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Service for Traffic Control in Information

Networks

Yoshitaka Takahashi’

Abstract To handle more phone and personal computer users in such a natural disaster
as terribly strong earthquake, a traffic control has been previously proposed by liming
the individual call holding tme. This tratfic control mechanism leads to our T-limited
service. By T-limited service, we mean that the service time is limited to a threshold
T. The call whose service time reaches T is assumed to be lost. For evaluating che
traftic concrol performance, we present multi-server loss systems with T-limited service,
Wichout any retrial queues, we analyze a Poisson input and general service time loss
system to derive the steady-state distribution of the number of calls in the system.
With a retrial queue, assuming furcher that the call sojourn time at the retrial queue
is exponentially discribured 2nd thar the T-limited service time is also exponentially
distributed, we propose an approximarion for the steady-state distribution of the number

of calls in the system. Our approximation accuracy is validated by a simulation result.
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1. Introduction

Hearing of a natural disaster like a terribly strong earthquake or severely wild
typhoon, people vse their phones or personal computers (PCs) to inquire after their
close relative’s and friend’s safety via voice or dara (e-mail, web) services. Voice and dara
traffic may exceed the system capacity to deteriorate the network performznce. To
handle more phone and PC users in such a disaster, or ar least to avoid dereriorating the
network performarce; Okada [11] has previously proposed a traffic control by liming the
individual call holding time during a waffic congestion period. Okada’s craffic control

mechanism is referred o as fime-limired service in the queueing literature.

We introduce a concepr and the notation for describing time-limited service. Let
T be a threshold for the service time limitation. To be more exact, the service station
will stop the service of a call whose service time reaches T. The service-stopped call will
then leave the station and will not arrive at the station again (will not retry to enter the
station). The call will be lost. Using the threshold T explicitly, we refer to our time-

limited service as T-limired service.

A prime example of T-limited service is a cellular phone traffic control proposed in
QOkada [11] as mentioned above. Another example is a service rime-out scheme which
ariscs in a packetized communication system providing a recently-developed real-time
service application, The necessity and importance of our T-limited service have been
increasing in informarion nerworks. To the best of the authors knowledge, however,
there is very lirtle lirerature on the loss systems wirh T-limired service even for the simple
Poisson input case. Qur main goal of the paper is to present and analyze new teletraflic

models, multi-server loss systems with T-limired service.

There has been much interest in exact and approximare approaches for service
station systems with retrials; see Refs [6, 9, 12, 13, 16, 20, 22. 23], In typical retrial
queueing models, an arriving call that finds all servers busy will recurn and place another
request for some later time. The call is assumed ro enter the retrial queue, after some
sojourn time at the retrial queue it will try o enter the service station. Retrial queueing
models are of practical imporwance in the teletraffic filed of information nerworks.
However, we are aware of no reported results on T-limited service. In the paper, we will

consider a multi-server loss system with retrials as well as T-limited service.



The rest of the paper is organized as follows. Section 2 describes our queucing
models in details and gives the notation and symbols. Statistical and stochastic
assurptions arc made in this section. Section 3 is devoted to analyring the T-limiced
service time distribution. The coefficient of variation of the T:limited service time is
derived.  The statistical znalysis of the T-limited service time provides a stepping stone
for the subsequent queueing analysis. Section 4 develops our exacr analysis for the
Poisson input general service time multi-server loss system with T-limited service. It also
develaps our approximate analysis for the Poisson input exponential service time multi-
server loss system with T-limited service and retrals. Qur approximation accuracy is
validated by a simulation result. Section 5 contains some concluding remarks and topics

tor further research.

2. Notartion and Symbols

Our teletraffic model is characterized as follows, Calls arrive at a multi-server
service station. An arriving call requests its service (holding a channcl, transferring
information, or processing a job in a network system) for a time-period duration. The
time-period duration requested by a call is referted s 1o the service time (of a call). The
inter-arrival times and the service times of calls are random variables and assumed o he

statistically independent.

We denote by the Kendall notation A/B/¢/K, a multi-server queueing model where
the inter-arrival time distribution is A, the service time distribution is B, the number of
servers is ¢, and the maximum number of calls allowed in the model (referred as to the
system capacity) is K. The symbols introduced by Keudall [10] and mraditiorally used for
Aand B are

G: general inter-arrival or service time distribution
H,: k-stage hyper-exponential inter-arrival or service time distribution
E, : k-stage Erlang inter-arrival or service time distribution
M: exponential inter-arrival or service time distribution
(so thar the arrivals or services form a2 Markov process)

D: deterministic inter-arrival or service time (unit distribution)



The shorter noration A/B/c is usually used if there is no limit to the length of
queue (if the system capacity is infinite). When we say an M/G/1 quencing model, we
mean that a single-server (¢ = 1) infinite-capacity { K = o0 ) queueing system where the
inter-arrival time diseriburion is exponential { A = M) while the service time discribution
is general (B = G ). As another Kendall notation example, when we say an M/G/c/c
model, we mean that a2 multi-server loss system ( K = ¢ ) where the inter-arrival time
distribution is exponential ( A = M ) while the service time distriburion is general ( B =
G ). In the M/G/cfc model, an arriving call whe finds the ¢ servers all busy will be lost

(will not be able to enter the service station).
We further use the following symbols throughour this paper.

A ¢ arrival rate of calls
U : (originally requested) service rate

(reciprocal of the mean service time withoue T-limited service)
W’: effective service rate

{reciprocal of the mean service ime with T-limired service)

3. T-limited Service Time Distribution

Let H be the originally requested service time by an armiving call that can enter
the system. The service time is assumed to be independent, and identically distributed
(i.i.d.) random vuriable. In this section we present a staristical analysis of the service time

distribution with T-limited service.

Let Hg be che effective service time with T-limited service for the original service

time H, namely,
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‘The cumularive distribution function (c.d.f.) of the effective service time is given by



S g ift (3.2)

[fwe further assume that the service time is exponentially distributed, we have
PH=Zt)=1—~eH (3.3)
Substituting (3.3) into (3.2) yields
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The variance and squ‘ared coefficient of variation of the cffective service dme are

respectively given as
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It follows from Eq.(3.8) that the effective service time is not exponentially
distributed since C{H.g) < 1 while the original service time is exponentially distributed
(C(IT) = 1). Adopdng T-limited service mechanism when a network congestion vecurs
is then seen to shorten not only the mean ( W < W”) bur also rthe coefficient of variation
( C(H) < C(H) ). Our T-limited service control makes the original traffic smooth.
Smooth traffic is known to be less congested than Poisson waffic; see e.g., Refs [4, 5] Tt
also follows that the coefficient of variation of the effective service time converges to 1

(unity) as the threshold teads to infinity (C(H,,) = LasT — eo ),

4. Multi-Server Loss Systems with T-Limited Service

As mentioned in Section 1, there is very litdle literature on multi-server loss systems
with T-limited service. We starc our traffic analysis with the simplest input but general

service time model.
4.1 Poisson Input and General Service Time Model

We consider an M/G/c/c loss system with T-limited service. The inter-arrival
time of calls is assumed to be exponendally distributed with rate 2 (the call arrivals are
assumed to form a Poisson process with rate A), and the service rime is assumed to be

generally distributed with a mean of 1/ 1.

Tor the M/G/cfc loss system with T-limited service, we denote by @i the steady-

state probability that there are i calls in the system (i = 0, 1, ..., ¢ ). The supplementary



variable technique [17] is applied to get the following flow-balance equations:
A =D L (=012, 1) (4.1)

whete ' is the effective service rate. The left-hand side of Eq.(4.1) represents the
How-up speed from seate i 1o state i+1, while the right-hand side of Eq.(4.1) represents
the flow-down speed from state i+1 to state i. It should he noted thar the flow-
balance Eq.(4.1) is still valid even if the effective service time is no longer exponentially
distribured: see Refs.[4, 17] for this validity.

Eq.(4.1) encbies us to recursively obtain the stcady-state probability discribution

[ i=0,1,...ck
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The total probability law leads to the normalization condition:

Zn = (4.3)

Subsrituting Eq.(4.2) into (4.3), we have the system idle probability, 7Ty, as
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Thus, Eqgs {4.2) and (4.4) completely determine the steady-state probabilities for

the M/G/c/c loss system wirh T-limired service time.
We are now in a position to derive the system performance measurcs. The time

congestion B.(A, p'), which is defined as the probability that a vircual {test) call finds all

¢ servers busy, is straightforward:

BAA, u) =T,
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where the effective service rate i is obrained from Eq.(3.5) in the preceding section.

| =

Since we assume Poisson arrivals in this subsection, the PASTA (Poisson arrivals see
time averages [4, 8, 18]) property leads to the fact that the dme congestion B.(k, p')
is identical to the loss probability P Here, is defied as the probability that an acrual

loss®

arriving call finds the all c servers busy.
Plas: = DC(?\" i'll)
4.2 Poisson Input and Exponential Service Time Model with Retrials

We next consider an M/M/c/c loss system with T-limited service and retrials. The
inter-arrival time of calls is assumed to be exponentially distributed with rate A (the
call arrivals are assumed to form a Poisson process wich rate L), and the service time
is assumed to be exponendally disuibuted with a mean of 1/ . An artiving call diat
finds all ¢ serves busy will enter the retrial queue with probability ¢ and it will leave the
system with probabilicy 1 — o (it will be lost with probability 1 — o). Exceprt for the
service time distribution, our model described here reduces to the model in the preceding
subsection 4.1 for ot = 0. We assume that the retrial queucing capacity is infinire and
that the sojourn time of a call at the retrial queue is exponentially distributed with a

mean of 1/ (.

The total arrival rate A is composed of the original arrival rate A and the artival

rate 'y from the retrial queue:
A=ATy (4.6)

We develop our approximation taking Hashida and Kawashima’s [6] approach.
Ilashida and Kawashima [6] actually weated a single-server MIM/1/K finite-capacity
queueing system with retrials, but their approach enables us to treat our multi-server M/

M/cic loss system with retrials and T-limited service.



As in Hashida and Kawashima [6), we consider a situacion where the mean ewdal
interval is infinitely large (£ = (). Tn this exrreme situation, the superposition process
of the original arsival and rerrial input streams can be regarded as a Poisson process with

rate A. Hence, we have the time congesticn B.(A, 1) as follows:

Py
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Since we approximate the superposition process by a Poisson process with rate A,

we have
(A+MBA Ty, uio=y (4.8)

The two factors in the left-hand side of FEq.(4.8) represent the mean number of
calls (per time unity) that find all ¢ servers busy. With probability @ those calls enter

the retrial quene, from which Eq.(4.8) follows.

The unknown parameter ¥ is numerically obtained. In fact. solving che
transcendental Eq.(4.8) for Y via e.g., Newton's method, we can numerically determine

the arrival race from the retrial queue y.
The loss probability Ploss is chen calculated from

P,=BL Ty, u)(1—a) (4.9

loss

As in Hashida and Kawashima [6], we consider alternative situation where the
mean retrial inrerval is almost zero ({ = o). In this extreme situation, we can regard our

loss system with prompt retrials as a queueing system.

In Section 3, we see that the effective service time is no longer exponentially

distributed even if the original service time is exponendially distributed, since



CH,») < 1=C{H).

Nevertheless, to simplify our analysis, we assume that the effective service time is

also exponentally distribured with a mean of 1/ ',

Assuming thar our multi-server loss system with prompt retrials is approximated by

an M/M/c system, we have for the steady-state probability distribution [7r; i =0, 1, ..I:

Am =01 Dp'me, (i=061L2...,c— 1) (4.10a)
OLATL = el T (i=cct+lLet2..) (4.10b)

The lefr-hand side of Eq.(4.10) represents the flow-up speed from srare i to stare
i+1, while the right-hand side of Eq.(4.10) represents the flow-down speed from state
i+1 to state i, Arriving call that finds all ¢ servers busy will enter the retrial queue
with probability «, the flow-up rate is nothing but @ &, as in the left-hand side of
Eq.(4.10b).

It should be nowed that the flow-balance equation (4.10) is valid only for an
exponentially distributed effective service time. We can then improve the aceuracy of
our approximation if we replace Eq.(4.10) by the flow-balance equations for the M/G/c
queucing model. The diffusion approximation technique [5, 19, 21] may lead to the

flow-balance equation for the M/G/c queueing model.

Eq.(4.10) enables us to recursively obtain the steady-state probability distribution

{65 =0 Lyl

RN .
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A ye l A
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The tota! probability law leads to the normalization condition:
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Here, we assume stability condition:
2k <o (4.14)
m

"Thus, Bgs (4.11) and (4.13) completely determine the steady-state probabilities for

the M/M/c queueing system with T-limited service time,

Note that the arrival rate of calls from the rettial queue, Y, is approximately equal
to the sojourn time rate at the recrial quene multiplied by the mean number of calls in

the retrial queue. We then have:

M ¢

'Y:Co

(E=—c)m (4.15)

i
=]

With the infinite summation result on the geometric series:

;iriz(l L ([2[€ 1) (4.16)

and Eq.(4.11), Eq.{4.19) yields to:
y=C [ (A/W)y/dim[ar/cp)) /1. — ahi(n)? (4.17)

Recall chart the system idle probabiliry, T, in Eq.(4.17) is given by Eq.(4.13).
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We are firally in a position to derive the system performarice measures. The time

congestion By, is obtained as
= _ :
Bime = Bo(% 1 1:1t) (4.18)
As for a safer-side approximation, the dme congestion corresponds wo the

probability of delay for the M/M/c queueing system with T-limited service dme. We

then have.

. (R
Bune= X 7, = ( *i] : (4.19)

The system idle probability, 71, in Eq.(4.19) is again given by Eq.(4.13).

The call congestion, By, which is defined as the probability thar an arriving call

finds the all ¢ servers busy, is obrained from Eq,(4.8):

- i
By = X F P (4.20)

The arrival rate from the rewrial queue, 7, in Eq.(4.20) is given by Eq.(4.17).
The loss probability Py, is then calculated from
P!US.’r = Bc.x[] : ( 1= a) (42])

The retrial rate, R, is defined as in Hashida and Kawashimz [6]:

¥
= (4.22)
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Figure 1 shows our approximation and simulation results on the rewial rare R as a
function of call arrival rate A, where weassume <= 50,1/ u =201/ ¥ =2, and @ =
1. The solid line and closed circles (black spots) respectively denote the approximated
and simulated resuits for T = 30, while the broken line and x denote the approximated

and simulated results for T = 40.

our approx. (T = 30) :
05 ®  simulation (T=30) . __ / |
B our approx. (T = 4Q) g

% simulation (T = 40)

04— < T
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Figure 1: A performance comparison between our approximation and simulations.

5. Conclusion

At least to avoid deteriotating the network performance in such a nawural disaster
as severely wild typhoon, Okada [11] proposed a traffic control by liming the individual
call holding time, leading to our T-limited service. By T-limited service, we have meant
that the service time is limited to a threshold T. The service station will stop the service
of a call whose service time reaches I\ The service-stopped call will then leave the
station and will not arrive at the station again (will not recry to enter the station). The
call will be lost. So far, we have seen no literature on studying multi-server loss systems
with T-limited service, which have a potential applicability w Okada’s craffic control in

information necworks.

We have modeled and analyzed multi-server loss systems with T-limited service.
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Without retrial queue, we have considered the Poisson input and general service rime M/
Glclc loss system. We have derived the steady-state distribution of the number of calls
in the system, by using the supplementary variable approach [4, 17]. With retrial queue,
we have considered the Poisson inpuc and exponential service time M/M/c/c loss system.
By waking Hashida and Kawashima’s technique [6], we have approximatcly derived the
steady-state distribution of the number of calls in the system. With the retrial queue. our

approximation accuracy has been confirmed by a simulation result.

For the Poisson inpur T-imited general service model withour retrials, we have
almost completely solved the problem to obtain the system performance measures in the
M/G/clc loss system. For the retrial queueing model, however, we have not been able wo
treat general service time systems We have restricted oursclves to the case of cxponcential
service time. It is then left for furure work to extend our exponentially distribuced M/
M/c/c loss systemn to a general service tme M/G/d/c loss system. It is also worthwhile
to improve our approximation by taking other approaches including the diffusion

approximation technique [5, 19, 21],
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