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Abstract To handle more phone and personal computer users in such a natural disaster 

as terribly strong earthquake, a traffic control has been previously proposed by liming 

the individual call holding time. This traffic control mechanism leads to our T-limited 

service. By T-limited service, we mean that the service time is limited to a threshold 

T. The call whose service time reaches T is assumed to be lost . For evaluating the 

traffic control performance, we present multi-server loss systems with T-limited service . 

Without any retrial queues, we analyze a Poisson input and general service time loss 

system to derive the steady-state distribution of the number of calls in the system. 

With a retrial queue, assuming further that the call sojourn time at the retrial queue 

is exponentially distributed and that the T-limited service time is also exponentially 

distributed, we propose an approximation for the steady-state distribution of the number 

of calls in the system. Our approximation accuracy is validated by a simulation result .
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1. Introduction 

     Hearing of a natural disaster like a terribly strong earthquake or severely wild 

typhoon, people use their phones or personal computers (PCs) to inquire after their 

close relative's and friend's safety via voice or data (e-mail, web) services. Voice and data 

traffic may exceed the system capacity to deteriorate the network performance. To 

handle more phone and PC users in such a disaster, or at least to avoid deteriorating the 

network performance; Okada [11] has previously proposed a traffic control by liming the 

individual call holding time during a traffic congestion period. Okada's traffic control 

mechanism is referred to as time-limited service in the queueing literature. 

     We introduce a concept and the notation for describing time-limited service. Let 

T be a threshold for the service time limitation. To he more exact, the service station 

will stop the service of a call whose service time reaches T The service-stopped call will 

then leave the station and will not arrive at the station again (will not retry to enter the 

station). The call will be lost. Using the threshold T explicitly, we refer to our time-

limited service as T-limied service. 

    A prime example of T-limited service is a cellular phone traffic control proposed in 

Okada [11] as mentioned above. Another example is a service time-out scheme which 

arises in a packetized communication system providing a recently-developed real-time 

service application. The necessity and importance of owr T-limited service have been 

increasing in information networks. To the best of the author's knowledge, however, 

there is very little literature on the loss systems with T-limited service even for the simple 

Poisson input case. Our main goal of the paper is to present and analyze new reletraffic 

models, multi-server loss systems with T-limited service. 

    There has been much interest in exact and approximate approaches for service 

station systems with retrials; see Refs [6, 9, 12, 13, 16, 20, 22, 23]. In typical retrial 

queueing models, an arriving call that finds all servers busy will return and place another 
request for some later time. The call is assumed to enter the retrial queue, after some 

sojourn rime at the retrial queue it will try to enter the service station. Retrial queueing 

models are of practical importance in the teletraffic filed of information networks. 

However, we are aware of no reported results on T-limited service. In the paper, we will 

consider a multi-server loss system with retrials as well as T-limited service. 
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    The rest of the paper is organized as follows. Section 2 describes our queueing 

models in details and gives the notation and symbols . Statistical and stochastic 

assumptions arc made in this section. Section 3 is devoted to analyzing the T-limited 

service rime distribution. The coefficient of variation of the T-limited service time is 

derived. The statistical analysis of the T-limited service time provides a stepping stone 

for the subsequent queueing analysis. Section 4 develops our exact analysis for the 

Poisson input general service time multi-server loss system with T-limited service . It also 

develops our approximate analysis for the Poisson input exponential service time multi-

server loss system with Thinned service and retrials. Our approximation accuracy is 

validated by a simulation result. Section 5 contains some concluding remarks and topics 

for further research.

2. Notation and S ymbols

    Our teletrafflc model is characterized as follows. Calls arrive at a multi-server 

service station. An arriving call requests its service (holding a channel , transferring 
information, or processing a job in a network system) for a time-period duration . The 
rime-period duration requested by a call is referred as to the service time (of a call). The 
inter-arrival times and the service times of calls are random variables and assumed to be 

statistically independent.

    We denote by the Kendall notation A/B/c/K, a multi-server queueing model where 

the inter-arrival time distribution is A, the service time distribution is B, the number of 
servers is c, and the maximum number of calls allowed in the model (referred as to the 

system capacity) is K. The symbols introduced by Kendall [10] and traditionally used for 

A and B are 

      G: general inter-arrival or service time distribution 

      Hk: k-stage hyper-exponential inter-arrival or service time distribution 

      Ek: k-stage Erlang inter-arrival or service time distribution 

      M: exponential inter-arrival or service time distribution 

       (so that the arrivals or services form a Markov process) 

      D: deterministic inter-arrival or service time (unit distribution)
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    The shorter notation A/B/c is usually used if there is no limit to the length of 

queue (if the system capacity is infinite). When we say an M/G/1 queueing model, we 
mean that a single-server ( c = 1 ) infinite-capacity ( K = - ) queueing system where the 

inter-arrival time distribution is exponential (A = M ) while the service time distribution 

is general ( B = G ). As another Kendall notation example, when we say an M/G/c/c 

model, we mean that a multi-server loss system ( K = c ) where the inter-arrival time 

distribution is exponential ( A = M ) while the service time distribution is general ( B = 

G ). In the M/G/c/c model, an arriving call who finds the c servers all busy will be lost 

(will not be able to enter the service station).

We further use the following symbols throughout this paper..

is : arrival rate of calls 

p : (originally requested) service rate 

(reciprocal of the mean service time without T-limited service) 

p.': effective service rate 

(reciprocal of the mean service time with T-limited service)

3. T-limited Service Time Distribution

    Let H be the originally requested service time by an arriving call that can enter 

the system. The service time is assumed to be independent, and identically distributed 

(i.i.d.) random variable. In this section we present a statistical analysis of the service time 

distribution with"I=limited service.

    Let H5 be the effective service time with T-limited service for the original service 

time H, namely,

Hen = I H ifH<T 

T ifH>T (3.1)

The cumulative distribution function (c.d.f) of the effective service time is given by
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          P(H--t) ifc<T 
P(Hev t) _ ~ 

           I ift>T 

If we further assume that the service time is exponentially distributed, we have 

P(H~t)=I-e l° 

Substituting (3.3) into (3.2) yields 

      G Il- e~r" if t~T P(H-t)= 
                  if t>T 

If we denote the first and second moments of the effective service time as 

  E(Hea) = R , 
and 

   E(H,H 2) = hc tr (2) 

- we have the first moment of the effective service time: 

  E(Hef)=1/µ' 

           =1 otte-µ`dt+Te-MT 
                  e µl) 

µ 

and the second moment of the effective service time: 

   E( Hert2) = b a) 

           _ f t2pe- µ` dt + T2 e-µT 
               2(1-e-"T-E e-µT) 

                 µz 
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     The variance and squared coefficient of variation of the effective service time are 

 respectively given as 

     V(HF (1 2 -µT-e 2p1)         a) = 
P 2 (3.7) 

     C(HQff)2 - (1 --21~Te-i`7 e_2µ1 ) (3.8) 
        (1 - 2 e-µ' + e-2µ" ) 

     It follows from Eq.(3.8) that the effective service time is nor exponentially 

distributed since C(Hea) < 1 while the original service time is exponentially distributed 

( C(H) = 1 ). Adopting T limited service mechanism when a network congestion occurs 
is then seen to shorten not only the mean ( a < t' ) but also the coefficient of variation 

( C(H,tf) < C(H) ). Our T-limited service control makes the original traffic smooth. 

Smooth traffic is known to be less congested than Poisson taffrc; see e.g., Refs [4, 51 It 

also follows that the coefficient of variation of the effective service time converges to 1 

(unity) as the threshold tends to infinity ( C(H,) ~ I as T ). 

4. Multi-Server Loss Systems with T-Limited Service 

    As mentioned in Section 1, there is very little literature on multi-server loss systems 

with T-limited service. We start our traffic analysis with the simplest input but general 

service time model. 

4.1 Poisson Input and General Service Time Model 

    We consider an M/G/c/c loss system with T-limited service. The inter-arrival 

time of calls is assumed to be exponentially distributed with rate A. (the call arrivals are 

assumed to form a Poisson process with rate A), and the service time is assumed to be 

generally distributed with a mean of 1 / p . 

    For the M/G/c/c loss system with T-limited service, we denote by xi the steady-

state probability that there are i calls in the system ( i = 0, 1, ..., c ). The supplementary 
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variable technique [17] is applied to get the following flow-balance equations: 

        ?,1G.'=(i + I)u'r± (i= 0,1,2,.., c-1) (4.1) 

     where p' is the effective service rate. The left-hand side of Eq.(4.1) represents the 

flow-up speed from state i m state i+l, while the right-hand side of Eq.(4.1) represents 

the flow-down speed from state i+1 to state i. It should be noted that the flow-

balance Eq.(4.1) is still valid even if the effective service time is no longer exponentially 

distributed; see Refs. [4, 17] for this validity. 

    Eq.(4.I) enables us to recursively obtain the steady-state probability distribution 

 lc,:i=0,1, ,c]: 

    7G (µ) m (i=0, 1,2,_., c) (4.2) 

    The total probability law leads to the normalization condition: 

       Ttt = 1 (4.3) 

    Substituting Eq.(4.2) into (4.3), we have the system idle probability, it0, as 

   K0 \

' (4.4)        ( I /' is 
   Thus, Eqs (4.2) and (4.4) completely determine the steady-state probabilities for 

the M/G/c/c loss system with T-limited service time. 

    We are now in a position to derive the system performance measures. The time 
congestion BjOs, p'), which is defined as the probability that a virtual (test) call finds all 

c servers busy, is straightforward: 
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                                                       (4.5) 

where the effective service rate t 1 is obtained from Eq. (3.5) tit the preceding section. 

     Since we assume Poisson arrivals in this subsection, the PASTA (Poisson arrivals see 

time averages [4, 8, 18]) property leads to the fact that the time congestion B,(A„ p') 

is identical to the loss probability Plen Here, is defied as the probability that an actual 

arriving call finds the all c servers busy. 

    PI~„ = BjA., µ'). 

4.2 Poisson Input and Exponential Service Time Model with Retrials 

    We next consider an M/M/c/c loss system with T limited service and retrials. The 

inter-arrival time of calls is assumed to be exponentially distributed with rate k (the 

call arrivals are assumed to form a Poisson process with rate A.), and the service time 

is assumed to be exponentially distributed with a mean of 1 / p.. An arriving call that 

finds all c serves busy will enter the retrial queue with probability a and it will leave the 

system with probability 1 - a (it will be lost withh probability I - a). Except for the 

service time distribution, our model described here reduces to the model in the preceding 

subsection 4.1 for a = 0. We assume that the retrial queueing capacity is infinite and 

that the sojourn time of a call at the retrial queue is exponentially distributed with a 

mean of 1 / c. 

    The total arrival rate A is composed of the original arrival rate A. and the arrival 

rate 'y from the retrial queue: 

    A=A,+y (4.6) 

    We develop our approximation taking Hashida and Kawashima's [6] approach. 

Hashida and Kawashima [6] actually treated a single-server M/M/l/K finite-capacity 

queueing system with retrials, but their approach enables us to treat our multi-server MI 
M/c/c loss system with retrials and T-limited service. 
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    As in Hashida and Kawashima [6), we consider a situation where the mean retrial 

interval is infinitely large (f, = 0). In this extreme situation, the superposition process 

of the original arrival and retrial input screams can be regarded as a Poisson process with 

rate A. Hence, we have the time congestion Bc(A, p.) as follows: 

    Br(A, R') _ it 

                                                       (4.7) 

    (I µ 

    Since we approximate the superposition process by a Poisson process with rate A, 

we have 

   (X+y)B,(X+y,p.')a=y (4.8) 

    The two factors in the left-hand side of Eq.(4.8) represent the mean number of 

calls (per time unity) that find all c servers busy. With probability a those calls enter 

the retrial queue, from which Eq.(4.8) follows. 

    The unknown parameter 7 is numerically obtained. In fact, solving the 

transcendental Eq.(4.8) for y via e.g., Newton's method, we can numerically determine 

the arrival rate from the retrial queue y. 

    The loss probability Ploss is then calculated from 

    pl., =Br(7,.+y,µ')'(I-(X ) (4.9) 

    As in Hashida and Kawashima (6], we consider alternative situation where the 

mean retrial interval is almost zero (1 _ oo). In this extreme situation, we can regard out 

loss system with prompt retrials as a queueing system. 

    In Section 3, we see that the effective service time is no longer exponentially 

distributed even if the original service time is exponentially distributed, since 
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    C(H eff) c 1 = C(H). 

     Nevertheless, to simplify our analysis, we assume that the effective service time is 

also exponentially distributed with a mean of 1 / µ'. 

    Assuming that our multi-server loss system with prompt retrials is approximated by 

an M/M/c system, we have for the steady-state probability distribution { 7t,: i = 0, 1, ...1: 

     R, 7G; = (i -1 1)µ' 7L; ~r (i= 0,1,2,..., c-1) (4.10a) 

     aXIt7=cµ'7t;.F.t (i-c,c+1,c+2,...) (4.10b) 

    The left-hand side of Eq.(4.10) represents the flow-up speed from state i to state 

i+1, while the right-hand side of Eq.(4.10) represents the flow-down speed from state 

i+I to state i. Arriving call that finds all c servers busy will enter the retrial queue 

with probability a, the flow-up rate is nothing but a k, as in the left-hand side of 

Eq.(4.IOb). 

    It should be noted that the flow-balance equation (4.10) is valid only for an 

exponentially distributed effective service time. We can then improve the accuracy of 

our approximation if we replace Eq.(4.10) by the flow-balance equations for the M/G/e 

queueing model. The diffusion approximation technique [5, 19, 211 may lead to the 
flow-balance equation for the M/G/c queueing model. 

    Eq.(4.10) enables us to recursively obtain the steady-state probability distribution 

{'!C i = 0, 1, ...1; 

I                  7
to (i = Q ], 2, ..., c) (4.11 a)   7t, (µ,) -I! 

            i, 1 aft 

 n`*' 7LO (i=0,1,2,...) (4.116) 

   The total probability law leads to the normalization condition:
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    E TC, = 1 (4.12) 

    Substituting Eq.(4.11) into (4.12), we have the system idle probability, 7to 

    Ee = > i )L t a)r (4.13) 
                                        d cu'-ay 

    Here, we assume stability condition: 

    a R, < c (4.14) 

    Thus, Eqs (4.11) and (4.13) completely determine the steady-state probabilities for 

the M/M/c queueing system with T-limited service time. 

    Note that the arrival rate of calls from the retrial queue, y, is approximately equal 

to the sojourn time rate at the retrial queue multiplied by the mean number of calls in 

the retrial queue. We then have: 

   y c)7[; (4.15) 

    With the infinite summation result on the geometric series: 

   ~ir~= r ( r <1) (4.16)      =0 1 r 

   and Eq.(4.11), Eq.(4.15) yields to: 

   7=t;•{(a/µ')°/c!}7ce[aA/(cµ')]/[1-aXu/(cµ')]2 (4.17) 

   Recall that the system idle probability, 7LO, in Eq.(4.17) is given by Eq.(4.13). 
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     We are finally in a position to derive the system performance measures. The time 

congestion B,.,,,e is obtained as 

     Bd,,,, = B,R -I- y,µ7 (4.18) 

    As for a safer-side approximation, the time congestion corresponds to the 

probability of delay for the M/M/c queueing system with T-limited service time. We 
then have. 

    13,_ _ n; _ a 7ca 1 (4.19) 
           roc C. 1 _ a 

                                 cµ' 

   The system idle probability,;, in Eq.(4.19) is again given by Eq.(4.13). 

    The call congestion, Bop which is defined as the probability that an arriving call 

finds the all c servers busy, is obtained from Eq.(4.8): 

    Bit= a ~. y-y)' (4.20) 

    The arrival rate from the retrial queue, y, in Eq.(4.20) is given by Eq.(4.17). 

   The loss probability Pins, is then calculated from 

    Pioss = Ban • (1 - a) (4.21) 

   The retrial rate, R, is defined as in Hashida and Kawashima [6]: 

  R_A-A A 

      Y (4.22) A 
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    Figure 1 shows our approximation and simulation results 

function of call arrival rate X, where we assume c = 50, 1 / It 

1. The solid line and closed circles (black spots) respectively 

and simulated results for T = 30, while the broken line and x 

and simulated results for T = 40.

on the 

= 20, 1 

denote 

denote

retrial rate R as a 

/ ~=2,anda-

the approximated 

the approximated

Figure 1:

   0.61 our approx. (T = 30) 
              simulation (T=30) _     0
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        _ simulation (T= 40) - a 0
.4 

  m 0.3 _. _. ---- ~'.... .. 

¢0.2~ 
    0.1 

         2 2.2 2.4 2.6 2.8 3 
               Call arrival rate X 

A performance comparison between our approximation and simulations.

5. Conclusion 

    At least to avoid deteriorating the network performance in such a natural disaster 

as severely wild typhoon, Okada [11] proposed a traffic control by liming the individual 

call holding time, leading to our T-limited service. By T-limited service, we have meant 

that the service time is limited to a threshold T. The service station will stop the service 

of a call whose service time reaches T. The service-stopped call will then leave the 

station and will not arrive at the station again (will not retry to enter the station). The 

call will be lost. So far, we have seen no literature on studying multi-server loss systems 

with T-limited service, which have a potential applicability to Okadas traffic control in 

information networks.

We have modeled and analyzed multi-server loss systems with T-limited service.
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Without retrial queue, we have considered the Poisson input and general service time _MI 

G/c/c loss system. We have derived the steady-state distribution of the number of calls 

in the system, by using the supplementary variable approach [4, 17]. With retrial queue, 

we have considered the Poisson input and exponential service time M/M/c/c loss system. 

By taking Hashida and Kawashimds technique [6], we have approximately derived the 

steady-state distribution of the number of calls in the system. With the retrial queue, our 

approximation accuracy has been confirmed by a simulation result.

    For the Poisson input T-limited general service model without retrials, we have 

almost completely solved the problem to obtain the system performance measures in the 

M/G/c/c loss system. For the retrial queueing model, however, we have not been able to 

treat general service time systems We have restricted ourselves to the case of exponential 

service time. It is then left for future work to extend our exponentially distributed M/ 

M/dc loss system to a general service tune M/G/e/c loss system. It is also worthwhile 

to improve our approximation by taking other approaches including the diffusion 

approximation technique [5, 19, 21].
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