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A Mathematical Analysis for Designing
an Exception Reporting System

Masao Tsuji

Contrary to the numerous and varied studies on management
information systems, there appears to be little organization! rationale
behind the development of most of today’s management information
systems. Critical evidence continues to accrue that “the information
systems of today are not, in general, what they are made out to be”
(Swanson, 1979, p. 237).

Ackoff (1967) argued that several assumptions commonly made
by designers of management information systems were not justified
in many cases and hence led to major deficiencies in the resulting
systems. King and Cleland (1971) claimed that although modern
management information systems were supposed to help the manager
make better decisions, few were true management systems. According
to their observations, information systems have been shaped by
improvements in existing data processing functions, and have not
significantly increased the decision making effectiveness of managers.

More recently, Wildavsky (1978) makes critique of today’s infor-

[13

mation systems as “really made up of dumb data” and as “un-
theoretical, non-organizational, and a-historical ”. Hedberg and Jénsson

(1978) express a similar view and state that:

It appears that many modern information systems dysfunction-
ally add to organizations’ inertia. Access to more information
and more advanced decision aids does not necessarily make
decision makers better informed or more able to decide (p. 48).

‘Where do these deficiencies result from? Designers of manage-
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ment information systems are inclined to believe the notion that to
supply information to decision makers is a good thing in and out
itself. This seemingly well accepted notion will be challenged by
the following considerations:

(1) the problems of information overload,

(2) the problem of processing information by decision makers,

and

(3) the fact that all information has a cost.
The viewpoint which has motivated this paper is the importance of
shifting the emphasis of the information system design from supplying
relevant information to eliminating irrelevant, unimportant information.
The purpose of this paper is to develop evaluation methods for
particular types of information and decision systems and to investigate
solutions for designing systems which can reduce information overload
and is economically more efficient than current systems. Several
mathematical models will be examined on the basis of recent devel-
opments in the area of inquiry known as “information economics” to

solve these problems.

I. Deficiencies in the Development of Information Systems

It is generally recognized that the amount of information inputs
and the ways of their provision influence the utilization of information
provided from an information system. Information is utilized to
enable a decision maker to make informed judgments and decisions.
For the information to be useful, it must bear upon or be usefully
associated with the decision which it is designed to facilitate or with
the result which it is desired to produce. The more closely infor-
mation provided is attuned with a decision maker’s needs, the more
useful it will be in producing the desired result. Consequently, the
information and the way of reporting it exert influence on the
designated decisions. For these influences to be exerted effectively,
relevant information must be available in a form and a time for it
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to be useful.

According to Ackoff (1967) and others, however, most managers
suffer more from an overabundance of irrelevant information, while
they lack a good deal of information that they should have. They
receive more data than they can possibly absorb even if they spend
all of their time trying to do so. In short, they suffer from a so-
called information overload. As a result, they must spend a great
deal of time separating the relevant from the irrelevant and searching
for the kernels in the relevant documents.

Humans have limited capabilities for processing data. Beyond
some point it becomes physically impossible to assimilate and react
to incremented messages. Even modest increases in the amount of
data provided could worsen decision effectiveness because of psycho-
logical effects. Increased information levels increase the perceived
complexity of the environment. According to abundant psychological
testing evidence, such changes in perceived environmental complexity
induce changes in decision maker’s cognitive processing capabilities
(Schroder, Driver, and Straufert, 1967). These cognitive processing
changes, in turn, can decrease the effectiveness of decision making
by causing a decision maker to revert to a more concrete conceptual
level in an attempt to cope with the new, more compex environment
(Driver and Straufert, 1969).

That certain relevant reports are required to improve decision
making effectiveness tends to be taken by many system designers as
a “given”. In real decision making situations, however, managers
in an organization may not want to collect all the relevant data that
are available or make use of the information they possess. According
to Cyert and March (1965), managers in the typical firm do not scan
all alternatives or have complete information about the alternatives
selected. Time factor may be critical: the time limit of most deci-
sions demands that they must be taken on less than complete infor-
mation. Also, it has been suggested that search for data is initiated
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in response to a number of factors, for example, when existing
decisions seem to be unsatisfactory or when a problem is looming.

An additional negative effect of the emphasis on supplying infor-
mation is the problem of economic inefficiency. All information has
a cost. Information should be treated as an economic commodity
whose acquisition constitutes a problem of economic choice. This
conception draws the inference that information should be obtained
or supplied only if the benefits from its use can be justified as
greater than or equal to its cost.

These considerations suggest that the notion that the informing-
of-managers is a good thing in and out itself needs to be modified.
The amount of information inputs and the way of providing them
are important factors which affect not only information utilization
and decision quality, but also resource allocation in an organization.

The problem of information overload is especially crucial to the
development of management information systems. As implied by the
term, information overload is caused by the amount of information
inputs which are greater than those which can be processed adequately.
One efficient solution is to alleviate the situation by reducing the
information inputs without any critical loss of the benefits yielded if
such reduction was not undertaken. It is important to note that this
solution is consistent with the results of behavioral studies on human
information processing which show that managers do indeed develop
heuristics to reduce the amount of information processed.

II. An Exception Reporting System

This paper is based on the premise that in many modern organ-
izations the problem of information system design should be primarily
oriented toward the process of filtering, extracting and condensing
information, rather than on the generation, storage, and retrieval of
information. The need is to make decision makers aware of that
portion of the total set of information which is relevant to their
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decisions and to focus their attention on situations requiring their
judgments and interventions. We refer to this type of information
systems as a management-by-exception reporting system, or simply
an exception reporting system.

An exception reporting system is designed on the basis of the
management-by-exception principle. Management-by exception is one
of the basic principles of management which have been widely
accepted by current classical theorists. Generally it states that
decisions which recur frequently and are less important should be
reduced to a routine and only those important issues or those which
are non-recurring should be referred to focus decision maker’s atten-
tion.

The idea behind the exception principle is the economic allocation
of organizational resources; an organization must economize on its
resources by dealing only with exceptional matters which have sig-
nificant consequences on organizational effectiveness. Massie (1965)
states that

Generally, the exception principle has been important to the
development of the process of delegation of authority. It is
basic to the generalization that all decisions should be made at
the lowest organizational level commensurate with personal
ability and availability of information. It becomes useful in the
development of systems for handling work. Of all the classical
concepts, it probably comes closest to being a basic principle
valid in many situations (pp. 397-8).

Filtering or extracting is the essencial function of the exception
principle, applied to a management information system. Only those
items which deserve attention or require action are singled out. This
essentially involves a search for selected information, or the scanning
of a given set of data in order to identify a subset with predetermind
attributes.

The term exception reporting systems covers certain organizational
information-decision systems whereby the decision about a given
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action variable is normally made as the routine, but may be made on
the basis of more information if the original information variables
take on exceptional values.

Before giving a precise definition of an exception reporting system,
the following description may be helpful. Suppose that the range of
possible values of uncertain variable x is divided into two parts,
“ordinary ” values and “exceptional” values. Let R denote the set
of exceptional values. If, in a particular instance, an information
evaluator who designs and selects the information system observes x
to be ordinary, that is, not in R, then he does not provide a decision
maker with that information, and the decision maker deals with the
case as a routine. On the other hand, if the information evaluator
observes x to be exceptional, that is, in R, then he reports that value
to the decision maker. The decision maker then makes his decision
on the basis of the exceptional observations.

More precisely, the structure of an exception reporting system,
denoted by %, is defined as follows :

(2 1) . { X if xeR
) 7= constant (independent of x) if xR

where x is the state of uncertain environment and R is the given
subset of the real line (the set of exceptional values).

From the previous discussion about information structures, we
notice that the structure of an exception reporting system defines a
class of incomplete information structures which contain the finest
and coarsest information structures.

The finest information structure, called complete information
structure generally, is defined mathematically by

2.2) 7e=1{x} for all x in X.

On the other hand, the coarsest information structure, called null
information structure generally, is given by

(2.3) yn=constant (independent of x) for all x in X.
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A decision rule based on the null information structure becomes a
routine. However, if this structure is incorporated into the exception
reporting system, this part informs the decision maker that the
observed value of x is not exceptional.

Using Lemma 2.1 we can readily prove the following theorem.
Lemma 2.1 is the part of the Fineness Corollary of Blackwell’s
Theorem.

Lemma 2.1: If 9’ is at least a fine as 7'/, then

2@, 0; 0, KLY, 7; o, §).
Proof: Let y/ and y’/ be information signals from %’ and '/, re-
spectively. Since every signal from 7’ is fully contained in a signal

from »”’, we have that
=y 9N = 3 =)
ylcyll
Upon receipt of signal y under », the best decision function &* maxi-
mizes the following expected payoff :

E(Uly, 5*)=m5ax SZEIYa)Es, s ]1gGsly, .

The expected payoff obtained under information structure 5 is there-

fore
2@, 0*, o, ¢)=Zy1n(Y|77)E(UI>7, 3%).

Some algebraic manipulation of these results establishes the desired

result:
20", 0*; 0, §)= ny(Y”[’?")E(UM", %)

=2 X =y’ [7DEUly", 5%
v’ y'cy”

<% X 2’ 170EUly, 5
¥y ycy”

<Za(y'|n)EUly, 6%
y

=020, 6%; w, ¢).

Theorem 2.1: Let 5, . and 7. be the three information structures
defined above and Q2(c), 2(%.) and 2(pn) be the gross values of these

91



Table 2.1. Outcome Function

: States

Actions 1 P 3 4
1| 10 6 ~10 —20
2 —6 —10
3 0 5 -8
4 —5 -3 -2 6
5 | 0 0 0 0

Probability .25 .25 .25 .25

information structures. Then we have that

2@ 2 82(e) Z22(n).

Proof : Since the three information structures are comparable with
respect to fineness, Lemma 2.1 applies to this Theorem.

A simple numerical example will serve to illustrate the concept
of value of information structures and to show the usefulness of
exception reporting systems.

Let there be four equally likely states and five alternative actions,
with a numerical outcome function as shown in Table 2. 1.

We shall consider the three types of information structures defined
in this section. We suppose now, for the time being, that the
information systems have zero cost.

(i) #a(s)=constant for all s (no information)
(i) 7.(s)=s for all s (complete information)

s if seR o .
(exception information)

CONPNORY

constant if se R

(i) Null Information Structure

Tt is easily verified that the best action under the null information
structure is a*=5, and that the expected outcome for this action is
zero, that is,

Q0pm)=max Ew(s, 2)=0.
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(ii) Complete Information Structure
If the decision maker learns the value of s under the complete

information structure, he will choose the action that maximizes the
outcome for that value of s. For example, when s=1, the best action
is a*=1 with the outcome 10. Hence, the optimal decision function
is written as d(s)=s, and the maximum expected outcome yielded
under 7. is given by

20e)=(.25)A0) +(.25)(®) + (.25) (B) +(.25)(6)=29/4.
(iii) Exception Information Structure

We have eight alternative structures, depending upon how we

define the exceptional vales of s:

7e=1: R={1} and R={2, 3, 4}

7e=2: R=1{2} and R=1{1, 3, 4}

7e=3: R=1{3} and R={1, 2, 4

ne=4: R=1{4} and R=1{1, 2, 3}

pe=5:R={1, 2} and R={3, 4}

e=6: R=1{2, 3) and R=1{1, 4}

7.=7: R=1{3, 4} and R={1, 2}

7e=8: R={1, 4} and R={2, 3}
The first four structures partition S into the two sets while the latter
four into the three sets. Note that these partiotions are not necessarily
comparable with respect to fineness. What are the maximum expected
outcomes under each of the alternative structures, not counting the

~N o

information costs? We can apply the computational procedure on
maximizing conditional expectations.
(1) Compute the maximal expected outcome conditional upon
each of the two possible signals obtained: seR and seR.
(2) Then, compute the weighted average of the two conditional
expectations.
For case 7.=1, the decision maker identifies the state precisely
and takes the action a=1 when s=1. This is the optimal action
which yields the maximum outcome 10. When seR, the decision
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maker understands that s=1. The optimal action for sx1 is the one
which gives the largest of the following expected outcomes:
A/ +A/D-10+A/3)(—20)=—8 (when a=1)
A/D®+A/D(—6)+(1/3)(—10)=—-8/3 (when a=2)

ABDOM+ABDG+A/D(=8)=-1 (when a=3)
A/DED+A/BD=D+A/DE =1/3 (when a=4)
A/BDO+ABD@+A/BD =0 (when a=5).

Hence, the best action is a=4, yielding the maximal expected outcome
1/3. Since s€R occurs with probability 1/4 and seR with 3/4, we
compute the conditional expected outcome given that n.=1 as follows:

2@e=D=EU|7.=D=Q/H A0 +@/4(1/3)=11/4.

For case n.=5, the decision maker is informed of the value of s
when s=1 or s=2. The optimal actions for s=1 and s=2 yield the
maximum outcomes 10 and 8, respectively. When seR, the best
action is given by a=4, with the expected outcome 2,

Ew(s, a=4]seR) =1/ (-2 +1/2)(6) =2
Then, the conditional expected outcome obtained by using 7.=5 is
R@e=5)=EU|7.=5)=1/H A0 +A/D® +1/2) @D =22/4

For the rest of the information structures of exception reporting
systems, the computations are quite similar., We summarize the
results in Table 2.2 for the purpose of comparing the gross values
of alternative structures.

The ranking in maximum expected outcomes shown in Table 2.2
agrees with the result of Theoresmn 2.1 in this section. Complete
information structure z. is finer than any other structures and has
the largest value 29/4. This structure, however, may incur information
costs which are so high as to make exception information structures
more preferable. The structure ».=7, among others, results in the
second highest expected value 27/4. If differencial information costs
between . and 7.=7 are larger than 2/4, ».=7 will be selected.

For this particular problem, we notice that it is important to
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Table 2. 2.

Information Structure Maﬁ%‘:ﬁ; OI;:Iicé)ected Ranking
/i 0 10
Ne 29/ 4 1

R
Pe=1 {1} 11/4 7
2 {2} 8/4 9
3 {3} 9/8 8
4 {4 14/4 5
5 {1, 2 22/4 3
6 {2, 3} 14/4 5
7 {3, 4} 27/4 2
8 {1, 4} 21/4 4

discriminate s=3 and s=4 because eroneous actions result in higher
losses when s=3 and s=4. As shown in Table 2.2, the best selection
of exceptional states are s=3 and s=4. In general, this selection
depends upon outcome function w and probability distribution function
¢. We will investigate this problem in further details in this study.

Another interesting type of information structure is the one
which cannot inform the exact value of uncertain states, but can
discriminate one group of states from another. We may refer to this
type as discriminatry information structures. In our example we
find three structures which belong to this type.

Denote by na the discriminary information structure. Then we
have

na=1:Y=({1, 2}, {3, 4}
pa=2:Y=({1, 3}, {2 4})
pa=3: Y=({1, 4}, {2, 3}).

Consider, for example, the case of ya=1. The decision maker is
imformed that state 1 or 2 will occur when he receives the first
signal. But he does not know which state will actually occur. We
compute the maximal expected outcome conditional upon receipt of
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the first signal. The optimal action is a=1 with the outcome 8,
Eo(s, a:lyn=(1/2 10 + /2 (6)=8.

Similarly, upon receipt of the second signal, the decision maker

obtains the maximal expected outcome 2 by using action as,

Ew(s, a:ly =1/ (-2 +A/2®) =2.

Thus, we have the following conditional expected outcome for na=1,
R@a=D=1/2® +1/2)(2)=5.

Applying the same computational procedure for other two stru-

ctures, we obtain the results as shown below,
Ra==>0/27/2)+(1/2)3/2)=5/2
L@a=3=AQ/D A/ +Q/2B/2=3/2.

From the comparison of these results, we realize that discrimination

of {1, 2} and {3, 4} in our particular example is more valuable than
the other two.

TI1. An Exception Reporting System for Production: A Uniform
Distribution Case

Consider a problem to select among alternative information struc-
tures which support the production manager’s decision to determine
an optimal output a* when product demand x is uncertain. Suppose
that x is distributed uniformly over the interval [0, 100], as shown
in Figure 3.1. The payoff function is defined as follows:

B.1) u=ol, a)=ka—g(x, a),

where
a(x—a) if x—a>0
g B ={ _
B(x—a) if x—a<0.
In the above functions, parameter k is marginal revenue per unit of
product and parameter a represents the penalty of underproduction
whereas § represents that of overproduction.
Alternative information structures may be characterized by a

different number n of subintervals of equal length into which the

96



97

¢ (x)

1
— if 0<x<100
¢(x)= 100 -

0 otherwise

1 1

0 25 50 75 100

Figure 3.1. Uniform Distribution

whole interval [0, 100] is partitioned.- For example, let n=1 and it
represents null information structure. The manager will not be
informed at all of the demand for the product. If n=co, it means
that he has the complete information structure which enables him to
predict the demand precisely.

Under the null information structure 7., the manager seeks the
optimal action Which yields the maximum expected payoff, denoted

by 2(@»),
100
(3.2)  0(s)=max Eo(x, a)=max[go (ka—g(x, a)}¢(x)dx}.
a a
The first term inside the bracket is simply
100
(3.3 S kag(x)dx=ka.
0
The second term is computed as follows :

@0 | 20 dsedx={ pa-0sedx+ | ax-gedx

d ‘B a 100 d IOOd
1008 fadx— 1008 xer1008 X IOOS x
__B B s I SV SN S
=002 " 00 % TO0—5pat maat 552
_atB .

=200 a?—aa +50a.

Hence, we have
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a+f
200

3.5 Eok, a)=-— az+ (k+a)a—>50a.

Differentiating the above equation with respect to a and setting
the result equal to zero, we obtain the optimal action as

k+a

3.6) a*=100 atp

Since the second derivative is negative, that is, —(a+§)/100<0, a
sufficient condition is satisfied. Substituting a* given by (3.6) into
the payoff function, we find the gross value of the null information
structure,

50

(3 7) Q(’?n) = a+‘3

(k+a)?—50a.

Next, we consider the complete information structure in which
the manager is informed about the demand for the product. Obviously,
the best production decision is a*=x under this structure. The
maximum expected value obtained by using this structure, denoted
by 2(3c), is calculated as follows:

(3.8) Q20G)=Emaxaw(x, a)= S:’kaqs (x)dx

“1051 5],
=50k.

In order to compute the gross value of 7., we evaluate the
difference between £2(p.) and 2(.). It may be reasonable to define
the gross value of 7. as the incremental value over the maximum
payoff obtained under the null information structure. Denote by
V(z.) the gross value of 7., and we have

B9 V() =20 —20n)
50 ,
=50k—a—+—‘8—(k +(I) +50a
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ﬁ

Without loss of generality, we may suppose that f>k. It is
interesting to note that V(3.) becomes positive if the marginal revenue
is less than the penalty of overproduction. In general, overproduction
causes the manager to incur the costs of inventory and expenses of
disposing the quantities overproduced. If the marginal revenue were
larger than the penalty cost of overproduction, he would be always
better off by producing as much as possible.

Now, consider a discriminatry information structure. For example,
let n=2 and then the whole interval [0, 100] is divided equally into
the two subintervals. Under this structure, the manager will be told
only whether the demand will be larger than 50 or not. The maximal
expected payoff in this case, denoted by 2(»a), is calculated in the
following way :

3.10) 2@ = ( )maxg (ka—g(x, 2)}¢(x]|7a)dx
+(l)max8100{ka—g(x )} dX|na)dx
2/ 72 Jso ’ 7 )
First, we calculate g(x, a) for 0<x<50 and 50<x<100,

G.11) Szog(x, 2)¢(x |pa) = S,B(a x)——dx+g a(x— a) dx

= al-(l)—(,)B 2—aa+2ba,
100 1
(3.12) Sso g(x, DX|pa) = S Bla— x)——dx+S a(x—a)—35-dx
= “lg(f a?— (2a + B)a+100a +258.

Qur problem is to find a solution that maximizes the expected value
of the payoff function, that is,

(3.13) Max Eo(x, ) =ka— 1“55 a*+aa—25a,
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3.14) Mawa(x a)=ka— 1;5 a?+ (2a + B)a—100a—258.

Using the classical method of calculus, we get the optimal solutions,
3.15) O<a*=502Fk ““; <50
k+2a+8

a+p
After substituting the best actions into the payoff function and

rearranging the terms, we finally have the maximum expected value
yielded under the discriminatry information structure,

(3.16) 5H0<a*=50 <100.

@.17 'Q(’?d)=—2(ﬂT{(k+a)2+(k+2a+,B)2}——12—5 __5

To calculate the gross values of this information structure, we
again evaluate the difference between 2(»4) and 2(pn),
B.18) V@ =92 —L2@w)

2

- 2 2 _& _ﬁ

{Mﬁ (k+a)?— 5oa}

+ﬁ (a+k) (B—k).

Comparison of V() with V(3:) in (3.9) reveals that complete
information is twice as valuable as discriminatory information in
terms of the gross value for this particular problem. This differencial
value gives the decision maker a guideline to evaluate these infor-
mation structures when he takes into consideration information costs.

Finally, we investigate the information structure of an exception
reporting system, which is defined as

X if 0<x<25 or 75<x<100
constant otherwise.

(B.19) 7:(x)= {

The exceptional range R in this structure includes the lower interval
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[0, 25] and the upper interval [75, 100]. The manager will be infor-
med of the uncertain, future demand of the product only when x=R.

If x falls in the exceptional range, the informed optimal decision
is written as a*=x. The maximal expected payoffs may be calculated
separately for each of the ranges,

(i) 0<x<25

25
(3.20) ©=Emaxw(x, a) =So kx¢(xlogxgz5)dx=_225_k
a

(i) 70<x<100
100 175
3.21) 2:=FEmaxo(x, 2) =S75 kxg (x| 75 <x<100)dx=72k.
a

If x is not in R, that is 25<x<75, the manager may receive some
information signal which is independent of x. So he cannot identify
the exact quantities of demand, but can recognize that x will not be
exceptional values. The best decision he should make is to produce
the quantities that maximize the expected value of his payoff function
given that 25<x<7b,

75
(3.22) 93=max52 (ka—g (%, 2)} ¢(x|25<x<T5)dx.
a D
For the second term inside the bracket, we obtain
75
3.23) SZ 2 (x, 2)6(x|25<x<75)dx
5
IV B x—ayL
_stﬁ(a 025 dx+Saa(x a)—-dx

=—é%—(a—25)—i<i2——£)

a (752 a? aa
e e R NG
_a+f , 3Ba+f 25 25
00 2 5 a+ 1 a+ 1 8.

Then, £2: may be rewritten in the following form:
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A

3
atf ,, Satp ,,_2250(_%5}

G.20) Qs=mgx{ka oa . 2

Taking the first derivative of 2: with respect to a and setting it
equal to zero, we get

25
*:
3.25) a a+p

Since the second derivative is negative and it is readily proved that

Ba+2k + ).

25<a*<75, a* derived above represents the optimal decision in the
case of 25<x<75. Substituting a* into the payoff function, we find

(3.26) Q= (3a+2k+ﬁ)2—24—5(9a+ﬁ).

4(a +ﬁ)

Through these calculations, we finally get the maximum expected
value yielded under the exception information structure,

1 1 1
(327) V(?je)— 4 Q1+T92+793—Q(77n)

—_ 25 2__

=25k +—g 2 G2k +6) Oa+8)

-{ g et 50a}

=T CHOED.

How efficient the exception information structure is in comparison
with the complete information structure may be an interesting question
to ask. The former gains 3/4 of the gross value yielded by the latter
and 3/2 of that yielded by the discriminatry information structure.
We compute the differencial value between V(3.) and V(3 and
denote it by V(%¢/7e),

(3.28) V(ge/ne)= (a+k)(B-K).

2(a +13)

As we may expect, the value increases as penalty costs of under-and
overproduction become larger. This suggests that we should enlarge
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or shorten the exceptional ranges, depending upon the values of «
and B. If we take @ and B as given, the difference is a quadratic,
concave function of k. This function takes the maximum if k=(8—
a) /2 and becomes smaller and smaller as k approaches .

From the comparison of ©: with £, it follows that complete
information brings much higher benefits when 75<x<100 than when
0<x<25. This fact, of course, results from particular forms of payoff
function as well as probability distribution function. As for as this
example is concerned, we may correctly conjecture that we receive
higher expected benefits by setting the exceptional ranges as [50, 75]
and [75, 100] rather than [0, 25] and [75, 100].

IV. A Quadratic Function of a Single Decision Variable

The models used in this and next sections are adapted from those
developed by Marschak and Radner (1972). They describe the
properties of decreasing returns with a quadratic approximation.

Suppose that the profit function is written as

4.1) u=e(, a)=—a’—ax+v*—b*x,
where v* and b* are constant. The payvoff depends upon the envir-
onment variable x (input price measured from its mean level) and
the decision variable a (input quantity measured from that level

which is the best one at the mean input price). Since the term
(v*—b*x) is of little interest, the profit can be measured as
4.2) u=ow(x, a)=-—a’>-ax.

For the sake of computational convenience, but without loss of
the essence, we assume that Ex=0. We now proceed to find the
optimal decision rules and evaluate the resulting expected payoffs
under each of the alternative information structures considered.

First, under the complete information structure, the decision

maker is kept informed of the price variable x. Making the optimal
decision,
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4.3 ®»=-E/2,
he obtains the maximum expected payoff
@49 Q0@)=Ex?/4=1/4) {2+ (Ex)?} =s?/4,
where s? is the variance of x.
Second, on the other hand, under the null information structure
the decision maker receives no information about the price. The best
action is found by maximizing, with respect to a, the expected profit

“4.5) u=-a?*—aEx.
Since the optimal action a* must satisfy the condition

4.6) —2a—Ex=0,
we have a*=0 and therefore
4.7 L2@)=0.
Because of (4.7), V() which is defined as 2@)—2(n) will be
simply be equal to the expected payoff 2(7).

Next, we consider the information structure of an exception
reporting system which is specified as

X if xeR

A8 7.0 ={

constant if xR,

where R denotes the set of exceptional values and R its complemen-
tary set, that is, the set of ordinary values.

If, in a particular instance, an information evaluator observes x
to be exceptional, he will inform the decision maker of its exceptional
value. The decision maker will choose the best action for the state
which the information signal represents. On the other hand, if x is
observed to be not exceptional, that is, xR, the decision maker will
make his decision based upon @ priori information. It is not necessary
to investigate the exact value of x in this instance. Under this
structure it is sufficient that the information evaluator observes x to
be not exceptional.

Since the decision maker will learn the value of xR, he will
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choose the decision §(x) that maximizes u in (4.2) for the informed
value of X. The optimal decision, as in (4.3), is
4.9 X=—&/2) for xeR.

The maximum expected payoff would be
4.10) Q(pelxeR)=—1—E(x21xeR)=—i——[5R2+{E(x!xeR)}zj,

where sgr? is the conditional variance of x, given that x is exceptional,
(4.11) se?’=var(x|xeR).
When xR, the decision maker will learn that x is not exceptional.

The best action is obtained by maximizing, with respect to a, the
conditional expected profit

.12 E@|xeR®)=-a?2—aEx|xeR).
The optimal output a* must satisfy the condition
(4.13) —2a*—E(x|xeR)=0.
Although x is assumed to have zero mean, it does not necessarily
follow that E(x|x=R)=0. Hence, we have

4.14) a*= —-—;—E(x]xef{),

4.15) Q(r;e]xeﬁ)=%{E(xlxel~2)}2.

Let p be the frequency with which x turns out to be exceptional,
(4.16) p=prob[xeR].

Then the expected value of this structure is derived as
1D V() =—1pE|xeR) +—3—(1-p) Ex|xeB)*

Suppose that x has a continuous distribution with the probability
desity function f(x). Then, V() in (4.17) may be rewritten as
follows :

w1 Vo2 (D o s 2
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+ wazf(_x) dx}
n b
i s+ o

+ S :xzf (x) dx} .

Since each term in (4.18) is expressed by a definite integral, variable
x will vanish in the process of calculation. Accordingly, V() is
specified as a function of lower and upper limits of R. In #.18) m
and n represent lower and upper limits of R.

Given that a few conditions hold, the value of the exception
structure varies depending upon the values of m and n. It is a job
of the information evaluator to determine the exceptional range R.
What are the optimal values of m and n which maximize V(y.) ?

For the sake of convenience, we again rewrite (4.18) as follows:

- 1 2
4.19 V(@& —m {G(m) -G}

+— {H @) —H (—o0) +H () ~H @)
where: F&)=f{x)dx-C

G =fxfx)dx—-C
H)=fxx)dx-C.

Partially differentiating V() with respect to m and n, we get

a.2p 50O IO SD) [ om F ) -Fm)

+G@—Gam)] +—i—m2f(m) 0,

(4.21) a\;?) - fin{)F{glgn_);g;?} [2n {F(n) —F (m)}

1
4

— G -G} 1——n* @ =0.
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From the two equations above, we have

2{G(m) —Gm)}
Fmn)—F(m)

4.22) (n—m)[ —(n+m)} =0,

Because n#m, the following condition is obtained as the necessary
condition for a maximum :

G —Gm)

(4.23) m+4n=2 T —Fm)

This result suggests that for the concave function of (4.18), given
the probability p and one exceptional limit, the other limit should be
determined as it satisfies (4.23).

Finally, suppose that x has a symmetrical distribution about its
mean, zero. It is readily shown that the condition is simply specified
as

(4.24) n=-m,
since G(@)—~G@m)=0. Hence, given the probability p, the optimal

choice of R is obtained by taking it to be the complement of an
interval symmetric around zero.

V. A Quadratic Function of Two Decision Variables

In this section we extend the previous analysis to the case in
which two decision variables have to be determined by using alter-
native information structures. This case brings out a problem of
organizational structures: decentralization vs. centralization.

In the centralized organization, a single decision maker may
decide about two physically distinct action variables: he may choose
simultaneously the values of two variables on the basis of some
information about uncertain states of environment. On the other
hand, in the decentralized organization each decision maker decides
upon only one of the action variables on the basis of his individual
information. If a communication system is established between the
two decision makers, it results in providing them with the same
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information on which their decisions are based. When there may
exist complementarity between the two actions, error-free communi-
cation will never decrease the benefits.

Suppose that the output is a quadratic function of the two decision
variables (inputs). According to Marschak ang Radner (1972), the
profit in this decision setting may be expressed as

(5.1  u=o(x1, X3 a1, az) = —a*—a’—2qa:ds+2a1X1+2a:Xs,
where x:(i=1 and 2) denotes the price variable of i-th input and q
measures the degree of interaction between a: and a=

The previous definition of the structure of an exception reporting
system can be extended to the case where exist more than one
environmental variables. For each variable i, the exceptional set Ri
may be specified. We define this information structure as

6.2 n@={7 i x ek
R; if x;ER;.

Since we have two environmental variables in our example, this
information structure provides four kinds of information signals,

xX: and Xz if x:eR; and x:&Re
%1 and R:  if x:€R: and x:eRo
(3.3 pex=17 o . ~
Ri and x- if x1eR:1 and x:€Re

B:iand R:  if xueR: and x:eRo.

Suppose that each exceptional set R: is specified as symmetrical
around the mean of x;. In addition, we assume that x; which have
symmetrical distributions with means zero and variances s are
statistically independent.

In the first case of x:=R: and x:=Rs, both variables belong to
the exceptional ranges. The exact values of them are informed
before the decisions are made. The payoff function to be maximized
is the same as in the case of complete information structure. The

(1) To guarantee that the maximum profit is achieved at input levels other
than the boundaries, the absolute value of g must be bounded as |q|<1.
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best decision function are given by

ﬁl:gl(XIERl, xX:ER3) =X]1-:—;l§2
6.4
éz=gz(X1ER1, x:&R9) =§{_:3%_

For given xi€R: and x:€R;, we have the maximum profit

(3.5 u=ox, x5 &, ﬁz)=————X12_21qf$2+X22

Second, when x1=R: and x:=R., the exact value o xi, but not xe
is provided before the decisions are made. In this case x: is known
to be not exceptional and only the range of x: can be determined.
We maximize, with respect to a: and as, the payoff function

(5.6) E(u|x:ceRy, x:€Ra)= —ar?—a»?~2qaiae+2a:1x1 +22:E(x:=R5).

From the assumption of symmetry, we have that E(x:ieR.,)=0.
Equating the partial derivatives of (5.6) with respect to a: and a: to
zero, we get

ai+qa:=x
(5‘7) 1-+qgas 1
az+qai=0.

The solution (5.7) gives the optimal decision rules

gl(Xl, R‘z)=‘1_}_{—1qz
5.8
~ &\ _ —QX:
d2(x1, R2) —qu.
The maximum profit yielded by using the optimal decision rules is
calculated as

~ X712
6.9 Ealm, Ry={5.

For the third case in which xieR: and x:eR., x:» is correctly
informed, but x: is known to be ordinary. The situation is just
opposite to the second case. Therefore, we find 3: and &3 simply by
interchanging the subscripts 1 and 2 in (5.8),
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51(X2, Ro= qfl(:
(5.10)
d02(x2, Ry) = -

and the maximum profit by a similar interchange of subscripts in
G.9

(.11 E(u|xs, R)= 1_2q2 :

Finally, when both variables are known to be not excetional, the
actions become “routine.” The expected profit is equal to
(5.12) E@|Ry, By =—a—a’—2qaa:+2a:E(x1€Ry) +2a:E(x:&Ro)
which is to be maximized with respect to a: and a: The optimal
actions in this case are constant,
(5.13) a1=4a:=0.
Hence, the maximum profit is zero,
(.14 E@w|R:, Ry =0.
Let p: be the frequency with which x; turns out to be exceptional.

Combining the maximum profit obtained in each of the four cases,
we derive the value of the exception information structure as follows:

(.15 V(o= ppﬂf& p1(1—ps)

1 1q2

+(1— pl)pz +(1 —pA—-p2 (O

= 1_1-q2 (pisri+pzsgy),

where sg? is the conditional variance of xi, given that it is exceptional.

It appears from (5.15) that the larger the conitional variances
se}, the larger the gross value of the exception information structure.
Given the probabilities p., the optimal choice of R; is that which
maximizes sgl. Under the assumption that x; are statistically inde-
pendent, we can apply the same rule derived in the previous section.

110



111

To set the optimal exceptional ranges of xi, we take Ri to be the
complement of an interval symmetric around the mean of X:.

V1. Concluding Remarks

This paper has been based on the premise that the major problem
in the design of information systems is the filtration of relevant
information from irrelevant information and elimination of the latter.

In the management literature there have been several articles
and fragmentary statements dealing with this subject. None of them,
however, contain more than simple rules of thumb. In addition, the
literature on the design of information systems seldom considers
explicitly the function of filtration or extraction. This lack of the
literature may be attributed to the fact that the exception principle
has not attempted to define which activities and issues are routine
and which are exceptional. As a result, it has been stated as a
matter of degree depending on circumstances and subjective evalu-
ation.

This paper has proposed conceptual models of an exception
reporting system which incorporates some filtration mechanism. Since
information economics is concerned with the trade-off between the
cost of information and the value derived from that information, it
can provide some criteria to decide which information sets to be
eliminated. In short, the paper has sought a useful method for
designing information systems which operationalizes the exception
principle in management and integrates the principle with information
economics precepts.
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