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Determination of an Optimal Control
Limit and the Value of Optimal
Control Scheme in Cost
Variances Investigation

Masao Tsuji

1. Introduction

The principle of management by exception, which was stated many
years ago by Frederick Taylor, is considered an essential requirement
for effective management contol systems. It states that management
should give primary attention to significant exceptions and, therefore,
little or no attention to the relatively large number of situations in
which performance is considered satisfactory. Since an investigation
involves an expenditure of organizational resources, it should only
be undertaken when the benefits expected from it exceed its costs.

The principle of management by exception is followed in a standard
cost control system. When actual cost, measured in dollar terms,
deviates from a predetermined standard, a cost accountant produces
a “variance report” which focuses management’s attention on excep-
tional or significant variances. A certain amount of variance from
a standard may be considered random fluctuations beyond manage-
ment control. Alternatively, its size may not be large enough to
warrant an investigation because the costs of investigation and correc-
tion are greater than the benefits of correction. The control system
thus needs a criterion for determining exceptional or significant

variances.
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Little attention, however, has been given to the problem of deter-
mining control limits on an economic basis and the formal expression
of optimal control limits is not central to the accounting literature.
Consequently, in practice management may establish control limits by
judgment and use them as criteria to determine whether a difference
between actual and standard costs is worth investigation.

The purpose of this paper is to present a mathematical model for
determining optimal control limits in a cost variance investigation
problem. It provides a method to calculate these criteria under sound
practical assumptions so that the relevant cost-benefit function is
optimized. The value of the control system with optimal control
limits will be defined and it will be shown that the value is non-
negative.

II. Background and Existing Research

Standard costs are basically estimates of what costs are expected
to be under particular operating conditions. Since we cannot specify
exactly what will happen in the future, we cannot expect actual costs
to be the same as standard costs. A cost variance, therefore, is
calculated as the difference between the actual and standard costs.
Such a variance is computed periodically (e. g. one week, two weeks
or one month). A cost accountant then uses this deviation to aid
management who determines whether or not they should investigate
the process to see if it should be changed. For this purpose a cost
accountant needs some criteria for distinguishing significant from
insignificant variances.

The principle of management by exception regards the standard as
a mean about which cost deviations will occur and sets control limits
or action limits about this mean. Only those variances which fall
outside these control limits are considered exceptional and significant
and consequently investigated. In practice, this principle can be
implemented by using one of several models suggested in the litera-
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ture. They may be classified into the following three categoriesi!:

() Traditional approaches

(B) Statistical quality control approaches

(€ Statistical decision theory approaches.
A, Traditional Approaches

The easiest and crudest method is to set control limits using the
absolute size of the cost variance or some fixed percentage of the
standard, for example, *+ 10% of the standard. As Bierman and
Dyckman (1971) point out, these measures rely upon the intuition of
management in deciding whether the variance should be investigated
and whether the investigation should then lead to corrective action.®
This type of approach, which is illustrated in Figure 1, is similar to
that used by many firms for statistical sampling for quality control
of output. However, the formal expression of control limits are not
given in this approach.® Furthermore, the traditional method impli-
citly assumes that any variance which is less than the cutoff is due
to random factors and hence, an investigation of the process in such
a case would not yield any benefits. In other words, it is implied
that as far as a variance stays less than the cutoff, the process
remains in the state of control.

$
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Figure 1. Traditional Approach to Control Limits

B. Statistical Quality Control Approaches
In recent years more scientific approaches have been adopted. They
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are designed to account for random fluctuations while maintaining a
high probability that the significant changes in operating structure
which cause a larger deviation will be identified.

A statistical quality control rule determines confidence limits for
random variation around a standard cost based upon the mean value
of observed actual costs and some estimate of the standard deviation
of this mean. The classic example of such a rule is the X chart
which was suggested first by Shewhart (1931). On the X chart, as
shown in Figure 2, the central line is set at X” and the control
limits are taken as X" + m (¢”/ v 7) where X" and ¢” are the mean
value and the standard deviation provided from past experience,
respectively. Samples of size # are taken from the process periodi-
cally and the sample X is plotted on the chart. If a sample X falls
outside of the control limits, it is assumed that some change in the
average X has occurred and an investigation is undertaken for an
“assignable cause.” The probability of observing a sample average
X outside the control limits varies with parameter m. Usually m is
specified so that the probability of producing an erroneous signal
when the process is in control is very small.¥

>
|

g

o)

%

5]

b

X' tm(a/n)

Figure 2. The X Charts and Control Limits

In the quality control literature there are studies which attempt to
design control charts economically in which the parameters of the
X chart are determined so that the relevant function is optimized.
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Duncan (1956) showed how to determin the sample size, the interval
between samples, and the control limits that yield approximately
maximum average net income. Later, Goel, Jain and Wu (1968)
proposed an algorithm for determining the economic design of X
charts based on Duncan’s model. However, the basic equation of
their algorithm cannot be solved explicitly so that we must resort to
a numerical method in order to find optimal parameters which satisfy
the equation. Gibra (1971) proposed an X chart model which was
used not only as a device for detecting out-of-control conditions but
also as a basis for maintaining a prescribed quality level of the
product. Like Goel, et al’s procedure, optimal parameters in his
model can be found by trial and error, which seems cumbersome and
may decrease its applicability.

A cumulative sum procedure, introduced by Page (1954), is distin-
guished from the X chart approach by the characteristic that it uses
previous observations for detecting a non-random change inthe mean
of a process. A series of partial sums is calculated as follows:

¢
Se= 2 (Xk— o)
i=1

where X; is the current observation and o represents the target
mean. For a two sided control scheme, a symmetric V mask is con-
structed and placed on the chart with the vertex of the V pointing
horizontally forwards and at a distance d ahead of the current point
(t, S:). The total angle of the V is 24. Notice that a particular
procedure in this method is specified by two parameters, here denoted
by d and 4. A lack of process control is assumed to be indicated
when a previously plotted point falls outside the limbs of the V-mask.
Taylor (1968) developed an approximate formula for the long run
average cost per unit time as a function of the parameters of the
cumulative sum chart. In a manner analogous to that used by Taylor,
Goel and Wu (1973) proposed a different procedure to design cumula-

tive sum charts economically.
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C. Statistical Decision Theory Approaches

The earliest statistical decision theory approach is best exemplified
by the Bierman, Fouraker and Jaedicke (1961) model. It is a simple
decision model which consists of two actions (investigate and do not
investigate) and two states (the unfavorable variances resulted from
noncontrollable causes and controllable causes). After comparing the
expected cost of investigating with that of not investigating, the
following decision criterion was obtained: Investigation is warranted
if, given an unfavorable variance, the probability of that variance
resulting from noncontrollable causes is less than (L—C)/L, where C
represents the cost of investigation and L is the cost incurred due to
not investigating a variance which can be controlled.

Dyckman (1969) produced the same probability criterion as that
proposed by Bierman, et al. although L was interpreted as a constant
savings from investigating an out-of-control situation. Let the revised
state probability for in-control state 6, after # cost observations be
denoted by f» (6;). Then, the expected costs of investigation was
given by

Cfa(60+[C—LI[1—fa(60].

If this expectation is less than zero, investigation should be under-
taken. Alternatively, if f2(8,)<(L—C)/L, an investigation is signaled.
Besides the case in which a process once corrected remains in a state
of control, which was initially considered by Bierman et al,, Dyckman
discussed two other multi-period situations: (i) a change from the
in-control state to the out-of-control state may occur during any time
period but not vice versa, and (ii) changes in both directions are
possible. Although the state probabilities, fn(6:) and fn(6.), were
calculated differently, the above criterion was applied to all three
situations.!s

Based on the Girshick and Rubin (1952) procedure® for production
process control, Kaplan proposed a probabilistic multi-period model
for the accounting variance investigation decision. The system was
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represented by a simple two state Markov process with transition

[ ]
P
0 1

where g is the probability that the system would remain in the in-

matrix:

control state during the reporting period and, accordingly, 1—g is the
probability that the system would go to the out-of-control state some-
time within the reporting period. Dynamic programming was used to
compute optimal solutions which minimized discouted future costs. At
each stage the expected costs incurred when investigating were com-
pared with the expected costs of not taking any action. ¢; was
defined to be the posterior (after observing the i-th output) probability
that the process would be in control during period i+1. ¢* was
calculated as the value of ¢ which made both cost terms in the
minimization equal. Obviously, the form of optimal policy depends
upon ¢:;. If ¢;:<g:* investigation is undertaken. If g:>¢:*, no action
is taken and another output from the process is observed.

Unlike Bierman et al.’s model, Kaplan (1969) and Dyckman (1969)
formulated investigation decision models based upon multiple obser-
vations. Prior information about in or out-of-control probabilities
was combined with the most recent observation by using Bayes’
theorem. To the extent that the outputs from the process are be-
lieved to be dependent random variables from a stochastic process,
then a reasomnable decision should make use of prior observations as
well as the most recent oneln
D. Limitations in the Previous Models

All the three models discussed above dealt with a two state system,
i. e., in-control and out-of-control. As Kaplan (1975) admitted, this
assumption seems to be so simple and unrealistic as a description of
reality that it may limit the applicability of those models. The system
may drift away from standards through an evolutionary process of
mismanagement and could be situated in several states within the
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in-control and the out-of-control situations and between the two
situations. It may be possible to incorporate a finer classification in
which discrete amounts of “controlness” are allowed and a process
can be in a countable number of states i, (=0, 1, 2, ...... ), with a
cost variance as a function of the state. However, a more realistic
control situation may be to assume a continuous state of the world
rather than that of a countable number of states. For example, we
may develop a model which allows the state of the system to be the
level of cost variances which are described by a continuous variable.®

The other unrealistic simplification in the previous models is that
the cost of investigation and correction is assumed to be a known
constant and the benefit from investigation and correction, especially
in Bierman, et al. and Dyckman, is assumed to be fixed. In reality,
they may depend on the causes of cost variances and environments
in which the system operates. Although the final judgment on the
appropriateness of the cost and benefit functions must be made on
the basis of empirical studies, a more reasonable assumption is to
express them as a function of the degree of out-of-controlness of a
system. They may be approximated as a function of the size of the
cost variances.

The other limitation in the previous studies is the assumption on
probability distribution of actual costs and cost variances. Bierman,
et al. and Dyckman assumed that the actual cost was normally
distributed with the mean as standard and known standard deviations.
Similarly, in Duvall’s (1967) model the distributions of controllable
and non-controllable cost variances were assumed to be normal. In
the X chart approach, it was assumed that a normally distributed
measurable characteristic was produced.

In a study conducted by Louis Tuzi (1964), 36 historical monthly
variances from standard for each overhead account were tested for
normality by means of the “chi-square” test. Having found that a
number of these monthly variances formed a skewed distribution, he
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concluded that the use of control charts based on the normal distri-
bution was inappropriate.

Recognizing these critical limitations in the preceding developments,
the next section will develop a model which allows the state of the
system to be a continuum and can be applied to any type of contin-
uous distribution functions of cost variances.

HI, A Proposed Model for an Optimal Control Limit

In this section we will seek to find an optimal control limit for
the case where there is a continuum of states. To do this, the fol-
lowing symbols must be introduced.

Let x be a variance and %k a control limit. An investigation is
undertaken if

x>k, 0<k< oo,

Alternatively, if x is less than or equal to %, an investigation is not
signaled. The variance described in this model is measured in physical
units such as labor hours and quantities of material. Therefore, the
cost variance is calculated as the difference between the actual and
the standard units multiplied by the standard cost per unit. Obviously,
x must be either non-positive (favorable variances or zero) or positive
(unfavorable variances). If the deviation is negative, management
enjoys cost savings, Ax, which are proportional to the size of the
deviation. If the deviation is positive but not greater than the critical
value &, the costs due to unfavorable variances, Bx, are incurred,
which are also proportional to the size of the deviation. If it is larger
than %, an investigation is undertaken to find causes of that deviation.
The cost of an investigation is assumed to be composed of two parts:
fixed cost F and variable cost Cx.

What are the possible outcomes of an investigation? There may
be two possibilities. First, a cost accountant may discover that a
deviation arose from the specific decisions of operating management
and was caused by factors within the jurisdiction and control of
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management. A corrective action will be taken in this case. While
a company will incur a cost of correction, H+Dx, it will gain the
benefits from correction, denoted by Lx, which are proportional to
the size of the deviation. Benefits of a corrective action will be
estimated on the assumption that the correction would eliminate
subsequent variances by bringing about adjustment to future per-
formance. In other words, L is defined as the opportunity costs which
will be incurred in the future if a corrective action is not taken.

A second possibility is that the investigation may disclose that the
variance was caused by a change in the operating conditions of a
company or any other factors beyond the control of management.
In this case, no corrective action will be taken but the standard may
be adjusted at the fixed amount of the expense, E, to take these
changes into consideration so that future cost variances will be
eliminated.

In order to deal with those two possibilities, it is assumed that
given an unfavorable variance, a cost accountant can assign a subjec-
tive probability, p, that the variance resulted from controllable causes.
Hence, 1—p is the probability that the variance resulted from noncon-
trollable causes. Given the above definitions and assumptions, the
costs and benefits for this investigation decision problem are summa-
rized in Table 1.

Table 1 Payoffs for Corresponding Size of Variance

Size of Variance Costs and/or Benefits
—o0<Lx<L0 Ax (Cost Savings)
O<x<k Bx (Unfavorable Cost Variances)
(H+ Dx)—Lx (First Possibility)
k Bx+(F+C
SESHeo ook (B x)+{ E (Second Possibility)

By assuming the existence of positive density function of a contin-
uous distribution of cost variance, x, we may express the expected
total costs, U(k), as follows:
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Ulk)= So_ Axf(x)dx+ S: Bxf(x)dxz+ S:(Bx+ F+Co)f(x)dx
- (1)
+ pS:(H+ Dt—La)f(x)de+(1— p)S:Ef(x)dx.

Since each term in (1) is expressed by a definite integral, variable x
will drop in the process of calculation and the expected total costs
are expressed as a function of 2.
For notational simplicity we define:
0
WlES xf(x)dx
73
W= sforde
(2)
oo + oo 0 k
Wi(k)= Sk xf(x)dx= S_wxf(x)dx—g xf(x)dx—So xf(x)dx

co 0 k&
:v:(k)ESk f(x)dx=1—S_mf(x)dx— SO f(x)dx.

Using the above simplified notation, we can rewrite (1) in the fol-
lowing way:
UR)=AW,+BWy(k)+Fz(E)+(B+COOW;(k)
+pHr(B)+p(D~ LYWy +(1—=p)ExCh). (3D
Recall that our problem is to find an optimal 2 which minimizes
U(k).!® The critical level 2° which satisfies the equation
UFE)=0 (4)
with respect to 2 will be equal to the optimal %%, provided that U(k)
is convex at %°, i, e.,

U'&H>0 (5)
and that %° is unique and positive
£>0. (6)

Differentiating each integral with respect to its lower or upper
limit in (2), we have, for k=k°0

AWy _,. Gz _ 0
dko ‘0: dko - f(k> R (7)
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AWy _, AW,k

dko (if(ko) ; T= —ko.f(ko)-
Using (7), the first derivative of U(%°) for k=£%° becomes
UE) =) {(—F—Ck°—pH+p(L—D)k°—(1—p)E}. 8

Since by assumption f(%£°)>0, we obtain from (4)

e F+pH+(A-p)E
pL-D)-C

Without loss of generality we can assume p(L—D)—C to be positive

since, a priori, an investigation will be undertaken only if the benefits

>0 if p(L—D)—C>0. (9)

from it exceed its costs. In other words, if this quantity is not
positive, then there is no economic incentive to undertake an investi-
gation and take a corrective action. Calculating the second derivative
of (3) for 2=F°, we have
U' () =f'(F){—F—Ck—pH+p(L~D)E*— (1—p)E}
) (L~ D)~C} >O. (10)
From the preceding analysis, we find %2° given in (9) an optimal
control limit, denoted by %*, in cost variance investigation, i. e.,

_F+pH+(Q-PE
pr= O PIHCDE an

It is interesting to note that the numerator in (11) represents the

expected fixed costs of investigation and correction while the denom-
inator the expected marginal benefit yielded through investigation
and correction. The optimal value A* is simply given by this ratio.
This formula is similar to that used in cost-volume-profit analysis.
It represents that critical level of cost variance which equates the
expected benefits to expected costs of investigation and correction
—that is, a break-even point. The optimal value &* depends upon all
the cost and benefit terms except for B and probability p. As was
intuitively expected, non-investigation range (—oo, £*) will broaden
when the cost term increases and the benefit term decreases. Since
we have made no restrictive assumptions on the probability distribu-
tion of x, £* in (11) can be applied to any kind of continuous distribu-
tions with a positive density function of x for —oo<x< 00,
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For the specific example, suppose that C=$12; D=$20; L=%60;
E=$500; F=$12,900; and H=$18,750. The variance is caused by
factors within the control of management 80% of the time. Then, the
optimal control limit, &*, is calculated as follows:

_ $12,900+(.80)($18,750) + (1—.80)($500) _ $28,000 _ 1.400
(.80)($60—$20) —$12 T $20 S

The optimal action in this case is to investigate the process if the

b*

variance is greater than 1,400 units.

IV. An Exploratory Investigation and
Its Effects on a Full Investigation

In this section we will incorporate an exploratory investigation in
our framework and obtain two optimal control limits. Suppose that
a company has the option of conducting two levels of investigation
as first introduced by Dyckman (1969). The first level of investigation
which is essentially exploratory in nature costs less than a second level,
full investigation. But there is a risk that it will not be able to
disclose the causes of the cost variances. It is assumed that the
costs of such an investigation are variable costs, F'+C'x, (F'<F and
C'<C) and the probability that the cause of deviation will be detected
when it exists is %, 0<h<1.

An exploratory investigation is supposed to be signaled when x
falls outside A,(0<k,<ky) but inside k.. There are three possible
outcomes from such an investigation:

(1) The cause of deviation will be discovered and it resulted from

controllable factors;

(2) The cause of deviation will be discovered but it resulted from

non-controllable factors; and

(3) The cause will not be discovered whether controllable or not.

The joint probabilities and costs for these outcomes are represented
in the following table :04
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Table 2. Probabilities and Costs for Four Cases

Outcome Probability %&
Discovered and Controllable q HA+Dx—Lx (H<H, D<D)
Discovered but Uncontrollable h—q E (E<E)
Not discovered and Controllable P—q Mx
Not discovered and Uncontrollable 1—p—h+g 0

The avoidable costs, M’x, will be charged for an exploratory investiga-
tion if it fails to discover the cause of deviation resulted from
controllable factors. But, the costs will be zero when it is resulted
from uncontrollable factors since no corrective action could be taken
even if the cause was discovered.

The expected total costs in this problem becomes

Uk, k)=| _Axfds+ S:‘Bxf(@dx
+ S:(Bx+F’+ C)f(x)dx
+q§:<H'+D'x—Lx) () dx
+ (h=0, B e+ 0-0)f M'af(ods
+ S;ch+F+ COf(x)dx a2

+ pS: (H+ Dx—L)f(x) dx+(1—p) S:Ef(x)dx

=AW,+BWy(ky)+ F'z(ky, ko)
+(B+COYW(ky, ko) +qH'n(ky, ky)
+q(D'—LYW(ky, k) + (A~ E'z(ky, ks)
+@—DM Wk, ks) + Fr(ks) + (B+ C) Wi(ky)
+pHr(ks) +p(D~ L) Ws(ks) + (1 —p) Ex(ks)
where

W2ckl)zgz‘xf(x)dx
Wk, kz)ES}:xf(x)dx=S:zxf(x)dx—-gzle(x)dx as
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W3<k2>s§fo<x>dx=§”

0
HfDdi— | xfadx
k2
— @
o 0 k2
=)= fdr=1-{ feode—{ feoax
ke ~ oo . Jg
k2
w(hy k)= fCo)ds.
Partially differentiating U(k,, k;) for k,=F,° and k,=k,°, we find

DGk, k) — ) (— P —C'hi—qH + q(L— DR
1
—(h—E —(p—)M'k;"}
AUk bD 14,2 (F~F+ (C~ OO+ gH —pH as
2
+[g(D’'—L)—-p(D—-L)1k;°
+(h-QE—(1—pE+(GP—M'E"}.
By setting the equations equal to zero, we get
. Y=y as
PTTX=-X
where
X=p(L-D)-C

X'=q(L-DH-C-0p—-M'
Y=F+pH+(1-p)E
Y'=F +qH' +(h~E".

49

X’ is considered positive for the same reason as explained for £ in

the previous section. The numerator and denominator in the second

equation are also positive. The expected fixed costs of a full inves-

tigation, Y, must be larger than those of an exploratory investigation,
Y’, while the expected marginal benefit yielded from the former, X,

must be greater than those from the latter, X'.
The condition %,<k, is satisfied if

X _ Y

—X.—,S? . (16)
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The above inequality implies that the relative fixed costs of a full
investigation compared to an exploratory investigation must not be
less than the relative expected marginal benefit of the former com-
pared to the latter. This is a necessary condition for keeping an
exploratory investigation useful. If the inequality does not hold, i. e.,
the relative marginal benefits exceed the relative fixed costs, the
exploratory investigation becomes totally unattractive. For the full
investigation brings larger net benefits regardless of size of cost
variances.

Examining the second-order or sufficient conditions for a minimum,

we find |
PUCkS, k) PUky, k°)
k0 om0
PU(ES, ko) FPURS, kD an
0k,*? ok,° 0ky° >0
FUkS, k) PUCky, k)
ok,° ok o0k,*?

Hence, we conclude that %2,° and &,° given in (15) are optimal control
limits which produce the minimum expected costs. It is important
to note that the optimal control limit for an exploratory investiga-
tion, &,*, is independent of the decision of a full investigation while
the optimal control limit for the latter, k.* is affected by the cost
and benefit parameters and probabilities associated with the former.
As shown in (15), k* depends upon the differences in the expected
fixed costs and marginal benefits between both investigations. As the
exploratory investigation becomes more successful, i. e., the probability
that it will discover the cause of a variance becomes larger, and the
difference in the fixed costs relative to the marginal benefit increases,
k,* becomes bigger and the range of the exploratory investigation
will be broaden.

To measure how an exploratory investigation affects the optimal
control limit for a full investigation derived in the previous section,
we take the difference between k,* and k*,
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XY-XY
X=X XZO as
It follows from (16) that the difference is nonnegative and - hence
introducing an exploratory investigation shifts the control limit for

kz*—k*

a full investigation away from the origin (zero variance).
V. The Value of an Optimal Control Scheme

As we described in the second section, the traditional cost variance
investigation scheme does not have a formal expression for control
limits. The famous “ materiality ” rule of accounting, which is most
often used as 10% of the standard cost, does not have any underlying
basis. When statistical quality control charts are applied to account-
ing variance investigation decision, control limits are virtually always
set at two or three standard deviations. But, their justification are
given on a statistical basis rather than on an economic basis.

This section defines the value of an optimal control scheme with
the control limit derived in the third section and shows that its
expected cost is less than that of a traditional rule of thumb. In so
doing, we assume that a cost variance is normally distributed with a
mean zero and standard deviation g, that is,

fy =g 85 a9
By means of the method of substitution, we get

Sxf(x)dx S —To=g? z( )dx— g—e_l( )+C

V2 v 2r (20)
=—g}(x)+C
Using this result, we calculate
So_w" (Wdx=——g—e ()’ O.,f ——rg—=—*0)
k x\2|k
[wai=—rg—e 1 =—ofm -

= 0*(0)— *f(k)
oo __ @ _1 % 2
|, = e :(5)

:=0—(—02)f(k)=o“"f(k).
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If the optlmal control limit is used, the expected total costs become
0 B
U=\ Ayde+ So Brf(x)dx
+ S:(Bx+ F+COf(x)dx

+ pS:(H+ Dx—L)F()dx+(1— p)S:Ef(x)dx

= —Ad*f(0)+ B{e*f(0) —o*f(k*)} + F{1 - F(k*)} @2
+(B+C)a* f(k*) + pH (1— F(k*))
—p(L—=D)e*f(F*)+ A —p)E{1l—F(k*)}

— — Ad*f(0) + Bo*(0) + F{L— F(k%)} + Co®f(F*)
+pH{1—-F(%*)} —p(L—D)o*f(k*)
+(A-pPE{1-F(k*)}

where
F(E®) = S f(x)dx-——+S s,

Suppose that we adopt the rule of thumb which states that if cost
variances fall outside mos, an investigation is undertaken. The ex-
pected total costs under this policy are

Um)= S“ Axf(x)dx+s Brf(x)dx
+S (Bx+ F+Cof(x)dx

+ pS:acHJr Di—LOf(0)dx+(1—p) S:aEf(x) dx

= — A6 (0)+ B{c¥(0) — 6*f(mo)} + F{1—F(mos)} 23)
+ (B+ O d*f(ma)
+pH{1—F(mo)} —p(L—D)e*f(mo)
+A-pE{l-F(ma)}

= — Ad*f(0) + Ba*f(0) + F{1— F(ma)} + Ca*f(ma)
+pH{1—F(ma)} —p(L—D)e*(ma)
+(A—pE{1—F(mos)}.

The value of an optimal control scheme with £*, denoted by V(k*,
m), is defined as the difference between U(m) and U(k*),
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V(E*, m)=U(m)— U(k*)
= {F+pH+(—p)E} {F(k*)—F(ma)}
+ {(p(L—D)—C}{ f(F*) — f(ma)} o* e
= {F+pH+ (A —p)E} {Fn(2*)—Fn(m)}
+{p(L—-D)—-C}{fw(z*)—fn(m)} o
where fx(-) and Fx(-) are the density function and the cumulative
probability of the standardized normal distribution, respectively, and
z*¥=k*[q.

Since k* is the optimal control limit which brings minimum ex-
pected costs, V(%*, m) must be nonnegative and it takes minimum
value, zero, when moe is set equal to the optimal level, 2*. To prove
this, we take the first derivative of V(k*, m) for m=m"’ and set it
equal to zero,

dV(E*, m°) _ _ 1 -Lm2
A= (P pi+a DB (- )¢
+m{p(L=D)=Clo «/é—n‘f%mz 25
.
=#e 2 [ {p(L—D)—C}mo— {F

+pH+ A —p)E}]=0.
Since the second derivative for m=m" is positive, i. e.,

dZV(k*, m°) = 1 —lm2> - —_—
o) (A7) o lpL-D-C11>0 26)
V(E*, m) takes its minimum value if
_F+pH+ (A -p)E
o= P(L—D)=C @n

which is derived from (25).

As stated, mo in (27) is equal to A* given in (11). Hence, the
expected total costs are minimized by using the proposed rule as
compared to the rule of thumb. ’

A simple numerical example may be useful to illustrate this point.
For the specific problem introduced earlier, suppose that a cost ac-
countant has used 2¢ as a control limit and ¢=500. Referring to a

normal distribution table, we obtain
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Fy(2*)=.99744; Fy(2)=.9772
Ja(2%)=.00792; Jw(2)=.05399.
Then, V(&*, m) is calculated as follows:
V(&*, m)=%$28,000(.99744—.9772) + $20(500) (.00792 —.05399)
=$566.72—$460.70
=$106.02.
Thus $106.02 will be saved by using the optimal control limit %*.

VI. Summary

Many management control systems operate on the principle of
managemerit by exception. Standard cost control systems are one
such example. For its operation the principle presupposes some cri-
terion which makes a distinction between the situations that warrant
management attention and those that do not. A control limit is the
criterion which has been heavily used in standard cost control. By
setting control limits about the standard, and investigating only those
variances outside the control limits, management can concentrate on
exceptional items.

In spite of its popularity, little attention has been given to the
problem of determining control limits on an economic basis and the
formal expression of optimal control limits has never been sought in
the accounting literature. Consequently, in practice, managements
establish control limits by judgment and determine without any
analyses whether a cost variance was worth investigation.

This papar has proposed a model for setting optimal control limits in
the case of a single period and a continuum of states. It was obtained
as an explicit function of the cost and benefit parameters in the
investigation decision problem. The model was extended to include
an exploratory investigation. The option of conducting two levels of
investigation was examined. The first control limit would then serve
as a warning signal for an exploratory investigation while the second
one would become a criterion to trigger a full investigation. Also,
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the proposed model is applicable regardless of the form of the con-
tinuous distribution of a cost variance. This is of great practical
value since a cost variance may not necessarily be normally distrib-
uted as assumed in most of the previous studies. Finally, comparison
of the proposed control scheme with the traditional rule of thumb
was made and it was shown that it leads to lower expected costs as

compared to other models.
Footnotes

(1) Inacomprehensive survey of models and techniques, Kaplan (1975) classified
existing models for determining when to investigate cost variances along two
dimensions. The first was whether the investigation decision is made on the
basis of a single observation or whether some past sequence of observation is
considered in the decision. Models were thus classified as single-period or
multi-period. The second dimension was whether or not the model explicitly
includes the expected costs and benefits of investigation in determining when
to investigate a variance. His classification is summarized in a 2x2 table as
shown below.

A Taxonomy of Deviation Investigation Models

Costs and Benefits of Costs and Benefits of
Investigation not Considered Investigation Considered
Sngle-Period Zannetos (1964) Duncan (1956)
Juers (1967), Koehler (1968)  Bierman, Fouraker, and
Luh (1968), Probst (1971) Jaedicke (1961)

Buzby (1974)
Multi-Period Cumulative-Sum Chart as in  Duvall (1967)
Page (1954). Also Kaplan (1969)
Barnard (1959 Dyckman (1969)
Chernoff and Zacks (1964) Bather (1963)

(2) Bierman and Dyckman (1971): 33.

(3) Amey and Egginton (1973): 488-9.

(4) In practice, the X charts are modified on an ad hoc basis to detect a run
of observations in excess of 2¢ or 3¢. Sometime they are used with action
limits at 3¢ and warning limits at 2¢. But, as Kaplan (1975) claims, there is
no generally accepted modification to this classic control chart.

(5) In the case where budgetary and manpower constraints are imposed on
period’s investigation activities, the investigation decision problem may be
formulated as a mathematical program. Dyckman (1969) expressed one means
of selecting the optimal set of processes to be investigated in any period by
an integer programming method which would maximize the expected return
based on the state probabilities for each process at the end of the period.
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Ozan and Dyckman (1971) viewed the investigation decision as a capital
investment decision under uncertainty and incorporated the three objective

_ functions which allowed a company to specify its attitude toward risk involved
in the investigation decision under uncertainty.

(6) Girshick and Rubin (1952) studied the statistical control model in a production
process which consisted of a machine with four possible states : two performance
levels and two states occurring during overhauls. They gave the minimum
cost control procedure for the case in which the time to breakdown had a
geometric distribution. This optimal procedure is complex and severely restricted
because of the introduction of equilibrium distributions. As Bather (1963)
suggested and Kaplan (1969) adopted, the difficulties associated with statistical
equilibrium can be avoided by using the methods of dynamic programming.

{7) See Kaplan (1975) : 320.

{8) Duvall (1966) developed a model in which the state of the system was
described by a continuous variable. Each observed deviation, x, was composed
of two parts: (i) a part due to non-controllable causes, w, and (ii) a part
due to controllable causes, y. His benefit function from an investigation was
assumed to be a direct function of the continuous variable, y. On the other
hand, he also assumed that the cost of an investigation was some constant,
C. Hence, the profit resulting from an investigation was written as

ky—C if 0
Py)= { 2Ly +0) if iéo.

(9) I am indebted to Professor Jacob Marschak for suggesting the technique
used in this paper. For the analysis of management-by-exception information
structures, see Marschak and Radner (1972) : 206-217.

(10 The derivative of a definite integral with respect to the upper limit of
integration is equal to the value of the integrand at this upper limit:

¢ s de=r>.

() If the probability that the cause of the deviation is discovered is independent
of the probability that the cause resulted from controllable factors, ¢ will be
equal to ph. It is assumed that a full investigation will discover the cause
of deviation resulting from controllable factors.
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