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Renormalized Solutions to Stochastic
Conservation Laws

Kazuo KOBAYASI and Dai NOBORIGUCHI

1 Introduction
In this paper we study the first order stochastic conservation law of the following type
du + div(A(u))dt = ®(u)dW(t) in QxQ, (1.1)
with the initial condition
u(0,-) =up(-) in 2 x D, (1.2)
and the formal boundary condition
“u=mwuy" on Qx 3. (1.3)

Here D C R? is a bounded domain with a Lipschitz boundary 9D, T > 0, Q = (0,T) x D,
Y = (0,7) x 0D and W is a cylindrical Wiener process defined on a stochastic ba-
sis (2, %, (%), P). More precisely, (.%;) is a complete right-continuous filtration and
W(t) = >, Br(t)er with (Bg)k>1 being mutually independent real-valued standard
Wiener processes relative to (.%;) and (ex)r>1 a complete orthonormal system in a sepa-
rable Hilbert space H (cf. [4] for example).

In the deterministic case of ® = 0, the problem has been studied by many authors,
e.g. see [2], [11], [13], [17], [18].

It is natural for applications in the wide variety of fields as physics, finance, biology,
medicine and others to add a stochastic forcing ®(u)dW (¢). These stochastic cases have
been investigated by Kim [12], Feng and Naualart [7], Debussche and Vovelle [5], Bauzet
et al. [1]. Also see [3], [6], [15], [20]. In particular, by using a notion of kinetic solu-
tion the authors [14] proved the uniqueness and the existence of kinetic solutions to the
initial-boundary problem for stochastic conservation laws. In the preceding paper [14]
the boundary defect measures m* were cut off or renormalized on each finite interval
(=N, N) of R, but the defect measure m was not. On the other hand, Noboriguchi
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[19] proved the equivalence between renormalized kinetic solutions and renormalized en-
tropy solutions. To prove this equivalence we have to cut off the defect measure m and
introduce renormalized kinetic defect measures m]j\ﬁ,

Our purpose of this paper is to present a definition of kinetic solutions with renor-
malized defect measures mﬁ and to prove a result of the uniqueness of such solutions.
The idea of the proof is almost the same as in [14], but a difficulty occurs in the course
of the proof of the L!'-contraction property. In [14] this property was proved by using the
decay condition on the defect measure m. However, we now have to proceed with the
weaker decay condition on the renormalized defect measures m3 (see (2.1)) than that on
the defect measure m in [14]. This difficulty will be overcome by showing a convergence
of the derivative of uy(€) = Em([0,7) x D x (=N, €)) instead of Em([0,T") x D x (&, 00))
(see [14, Lemma 3.3]).

We now give the precise assumptions in this paper:

(Hy) The flux function A: R — R is of class C? and its derivatives have at most
polynomial growth.

(Hy) For each z € L*(D), ®(z) : H — L*(D) is defined by ®(z2)er = gi(+, 2(+)), where
gr € C(D x R) satisfies the following conditions:

G*(2,8) = Y lgn(, O1* < LA+ ¢, (1.4)
k=1

> o, €) = gy, OF < L (Jo =yl + 16 — <[ (1€ = <) (1.5)

for every x,y € D, £, € R. Here, L is a constant and r is a continuous nonde-
creasing function on R with »(0) = 0.

(Hs) ug € L®(Q x D) and is %y @ B(D)-measurable. u, € L>®(Q x ¥) and {uy(t)} is
predictable, in the following sense: For every p € [1,00), the LP(9D)-valued process
{up(t)} is predictable with respect to the filtration (.%).

Note that by (1.4) one has
®: L*(D) — Lo(H; L*(D)), (1.6)
where Ly(H; L*(D)) denotes the set of Hilbert-Schmidt operators from H to L*(D).

2 Kinetic solution and generalized kinetic solution

We give the definition of solution in this section. We mainly follows the notations of
[5] and [11]. We choose a finite open cover {Uy, }i=o,.m of D and a partition of unity
{Ai}izo....a on D subordinated to {U,,} such that Uy, N9D =0, fori =1,..., M,

DY .= DNUy, = {x € Uy; (Aix)g > hy,(Aix)} and

ODY := 0D NUy, = {w € Uy,;; (Aix)q = hy,(Aix)},
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with a Lipschitz function hy, : R — R, where A; is an orthogonal matrix corresponding
to a change of coordinates of R? and ¢ stands for (y;,...,y41) if y € R%. For the sake
of clarity, we will drop the index i of \; and we will suppose that the matrix A; equals
to the identity. We also set Q* = (0,T) x D*, ¥* = (0,T) x 9D* and IT* = {z;2 € B*}.

To regularize functions that are defined on D* and R, let us consider a standard
mollifier p on R, that is, p is a nonnegative and even function in C2°((—1,1)) such that
Jop = 1. We set p*z) = I p(i)p(za — (Ly + 1)) for 2 = (21,...,24) with the
Lipschitz constant Ly of hy on II*. Moreover we denote by 1/ a standard mollifier on Re.
For &,6 > 0 we set p2(z) = Lp*(£) and () = 20 ().

=d

Definition 2.1 (Kinetic measure). A set {my; N > 0} of maps my from Q to M; ([0, 7) x
D x (=N, N)), the set of non-negative finite measures over [0,T) x D x (=N, N), is said
to be a kinetic measure if

(i) for each N > 0, my is weak measurable,
(i) if Ay =[0,T) x Dx {£ eR; N — 1< |¢| < N} then

lim Emy (Ay) =0, (2.1)
N—oo
(iii) for all ¢ € Cy(D x (—N, N)), the process

l— ¢($v£) dmN(Svl‘vg) (22)
[0,t]x Dx(—N,N)

is predictable.

Definition 2.2 (Kinetic solution). Let uy and w, satisfy (Hj). A measurable function
u: 2 x Q — Ris said to be a kinetic solution of (1.1)-(1.3) if {u(t)} is predictable, for
all p > 1 there exists a constant C), > 0 such that for a.e. t € [0, 7],

[l o @xy < Cos (2.3)

there exist kinetic measures {m%} and, for any N > 0, there exist increasing mj, €
LY(Q x % x (=N, N)) and decreasing my € L'(Q x ¥ x (=N, N)) such that {m%(t)} is
predictable, m3 (N — 1) = my(=N + 1) = 0 for sufficiently large N > 0 and f := 1,¢,
o= fiy — 1= —1,< satisfy: for all p € C=([0,T) x D x (=N, N)),

N N N
/Q/Nfi((‘)t—l—a(g)~V)(pdﬁdxdt—i—/D/Nfgw(())dfdx+MN/E/Nfigpd§dadt
= _;/OTAgﬂx,u)cp(@tu)dmdﬁﬁt)—;‘/QG2(J:7U)8§<,0(x,t7u)da:dt

N
+/ 8Eg0dmﬁ+// Oepmy, dédodt a.s., (2.4)
[0,T)x Dx(~N,N) sJ-N

Where G/(g) = Al(g), MN = HlaX,NgggN |a(£)| In (24)7 fg = 1u0>5, fij = ]_ub>£7 f9 =
fP—1and f* = f° —1.
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For the sake of the proof of the existence of a kinetic solution, it is useful to introduce
the notion of generalized kinetic solution. We start with the definition of kinetic function.

Definition 2.3 (Kinetic function). Let (X, x) be a finite measure space. We say that
a measurable function f, : X x R — [0,1] is a kinetic function if there exists a Young
measure v on X such that for every p > 1,

[ [ 1€r n©dntz) < +o0 (25
x JR
and for p-a.e. z € X, for all £ € R,

f1(2,8) = v2(€, +00).

Here we recall that a Young measure v on X is a weak measurable mapping z — v, from
X into the space of probability measures on R. For a kinetic function f; : X xR — [0, 1]
we denote the conjugate function by f_ = fi — 1. Observe that if f; = 1,.¢, then it is
a kinetic function with the corresponding Young measure v = d,—¢, the Dirac measure
centered at u, and its conjugate f_ = —1,<.

We introduce the definition of generalized kinetic solution.

Definition 2.4 (Generalized kinetic solution). Let ug and w, satisfy (Hz). A measurable
function fi : Q@ x Q x R — [0, 1] is said to be a generalized kinetic solution of (1.1)-(1.3)
if the following conditions (i)-(iii) hold:

(i) {f.(t)} is predictable.

(ii) fy is a kinetic function with the associated Young measure v on ) x @) such that
for all p > 1, there exists C,, > 0 satisfying that for a.e. t € [0, 7],

]E/D/R|£ vy a(€)dz < . (2.6)

(iii) There exist kinetic measures {m%} and, for any N > 0, there exist increasing
my € LY x ¥ x (=N, N)) and decreasing my € L*( x ¥ x (=N, N)) such that
{m=%(t)} is predictable, m (N — 1) = my(—N +1) = 0 for sufficiently large N > 0
and for all p € C>([0,T) x D x (=N, N)),

/Q/]]vai(at—ka(f)~V)cpdfd:}:dt—k/[)/ifigo(O)dfdvaMN/E/IJVVfiSOdngdt

_ _g /O ! /D /_ J; o v (€)dudBi(t) — % /Q /_ ]]Vv G2 Do dvo (€)dudt

N
+ / Depdma; + / / Deomy, dédodt a.s. (2.7)
[0,T)xDx(—N,N) Y J-N
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The following proposition due to [5, Proposition 8] shows that any generalized kinetic
solution admits left and right limits at every ¢ € [0, 7.

Lemma 2.5. Let f, be a generalized kinetic solution of (1.1)-(1.3). Then f, admits
almost surely left and right limits at all points t* € [0,T] in the following sense: For all
€ [0, 77 there exist some kinetic functions fii on Q@ x D xR such that P-a.s.,

folt £e)pdéde — [ fripdida

DxR DxR

as € — +0 for all p € C1(D x R). Moreover, almost surely, {3+ = {7~ for all t* € [0,T)
except some countable set.

In what follows, for a generalized kinetic solution f,, we will define ff by fjf(t*) =
fi™ for t* € [0, 7).

In order to prove uniqueness we need to extend test functions in (2.7) to the class of
C>=([0,T) x R? x R). To this end we introduce the cutoff functions as follows.

13
§>:[ (0n(C+ N =) = y(C — N+ m)}dC, 7> 0.

Proposition 2.6. Let f, be a generalized kinetic solution of (1.1)-(1.3). Let f2 be any
weak* limit of {f2°} as e = +0 in L®(X* x R) for any element \ of the partition of
unity {\;} on D, where {1 is denoted by

iyg(tvxa f) - /)\ fi(t,fﬂ,f)P?(y - .’E)dy,
D
and let fu = S M N\ 2

(i) For a.s. there exists a full set I of ¥ such that f.(t,x,€) is non-increasing in & for
all (t,z) € L.

(ii) For any ¢ € C®°(RY x R), for any t € [0,T) and for any n > 0,

_/ /N ‘I’”fi(t)q’dﬁd“/t/ /N W, f2a(€) - Vpdédrds
// "fi(pdgdl+/ /aD/ n) frpdédods

=S [ ] vapina@anns

k>1

—f/ // Q/nangQdys,x({f)dxds+/ U, 0c0dm;
[0,t]x Dx(—N,N)

—f/// U6+ N =) = g€ — N + 1) ) G v o (€)drds

+f (al€+ N =) = 0y(6 = N+ 1))y as. (28)
[0,§xDx(=N,N)
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(iii) P-a.s., for a.e. (t,x) € X, the weak* limits —a(€) - n(z)fy(t,z,€) coincide with
My fo(t,z,&) + Oemy (t,2,€) for a.e. £ € (=N, N).

Proof. The result can be proved by a minor change of the proof of [14, Proposition
2.7]. O

3 Uniqueness

In this section we prove the main result of the paper.

Theorem 3.1 (L'-contraction property). Let fi+, i = 1,2, be generalized kinetic so-
lutions to (1. ) (L3)with data (f,, f2}) = (Lu,g>¢: Lu,,>¢), respectively. Under the as-
sumptions (Hy)-(Hz) we have for a.e. t €[0,7)

_E//fH Vo (1) < E//f1+f2_ ME/ /dD/f1+ E(s), (3.1)

where M = max{|a(§)] : [€] < [[urpll sy V U2l e sy -

Corollary 3.2 (Uniqueness, Reduction). Under the same assumptions as in the above
theorem, if f+ is a generalized solution to (1.1)-(1.3)with initial datum 1,,~¢ and boundary
datum 1,,~¢, then there exists a kinetic solution u to (1.1)-(1.3)with initial datum uy and
boundary datum wy, such that fi(t,x,§) = lywz)se a.s. for a.e. (t,2,§). Moreover, for
a.e. t€[0,T),

t
E [ur (8) = ua ()l o1 py < Elluro = uzollpyp) + ME/O [urp(s) = u2p(s)ll 1 opy ds, (3.2)

where u;, i = 1,2, are the corresponding kinetic solutions to (1.1)-(1.3)with data (w; o, w;p)-

To prove the uniqueness theorem we define the non-decreasing functions pxn(€) and
py(§) on R by

MN(E) = ]EmN([OvT) x D x (_N> g))? (33)
w6 =B [ dva(@)dadt, (3.4)
Qx(—00,)

where {my} and v are a kinetic measure and a Young measure satisfying (2.5), respec-
tively. Let Dy be the sets of £ € (N —1, N) such that both of i and p, are differentiable
at —€ and £. We also set D = UY_,Dy. It is easy to see that Dy and D are full sets of
(N —1,N) and (0, 00), respectively.

Lemma 3.3. It holds true:
(i) Let Ny € N. If a € Dy, then for all N € N with N > Ny, as § [ 0

[ (e E @) dunl) = (T

/_ I £ @) dil) — (14 @ (T,
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(ii) There exists a sequence {ay} with ay € Dy such that

liminf py(£ay) =0 and liminfayul, (tay) = 0 for p > 0. (3.5)
N—o0 N—o0

Proof. We prove the lemma only in the case of py. The case of p, will be done in a
similar fashion. Let a € Dy,. Since pyn(§ F a) = pn(Fa) + py(Fa)E + o(§) for each
N € N with N > N, it follows that

[ us(E ) dun(e) = - / il F a) ds(6) = () - / o(€)(€) dt.

)

Besides, the last term of the right hand on the above equality tends to 0 as § — +0.
To see this take an arbitrary ¢ > 0. There exists dy > 0 such that if || < Jy then
[o(§)] <el]. T 0 < § < &, then

’/_20(5)1”3(5) de| < f/i Eus(e)] de <e.

Thus we obtain the claim of (i).
Next, let us assume that there exists a number k& € N such that for any N > k,

pin (&) > 7 § € Dy.

Since the function £ — py(§) is non-decreasing, for all N € N with N > k
N 1
pnN) = ix(N =) = [ (@ dg = ¢ >0

N-1

This contradictions the limit (2.1). Thus for each k£ € N, there exist a number Ny > k
and a; € Dy, such that py (ar) < 1. O

Proposition 3.4 (Doubling variable). Let f; +, i = 1,2, be generalized kinetic solutions
o (1.1)-(L.3)with data (f),, f2,). Then, fort € [0,T), fore,d >0, for N € N and for
any element X\ of the partition of unity {\;} on D, we have

E / @)y — 2V — OfF (1,2, ) f5 (., OdédCdudy
Dy xDyx(—an,an)?
<-E / @)y — 2)bs € — O 2 (2, €) 2 (y, O)dEdCdudy
Dy xDyx(—an,an)?

Na)p(y — 2)s(€ = ) (—al€) - n(z))

Xfl)\,+<57 x, g)f2,—(57 Y, Q)dgdCdU(I)dde
+0 I+ I+ Iy, (3.6)

“E /
(0,t)xO0D2x Dy x(—an,an)?
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where {ay} is a sequence of Dy satisfying (3.5),

L=-E / Fra(5,2,€) for— (5,2, O)(a(€) — a(0))
(0,)x DX XDy x(—an,an)?
Voo y — o)A () 0s(€ — ¢)dedCdadyds,
L= F / Fui(5,2,8) fo (5,5, C)al€)
(0,t)x D2 x Dy x (—an,an)?
V(@) p2 (y — 2)¥s(€ — ¢)déd(dadyds,
_ 1 Ny _
I= iE /( o @ (e O

<Y g, &) = guly, O dvl,(€) @ dv?,(Q)dwdyds,

k=1
limsup Iy = Owith Iy defined by (3.8) below.
N—oo
Here mé{ﬁ v, i = 1,2, are the kinetic measures and the Young measures associated

with the generalized kinetic solutions f; , f any weak* limits of { ff‘f} as ¢’ — 0 in
L>*(¥* x R), and C' a constant which is independent of ¢, §, N.

Proof. We will follow the proof of [5, Proposition 9]. Let ¢; € C®(RY x R¢) and ¢y €
C2(RY x R¢). Define the cutoff function as

v, (6) = /_io (%7(7’ +an) — y(r — aN)>dr.

Set,

Fo(t) Z / /D A / ()gk 102w, (€)dwdBy(s),

Gl / /D/ €) fr+(s,2,€)a(€) - Vopidédads
[ ] wieneicta, e
L N
+/0 /aD% /N U, (6)(—al€) - n(x)) [y (s, 2, ) pldedo (x)ds

/ (f)aﬁ%dmN (s,7,6)
0,t]x D2 x(—N,N)

] [ (e b ax) i~ am) AR @ taas
-/ (6(6 + ax) = (€ — an) ) phdm}y (s..).
[0,t]x D2 x(—N,N)
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On the other hand we set

S [ mma it

/ /D y / O o (5,2, Q)a(C) - VypadCyds
" /O /D / (OGO
+ / t /8 5 / Z () (—a(Q) - n(y)) fo_ (5,9, C)padCdor(y)ds

-/ W,(Q) 0o’ (5,9.€)
[0,6]x Dy x (—N,N)
1 t N
s/ y [ (04 ) = 0c = an)) a2, (s
-/ ((C + an) — (€ — an) )y (5,.).
[0,t]Xx Dy x(—N,N)

By (2.8) we have

/D/ (), (Do deds = Fuy (t) + Gy (1) /D/ (O, hdeda

nd
/D/ O (O padCy = Fy_(8) + Go,_ /D/ OF_padcdy

Set (2, €,9,0) = 1(, E)pa(y, €) and Wy(£,C) = Ty(E)W,(C). Using 1t6's formula. for
Fy +(t)F5_(t), integration by parts for functions of finite variation (see [21, p.6]) for

<G1+ /D A / o stoldfda:)( 1)+ /D / Z%,(C).fg,_mdcdy),

and integration by parts for functions of finite variation and continuous martingales (see

[21, p.152]) for
P {GQ_ /D/ SOS ¢2d<dy}

a.
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we obtain

E /D A /D / / JE O (D)5 (o dgdCdudy
:—]E/m/D / / W& O fS_ardEdCdady
—ZE / /D A / y / / (6. Q) g2 AL, (€) @ dv?, () dedyds

—E//D/// A& Q) F () o (5)(a() - Vi + alC) - V)

xa M dédCdxdyds

—fE / /D X /D y / / (& Q) fr.4+(8)0:a*G3dv2  (C)dEdadyds
—IE/ /D/D/ / (6O f () () (=a() - m)

xa dgd¢drdo(y)ds
E A
i /Ot ]xDy x(—N,N) /DA/ 1(&6) f1+ )0cax dgdxdmN (8,9,¢)

—QE/O /D;/Dy/_N/_N‘P"(g Foe () [#(C + )

- )} Gl dv? (C)dédudyds

/Ot><D>< —N,N) /DA/ (O (s) ¢W(<+GN)

— (¢ — aN)] a)‘dﬁdxdm?\’f (s,y,¢)

s / t /D A /D y / : / "y (6,C) fo ()60 G (€)dCdadyds
K / /w /D y / / 70)(5) for(5)(~a(€) - m)

x o déd(do (x)dyds
E A
+ /OMDAX( N /D/ 2(& O 5 (s)0eadCdydmy” (s, z,€)

o f [, L eon o

— (€ — )} G2 dv},(€)d¢drdyds

/Ot xDAx(—N,N) /Dy/ wn(§+aN)
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(€ — an)| @ ddydm}y* (5,2, €), (3.7)
where o = a(x,£,y,()A(z). Noting that C*(R] x Re) ® C*(RY x R¢) is dense in
C(RY x Re x RY x R¢) and that m' and v, i = 1,2, vanish for large € thanks to (2.1)
and (2.5), by an approxunatlon argument we can take a(a:, £y,¢) = p(y—x)s(E =) in
(3.7). In this case note that a* = () p2 (y — 2)¢s(€ — ) and p2(y —x) = 0 on D) x 9D,

Using the identity (0¢ + O )1s = 0, we compute the fourth and sixth terms on the right
hand of (3.7) as follows.

—2E / /D A /D / / o(6.0) fus (8)0c0* G2, (O)deddyds
- iE /0 / % / y / ) / (6.0 1 (5)0c0 G2, (O deddyds
- —;E//D / [ @ onte + am) — vt an]

X fr4(8)a’G3dv2 (Q)dédudyds
1 t N N
B [ ve oG @i, sy

and

e [ e O ()0 dedrdn (5,0,
LI,
E/[Ot]nyx( N,N) /DA/ &+ an)

71/}77 aN)}f1 +( )Oé dﬁdxdmN (3 Y, C)
—-E )\d 1,— ded 2,—
/[Ot]xD x(—N,N) /DA/ Vsa (§)dzdmy (s, y, ()

<-E / / / (€ + an)
[0,t]xDyx(—N,N) J D)
— (€ - aN>}f1+< Jadgdadm?; (s,9,).
Similarly, the ninth and eleventh terms can be computed. We then calculate the terms

produced by the truncation function W,, namely, the terms containing the functions

Yn(§ £ an) or ¥, (¢ £ an).

—E / /D i /D / / ) 14 ()1y (¢ £ an)Gia dv? (C)dédudyds
< CE/O /]y /D /N/an(gia]v) (1+¢P) a*dv?,(¢)dédzdyds
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<C’/1/) (¢ +an) (1 +[¢) / /dusy )dyds
e / (€ £ an) (14 C2) daya(C) — C(L+ ad) e (ax)

as 1 — +0 by virtue of Lemma 3.3, where pu,2 is defined by (3.4). A similar argument
yields that all the other terms containing the function v, on the right hand of (3.7) are
estimated from above as n — +0 by

Iy = C (4o (an) + (o) (1 @) (an) + pa(an))) . (39

which is convergent to 0 as N — oo by Lemma 3.3. Consequently, letting  — +0 in
(3.7) and then using the identity (V, + V,)p2 = 0 in the third term on the right hand
we obtain (3.6) with Iy defined by (3.8). O

Proof of Theorem 3.1. Set for t > 0 and N > 0,

L (e)) E/D/D/ [ M@ty = ale =)

% fuos (b 2,€) fo_(t,y, C)dgdCddy
+1E/D/ D) fu (t,2,6) fo (1,0, €)dEd

It is easy to see that lim. s o7 (£,0) = 0 uniformly in N. Also set

géE//aD/D// M@)oy — )5l — C)

x(—a(§) - n(z)) fi (8,2, 8) fo, (5,9, C)dEdCdo (x)dyds
+E/ /dD)‘ /_aN (96))]?1’+(S,x,£)f2’_(3,x,{)dgda(x)ds

Since there exists a sequence {g,} | 0 such that fy_ * p;\n converges as n. — o0 to B‘_
in L>®(X* x R)-weak*, we see that lim., 5 07n5(g,,0) = 0 for each N > 0. Therefore, it
follows from Proposition 3.4 that

_E/ /“N )‘(x)fi*(t’x’g)f;,l(tyx,f)dfdx
prJ—ay
E /D A /_ @ (e e
_E/ / Az)(=a(§) - n(2) [ (s, 2,8 f3_(s,2,§)dédo(x)ds
ap™ J—ay

+I+ I + Iy + In + 1y (€0, 0) + 1 (€ns 8) + T (En, 6).

On the domain U,, a similar argument also deduces the same inequality as above, but
the term on the boundary dD* vanishes. By virtue of Lemma 2.6 (iii) it holds that
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a(€) -n(z)f3_ =a(§) n(z)fo_ ac on[0,T) x D* x (—N,N), and hence

ZE L] M@ nan 0. 07 (s it

:E/ /BD»/N(_G( fg_Z)\f L dedo(a
_E / /w / (2))fr.s fordedo (x)ds

Here recall that f; , = Zi:o by flf+. Thus, summing over ¢ = 0,..., M yields

_E/ : fi+(t’$7§)f;7(tar’£)dfdx
D

—an

< E/ - f1 +(37 £)f27(x,§)d£d$

—an

E /d ) / (@) Fos (5. 2,€) Fo_ (5, 2, €)dédor () ds

+ Z (I + L+ Is + In + 0y (e, 8) + 0 (e, 8) + (e, 0)). (3.9)
i=0

Now note that

51,?302]2 ~E / / [ N 0 a() fiy fo_dédzds = 0. (3.10)

In a similar way as in the proof of [5, Theorem 11] we obtain
|L] < Coe™t, || <C (207 +1(3)) . (3.11)

Finally, we compute the boundary term on the right hand side of (3.9) as follows:

a / h (—a-m)fi i fodE

—an

:—/ Q’b(—a'n)ﬁ#ﬁ,fdf—/ h Q’b(—a'n)ﬁ&fzfdf

—an

_ /aN (—a-n)fiifo_dE

uy,pVu2p
ugp o u1,pVu2,b aN a7
< - frOemydE + M, / d¢ — Oy fo,-dE
—ay U p uy pVug p
<My [ Aot (3.12)
R

Now we take § = 6;1/ s, Letting €, — 0 and then letting N — oo, we immediately deduce
(3.1) from (3.9), (3.10), (3.11) and (3.12). O



44

Renormalized Solutions to Stochastic Conservation Laws (KOBAYASI, NOBORIGUCHI)

Proof of Corollary 3.2. Let f, be a generalized solution to (1.1)-(1.3) with the initial
datum 1,,-¢ and the boundary datum 1,,-¢. It follows from Theorem 3.1 and Lemma
2.5 that for t € [0,7),

By Fubini’s theorem, for ¢ € [0,7) there is a set E, of full measure in 2 x D such that,
for (w,z) € By, fi(w,t,2,€) € {0,1} for a.e. £ € R. Since fE(t,2,€) = v4,(€, 00) with a
Young measure v on Q x Q, there exists u(w, t,2) € R such that f(w,t,x,&) = Lo ta)>e
for a.e. (w,x,€&). This gives that u(w,t,z) = fR(ff(w,t,x,f) — 1¢c0)d€ and hence u is
predictable. Moreover, (2.3) is a direct consequence of (2.6). Consequently, we see that
u is a kinetic solution to (1.1)-(1.3). O
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