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Evaluation of Purposive Organizational
Networks : Some Computational Methods

Masao Tsuji

1. Introduction®

For a business corporation, a not-for-profit organization, an admin-
istrative agency, the usual hierarchic chart (“who reports to whom ?”)
should be replaced by a more specific network of tasks: “who per-
forms which action, or learns what, or tells what to whom, in res-
ponse to what information ?” Each member receives, as inputs, mes-
sages from other members or from the outside. He transforms them
into his outputs: messages to other members or to the outside world.
Each member’s task is thus a transformer, or “processor”. The mes-
sages from and to the outside world are, respectively, the “events”
(e. g., next month’s market prices and wages) and the members’
“decisions” (e. g., the production volumes for various products of the
firm). Together, events and decisions determine the “outcome”. For
example, one member estimates future market conditions, or the arriv-
al times of various supplies, etc. He communicates the estimates, or
its different aspects or details, to several other members, depending
on their respective special tasks. Some of them, on the basis of this
and other messages received, may decide on “final actions” within
their respective competences and / or decide on what to communicate
to whom.

Given the actual external conditions (as distinct from their esti-

(1) A more complete description of the underlying rationale was given by
Jacob Marschak “Efficient Organizational Design” in Economic Theory for Eco-
nomic Efficiency : Essays in Honor of Abba P. Lerner (in press). Also issued
as Working Paper No. 273, Western Management Science Institute, UCLA.
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mates), the organization’s benefit will depend on the members’ final
actions and therefore on the manner in which the message-processing
tasks were defined and assigned. This assignment will also determine
the (“managerial”) costs to the organization.

In general, a processor’s output message in response to the input
is uncertain, i. e., “noisy”. The processor is represented by a “transi-
tion matrix” of output probabilities (I's and (’s in the special, “noi-
seless” case), given each possible input. The network, coupling spe-
cified processors in specified ways, results, then, in an “overall transi-
tion matrix” of probabilities of decisions, given the events.

z A

Events Actions

g B L

P
-

Fig. 1. 1 Organizational Decision-Making

The overall transition matrix is represented by a large box, deno-
ted by P in Fig. 1. 1. Given events z € Z, actions a € A, benefit fun-
ction B, and probability densities z(z), the expected gross benefit b
may be calculated as follows:

1. 1) b=B@; B,n)=1.,: 8(a,z) n(z) Pal2)

A purposive organization can be regarded as being designed by an
“organizer” (e. g., a management consultant, or the head of a firm)
who prefers networks with higher “expected utility to the organiza-
tion” as visualized by him. For simplicity, this is approximated by
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the expected difference between the “benefit” of the outcome of
events and decisions, and the “managerial costs” of task performance.
This expected difference is determined by the network’s overall tran-
sition matrix of events into decisions, given the organizer’s estimate
of event probabilities of the organizational benefit function of events
and decisions and of the costs of component processings.

The purpose of this paper is to develop methods to compute the
overall transition matrix implied by a given network of tasks in an
organization. It will be shown that to compute the overall transition
matrix, both the conventional and the direct (=Kronecker) muitipli-
cation of component matrices for coupling “in series” or “in parallel”,
respectively, are not sufficient. When two members receive, two 7ela-
ted messages (e. g., identical, partly overlapping, or one a condensed
version of the other), matrix multiplication must be appropriately
modified.

II. Coupling in Series: The Conventional Products of Matrices

In an organization each member receives, as inputs, messages
from other members or from the outside world. He processes them
into his outputs: messages to other members or decisions. Each mem-
ber’s task is thus called “ processor”.

Definition 2. 1. Processor P: represents member i’s task which
transforms an input message x € X = {a, as, -+ am} into an output
message X’ € X’ = {bs, by,-++-* bwr} and is characterized by a Markov
matrix with m rows and m’ columns,

e. D Pi=
Pmi Pmz2ere--r P/

where pij is the probability that if member i receives input message
ai, he sends output message b;.
It is convenient to label the input and output message spaces by
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the row indeces {ai, as, +-+--- ,am} and the column indeces {bi, be, --:-- ,
bm}. These probabilities, pij, must satisfy
ml
0<py<1l and Xpi =1
j=1

Definition 2. 2. Processors P; and Pi+1 are said to be coupled in
series iff x'i = xi+1. In other words, the output message x'i from
Processor P; is the only input message to Processor Pi+1.

Definition 2. 3. Processors P, Pz, «+«--+ , Pn are said to be a stocha-
stic chain if xX'i = Xie1 fori = 1, 2, «----- , n, as shown in Fig. 2. 1.
% P X; =Xz Ps Xz =Xz Xn-1=Xn P. Xn

Fig. 2. 1 Stochastic Chain

Note that a stochastic chain defined above has the Markovian proper-

ty in the sense that for k = 0, 1, 2, .-+ and every sequence ai, bj,
ki, ko, «eeee , kn,
(2. 2) p(Xk+1=bj]X1=ak1, Xs=akg, ** " sy Xn-1=akpn-1, Xk

=aj)=p(Xk+1=bj [Xk =ai)

However, the chain does not posses stationary transition probabilities
since p(Xe+1=bj|xx=a;) is not independent of k.

Theorem 2. 1. Let Pi, Pa, +--e-- , Pn be stochastic processors cou-
pled in series, then the chain can be represented by a conventional
matrix product,

@. 3> Puu=Pi+Ps -o-oo- P,

where the dot represents conventional matrix multiplication. P is a
Markov matrix which represents the probabilities of x’x given xu.
Proof. It is obvious that the result is true for n = 1. For n = 2,

Pe=bh&:(x))= E;/p(x%, x1]x1)]
= E§DCX’1IX1) » p(X2|x1, X'1)]

Since p(x’2|x’1, X1) =p(X'2]X1, X2) =p(X’2]X2), we can write
Pr2= [Z/}p(xﬁlxl) o p(x"2]X2)]=P1+ P2
x/y

804



|
|

21

, To establish the truth of the result for n = k + 1, assuming that it

is true for n = k, we should apply the same procedure as for n = 2.
That is, P is multiplied by Px+1 to obtain Pix+1. This completes the
inductive proof.

III. Coupling in Parallel with Unrelated Inputs: Kronecher
Product

When we deal with the case in which there are more than two
input sets, the relation between these sets must be examined.

Definition 3. 1. Two finite random sets X = {x} and Y = {y} are
called unrelated if the joint probability p(x,y)>0 for all pairs (x, y)
e XxY. Otherwise, X and Y are called related.

Theorem 3. 1. If for all x and y, p(X, y)=p) » p(y) (statistical
independence of X and Y), then X and Y are wunrelated. But the con-
verse is not true.

Proof. Sufficiency: Since p(x)>0 and p(y)>0, then p(x) « p(y)
>0 for all pairs (X, y). No necessity: If X is statistically dependent
of Y, then p(x, y)=p(x|y) « p(¥) #p(x) * p(¥)-

Definition 3. 2. Two Markov matrices P=(p(x’{x)] and Q=(p(y’
|¥)]) are said to be coupled in parallel if p(x’]|x) and p(y’|y) are uni-
quely determined by x and y, respectively (See Fig. 3. 1.)

Fig. 3. 1 Coupling in Parallel

We now investigate how to combine two unrelated Markov ma-
trices coupled in parallel into a single matrix, as illustrated in Fig.
3. 1. The combined matrix represents the conditional probabilities of
outputs X’ and y’ given inputs x and y. Our effort will be simplified
if we {first introduce the concept and some of the properties of the
Kronecker productof matrices.®
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Definition 3. 3. Let A={ai;] be an m by m’ matrix and B be an
n by n’ matrix. Then the mn by m’ n’ matrix
G D C=Tla;; B]J=AxB
is called the Kromecker product or direct product of A and B.

The matrix C is computed in such a way that each component of
A is multiplied by the whole of B. For example if

a1l aig

b1z D1z bis
A= ds; Ase and B = ber baa bzs)
we would have
auB a:B
B.2) C=AxB=
anB a2:B

aubin aubiz anbis aisbiy  aisbiz  awbis
auba  aunbs: aubs abas  aishas  aisbes
anbin anbiz anbizs @b assbis aszbis
azbar  azbes asbes asba @b asebas
The Kronecker product has many of the properties which justify
the name “product”.

(@) The relation is associative:
3.3 Ax@BxCO)=(AxB)xC
(i) It is distributive:
B4 A+B)x(C+D)=AxC+AxD+BxC+BxD
3.5 (AxB)x({CxD)=A COx@B D)
(Gii) It is true that
3. 6) Arii=AxAX
B. 7 (AxB)x=AxxBk
As we will see, the Kronecker product provides a way to com-

bine two processors with unrelated inputs and to yield the desired
Markov matrix.

{2) T am indebted to Professor Rudolph Drenick for bringing this method to
my attention.
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Theorem 3. 2. If two processors P and Q whose input sets x and
y are unrelated are coupled in parallel (as illustrated in Fig. 3. 1),
then
(GAE.) R=[p&, y'Ix, y)]=PxQ
Proof. Since P and Q are coupled in parallel, we have
pX'|%, ¥, YD) =p('|x)
p(¥'ly, x, XD =p(’|y).
It then follows that

’ 4 ’ ! /
%/, v'|x, y)=2&: ¥, % ¥) _ p&X'|y, %, ¥) p(, %, ¥)
PO yIx 9 P, ¥) P, )

- p[x) p(y’I%, ¥) (X, )
Px, ¥)

=p(X'|x) p(y'[¥).
Theorem 3. 3. A Kronecker product of two Markov matrices is

also a Markov matrix.
Proof. Suppose that P={pi;] and Q=[qnx] are m by m’ and n by
n’ Markov matrices. The Kronecker product R is given by

R=(r:]=PxQ=( puQ P12Q -eee P Q
pi:lQ PizfQ ...... pun Q

PmiQ  pPmzQ-eeeee P Q
- . . ml n’
By definition, > piy=1 and kZ: gue=1.
i=1 =1
It will be shown that the sum of any row in R is equal to a unity.

For an arbitrary row of R,

m’n’ n’ n’ n’
23 Tst=Pi1 2, Qhk +DPi2 2 Quic +everee +Pin’ 2 Qnk
t=1 k=1 k=1 k=1

m’ n
=(Zp) (Z o)
=1
It is important to note that Theorem 3. 2 and Theorem 3. 3 is
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valid for those and only those pairs (x, y) whose joint probabilities
are not zero. Suppose that Z € X x Y consists of all pairs (%, y) for
which p(x, y)=0. The Kronecker product R contains as its rows all
combinations of input messages x and y. If Z #+ ¢, the rows of R in-
clude irrelevant pairs which correspond to elements of Z.

IV. Cases of Insufficiency of Conventional and Kronecker
Products

In this section we show that the conventional and the direct (=
Kronecker) multiplication of matrices are not sufficient to compute
the overall transition matrix. When two members receive and process
in parallel two related messages, the direct matrix multiplication
must be appropriately modified.

Consider the following three cases in which two input messages
are related when two processors are coupled in parallel:

(i) two members receive identical messages;

(ii) one member receives the message which is functionally re-
lated to the other message, for example, one a condensed
version of the other; and

(iii) two members receive partly overlapping messages.

First, suppose that two processors, characterized by Markov ma-
trices P and Q, are connected in parallel as shown by Fig. 4. 1. Pro-
cessors P and Q receive an identical input message, denoted by x

which ranges over a finite set of elements {ai, as, ----- , am}. P trans-
forms x into an output X’ € X’ ={c1, Cz, =+ , e} while Q produces
an output v/ € Y/ = {ds, ds, ------ , dns.

i

H

} ’
e X

L Q

R

Fig. 4. 1 Two Processors in Parallel:
Identical Input
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For convenience’ sake, we write P and Q as follows:
P=p&'[x)]=(pE |x=2a1)
p(x’|x=az)
p(X’|x=2m)
“. D
Q=0 |V])=p@’Ix=a1)
p(y’|x=az2)

p(Y’ | X =am)
Recall that our problem is: Given P and Q, to compute the matrix R
of conditional probabilities of x’ and y’ given x:
4. 2 R=p&, yvix=pE, y|x=a1)
p’, ¥/ [x=2a
P, ¥ |x=am)
By definition, to compute the direct product P x Q each component
of P is multiplied by the whole of Q so that it contains irrelevant
rows such as p(x/, y’'|x=a;, x=a;). Obviously, direct multiplication of
[px’|x=a1)] and [p(y’|x=a;)] for i # j is not permissible.
Secondly, it may happen that two input messages x and y which
are recognized as different sets are functionally related, i. e., y=5 (x).
For example, x represents detailed description of events while y sum-
marized data of x. Then, we cannot define the joint conditional pro-
babilities of x’ and y’ given x and y # f (X) since the marginal joint
prodadility p (x=ai, y # f(a:;)]=0 for any ai.

Fig. 4. 2 Two Processors in Parallel:
Functional Relation

Fig. 4. 2 is identical with Fig. 3. 2 except for the fact that y is a func-
tion of x.
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The third is the simplest case among what we call “mixed cou-
pling,” which is illustrated in Fig. 4. 3.@

x=t ’

t— L~

N

R

Fig. 4. 3 Mixed Coupling

Let x be an m-tuple, x=(x1, +-+--- ,Xm) and y be an n-tuple, y=(yy, -+~
---, ¥u). Then P and Q are said to be in mixed coupling if and only if
for some i and j (i=1, ------ ,m, and j=1, ----- ,n), Xi=V;. In a business

organization we may interpret P as a sales manager who receives
market information t and Q as a production manager who needs in-
ventory information v as well as t in deciding about production quan-
tity. It is not permissible for a market forecaster to send contradic-
tory messages to P and Q. That is, it should not happen that P re-
ceives a message t = a while Q receives a message t # a. Like the
above two cases, however, the direct product of P and Q inevitably
involves such multiplication as [p(x’|t=a)] by (pG’|v,t # a)].

It seems that there are at least two methods to solve this pro-
blem. One is to delete all the irrelevant rows after obtaining the
direct product product of P and Q. The other is to avoid unnecessary
multiplications which yield such irrelevant rows. We call the first
“filtering method”* and the second “prepartitioned Kronecker produ-
ct” or “modified Kronecker product,” which will be explained in the
following sections.

(3) This is also considered as a case of functional relation, x=f (y), viz when
y=(ti, vj), x=ti, X is a condensation of y, and therefore a many-to-one
mapping, a function.

(4) As for this method, see M. Tsuji “Evaluation Methods for Networks of
Information and Decision Systems,” Wasede Business Review No. 4, 1978.
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V. Computational Methods : Modified Kronecker Product

The idea of this method is to avoid unnecessary multiplications
of probabilities, resulting from the Kronecker multiplication of one
Markov matrix by the whole of the other matrix. For given two ma-
trices this will be avoided by first partitioning them into sub-matrices
according to indices of input messages and applying the Kronecker
product only to the pairs of such matrices with the same index. The
method will be explained for the cases introduced in the previous
section.

When two processors P and Q receive an identical input message
(as shown in Fig.4.1), P and Q are partitioned according to its com-

mon index,
G D P= P! Q= Q:
...... Px Q1
Pm Qm .....
where Pi=(p&'|x=a;)] and Qi=[P(y’'|x=ai)l.

Note that Pt and Q! are row vectors which represent, respectively the
conditional probabilities of x’ and y’ given x = ai, The combined
matrix resulted from P and Q, denoted by R, can be obtained by
applying row-wise Kronecker products as follows:

(5. 2) R=PRAQ=

Symbol ® means modified Kronecker product. This modification is
necessary to avoid products such as P! x QS for i # j.
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The case of functional relation between messages can be treated
similarly. A slight difference arises from the fact that processor Q
receives two input messages t and v as illustrated in Fig. 4. 3. Matrix
P is partitioned into m row vectors while matrix Q into m sub-mat-

rices, 1. e.,
(5. 3) P= P! Q= Q
..... P s 5 .
Pm Q.m...
where Pi=[P’|t=a;)] and Q= P(y’|t=ai, v=b)

P(y'|t=ai, v=bn)
The combined matrix R can be computed as given by (5.2.2). It is
important to note that the Kronecker product P! x Q! forms row vec-
tor by matrix multiplication.

We have a more general example of mixed coupling (partly
overlapping) when P and Q share an identical input message while
each receives an individual message, as illustrated by Fig. 5.1.
For instance, two members P and Q in a firm’s department of finance
specialize in stocks and bonds, respectively.

S R S

L Q

R

y={(t,v)

Fig. 5. 1 Example of Mixed Coupling

P receives his input from the analyst of stocks who sends him, as
the message u, information about future prices and yields of indivi-
dual stocks. Similarly, Q receives his input message v about future
bond prices from the inquirer of bonds. But, in addition, both receive
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information about some general characteristics of future economy.
The tasks of P and Q are to decide the dollar volume of funds to be
invested in stocks and in bonds, respectively.

Since P and Q receive more than one input message, both are
partitioned into m sub-matrices, i. e.,

G. D P= P! Q= Q
P;... 'Qm .
where Pi= P(X’|t=_ai,u=b1) and Qi= P(y’]t='fu, v=ci)
P(x’|t=a;,u=bx) P(y’|t=ai, v=Cx)

The combined matrix R, which represents conditional probabilities of
x’ and y’ given t, u and v, is created by augmenting matrix by ma-
trix Kronecker product Pt x Q! for i =1, ------ , m, as given by (5. 2).

VI Some More Complex Networks : Multiple Processors
in Parallel

We have shown that the ordinary and modified Kronecker pro-
ducts are applied to deal with the cases of two processors coupled in
parallel with one or two input messages. We will show in this section
that the same method can be used for the case of more than two
processors coupled in parallel.

There exist 16 kinds of network formulation when we have three
processors with three input messages coupled in parallel, as summari-
zed in Fig. 6. 1. The simplest and easiest formulation is the first one.
Since three inputs are unrelated, the combined matrix will be obtai-
ned by using the ordinary Kronecker multiplication twice. The Krone-
cker product is associative as discussed in section II, and therefore
the order of multiplication is not important, i. e.,

6. D (P1XP2) X Ps=P1x (P2 X P3).
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Case (2) and (3) in Fig. 6. 1 are simple extension of the cases with
two processors coupled in parallel. After combining P: with P: by
means of the modified Kronecker product, we apply the ordinary Kro-
necker multiplication to the combined matrix and Ps. The resultant
matrix R may be expressed by

6. 2) R=(P1®P2) x Ps.

Although case (16) looks very complicated, the solution is quite
straightforward. All three processors receive the same input messages
X1, X3, and Xs. Suppose that xi, Xz, and xs range over the indices from
1 to ni, 1 to ne, and 1 to ns respectively and the rows of Pi, Ps, and
P: are appropriately arranged in the same lexicographic order as (1,
1, 1), 1,2), , (1, 1, ng) +eeeee , G, G, k) e , (N1, 1, 1) eeeeee , (D1, N,
ns). Then, row vector wise Kronecker products give us the final re-
sultant matrix R,

(6. 3) R= Pttt x Pyltl x Pyl

..........................................

Pininans X Paninang x Parinang

where Ptk =[P(x’1|x1=ai, X2=Db;, X3=cx)]
Poiik=[P(x'2|x1=a3, X2=Dbj, X3=Cx)]
Piiik=[P(x’s|x1=ai, X2=bj, Xs=cx)]

We will examine case(4)in detail because it requires a new ope-

ration in addition to the modified Kronecker multiplication. When-
ever two processors receive two sets of input messages, one identical
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and the other different as P: and Ps, we have to rearrange the rows
of such matrices in an appropriate lexicographic order for later mul-
tiplication of matrices. Suppose again that Pi, Ps, and Ps are matrices
of orders n1 by n’i, n1 n: by n’: and n: ns by n’s, respectively. First,
we partition three matrices in the following way:

6.4 P.= P! Po= Pt P:= P3t
Py Pii X
- . i)znl P3n2
where Pii=(P&E/|x1=ai)]

PziE[ P(Xz’]X1=a.i, X2=h1) ]
P(x+ | x1=ai, X2=bn,)
Psi=

P(X3,|X2=b.j, X3=C1) ]
P(xs’ | x2=bj, Xs=Cas)

Secondly, we combine first two processors, P: and P: using the
modified Kronecker product,

(6. 5) PiXP:= Pt xPgt
Pyix Pot
. Pimi xPams
where Pt x Pel=({ P(xv/, xo |1_{1=ai, X2=b1)

P(Xl', X! [}il= ai, X2=bn2)
Note that Pif x Pa! is ordered in such a way that x: is fixed for a;

and x: changed over from bi to ba,. Since Psl is ordered in an incom-
patible way with this, P: @ P: has to be rearranged as follows:
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1) ) (3
X1 P1 1 Xi - 1 [ 1
P % N P
X3 P3 X:’i 1 - =
(4) . (5) (6)
X1 - P1_| X1 /_r"_l
X2 P, X2 /:i—‘ %E_.
X3 > P X3 I >
(7 (8) 9

| | I I | |
== o e
(10) (11) (12)

J 1  — g 1
(13) (14) (15)

=SS
(16)

6. 6)

where
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Fig. 6. 1 Some More Complex Networks: Three Processors

P:1QP2)=( (P: X P2t

(P1x P
P X P2

P1xP)i=( P/, Xz'])_(1=al, X2=bj)

P(X1',X2' |X1 =an,, X2 =bj)
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The final operation is taken to combine the above matrix with Ps,
which gives us the final result R,

6.7 R=(CP1QP)QP:=( (P1xP2)!xPs!

(P1xP2)22 X Pat2
where P1xP2)ixPei=( P(xv/, X7/, X8’ |x1=21, X3=Db;, Xs=c1)

P&, x4, X3/1X1=Q1, X2=bj, X3=Cn,)

P&/, X2/, X8’ |X1=ai1, Xa=bj, Xs=cCxk)

P(Xl', Xz', X3’ ]X1=a'n1,X2=bj, X3=C1)

P(Xl', Xz', X3'1X1=a:n1,X2=bj, X3=Cn3)

In any complex case where more than three processors are cou-
pled in parallel, we can apply the same procedure repeatedly until we
incorporate all the processors under consideration. First, we examine
two processors and check if their inputs are related or not. If related,
we use the modified Kronecker multiplication, and if not, the ordinary
Kronecker multiplication. The Kronecker multiplication combines
two processors and produces a single resultant matrix. Next, we
choose third processor and examine to see if the inputs to this and
the combined processors are related. If necessary, the rows of matrices
are arranged in an appropriate lexicographic order for the purpose
of later Kronecker multiplication. From these observations, we have
the following theorem :

Theorem 6.1: Multiple processors coupled in parallel can be
combined by the ordinary and modified Kronecker products.

VII. Series-Parallel Coupling and More Complicated Networks
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Firstly, suppose that two processors are coupled as shown in Figure
7. 1. Processor Q receives two kinds of input messages: one from the
outside and the other from processor P. How do we compute the
combined transition matrix which represents the conditional probabi-
lities of given x: and x: in this network ?

Figure. 7. 1 Two Processors : Two Inputs

We assume, for a while, that x1, X2, and y are not related. Alth-
ough processors P and Q are coupled in series, we cannot use the
conventional multiplication of product P+ Q because of the existence
of input message x:. To deal with this situation we may consider
that Q receives x: through a (fictitious) processor rather than from the
outside. This fictitious processor can be represented by a determinis-
tic and hence identity matrix with the dimension of x:. Thus, the
above network may be rewritten as shown in Figure 7. 2. Since pro-
cessors P and Ix: are coupled in parallel and their inputs are not re-
lated, the resultant matrix of P and Ix: are computed by using the
direct product,

X1

wr Q@ 2

X2
Ix.

Figure. 7. 2 Two Processors: A Fictitious Processor

(7. 1) PxIx2= P
P

“p
Obviously, the combined processor of P and Iz, is connected with
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processor Q in series. The ordinary matrix multiplication will give us
the overall transition matrix,
7. 2) R=PxI:)Q
In the case of related inputs, the modified Kronecker product will
be used to obtain the resultant matrix. A fictitious processor must be
inserted in an appropriate position as in the unrelated case. The
overall matrix will be provided as follows:

7.3 R=((PRL::)XQ

Secondly, we consider a network which is little more complex

Figure. 7. 3 Two Processors: Two Qutputs

than the previous one, as shown in Figure 7. 3. The only difference
is that processor P produces two kinds of input messages in this case.
Another fictitious processor, denoted by Ia, will be inserted next to
processor P, as illustrated in Figure 7. 4.

Figure. 7. 4 Two Processors: Two Fictitious Processors
If the input messages are independent with one another, the following
computation will be made to get the overall matrix,
7. L R=(PxIz) . xQ).
On the other hand, if the input messages are related, the modified
Kronecker product will be applied as follows:
7. 5) R=P®I:,) 1.QQ).
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As we have seen in the above examples, the necessity of adding
a fictitious processor arises whenever a processor receives at least
two kinds of input messages (one from the outside and the other
from another processor) or a processor sends two kinds of output
messages (one to the outside and the other to another processor).

To find relationships among processors in a network, the follo-
wing definition may be useful.

Definition 7. 1. For a given network of processors, binary matrix
B, called network matrix, is definied such that its elements

1 if processor P: sends messages to P,;

7.6 Xij=
@. 6 ’ {0 otherwise

for i=0, 1, 2, ------ , m, and j=1, 2, -..--- , m+1, where m is the number
of processors in the network. Po represents the part of environment
or the state of nature on which organization members make obser-
vations. Pw+: stands for the part of environment to which final ac-
tions of an organization are directed.

Thirdly, consider the network of processors which is represented
in Figure 7. 5. The network matrix for this complex network will be
obtained readily by following Definition 7. 1,

1110000000
0011000000
0000100000
0000110000
0000011000
@ v B=l 0000000100
0000000O0O0T11
0000000O0T10
0000000001
000000O0O0O01

Note that I's in rows of network matrix B imply the communication
flows originated from those processors and I's in colums mean the
flows directing to those processors.
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Figure. 7. 5 Series-Parallel Coupling

Where should we add fictitious processors to get the overall tran-
sition matrix by using the method developed in the previous sections ?
It seems that there are two ways to proceed:

(1) To choose at random any two processors in a network and to
augument the number of processors one at a time until we are
left with one processor.

(2) To start with the processors which receive messages from the
environment and to form the resultant matrix step by step by
following the arrowed direction.

Since both methods are essentially the same, we will develop only
the latter in this paper.

For the simplicity sake, we assume that input messages are not
related unless they are provided by the same processor. First, we
pick up those processors which receive input messages only from Po,
i. e, P1 and P: in this example. These processors are called processors
at the first stage. Because Ps receives input messages from Po as well
as Pi, a fictitious processor is necessary between Po and Ps, and is
denoted by lus in Figure 7. 6. Then, the processors at the first stage con-
sist of Pi, Iss and P: in this example. Using the method developed in
the previous section, the combined matrix will be obtained as

7.8 Ri=Pi1xTosx P2
Secondly, after the calculation at the first stage, we accumulate
the environment by adding the processors at the first stage to the
original environment. Then, as we have done at the previous stage,
select those processors which receive input messages from the new
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environment. They are P; and P: which form the processors at the
second stage. They do not include Ps because Ps receives input mes-
sages from P: as well as Ps which itself is a member at the second
stage. Therefore, a fictitious processor, denoted by I.s, is added bet-
ween P; and Ps;. Thus, we get the combined matrix at the second
stage,
7.9 R:=P:«XP3s) x 125

Since R: and R: are coupled in series, they are combined by using

the ordinary multiplication of product,

(7.10) Riz=Ri+ R

Ps Pr '_.l Po |___.

Figure. 7. 6 Series-Parallel Coupling : Four Stages

P

Po

Tos

P2 I2s

171
1

Similarly, by applying the multiplication of modified Kronecker prod-
uct, we have the combined matrices at the third and fourth stages,
(7.1 R:=P:®@PsRPs5,
Ri=Ps®I610QPs
Then, the overall transition matrix is readily given by
(7.12) Ri2se=R: R2 R: R4

Finally, we summarize the above procedure as “algorithm,” by
referring to binary number of a network matrix.
Step 1. Specify the current environment (Start with Po at the first
stage).
Step 2. Select those processors which have 1’s in row Po.
Step 3. Look at the columns of selected processors and check if there
is no 1 in other rows. Those processors which have 1’s in other
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rows receive input messages from other than the current en-
vironment. If not, go to Sept 5. If any, go to Sept 4.

Step 4. Add a fictitious processor between the current environment
and those processors which receive input messages from other
than the environment.

Step 5. Combine those processors which have 1’s in row of current
environment and, if any, fictitious processors, by using the
method developed in this paper.

Step 6. Accumulate the current environment by adding the combined
processors to the environment:

Step 7. Go back to step 1 if any processor is left uncombined and
stop otherwise.

VIII. Concluding Remarks

An organization consisting of decision makers, staffs, and data
processing and communication equipments is viewed as a network of
processors or functions. The gross benefit of a purposive organization
is a function of “events” (inputs from outside) and “actions” (outputs
to the outside). All other in-and outputs of the processors are consi-
dered internal messages.

An optimal network yields maxinal expected difference between
benefit and managerial costs of task performance, given the benefit
and cost functions and the probabilities of events. This expected dif-
ference is determined by the network’s overall transition matrix
stating the conditional probability of each (joint) action given each
event. This paper has shown that various types of connections bet-
ween processors require different kinds of computations:

(1) Coupling in series: use conventional multiplication of a sequence
of matrices;

(2) Coupling in parallel when all pairs of possible input messages
can occur: use Kronecker product of matrices;

(3) Coupling in parallel when not all pairs of possible input mes-
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sages can occur: use modified Kronecker product.

The tools developed in this paper will be tried out as to the com-
putational efficiency. They will also help to compare the statistical
“informativeness” for some pair of networks regardless of their user.
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