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An Analysis of Nikkei 225 Call and Put Option Price Differences

between Market Price and Theoretical Price
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Abstract

In this article, we investigate the Nikkei 225 options market and analyze the difference between the
market price and the theoretical price. In the analyses, the following points are identified as characteristics
of the option market. First, a multiple number of options with different maturities are traded on the same
day. Second, in the Nikkei 225 option data set, option prices together with trading volumes frequently take
a value of zero. In order to take these characteristics of the option data into consideration, the data set
must be handled as panel data with a certain rotation structure. We propose a new approach to estimate
the truncated model using simulation.

The estimation results show that the differences in the call options depend on the moneyness and the
survival period, and the differences in the put options depend on the moneyness, the survival period, and
the trading periods. It is also seen that the variance of these difference depends on the strike price, the
transaction date and survival period. Five models, BS, GARCH, EGARCH, GJR, and APGARCH, were used
to calculate the theoretical price. There were no notable differences in the signs of estimated coefficients
and their relative sizes in the regression models of the difference between the market price and the theo-
retical price in the result of the put option. As for the call option result, a common estimate was obtained
in the EGARCH, GJR, and APGARCH models that take the asymmetry into consideration.
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1. Introduction

Stock index options made their debut in Japan in June 1989, when they were first intro-
duced at the Osaka Securities Exchange. Since then, trading rules have been amended
frequently, giving the market the structure it has today. Among the most actively traded
options in Japan are the Nikkei 225 options. In this article, we investigate the Nikkei 225 option
market and analyze the difference between the market price and the theoretical price.

The earliest attempt to model option pricing was undertaken by Black and Scholes (1973).
Since then, various models have been proposed to improve the original BS (Black and Scholes)
model by extending it. The principal objective of the proposed models has been to describe the
movement of the underlying asset price more accurately. As option prices are primarily deter-
mined by the underlying asset prices and as the volatility of the underlying asset price is an
important factor, much effort has been expended on describing the volatility movement of the
underlying asset precisely. For example, the variance changing models such as ARCH (autore-
gressive conditional heterogeneity) type and SV (stochastic volatility) models have been applied
and a comparison made of how well they can approximate the underlying assets volatility. If
there is no arbitrage, the value of an option is calculated from above the underlying stock price
itself.

However, some empirical studies show that the option price is not simply determined by
the movements of the underlying asset. That is, the prices observed in the market may differ
from the prices calculated from the above volatility models under the no-arbitrage condition.
Analyzing the rate of return of options on the Nikkei 225 index, Nishina and Nabil (1997), for
example, show that the put-call parity does not hold. Bookstaber (1981) suggests that a bias
exists due to non-simultaneity of the option market and the underlying asset market. Easley, O’
Hara and Srinivas (1998) point out that the trading volume of a stock option correlates with the
future price of the underlying assets. Thus, it can be concluded that option prices are affected
by factors different from the underlying asset. The option theoretical prices calculated from
the above volatility models by the assumption of no arbitrage do not take these facts into
account.

If option prices are not determined only by the underlying asset values, there would be a
difference between the theoretical price under assumption of no arbitrage and the market
price. Renault (1997) indicates the difference between the theoretical price and the market
price and raises the following four facts as the reasons. The first is the difference that occurs

by assuming that the estimated value of volatility is a true value. Second, an error in the for-
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malization of underlying asset process is mentioned. The third factor is the hypothesis that the
theoretical price is the expected value of an option payoff at the expiration day. The fourth fac-
tor is an error not covered by any of the reasons listed above. In this paper, the four reasons
for the option price difference indicated in Renault (1997) are put into two categories. We will
consider the first three as model error and the last one as error without consideration in the
no-arbitrage condition. As mentioned before, the model error has frequently been considered in
the formula for calculating the theoretical price, but the error without consideration in the
no-arbitrage condition has not been analyzed in depth in option empirical studies.

The main objective of this paper is to examine whether the error without consideration in
the no-arbitrage condition exists in the option market and investigate empirically what charac-
teristics are seen in this error by analyzing the difference between the market price and the
theoretical price. In the analyses, the following points are identified as characteristics of the
option market.

First, a multiple number of options with different maturities are traded on the same day in
the market. It is necessary to classify the option price data not only by the traded days but
also by the maturity days. As a result, the data set must be handled as panel data with a cer-
tain rotation structure. Accordingly, it becomes necessary to take the covariance of the price
data into consideration when the price movements are explained by various factors such as the
survival period and the moneyness.

Second, in the Nikkel 225 option data set, option prices together with trading volumes fre-
quently take a value of zero. This indicates that for some reasons the options are not traded on
that day and such observations have been excluded from the empirical analysis in the litera-
ture. However, as such observations where the price is zero reflect the investors’ decision,
exclusion of them will lead to loss of information. More importantly, the estimation of any rela-
tionship may be biased due to this exclusion.

The remainder of this paper is organized as follows. Section 2 provides a brief overview of
the characteristics of the Nikkei 225 options market and briefly explains how to calculate the
theoretical option prices. In Section 3, the difference between the market price and the theoret-
ical price in the Nikkei 225 option market is investigated empirically taking the abovementioned
characteristics of the data into account. Section 4 provides the estimation results. Section 5 con-

cludes the paper.



2. Illustration of the Nikkei 225 option data

2.1 A brief outline of the Nikkei 225 options market

First of all, let us briefly look at the features of the Nikkei 225 options market. Eight types
of options with different expiration dates are traded on the same day. There are three kinds of
transaction time horizons: 15 months, 5 months, and 4 months. When the exercise day of an
option arrives, a new option is created on that day. Usually, for options with the same maturity,
five strike prices are initially set symmetrically around the underlying asset price. Therefore,
there are at least 40 options running on every trading day. However, the number of strike
prices may increase when the underlying asset price exceeds the highest or lowest strike
price. In the following sections, in order to simplify the analysis, monthly data are created from
the daily data by picking up the prices on the expiration day in each month. Further, the data
of each option are extracted for four months before the expiration date. For convenience, the
four months during the survival period are labeled as ¢ = 1, 2, 3, 4. As a result, time series data
with a rotation structure are created. In this paper, we analyze the market prices of the Nikkei

225 call option C,, and put options P,, with maturity from January 2000 to April 2002.

2.2 Estimation of the theoretical price

The theoretical prices corresponding to the market prices C,, and P,, do not exist as data.
The theoretical option prices (C,, and P,,) below are calculated by using the BS, GARCH (gen-
eralized ARCH), EGARCH (exponential GARCH), GJR, and APGARCH (asymmetric power
GARCH) models. In the following, the strike price of an option is written as X, the daily closing
price of the underlying asset as S, the survival period as r, and moneyness (= K/S) as M. Fur-
ther, the number of strike prices for options in the i-th group maturity is denoted as K,

A number of models have been proposed to describe the volatility fluctuation of the under-
lying assets accurately. The GARCH model by Bollerslev (1986) considers the persistence of
volatility shock. The EGARCH model by Nelson (1991), GJR model by Glosten, Jagannathan and
Runkle (1993), APGARCH model by Ding et al. (1993) consider the asymmetry as well as the
persistency of the shock. Comparisons of option pricing have been made among the volatility
fluctuation models. For example, Crouhy (1994), Duan and Zhang (2001) made comparison
between the ARCH type model and the BS model. They conclude that the predictive perfor-
mance of the option price by the ARCH type model is better than that of the BS model.

More concretely, the GARCH model
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is estimated by maximum likelihood using the daily return rate of the Nikkei 225 (R, ), for 1,000
business days before the trading day. For the EGARCH model, the variance fluctuation is

expressed as;

In(e?) = o +al0z, ; + (21| ~E(z,, )]+ BIn(c? ). (2)
For the GJR model, the variance fluctuation is expressed as;

Uz =0+ 0‘534 + VDHQ?A + ﬂo'zfl- 3)

Now, let D,; of GJR model a dummy variable that becomes 1 when ¢,; < 0 and 0 otherwise.

And for the APGARCH model, the variance fluctuation is expressed as;
o’ =o+ale, |-y, ) +po . 4)

Then, let -1 < y < 1. Further, for the constant volatility model, the volatility is assumed to be:
o2 = in (1), and this model is regarded as the BS model in this paper.

As a result of estimation, the parameters that expresses the asymmetry of EGARCH, GJR,
and APGARCH models were estimated to be significant at 5%. The persistence of the volatility
shock and the asymmetry are existent in the data used in this paper.

After the estimated ARCH type models are transformed to the models where local risk
neutrality is assumed (Duan, 1995; Bauwens & Lubrano, 2002), the underlying assets prices at
the maturity of the option are generated by the Monte Carlo simulation. Using the simulated
Nikkei 225 prices at maturity, we can simulate the payoff of the call and put options, too. When

the average of these payoffs is discounted at the transaction day, it becomes the theoretical

option prices, C,, and P,, from these volatility models.
3. Analysis of the difference between the market price and the theoretical price

3.1 Model

In this study, we consider the difference between the market prices C,, and P,, and the
theoretical prices C, and P,. As mentioned above, the theoretical prices are calculated from the
volatility models under the assumption of no arbitrage, and the market prices are affected by

factors both with and without consideration in the no-arbitrage condition.



Multiple options exist in a single trading day in the option market. The investors must
select from among these options. Each of the options can be categorized according to strike
prices, survival period, and the expiration day. In trading, investors have information on the
theoretical price, which they usually trust, the strike price, the survival periods, and the under-
lying asset’s price. They can make their decisions based on this information. If an investor
decides which option to trade by considering the relationship of it with the other options, that
investor selects the most undervalued or overvalued options by comparing the market price
with the theoretical price. Therefore, the market price C,, and P,, will be affected not only by
the theoretical price C; and P, calculated from the underlying asset movements but also by the
other option prices. When such as investor’s decision behavior is considered, the market price
would include the part which depends on the survival period and strike prices.

In addition, since the number of strike prices in one expiration day increase when fluctua-
tion of the underlying asset is large, options traded during a long period and options traded
during a short period show a difference in the number of their strike prices. Since a largest
number of strike prices will be set during a 15-month trading period, it is possible to select an
option from among a greater number of options with the same survival period. It can be seen
from the above that the lengths of trading periods (15 months, 5 months, and 4 months) are
also likely to affect the market price.

In this research, we consider a simple model in which the market price depends on the
moneyness, the survival period, and the trading period in addition to the theoretical price: for

the call options,
4 5
Cm‘itkr = C?,z't}ez + ﬂMMitk-r + Zﬁz,xDr,s + Zﬂop,jDop‘j + uz'tk‘[ (5)
s=1 j=4
and for the put options,
4 5
Bine = B ie + By + Zﬂr,sDr,s + Zﬂop,jDob,/ + U - (6)
s=1 j=4

Here, D., (s = 1, 2, 3, 4) is the dummy variable that takes one when the survival period is s
months and D,, ; (7 = 4, 5) is the dummy variable that takes one when the option trading period
is 7 months. The suffix 7 denotes a maturity (z = 1, ..., 28), tis a trading day, 2 (k= 1, ..., k) is a
strike price, and 7 is a survival period, which 7 = ¢t - 4 ( - 1). The error term u,,, is assumed to
be decomposed into the error g, that depends on the transaction date, the error ¢, that depends
on the strike price, the error ¢, that depends on the survival period within the same maturity
group, and the error term g, that is purely random: u«,;,, = ¢, + &, + &, + &4, [t is assumed that

&, &n & and g, are mutually independent. The variances of these four error terms are
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expressed respectively as:

2 2 2 2
Var(e,) = o;, Var(e,) =0}, Varle,) =o7, Var(e,,) =0,

In order to estimate (5) and (6) efficiently, we must take the covariance structure of u,,

into consideration. When there are k; exercise prices for the i-th maturity group among 28

maturity groups, the variance covariance structure is expressed as follows.
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Let us consider the options with i-th maturity and the options with j-th maturity that are

traded on the same day (7 =7 + 1,7 + 2, 7 + 3). Assume that the number of strike prices of the

options with i-th maturity is % and of the options with j-th maturity is &. Then, the variance

matrix of the options in the i-th maturity group, £, is a 4k; X 4k; matrix and the covariance of

the options on the same trading days 2! (s = 2, 3, 4) becomes a 4k; X 4k; matrix. Then, we

define
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as follows.
A
Zi _ Ak
Ak
Ak

Ak Ak
A, A,
A A,
A, A

(10)



3! (s = 2, 3, 4) are the variance matrices of the options on the same trading day with differ-

ent maturities. The structure is expressed as follows.

0 A 0 0 00 A O 00 0 A
{00 A O] o |00 0 A 000 0
Zl: t Zl: [Zl: 11
00 0 A TP Ho0 0 0 T lo00 0 1y
00 0 0 00 0 0 000 0

Another characteristic that can be observed is that the variance becomes smaller as mon-
eyness becomes out-of-the money. Here, for call option, the adjustment for this
heteroskedasticity is made simply by multiplying the moneyness M by both sides of (5). Also,
an adjustment is done by dividing both sides of (6) in the put option.

3.2 Treatment of 0-value data

In the Nikkei 225 option market, 0-value is recorded as a price when no trading is estab-
lished. In conventional research, such data are excluded from the analysis. It is noted, however,
that the investors’ decisions are somehow reflected in these data and, therefore, exclusion of
them will lead to loss of information. More importantly, exclusion may cause bias in the estima-
tion. The difficulty is that the reasons why market prices become 0 are unknown. Also, the
trading volume, which reflects the investors’ demand, becomes 0 simultaneously with the price.
A method of considering 0-value data in the model is explained below. Among the 968 observa-
tions of call option prices that are used in this paper, 74 observations are with C,, = 0. 0-value
data had existed in the data before 2000 in the put option. However, trades were established in
all of the data of 968 observations used in this paper. Because of this fact, a manipulation of
O-value data explained below has not been done for the put option.

In this paper, the following two possibilities of C,, being 0 are considered. First, an inves-
tor’s value of option that the investor thinks reasonable after considering the three factors,
such as the theoretical price which the investor trust, the strike price, and the survival period,
can be negative when the investor requires a risk premium and C; is small. Since the market
price cannot be negative, the option price is truncated at 0 yen under such a circumstance.
That is, a zero market price of a call (C,, = 0) is observed when the value of the option, Cj,

that all investors consider appropriate satisfies:

1) Cpoe <0 12)

m, itht

Moreover, since zero data C,, = 0 are observed in all of the moneyness, it is seen that C,

becomes zero even when C; is large. These data can not be explained by the truncation (12).
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Therefore, the truncation (12) is not the sole reason for the data with C,, = 0. When the trans-
action vanishes, either the investors’ demand or supply becomes nil. The results in Parlour
(1998) and Anshuman and Kalay (1998) are considered one of the possible reasons for this situa-
tion. They analyzed the market behavior with discrete pricing restrictions like the Nikkei 225
option market, and found that the spread between the bid/ask price and the preset limited
price causes no trading. That is, we define the deviation as:

4 5
DV = Cm*,itkr - E [Cx,itkr + ﬁMMz'tkr + Zﬂz,sDr,s + z ﬂ()p‘jDop,s + ul'tkrj
j=4

s=1
4 5
= cr:z,ilkr - Cs,ilkr + ﬁMMitkz + Zﬁr,sDz,s + Zﬂop,jDol),s . (13)
=1 =4
It is plausible that C,, could be 0 when:

i) DV >a or DV <b(<0). (14)

where « is a positive constant and 4 is a negative constant.

In summary, the model and the truncation mechanism are expressed as follows.

4 5
* —
My Cor it = My, [Cs,itkr +BuMy, + ZﬂmDm + Zﬂop‘jDop,s + uz’tkz]
4

s=1

uilkr =€ + €, + € + €itpr

S (15)
0 if 7) or ).

For these truncated data, OLS using the entire data or OLS using the subsample for which
C,, < 0 are both inconsistent estimators of the coefficients in the model, so that we should con-
sider these truncated conditions to estimate the parameters (Wooldridge, 2002). If the data was
cross-section data and the variance structure was homoscedastic and the truncation mecha-
nisms were expressed only by (12), the familiar Tobit model could be applied and we can apply
the maximum likelihood estimator. In the case of the panel data including individual effects, we
have to maximize the log-likelihood with respect to each individual effect’s parameter. How-
ever, in short panels, this estimator is inconsistent. On the other hand, for the random effects
models including individual effects, the likelihood function included one-dimensional integral
(Cameron and Trivedi, 2005). Note that as this model has a complicated variance covariance
structure as well as truncation conditions, therefore, there are multi-dimensional integrations in
the likelihood function and the maximum likelihood estimations of the parameters of this model

cannot be analytically obtained (see Appendix)’. Because of the complicated structure of the



variance matrix and truncation mechanism, however, we are obliged to resort to a simulation
method. In this estimated procedure, we assume the conditional distribution of the unobserved
data and simulated this data, after we estimated the model.

Let C,, be a vector of the option prices in the market for which C,, # 0 and C,,, be a vec-
tor of the latent investor’s value corresponding to C,,, for which C,, = 0. Note here that Cy; is

unobservable. Assume also that (C,,; , C,) distributes according to a multivariate normal distri-

bution with the mean vector ¢ and the variance matrix X, respectively:

C C
p=g| " =" s var| :[Zn ZHJ where X, =), . (16)
o) Cro) \Zu Zm

Then, the distribution of C,,, conditional on C,,; is also a multivariate normal distribution whose

density is:

1
k =
FICL|Cop) = (27) 2 (é—l] exp (—&J, an

where

@y = (Coro —09) (T = X X1 Z1) (Corp =)
and

% = Ho + oy T3 (Cp = ).

We generate C,,, using this property.
Concretely, the following steps are iterated.
1. Estimate the model by the OLS using the observations for which C,, * 0.
2. Estimate o7, 6/, 62 %, from the OLS residuals 7' using by OLS regressions.
3. The parameters in (17) are replaced by their estimates as:
B =C. + By + My, + 24; B..D,. + i BuniD,y. (i =0,1), 90 = Ay + Sy Si(C,, — ).
s=1 j=4
Then, generate random variables n from the standard normal distribution, and set: C,,, =
Anip + vd, where A is a matrix that satisfies: &' =A'A.
4. The truncation points, @ and b, in the second type truncation ii) are set to the minimum value
of OLS residuals #' for the lower bound ¢ and the maximum value of OLS residuals %' for
the upper bound & (see Appendix). As a result, when C‘mo satisfies one of the truncation condi-

A ¥

. Akl
tions, we set C,,0 = C,0.
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5. After combining the generated data C :”10 with C,,,, conduct GLS.

6. Using the residual from GLS estimation, the variance matrix as well as other parameters (u;,
v,) are reestimated and set to 3%, i, V2. These estimated parameters are used to generate
C‘Zfo. The obtained parameter estimates after convergences are regarded as the final esti-

mates.
4. Estimation results

In this section, we will first report the estimation results of call options and put options,
and then discuss whether the error without consideration in the no-arbitrage condition exists.

Models were estimated by using five theoretical prices that are calculated from BS,
GARCH, EGARCH, GJR, and APGARCH models.

The results of FGLS for call options after convergence are shown in Table 1. The esti-

mated model is:
4 5
My (C,, i = Cine) = Moo | BuM i + Z.BT,SDH + Z.Bop,jDop,s + Ui, (13)
=1 =

The significance level is 5%.

From the table, the significance and the sign of the coefficients are different between vola-
tility models. However, in the EGARCH, GJR, and APGARCH models that take the asymmetry
into consideration, the sign and size relationship of the coefficient are similar. First, the esti-
mate value of B, is estimated as negative in BS and GARCH models, but is positive in
EGARCH, GJR, and APGARCH models. That is, when using the theoretical prices considering
the asymmetry of the volatility, C,~C, is large as K/S becomes out-of-the-money. Next, the
estimated values of ., (s = 1, 2, 3, 4) increase as the survival period shortens. This is a com-
mon result in all of the volatility models. And f,,, is significantly positive in BS and GARCH
model, however, it is not estimated to be significant in the other volatility models.

Estimates of 6?2, ¢/, o2 are significant in all volatility models. The estimates of ¢? are rela-
tively bigger than o/ and o2 That is, the size of the variance component depending on the
transaction date is large. From these estimates, it is confirmed that heteroskedasticity exists
and depends on the transaction date as well as the strike price.

The result of the put option is summarized in Table 2. The estimated model is,

l(P P 1

mitht s,itkr) =55
itk M itkt

4 5
[ﬂMMilkr + Zﬂz,sDr,s + Zﬂap,jDop’s + uilkr] .
s=1 j=4



Table 1: CALL: Estimation results in FGLS

BS GARCH  EGARCH GIR APGARCH
Bu -110.96" -65.92° 32.32 119.03* 7086°
(29.48) (32.82) (32.23) (27.56) (3161)

B.. 3819 63,64 -166.74° -280.83" -25419°
(45.72) (47.17) (47.26) (37.26) (41.93)

B.. 7450 1484 -116.70° ~231.60° -193.22¢
(46.23) (47.78) (47.85) (37.79) (42.55)

B.s 775" 110 ~05.64° -181.82" -14177*
(46.75) (48.38) (48.44) (38.39) (43.17)

B 95.06* 3125 6453 -15791° -109.19*
(47.18) (48.92) (48.95) (38.78) (43.72)

Burs 1643 17.38 14.35 1023 1065
(18.74) (20.03) (20.64) (19.30) (20.93)

Boys 3498* 34.85° 3494 2814 26.49
(1945) (20.85) (21.44) (20.02) (21.77)

o? 2470560°  2097590°  21585.50° 6620.37" 8764.08°
(483.25) (387.61) (416.96) (179.93) (194.38)

o 1753.29 3894.85° 3272.65" 3199.99* 562095*
(143083)  (114765)  (123455) (532.74) (575.54)

o? 3730.64* 4079.20° 460856" 4491.19° 4838.26°
(961.82) (T71A7) (829.88) (358.12) (386.89)

o2, 12688.89" 916677 10585.38" 4637.06" 1663.94
(203669)  (235549)  (253385)  (109342)  (1181.26)

a 967.50 902,01 91547 883,60 867.61
-607.56 -552.29 -585.28 72313 74111

R 0013 0.020 0,034 0.092 0.077

The estimation was conducted using 968 observations from January 2000 to April 2000. The numerical
value in parentheses shows the standard deviation. In all models, the number of iteration until conver-
gence was 4. “*” indicates significant at 5%.

The significance level was 5%. In the put option, similarities in the significance of 8 and in the
relationship of the sign are seen in BS, GARCH, EGARCH, GJR, and APGARCH models. First,
the coefficient of moneyness, ), was estimated significantly positive. Therefore, the positive
bias of the price difference is large as it becomes in-the-money. Next, B, (s = 1, 2, 3, 4) is made
significantly negative. The value of B, (s = 1, 2, 3, 4) decreases as the survival period becomes

shorter, and the negative bias becomes larger as it approaches the expiration day. Next, the
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Table 2: PUT: Estimation results in GLS

BS GARCH EGARCH GJR APGARCH

Bu 14372 184.57" 26799 253.55" 218.18"
(26.56) (24.05) (26.97) (25.75) (27.14)
B 16.68 -893 -90.62" -65.34" -44.68
(35.26) (32.58) (35.69) (34.49) (36.03)

B.o -33.92 —-62.37" -140.44* -116.81" -95.99
(35.77) (33.03) (36.21) (34.98) (36.55)

B3 -64.27" -89.98" -179.41* -156.46 -126.82"
(36.28) (33.49) (36.74) (3548) (37.07)

Bes -12441" -157.12* -246.50" -226.72 -195.52*
(36.77) (33.90) (37.21) (35.92) (37.56)

Bopa 4388" 39.86" 4713 4241 4473
(13.82) (13.89) (15.40) (14.78) (14.87)
Boss 20.71 18.20 2244 2242 2412
(14.52) (14.50) (16.09) (1543) (15.57)

o} 897874 7368.01" 7672.71" 7748.37 8694.69"
(212.60) (188.33) (199.29) (196.97) (209.79)

of 2002.29" 1034.54* 1688.74" 1364.36" 1961.69"
(646.04) (572.30) (605.61) (598.54) (637.51)

o’ 1448.75" 1807.58" 2188.01" 202744 1889.31"
(416.38) (368.86) (390.33) (385.77) (410.88)

o 8287.55" 8985.45" 9835.70" 9627.29" 9033.34"
(1340.77) (1187.73) (1256.86) (1242.19) (1323.06)
R* 0.167 0.197 0.215 0.216 0.193

The estimation was conducted using 968 observations from January 2000 to April 2000. The numerical
value in parentheses shows the standard deviation. In all models, the number of iteration until conver-
gence was 4. “*” indicates significant at 5%.

coefficient of the trading period, B,,; ¢ = 4, 5) , was estimated significantly positive. Positive
bias is larger for a shorter trading period. Finally, o7, o7, o2 were assumed significant in posi-
tive values. The heteroskedasticity of the variance exists.

Let us compare the results for both type of options. First, the relationship between money-
ness and the price differences is considered. In the put option and in the call option that takes
the asymmetry into consideration, the coefficients, 8, are estimated significantly positive. The
result indicates that the option price differences increase as it becomes in-the-money for the

put option and out-of-the-money for the call option. In other words, the market price is set to



be higher than the theoretical price as the underlying asset becomes lower than the strike
prices. From these results, it can be supposed that investors demand risk premium due to the
fall of the underlying asset. Next, the relationship between survival period and price differences
is examined. B, (s = 1, 2, 3, 4) was estimated significantly negative both in the call option and
put option, but the relationship of the coefficient became opposite. The option price differences
decrease as the survival period became shorter in the call option, but conversely increase in
the put option. Finally, the significances of variance are compared. o2, 7, o2 are estimated sig-
nificant. Heteroskedasticity exists in both of the options. Thus, it can be found that the option
prices differences are correlated to the past value of the option itself and to the other option
prices that are traded at the same time.

From these estimation results of call and put options, we will discuss the model error and
the error without consideration in the no-arbitrage condition. We will explain the effects of the
model error for the option price difference, after that we discuss about the estimation results
of call and put options.

If a model error exists in the market, the price difference should vary depending on the
volatility model for the following reasons. The five models, BS, GARCH, EGARCH, GJR, and
APGARCH models are used to calculate the theoretical price. The above-mentioned five volatil-
ity models can be compared as follows. BS model interprets volatility as a constant. In contrast,
GARCH, EGARCH, GJR, and APGARCH models are enhanced models in which volatility varies
with time. Additionally, among the three models, EGARCH, GJR, and APGARCH take the
asymmetry of volatility into consideration. In this data, since the asymmetry parameters in
EGARCH, GJR, and APGARCH models are estimated significantly, the most accurate models
of volatility are EGARCH, GJR, and APGARCH. If the market price can mostly be predicted
from a volatility process of the underlying asset, the option price prediction made by EGARCH,
GJR, and APGARCH models should be more reliable than that made by BS and GARCH mod-
els. Moreover, EGARCH, GJR, and APGARCH models that take the asymmetry into
consideration are formulated differently. That is, if a model error exists, the estimated results
change with BS, GARCH, EGARCH, GJR, and APGARCH models.

On the other hand, an error without consideration in the no-arbitrage condition should
exist independently of the volatility model. In the case of the put option price difference mod-
els, there were no notable differences in the signs of estimated coefficients and their relative
sizes. As for the call options, however, a common estimate is obtained only in the EGARCH,
GJR, and APGARCH models that take the asymmetry into consideration. As similar conse-

quences were obtained from the these typical models, it is expected that the estimated



An Analysis of Nikkei 225 Call and Put Option Price Differences between Market Price and Theoretical Price

relationship of the price difference with the moneyness, the survival period, the trading period,
and the striking price would not change drastically depending on these typical volatility mod-
els. Thus, the common characteristics of C,-C; and P,-P, obtained in multiple volatility
models. This result can be considered that the error without consideration in the no arbitrage

condition exists.
5. Conclusions

In this article, we investigated the Nikkei 225 option market and analyzed the difference
between the market option price and the theoretical option price. The estimation results
showed that the option price differences depend on the moneyness and the survival period, and
also on the trading period. Moreover, the variance of these differences depends on the strike
price, the transaction date and the survival period. As the survival period became longer, a
negative bias of the difference increased in call option and decreased in put option. As a result,
the call option is consistent with Long and Officer (1997). The five models, BS, GARCH,
EGARCH, GJR, and APGARCH models are used to calculate the theoretical price, and we esti-
mated the model of C,-C, and P,~P, by using five theoretical prices. From the estimation
results, the common characteristics obtained among the call option price differences C,,~C;
using the C, calculated from the EGARCH, GJR, and APGARCH models and the put option
price differences P,,—P, using P, calculated from BS, GARCH, EGARCH, GJR, and APGARCH
models. Thus, since there are common characteristics of the option price difference obtained in
multiple volatility models, we can be considered that error without consideration in the no-arbi-
trage condition exists.

Some future research topics are as follows. First, we suggested a new estimation method,
but did not consider the asymptotic theory of the estimator. It is important to test the covari-
ance structure and model specification. Second, it is worthwhile interpreting this estimated
results in context of the informational inefficiency (Fama, 1970), and the truncation conditions,
for example the term of ¢ and & in this condition, in context of the market microstructure the-

ory.
A Estimation of truncation point

To estimate the truncation point in the Tobit model, let us consider the likelihood function.

We define:



i
yl' = (19)
0 if y'—p, <b

where y% ~ N (u;, 6%, »*%is the latent variable and b is the truncation point. The log-likelihood

function for a constant dispersion is:

(v, =)
InL=>) ——|In27)+1 + + > 1 —d (20)
> z(“ ne JZ“[I Jz—p{ 2 M

By differentiating the log-likelihood function with respect to b, it becomes:

,_1 exp {— (b—p,)" }
alnL Z 2no” 20° > 0.

2
I 1 exp {— G =m)” ,1211-) } day,
“ \2n0? 2o

It can be seen that the log-likelihood function is monotonically increasing with respect to 4. In

addition, since the data whose values are smaller than b do not exist, the minimum value of the
untruncated data becomes the estimated value of . That is: b = min ;= ;| v is observed).

Next, consider the heteroscedasticity of y, and;

. (22)
0 if-2iH <p where v~ N(u.o,)

[
O;

Truncation point & is defined for a normalized y7. For simplification the data are converted as;

I - .
yi=1" where y; = Vi TH
0 ify;<b, o;

~ N(0,1). (23)

The Jacobean of this transformation is; dy;/dy; = 1/0;, and the log-likelihood function for the

transformed data can be shown as

InZ = Z——[ln2n+(y }+Zln[-|‘ \/:ﬂexp[_(j)i)Zdel.*} (24)

0<y;

This log-likelihood function is monotonically increasing with respect to b, and the value of b is
estimated as: & = min O, |, ts observed).
In a general case where the correlation among y; exists, and y; is treated as in this paper,

we must consider:
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. (25)
0 if LMy

O;

where Y = {y,, 5 ... v,|" In this case, the log-likelihood function cannot be expressed as simply

as in equation (24). When the correlation exists, the log-likelihood function is expressed by: InL
= A+ A,

?l

A, = Zlnj " en 7zl exp{—%(Y—u)'zI(Y—y)}dy1~--dyﬂ

where b; =

(26)

bo; + u; It is difficult to maximize such a log-likelihood function directly with

respect to the parameters because the integration of the second term is complicated. We have

transformed v; in the same way as above: ¥ == V2(Y'-u) ~ N (0, R), where R = 3 /255712

(27)
0 i y;:<b

The corresponding Jacobean is: d Y/dY = V2 The log-likelihood function of the transformed
variable Yis: InL = Ay + A,

3,>0

-3z 2( (27:)——|R| Y'RIYJ

n 1~' 7~ _ _
4—Zlnj f ZZIZﬂ)ZIRIZexp{ 2YR1Y}a’y1--~dyn-

At this time, where the log-likelihood function of equation (26) is differentiated with respect to b
it can be easily seen that:

1 n 1 - -
S @n ¢ R expl LT RT

olnL z 2

b = 1 "

b b T~ -
,OI_w_..I_wIZ 2|(2n) 2 |R2€XD{ ZYRIY}dyl'”dyn

> 0. (28)

That is, the log-likelihood function is monotonically increasing with b. Clearly from the defini

tion of b, we can choose: & = min (v; | v is observed), in order to maximize the log-likelihood
function.
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Footnotes
1 When the new strike price sets within three months before expiration day, these option data do not exist
consecutively for four months. These data are excluded from our analysis.
2 Some literature, Honore (1992), Kyriazidou (1997), and Charlier, Melenberg and van Soest (2001) suggested
the semiparametric estimation for fixed panel model and limited dependent variables.
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