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Abstract
　In this article, we investigate the Nikkei 225 options market and analyze the difference between the 
market price and the theoretical price. In the analyses, the following points are identified as characteristics 
of the option market. First, a multiple number of options with different maturities are traded on the same 
day. Second, in the Nikkei 225 option data set, option prices together with trading volumes frequently take 
a value of zero. In order to take these characteristics of the option data into consideration, the data set 
must be handled as panel data with a certain rotation structure. We propose a new approach to estimate 
the truncated model using simulation.
　The estimation results show that the differences in the call options depend on the moneyness and the 
survival period, and the differences in the put options depend on the moneyness, the survival period, and 
the trading periods. It is also seen that the variance of these difference depends on the strike price, the 
transaction date and survival period. Five models, BS, GARCH, EGARCH, GJR, and APGARCH, were used 
to calculate the theoretical price. There were no notable differences in the signs of estimated coefficients 
and their relative sizes in the regression models of the difference between the market price and the theo-
retical price in the result of the put option. As for the call option result, a common estimate was obtained 
in the EGARCH, GJR, and APGARCH models that take the asymmetry into consideration.
Key words:  options, panel data, truncation model, GARCH, EGARCH, GJR, APGARCH

日経225 コール・プットオプションの市場価格と
理論価格の乖離の実証分析

加納　悟・竹内（野木森）明香

要　　旨
　本稿は，オプション市場価格と理論価格の乖離（価格差）を，日経225 コール・オプションとプット・
オプションのデータを用いて分析したものである。分析の中で，オプション市場の特徴として，次の２
点を考慮している。１点目は，オプション市場では，権利行使価格と満期の条件が異なる複数のオプショ
ンが取引されていることである。２点目は，日経225オプションでは，オプション取引が成立せず取引
量がゼロのときオプション価格が０円として記載される点である。これらの特徴を考慮すると，オプ
ションデータは切断データとなり，ローテーション構造を含むパネルデータとなる。このような不均一
分散をもつ切断パネル・データ・モデルの推定方法として，本稿ではシミュレーションを用いた推定方
法を提案する。
　推定結果から，コール・オプションの価格差はマネネスと残存期間に，プット・オプションの価格差
はマネネス，残存期間，取引日に依存していた。価格差の分散は，権利行使価格，取引日，残存期間に
依存している。理論価格の算出に BS，GARCH，EGARCH，GJR，APGARCHモデルの５種類を使用
したが，異なるモデルから計算された理論価格を用いても，プット・オプションの価格差の分析結果は
変わらなかった。コール・オプションの結果では，ボラティリティの非対称性を考慮した EGARCH，
GJR，APGARCHモデルから算出される理論価格で，共通した推定結果が得られている。
キーワード： オプション，パネルデータ，切断モデル，GARCH，EGARCH，GJR，APGARCH
※ 本論文は，竹内が一橋大学大学院経済研究科博士課程在学時に，故加納悟教授と行った共同研究の成
果である。ご指導いただいた加納悟先生に深く感謝の意を示したい。ここに謹んで哀悼の意を表し，
心からご冥福をお祈り申しあげます。
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1. Introduction

Stock index options made their debut in Japan in June 1989, when they were first intro-

duced at the Osaka Securities Exchange. Since then, trading rules have been amended 

frequently, giving the market the structure it has today. Among the most actively traded 

options in Japan are the Nikkei 225 options. In this article, we investigate the Nikkei 225 option 

market and analyze the difference between the market price and the theoretical price.

The earliest attempt to model option pricing was undertaken by Black and Scholes (1973). 

Since then, various models have been proposed to improve the original BS (Black and Scholes) 

model by extending it. The principal objective of the proposed models has been to describe the 

movement of the underlying asset price more accurately. As option prices are primarily deter-

mined by the underlying asset prices and as the volatility of the underlying asset price is an 

important factor, much effort has been expended on describing the volatility movement of the 

underlying asset precisely. For example, the variance changing models such as ARCH (autore-

gressive conditional heterogeneity) type and SV (stochastic volatility) models have been applied 

and a comparison made of how well they can approximate the underlying assets volatility. If 

there is no arbitrage, the value of an option is calculated from above the underlying stock price 

itself.

However, some empirical studies show that the option price is not simply determined by 

the movements of the underlying asset. That is, the prices observed in the market may differ 

from the prices calculated from the above volatility models under the no-arbitrage condition. 

Analyzing the rate of return of options on the Nikkei 225 index, Nishina and Nabil (1997), for 

example, show that the put-call parity does not hold. Bookstaber (1981) suggests that a bias 

exists due to non-simultaneity of the option market and the underlying asset market. Easley, O’

Hara and Srinivas (1998) point out that the trading volume of a stock option correlates with the 

future price of the underlying assets. Thus, it can be concluded that option prices are affected 

by factors different from the underlying asset. The option theoretical prices calculated from 

the above volatility models by the assumption of no arbitrage do not take these facts into 

account.

If option prices are not determined only by the underlying asset values, there would be a 

difference between the theoretical price under assumption of no arbitrage and the market 

price. Renault (1997) indicates the difference between the theoretical price and the market 

price and raises the following four facts as the reasons. The first is the difference that occurs 

by assuming that the estimated value of volatility is a true value. Second, an error in the for-



An Analysis of Nikkei 225 Call and Put Option Price Differences between Market Price and Theoretical Price

─　　─63

malization of underlying asset process is mentioned. The third factor is the hypothesis that the 

theoretical price is the expected value of an option payoff at the expiration day. The fourth fac-

tor is an error not covered by any of the reasons listed above. In this paper, the four reasons 

for the option price difference indicated in Renault (1997) are put into two categories. We will 

consider the first three as model error and the last one as error without consideration in the 

no-arbitrage condition. As mentioned before, the model error has frequently been considered in 

the formula for calculating the theoretical price, but the error without consideration in the 

no-arbitrage condition has not been analyzed in depth in option empirical studies.

The main objective of this paper is to examine whether the error without consideration in 

the no-arbitrage condition exists in the option market and investigate empirically what charac-

teristics are seen in this error by analyzing the difference between the market price and the 

theoretical price. In the analyses, the following points are identified as characteristics of the 

option market.

First, a multiple number of options with different maturities are traded on the same day in 

the market. It is necessary to classify the option price data not only by the traded days but 

also by the maturity days. As a result, the data set must be handled as panel data with a cer-

tain rotation structure. Accordingly, it becomes necessary to take the covariance of the price 

data into consideration when the price movements are explained by various factors such as the 

survival period and the moneyness.

Second, in the Nikkei 225 option data set, option prices together with trading volumes fre-

quently take a value of zero. This indicates that for some reasons the options are not traded on 

that day and such observations have been excluded from the empirical analysis in the litera-

ture. However, as such observations where the price is zero reflect the investors’ decision, 

exclusion of them will lead to loss of information. More importantly, the estimation of any rela-

tionship may be biased due to this exclusion.

The remainder of this paper is organized as follows. Section 2 provides a brief overview of 

the characteristics of the Nikkei 225 options market and briefly explains how to calculate the 

theoretical option prices. In Section 3, the difference between the market price and the theoret-

ical price in the Nikkei 225 option market is investigated empirically taking the abovementioned 

characteristics of the data into account. Section 4 provides the estimation results. Section 5 con-

cludes the paper.
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2. Illustration of the Nikkei 225 option data

2.1  A brief outline of the Nikkei 225 options market

First of all, let us briefly look at the features of the Nikkei 225 options market. Eight types 

of options with different expiration dates are traded on the same day. There are three kinds of 

transaction time horizons: 15 months, 5 months, and 4 months. When the exercise day of an 

option arrives, a new option is created on that day. Usually, for options with the same maturity, 

five strike prices are initially set symmetrically around the underlying asset price. Therefore, 

there are at least 40 options running on every trading day. However, the number of strike 

prices may increase when the underlying asset price exceeds the highest or lowest strike 

price. In the following sections, in order to simplify the analysis, monthly data are created from 

the daily data by picking up the prices on the expiration day in each month. Further, the data 

of each option are extracted for four months before the expiration date. For convenience, the 

four months during the survival period are labeled as τ  = 1, 2, 3, 4. As a result, time series data 

with a rotation structure are created. In this paper, we analyze the market prices of the Nikkei 

225 call option Cm and put options Pm with maturity from January 2000 to April 2002.

2.2  Estimation of the theoretical price

The theoretical prices corresponding to the market prices Cm and Pm do not exist as data. 

The theoretical option prices (Cm and Pm) below are calculated by using the BS, GARCH (gen-

eralized ARCH), EGARCH (exponential GARCH), GJR, and APGARCH (asymmetric power 

GARCH) models. In the following, the strike price of an option is written as K, the daily closing 

price of the underlying asset as S, the survival period as τ , and moneyness (= K/S) as M. Fur-

ther, the number of strike prices for options in the i-th group maturity is denoted as Ki.

A number of models have been proposed to describe the volatility fluctuation of the under-

lying assets accurately. The GARCH model by Bollerslev (1986) considers the persistence of 

volatility shock. The EGARCH model by Nelson (1991), GJR model by Glosten, Jagannathan and 

Runkle (1993), APGARCH model by Ding et al. (1993) consider the asymmetry as well as the 

persistency of the shock. Comparisons of option pricing have been made among the volatility 

fluctuation models. For example, Crouhy (1994), Duan and Zhang (2001) made comparison 

between the ARCH type model and the BS model. They conclude that the predictive perfor-

mance of the option price by the ARCH type model is better than that of the BS model.

More concretely, the GARCH model
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is estimated by maximum likelihood using the daily return rate of the Nikkei 225 (Rs, u), for 1,000 

business days before the trading day. For the EGARCH model, the variance fluctuation is 

expressed as;

2 2
1 1 1 1ln( ) [ ( ( )] ln( ). (2)u u u u uz z E z− − − −= + + − +s w a q g ¦ ¦ ¦ ¦ b s

For the GJR model, the variance fluctuation is expressed as;

2 2 2 2
1 1 1 1. (3)u u t u uD− − − −= + + +s w a g bsε ε

Now, let Dt-1 of GJR model a dummy variable that becomes 1 when εu-1 < 0 and 0 otherwise. 

And for the APGARCH model, the variance fluctuation is expressed as;

1 1 1( ) . (4)u u u u− − −= + − +d d ds w a ¦ ¦ g bsε ε

Then, let ‒1 < γ < 1. Further, for the constant volatility model, the volatility is assumed to be: 

σu2 = ω  in (1), and this model is regarded as the BS model in this paper.

As a result of estimation, the parameters that expresses the asymmetry of EGARCH, GJR, 

and APGARCH models were estimated to be significant at 5%. The persistence of the volatility 

shock and the asymmetry are existent in the data used in this paper.

After the estimated ARCH type models are transformed to the models where local risk 

neutrality is assumed (Duan, 1995; Bauwens & Lubrano, 2002), the underlying assets prices at 

the maturity of the option are generated by the Monte Carlo simulation. Using the simulated 

Nikkei 225 prices at maturity, we can simulate the payoff of the call and put options, too. When 

the average of these payoffs is discounted at the transaction day, it becomes the theoretical 

option prices, Cm and Pm, from these volatility models.

3. Analysis of the difference between the market price and the theoretical price

3.1  Model

In this study, we consider the difference between the market prices Cm and Pm and the 

theoretical prices Cs and Ps . As mentioned above, the theoretical prices are calculated from the 

volatility models under the assumption of no arbitrage, and the market prices are affected by 

factors both with and without consideration in the no-arbitrage condition.
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Multiple options exist in a single trading day in the option market. The investors must 

select from among these options. Each of the options can be categorized according to strike 

prices, survival period, and the expiration day. In trading, investors have information on the 

theoretical price, which they usually trust, the strike price, the survival periods, and the under-

lying asset’s price. They can make their decisions based on this information. If an investor 

decides which option to trade by considering the relationship of it with the other options, that 

investor selects the most undervalued or overvalued options by comparing the market price 

with the theoretical price. Therefore, the market price Cm and Pm will be affected not only by 

the theoretical price Cs and Ps calculated from the underlying asset movements but also by the 

other option prices. When such as investor’s decision behavior is considered, the market price 

would include the part which depends on the survival period and strike prices.

In addition, since the number of strike prices in one expiration day increase when fluctua-

tion of the underlying asset is large, options traded during a long period and options traded 

during a short period show a difference in the number of their strike prices. Since a largest 

number of strike prices will be set during a 15-month trading period, it is possible to select an 

option from among a greater number of options with the same survival period. It can be seen 

from the above that the lengths of trading periods (15 months, 5 months, and 4 months) are 

also likely to affect the market price.

In this research, we consider a simple model in which the market price depends on the 

moneyness, the survival period, and the trading period in addition to the theoretical price: for 

the call options,
4 5

, , , , , ,
1 4

(5)m itk s itk M itk s s op j op j itk
s j

C C M D D u
= =

= + + + +∑ ∑t t t t t tb b b

and for the put options,
4 5

, , , , , ,
1 4

. (6)m itk s itk M itk s s op j op j itk
s j

P P M D D u
= =

= + + + +∑ ∑t t t t t tb b b

Here, Dτ , s (s = 1, 2, 3, 4) is the dummy variable that takes one when the survival period is s 

months and Dop, j ( j = 4, 5) is the dummy variable that takes one when the option trading period 

is j months. The suffix i denotes a maturity (i = 1, …, 28), t is a trading day, k (k = 1, …, ki) is a 

strike price, and τ  is a survival period, which τ  = t - 4 (i - 1). The error term uitkτ is assumed to 

be decomposed into the error ε t that depends on the transaction date, the error ε k that depends 

on the strike price, the error ετ that depends on the survival period within the same maturity 

group, and the error term ε itkτ that is purely random: uitkτ = ε t + ε k + ε t + ε itkτ . It is assumed that 

ε t, ε k, ετ and ε itkτ are mutually independent. The variances of these four error terms are 
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expressed respectively as:

2 2 2 2Var( ) , Var( ) , Var( ) , Var( ) .t t k k itk itk= = = =t t t ts s s sε ε ε ε

In order to estimate (5) and (6) efficiently, we must take the covariance structure of uitkτ 

into consideration. When there are ki exercise prices for the i-th maturity group among 28 

maturity groups, the variance covariance structure is expressed as follows.

1

1 2
2
1 2 3
3 2
1 2 3 4
4 3 2

2 3 4 5
4 3 2

4 3 2

25 26 27 28
4 3 2

, (7)0

0

0 0

i i i i

⎛ ⎞∑
⎜ ⎟

∑ ∑⎜ ⎟
⎜ ⎟∑ ∑ ∑⎜ ⎟
⎜ ⎟∑ ∑ ∑ ∑
⎜ ⎟

∑ = ∑ ∑ ∑ ∑⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟∑ ∑ ∑ ∑
⎜ ⎟
⎜ ⎟
⎜ ⎟∑ ∑ ∑ ∑⎝ ⎠

# % % % % %
#
# % % % % %

" " "

Let us consider the options with i-th maturity and the options with j-th maturity that are 

traded on the same day ( j = i + 1, i + 2, i + 3). Assume that the number of strike prices of the 

options with i-th maturity is ki and of the options with j-th maturity is kj. Then, the variance 

matrix of the options in the i-th maturity group, Σ i, is a 4ki × 4ki matrix and the covariance of 

the options on the same trading days Σ si (s = 2, 3, 4) becomes a 4kj × 4ki matrix. Then, we 

define
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and

2 2 2 2 2 2 2 2, . (9)t k itk T t= + + + = +t t ts s s s s s s s

Σ i consist of the blocks of the options with the same maturity. The structure is expressed 

as follows.
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Σsi (s = 2, 3, 4) are the variance matrices of the options on the same trading day with differ-

ent maturities. The structure is expressed as follows.

2 3 4

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 (11)
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

t t t

i i it t

t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞Λ Λ Λ
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Another characteristic that can be observed is that the variance becomes smaller as mon-

eyness becomes out-of-the money. Here, for call option, the adjustment for this 

heteroskedasticity is made simply by multiplying the moneyness M by both sides of (5). Also, 

an adjustment is done by dividing both sides of (6) in the put option.

3.2  Treatment of 0-value data

In the Nikkei 225 option market, 0-value is recorded as a price when no trading is estab-

lished. In conventional research, such data are excluded from the analysis. It is noted, however, 

that the investors’ decisions are somehow reflected in these data and, therefore, exclusion of 

them will lead to loss of information. More importantly, exclusion may cause bias in the estima-

tion. The difficulty is that the reasons why market prices become 0 are unknown. Also, the 

trading volume, which reflects the investors’ demand, becomes 0 simultaneously with the price. 

A method of considering 0-value data in the model is explained below. Among the 968 observa-

tions of call option prices that are used in this paper, 74 observations are with Cm = 0. 0-value 

data had existed in the data before 2000 in the put option. However, trades were established in 

all of the data of 968 observations used in this paper. Because of this fact, a manipulation of 

0-value data explained below has not been done for the put option.

In this paper, the following two possibilities of Cm being 0 are considered. First, an inves-

tor’s value of option that the investor thinks reasonable after considering the three factors, 

such as the theoretical price which the investor trust, the strike price, and the survival period, 

can be negative when the investor requires a risk premium and Cs is small. Since the market 

price cannot be negative, the option price is truncated at 0 yen under such a circumstance. 

That is, a zero market price of a call (Cm = 0) is observed when the value of the option, C*m, 

that all investors consider appropriate satisfies:

,) * 0 . (12)m itki C <t

Moreover, since zero data Cm = 0 are observed in all of the moneyness, it is seen that Cm 

becomes zero even when Cs is large. These data can not be explained by the truncation (12). 
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Therefore, the truncation (12) is not the sole reason for the data with Cm = 0. When the trans-

action vanishes, either the investors’ demand or supply becomes nil. The results in Parlour 

(1998) and Anshuman and Kalay (1998) are considered one of the possible reasons for this situa-

tion. They analyzed the market behavior with discrete pricing restrictions like the Nikkei 225 

option market, and found that the spread between the bid/ask price and the preset limited 

price causes no trading. That is, we define the deviation as:
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It is plausible that Cm could be 0 when:
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where a is a positive constant and b is a negative constant.

In summary, the model and the truncation mechanism are expressed as follows.
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For these truncated data, OLS using the entire data or OLS using the subsample for which 

Cm < 0 are both inconsistent estimators of the coefficients in the model, so that we should con-

sider these truncated conditions to estimate the parameters (Wooldridge, 2002). If the data was 

cross-section data and the variance structure was homoscedastic and the truncation mecha-

nisms were expressed only by (12), the familiar Tobit model could be applied and we can apply 

the maximum likelihood estimator. In the case of the panel data including individual effects, we 

have to maximize the log-likelihood with respect to each individual effect’s parameter. How-

ever, in short panels, this estimator is inconsistent. On the other hand, for the random effects 

models including individual effects, the likelihood function included one-dimensional integral 

(Cameron and Trivedi, 2005). Note that as this model has a complicated variance covariance 

structure as well as truncation conditions, therefore, there are multi-dimensional integrations in 

the likelihood function and the maximum likelihood estimations of the parameters of this model 

cannot be analytically obtained (see Appendix)2. Because of the complicated structure of the 
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variance matrix and truncation mechanism, however, we are obliged to resort to a simulation 

method. In this estimated procedure, we assume the conditional distribution of the unobserved 

data and simulated this data, after we estimated the model.

Let Cm1 be a vector of the option prices in the market for which Cm ≠ 0 and C*m0 be a vec-

tor of the latent investor’s value corresponding to Cm0 for which Cm = 0. Note here that C*m0 is 

unobservable. Assume also that (Cm1 , C*m0) distributes according to a multivariate normal distri-

bution with the mean vector μ  and the variance matrix Σ, respectively:

1 11 11 12
12 21

21 2200 0

E , Var where ' . (16)
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Then, the distribution of C*m0 conditional on Cm1 is also a multivariate normal distribution whose 

density is:
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We generate C*m0 using this property.

Concretely, the following steps are iterated.

1. Estimate the model by the OLS using the observations for which Cm ≠ 0.

2. Estimate σ t2, σ k2, στ
2, σ 2itkτ from the OLS residuals û1 using by OLS regressions.

3. The parameters in (17) are replaced by their estimates as:

l l l l l l l l
4 51 1 1 1 1 1

0 21 11, , 0 1, , 1
1 4

( 0,1), ( ).i M s op js itk s op s m
s j

vC M D D i C
−

= =

= + + + + = = + ∑ ∑ −∑ ∑tt t
m m mb b b �

Then, generate random variables η  from the standard normal distribution, and set: Ĉm0 = 

Aη itkτ + ν̂ 01, where A is a matrix that satisfies: Σ̂-1 =A' A.

4.  The truncation points, a and b, in the second type truncation ii) are set to the minimum value 

of OLS residuals û1 for the lower bound a and the maximum value of OLS residuals û1 for 

the upper bound b (see Appendix). As a result, when Ĉm0 satisfies one of the truncation condi-

tions, we set Ĉ *1m0 = Ĉ *m0 .
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5. After combining the generated data Ĉ *1m0 with Cm1, conduct GLS.

6.  Using the residual from GLS estimation, the variance matrix as well as other parameters (μ i , 

ν0) are reestimated and set to Σ̂2 , μ̂i2, ν̂ 02. These estimated parameters are used to generate 

Ĉ *2m0 . The obtained parameter estimates after convergences are regarded as the final esti-

mates.

4. Estimation results

In this section, we will first report the estimation results of call options and put options, 

and then discuss whether the error without consideration in the no-arbitrage condition exists.

Models were estimated by using five theoretical prices that are calculated from BS, 

GARCH, EGARCH, GJR, and APGARCH models. 

The results of FGLS for call options after convergence are shown in Table 1. The esti-

mated model is:

4 5

, , , , , ,
1 4

( ) (18)itk m itk s itk itk M itk s s op j op s itk
s j

M C C M M D D u
= =

⎛ ⎞
− = + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑t t t t t t t tb b b

The significance level is 5%.

From the table, the significance and the sign of the coefficients are different between vola-

tility models. However, in the EGARCH, GJR, and APGARCH models that take the asymmetry 

into consideration, the sign and size relationship of the coefficient are similar. First, the esti-

mate value of βM is estimated as negative in BS and GARCH models, but is positive in 

EGARCH, GJR, and APGARCH models. That is, when using the theoretical prices considering 

the asymmetry of the volatility, Cm-Cs is large as K/S becomes out-of-the-money. Next, the 

estimated values of βτ, s (s = 1, 2, 3, 4) increase as the survival period shortens. This is a com-

mon result in all of the volatility models. And β op, 4 is significantly positive in BS and GARCH 

model, however, it is not estimated to be significant in the other volatility models.

Estimates of σ t2, σ k2, στ
2 are significant in all volatility models. The estimates of σ t2 are rela-

tively bigger than σ k2 and στ
2. That is, the size of the variance component depending on the 

transaction date is large. From these estimates, it is confirmed that heteroskedasticity exists 

and depends on the transaction date as well as the strike price.

The result of the put option is summarized in Table 2. The estimated model is,

4 5

, , , , , ,
1 4

1 1( ) .m itk s itk M itk s s op j op s itk
s jitk itk

P P M D D u
M M = =

⎛ ⎞
− = + + +⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑t t t t t t

t t

b b b
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The significance level was 5%. In the put option, similarities in the significance of β  and in the 

relationship of the sign are seen in BS, GARCH, EGARCH, GJR, and APGARCH models. First, 

the coefficient of moneyness, βM, was estimated significantly positive. Therefore, the positive 

bias of the price difference is large as it becomes in-the-money. Next, βτ , s (s = 1, 2, 3, 4) is made 

significantly negative. The value of βτ , s (s = 1, 2, 3, 4) decreases as the survival period becomes 

shorter, and the negative bias becomes larger as it approaches the expiration day. Next, the 

Table 1: CALL: Estimation results in FGLS

BS GARCH EGARCH GJR APGARCH

βM -110.96* -65.92* 32.32 119.03* 70.86*

(29.48) (32.82) (32.23) (27.56) (31.61)

βτ ,1 38.19 -63.64 -166.74* -289.83* -254.19*

(45.72) (47.17) (47.26) (37.26) (41.93)

βτ ,2 74.50 -14.84 -116.70* -231.60* -193.22*

(46.23) (47.78) (47.85) (37.78) (42.55)

βτ ,3 77.75* 1.10 -95.64* -181.82* -141.77*

(46.75) (48.38) (48.44) (38.33) (43.17)

βτ ,4 95.06* 31.25 -64.53 -157.91* -109.19*

(47.18) (48.92) (48.95) (38.78) (43.72)

β op,4 16.43 17.38 14.35 10.23 10.65

(18.74) (20.03) (20.64) (19.30) (20.93)

β op,5 34.98* 34.85* 34.94 28.14 26.49

(19.45) (20.85) (21.44) (20.02) (21.77)

σ t2 24705.60* 20975.90* 21585.50* 6620.37* 8764.08*

(483.25) (387.61) (416.96) (179.93) (194.38)

σ k2 1753.29 3894.85* 3272.65* 3199.99* 5620.95*

(1430.83) (1147.65) (1234.55) (532.74) (575.54)

στ
2 3730.64* 4079.20* 4608.56* 4491.19* 4888.26*

(961.82) (771.47) (829.88) (358.12) (386.89)

σ 2itk 12688.89* 9166.77* 10585.38* 4637.06* 1663.94

(2936.69) (2355.49) (2533.85) (1093.42) (1181.26)

a 967.50 902.01 915.47 883.60 867.61

b -607.56 -552.29 -585.28 -723.13 -741.11

R2 0.013 0.020 0.034 0.092 0.077

The estimation was conducted using 968 observations from January 2000 to April 2000. The numerical 
value in parentheses shows the standard deviation. In all models, the number of iteration until conver-
gence was 4. “ * ” indicates significant at 5%.
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coefficient of the trading period, β op, j (j = 4, 5) , was estimated significantly positive. Positive 

bias is larger for a shorter trading period. Finally, σ t2, σ k2, στ
2 were assumed significant in posi-

tive values. The heteroskedasticity of the variance exists.

Let us compare the results for both type of options. First, the relationship between money-

ness and the price differences is considered. In the put option and in the call option that takes 

the asymmetry into consideration, the coefficients, βM, are estimated significantly positive. The 

result indicates that the option price differences increase as it becomes in-the-money for the 

put option and out-of-the-money for the call option. In other words, the market price is set to 

Table 2: PUT: Estimation results in GLS

BS GARCH EGARCH GJR APGARCH

βM 143.72* 184.57* 267.99* 253.55* 218.18*

(26.56) (24.05) (26.97) (25.75) (27.14)

βτ ,1 16.68 -8.93 -90.62* -65.34* -44.68

(35.26) (32.58) (35.69) (34.49) (36.03)

βτ ,2 -33.92 -62.37* -140.44* -116.81* -95.99*

(35.77) (33.03) (36.21) (34.98) (36.55)

βτ ,3 -64.27* -89.98* -179.41* -156.46* -126.82*

(36.28) (33.49) (36.74) (35.48) (37.07)

βτ ,4 -124.41* -157.12* -246.50* -226.72* -195.52*

(36.77) (33.90) (37.21) (35.92) (37.56)

β op,4 43.88* 39.86* 47.13* 42.41* 44.73*

(13.82) (13.89) (15.40) (14.78) (14.87)

β op,5 20.71 18.20 22.44 22.42 24.12

(14.52) (14.50) (16.09) (15.43) (15.57)

σ t2 8978.74* 7368.01* 7672.71* 7748.37* 8694.69*

(212.60) (188.33) (199.29) (196.97) (209.79)

σ k2 2002.29* 1034.54* 1688.74* 1364.36* 1961.69*

(646.04) (572.30) (605.61) (598.54) (637.51)

στ
2 1448.75* 1807.58* 2188.01* 2027.44* 1889.31*

(416.38) (368.86) (390.33) (385.77) (410.88)

σ 2itk 8287.55* 8985.45* 9835.70* 9627.29* 9033.34*

(1340.77) (1187.73) (1256.86) (1242.19) (1323.06)

R2 0.167 0.197 0.215 0.216 0.193

The estimation was conducted using 968 observations from January 2000 to April 2000. The numerical 
value in parentheses shows the standard deviation. In all models, the number of iteration until conver-
gence was 4. “ *” indicates significant at 5%.
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be higher than the theoretical price as the underlying asset becomes lower than the strike 

prices. From these results, it can be supposed that investors demand risk premium due to the 

fall of the underlying asset. Next, the relationship between survival period and price differences 

is examined. βτ , s (s = 1, 2, 3, 4) was estimated significantly negative both in the call option and 

put option, but the relationship of the coefficient became opposite. The option price differences 

decrease as the survival period became shorter in the call option, but conversely increase in 

the put option. Finally, the significances of variance are compared. σ t2, σ k2, στ
2 are estimated sig-

nificant. Heteroskedasticity exists in both of the options. Thus, it can be found that the option 

prices differences are correlated to the past value of the option itself and to the other option 

prices that are traded at the same time.

From these estimation results of call and put options, we will discuss the model error and 

the error without consideration in the no-arbitrage condition. We will explain the effects of the 

model error for the option price difference, after that we discuss about the estimation results 

of call and put options.

If a model error exists in the market, the price difference should vary depending on the 

volatility model for the following reasons. The five models, BS, GARCH, EGARCH, GJR, and 

APGARCH models are used to calculate the theoretical price. The above-mentioned five volatil-

ity models can be compared as follows. BS model interprets volatility as a constant. In contrast, 

GARCH, EGARCH, GJR, and APGARCH models are enhanced models in which volatility varies 

with time. Additionally, among the three models, EGARCH, GJR, and APGARCH take the 

asymmetry of volatility into consideration. In this data, since the asymmetry parameters in 

EGARCH, GJR, and APGARCH models are estimated significantly, the most accurate models 

of volatility are EGARCH, GJR, and APGARCH. If the market price can mostly be predicted 

from a volatility process of the underlying asset, the option price prediction made by EGARCH, 

GJR, and APGARCH models should be more reliable than that made by BS and GARCH mod-

els. Moreover, EGARCH, GJR, and APGARCH models that take the asymmetry into 

consideration are formulated differently. That is, if a model error exists, the estimated results 

change with BS, GARCH, EGARCH, GJR, and APGARCH models.

On the other hand, an error without consideration in the no-arbitrage condition should 

exist independently of the volatility model. In the case of the put option price difference mod-

els, there were no notable differences in the signs of estimated coefficients and their relative 

sizes. As for the call options, however, a common estimate is obtained only in the EGARCH, 

GJR, and APGARCH models that take the asymmetry into consideration. As similar conse-

quences were obtained from the these typical models, it is expected that the estimated 



An Analysis of Nikkei 225 Call and Put Option Price Differences between Market Price and Theoretical Price

─　　─75

relationship of the price difference with the moneyness, the survival period, the trading period, 

and the striking price would not change drastically depending on these typical volatility mod-

els. Thus, the common characteristics of Cm-Cs and Pm-Ps obtained in multiple volatility 

models. This result can be considered that the error without consideration in the no arbitrage 

condition exists.

5. Conclusions

In this article, we investigated the Nikkei 225 option market and analyzed the difference 

between the market option price and the theoretical option price. The estimation results 

showed that the option price differences depend on the moneyness and the survival period, and 

also on the trading period. Moreover, the variance of these differences depends on the strike 

price, the transaction date and the survival period. As the survival period became longer, a 

negative bias of the difference increased in call option and decreased in put option. As a result, 

the call option is consistent with Long and Officer (1997). The five models, BS, GARCH, 

EGARCH, GJR, and APGARCH models are used to calculate the theoretical price, and we esti-

mated the model of Cm-Cs and Pm-Ps by using five theoretical prices. From the estimation 

results, the common characteristics obtained among the call option price differences Cm-Cs 

using the Cs calculated from the EGARCH, GJR, and APGARCH models and the put option 

price differences Pm-Ps using Ps calculated from BS, GARCH, EGARCH, GJR, and APGARCH 

models. Thus, since there are common characteristics of the option price difference obtained in 

multiple volatility models, we can be considered that error without consideration in the no-arbi-

trage condition exists.

Some future research topics are as follows. First, we suggested a new estimation method, 

but did not consider the asymptotic theory of the estimator. It is important to test the covari-

ance structure and model specification. Second, it is worthwhile interpreting this estimated 

results in context of the informational inefficiency (Fama, 1970), and the truncation conditions, 

for example the term of a and b in this condition, in context of the market microstructure the-

ory. 

A Estimation of truncation point

To estimate the truncation point in the Tobit model, let us consider the likelihood function. 

We define:
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It can be seen that the log-likelihood function is monotonically increasing with respect to b. In 

addition, since the data whose values are smaller than b do not exist, the minimum value of the 

untruncated data becomes the estimated value of b. That is: b̂ = min (yi - μ i | yi is observed).

Next, consider the heteroscedasticity of yi and;
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Truncation point b is defined for a normalized y*i. For simplification the data are converted as;
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The Jacobean of this transformation is; dỹi /dyi = 1/σ i, and the log-likelihood function for the 

transformed data can be shown as
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This log-likelihood function is monotonically increasing with respect to b, and the value of b is 

estimated as: b̂ = min (ỹi | yi is observed).

In a general case where the correlation among yi exists, and yi is treated as in this paper, 

we must consider:
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where Y = {y1, y2, ..., yn}'. In this case, the log-likelihood function cannot be expressed as simply 

as in equation (24). When the correlation exists, the log-likelihood function is expressed by: lnL 

= Λ1 + Λ2,
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where bi = bσ i + μ i. It is difficult to maximize such a log-likelihood function directly with 

respect to the parameters because the integration of the second term is complicated. We have 

transformed yi in the same way as above: Ỹ * = Σ̃ -1/2 (Y*-μ ) ～ N (0, R), where R = Σ̃ -1/2 ΣΣ̃ -1/2,
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The corresponding Jacobean is: dỸ/dY = Σ̃ -1/2. The log-likelihood function of the transformed 

variable Ỹ is: lnL = Λ3 + Λ4,
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At this time, where the log-likelihood function of equation (26) is differentiated with respect to b, 

it can be easily seen that:
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That is, the log-likelihood function is monotonically increasing with b. Clearly from the defini-

tion of b, we can choose: b̂ = min (ỹi | yi is observed), in order to maximize the log-likelihood 

function.
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Footnotes

1 When the new strike price sets within three months before expiration day, these option data do not exist 
consecutively for four months. These data are excluded from our analysis.

2 Some literature, Honore (1992), Kyriazidou (1997), and Charlier, Melenberg and van Soest (2001) suggested 
the semiparametric estimation for fixed panel model and limited dependent variables.

References

Anshuman, V. and A. Kalay (1998), “Market Making Rents under Discrete Prices,” Review of Financial Studies 
11, pp.81-109.

Bauwens, L. and M. Lubrano (2002), “Bayesian Option Pricing Using Asymmetric GARCH Models,” Journal of 
Empirical Finance 9, pp.321-342.

Black, F. and M. Scholes (1973), “The Pricing of Options and Corporate Liabilities,” Journal of Political Econ-
omy 81, pp.673-659.

Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics 31, 
pp.673-659.

Bookstaber, R. M. (1981), “Observed Option Mispricing and the Nonsimultaneity of Stock and Option Quota-
tions,” The Journal of Business 54, pp.141-155.

Cameron, A. C. and P. K. Trivedi (2005), Microeconometrics Methods and Applications, Cambridge University 
Press.

Charlier, E., B. Melenberg and A. van Soest (2001), “An Analysis of Housing Expenditure using Semiparametric 
Models and Panel Data,” The Journal of Econometrics 101, pp.71-107.

Crouhy, M. (1994), “Extensions of the Black-Scholes Model to the case of Stochastic Volatility,” unpublished 
manuscript.

Ding, Z., C. W. J. Granger, and R. F. Engle (1993), “A Long Memory Property of Stock Market Returns and a 
New Model,” Journal of Empirical Finance 1(1), pp.83-106.

Duan, J. C. (1995), “The GARCH Option Pricing Model,” Mathematical Finance 5, pp.13-32.
Duan, J. C. and H. Zhang (2001), “Pricing Hang Seng Index Options around the Asian Financial Crisis . A 
GARCH Approach,” Journal of Banking and Finance 25, pp.1989-2014.

Easley, D., M. O’Hara, and P. S. Srinivas (1998), “Option Volume and Stock Prices: Evidence on Where Informed 
Traders Trade,” The Journal of Finance 53, pp.431-465.

Fama, E. (1970), “Efficient Capital Markets: A Review of Theory and Empirical Work,” The Journal of Finance 
25, pp.383-417.

Glosten, L. R., R. Jagannathan, and D. Runkle (1993), “On the Relation between the Expected Value and the 
Volatility of Nominal Excess Returns on Stocks,” The Journal of Finance 48, pp.1179-1801.
Honore, B. E. (1992), “Trimmed LAD and Least Squared Estimation of Truncated and Censored Regression 
Models with Fixed Effects,” Econometrica 60, pp.533-565. Kyriazidou, E. (1997), “Estimation of a Panel Data 
Sample Selection Model,” Econometrica 65, pp.1335-1364.

Long, D. M. and D. T. Officer (1997), “The Relation between Option Mispricing and Volume in the Black Scho-



An Analysis of Nikkei 225 Call and Put Option Price Differences between Market Price and Theoretical Price

─　　─79

les Option Model,” Journal of Financial Research 20(1), pp.1-12.
Nishina, K. and M. M. Nabil (1997), “Return Dynamics of Japanese Stock Index Options,” The Japanese Eco-
nomic Review 48, pp.43-64.

Nelson, D. B. (1991), “Conditional Heteroskedasticity in Asset Returns: A New Approach,” Econometrica 59, 
pp.347-370.

Parlour, C. (1998), “Price Dynamics in Limit Order Markets,” Review of Financial Studies 11, pp.789-816.
Renault, E. (1997), “Econometric Models of Option Pricing Errors,” in D. M. Kreps and K. F. Wallis eds., 
Advances in Economics and Econometrics: Theory and Applications, Seventh World Congress, Vol.3, Cam-
bridge University Press, Chapter 9, pp.223-278.

Wooldridge, J. (2002), Econometric Analysis of Cross Section and Panel Data, MIT Press.

※When I was a doctral student at Hitotsubashi University, I started this research with my supervisor late 
professor Satoru Kanoh. While I am deeply grateful to professor Satoru Kanoh for his constant guidance 
during his life, I am thinking of you and praying for you in this time of loss.


