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Abstract 

 

In recent years, the management concept of company is greatly reformed by rapid 

development of information technologies and spread of the Internet. By this transition, 

the role of Supply Chain Management (SCM) in production and logistic information 

systems is ever becoming more important, at the same time production and logistics 

model designs renovation requirements. The transportation is one of the most 

important roles for economic goals such as expansion of the market, balancing of 

physical distribution and production activity. Nowadays, diversification of demand has 

changed from the process of trading products after finished mass-production to using 

high-mix low-volume production. Currently, the problem that many companies need to 

deal with is to quickly and flexibly satisfy various needs of the customers. Therefore, 

the just-in-time delivery or deliveries with multi-product, small-lot, high frequency are 

important subjects with a physical distribution.  

The transportation problem (TP) has been discussed in the field of Operations 

Research. The objective is to determine delivery amounts with minimizing the total 

delivery cost and satisfying customer demands. However, the general TP model cannot 

be applied to the real world. More concrete constraints and extension of the model are 

needed. Although various extended models and their solution methods have been 

proposed, the extended models could not deal with various elements of the real world 

such as inventory.  

Genetic Algorithm (GA) is one of meta-strategies imitating evolution of creatures. It 

has been applied to various fields like TP since it was proposed. But GA has several 

problems, such as high calculation load, premature convergence to a local minimum and 
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complexity of parameter setting. 

This thesis propose realistic TP models which consider exclusionary side constraints, 

kind of products, inventory, direct shipping route and multiple periods. These elements 

reflected needs for the modern distribution. Although these proposal TP models have 

different complexity, in order to obtain stable solution in realistic time, we propose 

solution methods based on GA. We found the excellent technique by combine improved 

gene expression and selection technique. Moreover, through the analysis of evaluation 

result, we clarify the effectiveness and limit of each technique. This article has a great 

value that proposed effective and stability techniques for modern various TPs. This 

article greatly contributes to the future distribution optimization. 
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Chapter 1. Introduction 

 

1.1 Background and aim of this research 

In recent years, the management concept of company is greatly reformed by rapid 

development of information technologies and spread of the Internet. By this transition, 

the role of Supply Chain Management (SCM) in production and logistic information 

systems is ever becoming more important, at the same time production and logistics 

model designs renovation requirements [1] [2]. Transportation, storage, packing, cargo 

work, distributed processing, and physical distribution information are included in 

logistics as the main functions. Among these six functions, the transportation is one of 

the most important roles for economic goals such as expansion of the market, 

balancing of physical distribution and production activity.  

Formerly, in the manufacturing industries, the procurement of physically 

distributed raw materials necessary for production and shipping of products to 

physically distributed customers were the objectives of logistics systems. Moreover, in 

logistics or service industries, one of the objectives of a logistics system was the 

physical distribution activity that purchases a product from a maker and provides to a 

retail store, etc. Because of this, various efforts for efficiency have been performed. 

However, unlike the production field currently introduced to management 

engineering, such as robots, TQC and the Kanban system, the rationalization of physical 

distribution fields with many labor-intensive elements, such as truck drivers, is behind. 

Nowadays, diversification of demand has changed from the process of trading products 

after finished mass-production to using high-mix low-volume production. Currently, the 

problem that many companies need to deal with is to quickly and flexibly satisfy 
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various needs of the customers. Therefore, the just-in-time delivery or deliveries with 

multi-product, small-lot, high frequency [3] are important subjects with a physical 

distribution. In recent years, "Green Logistics" becomes a significant issue, because of 

the impact on the environmental problems. 

The logistics include the portion of purchasing raw materials from suppliers. Then, 

raw materials will be sent to the plant. After product was manufactured, delivery to 

customers are the last step of these activities. Various conversions such as functional 

and physical conversion, position conversion and time conversion will be given in 

logistics bases. Although functional and physical conversion is mainly a production 

activity in a factory, the distributive processing in a delivery center is also included. 

Position conversion means keeping required quantity as inventory at required places. 

When order was coming, it enables to use goods immediately. Moreover, plants, 

Distribution Centers (DCs), retail stores, etc. are examples of logistics bases. Each 

company attaches various names and there are many bases with complex functions.  

The transportation problem (TP) has been discussed in the field of Operations 

Research. The objective is to determine delivery amounts with minimizing the total 

delivery cost and satisfying customer demands. However, the general TP model cannot 

be applied to the real world. More concrete constraints and extension of the model are 

needed. Although various extended models and their solution methods have been 

proposed [4] [5] [6] [7] [8], the extended models could not deal with various elements 

of the real world such as inventory. In addition, for large-scale problems, approximate 

approaches based on the theoretical analysis of problem and heuristic algorithms have 

been extensively studied, because of calculating an exact solution is difficult. Although 

the former approaches have many advantages, such as being able to obtain a good 
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solution in short time and the minimum of a solution. However, it cannot respond to the 

structural change of the problem. 

In recent years, researches on optimization techniques based on meta-strategy such as 

Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS) are widely 

studied [9] [10]. These techniques have high robustness as compared with the 

techniques based on the conventional theories. They can be adapted to composite 

problems and addition constraints, so that the structure of problem can change over time. 

However, majority of researches on the conventional meta-strategy were based on the 

simple TP model. Genetic Algorithm (GA) is one of meta-strategies imitating evolution 

of creatures. It has been applied to various fields like TP since it was proposed. But GA 

has several problems, such as high calculation load, premature convergence to a local 

minimum and complexity of parameter setting. 

The main purposes of this research are proposing a new extended TP model, and 

developing solution methods by GA. For this reason, the previous researches for TP and 

issues which should be considered are clarified. After the survey, we discuss and 

formalize more realistic TP models. Also, efficient optimization techniques for the 

proposed models are developed.  

 

 

1.2 Composition of thesis 

This paper consists of seven chapters.  

Chapter 1 is an introduction. Chapter 2 describes the fundamental outline of the 

traditional TP model and GA. Then, we clarify the advantages of applying the GA to TP 

model.  
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In Chapter 3, the multi-product two-stage logistics network model with exclusionary 

side constraints is proposed. In this TP treats multi kinds of production and exclusionary 

side constraints. Furthermore, the model has the feature that the delivery cost of every 

product can be different. Until now, TP with exclusionary side constraints were difficult 

to be solved by GA. Then, in order to solve the proposal TP, we develop an improved 

priority-based representation. If this technique is used, the distinction routine of an 

infeasible solution is unnecessary. Therefore, we can reduce computation time. In the 

numerical simulation experiments, we compared following four GAs based on 

improved chromosome representation.  

(1) Priority-based GA which applied WMX (Weight Mapping Crossover) 

(2) Priority-based GA which applied PMX (Partially Matched Crossover) 

(3) Hybrid Priority-based Genetic Algorithm (h-priGA) using WMX 

(4) Hybrid Priority-based Genetic Algorithm (h-priGA) using PMX  

Here, h-priGA has an auto tuning mechanism (FLC: Fuzzy Logic Controller) for the 

parameters [22] [35]. As a result, the proposed TP model can be solved by a GA which 

utilizes the improved priority-based representation. 

In Chapter 4, the two-stage transportation problem with inventory and exclusionary 

side constraints (esc-2ITP) is proposed. This esc-2ITP considers the concept of 

inventory and designs a transportation plan over multiple periods. Many companies aim 

at improvement of logistics, as well as improvement of inventory control. Moreover, 

how to reduce inventory costs as much as possible is an important objective. However, 

if there is little volume of inventories, the service level may below to fall. Therefore, it 

is necessary to adjust the balance of suitable inventories and the service level. We 

formulate esc-2ITP with consideration of these problems.   
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In Chapter 5, a solution method for the esc-2ITP is proposed. The solution method 

for Chapter 3 was improved only the chromosome representation part. Thus, the weak 

points of GA were not improved. Therefore, we design a new GA approach called the 

Boltzmann random key-based GA (Brk-GA). Since this algorithm has a simple structure, 

we can reduce the computation time. The selection mechanism of Brk-GA uses the 

Boltzmann distribution [40]. It is known that Boltzmann selection can decrease a 

probability of premature convergence to local minimum. Mori, et al proposed 

Thermodynamic Genetic Algorithm (TDGA) which explicitly consider the diversity of 

population [41]. TDGA estimates the diversity of population clearly as entropy. In this 

literature, TDGA is applied to a knapsack problem in experiment. The effect for TP is 

not yet proved. Ambedkar, et al. [42] proposed a Cauchy annealing schedule for 

Boltzmann selection scheme. It based on a hypothesis that selection-strength should 

increase as evolutionary process goes on and distance between two selection strengths 

should decrease for the process to converge. They conducted comparative experiments 

of Boltzmann selection with Cauchy annealing schedule and traditional Boltzmann 

selection. Both techniques were applied to several variable functions. However, authors 

did not describe the computation time. It seems that computation time is needed since 

the proposal technique is complicated. We need flexible GA which can respond in an 

instant for the sequential change of road environment. 

Including the above literatures, Boltzmann selection has mainly adapted classical 

GA which uses binary number coding for chromosome. Moreover, comparison of h-GA 

equipped with FLC and GA equipped with the using the Boltzmann selection technique 

is not performed. In numerical experiments, we apply four different GAs containing 

Brk-GA to esc-2ITP, and execute comparative experiments which solve each problem 



1.2 Composition of thesis 

6 6

30 times respectively. From the results, although Brk-GA is inferior to h-priGA in 

average computation time, Brk-GA shows the best performance in the best solution, the 

average of the best solution of 30 calculations, and the standard deviation. When 

compared with the st-GA that is oldest method in the four techniques, the best solution 

and computation time are respectively improved by 66.1% and 6.3%.  

In Chapter 6, the Progressive Flexible Logistics Network (PFLN) model that 

considers today’s delivery forms is proposed. The esc-2TIP model proposed in Chapter 

4 includes the concepts of inventory and time. However, the basic network structure of 

esc-2ITP is two-stage TP. Therefore, in this chapter we propose the PFLN model as a 

more extended TP with new connection form. The main difference of PFLN and 

esc-2ITP proposed in Chapter 4 is addition of retailers and duplication of direct delivery 

from producing districts. These added new features allow us to model currently 

distribution styles. Moreover, we propose a network segment method which divides 

PFLN to three sub-networks based on difference of delivery form. This method can 

avoid inefficiency caused by using different chromosomes in accordance with slight 

changes of the network. Comparative experiments using five GAs show that the flexible 

logistics network model can be solved by Brk-GA. The evaluation results performed 20 

times show that Brk-GA is superior to other five techniques in the best solution, the 

averages of solutions, the standard deviation, and the computation time. On the other 

hand, when Flc is included in Brk-GA, it is observed that the average and standard 

deviation of the solutions become worse. Although soft computing technique has feature 

of obtaining suboptimal solutions in an early stage, the robustness and reliability may be 

affected whenever we calculate the solutions that have large variation. In conjunction 

with the result of Chapter 5, it is shown that Brk-GA is superior and more effective than 
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traditional GA developed for TP.  

In Chapter 7, conclusions about the knowledge acquired from this research are 

discussed, and future subjects are described. 
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Chapter 2. Transportation Problem (TP) and Genetic 

Algorithm (GA) 
 

2.1 Introduction 

TP is one of the combinatorial optimization problems, and various models and their 

solution methods were proposed [4] [5] [6] [7]. In a large-scale problem, approximate 

approaches based on the theoretical analysis in problem or research on heuristic 

algorithms occupies most. Because of it is difficult to calculate a strict solution. 

Although the former has many advantage such as being able to obtain a good solution in 

short time or the minimum solution is guaranteed. It cannot respond fault to the 

structural change of problem. On the other hand, heuristic algorithms have many 

characters that disagree with this problem. This chapter describes traditional TP model 

and outline of GA.  

 

 

2.2 The outline of Transportation Problem (TP) 

Basic TP model: 

   TP is basic network problem proposed by Hitchcock (1941). The objective is 

minimizing the total cost, and all constraints are satisfied. At the same time, TP makes 

transportation plan of products that send from several plants to several destinations. In a 

field of OR, this model is known widely as one of linear programming. In a field of 

logistics network optimization, the main issue is proposal of improvement models based 

on this model.  

The basic TP with I plants and J DCs is formulated as follows: 
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Fig. 2.1: Basic TP model 
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Indices: 

i : index of plants (i = 1, 2,…, I)  

j : index of DCs (j = 1, 2,…, J) 

 

Parameters: 

ai : capacity of Plant i  

bj : demand of DC j 

cij : delivery cost from plant i to DC j 

 

Decision variables: 

xij : delivery amounts from plant i to DC j  

 

 

Fixed-charge TP model: 

The fixed-charge TP (fcTP) is one of the famous models as extension of traditional 

TP [11] [12] [13] [14]. This model has fixed costs for every route and transportation 

costs that is proportional to shipment amount. In a logistics network, a fixed cost may 

be incurred each shipment between plant and DC, or it may result in a fixed amount on 

investment. The fcTP is difficult to solve due to the presence of fixed costs, which cause 
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discontinuities in the objective function. The objective is to decide shipment amounts of 

each routes so that total cost is minimized. 
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(2.8) 
 
 

 

Indices: 

i : index of plants (i = 1, 2,…, I)  

j : index of DCs (j = 1, 2,…, J) 

 

Parameters: 

ai : capacity of Plant i  

bj : demand of DC j 

cij : delivery cost from plant i to DC j 

dij : fixed cost for using route i - j 

 

Decision variables: 

xij : delivery amount from plant i to DC j  

yij : 0-1 decision variable.  
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TP with exclusionary side constraints: 

Sun (1998) proposed nonlinear TP model that called TP with exclusionary side 

constraints (escTP) [15] [16] [17]. This escTP has additional constraints in which 

simultaneous shipment from specific plant pair to specific customer is prohibited. For 

example, both of frozen and nonfreezing foods are not delivered, or foods and 

poisonous products cannot be stored together, although they may be transported via the 

same distribution system. Moreover, manufacturer may ship the same product to 

different delivery addresses. In this thesis, we propose advanced TP that mainly used 

this feature. If exclusionary side constraints can be efficiently satisfied in a calculation 

algorithm, the limitation of a course according to kind of product etc. will attain. 
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Fig. 2.2: escTP model 
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Indices: 

ai : number of units available at plant i. 

bj : number of units demanded at DC j.  

 

Parameters: 

cij : shipping cost 1 unit from plant i to destination j.  

Dj = {(i, l)| good from source i and l cannot be simultaneously shipped to destination 

j}. 
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Decision variables: 

xij : delivery amounts from plant i to destination j. 

 

Two-stage TP: 

TP models described above were classified into one-stage models. This means that 

there are only two kinds of elements such as suppliers and demand-places on a network. 

The two-stage TP (ts-TP) consider two kinds of elements, and consists of two segments 

between Plants and DCs, and between DCs and customers [18] [19]. Compared with 

basic TP, ts-TP has more realistic delivery form. However, this model treats total 

delivery cost for one kind of product. 
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Indices: 

i : index of plants (i = 1, 2,…, I)  

j : index of DCs (j = 1, 2,…, J) 

k : index of customers (k = 1, 2,…, K) 
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Parameters: 

ai : capacity of plant i  

bj : capacity of DC j  

cij : delivery cost from Plant i to DC j  

cjk : delivery cost from DC j to Customer k 

 

Decision variables: 

xij : delivery amounts from plant i to DC j  

yjk : delivery amounts from DC j to Customer k  

 

TP models introduced in this section are extremely common models. Although 

various derived models based on these TPs have been proposed [20] [21] [22] [23] [24] 

[25] [26]. However, it is difficult to apply these models to the real world. If it applies to 

the real world, we must consider the additional concept such as inventory or product life 

cycle etc. We propose more realistic TP model after Chapter 3.  

 

 

2.3 Outline of Genetic Algorithm (GA) 

In early the 1970s, John Henry Holland and his group invented GA to solve complex 

optimization problem easily and powerfully with simple mechanism by using the 

feature of nature evolution.  

In recent years, evolutionary approaches have been successfully applied to TP. 

Michalewicz and Viagnaux (1991) are first researchers who discussed about application 

of GA for solving linear and nonlinear transportation problems [27] [28]. GA is one of 
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search technique that obtained the hint from the theory of Darwin. In addition, we do 

not need to consider limit of application field. In detection of optimal solution, in order 

to search solution space systematically and efficiently, GA simulates the evolution 

process of a creature. Usually, GA treats coded solution as chromosome, at the same 

time set of chromosomes form a population. Each chromosome expresses points in 

solution space. In GA calculation, iteration process to obtain a desirable solution is 

called generation. In addition, the chromosomes with high fitness value in current 

generation can generate a new solution (offspring) by crossover operator. Moreover, in 

order to add diversity, mutation operator generates offspring that has new feature into 

new solution space. A population of next-generation is generated from a set of offspring 

and current population. In GA, individual with high fitness can survive for a long time. 

At the same time, this individual can pass down the advantageous feature to next 

generation based on the theory of natural selection. After several generations, the 

algorithms choose one chromosome as optimum or suboptimal solution. 

Begin

Terminate ?

Generate initial population

Evaluation and Selection

Crossover

Mutation

End

Yes

No

(n+1)th Generation

 
Fig. 2.4: Main flow of GA  
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Composition and flow of GA: 

• Generating the initial population:  

In initial stage of calculation, GA generates chromosomes at random until it fills 

the population size. We need to decide the population size beforehand. Generally, the 

population size keeps constant size during GA processing. In basic GA, a bit sequence 

of binary number expresses the chromosome. However, in recent years, the 

mainstream approach is to use the order-phenotype for chromosome design. In 

order-phenotype GA, chromosomes express tree structures or delivery patterns. This 

research also adapts order-phenotype coding. 

 

• Evaluation and Selection:  

In GA, in order to keep the population size constant, it is necessary to screen 

several individuals from the group that consists of current population and offspring. 

Therefore, evaluation process determines which individual should survive. This 

process calculates fitness value of each individual using a fitness function, and 

individuals with low fitness value are screened (deleted). 

After that, GA performs selection process for the crossover. GA chose 

parent-chromosomes stochastically by roulette wheel strategy. This strategy selects 

the parent-chromosomes using proportional rate based on fitness value. Moreover, 

these parents obtain an opportunity of crossover. In order to keep superior 

chromosome information to next generation, chromosomes with high fitness have 

high selection probability. On the other hand, chromosomes with low fitness have low 

selection probability.  
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• Crossover: 

Crossover is principal element of genetic operator. A typical method is one-point 

crossover. To generate new offspring, a part of two parent-chromosomes is 

exchanged.  

 

• Mutation: 

Mutation changes gene in chromosomes. This operator selects one gene at random, 

and changes the gene into other value. After this operation, population can get new 

feature that parent’s generation did not have. As a result, diversity appears in current 

generation． 

 

• End conditions:  

When generation reaches the maximum generation number, iteration of evolution 

is finished. We can also set up the end condition according to problems. 

 

 

2.4 Summary 

This chapter described conventional TP model and fundamental structure of GA. 

The traditional TP model has simple structure and only calculates the cost according to 

shipment amount. When we consider the total optimization of logistics network, we 

have to consider various phenomena, such as the network structure, operation cost, 

inventory cost of each facility, and a transportation unit etc. To solve these problems, 

we propose improving models from Chapter 3. 

On the other hand, recently, GA can apply to various combinatorial optimization 
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problems. However, GA falls into a local minimum in some cases, and it needs much 

computation time to obtain the solution. Consideration and improvement of weak point 

of GA are also the aims of this research. Furthermore, according to minor difference of 

problem, development of new GA is inefficient. Therefore, we try to design a robust GA 

that can respond to structural change of TP flexibly. 
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Chapter 3. Multi-product Two-stage Logistics Network Model 

with Exclusionary Side Constraints 

 

3.1 Introduction 

A logistics networks design is one of the important elements of supply chain 

management (SCM). It aims optimization of whole supply chain in long-term efficiency. 

With the globalization of market and spread of the Internet, logistics networks have 

become more diverse. Usually, TP is used to design logistics network model. To 

minimize the total shipment cost, TP finds optimal routes from suppliers to demand 

places. However, when we adapt to real-world problems, it needs to extend or modify 

traditional TP model according to specific constraints. 

Genetic algorithms (GAs) are solution search methods inspired by biological 

evolution [27], [28]. Recently GA has attracted attention as comparatively fast and 

simple methods to solve nonlinear problems. GA has been applied to a variety of fields, 

including TP. However, GA has some weak points that are high computational load, 

premature convergence to local minimum, and complex setting of parameters (crossover 

rate and mutation rate)

In this chapter, we propose a multi-product two-stage logistics network model with 

exclusionary side constraints and an efficient GA-based solution method. The proposed 

model is different from the traditional TP. For example, the network model is 

multi-staged, and it treats multi-item products. In addition, proposed TP has 

exclusionary side constraints. Such an inevitably realistic model becomes nonlinear. 

Furthermore, effective GA for exclusionary side constraints unreported previously.  



3.1 Introduction 

19 19

To solve this problem, we apply a hybrid priority-based genetic algorithm (h-priGA) 

using priority-based encoding method. This h-priGA can overcome the drawbacks of 

GAs such as a complicated parameter setting and premastered conferencing to local 

solutions. In addition, the Fuzzy Logic Controller (FLC) incorporated in the h-priGA. 

FLC provides auto-tuning of parameters during the evolution, and maintains the 

diversity of solutions [29]. In this chapter, we also describe how to satisfy the 

constraints on the proposal TP model by utilizing GA features. 

 

 

3.2 Traditional TP model and solution method 

   The objective of TP is to determine the delivery routes with lowest delivery cost. 

However, when we apply the basic TP model to real world, following problems occur. 

(1) Traditional TP models consider only one-stage (from DCs to customers). 

(2) Traditional TP assume all products are same kind. 

(3) Traditional TP only considers the delivery cost in every delivery stage. 

Other issues such as weather or traffic condition, and drivers’ physical condition are not 

considered.  

The real logistics networks can be interpreted as a multi-stage TP model [18] [19] 

[20]. When we consider three elements (plants, DCs, customers), these elements 

constitute two-stage TP model. In this case, the first stage corresponds to the delivery 

zone from plants to DCs and the second stage is the delivery zone from DCs to 

customer. As an example of additional constraints, Sun (1998) proposed transportation 

problem with exclusionary side constraints (escTP). This escTP model should satisfy 

the additional constraints, which prohibits simultaneous deliveries from the specific 
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plant pair. Sun solved this problem by using Tabu Search and a branch-and-bound 

method [15], [16].  

In this chapter, we propose a multi-product two-stage transportation model with 

exclusionary side constraints. We extend traditional escTP model for real-world 

problems. The escTP model described previously is a nonlinear model. Cao (1992) 

showed solution by CPLEX in a small-scale problem [31], however, it point out that 

much computation time is required in large-scale problem. On the other hand, although 

Cao, Uebe and others (1995) proposed solution method by Taboo Search [32] and Sun 

(2002) proposed solution by branch and bound method [16].  

However, effective GA for escTP did not proposed previously. It is difficult to solve 

escTP, because GA method expresses the solutions as chromosomes. Sharif and Gen 

(2003) applied a spanning tree-based GA (st-GA) to this TP. The st-GA was developed 

for basic TP, and it uses the Prüfer code for chromosome representation (Prüfer 

number-based representation) [17]. Prüfer code can express a tree with n vertices by n - 

2 sequences, and it can save the memory for computation. However, when we consider 

the following reasons, Prüfer code is inefficient technique [33]. The authors [17] 

developed feasibility criteria for Prüfer code, but Prüfer coding criterion is complex. In 

addition, Prüfer-number based representation easily generates infeasible chromosomes 

after crossover. However, they did not introduce any procedure for handling infeasible 

chromosomes. The authors did not mention how to satisfy the exclusionary side 

constraints.  

Meanwhile, in literature [30], the authors propose the improved st-GA. However, 

the repair mechanisms for infeasible solution were only added. In numerical 

experiments, treated network models were only one-stage model. If the difference 
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between the number of source nodes and the number of demand nodes is very big, it is 

difficult to generate the feasible chromosome. It only works when the number of source 

nodes and demand nodes are almost the same. In the case of multi-stage network like 

our proposal model, it is more difficult to adapt Prüfer number-based representation. 

Even if it actually calculates, we need much computation time to obtain solutions.   

Therefore, in this chapter, in order to satisfy the exclusionary side constraints easily, 

we propose improved priority-based representation besides a network model design.  

 

 

3.3 Proposal TP model  

   The proposed logistics network model is extended two-stage transportation problem 

(see Fig. 3.1). In this model, we assumed that plants produce several kinds of products, 

and their delivery routes are different correspond to product kind. 

In the real world, plants do not produce only one kind of product. In response, 

delivery routes are different by product kind and usage. In proposed model, we consider 

the constraints on delivery routes not only plant-DC part but also DC-customer part. 

This means that customers are assigned to DC according to a product kind. 
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Fig. 3.1: Proposal network model 

 

Indices:  

ai : capacity of i-th plant 

bj : capacity of j-th DC 

dj : customer demand for product p 

p : product kind 

 

Parameters: 

cpij : delivery cost of  product p from i-th plant to j-th DC 

cpjk : delivery cost of product p from j-th DC to k-th customer 

gj : operation cost of j-th DC 

tpij : 1 if this plant-DC route is used; 0 otherwise 

tpij : 1 if this DC-customer route is used; 0 otherwise 
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Decision variables: 

xpij : delivery amounts of product p from i-th plant to j-th DC 

ypjk : delivery amounts of product p from j-th DC to k-th customer 

zj : 1 if j-th DC is used, 0 otherwise 

 

Mathematical model: 
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Equation (3.1) expresses the minimization of total cost (delivery cost and operation 

cost). In this model, we include the operation cost of DCs. Equation (3.2) and (3.3) 

express the constraints on plant capacity and DC capacity, respectively. Equation (3.4) 

represents satisfaction of customer demand, and (3.5) is the constraint on 

demand-supply balance. 
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3.4 Priority-based representation and its improvement  
In this chapter, we improve priority-based encoding method. This method proposed 

by Gen and Cheng (2000) [28]. This technique searches the delivery routes with low 

cost preferentially. However, there are the following problems in traditional GA.  

• High calculation load: To evaluate individuals, GA repeats calculation for each 

fitness value to the number of population size. 

• Premature convergence to local solutions: When some individuals have very 

high fitness values, such genes rapidly spread over the population. At the same 

time, the population loses diversity, and algorithm may converge to local 

minimum. 

• Complicated parameter setting: The GA involves various parameters such as 

population size, crossover rate and mutation rate. Although we decide these 

parameters empirically, they give strong affects to searching ability. Furthermore, 

optimal parameter settings change with problem characteristic. Therefore, to 

decide optimal parameters, we need many preliminary experiments. 

 

To deal with the problems, we use the hybrid priority-based genetic algorithm 

(h-priGA). In order to improve efficiency, Fuzzy Logic Controller (FLC) is included. 

FLC is auto-tuning mechanism for crossover rate and mutation rate. 

 

3.4.1 Chromosome representation 

In this section, we describe the priority-based encoding method. Additionally, we 

describe improved method for escTP. Fig. 3.2 shows an example of chromosome and 

Fig. 3.3 shows the decoding procedure. The gene values express the priority order of 
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plants and DCs. Also, the length of the chromosome is equal to the total number of 

plants (|I|) and DCs (|J|). The gene numbering corresponds to the node ID; the vertical 

and horizontal axes of the cost matrix respectively correspond to plant ID and DC ID. 

When we generate chromosomes, the natural number from 1 to total number of nodes 

are inserted into each gene in ascending order, and then they are shuffled randomly.  
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Fig. 3.2: Sample of chromosome 

 

In decoding process, gene with highest value has the highest priority, and decoding 

mechanism select the lowest-cost route with reference to cost matrix. For example, DC1 

has the highest priority value 7, and cost matrix indicates that route Plant1 - DC1 has 

the lowest cost 11. Therefore, the arc connects plant1 and DC1 and the respective 

capacities are updated. After that, decoding mechanism select DC4 has next priority 6, 

the arc connects DC4 and Plant3, and the capacities are updated. The decoding 

mechanism repeats same process until all demands are satisfied.  

The DCs capacity must be sufficient to meet the customers' demands. Therefore, 

decoding is started from part which correspond to second stage. In addition, after 

deciding spanning tree of second stage, decoding mechanism obtain DCs operated for 

first stages. Fig. 3.4 shows an example of network model for one product, and the 
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corresponding chromosome. The dashes in the cost matrix indicate prohibited delivery 

routes (i.e. exclusionary side constraints). 

 

procedure 1 : Decoding of the chromosome for transportation tree
Input :  I : set of plant,   J : set of DCs, 

bj :  demand on DC j, ∀j ∈ J,
ai :  capacity of plant i, ∀k ∈ I,
cij :  transportation cost of one unit of product from plant i to DC j,

∀i∈I,∀j∈J,
v (i+j)  : chromosome, ∀i ∈ I, ∀j ∈ J,    

output : gij : the amount of product shipped from plant i to DC j
step 1. gij ← 0, ∀i ∈ I, ∀j ∈ J, 
step 2.                                           ; select a node
step 3. if z∈I, then i* ← z; select a plant

; select a DC with the lowest cost
else j* ← z; select a DC

;select a plant with the lowest cost
step 4.                               ; assign available amount of units 

Update availabilities on plant (i*) and DC (j*) 

step 5. if then
if then

step 6. if                      , ∀j ∈ J, then calculate transportation cost and return, 
else goto step 1. 
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output : gij : the amount of product shipped from plant i to DC j
step 1. gij ← 0, ∀i ∈ I, ∀j ∈ J, 
step 2.                                           ; select a node
step 3. if z∈I, then i* ← z; select a plant

; select a DC with the lowest cost
else j* ← z; select a DC

;select a plant with the lowest cost
step 4.                               ; assign available amount of units 

Update availabilities on plant (i*) and DC (j*) 

step 5. if then
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Fig. 3.3: Decoding procedure 

 

The proposed TP includes exclusionary side constraints. Therefore, we propose the 

effective method to satisfy exclusionary side constraints. This technique does not need 

special check routines for infeasible solutions, so it can reduce computation time. First, 

we consider whole network as ordinary two-stage transportation model. Next, we assign 

immeasurable costs to prohibited routes. These prohibitive costs correspond to the 

dashes in cost matrix. This is equivalent to reproduction of network model with 

restricted delivery routes. 

As explained above, decoding process of priority-based representation chooses low 

cost route preferentially. Therefore, the decoding process is not chooses very high cost 

routes. On the other hand, if decoding process selects route with immeasurable costs, 

selection process treats it as an obviously poor solution. 
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Fig. 3.4: A sample of transportation tree and chromosome 

 

3.4.2 Crossover 

Crossover is performed to search new solution space. In this research, we adopt 

Weight Mapping Crossover (WMX) [18]. This method is extension of one-point 

crossover. The parents inherit priority order of crossover portion to offspring. In one 

offspring, there are no same priority orders in right side and left side of cut point. 
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Fig. 3.5: Illustration of WMX 
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3.4.3 Mutation 

Mutation is a genetic operation to maintain the diversity of population by changing 

some genes. In this chapter, we adopt a swap mutation. This operator selects a pair of 

genes randomly and exchanges them. We apply this mutation at first and second stages 

for diversity. 

 

3.4.4 Evaluation and selection 

The evaluation function is inverse of objective function. Moreover, roulette strategy 

is adapted for selection method. 

 

 

3.5 Hybrid priority-based genetic algorithm (h-priGA) 

In this chapter, we also prepare priGA with Fuzzy Logic Controller (FLC) [27] [28] 

[29]. This algorithm is called hybrid priority-based GA (h-priGA). FLC is the 

auto-tuning method for the crossover rate and mutation rate. We also apply improved 

priority-based encoding to h-priGA. In numerical experiments, we check the effect of 

FLC. We show the process flow of h-priGA in Fig. 3.6. Moreover, the composition of 

processing is described below. 
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Fig. 3.6: Illustration of FLC 
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Fuzzy Logic Controller procedure 

Step 1: Using the following expression, the average evaluation for the previous 

population (eval (v; t-1)) and the current population (eval (v; t)) are calculated: 

( ) ( ) ( )11
;;

;  
popSize offSizepopSize

kk k popSizek
eval teval t

eval t
popSize offSize

υυ
υ

+

= +== −
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Step 2: Using the fuzzy decision table (Table 3.1), the control actions for variations of 

the crossover probability Δc(t) and mutation probability Δm(t) for the above 

values (eval (v; t-1)), (eval (v; t)) are determined. 

 

• If 2
0 ( ; )eval v t ε< ≤ , then the crossover probability and mutation probability 

are increased in the next generation. Here ε is a small positive real number. 

• If 2
( ; ) 0eval v tε− ≤ < , then the crossover probability and mutation probability 

are decreased in the next generation. 

• If the variation of the average evaluation is small, then the crossover 

probability and the mutation probability are increased sharply in the next 

generation. 
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Table 3.1: Fuzzy decision table 

( )tcΔ ( )1−Δ teval

( )tevalΔ

PRPRPLPLPMPMPSPSZEPR

PRPLPLPMPMPSPSZEZEPL

PLPLPMPMPSPSZEZENSPM

PLPMPMPSPSZEZENSNSPS

PMPMPSPSPMZENSNSNMZE

PMPSPSZEZENSNSNMNMNS

PSPSZEZENSNSNMNMNLNM

PSZEZENSNSNMNMNLNLNL

ZEZENSNSNMNMNLNLNRNR

PRPLPMPSZENSNMNLNR

PRPRPLPLPMPMPSPSZEPR

PRPLPLPMPMPSPSZEZEPL

PLPLPMPMPSPSZEZENSPM

PLPMPMPSPSZEZENSNSPS

PMPMPSPSPMZENSNSNMZE

PMPSPSZEZENSNSNMNMNS

PSPSZEZENSNSNMNMNLNM

PSZEZENSNSNMNMNLNLNL

ZEZENSNSNMNMNLNLNRNR

PRPLPMPSZENSNMNLNR

ZE (Zero)
PR (Positive Larger);NS (Negative Small);
PL (Positive Large);NM (Negative Medium);
PM (Positive Medium);NL (Negative Large);

PS (Positive Small);NR (Negative Larger);

ZE (Zero)
PR (Positive Larger);NS (Negative Small);
PL (Positive Large);NM (Negative Medium);
PM (Positive Medium);NL (Negative Large);

PS (Positive Small);NR (Negative Larger);

 

 

Step 3: Normalized values are decided in advance as Table 3.2 (look-up table), and the 

variations of the crossover probability and mutation probability are calculated 

as follows: 

( ) ( )1 ,  c t z i jγΔ = ⋅ ,  ( ) ( )2 ,  m t z i jγΔ = ⋅  

Here z(i, j) are elements in Table 3.2 that express the normalized values of the 

control action for the crossover probability and mutation probability, and γ1 and 

γ2 are accommodation coefficients. 
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Table 3.2: Look-up table 
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Step 4: The crossover probability and mutation probability are modified as follows: 

( ) ( ) ( ) ( ) ( ) ( )1 , 1  C C M Mp t p t c t p t p t m t+ = + Δ + = + Δ  

Here pc(t) and pm(t) are, respectively, the crossover probability and mutation 

probability for the next generation t. 

 

Step 5: The procedure returns to the GA loop. 

 

 

3.6 Numerical experiments 

In this section, we perform comparison experiment using proposed TP. Following 

four GAs are used for comparison. 

• priGA with PMX (priGA-PMX) 

• priGA with WMX (priGA-WMX) 

• h-priGA with PMX (h-priGA-PMX) 

• h-priGA with WMX (h-priGA-WMX) 

 



3.6 Numerical experiments 

32 32

These four GAs were prepared in order to investigate the effect of FLC and WMX for 

improved priority-based encoding. We show the test data in Table 3.3. We prepared four 

problems with number of plants from 4 to 15, and number of DCs and customers from 5 

to 25 and 15 to 50, respectively. We generate delivery cost and operation cost of DCs 

randomly. The plants treat two types of products. Moreover, the prohibited routes in 

each stage were randomly generated 15% or less of total number of nodes. 

 

Table 3.3: Test problems size 
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   The initial population size was set to 100. For non-hybrid algorithm, we prepared 

three kinds of crossover rate (pc) and mutation rate (pm). The h-priGA is not dependent 

on initial value of both parameters. Each problem was calculated 30 times respectively.  

We show the calculation results in Table 3.4. Four GAs that applied improved 

priority-based encoding were able to calculate solutions. The table presents pc, pm, the 

best solutions in 30 runs (Best), the average solutions in 30 runs (AVG), standard 

deviation (SD) and average computing time (ACT). As a result, h-priGA-WMX was 

best method for all test problems. In particular, h-priGA-WMX outperformed two 

methods with initial parameters (priGA-WMX, priGA-PMX). These results proved the 

validity of FLC. In addition, WMX excelled PMX in solution quality and processing 

time. The reason is the repair mechanism of chromosomes (infeasible solutions) after 
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PMX. On the other hand, FLC was very effective to reduce the computation time. 

Furthermore, when we compare h-priGA-WMX and priGA-PMX(0.5, 0.3) in problem 1, 

h-priGA-WMX reduced Best and ACT(s) about 7.2%, 76% respectively. Fig. 3.7 shows 

the evolutionary process of all methods. We can see that h-priGA evolve rapidly to find 

the best solution. 

 

Table 3.4: Comparison result 
.  priGA 

 -PMX 
priGA 

 -WMX 
h-priGA 
 -PMX 

h-priGA 
 -WMX 

  (pC, pM) (pC, pM) - - 

Problem 
No. 

 (03, 0.1) (0.5, 0.3) (0.7, 0.5) (03, 0.1) (0.5, 0.3) (0.7, 0.5) - - 

Best 8674.01 8674.02 8656.00 8270.00 8270.00 8062.03 8070.00 8046.27 

AVG 8784.40 8769.00 8778.47 8272.53 8271.73 8070.67 8077.00 8065.93 

SD 40.86 38.37 35.90 12.62 12.27 13.98 15.25 10.35 
1 

ACT(s) 7.31 8.06 9.30 2.91 4.82 6.81 1.95 1.93 

Best 11668.30 11668.00 11668.00 11644.00 11644.00 11644.00 11668.00 11624.10 

AVG 11745.13 11728.87 11711.07 11689.67 11679.00 11673.07 11733.60 11664.27 

SD 33.07 28.68 30.61 22.93 24.61 25.07 23.26 18.80 
2 

ACT(s) 8.72 9.45 10.38 4.64 8.07 10.05 2.98 2.80 

Best 10950.00 10968.03 11028.23 10850.00 10856.20 10806.21 10898.22 10806.21 

AVG 11971.33 11143.40 11080.47 10967.20 10911.33 10903.53 11064.07 10902.01 

SD 46.91 48.27 53.14 44.28 47.37 43.32 50.39 42.02 
3 

ACT(s) 9.31 17.21 25.10 8.95 17.17 23.77 5.24 5.11 

Best 12652.71 12697.00 12660.03 12612.00 12642.40 12654.80 12643.50 12630.50 

AVG 12753.67 12720.93 13708.80 12729.60 12715.67 12695.93 12768.94 12681.13 

SD 38.91 37.15 35.46 37.71 31.35 31.26 27.20 21.92 
4 

ACT(s) 14.98 26.38 37.80 13.35 25.31 35.88 8.21 7.12 
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Fig. 3.7: The evolution process in both methods 

 

3.7 Summary 

In this chapter, we proposed multi-product two-stage transportation model with 

exclusionary side constraints. This model considers the drawbacks of traditional TP and 

real-world conditions. In proposed TP, plants produce several kinds of items, and the 

delivery routes and transportation costs vary with the products. Since GA expresses the 

solutions as chromosomes, it was difficult to solve this kind of model. Therefore, in 

order to calculate by GA and to satisfy exclusionary side constraints easily, we also 

present improved priority-based representation. This technique has no necessary check 

routine of infeasible solution. In addition, it can reduce the computation time 

simultaneously.  

In numerical experiments, we compared four GAs. As a result, it became clear that 

proposal TP model could solve by four GA with improved priority-based representation. 

Moreover, h-GA reduced computation time sharply and achieved good results.  
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However, proposed TP model did not cover inventory concept. Furthermore, in 

recent years, real delivery routes are becoming more complicate. These problems are 

future research, so we propose new TP model in following chapter. 
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Chapter 4. Two-stage Transportation Problem with inventory 

and exclusionary side constraints (esc-2ITP) 

 

4.1 Introduction [34]-[39] 

In Chapter 3, we proposed multi-product two-stage transportation model with 

exclusionary side constraints. In addition, in order to satisfy exclusionary side 

constraints easily, we also proposed improved traditional priority-based representation. 

However, proposed TP model in Chapter 3 did not consider several important subjects. 

For example, these are concept of inventory and time. At the same time, we only 

showed that problem solving at four types of priGAs with proposed representation 

method. We did not overcome the weak point of GA.  

In this chapter, we propose a two-stage transportation problem with inventory and 

exclusionary side constraints (esc-2ITP). The esc-2ITP is extended TP proposed in 

Chapter 3. This model designs delivery plan for multiple periods and demands of DCs 

are satisfied for each term. For numerical experiments, each plant decides next 

production quantity according to ordering quantity of DC. This ordering quantity 

calculated from a simple demand-forecasting equation.

 

4.2 Formulation of esc-2ITP model 

When we try to sell certain goods, it is necessary to keep a certain quantity until 

they sold. If there are no goods to satisfy consumer demands, the opportunity of 

business is lost. However, if storage space for inventory is required, inventory cost 
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occurs. Therefore, inventory costs and we must keep inventory amounts as small as 

possible without inventory shortage. Moreover, a concept of time factor is needed to 

calculate a carrying cost in certain time. Further, when the company does not have 

enough inventories, service level may decrease. It is necessary to keep proper inventory 

and service level. Although the company has introduced the various demand-forecasting 

techniques, there is no positive technique. The main reasons are short product life cycle 

(PLC) and diversification of demand.  

The esc-2ITP designs a distribution network to satisfy customer demands at 

minimum cost according to capacity of plants and the DCs. Fig. 4.1 shows the sample 

model of esc-2ITP. The esc-ITP has similar form with TP proposed in Chapter 3. 

However, in esc-2ITP, inventory and a carrying cost are generated in each plants and 

DCs. Moreover, if products are manufactured, management cost occurs in plants.  
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Fig. 4.1: Sample of esc-2ITP 
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Indices:  

i: plant, i=1, 2,…, I 

j: DC, j=1, 2,…,l ,…,J 

k: customer, k=1, 2,…, K 

t: time period, t=1, 2,…, T 

e: product ID, e=1, 2,…, E 

I: total number of plants 

J: total number of DCs 

K: total number of customers 

E: total kind of products 

T: total number of periods  

 

Parameters:  

aei : capacity of plant i for product e  

bej : capacity of DC j for product e  

dek(t): demands of customer k for product e in period t 

D ( )eijc t : delivery cost for product e from plant i to DC j in period t 

D ( )ejkc t : delivery cost for product e from DC j to customer k in period t 

P
eic : manufacture cost of product e 

cei : inventory cost of plant i 

cej : inventory cost of DC j 

 

Decision variables:  

xeij(t): shipment amount of product e from plant i to DC j in period t 
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yejk(t): shipment amount of product e from DC j to customer k in period t   

pei(t): production quantity of plant i in period t 

uei(t): amount of inventories of the plant i in period t  

uej(t): amount of inventories of the DC j in period t 

 

The first stage is formulated as TP with inventory. The second stage is formulated 

by escTP model. When we formulize, we assume the following assumption this 

research. 

 

A1. Plant and DC have storage spaces for each product. 

A2. Demand of customer can be filled with the capacity of the above-mentioned 

space. 

A3. Customer demand is obtained exponential smoothing.  

A4. Arrangement place of each facility is known.  

A5. Delivery cost is known at each stage. 

A6. Kind of product manufactured at each factory is known.  

A7. Production is performed in an instant.  

A8. Delivering from the plant to the customer is carried out immediately.   

A9. This model draws up a delivery plan for multiple periods. 

 

In this research, we did not consider the amount of maximum accumulation of plants 

and DCs. Also changing of the commodity value by progress of time does not consider. 

We formulate esc-2ITP as follows. 
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Equation (4.1) is objective function for minimizing total cost. Constraints (4.2) and 

(4.3) show the inventory in the plant and that in the DC respectively. Constraints (4.4) 

and (4.5) represent the capacity constraints of plants and DCs. Constraint (4.6) ensures 

that all demands in period t are satisfied. Constraint (4.7) represents the extended 

exclusionary side constraint. This shows that two different DCs, j and l, are not allowed 

to serve customer k simultaneously. Pk= {(e, g)| product e and g cannot be 

simultaneously shipped to customer k}. In the same way, Dk = {(j, l)| products from DC 

j and l cannot be simultaneously shipped to customer k}. 

Moreover, we decide production quantity in the current period from equation (4.9) 

(exponential smoothing). For numerical simulation, we use this equation to determine 

the next order quantity of DCs. Exponential smoothing is the representative time-series 

analysis technique. Usually, this technique uses time-series data to forecast a value in 

the future. In weighting past data, high value is placed on newer data. In one of the 

weighted average methods, a low weight is assigned to past data (exponential decrease), 
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and the moving average is calculated. To decide the degree of influence of the past 

forecast value, coefficient α (the smoothing factor) is set in a range of 0<α <1. This is 

simulated by accumulating the past data. Usually α is set so that the forecast value and 

error of result are minimized. 

 

Predicted value = α × Last track record value＋(1－α) × The last predicted value 

)1()1()1()( FF −−+−= tytyty ejkejkejk αα  (4.9)

 

In this case, )(F tyejk  is the demand forecast value in period t. Then subtract current 

inventory amount from )(F tyejk , we can get next order quantity. We assumed the total 

volume of production in this period. 

 

 

4.3 Summary 

   In this chapter, we proposed ecs-2ITP model as extended TP proposed in Chapter 3. 

This model includes the concepts of proper inventory and various costs generated on 

logistics network. Simultaneously, ecs-2ITP designs the delivery plan for multiple 

periods. In Chapter 4, we describe the algorithm that improves weak points of GA. The 

development of solution algorithm for ecs-2ITP is next subject.  
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Chapter 5. Boltzmann random key-based GA (Brk-GA) 

 

5.1 Introduction 

In this chapter, we develop a solution algorithm for esc-2ITP. The solution method 

for Chapter 3 was improved only chromosome representation. Thus, the weak points of 

GA were not improved. Therefore, we design a new GA approach which consider the 

search mechanism of GA synthetically. This approach is a Boltzmann random key-based 

GA (Brk-GA). Since this algorithm has a simple structure, the computation time can be 

reduced. In addition, we incorporate Boltzmann selection mechanism [40]. In classic 

GA, it is known that Boltzmann selection can decrease a probability of premature 

convergence to local minimum. 

The following literatures are examples of improved Boltzmann selection and 

example that applied Boltzmann selection. Mori, et al proposed Thermodynamic 

Genetic Algorithm (TDGA) which explicitly consider the diversity of population [41]. 

TDGA estimates diversity of population clearly as entropy. In addition, this GA forms 

population to minimize free energy that harmonized adaptive value and entropy using 

temperature parameter. This technique is effective for combination optimization 

problem. Further, since TDGA maintains the diversity, it has a possibility of applicable 

to multi-objective optimization problem. In the literature, TDGA applies to a knapsack 

problem in evaluation experiment. The effect for TP is not yet proved. Ambedkar, et al 

[42] proposed a Cauchy annealing schedule for Boltzmann selection scheme. This 

selection schema is based on a hypothesis that selection-strength should increase as 

evolutionary process goes on. At the same time, distance between two selection 

strengths should decrease for the process to converge. In addition, they developed 
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formalism for selection mechanisms using fitness distributions and give an appropriate 

measure for selection-strength. In numerical experiments, they compare Boltzmann 

selection with Cauchy annealing schedule and traditional Boltzmann selection. Both 

techniques were applied to several variable functions. However, authors did not describe 

the computation time. It seems that computation time is needed, because proposed 

technique is complicated. We need flexible GA which can respond in an instant for the 

sequential change of road environment.

Meanwhile, classical GA uses a bit vector for chromosome expression. On the other 

side, st-GA and priGA are order-phenotype GA. In order-phenotype GA, these 

chromosomes express tree structures or delivery patterns. Many literatures that treat 

Boltzmann selection use classical GA [43]. This chapter verifies the effectiveness of the 

Boltzmann selection to order-phenotype GA. Moreover, it is necessary to compare with 

FLC examined in Chapter 3. 

In this chapter, we show the performance assessment of Brk-GA using esc-2ITP 

proposed in Chapter 4.  

 

 

5.2 Boltzmann random key-based GA (Brk-GA)  

As discussed in Chapter 3, traditional GA has several problems. These are a high 

calculation load, precocious convergence to local minimum, and complexity of 

parameter setting. Premature convergence to a local minimum is related with the width 

of search space. If it falls into local minimum in early stages of search, wide range 

search does not perform. Although GA scatters many samples called an initial 

population to search space, it does not escape from local minimum.  
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In addition, the features of order-phenotype GA are compact expression of solutions 

and small calculation cost of coding. However, in order-phenotype GA, crossover 

operator changes the feature of a chromosome (solution) a lot. Therefore, if high 

crossover rate is set up, it does not only bar convergence of search, but it will increase 

computation time. Furthermore, the roulette strategy tends to fall into a local minimum. 

Simultaneously, we consider that an elite strategy is a risky method, which it is easy to 

run into a local minimum. 

Therefore, in order to cope with these problems, we design Brk-GA. This approach 

has several features such as a random key-based encoding method, simple structure and 

Boltzmann roulette selection. Brk-GA allows robust search that consider the balance of 

exploration and exportation. This technique also aims at shortening computing time and 

reducing precocious convergence by reducing the unevenness of solutions. Finally, 

numerical experiments with various scales of esc-2ITP show the effectiveness and the 

efficiency of Brk-GA. 

 

5.2.1 Random key-based representation 

In Brk-GA, we adopt random key-based encoding. This technique is advanced 

encoding method proposed in Chapter 3. This technique can shorten the processing time 

of intersection. The length of chromosome equals to total number of plants and DCs. the 

gene IDs are represent node IDs in the network. The value of genes represents their 

priority. These priority values are used in decoding to construct transportation tree. For 

esc-2ITP, we apply this encoding to each stage. While the first part represents the 

transportation tree between plants and DCs, the second part represents the transportation 

tree between DCs and customers. 
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Fig. 5.1 represents a transportation tree with three plants and four DCs, its cost 

matrix and chromosome. In this chapter, we generated a random number in the range of 

0 to 1 to design the chromosomes. 
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Fig. 5.1: Sample of random key-based GA 

 
Table 5.1: Trace table of decoding procedure 

step v(i+j) a b 
0 [0.216 0.464 0.331 | 0.714 0.381 0.185 0.538] (550, 300, 450) (300, 350, 300, 350)
1 [0.216 0.464 0.331 | 0.000 0.381 0.185 0.538] (250, 300, 450) (300, 350, 300, 350)
2 [0.216 0.464 0.331 | 0.000 0.381 0.185 0.000] (250, 300, 100) (300, 350, 300, 300)
3 [0.216 0.000 0.331 | 0.000 0.381 0.185 0.000] (250, 300, 100) (300, 350, 300, 300)
4 [0.216 0.000 0.331 | 0.000 0.000 0.185 0.000] (250, 390, 350) (300, 300, 300, 300)
5 [0.216 0.000 0.000 | 0.000 0.000 0.185 0.000] (250, 300, 300) (300, 300, 250, 300)
6 [0.000 0.000 0.000 | 0.000 0.000 0.000 0.000] (300, 300, 300) (300, 300, 300, 300)

 

procedure 1 : Decoding of the chromosome for transportation tree
Input :  I : set of plant,   J : set of DCs, 

bj :  demand on DC j, ∀j ∈ J,
ai :  capacity of plant i, ∀k ∈ I,
cij :  transportation cost of one unit of product from plant i to DC j,

∀i∈I,∀j∈J,
v (i+j)  : chromosome, ∀i ∈ I, ∀j ∈ J,    

output : gij : the amount of product shipped from plant i to DC j
step 1. gij ← 0, ∀i ∈ I, ∀j ∈ J, 
step 2.                                           ; select a node
step 3. if z∈I, then i* ← z; select a plant

; select a DC with the lowest cost
else j* ← z; select a DC

;select a plant with the lowest cost
step 4.                               ; assign available amount of units 

Update availabilities on plant (i*) and DC (j*) 

step 5. if then
if then

step 6. if                      , ∀j ∈ J, then calculate transportation cost and return, 
else goto step 1. 
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procedure 1 : Decoding of the chromosome for transportation tree
Input :  I : set of plant,   J : set of DCs, 

bj :  demand on DC j, ∀j ∈ J,
ai :  capacity of plant i, ∀k ∈ I,
cij :  transportation cost of one unit of product from plant i to DC j,

∀i∈I,∀j∈J,
v (i+j)  : chromosome, ∀i ∈ I, ∀j ∈ J,    

output : gij : the amount of product shipped from plant i to DC j
step 1. gij ← 0, ∀i ∈ I, ∀j ∈ J, 
step 2.                                           ; select a node
step 3. if z∈I, then i* ← z; select a plant

; select a DC with the lowest cost
else j* ← z; select a DC

;select a plant with the lowest cost
step 4.                               ; assign available amount of units 

Update availabilities on plant (i*) and DC (j*) 

step 5. if then
if then

step 6. if                      , ∀j ∈ J, then calculate transportation cost and return, 
else goto step 1. 
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Fig. 5.2: Decoding procedure 
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This technique has a decoding mechanism like priority-based encoding developed 

by Gen & Cheng [27] [28]. Fig. 5.2 shows the decoding procedure, and its trace table is 

given in Table 5.1. As the trace table shows, in the first step, since DC 1 has the highest 

priority in the chromosome and the lowest cost is between Plant 1 and DC 1. Then, an 

arc between DC 1 and plant 1 is added to transportation tree. After determining the 

amount of shipment that is g11 = min{550, 300} = 300, the capacity of the plant and the 

demand of the DC are updated as a1 = 550-300 = 250, b1 = 300 – 300 = 0, respectively. 

Since b1 = 0, the priority of DC 1 is set to 0, and DC 4 with the next-highest priority is 

selected. After adding an arc between DC 4 and plant 3, the amount of the shipment 

between them is determined and their capacity and demand are updated as explained 

above. This process repeats until the demands of all DCs are satisfied.  

This representation uses a random number, so it has advantage for crossover 

compare with priority-based encoding. To keep priority order, priority-based encoding 

needed special crossover (WMX). We need chromosome representation which do not 

need special repair mechanism. 

Fig. 5.3 is the sample network model and chromosome. The first part of the 

chromosome consists of seven digits; the second part consists of nine digits. The hyphen 

in a cost matrix is the route included exclusionary side constraints. Since decoding 

mechanism is same with improved priority-based representation, we can satisfy 

exclusionary side constraints using same way in Chapter 3. While random key-based 

representation has an advantage of improved priority-based representation, it can use 

simple crossover. 
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Fig. 5.3: Sample of esc-2ITP model and chromosome 

 

5.2.2 Genetic operators 

The main characteristics of Brk-GA are as follows: 

1. The Boltzmann roulette selection method is used in the selection mechanism. 

2. The simple chromosome representation searches the lowest course preferentially. 

3. The simple crossover reduces the computing time. 

 

In this time, we do not improve crossover and mutation method. We consider 

diversity of population and width of search space mainly.  

Therefore, the most desirable technique can cover wide solution space in short time. 

Because we adopt random key-based method, we can use traditional one-cut crossover. 
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In the case of order-phenotype GA, the offspring generated in the crossover often show 

sudden variations. We need attention to set crossover rate and mutation rate in 

order-phenotype GA. In order-phenotype GA, if we set large crossover rate, it gives 

substantially change to population (solutions). This substantially change worsens 

computation time. So in this chapter, we carefully examine initial parameter value. 

Additionally, we apply swap mutation in each stage. Two digits are randomly 

selected and their positions are exchanged. The fitness function is the inverse of 

objective function. In selection, we apply Boltzmann roulette selection. In traditional 

roulette wheel method, the same chromosome may be chosen. In addition, there are 

more problems such as good individual that is not chosen or becomes extinct 

immediately even if very good individual appears. Furthermore, the individuals may fall 

into a local minimum. Boltzmann roulette selection is effective to these problems. 

 T
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( )
1

Fk
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k popSize
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eeval v
e

popSize =

=
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(5.9)

 

Equation 5.9 is a general Boltzmann distribution. bT expresses the temperature and 

FA is the total fitness value in the current generation. At the initial stage of the evolution, 

this equation gives a lower evaluation standard to maintain the diversity of the 

population. Later, the evaluation standard becomes severe as evolution advances. This 

method does not let the population perform a sudden evolution at the same time it 

evades precocious convergence to the local solution. In this chapter, temperature bT was 

decided from the result of the preliminary experiment. In this technique, the evaluation 

value is updated every generation even if it is the same individual. The roulette wheel 

selection operates based on the evaluation value obtained from equation 5.9.  
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The procedure of the Boltzmann roulette selection method is shown in Fig. 5.4.  

 

 

Fig. 5.4: The procedure of Boltzmann roulette selection 

 

We also present the total procedure of the Brk-GA in Fig. 5.5. Here, P(t) and C(t) 

are the parents and offspring in current generation t. bTc is the amount of change of 

temperature and bTm is the minimum temperature, and 1 is inputted to this value in the 

present study. FSUM and FAVG are defined as the total fitness value and the average 

fitness value, respectively. 

procedure: Boltzmann scaling selection
input: population, P(t -1), C(t -1), popSize
output: population, P(t), C(t) 
begin

step1: Check the current Boltzmann temperature
if (bT < bTm ) then

bT ← bTm

step2: Calculate the average fitness FAVG for the population using    
for (k=1 to popSize)

FSUM += exp(eval(vk) / bT);
FAVG ← FSUM / popSize

step3: calculate the new fitness
for (k=1 to popSize)

eval(vk) ← exp(eval(vk) / bT) / FAVG;

e

procedure: Boltzmann scaling selection
input: population, P(t -1), C(t -1), popSize
output: population, P(t), C(t) 
begin

step1: Check the current Boltzmann temperature
if (bT < bTm ) then

bT ← bTm

step2: Calculate the average fitness FAVG for the population using    
for (k=1 to popSize)

FSUM += exp(eval(vk) / bT);
FAVG ← FSUM / popSize

step3: calculate the new fitness
for (k=1 to popSize)

eval(vk) ← exp(eval(vk) / bT) / FAVG;

e

step4: Calculate the total fitness F for the population

step5: Calculate selection probability
pk=eval(vk) / F ,  for each vk

// The following step 6 & step7 are general roulette wheel selection.
step6: Calculate cumulative probability 

= ∑
popSize

k
k
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=1

( );

step4: Calculate the total fitness F for the population

step5: Calculate selection probability
pk=eval(vk) / F ,  for each vk

// The following step 6 & step7 are general roulette wheel selection.
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step7: Generate a random number r from the range[0, 1] to select 
the individuals.

step8: Update the current Boltzmann temperature 
bT ← bT - bTc

end

step7: Generate a random number r from the range[0, 1] to select 
the individuals.

step8: Update the current Boltzmann temperature 
bT ← bT - bTc

end

step4: Calculate the total fitness F for the population

step5: Calculate selection probability
pk=eval(vk) / F ,  for each vk

// The following step 6 & step7 are general roulette wheel selection.
step6: Calculate cumulative probability 

= ∑
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( );

step4: Calculate the total fitness F for the population

step5: Calculate selection probability
pk=eval(vk) / F ,  for each vk

// The following step 6 & step7 are general roulette wheel selection.
step6: Calculate cumulative probability 

= ∑
popSize

k
k
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=1

( );T =

step7: Generate a random number r from the range[0, 1] to select 
the individuals.

step8: Update the current Boltzmann temperature 
bT ← bT - bTc

end

step7: Generate a random number r from the range[0, 1] to select 
the individuals.

step8: Update the current Boltzmann temperature 
bT ← bT - bTc

end

Boltzmann roulette selection
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procedure: Brk-GA
input: problem data, GA parameters (popSize, maxGen, PC, PM)
output: the best solution
begin

t ← 0;
initialize P(t) by random key-based encoding routine;
evaluate P(t) by random key-based decoding routine;
while (not terminating condition) do

create C(t) from P(t) by one-cut crossover;
create C(t) from P(t) by insertion mutation routine;
climb C(t) by local search routine;
evaluate P(t) by random key-based decoding routine;
select P(t+1) from P(t) and C(t) by Boltzmann scaling selection;
t ← t+1;

end
output: the best solution

end

Boltzmann roulette selection

procedure: Brk-GA
input: problem data, GA parameters (popSize, maxGen, PC, PM)
output: the best solution
begin

t ← 0;
initialize P(t) by random key-based encoding routine;
evaluate P(t) by random key-based decoding routine;
while (not terminating condition) do

create C(t) from P(t) by one-cut crossover;
create C(t) from P(t) by insertion mutation routine;
climb C(t) by local search routine;
evaluate P(t) by random key-based decoding routine;
select P(t+1) from P(t) and C(t) by Boltzmann scaling selection;
t ← t+1;

end
output: the best solution

end

Boltzmann roulette selection

 

Fig. 5.5: The overall procedure of Brk-GA 

 

 

 

5.3 Numerical experiment 
To confirm the performance of Brk-GA, we perform a comparison experiment of 

four techniques: 

• GA 1. spanning tree-based GA (st-GA) 

• GA 2. priority-based GA (priGA)  

• GA 3. hybrid priority-based GA (h-priGA) 

• GA 4. Boltzmann random key-based GA (Brk-GA))
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Table 5.2: Constitution of each technique 
GA Encoding method Crossover Mutation FLC Selection 

st-GA Prüfer number-based one-cut point crossover swap - roulette wheel 

priGA priority-based WMX swap - roulette wheel 

h-priGA priority-based WMX swap ○ roulette wheel 

Brk-GA random key-based one-cut point crossover swap - Boltzmann roulette

 

We show the operator of each GA in Table 5.2. The WMX is crossover method for 

priority-based encoding method. The FLC is the auto-tuning method of the crossover 

rate and the mutation rate. Refer to Chapter 3 for the flow of detailed processing. In GA, 

parameters are fixed and the evolution process is followed based on the value. In this 

case, crossover and mutation always occur by same probability, and the evolution 

process must not contain any diversity. If suitable probability is applicable to the 

generation, we can obtain better solution quality, and the computation time will be 

shorter. In order to cope with these problems FLC was proposed. In Chapter 3, FLC 

surely improves evolution speed. However when we verify a graph of evolution process, 

we can confirm the possibility that fell into a local minimum at an initial stage. In GA, 

the calculation time is one of the weak points. But, FLC decreases many merits of the 

multi-thread search instead of improving the calculation time.  

Table 5.3 shows the test data for experiment, and we generate these data randomly. 

The delivery cost was generated from a uniform distribution between 20 and 35. The 

prohibited delivery routes were generated at 5% of total number of nodes. In addition, 

the number of products was set to 2. The unit inventory holding costs of each product 

were set in order to 2 and 3. GA parameters were decided based on a preliminary 

experiment. However, hybrid GA is not affected by the initial parameter. Additionally, 

esd-2ITP draws up delivery plans for four periods.  
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Table 5.3: Test problem size 
Problem 
No. 

No. of 
plants (i)

No. of 
DCs (j) 

No. of 
customers (k)

Population
size 

Max 
generation

Crossover  
rate (pC) 

Mutation 
rate (pM) 

1 4 5 15 100 1000 0.3 0.1 

2 6 10 35 100 1000 0.3 0.1 

3 7 14 45 100 1000 0.5 0.2 

4 10 20 60 100 1000 0.5 0.2 

 

As the preceding chapter having described, we decide the amount of production in 

the current period from equation 4.9 (exponential smoothing).  

)1()1()1()( FF −−+−= tytyty ejkejkejk αα  (4.9) 

 

In this case, )(F tyejk  is the amount of demand calculated in period t. The esc-2ITP 

determines next order quantity of DC using this formula (as Chapter 3 described). Also 

at the start of experiment (i.e. t=0), we predict before-period demand by random number 

from 100 to 150. Moreover, the initial inventory quantities of the DC are set with 

random numbers 10-20. 

Table 5.4 gives the best solution, average of solutions, standard deviation (SD), and 

average computation time (ACT), of 30 runs. The lower stand of the best value 

expresses the delivery cost of each period. As a result, Brk-GA gave a superior 

experimental best value in all problems. The computing time of h-priGA was shorter 

than Brk-GA. However, Brk-GA was superior in SD value; and, when comparing 

h-priGA with priGA in SD value, we can confirm large variations of solution increases 

by incorporating FLC. In the improvement rate that we compared with st-GA, the best 

value was about 5.7% and the computational time was about 65%. As for the calculation 

time of Brk-GA provided from this experiment, it seems that it was within the permitted 

range. The effectiveness of GA with diversity was proven. Finally, we show the 



5.3 Numerical experiment 

53 53

evolutional graph of problem 4 in Fig. 5.6. Also an example of the designed network 

(problem 1) is shown in Fig. 5.7. 

 

 
Fig. 5.6: The evolutional graph 
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Table 5.4: Result of comparison experiments 
 st-GA priGA 
Problem  
No. Best AVG SD ACT(s) Best AVG SD ACT(s)

13546 13863 

1 
t=1: 3704
t=2: 3421
t=3: 3696
t=4: 2725

13884.41 129.77 1.20 
t=1: 3797
t=2: 3277
t=3: 3499
t=4: 3290

14116.08 46.29 1.03 

22069 22437 

2 
t=1: 5728
t=2: 5323
t=3: 5603
t=4: 5415

23714.47 1078.18 2.82 
t=1: 5778
t=2: 5500
t=3: 5776
t=4: 5383

23650.04 1224.46 2.47 

38021 37770 

3 
t=1: 9124
t=2: 9708
t=3: 9803
t=4: 9386

40364.02 887.15 5.60 
t=1: 9684
t=2: 9261
t=3: 9207
t=4: 9548

39374.20 768.27 4.75 

57774 56214 

4 
t=1: 14590
t=2: 14464
t=3: 14099
t=4: 14621

57338.00 1159.67 13.03 
t=1: 14317
t=2: 14514
t=3: 13706
t=4: 13677

56195.22 1024.03 7.29 

         

 h-priGA Brk-GA 
Problem  
No. Best AVG SD ACT(s) Best AVG SD ACT(s)

13967 13501 

1 
t=1: 3785
t=2: 3255
t=3: 3492
t=4: 3435

14282.00 72.61 0.55 
t=1: 3454
t=2: 3392
t=3: 3271
t=4: 3484

13534.91 20.15 1.03 

22400 21977 

2 
t=1: 5808
t=2: 5504
t=3: 5733
t=4: 5355

30436.50 3294.66 0.96 
t=1: 5701
t=2: 5350
t=3: 5603
t=4: 5323

23539.30 891.85 2.11 

36218 35586 

3 
t=1: 9522
t=2: 8806
t=3: 9097
t=4: 8793

40922.86 1569.68 1.78 
t=1: 8834
t=2: 8915
t=3: 8929
t=4: 8908

38956.47 503.52 2.71 

55192 54470 

4 
t=1: 13480
t=2: 14310
t=3: 13265
t=4: 14137

56251.93 1362.59 2.53 
t=1: 13248
t=2: 13999
t=3: 13758
t=4: 13465

54578.66 663.20 4.61 
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Fig. 5.7: Delivery situation of each term 
 
 
 

5.4 Summary 

In this research, we designed Brk-GA. Since this algorithm has a simple structure, 

the computation time can be reduced. In numerical experiments, four different GAs 

including Brk-GA were applied to esc-2ITP. In this comparative experiment, each GA 

calculates each problem 30 times. 
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From the results, although Brk-GA was inferior to h-priGA in average computation 

time, Brk-GA show the best performance in the best solution, average of the best 

solution of 30 calculations, and the standard deviation. When we compared with the 

st-GA that is the oldest method in four GAs, the best solution and computation time 

were improved about 66.1% and 6.3%. However, today’s distribution routes take on a 

flexible form. It means that products may not be delivered based on conventional order 

(plants - DCs – customers). We are planning to consider more concrete 

inventory-control techniques and a shorter product life cycle. 
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Chapter 6. Progressive Flexible Logistics Network Model 

 

6.1 Introduction 

In Chapter 4, we proposed esc-2ITP. This model includes concepts of inventory and 

time. However, the basic network structure is two-stage TP. Therefore, we propose a 

more extended TP with new connection form. This TP model is Progressive Flexible 

Logistics Network (PFLN) model. The main differences between the PFLN and 

esc-2ITP proposed in Chapter 4 are the additional of a retailer and the duplicating of 

direct delivery from. If it assumes that there are four elements (plants, DCs, retailers, 

and customers), traditional TP considers only basic flow that passes each element in 

order. However, PFLN models the deliver directly routes such as plants to customers 

and deliver directly from DC to customers (products do not pass retailers) etc. Therefore, 

we propose the solution technique for flexible logistics network model called as the 

network segment method. This network segment method resolves a complicated 

network to simple TP models. If this technique is applied, we do not need to design a 

special chromosome representation (i.e. a lot of GA for TP can be applied).   

The outline of this chapter is as follows. Section 6.2 describes the mathematical 

formulation of the model. Section 6.3 includes contains of Brk-GA. Section 6.4 show 

the numerical experiments. Finally, section 6.5 concludes with conclusion. 

 

 

6.2 Model explanation 

This TP can treat all currently delivery patterns (Fig. 6.1). For example, companies 

manage a shop in Internet without having a real shop. We did not consider this pattern in 
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Chapter 4. Moreover, the difference of PFLN model and esc-2ITP is not only delivery 

routes. We consider that proposing PFLN will be one of the foundations of delivery 

planning optimizer development. Some precedent studies described with minor 

differences of proposal model. However, PFLN can correspond to today’s distribution 

form and inventory. In addition, PFLN can draw the optimal delivery routes according 

to kind of product. Precedent studies also proposed various solution methods. According 

to minor difference of problem, development of new chromosome is inefficient. We also 

strive to solve this problem.  

 

plant DC retailer customer

plant DC retailer customer

plant customer

plant DC customer

 
Fig. 6.1: Various Delivery Pattern 

 

In Fig. 6.2, we show the image of PFLN model. To define this model, following 

assumptions are used: 

A1. Maximum capacity of each facility (i, j, k) is known. 

A2. Demand of customer l is also already known.  

A3. Arrangement place of each facility (i, j, k) is known.  

A4. Delivery cost ( 1
pijc , 2

pjkc ,…, 6
pjlc ) is known in each stage. 
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A5. Kind of product p manufactured at each factory is known.  

A6. Production is instantly performed. 

A7. Delivery from plant i to customer l is carried out in an instant.   

A8. Change of the value by progress of time is not taken into consideration. 

A9. This model draws up the delivery plan for multi periods. 
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Fig. 6.2: Illustration of proposal model 

 

Indices: 

i: index of plants (I = 1, 2,…,I)  

j : index of DCs (j = 1, 2,…,J)  

k : index of retailers (k= 1, 2,…,K)  

l : index of customers (l= 1, 2,…,L) 

p : kind of products. 
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Parameters:  

api : capacity of plant i for product p.  

bpj : capacity of DC j for product p.  

dpj : capacity of Retailer k for product p.  

el(t): demand of customer l for product p in time period t.  

1
pijc : unit cost of delivery from plant i in product p to DC j.  

2
pjkc : unit cost of delivery from DC j in product p to retailer k.  

3
pklc : unit cost of delivery from retailer k in product p to customer l.  

4
pikc : unit cost of delivery from plant i in product p to retailer k.  

5
pilc : unit cost of delivery from plant i in product p to customer l.  

6
pjlc : unit cost of delivery from DC j in product p to customer l.  

0
pic : fixed manufacture cost of product p.   

cpj : carrying cost in DC j for product p.  

qpi(t): quantity of production of plant i in period t. 

 

Decision variables: 

)(1 txpij : shipment amount of product p from plant i to DC j in time period t.  

)(2 txpjk : shipment amount of product p from DC j to retailer k in time period t. 

)(3 txpkl : shipment amount of product p from retailer k to customer l in time period 

t.  

)(4 txpik : shipment amount of product p from plant i to retailer k in time period t. 
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)(5 txpil : shipment amount of product p from plant i to customer l in time period t. 

)(6 txpjl : shipment amount of product p from DC j to customer l in time period t.  

upi(t): amount of inventories of the plant i in period t. 

upj(t): amount of inventories of the DC j in period t.  

zi: 0-1 variable that takes on the value 1 if plant i is opened. 

 

We formulate the mathematical model of the problem as follows. 

min 1 1 2 2 3 3 4 4

1 1 1 1 1 1 1 1 1 1

5 5 6 6 0

1 1 1 1 1 1
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pij pij pjk pjk pkl pkl pik pik
t p i j j k k l i k

I L J L J I

pil pil pjl pjl pj pj pi i
i l j l j i

z c x t c x t c x t c x t

c x t c x c u t c z t

= = = = = = = = = =

= = = = = =

⎛
= + + +⎜

⎝
⎞+ + + + ⎟
⎠

∑∑ ∑∑ ∑∑ ∑∑ ∑∑

∑∑ ∑∑ ∑ ∑

　
  

(6.1)

s. t. 1 4 5

1 1 1
( ) ( 1) ( ) ( ) ( ) ( ),   ,   

J K L

pi pi pi pij pik pil
j k l

u t u t q t x t x t x t t, i p
= = =

= − + − − − ∀∑ ∑ ∑  (6.2)

 1 2 6

1 1 1
( ) ( 1) ( ) ( ) ( ),       

I K L

pj pj pij pjk pjl
i k l

u t u t x t x t x t t, p, j
= = =

= − + − − ∀∑ ∑ ∑  (6.3)

 ipttzatqtu ipipipi  , ,  ),()()1( ∀≤+−  (6.4)

 1

1
( 1) ( ) ,   , , 

I

pj pij pj
i
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=

− + ≤ ∀∑  (6.5)

 4 2

1 1
( ) ( )  ,   , ,

I J

pik pjk pk
i j

x t x t d t k p
= =

+ ≤ ∀∑ ∑  (6.6)

 5 6 3

1 1 1
( ) ( ) ( )  ( ),   , ,

I J K

pil pjl pkl pl
i j k

x t x t x t e t t l p
= = =
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(6.7)

 
plkjixxxxxx pjlpilpjkpklpjkpij ,,,,  ,0,,,,, 654321 ∀≥  (6.8)

 tiptu pi ,,   ,0)( ∀≥  (6.9)

 ( ) 0,   , ,pju t p j t≥ ∀  (6.10)

 { }( ) 0,1 , iz t i= ∀  (6.11)

 

While constraints (6.2) represent the inventory of plant i in period t, and (6.3) meens 

inventory of DC j in period t, respectively. The constraint (6.4) shows that remainder of 
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before period and quantity of production does not exceed the capacity. The constraint 

(6.5) shows that remainder of before period and order quantity of current term do not 

exceed a capacity. The constraints (6.6) and (6.7) respectively represent the demand of 

retailer and customer. 

 

 

6.3 Solution method by GA 

In article [45], [46], the authors proposed new hybrid evolutionary algorithm (hEA) 

technique to solve a problem. At the same time, they also proposed unique chromosome 

representation. However, the chromosome representation is specialized for flexible 

logistics network model. Furthermore, this technique is difficult to reproduce a flexible 

delivery form completely. Even if it uses such a technique, the width of the search space 

will become narrow. In addition, this technique needs much computation time.  

In the same way, PFLN model has complexity delivery route, so chromosome 

representation becomes particularly important. According to minor difference of 

problem, development of new chromosome is inefficient. Therefore, proposed a 

network segment method which divides PFLN to three sub-networks based on 

difference of delivery form. If this method applied, it becomes possible to avoid 

inefficiency which uses different chromosome due to the slightly change of network 

model. 

 

 

6.3.1 Network segment method 

Designing the chromosome for PFLN is difficult for correctly expressing of delivery 
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routes. Even though GA generates the initial solutions randomly, we cannot take all 

kinds of solution patterns. The initial populations may have only similar solutions. 

Therefore, a search space is narrow even if we perform calculation. In addition, the 

coding method that makes combination immense not only extending the computation 

time but also reducing the probability of obtaining high quality semi-optimal solution.  

Then, we propose a solution technique for the flexible logistics network model. We 

call this technique as the network segment method. This method resolves complicated 

network to simple TP models. It is not necessary to design a special chromosome 

representation. In this chapter, we use a random key-based encoding. This encoding 

method encodes a solution with random numbers. These values are sort keys to decode 

the solution. Refer to Chapter 5 for detailed explanation of this method. We show the 

example that applied random key-based encoding model in Fig. 6.3. When we apply 

network segment method, at first we consider the three-stage TP model that all nodes 

are connected. Next, we divide a network model into three steps. It is suitable method 

for chromosome expression. By using this method, PFLN can solve like three-stage TP. 

Fig. 6.4 show an example of a chromosome.  
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Fig. 6.3: Solution process of this problem 
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Fig. 6.4: A sample of chromosome 

 

6.3.2 Genetic operators  

Genetic operators other than chromosome representation need to refer to Chapter 5.

 

 

6.4 Comparative experiments 

We apply network segment method to five GAs. Then we perform a comparison 

experiment. The five GAs shown below: 

1. spanning tree-based GA (st-GA), [17] [30] 

2. priority-based GA (priGA) 

3. hybrid priority-based GA (h-priGA) 

4. Boltzmann random key-based GA (Brk-GA)) 
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5. hybrid Boltzmann random key-based GA (h-BrkGA)  

 

Table 6.1: Constitution of each technique 
GA encoding method crossover mutation FLC selection 

st-GA prüfer number-based one-point crossover swap - roulette wheel 

priGA priority-based WMX swap - roulette wheel 

h-priGA priority-based WMX swap ○ roulette wheel 

Brk-GA random key-based one-point crossover swap - Boltzmann roulette

h-BrkGA random key-based one-point crossover swap ○ Boltzmann roulette

 

In table 6.1, we show the operators of each GA. In Chapter 3, we described in details of 

FLC. Although this technique shortens computational time sharply we checked 

possibility of falling into a local minimum in Chapter 4. So, we compare with 

Boltzmann roulette selection. Moreover, we also compare normal Brk-GA with hybrid 

Boltzmann random key-based Genetic Algorithm (h-BrkGA) which incorporated FLC 

to Brk-GA.  

Table 6.2 is the test data. We generated these data randomly. The delivery costs 

generated from a uniform distribution between 20 and 45. The forbidden delivery routes 

were consisted of 10% on the total number of nodes. In addition, the number of 

products set to 2. The unit inventory holding cost assumes 2 and 3 respectively. Then 

GA parameters were decided based on preliminarily experiment. In this experiment, we 

design the delivery plan over 4 terms. In this proposal model, we also decide the amount 

of production in current period from exponential smoothing. We described this 

technique in Chapter 4.  

Predicted value = α × Last track record value＋(1－α) × The last predicted value 

{ } )1()1()1()1( )( F62F −−+−+−= txtxtxtx pjpjlpjkpj αα (6.13) 
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α is the smoothing factor, )(F txpj  is the amount of demand forecasting in period t. The 

value that deducted the present volume of inventories from )(F txpj  serves as each order 

quantity of DC.  

Table 6.3 gives the best solution, average of solutions (AVG), standard deviation 

(SD) and average computation time (ACT) of 20 runs. As a result, the each best solution 

was obtained from Brk-GA. In addition, Brk-GA was the best in AVG and ACT. In 

problem 4, st-GA and priGA show low SD. However, when we compare AVG value 

with Brk-GA, we can understand that searching converged without providing a good 

solution. In addition, FLC can largely reduce the calculation time, but when we 

compared priGA with h-priGA or Brk-GA with h-BrkGA, we are able to confirm that 

SD turned worse. 

 

Table 6.2: Experimental data 
Problem 
No. 

No. of  
plants (i)

No. of  
DCs (j) 

No. of  
retailers (k)

No. of  
customers (l)

Population
size 

Crossover 
rate 

Mutation
rate 

1 2 5 08 20 100 0.2 0.1 
2 3 7 12 30 100 0.2 0.1 
3 5 3 12 45 100 0.3 0.1 
4 6 8 20 80 100 0.3 0.1 

 

In fact, sudden evolution urges to converge to local minimum. From the quality of 

solutions, Brk-GA effectively reduces calculation time. When we compared Brk-GA 

with st-GA that suggested earliest in four techniques about problem 4, the best solution 

was improved 6.3%. Particularly calculation time was improved 66.1%. 

We present the evolution graph of problem 4 which calculate 5000 times and period 

is set to 1 (i.e. t=1) in Fig. 6.5. Searching solution in all GA finished at an early stage. 

For the reasons mentioned above, we achieved at main aim of Brk-GA such as 
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shortening the computing time, precocious convergence to the local minimum and 

reduction the unevenness of the solution. 

Finally, Fig. 6.6 shows the delivery route that obtained from Brk-GA. This is a 

delivery route in problem 1. From this figure, we can see that the flexible delivery route 

is designed and delivery plan for four periods is designed. The proposal solution process 

easily solved complicated network models. However, improvement is necessary when 

we consider delivery time of each product or each route. 

 

Table 6.3: Results of comparison experiments 
 st-GA priGA 

Problem 
No. 

Best AVG SD ACT (s) Best AVG SD ACT (s)

1 55318.12 56763.05 778.97 14.45 55188.03 55888.55 576.54 15.25 

2 59601.00 60743.65 674.84 24.79 59280.22 60621.00 762.91 24.47 

3 82874.00 85566.35 1108.78 34.66 82331.00 83917.25 1315.4 31.01 

4 87038.01 88138.30 765.76 34.84 86915.00 88369.35 755.95 32.61 

 h-priGA h-BrkGA 

Problem 

No. 
Best AVG SD ACT (s) Best AVG SD ACT (s)

1 55045.40 56191.05 573.02 10.80 54929.00 56349.15 756.64 3.83 

2 59065.03 60600.90 582.70 16.04 58887.80 60229.00 696.65 5.00 

3 81726.06 84165.50 991.04 19.89 79875.00 81827.60 1044.15 6.17 

4 85921.00 87878.05 1000.40 20.42 82391.20 85845.55 1476.72 7.17 

 Brk-GA     

Problem 

No. 
Best AVG SD ACT (s)     

1 54909.22 55003.15 294.20 3.73     

2 58263.17 59978.90 570.62 4.95     

3 79761.87 80949.85 669.86 6.13     

4 81544.05 83480.15 948.74 6.91     
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Fig. 6.5: Graph of the evolution process 
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Fig. 6.6: Delivery routes obtained from Brk-GA 
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6.5 Summary 

In this chapter, we proposed PFLN model as a more realistic TP model. The main 

difference of PFLN and esc-2ITP is the addition of retailer and direct delivery routes. In 

addition, in Flexible Logistics Network, designing chromosomes was difficult. Because, 

correctly expressing of delivery routes is difficult. Therefore, we suggested network 

segment method which deconstruct complexity network model to simple TP. In 

numerical experiments, we apply the proposed solution technique to five GAs. As a 

calculation result, the five GAs with network segment method can solve PFLN model. 

Brk-GA was superior to other five techniques in the best solution, the averages of 

solutions, the standard deviation, and the computation time. On the other hand, when we 

combine FLC to Brk-GA, the solution quality became worse. Especially standard 

deviation gets worse. In conjunction with the result of Chapter 5, we show robustness 

and reliability of Brk-GA. Brk-GA is superior and more effective than traditional GA 

developed for TP. 

Proposal of chromosome representation that can investigate large solution space 

quickly and the experiment that used more large-scale data sets or real data sets are 

feature research. 
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Chapter 7. Conclusion 

In this research, we addressed the proposal of new TP model and development of the 

solution technique applicable to TP general-purpose. The proposed TP model includes 

difficult constraints for calculating a solution. In order to solve these models, we 

improved GA which is one of the meta-strategies. GA can apply to various 

combinatorial optimization problems with devising the chromosome design. In addition, 

it can apply even when the characteristic of the objective function is not clear enough. 

However, GA has several problems such as solutions falls into local minimum and it 

takes so much computation time. Therefore, we attempt to overcome the weak point of 

GA, specifically, improvement of chromosome representation and development of new 

selection mechanism for GA.  

In Chapter 2, we described traditional TP model and fundamental GA. 

Simultaneously we describe the advantage using GA.  

In Chapter 3, we proposed a multi-product two-stage transportation model with 

exclusionary side constraints. In this model, plants produce multiple items, and the 

delivery routes and transportation costs vary with the products. Since GA expresses a 

solution as a chromosome, it was difficult to solve a model including the exclusionary 

side constraints. Therefore, in order to calculate by GA and to satisfy exclusionary side 

constraints easily, we also propose improved priority-based representation. This 

technique has no necessary check routine of infeasible solution. Additionally, it can 

reduce the computation time simultaneously. In numerical experiments, we compared 

four GAs. As a result, it became clear that proposal TP model could solve by four GA 

with improved priority-based representation. Moreover, h-GA reduced computation 

time sharply and achieved good results.
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   In Chapter 4, we proposed ecs-2ITP model as extended TP proposed in Chapter 3. 

This model includes the concepts of proper inventory and various costs generated on 

logistics network. Simultaneously, ecs-2ITP designs the delivery plan for multiple 

periods. The development of solution algorithm for ecs-2ITP is next subject. In Chapter 

4, we describe the algorithm that improves weak points of GA.  

In Chapter 5, in order to solve esc-2ITP, we designed Brk-GA. This GA has 

following features: 

1. The Boltzmann roulette selection method uses in the selection mechanism. 

2. The simple chromosome representation searches the lowest course preferentially. 

3. The simple crossover reduces the computing time. 

Traditional GA has several problems. These are a high calculation load, precocious 

convergence to local minimum, and complexity of parameter setting. In this chapter, we 

consider diversity of population and width of search space mainly. In a numerical 

experiment, we compared four GA techniques. The Brk-GA was superior to the 

previous methods in the quality of the solution. In the improvement rate that we 

compared with st-GA developed for TP, the best value was about 5.7% and the 

computational time was about 65%.  

In Chapter 6, we proposed the PFLN model. The main difference of PFLN and 

esc-2ITP proposed in chapter 4 is addition of retailers and direct delivery routes. 

Moreover, this TP can models all currently delivery patterns. Moreover, we propose a 

network segment method which divides PFLN to three sub-networks based on 

difference of delivery form. This method can avoid inefficiency caused by using 

different chromosomes in accordance with slight changes of the network. In numerical 

experiments, five GAs combined network segment method can solve the PFLN model. 



Chapter 7. Conclusion 

73 73

In addition, we obtained the each best solution from Brk-GA. When we compared 

Brk-GA with st-GA, the best solution was improved 6.3%. Particularly calculation time 

was improved 66.1%. The simple crossover method and random key-based 

representation are effective methods to reduce the calculation time. In conjunction with 

the result of Chapter 5, we show that Brk-GA is superior and more effective than 

traditional GA developed for TP.   

This thesis proposed realistic TP models which consider exclusionary side 

constraints, kind of products, inventory, direct shipping route and multiple periods. 

These elements reflected needs for the modern distribution. Although these proposal TP 

models have different complexity, in order to obtain stable solution in realistic time, we 

propose solution methods based on GA. We found the excellent technique by combine 

improved gene expression and selection technique. Moreover, through the analysis of 

evaluation result, we clarify the effectiveness and limit of each technique. This article 

has a great value that proposed effective and stability techniques for modern various 

TPs. This article greatly contributes to the future distribution optimization. We are 

planning to consider more concrete inventory-control techniques and a shorter product 

life cycle. Suggestion of the chromosome representation method that can investigate 

large solution space quickly and the experiment that used larger scale data sets or real 

data sets is a future problem. 
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