies brought out by the correction 

process, in which the original image is enlarged.  
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Fig.3.3 A sequence of process of the proposed algorithm, two kinds of zero valued pixels are shown 

in the above figure, only vacancies will be interpolated. 

 

Compared with overall application of the fundamental algorithms such as nearest neighbor and 

bilinear interpolation, our algorithm employs a local analysis scheme that can identify to what extent 

the lost pixels should be interpolated, and then locally apply the three fundamental interpolation 

methods mentioned above.  

 

The decimal pixel mapping method shown in Fig.3.1 (b) is superior to integer pixel mapping 

because it can obtain smooth distortion-corrected image without the help of interpolation. Figure 3.4 

and 3.5 illustrates the essence of integer and decimal pixel mapping techniques. The pixel grids shown 

in Fig.3.4 and Fig.3.5 belong to the distorted image and the corresponding corrected image which 

contains 9 neighboring pixels each. (Not all pixels in Fig.3.4 and Fig.3.5 are numbered) 

 
                                 Fig. 3.4 Integer number mapping  
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Fig. 3.5 Decimal number mapping 

 

The solid dots in Fig.3.4 and Fig.3.5 represent pixel vacancies with zero value, that is, pixel 

discontinuity caused by the expansion of the original image, while the hollow dots indicate pixels 

with non-zero value. In Fig. 3.4, pixel 1( 𝑝1 in short) in a distorted image is transferred to 𝑝1′ in a 

corrected image using the integer pixel mapping method. The neighboring pixels around 𝑝1′: 𝑝2′ 
𝑝3′ 𝑝4′and 𝑝5′,  however, have no corresponding pixels in the distorted image. In other words, 

they cannot be transferred from anywhere of the distorted image but are newly created pixels with 

zero value. In Fig.3.5, we define some decimal number pixels 𝑝11 𝑝21 𝑝31and 𝑝41 around 𝑝1 in 

the distorted image within a range (the distance from a decimal pixel to 𝑝1 should not exceed half of 

the length between two integer pixels), and they are transferred to 𝑝2′ 𝑝3′ and 𝑝4′ in the corrected 

image by decimal number mapping method. Note that the same positions around 𝑝1′: 𝑝2′ 𝑝3′ and 

𝑝4′,  which cannot be mapped by integer pixel mapping are successfully mapped from the decimal 

pixels. Therefore, we could tell that the number of vacancies in the corrected image is reduced by 

virtue of the decimal pixel mapping approach.  

 

To describe pixels in Fig.3.4 and Fig.3.5 quantitatively, we define the following mathematical 

symbols: 

In Fig.3.4  

Distorted Image: 

                                 𝑝1: (𝑥1, 𝑦1)                                (3.10) 

Corrected Image: 
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where 𝑥1, 𝑦1 and 𝑥𝑛1, 𝑦𝑛1 denote coordinate index of pixel 𝑝1 and 𝑝𝑛1 in the distorted image, 

respectively. 𝑥𝑛
′ , 𝑦𝑛

′  is coordinate index of pixel 𝑝𝑛′  in the corrected image.  𝑝𝑣1, 𝑝𝑣𝑛1 and 𝑝𝑣𝑛′ 
indicate pixel value of 𝑝1, 𝑝𝑛1 and 𝑝𝑛′, respectively. 

 

According to (3.12), the decimal pixels 𝑝11 𝑝21 𝑝31and 𝑝41  in Fig.3.5 are randomly generated 

within the range of  
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              (3.14) 

1,2,3,4n   
In general, the coordinate range of the decimal pixels 𝑝𝑛𝑚(𝑥𝑛𝑚, 𝑦𝑛𝑚)around an integer pixel 

𝑝𝑚(𝑥𝑚, 𝑦𝑚) in a distorted image can be defined as  
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m nm m
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                         (3.15) 

where m indicates the index of an integer pixel in a distorted image, whose maximum value is 

determined by the resolution of the image. n is the index of a decimal pixel around 𝑝𝑚within the 

range defined by (3.15). The pixel value of all the decimal pixels 𝑝𝑣𝑛𝑚 should be equivalent to the 

pixel value of the integer pixel 𝑝𝑣𝑚. 

 

   In order to avoid minus coordinates of the decimal pixels, the coordinate of the origin should not 

be positioned to (0,0), (1,0) or (0,1), but to some coordinates that are greater than (1,1). Actually, we 
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positioned the origin to (101,101) by adding four black borders to the original image that are 100 

pixels in width each, which will not only avoid minus coordinates but also the pixel overflow due to 

the expansion of the original image in the correction process.  

 

Another fact that should not be neglected is that not all decimal pixels can find a corresponding 

mapping position in the corrected image, and some decimal pixels may overlap with other pixels as 

well. Actually, there exist three kinds of mapping results by decimal pixel mapping method: 

(1) Mapping positions exist in the corrected image and no overlap  

This mapping frequently occurs and helps reduce the number of vacancies while the integer pixel 

mapping fails to do so. For example, 𝑝21to 𝑝2′, 𝑝31to 𝑝3′and 𝑝41to 𝑝4′in Fig.3.5. 

(2) Mapping positions exist in the corrected image with position overlap 

This mapping also frequently occurs but do not reduce the pixel vacancies. For example, 𝑝11and  

𝑝1 all mapped to 𝑝1′ in Fig.3.5. 

(3) Mapping positions do not exist in the corrected image 

This mapping rarely occurs compared with the other two cases. For example, 𝑝5′in Fig. 3.5 

cannot find a mapping position from the distorted image. 

 

In conclusion, the algorithm of two forward mapping methods (integer pixel and decimal pixel 

mapping) all share the common property that obtains coordinates of distortion-corrected image from 

the distorted image. The superiority of decimal pixel to integer pixel mapping has also been proved. 

In the following paragraphs, we will introduce another distortion correction method that is superior to 

both integer pixel and decimal pixel mapping methods.  

 

2) Backward mapping method: 

In contrast to the forward mapping method, the backward mapping method maps pixels from a 

virtual distortion-free, ideal image to a distorted image. The equation that defines this process is 

derived from expression (3.3). Rewriting (3.3), the image height in the distorted image can be 

calculated by  

                                
3

' ' 'y y S y                                   (3.16) 

The flow chart and a schema of the backward mapping method are illustrated in Fig.3.6 and Fig.3.7, 

respectively. 
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Fig.3.6 Flow chart of the backward mapping method 

 

 
Fig.3.7 Schema of the backward mapping method 

 

According to Fig.3.6, the first step is to create a black ideal image that has the same resolution as 

the original distorted image. All pixel values are zeros at this step. Then each pixel coordinate from 

the black ideal image is mapped to the original distorted image by equation (3.16), resulting in 

decimal pixels (refer to Fig.3.7). The coordinates of the mapped pixels are marked in both the original 

distorted image and the created black ideal image so that the corresponding positions can be easily 

found. The next step is to determine pixel value of each decimal pixel by bilinear interpolation from 

the surrounding four integer pixels in the original distorted image, as illustrated in Fig.3.7. The last 

procedure is to locate the pixel coordinates in the black ideal image by the corresponding marked 

positions and fill the black pixels with the interpolated pixel values, then output the corrected image.  

 

3) Comparison between forward mapping and backward mapping methods: 

Compared to integer pixel mapping, the backward mapping method proposed in this research will 

not create any pixel vacancy after correcting distorted image, thus the extra interpolation process is no 

longer needed. Compared with decimal pixel mapping, in which the interpolation is also unnecessary 

if the decimal pixels defined are sufficient, the backward mapping also has advantages on the 

determination of the pixel value. The decimal pixel mapping method, which is also a forward 
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mapping method, does not create black image, but directly determines pixel value of each randomly 

created decimal pixel by its nearby integer pixel from the distorted image, In other words, it used a 

nearest neighbor interpolation to determine each pixel value. In backward mapping method, however, 

each pixel value of the black ideal image is calculated by bilinear interpolation using four integer 

pixels around the mapped decimal pixel in the original distorted image. Additionally, the decimal 

pixel mapping will possibly result in pixel overlapping if too many decimal pixels are defined around 

an integer pixel as well as pixel loss, whereas the backward mapping will not because its one-to-one 

pixel mapping mechanism.  

 

3.3 Results and discussions. 

3.3.1 Simulation environment and preparation 

2D image simulation was carried out on test images and natural color image. The 2D image 

simulation evaluates the resulting image of a two dimensional object (no optical aberration) using the 

designed lens system. The resulting image definitely includes all the real optical aberrations, including 

distortion. Then correction of distortion was carried out to evaluate the distortion correction 

techniques for the designed single lens system. Before the process of distortion correction, the unit has 

to be converted from millimeter to pixel because the image being corrected is measured by pixels 

rather than millimeter. In our lens design, the number of pixels per millimeter can be calculated by 

using single pixel size 1.4μm ×1.4μm, that is, 1/1.4μm = 714.2857 pixels. Correspondingly, the 

uint of each variable in equation (3.16) will have to be converted to pixel too.  

 

3.3.2 Simulation results and discussions   

The simulation results on distortion correction using third order distortion equation, the field angle 

dependent coefficient and the three mapping techniques: integer mapping, decimal mapping and 

backward mapping will be presented and compared in this sub section. We adopt the double convex 

single lens system introduced in Chapter 2 for this simulation. In the backward mapping method 

simulation, we set three conditions as follows: 

1) Use the third order distortion value at the half maximum field angle to calculate the third order 

coefficient S, then apply this S to other field angles to obtain distortion values 

2) Use real distortion value at a specific field angle to obtain distortion coefficient S, then suppose S 

is a constant to calculate distortions at other field angles. Three different field angles were selected 

to calculate the constant S 

3) Use real distortion values of 11 sample points to obtain field-angle dependent coefficient S, then 

use this S to calculate distortions at all field angles. It should be emphasized that the maximum 

number of sample points is determined by the optical design software. Although more samples 

will give a more precise result for a curve approximation problem, the maximum number of 

sample points cannot be modified after the lens system is built. 11 is the maximum number of real 

distortion value allowed by the optical software. 

 

Fig.3.8 –Fig.3.12 show deviations of the distortion values under the above three conditions from 

the real distortion values Δ𝑦𝑑𝑖𝑠𝑡_𝑟𝑒𝑎𝑙
′  for 11 sample field angles, respectively.  
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Under the first simulation condition:  

 

 

 

 
Fig.3.8  Deviations of the third order distortion values from the real distortion values. The square and 

triangle dots indicate third order distortion and real distortion, respectively. Horizontal axis represents 

field angles and the vertical axis represents distortion values. 

 

 

 

 

The third order distortion value at the maximum field angle can be read out directly by optical 

design software after the lens system is built. Then S can be obtained via equation (3.1). As EFL for 

the double convex single lens is 3.0 mm, the ideal image height 𝑦 ′̅at the maximum field angle is 

obtained from equation (3.5) , that is, 𝑦 ′̅ = 𝑓′tanω = 3.0 ∗ tan48 = 3.332mm. Therefore       
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Under the 2nd simulation condition: 

 

 
 

Fig.3.9  Deviations of distortion values calculated by constant coefficient S (obtained from real 

distortion value at 18.43 degree) from the real distortion values. The square and triangle dots indicate 

distortion calculated by constant coefficient S and real distortion, respectively. Horizontal axis 

represents field angles and the vertical axis represents distortion values. 

 

 
Fig.3.10  Deviations of distortion values calculated by constant coefficient S (obtained from real 

distortion value at 33.68 degree) from the real distortion values. The square and triangle dots indicate 

distortion calculated by constant coefficient S and real distortion, respectively. Horizontal axis 

represents field angles and the vertical axis represents distortion values. 
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Fig.3.11  Deviations of distortion values calculated by constant coefficient S (obtained from real 

distortion value at 48 degree) from the real distortion values. The square and triangle dots indicate 

distortion calculated by constant coefficient S and real distortion, respectively. Horizontal axis 

represents field angles and the vertical axis represents distortion values. 

 

The constant distortion coefficient S in Fig.3.9 to Fig.3.11 can be computed via equation (3.4) 
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Under the third simulation condition: 

 
Fig.3.12  Deviations of distortion values calculated by field dependent coefficient S from the real 

distortion values. The square and triangle dots indicate distortion calculated by field dependent 

coefficient S and real distortion, respectively. Horizontal axis represents field angles and the vertical 

axis represents distortion values. 

 

The third order polynomial relationship curve and equation between field dependent coefficient S 

and ideal image height are showed as well in Fig.3.13 and equation (3.17)  

 

  
Fig.3.13  The relationship between field angle dependent distortion coefficient and ideal image 

height. Horizontal axis: ideal image height; Vertical axis: field angle dependent distortion coefficient 
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Visual comparisons are given from Fig.3.14 to Fig.3.16 

      
(a)                  (b)                 (c)                  (d) 

   
(e)                 (f)                  (g) 

      
                   (h)                                           (i) 

 
                    (j) 

  

Fig.3.14 Test image 1 simulation: (a) original image without any optical aberration (b) image 

produced by the double convex single lens system (including all optical aberrations) (c) distortion 

corrected image using third order coefficient (d) distortion corrected image using constant coefficient 

(obtained from real distortion value at 18.43 degree) (e) distortion corrected image using constant 

coefficient (obtained from real distortion value at 33.68 degree) (f) distortion corrected image using 

constant coefficient (obtained from real distortion value at 48 degree) (g) distortion corrected image 

using field-angle dependent coefficients (h) zoom in of the distortion corrected image using integer 

pixel mapping (i) zoom in of the distortion corrected image using decimal pixel mapping (j) zoom in 
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of the distortion corrected image using field-angle dependent coefficient 

 

       
(a)                   (b)                   (c)                    (d) 

     
        (e)                   (f)                   (g) 

      
                   (h)                                         (i) 

 
                      (j) 

Fig.3.15 Test image 2 simulation: (a) original image without any optical aberration (b) image created 

by the double convex single lens system (including all optical aberrations) (c) distortion corrected 

image using third order coefficient (d) distortion corrected image using constant coefficient 

(obtained from real distortion value at 18.43 degree) (e) distortion corrected image using constant 

coefficient (obtained from real distortion value at 33.68 degree) (f) distortion corrected image using 

constant coefficient (obtained from real distortion value at 48 degree) (g) distortion corrected image 

using field-angle dependent coefficients (h) zoom in of the distortion corrected image using integer 

pixel mapping (i) zoom in of the distortion corrected image using decimal pixel mapping (j) zoom in 

of the distortion corrected image using field-angle dependent coefficient 
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(a)                     (b)                (c)                  (d) 

       
(e)                  (f)                 (g) 

    
                   (h)                                       (i) 

 
                   (j) 

Fig.3.16 Natural color photograph simulation: (a) original image without any optical aberration (b) 

image created by the double convex single lens system (including all optical aberrations) (c) 

distortion corrected image using third order coefficient (d) distortion corrected image using constant 

coefficient (obtained from real distortion value at 18.43 degree) (e) distortion corrected image using 

constant coefficient (obtained from real distortion value at 33.68 degree) (f) distortion corrected 

image using constant coefficient (obtained from real distortion value at 48 degree) (g) distortion 

corrected image using field-angle dependent coefficients (h) zoom in of the distortion corrected 

image using integer pixel mapping (i) zoom in of the distortion corrected image using decimal pixel 

mapping (j) zoom in of the distortion corrected image using field-angle dependent coefficient 

 

 

The simulation results from Fig.3.14 to Fig.3.16 demonstrated that the field angle dependent 
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coefficient and the backward mapping methods outperform others. We have examined that the 

maximum deviation occurs at highest field angle (48 degree) of Fig.3.8, Fig.3.9, Fig.3.10 and Fig.3.12, 

in which the deviation values are 0.3710mm, 0.3229mm, 0.2009mm and 5 × 10−4 mm, respectively. 

As to Fig.3.11, the maximum deviation 0.0514mm occurs at 37.86 degree. Therefore, the correction 

results from Fig. 3.14 to Fig.3.16 indicate that visually the most satisfactory corrected image is the 

one corrected by using field dependent coefficient. Other corrected images, such as the one using the 

third order coefficient and those using constant coefficients computed at field angle 18.43 and 33.68 

degree all appeared over-correction. Although the one using constant coefficient computed at field 

angle 48 degree is visually satisfactory too, the deviation values from Fig.3.11 indicate that it suffered 

a little from under-correction problem. On the other hand, the resulting images by using integer pixel 

mapping method shown in Fig.3.14 (h), Fig.3.15 (h) and Fig.3.16 (h) suggest that the corrected 

images are visually discontinuous because of too many pixel vacancies. Fig.3.14 (i), (j), Fig.3.15 (i), 

(j) and Fig.3.16 (i), (j) indicate worse image smoothness for the decimal pixel mapping method than 

field dependent coefficient method because of the former uses nearest neighbor interpolation to 

calculate pixel values while the latter uses bilinear interpolation.  

 

So far we have compared results of distortion correction using third order equation and field angle 

dependent coefficient, as well as the three mapping techniques. However there still are some issues to 

be discussed. Equation (3.16) introduced in Section 3.2 is actually a sixth order equation because we 

made a third order polynomial approximation between S and 𝑦 ′̅. Theoretically, the higher the order of 

the polynomial approximation between S and 𝑦 ′̅, the more precise equation (3.1) will represent real 

distortion values and hence the more accurate resulting image can be obtained. For small maximum 

field angle case, the order of the approximation could be 0, which means S is a constant for all field 

angles, in which case equation (3.1) will become the distortion term of the traditional third order 

Seidel aberration. However, large maximum field angle requires higher order approximation in order 

to precisely represent the distortion value.  

 

In addition, we should emphasize that the field angle dependent coefficient and backward mapping 

described in this chapter were implemented to barrel distortion case. Actually, these correction 

techniques are also applicable to pincushion distortion case, in which Δ𝑦𝑑𝑖𝑠𝑡_𝑟𝑒𝑎𝑙
′  and distortion 

coefficient S will be positive values. As the pincushion image cannot be output by the single lens 

system designed in this research, we will deal with this case in the future.  

 

Finally, by comparing with the original images, the blurring effect caused by coma, astigmatism 

and field curvature is clearly visible on the resulting images shown in Fig.3.14 to Fig.3.16, especially 

at high field angles, though geometrical distortion was corrected. Blurring will not affect distortion 

correction result that much, while it will greatly affect correction of other aberrations, especially the 

correction of lateral chromatic aberration. For example, the displacement between R-plane and 

B-plane of RGB color images can be minimized by real lateral chromatic aberration values. However, 

there still exists color aberration because the blurring of B-plane is stronger than R-plane and G-plane. 

We will discuss restoration of the special blur type produced by the spherical double convex single 

lens: the radially variant blur in Chapter 5. 

 

3.4  Conclusion 

In this Chapter, we introduced and compared distortion correction techniques by digital image 

processing for single lens systems. Field angle dependent coefficient can effectively increase accuracy 

of real distortion representation by increasing the order of distortion component of the traditional third 

order Seidel aberration equation. The forward mapping method, which can be further categorized into 

two methods: integer pixel mapping and decimal pixel mapping, is inferior to the backward mapping 
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method because the latter is capable of eliminating distortion without producing any pixel vacancy so 

that the additional interpolation process is not necessary and higher accuracy of pixel value is 

obtainable because it incorporates the bilinear interpolation algorithm. Simulation results on the 

double convex single lens system whose specification was already given in Chapter 2 showed that 

distortion-corrected image using field angle dependent coefficient and backward mapping method 

obtained the best results both quantitatively and visually. However, radially variant blurring caused by 

coma, astigmatism and field curvature made the resulting image visually unpleasing, especially at 

high field regions, though distortion has been eliminated. We will discuss restoration of radially 

variant blur caused by the double convex single lens in Chapter 5. 
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Chapter 4 Correction of chromatic aberration 

 
4.1 Introduction   

This chapter demonstrates correction techniques for single lens chromatic aberration. As is 

mentioned in Chapter 1, chromatic aberration includes axial (or longitudinal) chromatic aberration 

and lateral (or transverse) chromatic aberration. The former results in different color blurring on the 

image plane so that the correction approach falls into the image deblurring area. This chapter only 

deals with the latter: lateral chromatic aberration (LCA will be used for simplicity), which results in 

displacement between different color planes. The correction can be realized by calibrating from any 

two color planes to the reference color plane. 

 

A great number of methods have been documented on correction of chromatic aberrations by image 

processing. A novel method to measure both ACA and LCA in fluorescence microscopy using 

sub-resolution bead imaging and computer image analysis was proposed by M.Kozubek and P. 

Matula, in which chromatic aberrations can be reduced to 10-20nm laterally and 10-60 nm axially at a 

half-an-hour speed[4-1]. Image warping techniques to correct chromatic aberrations was studied by 

T.E. Boult and G.Wolberg. The warp is determined by edge displacements using cubic spline fitting. 

Experiments results showed that image warping can reduce Mean Square Error more than active 

optics approach in the CCTV case and larger reduction of maximum error for other cases [4-2]. There 

are, however, few literatures discussing single lens design with high field angle and the corresponding 

approaches to correct LCA by digital image processing. The main reason lays in the difficulty to cope 

with intensive aberrations at high field angle. Traditional paraxial (first order) aberration equation and 

the famous third order Seidel aberration equation are only applicable to small field angle. Applying 

them to large field angle will unavoidably reduce the accuracy of real aberration representation. Due 

to this fact, the traditional equations should be modified.  

 

In this chapter, we will introduce lateral chromatic aberration (LCA) correction approach using an 

improved first order lateral chromatic aberration equation. This method suggests that the distance 

from intersection point of the chief ray and the first lens surface to the optical axis should be a 

function of real image height of the reference color beams so that the traditional paraxial chromatic 

aberration equation becomes a higher order polynomial equation. Therefore the accuracy of real 

chromatic aberration representation increases compared to traditional first-order equation, especially 

at high field regions. To evaluate this method, simulation on the LCA correction for an aberrated test 

image generated by optical design software will be introduced and results will be discussed. However, 

blur-forming aberrations such as axial chromatic aberration (ACA) and field curvature affected the 

chromatic aberration correction results, making it impossible to eliminate chromatic aberration 

thoroughly if the blur were not restored prior to chromatic aberration correction.  

 

4.2 Methods  

   The improved chromatic aberration equation for Lateral chromatic aberration (LCA)    

It is well known that chromatic aberration consists of two types: axial chromatic aberration and 

lateral chromatic aberration. The definition of axial chromatic aberration gives that the refracted light 

beams propagate from an on-axis object are unable to focus on the same foci because of different 

wavelengths, which results in color blur on the image plane. Whereas the LCA is defined in terms of 

light beams propagate from off-axis object, whose magnifications are slightly different, resulting in 

displacement between different colors on the image plane. The drawings for the two types of 

chromatic aberration are illustrated in Fig.4.1 and Fig.4.2. 
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Fig.4.1 Axial chromatic aberration (ACA) 

 

 
Fig.4.2 LCA in the absence of ACA 

 

The traditional first order chromatic aberration equation takes the following form [4-3]: 

For ACA: 

              
' 2(1 )FC FCs f                                       (4.1) 

               
' 2(1 )Fd Fds f                                       (4.2) 

For LCA: 
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                                (4.4) 

  Δ𝑠𝐹𝐶
′ , Δ𝑠𝐹𝑑

′ : first order ACA between F line (486.1nm)and C line (656.2nm)  light beams, F line 

and d line (587.6nm ) light beams, respectively 

  𝛽:  Magnification of the lens system 

  Δ𝑓𝐹𝐶 , Δ𝑓𝐹𝑑  : Displacement of focal lengths between F and C line light beams, F and d line light 

beams, respectively. (Δ𝑓𝐹𝐶 = 𝑓𝐹 − 𝑓𝐶; Δ𝑓𝐹𝑑 = 𝑓𝐹 − 𝑓𝑑) 

  Δ𝑦𝐹𝐶
′  , Δ𝑦𝐹𝑑

′  : first order LCA between F line and C line light beams, F line and d line light beams, 

respectively 

  𝑘1, 𝑘2: first order chromatic aberration coefficients 

  𝑓𝑑: Focal length of the reference ray 

  ∗: Distance from the intersection point of chief ray and the first lens surface (refer to Fig.4.3) to 

the optical axis 

 

 
Fig.4.3 Distance from the intersection point of chief ray and the first lens surface to the optical axis  
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It is obvious that ∗ is a field-dependent variable by observing relation between ∗ and field 

angle ω  in Fig.4.3 and therefore is also related to the image height on the image plane.  

 

In the case of infinite object, equation (4.1) and (4.2) could be simplified to  
'

FC FCs f                                          (4.5) 

                              
'

Fd Fds f                                         (4.6) 

Correspondingly, equation (4.3) and (4.4) can be rewritten as  
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                            (4.7) 
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                            (4.8) 

Based on the first order LCA equations (4.7) and (4.8) that show the first order relations 

between Δ𝑦𝐹𝐶
′  and ∗, Δ𝑦𝐹𝑑

′ and ∗, respectively, an improved equation can be derived to deal with 

LCA correction problem for large field angle. The improved equation considers ∗ as a function of 

real image height 𝑦𝐹
′  (𝑦𝐶

′  or 𝑦𝑑
′  is also possible, it depends on which color plane is the standard color 

plane so that other two color planes will be corrected with respect to it. In this study, B-plane of the 

RGB image is regarded as the standard color plane, therefore, real image height 𝑦𝐹
′will be measured), 

forming a polynomial expression as follows: 

                * ' ' 1 ' 1 '

1 2 3 ... ( 1,2,3,...)n n n

F F F n Fh a y a y a y a y n                          (4.9) 

Then substitute (4.9) into equation (4.7) and (4.8), which yields 

          
' ' ' 1 ' 1 '

_ 1 1 2 3( ... )( 1,2,3,...)n n n

FC real F F F n Fy k a y a y a y a y n                      (4.10) 

         
' ' ' 1 ' 1 '

_ 2 1 2 3( ... )( 1,2,3,...)n n n

Fd real F F F n Fy k a y a y a y a y n                     (4.11)                                             

Note that the LCA notation Δ𝑦𝐹𝐶
′  and Δ𝑦𝐹𝑑

′  have been replaced by Δ𝑦𝐹𝐶_𝑟𝑒𝑎𝑙
′  and Δ𝑦𝐹𝑑_𝑟𝑒𝑎𝑙

′   , 
which indicates real aberration values rather than first order values. When the field angle is not too 

high, the real aberration values are almost equal to the first order values and using first order 

polynomial relation between ∗ and 𝑦𝐹
′  is accurate enough to represent these aberration values. In 

this case equation (4.10) and (4.11) become the traditional first order LCA equation 

                  
' ' '

_ 1FC real FC Fy y k ay   
                               (4.12) 

' ' '

_ 2Fd real Fd Fy y k ay   
                               (4.13) 

However, when the field angle is too large, real aberration values are no longer equal to the first order 

values and higher polynomial relation between ∗ and 𝑦𝐹
′  has to be used to accurately represent 

LCA values. Simulations have been carried out to verify it in Section 3. 

 

One last thing that needs to be emphasized is that the constant term of the polynomial expression is 

neglected because ∗will equal to zero if the real image height 𝑦𝐹
′  equals zero.  

 

4.3 Results and discussions 

 4.3.1 Description of simulations   

  In this section, image simulations are carried out to evaluate the proposed lateral chromatic 

aberration correction approach for high maximum field angle single lens. The simulations use two- 

dimensional image object whose resolution is 768×768 to examine the resulting image after the single 

lens. The resulting image will include all kinds of optical aberrations, both mono-chromatic and 

chromatic. A test image is used in this simulation. 

 

4.3.2 Simulation results and discussions 
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  In this simulation, deviation graphs and resulting images for first and third order polynomial 

approximations between ∗ and 𝑦F
′   are illustrated and compared. It is important to emphasize that 

theoretically higher order of the polynomial approximation equations is more precise to represent real 

LCA values. The highest order of polynomial approximation in our simulation is three because we 

proved by the following deviation graphs (Fig.4.4) and visual comparisons (Fig.4.6 to Fig.4.13) that 

third order is satisfactory enough to represent real aberration values, it is not necessary to use higher 

order.    

 

The deviation graphs are as follows:  

 
(a) LCA between F line and C line light beams for first order approximation 

 

   

(b) LCA between F line and d line light beams for first order approximation 
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(c) LCA between F line and C line light beams for third order approximation 

 

        

(d) LCA between F line and d line light beams for third order approximation 

Fig.4.4 Deviation graphs of LCA values versus real image height  

 

The deviation graphs in Fig.4.4 show how the LCA values calculated from first and third order 

approximations between ∗ and 𝑦F
′  deviate from real LCA values. Fig.4.4 (a),(b) show the graphs 

for first order case and Fig.4.4 (c),(d) show the third order case. Meanwhile,(a) and (c) show the LCA 

values between F line and C line light beams while (b) and (d) show the LCA values between F line 

and d line light beams. The horizontal axis is the real image height 𝑦F
′ , which is obtained by real ray 

tracing of F line light beams’ chief ray, while the vertical axis represents LCA values. In each graph, 

the curve with square dots indicates LCA values calculated from first or third order approximations 

between ∗and 𝑦F
′  while the curve with triangle dots indicates real LCA values.  

 

The deviation graphs were obtained by the following procedures:  

 

Firstly, obtain the polynomial approximation equations:   

The polynomial approximation is obtained by curve fitting of ∗, 𝑦𝐹
′  pairs for several field angles, 

with ∗ at each angle calculated by  
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                               (4.15) 

The number of ∗, 𝑦𝐹
′   pairs was 21, which was determined by the number of real LCA values 

output of the optical simulation tool. Although curve fitting on more sample data will definitely 

increase accuracy, the number of output cannot be modified. 

 

Here real LCA value Δ𝑦𝐹𝐶_𝑟𝑒𝑎𝑙
′  and Δ𝑦𝐹𝑑_𝑟𝑒𝑎𝑙

′  is obtained by real ray tracing of F, d and C line 

light beams’ chief rays and then measuring their displacements on the image plane. The  𝑘1 and 𝑘2 

can be calculated using equation (4.7) and (4.8).  

For example, Δ𝑦𝐹𝐶_𝑟𝑒𝑎𝑙
′  and Δ𝑦𝐹𝑑_𝑟𝑒𝑎𝑙

′  at the maximum field angle 48 degree are -0.03106mm and 

-0.021898mm, respectively. And   
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Therefore ∗ at this field angle can be calculated by 
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Note that theoretically ∗ should be an invariant at a specific field angle no matter it is calculated 

from real LCA between F and C line light beams or LCA between F and d line light beams. The 

different values of ∗  shown here, however, indicates there exist small errors for the realistic 

situation. 

 

Then the first and third order polynomial equations between ∗ and 𝑦𝐹
′  can be obtained by curve 

fitting:  

  For first order case between F line and C line light beams 

                               
* '0.4006 Fh y                                  (4.16) 

For first order case between F line and d line light beams 

                               
* '0.4023 Fh y                                  (4.17) 

For third order case between F line and C line light beams  

                       
* ' 3 ' 2 '0.01587 0.000464 0.3352F F Fh y y y  

                (4.18) 

For third order case between F line and d line light beams 

                      
* ' 3 ' 2 '0.01584 0.000547 0.3368F F Fh y y y  

                (4.19) 

Secondly, substitute the polynomial approximation equations (4.16) to (4.19) into (4.7) and (4.8) to 

obtain equations (4.20) to (4.23), which represent LCA for first and third order cases, hence the blue 

curves can be obtained:  

 

For the first order case: 

                   
' * '

1 0.0112FC Fy k h y                                  (4.20) 
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' * '

2 0.0079Fd Fy k h y                                  (4.21) 

For the third order case: 

                
' * 4 '3 5 '2 '

1 4.4239 10 1.2934 10 0.0093FC F F Fy k h y y y                            (4.22) 
' * 4 '3 5 '2 '

2 3.1013 10 1.071 10 0.0066Fd F F Fy k h y y y                            (4.23) 

Finally, read the real LCA values of the 21 sample points from the output of the optical simulation 

tool and then connect them together to obtain the red curve. By doing this, the deviations between 

first order, third order values and real LCA values at all field angles can be compared visually.  

 

Quantitatively, the deviations can then be calculated by 

                       
' '

_FC FC FC realDev y y  
                             (4.24) 

                      
' '

_Fd Fd Fd realDev y y  
                             (4.25) 

Note that the optical simulation tool can only output 21 sample data. Therefore we could only 

obtain 21 sets of deviation values by the above equations.  

 

By examining the deviation graphs shown in Fig.4.4, we know that visually the third order curve is 

much closer to real LCA curve compared with first order curve. It overlapped with the real LCA curve. 

The first order curve, however, shows that the calculated LCA values are greater (in absolute value) 

than real LCA values when the real image height is less than 2.03mm (field angle 38.4 degree), which 

indicates over-correction. When the real image height becomes greater than 2.03mm, the calculated 

LCA values are smaller (in absolute value) than real LCA values, which results in under-correction. 

Quantitatively, we calculated and compared the maximum deviations for each graph: The maximum 

deviations of the first order case (Fig.4.4 (a) and (b)) are 0.0027mm and 0.0019mm, which occurred 

at the position where 𝑦𝐹
′  is 2.540mm (field angle 48 degree). The maximum deviation of the third 

order case (Fig.4.4 (c) and (d)) are 2.511× 10−6mm and 2.99× 10−6 mm, which occurred at the 

position where 𝑦𝐹
′  is 1.385mm and 2.157mm (field angle 26.4 and 40.8 degree), respectively. This 

indicates that the maximum deviation of the third order case is far smaller than that of the first order 

case, which means the LCA values calculated by third order approximation is far more accurate than 

first order approximation. It is also not necessary to use higher order polynomial approximations 

because the deviation of the third order case is already small enough. 

 

Then the corresponding LCA corrected resulting images for first and third order cases and also the 

original image and the image before LCA correction are given below from Fig.4.5 to Fig.4.13 for 

comparison:  

 

  
(a) Original    (b) before LCA correction 

Fig.4.5  Image comparison for test image  

 

In Fig.4.5 (b), the image before LCA correction is obtained by 2D imaging of the original image 

through the designed single lens. It includes all optical aberrations.  

 

As the effect of color aberration in the overall view of the image cannot be seen clearly, we zoomed 
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in several regions of Fig.4.5 (b), which are marked with region numbers. 8 regions are selected for the 

test image, where 4 of them are low field regions and the other 4 are high field regions. The 

comparison of zoom-in images are shown in Fig.4.6 to Fig.4.13.  

 

 

 
Image before LCA correction       Corrected by first order       Corrected by third order 

Fig.4.6  Image comparison before and after LCA correction for region 1 

 

 
Image before LCA correction     Corrected by first order          Corrected by third order 

Fig.4.7  Image comparison before and after LCA correction for region 2 

 

 
Image before LCA correction     Corrected by first order        Corrected by third order 

Fig.4.8  Image comparison before and after LCA correction for region 3 
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Image before LCA correction      Corrected by first order        Corrected by third order 

Fig.4.9  Image comparison before and after LCA correction for region 4 

 
Image before LCA correction      Corrected by first order        Corrected by third order 

Fig.4.10  Image comparison before and after LCA correction for region 5 

 
Image before LCA correction     Corrected by first order       Corrected by third order 

Fig.4.11  Image comparison before and after LCA correction for region 6 

 
Image before LCA correction     Corrected by first order        Corrected by third order 

Fig.4.12  Image comparison before and after LCA correction for region 7 
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Image before LCA correction     Corrected by first order        Corrected by third order 

Fig.4.13  Image comparison before and after LCA correction for region 8 

 
In Fig.4.6 to Fig.4.13, the chromatic aberration is visible around the borders of the white and black 

area (We marked it by arrows in the image before LCA correction. The corrected images are not 

marked).  For images before LCA correction, blue color blur can be seen on the inner borders but 

cannot be seen on the outer borders. For the corrected image of the first order case, the resulting 

images all appear to be over-correction: the inner border is dark green and the outer border is light 

purple. For the corrected image of the third order case, the chromatic aberration of blue is minimized 

to some extent: blue blur is dimmed on the inner borders and also appeared dimmed on the outer 

borders (low field regions are more obvious than high field regions), the reason why it cannot be 

eliminated thoroughly is that the differences of blur between different colors on the image plane 

caused by axial chromatic aberration (ACA) and other monochromatic aberrations such as field 

curvature affected the chromatic aberration correction results even if LCA is eliminated. This will be 

verified by the following real ray tracing shown in Fig.4.15 and Fig.4.16, and the quantitative RGB 

blur charts  (in our case, we regard C,d and F line light beams as R,G,B light beams, respectively) 

shown in Fig.4.17 and quantitative blur size listed in Tab.4.1. 

 

Before giving the real ray tracing result and the RGB blur charts, a simple case that the LCA is only 

affected by ACA should be briefly described to help understand more complicated case. Theoretically, 

LCA that affected only by ACA (without other monochromatic optical aberrations) can be illustrated 

in Fig.4.14. 

 

 
Fig.4.14 LCA affected only by ACA (Only R and B light beams are drawn) 

 

It can be observed that when image plane is placed on foci of red (R) beams, the image plane will 

show sharp red image but blurred blue image. As the LCA correction only modify the spatial 

displacement between R,G and B plane, the blue blur will certainly visible even if the LCA is 

corrected. 

 

Nevertheless, the realist situation is not that simple. Fig.4.15 gives the real ray tracing for our single 

lens system for four different field angles: 0, 19.2, 33.6 and 48 degree. The rays being traced are chief 
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rays, upper meridional rays and the lower meridional rays of RGB light beams at the four angles. 

Fig.4.16 shows the zoom-in image of Fig.4.15 at the maximum field angle 48 degree to illustrate the 

differences of blur between different colors on image plane.  

 

 
Fig.4.15 Real ray tracing at different field angles 

 

 
Fig.4.16  Zoom in of Fig.4.15 at the maximum field angle 

 

Quantitatively, we give the RGB blur (in diameter of the blur circle) charts before and after LCA 

correction at three field angles in Fig.4.17 from the range 0 to 48 degree and also measured the blur 

size, which is listed in Tab.4.1. 

 
(a) RGB blur before LCA correction at 0 degree 
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(b) RGB blur after LCA correction at 0 degree 

 
(c) RGB blur before LCA correction at 26.4 degree 

        
(d) RGB blur after LCA correction at 26.4 degree 

     
(e) RGB blur before LCA correction at 48 degree 
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(f) RGB blur after LCA correction at 48 degree 

Fig.4.17  RGB blur chart before and after LCA correction 

 

Tab. 4.1 Blur size for R-blur, G-blur and B-blur of three different field angles 

   R-blur(mm) G-blur(mm) B-blur(mm) 

0 degree   0.0132   0.0204   0.0382 

26.4 degree   0.1783   0.1861   0.2051 

48 degree   0.6424   0.6504   0.6699 

 

In Fig.4.17, R-blur, G-blur and B-blur are measured between image points of upper and lower 

meridional rays on the image plane for each field angles. Note that the lower meridional ray is higher 

than upper meridional ray on the image plane because the foci are prior to the image plane, just as 

shown in Fig.4.15.  

It is obvious from Fig.4.15 that the blur caused by field curvature greatly surpass that caused by 

ACA: the foci of low field angle light beams are closer to the image plane while the foci of high field 

angle light beams are far from the image plane. This forms more complicated blurring on the image 

plane. Actually, other optical aberrations like coma, astigmatism all have contribution to the blurring 

on image plane. In other words, the blurring on the image plane could be considered as a combination 

of blurring effect contributed by all blur-forming aberrations.  

 

According to Fig.4.17 and Tab.4.1, the blur size for R-blur, G-blur and B-blur at a specific field 

angle are different as well. B-blur is always greater than R-blur and G-blur for the three field angles. 

The difference of blur size between G-blur and R-blur for 0, 26.4 and 48 degree are 0.0072 mm, 

0.0078mm and 0.0080mm, respectively. While the difference of blur size between B-blur and G-blur 

for 0, 26.4 and 48 degree are 0.0178mm, 0.0190 mm and 0.0195 mm, respectively. This indicates that 

the difference between B-blur and G-blur is more than two times the difference between G-blur and 

R-blur. Therefore, the B-blur is easier to be visible. Although we only showed three charts for three 

different angles, we can indicate by drawing RGB blur charts that B-blur is always greater than the 

other two blurs and the difference between B-blur and G-blur is always larger than that between 

G-blur and R-blur for all field angles. According to Fig.4.17, the position of B-blur center before LCA 

correction is lower than G-blur and R-blur center for 26.4 and 48 degree, which explains why blue 

blur can be seen on the inner borders but cannot be seen on the outer borders for images before LCA 

correction in Fig.4.6 to Fig.4.13. The position of B-blur center after LCA correction has almost been 

calibrated with G-blur and R-blur center but apparently B-blur is longer than G-blur and R-blur on 

both sides and the difference between B-blur and G-blur is more than two times the difference 

between G-blur and R-blur. That explains why the blue blur is still visible and appeared dimmed on 

both the inner borders and outer borders even if LCA is corrected in corrected images of third order 

case in Fig.4.6 to Fig.4.13.   
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Therefore, we can draw a conclusion that LCA correction cannot be eliminated thoroughly if a 

deblurring process prior to it is not carried out.  

 

In conclusion, we have proved that LCA in Fig.4.5 (b) (which is formed by 2D imaging of the 

original image Fig.4.5 (a) through the designed single lens) can be successfully corrected, though 

there is a defect caused by blur.  

 

4.4 Conclusion 

In this chapter, improved first order lateral chromatic aberration equation is introduced to deal with 

lateral chromatic aberration for high field angle single lens. The improved equations use polynomial 

equation to replace the corresponding term of traditional first order equation in order to make it 

applicable to high field angles. Simulation results indicate the superiority of the proposed improved 

equations using higher order polynomial approximation compared to lower order case. Maximum 

deviation 2.511 × 10−6mm from the real LCA values between Fraunhofer F line (486.1nm light 

beams) and C line ( 656.2 nm light beams) compared to 0.0027mm by using first order 

approximation and maximum deviation 2.99 × 10−6mm from the real LCA values between F line 

and d line (587.6nm light beams) compared to 0.0019mm by using first order approximation. 

Visually comparison showed that the third order polynomial approximation yields the most 

satisfactory corrected images compared to first order approximation. However, the lateral chromatic 

aberration correction results are influenced by blurring caused by all blur-forming optical aberrations 

such as axial chromatic aberration and field curvature. This indicates that restoration (also is known as 

deblurring) should be carried out prior to the correction of lateral chromatic aberration. 
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Chapter 5 Blur restoration for single lens 
 

 

5.1 Introduction  

This chapter is devoted to the blur restoration technique for spherical single lens system. 

Restoration, also known as deblurring, is a historical problem that has been studied fiercely since 

decades ago. Not like geometrically distortion or lateral chromatic aberration, the blur effect is caused 

by inability of the imaging system to focus different objects on an image plane at the same time or 

relative motion between camera and object when the picture is being taken. A typical example of the 

former one is defocus: an object near the camera (e.g. people or animal) is sharp and clear while an 

object far from the camera (e.g. mountain) is blurred. A special case of defocus is radial blur, which is 

caused by inherent defect of the imaging system such as a single lens. This kind of lens forms sharp 

regions around the image center but blurred regions when the distance from image plane center 

increases. Typical examples of the latter type of blur are linear motion blur and rotational motion blur 

when people move their cameras parallel to the object as they are taking a picture, and another kind of 

radial blur (because of relative motion) that is occurred when the camera approaches the object at a 

high speed, and the combination of both parallel and vertical motion. It is well known that 

mathematically the blur can be simulated by convolving an original aberration-free image with a Point 

Spread Function (PSF). The inverse process, however, is not that simple. Although it is possible to 

deblur an image by inverse filters, the deblurred image will be visually unpleasing (because of noise 

and artifact) if the PSF matrix is not well-regularized or the boundary effect is not eliminated. On the 

other hand, it is easy to carry out deblurring when both the PSF and blurred image are known to us. 

For deblurring filters such as wiener filter, Lucy-Richardson filter etc., all PSF is known. However, 

for most of cases, PSF is unknown. Therefore the blind deconvolution technique was born that 

deblurs an image by giving an initial guess of the PSF and then adjusting the parameters several times 

until satisfactory result image is obtained.  

 

In this chapter, a deblurring method to deal with radially variant blurred image created by inherent 

optical defect of a single lens system will be introduced. Researchers have already studied one kind of 

radial blur caused by vertical motion between camera and object [5-1] but few have studied on the 

other kind of radial blur for single lens system. In a Cartesian coordinate system, radially variant blur 

changes PSF at every pixel position (Fig.5.1 shows the detail, even if the PSFs on some Cartesian 

pixels have same size and take the same shape, the direction will certainly change), which indicates a 

Spatially Variant PSF(SVPSF) for everywhere. However, in a polar coordinate system, radially 

variant blur only changes the PSFs at polar pixels that have different radial distance to the image 

center. PSFs at polar pixels that have same radial distance to the polar image center can be seen as 

invariant, that is, they possess same shape, size and direction (Refer to Fig.5.1). PSFs for the whole 

image then become radially variant but rotationally invariant. The locally invariant PSF can be put 

into a BTTB (Block Toeplitzs with Toeplitz Blocks) matrix and the deblurring process becomes a 

linear mathematical system model [5-2]…[5-10]. The spatially variant PSF, however, does not have 

this property. This reason motivates us to deblur the image using polar coordinate system rather than 

Cartesian coordinate system. 

 

In Fig.5.1 (a) and (b), the three PSFs are applied to pixels that have same distance to the image 

center. In a Cartesian coordinate system shown in Fig.5.1 (a), they possess the same size and shape 

but the direction is different. In a polar coordinate system shown in Fig.5.1 (b), however, they possess 

the same size, shape and direction. The intersection points in Fig.5.1 (a) and (b) represent Cartesian 

pixels and polar pixels, respectively. It is easy to find that the PSFs are represented by different pixels 
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in (a) but same pixels in (b), which indicates that PSFs in (a) are spatially variant and PSFs in (b) are 

spatially invariant. For pixels that have different distance to image center, both Cartesian PSF and 

polar PSF become spatially variant. 
 

 

(a) PSFs in Cartesian coordinate system 
 

 

(b) PSFs in Polar coordinate system 

Fig.5.1  PSF in Cartesian coordinate system and polar coordinate system for a radially blurred 

image 

 

5.2 Comparison between Wiener Filter and filter used in this research 

A large number of filters have been proposed to solve the deblurring problem [5-11], [5-12]. 

Generally, there are two categories of filters: linear and nonlinear filters. The former includes 

generalized inverse filter, constrained least-squares filter, parametric Wiener filter, geometrical mean 

filters, maximum entropy filter and pseudo-inverse filter. The latter, however, is not popular compared 

to the former because it requires costly computational procedure. Additionally, all nonlinear filters 

employ the iterative algorithm [5-12]. The detailed introduction of this category can be found in 

Chapter 9 of [5-11] so that we leave this part to readers who are interested in it. 

Among all the linear filters, the most famous is Wiener Filter, whose general matrix form 

expression is as follows [5-11]:  

       Wiener Filter = (,𝐻-∗𝑡,𝐻- + ,𝜙𝑓-
−1,𝜙𝑛-)

−1
,𝐻-∗𝑡        (5.1) 

where [𝐻] represents matrix of the point spread function(PSF) and ,𝜙𝑓-, ,𝜙𝑛- are the signal and 

noise covariance matrices, respectively. The notation “*t” indicates conjugate transpose.  

It should be noted that Wiener filter is also a constrained least-squares filter, whose general form is  

                                                       
(,𝐻-∗𝑡,𝐻- + 𝛾,𝑄-∗𝑡,𝑄-)−1,𝐻-∗𝑡                          (5.2) 

where 𝛾 is a reciprocal Lagrangian multiplier and [Q] indicates linear operator. For Wiener filter, 

𝛾 = 1 and [Q]=,𝜙𝑓-
−1/2,𝜙𝑛-

1/2. 

The deblurring in this research used another type of constrained least-squares filter, which is simple 

to be implemented. It defines the linear operator as an identity matrix, that is [Q]=[ I ] so that the filter 
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becomes 

           Deblurring filter in this research = (,𝐻-∗𝑡,𝐻- + 𝛾,𝐼-)−1,𝐻-∗𝑡            (5.3) 

This expression is also called Tikhonov Regularization, which is used to avoid singularity or 

ill-conditioning of the PSF matrix. In the definition of Tikhonov Regularization, 𝛾  is the 

regularization parameter and [Q] is the regularization operator.  

 

 

5.3 Methods 

   5.3.1 Radially variant PSFs 

In this section, the radially variant PSF will be introduced. The radially variant PSF is formed by 

the single lens imaging system, illustrated in Fig.5.2. 

 

 

Fig.5.2 Single lens imaging system 

Because of single lens property, stronger optical aberration will occur at high field angles than low 

field angles. For example, as shown in Fig.5.2, when field curvature (the foci deviates more and more 

from the image plane as the field angle increases, forming a curved shape) becomes stronger and 

stronger as the field angle increases, strong blur occur at high field in the resulting image. As a result, 

a normal image will become a visually blurred image after the single lens system. Fig.5.3 shows an 

original gray scale image and the resulting image created by the designed single lens imaging system 

(highest field angle is 21 degree).  
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(a) A visually normal image        (b) resulting image 

Fig.5.3  An original image and the resulting distorted and blurred image created by the single lens 

imaging system 

From Fig.5.3 (b) we noticed that the four corners (high field angle) in the resulting image blurred 

strongly, whereas the central part is almost sharp. This attributes to the fact that the PSF varies as the 

field angle varies. We have examined some sample PSFs of our single lens system, shown in Fig.5.4.  

 

Fig.5.4 Radially variant PSF (15 sample PSFs in both horizontal and vertical directions.) 

 

The PSFs shown in Fig. 5.4 only have 15 samples along horizontal and vertical directions. In the 

real imaging process, the original image not only convolves with sample PSFs but also a lot of PSFs 

that are in between sample PSFs. Those PSFs between the sample PSFs are interpolated.  

 

5.3.2  Image conversion between Cartesian coordinate system and polar coordinate system 

Because of the characteristic of the radially variant PSF, image deblurring can be much easier 

carried out on polar coordinate system than Cartesian coordinate system.  

In this section, the algorithm to convert image from Cartesian coordinate system to polar coordinate 

system and the inverse conversion will be introduced.  

The Cartesian coordinate system is illustrated in Fig.5.5, where each node is considered as one 

Cartesian pixel. 
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Fig.5.5  Cartesian coordinate system 

 

In Fig.5.5, 𝑔𝑐𝑖,𝑗 represents a Cartesian pixel of the blurred and distorted image, i,j is the pixel 

index. 

The origin of the Cartesian coordinate system is located at the top-left corner, and its coordinate is 

(1,1). (Note that unlike other coordinate system that has (0,0) origin, the origin in our research is (1,1) 

because the pixel index should be positive integers for digital image.) In addition, the pixel index is in 

matrix index order as well, by which the 2D digital image can be easily transferred to a matrix form: 

(

𝑔𝑐1,1 ⋯ 𝑔𝑐1,n
⋮ ⋱ ⋮

𝑔𝑐m,1 ⋯ 𝑔𝑐m,n
) 

Similarly, the polar coordinate system is illustrated in Fig.5.6, where each node is considered as one 

polar pixel. (Only 4 nodes are drawn in Fig.5.6 for simplicity.) 

 

Fig.5.6  Polar coordinate system 
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In Fig.5.6, 𝑔𝑝𝑟,𝜃 indicates a polar pixel of the blurred and distorted image, r,𝜃 is the pixel index. 

Both 𝑟 and 𝜃 should be positive integers. Therefore, the origin of the polar coordinate system is also 

(1,1). The index r increases radially from the polar coordinate system center. The index 𝜃 increases 

clockwise from 0 to 360 degree. The maximum 𝜃 is determined by the number of equal parts that the 

whole circle (360 degree) is divided. In Fig.5.6, the whole circle is divided into 16 equal parts. 

Therefore, the maximum 𝜃 is 16. The equation for degree and index conversion is  

No.of equal parts degrees
1

360



   

For example, 0 degree corresponds to 𝜃 = 1, 135 degree corresponds to 𝜃 = 7 , etc. The indices 

of the polar coordinate system can also be transferred to matrix form: 

(

𝑔𝑝1,1 ⋯ 𝑔𝑝1,𝜉
⋮ ⋱ ⋮

𝑔𝑝𝜌,1 ⋯ 𝑔𝑝𝜌,𝜉
) 

In this matrix, each row represents polar pixels that have same r. And each column represents polar 

pixels that have same 𝜃. It should be emphasized that all polar pixels in the first row of the matrix 

are positioned on the polar coordinate grid center. Therefore, there are totally 𝜉 pixels on the center, 

and the pixel value are equal to the origin of the polar coordinate system: 𝑔𝑝1,1 = 𝑔𝑝1,2 = ⋯ =
𝑔𝑝1,𝜉.  

To convert Cartesian coordinate system to polar coordinate system, the two coordinate systems 

should be overlapped with each other. The Cartesian coordinate system center is also the polar 

coordinate system center. For simplicity, we give a 4×4 resolution image to introduce the coordinate 

conversion algorithm.  

 

Fig.5.7 Cartesian coordinate system and polar coordinate system conversion 

Firstly, the equations that convert Cartesian coordinate system to polar coordinate system are taking 

the following form: 

                         
2 2( ) ( ) 1c cr i i j j    

                         (5.4) 

                          

arctan 1
360

c

c

i iq

j j



 


                             (5.5) 
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where 𝑖𝑐, 𝑗𝑐 indicate image center of the Cartesian coordinate system and q is the number of equal 

parts that the whole circle (360 degree) of the polar coordinate system is divided. Note that the indices 

of the Cartesian coordinate system center of the 4×4 image are (2, 2) but not (2.5, 2.5) because the 

index should be positive integers.  

The rules to build a polar coordinate system on a Cartesian coordinate system are that the polar 

coordinate system should not smaller than Cartesian coordinate system in size. It should encircle the 

whole Cartesian coordinate system. This can be done by obtaining maximum r from equation (5.4) by 

substituting maximum value of the index i and j and round off to the nearest larger integer. For 

example, in Fig.5.7, 𝑖max = 4, 𝑗max = 4 and 𝑖c = 2, 𝑗c = 2 therefore, 𝑟max=3.8284≈ 4.  

The determination of 𝜃max or q (number of equal parts) is: 

1) 𝜃max equals to 𝑞. 𝑞 should be a number that can be divided exactly by 4. This is convenient 

because the imported PSFs from optical design software are generated for the 270 radial line. If 𝑞 

does not satisfy this condition, there will be no radial line that the 270 degree PSFs can be applied to. 

Therefore a transfer from 270 degree PSFs to PSFs of other angles is necessary, which is an 

undesirable and unnecessary task. 

2) Within the Cartesian coordinate system region, there should be at least one polar pixel 

surrounded by four Cartesian pixels, especially when 𝑟 reaches high value. 

Note that 𝜃max cannot be calculated directly from (5.5) by substituting the Cartesian pixel (i,j) that 

is located in the upper half polar circle and near the polar pixel (𝑟𝑚𝑎𝑥, 1) into (5.5). For example, in 

Fig.5.7, when the polar coordinate grid is divided finer in the direction of 𝜃, (e.g. q=32), substituting 

Cartesian pixel (1,4) will result in 𝜃 = 31. 

When 𝑟𝑚𝑎𝑥 and 𝜃𝑚𝑎𝑥 are determined, the polar coordinate system can be built. The next step is to 

obtain the polar pixel value. This can be done by interpolating from the surrounded Cartesian pixels 

(Refer to Fig.5.8). Before carrying out the interpolation, the inverse conversion (polar coordinate 

system to Cartesian coordinate system) is necessary because the interpolation process needs Cartesian 

pixel indices. The equations of the inverse conversion can be derived directly from (5.4) and (5.5): 

                           

360 ( 1)
( 1) sin ci r i

q

 
   

                     (5.6) 

                           

360 ( 1)
( 1) cos cj r j

q

 
   

                    (5.7) 

In equation (5.6) and (5.7), each polar pixel index (r,𝜃) is integer and the obtained Cartesian pixel 

index (i,j) is decimal. Then each decimal Cartesian pixel value is obtained by bilinear interpolation 

from the surrounding 4 integer Cartesian pixels. Since the decimal Cartesian pixel is the same point as 

the integer polar pixel, the pixel value is same as well. 
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Fig.5.8 Obtain the polar pixel value by bilinear interpolation from the surrounded four integer 

Cartesian pixels 

 

On the other hand, conversion from Cartesian image to polar image will create an extra region that 

does not belong to the Cartesian image. Fig.5.9 and Fig.5.10 show some blurred Cartesian images 

created by the designed single lens imaging system and the panorama of the corresponding blurred 

polar images. The polar pixels of the blurred polar image that are located outside Cartesian image 

region (we call it exterior Cartesian image region, hence there also exists interior Cartesian image 

region) has to be considered too. In some cases, these pixels’ value cannot be treated as zero. When 

the transition between interior and exterior original aberration-free Cartesian image region involves an 

obvious sharp intensity drop, the exterior region of the blurred polar image should not be considered 

zeros, otherwise it will lose some pixel information so that not accurately represent the actual polar 

blurred image. This problem will be further explained in Section 5.4.  

 

Blurred Cartesian image 

 

Panorama of the blurred polar image 

Fig. 5.9 Blurred Cartesian image and panoramic blurred polar image 



Chapter 5 Blur restoration for single lens 

88 

 

 

 

Blurred Cartesian image 

 

Panorama of the blurred polar image 

Fig.5.10 Blurred Cartesian image and panoramic blurred polar image 

 

In Fig.5.9, the edges that connect exterior Cartesian image region and interior Cartesian image 

region have sharp pixel intensity drop. However, Fig.5.10 does not show sharp intensity drop on the 

edges. In this case, the exterior Cartesian image region may be treated as zeros. We also marked four 

corners of the Cartesian image by numbers and corresponding positions in the panoramic polar 

images in Fig.5.9 and Fig.5.10.  

It should be mentioned that at the final step of the deblurring process, the bilinear interpolation is 

necessary again in order to obtain Cartesian pixel values from the surrounded 4 integer polar pixels. 

This is similar to obtaining the polar pixel values from integer Cartesian pixels. 

 

5.3.3 PSF conversion between Cartesian coordinate system and polar coordinate system 

As is mentioned in Section 5.1 and 5.3.1, the PSF is radially variant but rotationally invariant in the 

polar coordinate system, therefore, it is easy to implement image deblurring on polar coordinate 

system. This necessitates not only the blurred image but also PSF in polar coordinate grid. In this 

section, PSF conversion from Cartesian coordinate system to polar coordinate system and the inverse 

conversion will be introduced. 
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The following figure gives two kinds of PSF for PSF conversion between Cartesian coordinate 

system and polar coordinate system:  

 

(a) The first kind of PSF 

           

(b) The second kind of PSF 

Fig.5.11 Two kinds of PSF for PSF conversion between Cartesian coordinate system and polar 

coordinate system 

  

In Fig.5.11, the bolded square area represents Cartesian PSF and the bolded sectorial or circled area 

represents polar PSF. For the first kind: Image center is located outside Cartesian PSF or on the border 

of Cartesian PSF. As to the second kind: Image center is located inside Cartesian PSF. The rules to 

convert PSF from Cartesian coordinate to polar coordinate are as follows: The converted polar PSF 

should be on the same polar coordinate system as the polar image. The size and position of the polar 

PSF is determined by Cartesian PSF, the polar PSF should encircle the whole Cartesian PSF. The 

origin of the polar PSF is not necessarily on the image center (unless it is the second kind of PSF) and 

also not necessarily on Cartesian PSF center (unless Cartesian PSF center overlap with the image 

center). 

The PSF conversion from Cartesian coordinate system to polar coordinate system can be achieved 

by equation (5.8) and (5.9).  
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' ' ' 2 ' ' 2 '

psfc psfc c psfc psfc c psfo psfo( ) ( ) 1r i i i i j j j j r r          
                       (5.8) 

' '

psfc psfc c' '

psfo psfo' '

psfc psfc c

arctan 1
360

i i i iq

j j j j
  

  
   

  
                      (5.9) 

The dashed index indicates PSF coordinate system that is shifted from the image coordinate system 

(Fig.5.11).  

The meaning of each notation is as follows: 

𝑟′, 𝜃′: polar image index on PSF coordinate system 

𝑖′, 𝑗′: Cartesian image index on PSF coordinate system 

𝑟psfo, 𝜃psfo: index of polar PSF origin on image coordinate system 

𝑟psfo
′ , 𝜃psfo

′ : index of polar PSF origin on PSF coordinate system 

 𝑖psfc, 𝑗psfc: index of Cartesian PSF center on image coordinate system  

𝑖psfc
′ , 𝑗psfc

′ : index of Cartesian PSF center on PSF coordinate system  

       𝑟o, 𝜃o: index of polar image origin on image coordinate system 

  𝑖c, 𝑗c:  index of Cartesian image center on image coordinate system 

 

Equation (5.8) and (5.9) can be derived by the following two steps: 

Step 1: Transfer the image coordinate system to PSF coordinate system 

Suppose there is a Cartesian pixel (i,j) in image coordinate system, its corresponding Cartesian 

index on PSF coordinate system is 𝑖′, 𝑗′:  

According to Fig.5.11, we have 

    
' '

psfc psfc( ) ( )c ci i i i i i       

                          
' '

psfc psfci i i i  
                                 (5.10) 

      
' '

psfc psfc( ) ( )c cj j j j j j       

                          
' '

psfc psfcj j j j  
                                (5.11) 

Similarly, suppose there is a polar pixel (r, 𝜃) in image coordinate system, its corresponding polar 

index on PSF coordinate system is 𝑟′, 𝜃′: 

Then from Fig.5.11 we have  

     
' '

psfo psfo( ) ( )o or r r r r r     
 

                         
' '

psfo psfor r r r  
                                 (5.12) 

       
' '

psfo psfo( ) ( )o o          
  

                         
' '

psfo psfo     
                                (5.13) 
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Step 2: Substitute (5.4), (5.5), (5.10) and (5.11) into (5.12) and (5.13) 

' '

psfo psfor r r r  
 

2 2 '

psfo psfo( ) ( ) 1c ci i j j r r        

' ' 2 ' ' 2 '

psfc psfc psfc psfc psfo psfo( ) ( ) 1c ci i i i j j j j r r            

        

' '

psfo psfo       

'

psfo psfoarctan 1
360

c

c

i iq

j j
 


   


 

' '

psfc psfc '

psfo psfo' '

psfc psfc

arctan 1
360

c

c

i i i iq

j j j j
 

  
   

  
 

which are exactly equation (5.8) and (5.9). 

When 𝑟′, 𝜃′ are obtained, the next step is to obtain the polar PSF pixel values by interpolation 

from Cartesian PSF pixels. This is similar to interpolate polar image pixels from Cartesian image 

pixels so we neglect detailed description. The inverse conversion from polar coordinate system to 

Cartesian coordinate system is necessary before the interpolation, which is expressed in (5.14) and 

(5.15). 

           

' '

psfo psfo' ' ' '

psfo psfo c psfc psfc

360( 1 )
( 1 ) sini r r r i i i

q

    
       

         (5.14)                                              

       

' '

psfo psfo' ' ' '

psfo psfo c psfc psfc

360( 1 )
( 1 ) cosj r r r j j j

q

    
       

         (5.15) 

 

5.3.4 Comparison between traditional BTTB structure and the special BTCB structure of 

PSF matrix 

Before introducing image deblurring, it is necessary to introduce image blurring, which is the 

convolution between PSF and the original image. The matrix form of blurring an image without 

considering noise can be expressed in (5.16): 

                                   G T F                                 (5.16) 

In expression (5.16), T represents PSF matrix, F represents original image column vector and G is 

the blurred image column vector. For spatially invariant (SI) PSF, T is a BTTB (Block Toeplitz with 

Toeplitz Blocks) matrix. The following paragraph explains the reason why the structure is a BTTB. 

For spatially variant (SV) PSF, the BTTB structure will break. However, the SV PSF can be treated as 

locally SI PSF.  

The following figure explains convolution between PSF and the original image. 
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Fig.5.12 Convolution between PSF and the original image 

 

In Fig.5.12, each pixel of the blurred image is obtained by weighted average of pixels of the 

original image, where the weights are elements (pixels) of the PSF:  

                    

' '
psfc psfc

' '
psf psf

' '
psf psf

,,
1 1

,

,
1 1

( 1 ~ , 1 ~ )

m n

a ba i i b j j
a b

i j

QP

i j
i j

t f

g i m j n
S

S t

   
 

 



   








 

            (5.17) 

where a,b are pixel index of the original image, i,j are pixel index of the blurred image, 𝑖psf
′  , 𝑗psf

′  is 

index of the PSF. m,n and P,Q are maximum pixel index of the original, blurred image and PSF, 

respectively. 𝑖psfc
′  and 𝑗psfc  

′ represent center index of the PSF. In the numerator of equation (5.17), t 

serves as weight for each pixel of the original image, S means summation of all pixels of the PSF. 

Expanding equation (5.17) :  

       
' ' ' ' ' '
psfc psfc psfc psfc psfc psfc1 ,1 1 ,2 ,

, 1,1 1,2 ,...
i i j j i i j j m i i n j j

i j m n

t t t
g f f f

S S S

           
                  (5.18)                                                           

We found that each 

𝑡
𝑎−𝑖+𝑖psfc

′ ,   𝑏−𝑗+𝑗psfc  
′

𝑆
 in (5.18) indicates normalization of the PSF pixel. That is, 

summation of all pixels of the normalized PSF equals to 1. 

For Gaussian shaped PSF, the PSF center element 𝑡𝑖psfc  
′ ,𝑗psfc  

′  is always the summit of the PSF. To 

obtain 𝑔𝑖,𝑗, the position of 𝑡𝑖psfc  
′ ,𝑗psfc  

′  must overlaps with 𝑓𝑖,𝑗when carrying out the convolution. 

 1) Traditional BTTB structure of spatially invariant PSF matrix  

If we express the convolution in matrix form, we have Fig.5.13 and Fig.5.14. For simplicity, the 
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PSF size in Fig.5.12 is 5×5, the maximum pixel index of the original image satisfies 𝑚 = 𝑛.  

 
Fig.5.13 Matrix form of image blurring for spatially invariant PSF 

 

 

Fig.5.14 Simplified version of Fig.5.13 

 

From Fig.5.13 and Fig.5.14 we know that row elements (pixels) of the original image are stacked to 

column vector 𝐹𝑖(i = 1~n) so that 𝐹𝑖  includes elements of the ith row of the original image. 

Similarly, 𝐺𝑖(i = 1~n)means column vector of the blurred image. 𝐺𝑖 includes elements of the ith 
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row of the blurred image. In Fig.5.13, each 𝑛 × 𝑛 block in the PSF matrix is a Toeplitz block (TB), 

which is represented by 𝑇 in Fig.5.14. The whole Toeplitz blocks in Fig.5.14 also take the form of 

Toeplitz matrix, which can be called block Toeplitz (BT). Therefore, for SI case, the PSF is a BTTB 

matrix.  

According to Fig.5.12, it is easy to observe that pixels along the image boundaries are obtained by 

convolving less PSF elements (not all PSF elements) than pixels of inner image. These pixels are 

called boundary pixels. For example, only 9 PSF elements (not 25 elements): 

𝑡33, 𝑡34,𝑡35, 𝑡43, 𝑡44,𝑡45, 𝑡53, 𝑡54,𝑡55 are available to obtain 𝑔11. This is also observable from the first 

row of PSF matrix in Fig.5.13. In general, the number of PSF elements in each Toeplitz block 𝑇 is 

controlled by the following rule: the number of PSF elements to be convolved increases as the PSF 

“enters” the image from the left boundary and stop increasing when the PSF “enters” the image 

completely along X-direction. Then it decreases again as the PSF “leaves” from the right boundary of 

the image. Take the first Toeplitz block T11 for example, the number of PSF elements along 

X-direction is 5. The number of PSF elements increases from 3 (first row of the PSF matrix) to 5(third 

row of the PSF matrix) and then stop increasing, because all 5 pixels along X-direction “entered” 

image from the left boundary. Then it decreases from the (n-1) th row. Finally, the number of PSF 

elements to be convolved in X-direction returns to 3 at the nth row of PSF matrix. Similar rule can be 

found on BT in Fig.5.14. The number of TBs increases continuously from 3(first row) to 5(third row) 

and then stop increasing, which means PSF “enters” the image from the upper boundary until it 

“enters” the image completely in Y-direction. Then the number of 𝑇 decreases from the (n-1) th row 

until the number returns to 3 at the 𝑛th row, which indicates PSF “leaves” from the lower boundary 

of the image. A property that is common for both TBs and BT is that the elements are always 

distributed around the matrix diagonal. 

 

2) BTCB structure of radially variant PSF matrix in this study 

Now, let us examine the structure of radially variant PSF matrix in this study. Fig.5.15 illustrates 

the convolution between original polar image and polar PSF. Fig.5.16 is the panorama of Fig.5.15. 

Fig.5.17 shows the simplified matrix form of image blurring for radially variant PSF. Fig.5.18 gives 

the first Toeplitz block 𝑇11 of Fig.5.17. 

 

Fig. 5.15 Convolution between original polar image and polar PSF 
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Fig. 5.16 Panorama of the convolution shown in Fig.5.15 

 

 

 

 

Fig.5.17 Simplified matrix form of image blurring for radially variant PSF 
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Fig.5.18  First Toeplitz block 𝑇11 of Fig.5.17 

 

The bolded sectorial and square areas in Fig.5.15 and Fig.5.16 represent polar PSFs. The polar 

image origin (center pixel) of Fig.5.15 corresponds to pixels of the first row in Fig.5.16. From 

Fig.5.15 and Fig.5.16 we can observe that the size of polar PSF expands as the radial distance from 

the polar image origin increases but does not change as 𝜃 increases. For radially variant PSF matrix 

shown in Fig.5.17, the number of Toeplitz Blocks (TBs) changes at each row, even if the polar PSF 

“enters” the polar image completely. When the PSF becomes larger in size as r increases, the number 

of TBs also increases from the first row, and continue increasing when PSF “enters” the image 

completely. This is different from spatially invariant PSFs. Then it decreases when PSF “leaves” from 

the lower boundary. The bigger the size of PSF at a certain radial distance from image center, the 

greater the number of TBs at certain row of PSF matrix in Fig.5.17. As pixels at different rows of the 

panoramic polar image are obtained by convolving different PSFs, the elements in TBs at different 

rows of PSF matrix shown in Fig.5.17 belong to different PSFs. However, elements in TBs at same 

row belong to same PSF. For example, elements in 𝑇11, 𝑇12 belong to PSF which is applied to the 

first row of panoramic polar image, elements in 𝑇21, 𝑇22, 𝑇23, 𝑇24 belong to PSF which is applied to 

the 2nd row of panoramic polar image, etc. As a result, the whole TBs in Fig.5.17 will not take the 

form of Toeplitz matrix any more. In other words, it is not a Block Toeplitz(BT). In this case, a 

method to treat the PSF as locally invariant (PSF is invariant at some rows of the panoramic polar 

image) is available. This approach has been studied by predecessors before, which is to divide the 

image into several regions, each region has its corresponding locally invariant PSF. This method is 

actually the piecewise approximation of real PSF. As to our polar image case, the PSF at each region 

will become a BTCB matrix (Block Toeplitz with Circulant Blocks). This is easy to observe from 

Fig.5.16 and Fig.5.18: Assume the first n (n<𝜌) rows of the panoramic polar image belong to region 1, 

whose spatially invariant PSF is shown in Fig.5.16. Allow us to name it the first region PSF. The size 

of the first region PSF is 3 ×3. Note that Fig.5.16 only shows the convolution between the first 

region PSF and the first row. The pixels at far right (𝑔𝑝𝑟,𝜉) of the panorama are neighbouring pixels 

of those at far left (𝑔𝑝𝑟,1) because the original image shown in Fig.5.15 is a polar image. Thus, 

although the shaded area of PSF at the left boundary convolves with no panoramic polar image pixels, 

it convolves with pixels at the right boundary. Therefore, the pixels of the first row of panoramic polar 

image that are convolved with the shaded area of the first region PSF correspond to element 𝑡21 at 

the top right corner of 𝑇11 matirx in Fig.5.18. Similarly, we can predict that another element 𝑡23 is 

located at the lower left corner (the shaded area is not shown in Fig.5.16). By observing matrix 

structure of Fig.5.18, we found that it is a special kind of Toeplitz matrix: Circulant matrix. As the 

elements as a whole in each TB of a spatially invariant PSF region also takes the form of circulant 
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matrix, and the whole Circulant Blocks(CB) in each region takes the form of Toeplitz matrix, we can 

call it BTCB(Block Toeplitz with Circulant Blocks) matrix.  

 

5.3.5 Deblurring of the radially variant blurred image  

The image deblurring is realized by deconvolution using polar image and polar PSFs obtained in 

5.3.2 and 5.3.3. As is mentioned before, this is a locally spatially invariant (SI) PSF problem. SI 

deblurring is a famous linear mathematical system problem that involves a BTTB (Block Toeplitz 

with Toeplitz Blocks) matrix which is the PSF and a column vector which includes the matrix 

elements of the blurred image. In our case, the locally invariant PSFs becomes a BTCB (Block 

Toeplitz with Circulant Blocks) matrix because the pixels at the far left of the panoramaic polar image 

are neighboring pixels of those at the far right. During the deblurring process, fast algorithm using 

FFT and component-wise multiplication for padded BCCB (Block Circulant with Circulant Blocks) 

matrix is used to simplify the calculation. In addition, the deblurring is also an ill-posed problem and 

the Tikhonov Regularization is to be used to deal with it. The deblurring is realized using constrained 

least-squares method introduced in Section 5.2 and the linear operator is an identity matrix. This 

method is a non-iterative method which means the deblurring can be realized in just one step. More 

details about BTTB and BCCB, Tikhonov Regularization and constrained least-squares method can 

be found in [5-2] to [5-12]. 

Note that there are two deblurring methods implemented in this study: 1) debluring by applying 

SIPSF to sub-regions and then sewing the sub-restored regions together; 2) deblurring by applying 

SIPSF to whole image, preserving the well-restored regions and removing the unsatisfied restored 

regions, then sewing the sub-restored regions together. The difference is as follows: method 1) has to 

eliminate the boundary ringing artifact of each restored region and the ratio between bandwidth of the 

BTCB matrix and the number of CBs in BTCB matrix 𝛽/𝑛 is likely to become high if too many 

spatially invariant regions are defined, which results in poor restored image quality (The relationship 

between 𝛽/𝑛 and image quality will be discussed in Section 5.4.) The image quality restored by 

method 2) is unlikely to become poor compared to method 1) because low 𝛽/𝑛 ratio is guaranteed. 

 

5.4  Results and Discussions  

 5.4.1 Deblurring of blurred images produced by 4.5mm double convex single lens  

In this section, image deblurring simulation on blurred image produced by 4.5mm double convex 

single lens will be introduced and the results will be discussed. The radially blurred images are 

created by CODE V 2D image simulation. In this simulation, an aberration free two-dimensional 

image is regarded as the object. The optical design software: CODE V simulates the real situation 

where there is a single lens and the object and output the resulting image. The single lens imaging 

system for the simulation is illustrated in Fig.5.2. In the simulation, the objects are monochromatic 

test images generated by computer and RGB true color photographs with black background around 

the four sides of them. The total size of the object is 1024 ×1024. The maximum field angle is 21 

degree. It should be emphasized PSFs at field angles that are larger than 21 degree will results in 

inaccurate assessment of blurred image quality. We know it by a warning message of CODE V, which 

says” this system is not isoplanatic at field angles larger 21 degree. Any PSF results are of 

questionable value for assessing the image quality. The image quality for the unacceptable fields 

varies significantly over a lateral region of 12 Airy disc diameters.” Therefore the maximum field 

angle is 21 degree. 

The simulation consists of the following six steps: 

1) Input the aberration-free 2D image to CODE V and output the blurred Cartesian image. 
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2) Convert the blurred Cartesian image to polar image using the algorithm introduced in section 

5.3.2. 

3) Determine the number of spatially invariant regions for the polar image and select PSF at a 

certain field angle within each region.  

4) Convert Cartesian PSF to polar PSF for each region using algorithm introduced in section 

5.3.3, PSF pixel size has to match the image pixel size before the conversion.  

5) Deblur the radially blurred image created in step 1) by method introduced in Section 5.3.5. For 

deblurring method 1) introduced in the 2
nd

 paragraph of Section 5.3.5, region boundary 

expansion is necessary during the deconvolution in order to avoid boundary artifact. 

6) Crop the black background of the deblurred image  

Fig.5.19 shows the reason why the aberration-free image should have the black background around 

the four sides. The squared area with slash lines indicates the actual image size (without black 

background). The blurred image is created by convolving the aberration-free image and PSFs. There 

is no problem for pixels of the blurred image in the interior Cartesian image region. However, those 

located in the exterior Cartesian image region are obtained by convolving with some pixels in the 

interior Cartesian image region as shown in Fig.5.19. The influence of these pixels results in non-zero 

pixels of the blurred image in the exterior Cartesian image region. Therefore, directly convert from 

Cartesian image to polar image without a larger background will lose those non-zero pixels in the 

blurred polar image.  

 

Fig.5.19 Convolution between the aberration-free image and PSFs 

 

In step 2) and 4), the unit of PSFs and blurred image measured in CODE V is in millimeter while 

the deblurring process requires unit of the PSF and image in pixels. Therefore, a unit conversion is 

necessary before deconvolving the PSFs with the image. In addition, the PSF is also finer than the 

image so that adjusting the PSF pixel size to match the image pixel size is also necessary. The 

resolution of the PSF is 1024×1024 and size of each PSF pixel is 0.937μm. For the natural color 

photographs, we use light beams whose wavelengths range from 410nm to 700nm as the light source 

in order to represent visible light and deblur images using PSFs of the reference light beam: 587.6nm. 

The blurred image is also 1024×1024 but size of each pixel is 1.558μm. Thus the resolution of PSF in 

the blurred image is 1024 ∗ 0.937 1.558 ≈ 616⁄  pixels.  

For the polar image, we can determine 𝑟max and 𝜃max by rules discussed in Section 5.3.2. The 

maximum index of the Cartesian image is 𝑖max = 1024  and 𝑗max = 1024. The image center index 

is 𝑖c = 512  and 𝑗c = 512. According to equation (5.4), we have  

2 2

max max max( ) ( ) 1 726c cr i i j j     
 

And we determine q=3600 so that 𝜃max=3600 because this number can be divided exactly by 4 

and at least two polar pixels are surrounded by four neighboring Cartesian pixels (by examining the 

furthest pixels from the Cartesian image center, e.g. when four neighboring Cartesian pixels (1023, 
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1023); (1023,1024); (1024,1023); (1024, 1024) are selected, the two polar pixels inside them are 

(451,724) and (451,725). 

In step 3), we found that region between 14 and 21 degree  (The corresponding rows in the blurred 

polar image are 472 ≪ r ≪ 726) has no more image information but zero valued pixels because of 

the black background in the Cartesian image. Therefore, it is actually no need to deblur this region. 

The rest regions of the polar image (0 ~14 degree: 1 ≪ r ≪ 472) are segmented into four spatially 

invariant regions, and PSFs for deblurring the specific region are considered as spatially invariant. 

Tab.5.1 shows the detail of the four segmented regions and the corresponding PSFs. Note that in 

Tab.1 there is another column named “Expanded regions”, which is necessary to avoid boundary 

ringing artifact if the deblurring is implemented by applying SIPSF to sub-regions. The boundary 

ringing artifact is caused by high frequency drop off at boundary pixels where there is sharp intensity 

contrast in the image when using FFT. The padding from BTCB to BCCB equals to adding additional 

rows to the polar image and replicating the polar image (Refer to Fig.5.20). If pixels around those 

boundaries have sharp intensity drop, ringing artifact occurs near them. That is why the regions must 

be expanded. Same reason applies to the object in the image. If the object has sharp intensity drop 

compared with the background, ringing artifact will occurs when using the FFT deconvolution.  

 

Fig.5.20 Boundary ringing artifact 

Tab.5.1 Spatially Invariant field regions, their expanded regions and PSFs 

Field regions (degree) Expanded regions(degree) PSFs at which 

field angle 

(degree) 

0~3  (r1 ~r101) 0~4 (r1 ~r134) 3 

3~6  (r101 ~r202) 2~7 (r67 ~r235) 6 

6~10  (r202 ~r336) 5~11 (r168 ~r370) 9 

10~14  (r336 ~r472) 9~15 (r303 ~r506) 10 

14~21  (r472~r726)     

 

In Tab.5.1, “r” indicates row of the polar image. The PSFs in the third column were selected within 

each spatially invariant field region listed in the first column. If the deblurring is realized by applying 

SIPSF to sub-regions, the determination of appropriate PSF for each region is an important issue. 

Generally, any PSF can be selected if the field region is not large (For example, not larger than 7 

degree field angles), which means the PSF does not change dramatically. However, the larger the PSF, 

the stronger the ringing artifact will appear in the deblurred region, especially at high field regions. 

Therefore we tend to select PSF at low field angle for a high field region: e.g. PSF at 10 degree is 

selected to deblur field region 10~14 degree. 

Fig.5.21 uses a real image example to explain the deblurring method 
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Fig.5.21 Panorama of the blurred polar image and the field regions to be deblurred using polar 

PSFs 

 

Fig.5.22 to Fig.5.25 demonstrates the deblurring results for four RGB color photograph examples 

by using the deblurring method that applies SIPSF to sub-regions. 

 

(a) Original image    (b) Blurred image      (c) Deblurred using   (d) Deblurred using  

                                        4 PSFs             single PSF 

 

(e) Deblurred without   (f) Deblurred without  (g) Blurred area 1     (h)Deblurred area 1 

larger black background   boundary expansion     enlarged           enlarged 
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(i) Blurred area 2        (j) Deblurred area 2 

enlarged               enlarged 

Fig.5.22 Color photograph 1 

 

 

           (a) Original image      (b) blurred image   (c) Deblurred using 4 PSFs 

Fig.5.23 Color photograph 2 

 

(a) Original image      (b) blurred image   (c) Deblurred using 4 PSFs                

Fig.5.24 Color photograph 3 

 

          (a) Original image      (b) blurred image     (c) Deblurred using 4 PSFs 

Fig.5.25 Color photograph 4 
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Fig.5.26 to Fig.5.30 show the deblurring results for two monochromatic images and three RGB 

color photographs by using deblurring method that applies SIPSF to whole image. 

 

   

(a) Original image  (b) blurred image        (c) deblurred image 

Fig.5.26 Deblur of monochromatic image 1 

   

(a) Original image      blurred image      (c) deblurred image 

Fig.5.27 Deblur of monochromatic image 2 

 

(a) Original image     (b) blurred image    (c) deblurred image 

Fig.5.28 Deblur of color image 1 

 

(a) Original image     (b) blurred image     (c) deblurred image 

Fig.5.29 Deblur of color image 2 
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(a) Original image    (b) blurred image     (c) deblurred image 

Fig.5.30 Deblur of color image 3 

 

In Fig.5.22 to Fig.5.25, (a) shows the original image that is aberration free, (b) is the radially 

blurred image produced by the single lens system (Note that it also includes distortion and chromatic 

aberration.) and (c) shows the deblurred resulting image using four spatially invariant PSFs for four 

segmented field regions listed in Tab.5.1. In Fig.5.22, we also give the resulting images by different 

simulation conditions in order to compare with the four PSFs case. (d) shows the resulting image by 

applying single PSF (PSF at field angle 10 degree) to the whole image. Although the high field region 

deblurring is visually acceptable, the low field regions did not obtain satisfactory result: The ringing 

artifact becomes stronger around the center of the deblurred image than the far-from-center area. This 

attributes to inaccurate approximation of real radially variant PSFs at low field regions. In other words, 

the real PSFs change dramatically throughout the whole image (0~21 degree) (Refer to Fig.5.4) so 

that applying single PSF to whole image deviates too much from real PSFs. Fig.5.22(e) illustrates the 

deblurred resulting image without the black background around the four sides of the actual image, as 

is analyzed in Fig.5.19. Obviously, the low field regions are visually acceptable as expected while the 

high field regions are deteriorated by strong ringing artifact. Fig.5.22 (f) tells us the deblurred image 

without boundary expansion results in boundary ringing artifact at the upper and lower boundaries of 

each field region of the polar image. The boundary artifact is visible when the deblurred regions are 

connected together. In addition, the boundary ringing artifact around high field boundaries is stronger 

than that at the low field boundaries because of the increasing of PSF size. Fig.5.22 (g),(h),(i) and (j) 

show some enlarged blurred areas and their enlarged deblurred counterparts. Fig.5.22 (g) and (i) 

enlarge the top right corner and bottom right corner of Fig.5.22 (b), respectively. (h) and (j) give the 

deblurred image for (g) and (i). By comparing different deblurred results in Fig.5.22, one can tell that 

the deblurred image using 4 PSFs obtained visually satisfactory image than single PSF deblurring, no 

black background deblurring and no boundary expansion deblurring. In order to testify the 

effectiveness of the proposed deblurring technique, three more color photographs are simulated by 

using 4 PSFs which is shown in Fig.5.23 to Fig.5.25.  

The deblurring results by using deblurring method that applies SIPSF to whole image shown in 

Fig.5.26 to Fig.5.30 are also satisfactory. As the boundary ringing artifact no longer exists in case of 

this method, the deblurring process becomes simpler than deblurring method that applies SIPSF to 

sub-regions. It should be noted from Fig.5.22 to Fig.5.30 that deblurring of gray scale images is 

realized using PSFs of mono-wavelength (656.3nm), while the deblurring of color images is realized 

by deblurring R-plane (610nm~700nm), G-plane (510nm~600nm) and B-plane (410nm~500nm) 

respectively, and then synthesize them to an RGB color image. Therefore, selecting proper PSFs for 

each color plane is necessary.  In our simulation, we applied PSFs of uniform wavelength (587.6nm) 

to R, G and B image planes and obtained acceptable resulting image, just for simplicity. More 

accurate restoration requires PSFs that belong to three different wavelengths for R,G and B plane.  

As to deblurring method that applies to SIPSF to sub-regions, there is a question left regarding the 

number of PSFs applied to the spatially invariant field regions. How many PSFs are necessary to 
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deblur the radially blurred image? Will the deblurred images in Fig.5.22 to Fig.5.25 become better 

when more than 4 PSFs are used? Actually, this is a compromise problem between “how accurate 

does the PSF in each spatially invariant region represent real PSF” and “whether the field region is 

large or not”. As we discussed in section 5.3.5, polar PSF should be transferred to a BTTB matrix 

form (in our case it is a BTCB matrix) to make the deblurring problem a mathematically linear 

system: �̃� = 𝑇−1𝐺.  where �̃� means deblurred image vector, T is the PSF BTCB matrix whose No. 

of elements is 𝑛𝑚 × 𝑛𝑚 and 𝐺 is the blurred image vector whose No. of elements is 𝑛𝑚 × 1. 𝑛 

and 𝑚 are the number of rows and columns of the panoramic polar blurred image, respectively. The 

regularized version of the above equation is as follows: 

                             �̃� = (𝑇∗𝑇 + 𝛼𝐿∗𝐿)−1𝑇∗𝐺                        (5.19) 

where 𝛼 serves as the regularization parameter and 𝐿 is the regularization operator. “*” is the 

symbol for conjugate transpose. The above equation can be rewritten by the following equation in 

order to simplify the computation by using FFT 

                                                    
�̃�𝑒 = (𝐶𝑇

∗𝐶𝑇 + 𝛼𝐶𝐿
∗𝐶𝐿)

−1𝐶𝑇
∗𝐺𝑒                     (5.20) 

where 𝐶𝑇 is a BCCB padded from T and its No. of elements is (𝑛 + 𝛽)𝑚 × (𝑛 + 𝛽)𝑚.   𝐺e is the 

extended blurred image vector padded from 𝐺 and suppose it is an zero-padding: 𝐺e = (
𝐺

 𝐺𝑝
) = .

𝐺
0
/.  

The No. of elements of  𝐺𝑝 is then 𝛽𝑚 × 1. Here 𝛽 is known as the bandwidth of the BTCB 

matrix. The bandwidth can also be considered as the number of Circulant Blocks (CBs) to be padded 

to a BTCB in order to form a BCCB. �̃�𝑒  can be written as 

�̃�𝑒 = (
�̃�𝑒1

 𝑛𝑚×1

�̃�𝑒2
 𝛽𝑚×1

)  

where the superscript means No. of elements, Here �̃�𝑒1  approximately equals to �̃�  when a 

condition is satisfied: the bandwidth 𝛽 is relatively small compared to 𝑛. To verify this, we could 

write the BCCB matrix in the following block matrix form which includes the BTCB matrix and three 

additional block matrices 

𝐶𝑇 = (
𝑇  𝑛×𝑛 𝑇12

𝑛×𝛽

𝑇21
𝛽×𝑛

𝑇22
𝛽×𝛽

)  

Note that the superscript means No. of CBs, not the No. of matrix elements this time. For simplicity, 

𝐿 is an identity matrix that has same size as T so that we have 

𝐶𝐿 = (𝐼
 𝑛×𝑛 0

0 𝐼 𝛽×𝛽
)  

Then we have the similar derivation as introduced in [5-9] as follows: 

(𝐶𝑇
∗𝐶𝑇 + 𝛼𝐶𝐿

∗𝐶𝐿)
−1 = (

𝑀 𝑛×𝑛 𝑀12
𝑛×𝛽

𝑀21
𝛽×𝑛

𝑀22
𝛽×𝛽

) 

where 𝑀, 𝑀12, 𝑀21, 𝑀22 are also BTCBs. And  

 (𝐶𝑇
∗𝐶𝑇 + 𝛼𝐶𝐿

∗𝐶𝐿) = (
𝑇∗𝑇 + 𝑇21

∗ 𝑇21 + 𝛼𝐼 𝑇∗𝑇12 + 𝑇21
∗ 𝑇22

𝑇12
∗ 𝑇 + 𝑇22

∗ 𝑇21 𝑇12
∗ 𝑇12 + 𝑇22

∗ 𝑇22 + 𝛼𝐼
) 

Since  
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(𝐶𝑇
∗𝐶𝑇 + 𝛼𝐶𝐿

∗𝐶𝐿)
−1(𝐶𝑇

∗𝐶𝑇 + 𝛼𝐶𝐿
∗𝐶𝐿) = I 

we have 

                      

(
𝑀 𝑛×𝑛 𝑀12

𝑛×𝛽

𝑀21
𝛽×𝑛

𝑀22
𝛽×𝛽

) (
𝑇∗𝑇 + 𝑇21

∗ 𝑇21 + 𝛼𝐼 𝑇∗𝑇12 + 𝑇21
∗ 𝑇22

𝑇12
∗ 𝑇 + 𝑇22

∗ 𝑇21 𝑇12
∗ 𝑇12 + 𝑇22

∗ 𝑇22 + 𝛼𝐼
) = .

𝐼 0
0 𝐼

/   (5.21) 

by which we obtain 

                                      
𝑀(𝑇∗𝑇 + 𝑇21

∗ 𝑇21 + 𝛼𝐼) + 𝑀12(𝑇12
∗ 𝑇 + 𝑇22

∗ 𝑇21) = 𝐼          (5.22) 

The maximum rank of 𝑇21
∗  𝑇21 and the second term in (5.22) is 𝛽. If 𝛽 is relatively small 

compared to n , (5.22) approximately equals to 

𝑀(𝑇∗𝑇 + 𝛼𝐼) = 𝐼 

Therefore we have 

                               𝑀 = (𝑇∗𝑇 + 𝛼𝐼)−1                            (5.23) 

From (5.20) we know that  

�̃�𝑒 = (𝐶𝑇
∗𝐶𝑇 + 𝛼𝐶𝐿

∗𝐶𝐿)
−1𝐶𝑇

∗𝐺𝑒= 

( 𝑀
 𝑀12

𝑀21 𝑀22

)(𝑇
∗ 𝑇21

∗

𝑇12
∗ 𝑇22

∗
) .
𝐺
0
/= 

(
(𝑀𝑇∗ +𝑀12𝑇12

∗ )𝐺
(𝑀21𝑇

∗ +𝑀22𝑇12
∗ )𝐺

) 

                                                       (5.24) 

The maximum rank of 𝑀12𝑇12
∗  is also 𝛽, its No. of CBs is 𝑛 × 𝑛. So that 

                                                      
(𝑀𝑇∗ +𝑀12𝑇12

∗ )𝐺 ≈ 𝑀𝑇∗𝐺                        (5.25) 

when 𝛽 is relatively small compared to n. 

Substitute (5.23) into (5.25), we have 

𝑀𝑇∗𝐺 = (𝑇∗𝑇 + 𝛼𝐼)−1𝑇∗𝐺 = �̃� 

which means �̃�𝑒1 ≈ �̃�. 

Then we derive the simplified FFT calculation from (5.20) as follows:  

𝐶𝑇  and 𝐶𝐿  can be decomposed into 𝐶𝑇=𝐹𝑡∗⋀𝑇 𝐹𝑡  and 𝐶𝐿=𝐹𝑡∗⋀𝐿 𝐹𝑡 , where ⋀𝑇  and ⋀𝐿 

indicate diagonal matrices that include the eigenvalues of 𝐶𝑇 and 𝐶𝐿 , respectively. 𝐹𝑡 is the 

unitary discrete Fourier transform matrix, which has the characteristic of 𝐹𝑡∗=𝐹𝑡−1. Then (5.20) 

can be rewritten as 

                     (𝐶𝑇
∗𝐶𝑇 + 𝛼𝐶𝐿

∗𝐶𝐿)
−1𝐶𝑇

∗𝐺𝑒 = 𝐹𝑡∗(|Λ𝑇|
2 + 𝛼|Λ𝐿|

2)−1Λ𝑇
∗ 𝐹𝑡𝐺𝑒.       (5.26) 

Since the eigenvalue of a BCCB matrix can be obtained by FFT of its first column and the 

matrix-vector multiplication involving a BCCB matrix could be simplified to component-wise 

multiplication using only first column of BCCB matrix, we have 

    
    �̃�𝑒=𝑖𝑓𝑓𝑡 *1./(,𝑓𝑓𝑡(𝑐𝑇)-

2 + 𝛼,𝑓𝑓𝑡(𝑐𝐿)-
2).• ,𝑓𝑓𝑡(𝑐𝑇)-

∗.• 𝑓𝑓𝑡(𝐺𝑒)+     (5.27) 
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where 𝑓𝑓𝑡 and 𝑖𝑓𝑓𝑡 mean FFT and inverse FFT, respectively and 𝑐𝑇, 𝑐𝐿 are first column of 𝐶𝑇 

and 𝐶𝐿 , respectively. Here the operators “./” and “.•” indicate component-wise division and 

multiplication, respectively. 

 

By now it is clear that the simplified FFT calculation using (5.27) obtains good deblurred result 

only if 𝛽 is relatively small compared to n. This is an essential factor affecting the deblurred image 

quality. 

The relationship between 𝑛 and 𝛽 can be further examined by Fig.5.20, the No. of rows in the 

panoramic polar blurred image equals to 𝑛 and the No. of additional rows equals to 𝛽. Therefore, 

applying a single PSF to a large field region (with bigger 𝑛) will obtain a deblurred vector near �̃�. 

However, large field region also means dramatic PSF change, in which the single PSF cannot 

represent the real PSF. As a result, it becomes a compromise problem as we mentioned above. In our 

simulation, the polar blurred image was segmented into 4 regions. The No. of rows for each region 

and the No. of additional rows are listed in Tab.5.2. The ratio 𝛽/ 𝑛 is used to examine the 

relationship between 𝛽 and 𝑛. The reason why we did not segment the blurred image into more 

than 4 regions is that the ratio 𝛽/ 𝑛 will become higher for each region.  

 

Tab.5.2 No. of rows of each field region, No. of padded rows and their ratio 

Field region 𝑛 𝛽 𝛽/ n 

0°~3° 134 11 8.2% 

 3°~6° 169 15 8.9% 

  6°~10° 203 20 9.9% 

   10°~14° 204 23 11.3% 

 

 

5.4.2 Deblurring of blurred images produced by 1.0mm plano-convex single lens 

In this sub section, deblurring of blurred images produced by 1.0mm plano-convex is implemented. 

The structure and specifications of the 1.0mm lens can be found in Section 2.2 of Chapter 2. We 

evaluate the deblurring results by visual comparisons among different deblurred images using 

different number of PSFs and resolution of the polar image. Additionally, quantitative evaluation 

using Mean Square Error (MSE) is carried out for polar images whose resolutions are 726×1800. 

Similar to the simulation using 4.5mm lens, the blurred images were generated by 2D image 

simulation of CODE V. Three color images were used for evaluation, of which the Cartesian image 

resolutions are 1024×1024, but this time the semi-maximum field angle reached 48 degree compared 

to 21 degree of the 4.5mm lens simulation. In order to avoid strong boundary ringing artifact after 

image deblurring, we also put the original image into a larger black background. Simulation 

procedures are similar to that of the 4.5mm lens simulation except the fifth step, in which only the 

deblurring method 2) introduced in the second paragraph of Section 5.3.5 was used.  

 

A unit conversion from millimeter to pixel is indispensable before deblurring. It is also necessary to 

adjust the PSF pixel size to match the size of image pixel. The resolution of PSF is 1024×1024 and 

size of each PSF pixel is 0.4μm×0.4μm. Each pixel size of blurred image is 0.814μm×0.814μm. 

Therefore, the number of pixels of PSF in the blurred image is (1024 × 0.4/0.814)2 ≈ 5032.  

 

We converted blurred image from Cartesian coordinate system to polar coordinate system using 
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different polar image resolution in order to investigate the difference in visual comparisons. One 

converted polar image has 726×1800 pixels and the other has 726×3600 pixels. The determination of 

𝑟max and 𝜃max is based on the rule described in Section 5.3.2. We found that at least two polar pixels 

are surrounded by four neighboring Cartesian pixels (by examining farthest pixels from Cartesian 

image center, e.g. when four neighboring Cartesian pixels (1023, 1023), (1023, 1024), (1024, 1023), 

(1024, 1024) are selected, the polar pixels inside them are (724,226), (725,226) and (724,451), 

(725,451) for 726×1800 and 726×3600 polar image, respectively. 

 

The four vertexes of the blurred image with black background correspond to semi-maximum field 

angle 48 degree and the region between 30 degree and 48 degree has no image information because of 

the black background. Therefore, we segmented the blurred image from 0 degree to 30 degree. In this 

simulation, we observe the deblurring results by applying different number of PSFs to different 

number of segmented regions. The image was segmented into 3, 5, 8 and 10 regions, to which the 

same number of PSFs was applied. The deblurred result without image segmentation and by using 

single PSF was also compared.  

 

MSE were calculated between original image and deblurred images by  

                   
2

1 1

1
MSE ( , ) ( , )

n m

i j

o i j r i j
nm  

                               (5.28) 

where 𝑜(𝑖, 𝑗) and r(i,j) indicate pixels of original and restored image, respectively. n and m define 

resolution of the original and restored image. Note that MSE for the color image is a summation of 

individual MSEs calculated for R, G and B plane separately.   

 

Visual comparisons for color image 1 to 3 are shown from Fig.5.31 to Fig.5.33. In each figure, we 

compare original, blurred and restored images using single PSF, 3PSFs, 5PSFs, 8PSFs and 10PSFs. 

The Polar Image Resolution or PIR are directly written under each restored image and MSEs are 

added to those using PIR=726×1800 so that the visual and quantitative results can be compared 

simultaneously. To observe details of the deblurred image, we enlarge some regions and compare 

them with the enlarged regions of blurred image. 

 

The graphs showing MSE vs. No. of PSFs were drawn separately for each of the three color images 

in Fig.5.34. 𝛽/ 𝑛 ratios vs. No. of PSFs were also added in Fig.5.35 in order to investigate their 

effect on MSE. These ratios are summation of separate 𝛽/ 𝑛 ratio of PSF BTCB matrix used to 

deblur each spatially invariant region.  

                     

Original                      Blurred                 Restored using single PSF 

                                             PIR=726×1800, MSE=0.0715 
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    Restored using 3PSFs           Restored using 5PSFs           Restored using 8PSFs 

 PIR=726×1800, MSE=0.0541   PIR=726×1800, MSE=0.0531    PIR=726×1800, MSE=0.0528 

                    

Restored using 10PSFs          Restored using 3PSFs           Regions to be enlarged 

PIR=726×1800, MSE=0.0556        PIR=726×3600                 PIR=726×3600 

  

    Enlarged blurred       Enlarged deblurred   Enlarged blurred      Enlarged deblurred  

region 1             region 1            region 2              region 2 

 

    PIR=726×1800       PIR=726×3600 

                            Fig.5.31 Deblur of color image 1  

 

 1  2 
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Original                      Blurred                 Restored using single PSF 

                                             PIR=726×1800, MSE=0.1081 

                      

Restored using 3PSFs            Restored using 5PSFs           Restored using 8PSFs 

 PIR=726×1800, MSE=0.0788   PIR=726×1800, MSE=0.0785    PIR=726×1800, MSE=0.0747 

                      

 Restored using 10PSFs          Restored using 3PSFs            Regions to be enlarged 

PIR=726×1800, MSE=0.0786         PIR=726×3600                PIR=726×3600 

    

Enlarged blurred     Enlarged deblurred     Enlarged blurred      Enlarged deblurred  

region 1              region 1             region 2             region 2 

 1 

 2 
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PIR=726×1800       PIR=726×3600 

                            Fig.5.32 Deblur of color image 2  

 

                     

Original                      Blurred               Restored using single PSF 

                                             PIR=726×1800, MSE=0.1593 

                     

Restored using 3PSFs            Restored using 5PSFs           Restored using 8PSFs 

 PIR=726×1800, MSE=0.1449   PIR=726×1800, MSE=0.1464    PIR=726×1800, MSE=0.1417 

 

                     

Restored using 10PSFs          Restored using 3PSFs            Regions to be enlarged 

PIR=726×1800, MSE=0.1453         PIR=726×3600                PIR=726×3600 

 

 1 

 2 
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Enlarged blurred     Enlarged deblurred    Enlarged blurred      Enlarged deblurred  

region 1              region 1            region 2             region 2 

                             

   

PIR=726×1800     PIR=726×3600 

Fig.5.33 Deblur of color image 3  

 

 

 

                                  (a) 

 

 



Chapter 5 Blur restoration for single lens 

112 

 

 

                                (b) 

        

                      (c) 

Fig.5.34  MSE versus number of PSFs, PIR=726×1800 

 

 

   Fig.5.35 𝛽/n ratio versus number of PSFs 
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According to the results shown from Fig.5.31 to Fig.5.35, the deblurred images using 

PIR=726×3600 obtained visually better results than those using PIR=726×1800. Although both of 

them obey the rule that at least one polar pixel should be located inside four Cartesian pixels, the 

former obtained good pixel continuity whereas the latter had a black region near the right border, 

which indicates pixel vacancies (shown in the last two enlarged sub images of Fig.5.31, Fig.5.32 and 

Fig.5.33). This suggests that increasing polar image resolution results in better pixel continuity.  

 

In Fig. 5.34(a), quantitative evaluation revealed that MSE declined from 0.0715 of 1PSF to 0.0528 

of 8PSFs and rose again to 0.0556 of 10PSFs. Similar tendencies can be found in Fig. 5.34(b) and (c), 

except that a slight rising was detected from 3PSFs to 5 PSFs in (c). The 𝛽/𝑛 ratio increased 

continuously from 8.13% of 1PSF to 35.82% of 10PSFs for all three color images along with the 

increment of number of PSFs as shown in Fig.5.35. The effect of 𝛽/𝑛 and number of PSFs on MSE 

is now clear that when number of PSFs and 𝛽/𝑛 is small, the change of real radially variant PSF as 

the field angle increases (Fig.5.4) cannot be accurately reflected; when number of PSFs and 𝛽/𝑛 rise 

to high values (such as 10PSFs), the FFT calculation using (5.27) for BTCB matrices of high field 

angle PSFs (e.g. PSF at 27 and 30 degree) obtains unsatisfactory deblurred results because 𝛽 is not 

relatively small compared to n, which has been proved an essential factor affecting the deblurred 

image quality in Section 5.4. Compared to PSF at low field angles, these high field angle PSFs 

contribute much to the deterioration of whole deblurred image, thus high MSE was obtained.  

 

5.5 Conclusion  

This chapter introduced a deblurring method for radially variant blurred image that is produced by 

single lens system. This type of radial blur occurs because of inherent optical defect of single lens, not 

because relative motion between camera and object. This method converts blurred image and PSFs 

from Cartesian coordinate system to polar coordinate system, by which the deblurring problem 

becomes a locally Spatially Invariant (SI) problem. The polar PSF then becomes a BTCB matrix. The 

deblurring was based on constrained least-square method using FFT. Simulations using 4.5mm double 

convex single lens have been carried out on monochromatic image and natural color photographs. 

Two deblurring methods were implemented and satisfactory results were obtained for both methods. 

As to the deblurring method by applying SIPSF to sub-regions, four PSFs applied to four segmented 

spatially invariant regions obtained visually the best deblurred image compared to the single PSF 

deblurred image, the deblurred image without a larger black background and the deblurred image 

without boundary expansion. Further segmenting the blurred image to more than four regions will be 

undesirable because of high 𝛽/ 𝑛 ratio. In the simulation using 1.0mm plano-convex lens, visual and 

quantitative evaluation using MSE showed that deblurred image using 8PSFs obtained smallest MSE 

and best image quality compared to that using single PSF, 3PSFs, 5PSFs and 10 PSFs. Deblurred 

image using polar image resolution (PIR) 726×3600 outperformed that using PIR=726×1800 in that 

the latter generated a visually discontinuous region around the right border due to the insufficiency of 

polar image pixels.  
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Chapter 6   Experiment using real single lens system 
 

 

6.1 Introduction 

In previous chapters, we have introduced aberration correction methods for a virtual single lens 

system created by optics design software CODEV and carried out simulations on this virtual system. 

Although the simulation results showed satisfactory aberration corrected and blur restored images, it 

is highly desirable that those aberration correction methods be testified on a real system. In this 

chapter, we introduce a real double-convex spherical single lens system that is developed in our 

laboratory and evaluate our aberration correction algorithms on this real system. Since this system is 

designed for a maximum semi-field angle 22 degree, distortion and chromatic aberration are almost 

undetectable compared with the radially variant blur phenomenon. Therefore, we mainly evaluate the 

blur restoration algorithm in this chapter. It should be mentioned that we are planning to build a real 

plano-convex single lens system, which is capable of reducing the overall thickness to approximately 

1.0mm. However, as the image sensor required for the new single lens has a diagonal dimension of 

1.18mm (to the best of our knowledge, the current smallest image sensor type 1/8 ′′ has a diagonal 

dimension of 2.00mm) and the resolution should be at least 3Megapixels, which is not possible to be 

manufactured yet, we used a large image sensor with a large single lens system instead. The detailed 

structure and specification will be given in Section 6.2. 

 

The structure of this chapter is as follows: firstly, we illustrate the schema of the double convex 

spherical single lens and the CMOS image sensor attached to the real camera module, together with 

their specifications. Then we describe each part of the camera module by showing top and side view 

photos. Secondly, we give an improved restoration algorithm that is based on the polar domain 

deconvolution method introduced in Chapter 5, by which the radial and rotational resolution of the 

blurred polar image can be increased. The comparison between simulation results and experimental 

results using the proposed deblurring method is implemented afterwards, followed by a discussion 

and some aspects on improvement of the current system. Finally, we conclude this chapter by a brief 

summary.  

 

6.2 Methods 

6.2.1 The real double-convex single lens system 

A schematic drawing of the double convex spherical single lens is shown in Fig.6.1 and dimensions 

of the attached CMOS image sensor is demonstrated in Fig.6.2. Lens specifications are both marked 

on the corresponding positions of Fig.6.1 and listed in Tab.6.1.  
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Fig. 6.1 Schema of the double convex spherical single lens 

 

 

 
Fig.6.2  The CMOS image sensor attached to the camera module 

 

Tab. 6.1 Lens Specifications 

Glass material SF5 

Lens diameter (mm) 10.00 

Effective Diameter (ED) or entrance pupil diameter (mm) 7.00 

Effective Focal Length (EFL) (mm) 10.00 

Back Focal Length (BFL) (mm) 8.89 

F number. (EFL/ED) 1.4 

Central Thickness (CT) (mm) 3.5 

Radius of curvature (R1 = −R2) (mm) 12.71 

Design wavelength (nm) 587.6 

Maximum semi field angle (degree) 22 

 

As is shown in Fig.6.1 and Tab.6.1, we selected SF5 as the glass material because it has a refractive 

index of 1.673, higher than that of the commonly used BK7 (which is 1.517) so that shorter focal 

length and hence smaller thickness can be obtained. The F number (or F No.) is directly proportional 
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to the Effective Focal Length (or EFL) and inversely proportional to the Effective Diameter (or ED) 

of the single lens. Because the EFL is 10.00mm and ED is 7.00mm, the F number can be calculated 

by EFL/ED≈1.4. It should be emphasized that although more light enters the lens system and 

irradiates the image sensor according to this F number, spherical aberration is also augmented because 

the entrance pupil diameter is relatively large. We found that the spherical aberration is negligible 

when ED is reduced to approximately 3.1mm or below.  

 

The CMOS image sensor attached to the circuit board of the single lens camera module has a 

horizontal dimension of 6.5mm and vertical dimension of 4.9mm. The resolution is 2048×1536 

megapixels and size of each pixel is 3.2μm ×3.2μm. The semi diagonal is calculated by length and 

width of the sensor and corresponds to the position of the maximum semi-field angle.  

The maximum semi-field angle is determined by EFL and the semi diagonal of the image sensor. 

Let r be the dimension of semi-diagonal and f be the EFL of the lens, an equation that defines 

maximum semi-field angle 𝜃 can be expressed as follows  

                      

arctan
r

f
 

                               (6.1) 

We also took photos of the real single lens camera module from different directions, which are 

illustrated in Fig.6.3.  

 

  
top view                                 side view 

Fig 6.3 Top and side view of the real single lens camera module 

 

The single lens is fixed in the lens holder, which is then screwed into the camera module. The 

image sensor is directly under the lens and attached on the camera IC. A USB port is provided in order 

to view captured image on a PC. The distance between lens and image sensor is adjustable by 

screwing the lens holder towards to or away from the sensor. This gives us a possibility of taking 

in-focus photos of both nearby and distant objects. For example, when the image sensor is positioned 

exactly on the foci of the single lens, only object of infinite distance will be projected clearly on the 

image sensor. If the object is near the single lens, one has to adjust the distance between lens and 

image sensor to a position larger than the focal length (10mm) in order to obtain clear image. In this 

experiment, it is assumed that the radially variant blurred image is formed by capturing an object of 

infinite distance. 

 

6.2.2 The improved blur restoration algorithm 

The blur restoration algorithm used in the experiment on real single lens system is based on the 

polar domain deconvolution method introduced in Chapter 5, but with some improvement. Previously, 

we derived a set of equations that performs Cartesian to polar coordinate conversion and the inverse 
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conversion for blurred image and PSFs but the resolution of the Cartesian image was only 1024×1024. 

Since a condition has to be satisfied when converting a Cartesian image to a polar image, which 

depicts that there should be at least one polar pixel surrounded by four Cartesian pixels (otherwise the 

resolution of the polar image will be too low to obtain acceptable pixel continuity), we obtained a 

polar image that had 726 × 3600 polar pixels. This polar image already satisfied the above condition 

and was visually smooth. However, in case of the real camera system, the Cartesian image has higher 

resolution (2048×1536) so that we have to increase the resolution of the polar image correspondingly 

on both the radial and rotational directions to obtain acceptable pixel continuity.  A variable k is 

added to previous equations to realize resolution control on radial direction. The resolution control on 

rotational direction is realized simply by setting the value of q. The set of equations for the current 

camera systems are expressed below: 

 

Conversion from Cartesian coordinate to polar coordinate for the blurred image: 

                            
2 2( ) ( ) 1c cr k i i j j    

                           (6.2) 
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                                  (6.3) 

Conversion from polar coordinate to Cartesian coordinate for the blurred image: 
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                              (6.5) 

where (r,𝜃) and (i,𝑗) represent pixel index in polar coordinate system and Cartesian coordinate system, 

respectively. 𝑖𝑐 and 𝑗𝑐 are pixel index of Cartesian image center. q is the number of equal parts that 

360 degree is divided. k determines the radial resolution of the blurred polar image.  

 

Conversion from Cartesian coordinate to polar coordinate for PSFs: 
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Conversion from polar coordinate to Cartesian coordinate for PSFs: 
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where (𝑟′, 𝜃′) and (𝑖′, 𝑗′) indicate pixel index of polar image in PSF coordinate system and Cartesian 

image in PSF coordinate system, respectively. (𝑟𝑝𝑠𝑓𝑜
′ , 𝜃𝑝𝑠𝑓𝑜

′ ) and (𝑟𝑝𝑠𝑓𝑜, 𝜃𝑝𝑠𝑓𝑜) mean pixel index of 

polar PSF origin in PSF coordinate system and image coordinate system, respectively. (𝑖𝑝𝑠𝑓𝑐
′  , 𝑗𝑝𝑠𝑓𝑐

′ ) 

and (𝑖𝑝𝑠𝑓𝑐 , 𝑗𝑝𝑠𝑓𝑐) represent pixel index of Cartesian PSF center in PSF and image coordinate system, 

respectively.  

 

6.3 Comparison between simulation and experiment results  
In this section, we evaluate the blur restoration algorithm for the real double convex spherical 

single lens system introduced in Section 6.2 and compare the experiment results with the simulation 
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results. The object to be captured has two-dimensionality, e.g. a piece of printed paper. In this 

experiment, we use two printed test images as the objects. One image includes English characters and 

is a monochromatic image generated by computer. The other one is a RGB photograph, originally 

taken by stand-alone digital camera. The camera is placed approximately 450mm in front of the 

two-dimensional object, with the center of the 2D object aligned with the optical axis of the camera 

module. The experimental environment has natural light source and the room temperature is 26℃. 

 

The blurred image taken by the real single lens camera module is then converted to polar image by 

equation (6.2) and (6.3) of Section 6.2. Acceptable pixel continuity is obtained by setting k=4 in 

equation (6.2) and rotationally segmenting the 360 degree into 7200 parts, that is, setting q=7200. 

Therefore the polar image resolution is 5121×7200. We did not further increase the polar image 

resolution because of the processing speed.  

 

Restoration of both monochromatic image and RGB image are realized by using PSFs of the 

reference wavelength (587.6nm). Restoration of the RGB image has to be done separately on R, G 

and B color plane and synthesize a new RGB image by superimposing the R, G and B restored image. 

 

The restoration results are shown from Fig.6.4 to Fig.6.9. Fig.6.4 to Fig.6.7 show the overall view 

of the blurred image and the restored image for the monochromatic and RGB color images. 

Additionally, Fig.6.5 and Fig.6.7 demonstrate the restoration results for the real single lens camera 

module introduced in Section 6.2 in order to compare with the restoration results for the virtual single 

lens system created by CODEV shown in Fig.6.4 and Fig.6.6. In order to examine the restored images 

for the real single lens system in detail, we enlarged some interested regions of Fig. 6.5 and Fig.6.7, 

which are shown in Fig.6.8 and Fig.6.9. Since the single lens produce a radially variant blur, which 

means regions far from the image center blur stronger than regions near the image center, we enlarged 

the upper left, upper right, lower left and lower right regions of the restored images shown in Fig. 6.5 

and Fig.6.7. 

 

The monochromatic image example: 

  
              Blurred image                             Restored image 

Fig.6.4 Restoration results for the virtual single lens system created by CODEV 

 

 

 

 



Chapter 6 Experiment using real single lens system 

122 

 

  
Blurred image                             Restored image 

Fig.6.5 Restoration results for the real single lens camera module 

 

 

The RGB color image example: 

  
Blurred image                             Restored image 

Fig.6.6 Restoration results for the virtual single lens system created by CODEV 

 

 

  
Blurred image                             Restored image 

Fig.6.7 Restoration results for the real single lens camera module 
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      blurred              restored              blurred              restored 

Comparison of upper left region            Comparison of lower left region 

 

 
blurred              restored              blurred              restored 

Comparison of upper right region        Comparison of lower right region 

 

Fig.6.8 Zoom in of four interested regions of monochromatic image 

 

 

   
blurred             restored              blurred              restored 

       Comparison of lower left region             Comparison of upper left region 

 

   
blurred             restored              blurred              restored 

      Comparison of upper right region          Comparison of lower right region 

 

Fig.6.9 Zoom in of four interested regions of RGB color image 

 

The restoration algorithm is effective for both virtual single lens system and real single lens system 

by observing visual comparisons between blurred and restored images shown from Fig.6.4 to Fig.6.9. 

The restored images at the four enlarged regions all showed acceptable results. However, the restored 

image has very low contrast compared to the blurred image due to the implementation of 

regularization in the deconvolution process. Therefore, we employed an image enhancement 

technique to increase the contrast of the restored images. 

 

6.4 Discussions and improvement in the future 
As was mentioned in Section 6.2, diameter of the entrance pupil is relatively large compared to lens 
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diameter, which results in augmented spherical aberration. As a result, parallel light beams coming 

from different distance to the optical axis converge to different positions on the image side, which 

explains blurring around center of the blurred image in Fig.6.5 and Fig.6.7. This problem can be 

solved by decreasing diameter of the entrance pupil but it will reduce light irradiation on the image 

sensor simultaneously. Therefore, one has to scarify the image brightness and contrast to obtain a 

spherical aberration-free image. Fortunately, image enhancement could also be used in this case. In 

addition, we applied PSF at the design wavelength (587.6nm) to RGB image for simplicity. More 

precise restored image can be expected if PSFs at different wavelengths are applied to different color 

planes, e.g. PSFs in the range 401nm~500nm are applied to B-plane, 501nm~600nm to G-plane and 

601nm ~700nm to R-plane. Moreover, we took photo on a printed paper using the real single lens 

camera in this experiment. In future work, experiment on a 3-dimensional spatial object that is located 

at a certain distance from the camera module is desirable. The spatial object can be considered a 2D 

object as long as it is located in a plane perpendicular to the optical axis of the camera. Finally, as to 

the future development of the single lens imaging system, we considered four aspects: 1) Further 

slimness is necessary and achievable by employing plano-convex single lens with higher refractive 

index such as LaSF9 (refractive index is 1.850) and smaller central thickness. We are currently 

developing a real cell phone camera system that could reduce the overall thickness to approximately 

1.0mm. 2) Currently, the blur restoration algorithm is realized by computer program, implementation 

of the algorithm on a real time image signal processor (ISP) in a camera is highly desirable. 3) 

Incorporating other camera features such as autofocus and zooming features so as to compete with 

other types of next-generation camera. 4) Although the overall thickness of the camera can be reduced 

by employing single lens system, the overall dimension of cell phone or stand-alone camera is not 

easy to be reduced due to the use of silicon semiconductor technology. A promising breakthrough of 

semiconductor technology: Carbon nanotube (or CNT) that is in nanometer scale could probably 

replace silicon and achieve further minimization of the future camera phones and stand-alone 

cameras.  

 

6.5 Conclusion 

In this chapter, we introduced a real double convex spherical single lens system and successfully 

restored the radially variant blur by employing an improved algorithm based on the polar coordinate 

domain deconvolution method introduced in Chapter 5. Experiment on a 3Megapixels, 2D 

monochromatic image and a RGB photograph suggests that the blur restoration algorithm is effective 

on the real spherical single lens imaging system. Our next step is to fabricate a real single lens camera 

module for cell phones using plano-convex surface and material with higher refractive index such as 

LaSF9, which can reduce the overall thickness to approximately 1.0mm. 
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Chapter 7 Conclusions 
 

 

This chapter summarizes this study on the following three aspects: 1) originality and objectives of 

this research; 2) current achievements in this research; 3) future research plan for the single lens 

system. 

 

The originality of this research can be summarized as follows: this study provides a new option for 

future cell phone camera because the number of lens elements is limited to one so that thickness of the 

camera could be reduced to unprecedented level by using appropriate lens. The optical aberrations 

caused by the single lens system can be minimized by digital image processing techniques, even if the 

conventional optical means is not used. Therefore, there are two objectives in this study: 1) Replace 

compound lens system with a spherical single lens system in order to reduce thickness of the cell 

phone camera; 2) Correct optical aberrations of the single lens system by using digital image 

processing. 

 

In this dissertation, we demonstrated a virtual spherical single lens system designed by optics 

design software CODEV and successfully corrected distortion, lateral chromatic aberration and 

restored the radially variant blurred image for the resulting images produced by this virtual system. In 

addition, a real spherical single lens system was also developed to evaluate proposed algorithms and 

satisfactory results were obtained by experiment. These all proved the possibility of a spherical single 

lens system to replace the compound lens camera system. 

 

  However, this system needs further improvement such as 1) Implementation of the proposed 

algorithms on a real time image signal processor (ISP) in a camera. 2) Incorporating autofocus and 

zooming features etc. 3) Further slimness of both embedded camera and the cell phone body. With the 

rapid development of optical, electrical, electronics and semiconductor technology, we believe that 

these improvements will be realized continually in the not too distant future. 
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