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NUMERICAL SOLUTION OF A SINGULAR INTEGRAL EQUATION WITH THE HILBERT KERNEL
BY THE METHOD OF DISCRETE SINGULARITIES

In the paper the method of discrete singularities is used for constructing a discrete mathematical model of a first kind singular integral equation with
the Hilbert kernel in the case when the auxiliary conditions introduced to ensure the uniqueness of solution to the equation are given by functionals.
The existence of the unique solution to the discrete model is proved and the rate of convergence of the solution of the discrete problem to the exact so-
lution of the initial singular integral equation is estimated under some smoothness assumptions.
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T. C. IOJIAHCBKA, O. 0. HABOKA
YHUCEJBHE PO3B’SI3AHHSA METOJ0M JUCKPETHUX OCOBJIMBOCTEN OJTHOI'O
CIHI'YJIAPHOI'O IHTEI'PAJIBHOI'O PIBHAHHA 3 AAPOM I'lVIBBEPTA

Ha ocHOBi MeTOy AUCKPETHUX OCOOIHMBOCTEH MOOYAOBAHO JUCKPETHY MaTeMAaTHYHY MOJEIb CHHTYJIIPHOTO iHTEIPaIbHOTO PIBHAHHS IIEPIIOTO POILY
3 sappom ['inGepra y BUMajKy, KOJIM JOAATKOBA yMOBA, IO J03BOJISE OTPHMATH €MHUN PO3B’SI30K L[bOrO PiBHAHHS, € (yHKLiOHAN. JlOBeaeHa OJHO3-
HayYHa PO3B’SI3HICTh AUCKPETHOI MOJIENI 1 1aHa OL[iHKA MIBUAKOCTI 301KHOCTI PO3B’A3KY IUCKPETHOI 3aa4l 10 TOYHOTO PO3B’SI3KY CUHTYJIIPHOTO iHTe-
IPAIBHOTO PiBHSHHS P ACSIKHUX IIPUITYIIECHHSX TJIAIKOCTI.

Kuro4oBi ciioBa: cHHryIIsipHE iHTErpasibHE PIBHSIHHS, METOJ| IMCKPETHUX 0coOIMBOCTEH, sapo ['indepra, IMCKpeTHA MOJEIb.

T. C. IOJIAHCKAA, E. A. HABOKA
YU CJEHHOE PEHIEHUE METO/IOM JJMCKPETHBIX OCOGEHHOCTEM O/THOT'O
CHHI'YJISIPHOT'O HHTEI'PAJIBHOTI'O YPABHEHMS C s1IIPOM I'MJIBBEPTA

Ha ocnoBe metona JUCKPETHBIX 0COOEHHOCTEH MOCTPOCHA JUCKPETHAA MAaTEMaTHYCCKass MOAECIIb CUHTYJIAPHOTO MHTEIPAJIbHOTO YPAaBHEHUSA IIEPBOTO
porna ¢ sAapom FHnLﬁepTa B Clly4ya€, Korjaa AOMNOJHHUTEIbHOC YCJIOBUE, ITO3BOJAIOLICC MOJYYHUTh €AUHCTBCHHOC PCIICHUE STOIO0 ypaBHEHHUSA, €CThb
(l)yHKI_II/IOHaJ'I. [[()KasaHa OTHO3HAa4YHasA pa3pCmIuMOCTh ,I[I/ICerTHOf/‘I MOJIC/IA U JTaHAa OLICHKAa CKOPOCTH CXOAUMOCTH PCUICHUS HHCKpC’FHOﬁ 3agaun K
TOYHOMY PCIICHUIO CUHTYJIAPHOTO MHTCTPAJIBHOTO YPABHCHUS IIPA HECKOTOPBIX NPEAITOIOKCHUAX TTIaAKOCTH.

KuroueBsle ciioBa: CUHT'YJIAPHOC UHTEIPAJIbHOC YPAaBHEHUE, METO JUCKPETHBIX OCOﬁCHHOCTeﬁ, AAPO rHHLﬁCpTa, JAUCKPETHAasA MOAECIIb.

Introduction. Singular integral equations arise frequently when solving applied physical, mechanical, and engi-
neering problems. In particular, the problem on the distribution of the surface-current density over a narrow circular strip
antenna is reduced to a singular integral equation with the Hilbert kernel [1]. In this paper we study a singular integral
equation with the Hilbert kernel in the case when the auxiliary condition ensuring the existence and uniqueness of the
solution is given by a functional. We develop the mathematical framework of a numerical method for solving this equa-
tion, which is based on the well-known discrete singularities method [2, 3, 4].

Characteristic singular integral equation (SIE) with Hilbert kernel. Let Lfo,z;r] be the Hilbert space of

2z
27 — periodic functions endowed with the scalar product (u,v) = J u(pv (p)de; denote L[Zé(’)z”] the subspace of L[ZO,zﬁ]
0
2
consisting of its elements that are orthogonal to the unity, i.e. satisfy the equality: .[ u(p)de =0.
0

We introduce the operator
p—-0
2

The integral in the right-hand part of the identity is singular with the Hilbert kernel. The Cauchy principal value of this
integral can be computed for any 27z — periodic function u(e) € L[20,2;z]- In case the function u(g) is Holder continuous,

2z
(Hu)(6) E% [ g Lu(p)do.
0

then (Hu)(8) is Holder continuous as well. The operator H takes L[zoyzﬂ] into L[zé?zﬁ], it is bounded and its norm
equals one [2, 3, 4].
Consider the characteristic SIE for the unknown function u(g) € Lfo’zﬁ]:

1% . p-0
— [ ctg=—=—u(p)dp = (6). (1)
2 0 2
In (1) f(8)eC*7” isagiven 2z — periodic function; C*7 stands for the class of x— times continuously differentiable
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functions which g — th derivatives satisfy the Holder condition with the exponent » (0<y <1).

From the above it follows that for the characteristic SIE to have a solution it is necessary that f(6) e L[Zé?zﬁ], ie

2z
I f(8)d0 = 0. Moreover, without any auxiliary assumptions imposed on the function u(e) it is impossible to prove the
0
uniqueness of this solution [2, 4]. Sometimes, when solving problems arising in the theory of diffraction of waves the
auxiliary assumption ensuring the uniqueness of the solution is introduced in the form of the functional:

2— j {In +G(¢)}u(¢)d¢ c, 2
where « and C are given constants, G(¢) is a given sufficiently smooth 27 — periodic function such that

1271'
h Ej{m

0

sm

sin

p—a
2

+G(¢)}dgp¢0. (3)

After introducing the linear substitution u(g) = w(p) +%, condition (2) becomes homogeneous. Since the operator

H cancels the constant, equation (1) preserves under this substitution. The aforesaid enables us to study equation (1)
supplemented by the following homogeneous condition'

Gu= 2— j {m
Denote by A(G) the subspace of Lfo,z;r] which elements satisfy condition (4). If limited to the pair of spaces
(AG), L) ®)

the operator H has a bounded inverse. Hence, problem (1), (4) admits a unique solution for any right-hand part

f(0) e, [l

sin

+G(¢)}U(¢)d¢ 0. 4

Problem setting for a complete SIE with the Hilbert kernel.
We are looking for a solution u(gp) of the complete SIE with Hilbert kernel:
2z

— j ctg_u(¢)d¢+2ij K (0, p)u(p)dp = 1(6), 6)
T

where f(6) and K(8,¢) are given functions 2z — periodic in 8 and ¢, f(0)eC*”, K(8,9) e C*7 in each variable
uniformly with respect to the other variable. Moreover, in physical applications the functions f(8) and K(8,¢) satisfy

the properties:
2z 2z
[ foxo=0, [K(@.pMo=0. @)
0 0
We assume that equation (6) admits a unique solution, which satisfies auxiliary condition (4), and that (3) holds.

We also choose G(¢) € C*7 in (3).

The necessary condition for equation (6) to have a solution is
2z

2z
j{f(a)—ij K(e,go)u(qo)dgo}de:o, ®)
0

0

2z
where u(e) is the solution to the equation. We arrive at condition (8) by taking ZLJ‘ K(8,p)u(p)de to the right-hand
T
0

2z
part of equation (6) and assuming that the difference f(@)—zij K (8, p)u(p)de belongs to L[ZOOZH] Properties (7) im-
T
0
ply that condition (8) holds for any function u(e) and provides no additional restriction on the solutions to the equation.

2z
We introduce the operator K : (Ku)(6) EZLJ‘ K (8, p)u(p)de . From (7) it follows that (Ku)(6) € L 02”] Hence,
T
0

the operator H + K takes L[zoyzﬂ] into Lfb?zﬂ]. Moreover, if restricted to the couple of spaces (5), this operator admits a
bounded inverse. Indeed, since the operator H is continuously invertible in the couple of spaces (5), its index in this
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couple of spaces equals zero and it does not change after adding the compact operator K to H [5]. Thus the index of
the operator H + K restricted to the couple of spaces (5) is zero. Since for a given right-hand part (@) L[Zb?zﬁ] equa-

tion (6) has a unique solution from A(G), the restriction of the operator H + K to the couple of spaces (5) possesses a
unique bounded inverse operator (H + K)™*, which means that problem (6), (4) admits a unique solution for any right-
hand part f(0) e L, ;-

Quadrature formulae and discretization of complete SIE. Let S,(¢) denote a trigonometric polynomial of de-
gree n. We introduce the system of points on a unit circle:

RS N LT CU Cukie LS N 1
2n+1 2n+1
Below we list several useful properties of S, () [2, 4]:
1 izfs (Mo =——3'5, (M), i-1,2 ©)
: 2” o n ¢ gD 2n+1k:O n ¢k ’ ) .
Note, that formula (9) holds for any trigonometric polynomials of the degree less than or equal to 2n [2].
27 (2,n) 2n (Ln) _ (2.n)
-9 1 ? Pj
jctg—’snw)dw: >ctg———1—8,(p"), j=0,1,..., 2n (10)
2n+1/= 2
n
3. —IS (@)In sin 2= %Idgo— ZS (qo(l")){|n2+ZiCOS[m@)an) ®o )J} (11)
m=1M

Denote by ( p® )((o) the trigonometric interpolation polynomial of a continuous 2z — periodic function g(¢) of

degree n with the interpolation nodes go(' ”), k=0,1..2n; i=12.
We are looking for the solution u,(¢) to problem (6), (4) in the form of a trigonometric polynomial of degree n.

In most cases, when simply replacing the functions f(6) and K(8, ¢) by their interpolation polynomials (Pn(z) f )(9)

and (Pn(l) Pn(:)K)(e, @) and substituting u, (p) instead of u(p) in (6), the resulting approximate SIE is unsolvable. The
14

2z 2z
cause of this problem is that, with rare exceptions, both _[ (Pn(z) f )(0)d9 #0 and _[ (Pn(l) Pn(:)K)(H, @) %0 and the
14
0 0

necessary condition for the SIE to have a solution does not hold. That is why we search for u,(¢) as a solution to the

following regularized equation:
2z

1 ®p(2) 1% e _
Uy ((p)d¢+§.(|;{(in POK (6, (o)—gg;(in POK )(6, ¢)d0 fuy (¢)do =

:(Pn@)f)(9)—%2f(Pn<z>f)(9)d9, (12)

supplemented by the condition:

+(pn<1>e)(¢)}un (p)dp=0. (13)

For problem (12), (13) the necessary condition of the existence of a solution obviously holds.
Condition (3) for problem (12), (13) becomes

h, :—j{ln (P(l)G)((p)};éO

It is easy to verify that for a smooth function G(¢) there exist h° >0 and N >0 such that |hn| >h? for n>N.

Below we assume n> N .
To construct the system of linear algebraic equations (SLAE) approximating problem (6), (4) it is necessary to in-
troduce an additional (regularizing) unknown by the formula:

1% @ 1% Op@
7 :E£ ( f)(a)—g‘([(in e K)(e, ?)un (¢)de (6. (14)

sin?=%
2
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Then equation (12) takes the form:

1 2z ¢)_(9 1 2r
o J; CthUn((/J)dg0+g £ {(pn(:)Pé;)K)(e, ¢)}un (p)do+p, :(pn(2)f)(6), (15)
and the necessary condition for its solvability becomes:
1 2z 1 2z
5]{(&(2”)(9)—& | (ROP2K (0. 9)u, (fp)dco}de:o. (16)
0 0

Clearly, any solution u,(¢) to (12) also solves (15) with g, computed by (14). The opposite is also true: if

{u,(¢), B,} is the solution to (15), than it satisfies condition (16) and u, (@) solves (12). In this sense equations (12)
and (15) are equivalent.

We are now in position to construct the system of linear algebraic equations (SLAE) equivalent to equation (15)
supplemented by condition (13) by the method of discrete singularities. Since both left and right-hand parts of equation
(15) feature trigonometric polynomials of degree n, this equation is equivalent to the following system of 2n-+1 equa-
tions:

L% oo L (o0 \( @ @£\ @M i
o ! otg———u, (¢)d¢+§£{(in K)(co,- ‘ ,(p)}un (p)do+ s, :(Pn f)(fp,- ’ ) j=01..2n. (17)

Using quadrature formulae (9), (10), (11) to compute the integrals in system (17) and condition (13), we arrive at
the following SLAE with respect to the unknowns u, ((pﬁl'“)), k=0,1..2n and g,:

3 —qDlEl,n)_sz,n) (2,n) (Ln) (L,n) @ny
2n+1k§‘) ¢t 2 +K(¢J' P ) un(%’ )+ﬂn:f(¢j’ ) j=0,1,..,2n;

2n1+1§ {m 2 z L o o2 —ar) -G 2" )}un (o) =0.

Note that the number of the unknowns of system (18) equals the number of its equations.
From the above discussion it follows that system (18) is equivalent to problem (12), (13), i.e. the solution u, (@) to

problem (12), (13) is represented by the interpolation polynomial which values at the interpolation nodes satisfy system
(18).

(18)

Below we prove that problem (12), (13) and, hence, system (18) admits a unique solution for n sufficiently large.

Auxiliary spaces and operators. We introduce the following spaces:
- A(G,) - the subspace of L[ZOVZ,,] which elements satisfy the condition:

R 1 2z
G.v=—1|{In
" ZHI{

0

Sinu
2

+(Pn‘1’G)(¢)}v(¢)d¢:o;

— IT,, — the subspace of Lfo,z,,] consisting of all the trigonometric polynomials of degree less than or equal to n;
An(Gn)EA(Gn)an ; Hg EHnmL[Zé?Zn]'
1 2z
— j (Pn(z) f )(9)d6’. We introduce the operator K :
2r o

Denote % (0) = (P )(6) -

2z 2z
(KRu,)(0) =i £ {(Pn(fpn(;)}()(e, go)—i £ (ROP2K (e, go)d@}un (p)dpert?.
Using the above operator notations (12) is reduced to
(H+Ku, = £
The operator H + K} maps A, (G,) into T1. Below we show that for sufficiently large n the operator H + K[}
restricted to the couple of spaces
(An(Gy). 1T7), (19)

admits a continuous inverse, and thereby prove the unique solvability of problem (12), (13) and, hence, SLAE (18). We
use the following statement [6]:

Theorem 1. Let X and Y be linear normed spaces, and X < X and Y cY be their finite dimensional

subspaces such that dim X =dimY . Consider the equations:
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the exact one
Ix=y(xeX,yeY)
and the approximate one

>
<t

~>~<=y(>ze e\?),
: X

where T and T are linear operators, T: X ->Y, T:X >Y.
If the following conditions hold:
a) the operator T is continuously invertible in (X,Y),

) p=[r],_, 7]

then the approximate equation admits a unique solution X* e X for any right-hand part §eY . Moreover, if X" € X is

1=l <
Y > X X=Y

the exact solution of the equation Tx=y and & =|y-J], , then

ST @ o plvl ]

However, we can’t apply Theorem 1 directly for proving the existence of the operator inverse to H + Kf in the

*

o*
X —X

couple of spaces (19) since A, (G,) is not a subspace of A(G).

Proof of SLAE solvability. We first consider an auxiliary problem consisting of equation
(H+K)u®™ =1, (20)
supplemented by the condition

Sinu
2

. 1 2z
Gnu(n) =— I {In
27 5
which means that u™ (p) € A(G,) .

Lemma 1. There exists N* > N such that for n> N* the operator H + K admits a continuous inverse in the cou-
ple of spaces

+(Pn(l)G)((p)}u(“) (p)dp=0.

(A(Gy): Liom)- (21)
d

n/”?’

The proof of Lemma 1 is based on the estimate ‘(én —é)w‘ < ||w|| where w e L[Zovz,,], d is a constant depend-

ingon G only.
Below we use the notation (H + K);l for the operator inverse to H + K in the couple of spaces (21).
Lemma 2. For any non-zero element g L&)?Zﬂ'] there exists N(g) > N* such that if n> N(g) then

d
qn/l+7

[(H+K) g = (H + K)o < — o] |H + K) 7

LB >AG) |
where q >0 is a constant depending on g, (H +K)™ is the operator inverse to H + K in the couple of spaces (5).

20 A(G)SD forall n>N™.
(Y),Zﬂ]*) n

The corollary follows immediately from Lemma 2 and the property [5]: if the sequence of linear bounded operators
{Tn} converges or is at least bounded for each element of the space, then it is uniformly bounded, i.e. the sequence of

Corollary. There exists a constant D >0 such that ”(H + K);1

the norms |[T, | is bounded.
Since A,(G,) < A(G,), we can now apply the results of Theorem 1 for proving the unique solvability of problem
(12), (13).
Arguing as in [2], we derive the following estimates:
b
<

et

R
n

B “f—fnR

R
_ <>
”(H +K)-(H +K}) MG tEEy S T

= K —
An(Gn) =L 1 ”
where B and b are constants which depend on K and f respectively.

Let now N™ > N™be such that for any n> N we have

R

an“K_Kn <DB

2 e S pe <1.
6,2, >AGn) n

(GEY S

An(Gp)— L[Z(')?z,,]
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Then by Theorem 1, for any n> N™ equation (12) admits a unique solution u,(¢) in the couple of spaces (19).

Besides, if u™ (@) is the solution to (20) in the couple of spaces (21), then for n > N** the following estimate holds:

D
Ju® gm(b+ DB| f ).
n

n

Finally we get the following result:
Theorem 2. There exists N,; > max{N**, N(f)} such that for any n> N, equation (12) admits a unique solution

in the couple of spaces (19) (and, hence, SLAE (18) admits a unique solution as well). Moreover, the following estimate
holds:

() 1 D
#u® —uy | < , +
L0221 >A(G) 1=y

"U —Un” < “U _u(n) - n,u+7

d _
FUICENE (b+DB[f]) =35,

where u(p) is the solution to equation (6) in the couple of spaces (5), ¢, = O(%) for n — .
n

Taking into account properties (7) we arrive at the following estimate for the regularizing unknown:
|Ba] < 0

where o, :O(nﬂ%j for n » o and depends on f (8) and K(6,¢) only.

Conclusions. We study the numerical solution of a singular integral equation with Hilbert kernel by the method of
discrete singularities in the case when the auxiliary condition ensuring the existence of a unique solution to the equation
is given by a functional. The system of linear algebraic equaions approximating the singular integral equation considered
is constructed. It is proved that this system admits a unique solution under some smoothness conditions imposed on the
right-hand part of the singular integral equation and the kernel of its regular part, and some assumptions on the
functional. Moreover, the mean rate of convergence of the approximate solution to the exact one is estimated.
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