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1 Introduction

Motivated by two notions of a reaction system ([3, 4, 5]) and a multiset

([1]), in this paper we will introduce computing devices called reaction au-

tomata and show that they are computationally universal by proving that

any recursively enumerable language is accepted by a reaction automaton.

There are two points to be remarked: On one hand, the notion of reaction

automata may be taken as a kind of an extension of reaction systems in the

sense that our reaction automata deal with multisets rather than (usual) sets

as reaction systems do, in the sequence of computational process. On the

other hand, however, reaction automata are introduced as computing devices

that accept the sets of string objects (i.e., languages over an alphabet). This

unique feature, i.e., a string accepting device based on multiset computing in

the biochemical reaction model can be realized by introducing a simple idea

of feeding an input to the device from the environment.

This paper is organized as follows. After preparing the basic notions and

notations in Section 2, we introduce the main notion of reaction automata

together with one language example in Section 3. Moreover we present our

main results: reaction automata are computationally universal. We also

consider some subclasses of reaction automata from a viewpoint of the com-

plexity theory in Section 4, and investigate the language classes accepted

by those subclasses in comparison to the Chomsky hierarchy. Finally, con-

cluding remarks as well as future research topics are discussed in Section

5.

2 Preliminaries

We assume that the reader is familiar with the basic notions of formal lan-

guage theory. For unexplained details, refer to [9].
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We use the basic notations regarding multisets that follow [2, 10]. A

multiset over an alphabet V is a mapping µ : V → N, where N is the set

of non-negative integers and for each a ∈ V , µ(a) represents the number of

occurrences of a in the multiset µ. The set of all multisets over V is denoted

by V #, including the empty multiset denoted by µλ, where µλ(a) = 0 for

all a ∈ V . We often identify a multiset µ with its string representation

wµ = a
µ(a1)
1 · · · aµ(an)n or any permutation of wµ. A usual set U ⊆ V is

regarded as a multiset µU such that µU(a) = 1 if a is in U and µU(a) = 0

otherwise. In particular, for each symbol a ∈ V , a multiset µ{a} is often

denoted by a itself.

For two multisets µ1, µ2 over V , we define one relation and three opera-

tions as follows:

Inclusion : µ1 ⊆ µ2 iff µ1(a) ≤ µ2(a),
Sum : (µ1 + µ2)(a) = µ1(a) + µ2(a),
Intersection : (µ1 ∩ µ2)(a) = min{µ1(a), µ2(a)},
Difference : (µ1 − µ2)(a) = µ1(a)− µ2(a),

(for the case µ2 ⊆ µ1 only),

for each a ∈ V . The sum for a family of multisets M = {µi}i∈I is denoted

by
∑

i∈I µi. For a multiset µ and n ∈ N, µn is defined by µn(a) = n · µ(a)
for each a ∈ V . The weight of a multiset µ is |µ| =

∑
a∈V µ(a).

3 Reaction Automata

Inspired by the works of reaction systems, we have introduced the notion

of reaction automata in [7] by extending sets in each reaction to multisets.

Here, we start by recalling basic notions concerning reaction automata.

Definition 1. For a set S, a reaction in S is a 3-tuple a = (Ra, Ia, Pa) of

finite multisets, such that Ra, Pa ∈ S#, Ia ⊆ S and Ra ∩ Ia = ∅.

The multisets Ra and Pa are called the reactant of a and the product of

a, respectively, while the set Ia is called the inhibitor of a. These notations

are extended to a multiset of reactions as follows: For a set of reactions A

and a multiset α over A,

Rα =
∑
a∈A

Rα(a)
a , Iα =

∪
a⊆α

Ia, Pα =
∑
a∈A

Pα(a)
a .

In this paper, we consider two ways for applying reactions, i.e., sequen-

tial manner and maximally parallel manner, while only the latter manner is

concerned in the previous papers.
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Definition 2. Let A be a set of reactions in S and α ∈ A# be a multiset of

reactions over A. Then, for a finite multiset T ∈ S#, we say that

(1) α is enabled by T if Rα ⊆ T and Iα ∩ T = ∅,
(2) α is enabled by T in sequential manner if α is enabled by T with |α| = 1.

(3) α is enabled by T in maximally parallel manner if there is no β ∈ A#

such that α ⊂ β, and α and β are enabled by T .

(4) By Ensq
A (T ) and Enmp

A (T ), we denote the sets of all multisets of reactions

α ∈ A# which are enabled by T in sequential manner and in maximally

parallel manner, respectively.

(5) The results of A on T , denoted by ResXA (T ) with X ∈ {sq,mp}, is defined
as follows:

ResXA (T ) = {T −Rα + Pα |α ∈ EnX
A (T )},

We note that ResXA (T ) = {T} if EnX
A (T ) = ∅. Thus, if no multiset of

reactions α ∈ A# is enabled by T , then T remains unchanged.

We are now in a position to introduce the notion of reaction automata.

Definition 3. A reaction automaton (RA)A is a 5-tupleA = (S,Σ, A,D0, f),

where

• S is a finite set, called the background set of A,

• Σ(⊆ S) is called the input alphabet of A,

• A is a finite set of reactions in S,

• D0 ∈ S# is an initial multiset,

• f ∈ S is a special symbol which indicates the final state.

Definition 4. Let A = (S,Σ, A,D0, f) be an RA, w = a1 · · · an ∈ Σ∗ and

X ∈ {sq,mp}. An interactive process in A with input w in X manner is an

infinite sequence π = D0, . . . , Di, . . ., where{
Di+1 ∈ ResXA (ai+1 +Di) (for 0 ≤ i ≤ n− 1), and
Di+1 ∈ ResXA (Di) (for all i ≥ n).

In order to represent an interactive process π, we also use the “arrow nota-

tion” for π : D0 →a1 D1 →a2 D2 →a3 · · · →an−1 Dn−1 →an Dn → Dn+1 →
· · · . By IPX(A, w) we denote the set of all interactive processes in A with

input w in X manner.

Recall that in [8], if it is allowed that ai = λ for some several 1 ≤ i ≤ n,

for an input string w = a1 · · · an, an interactive process is said to be with

λ-input mode. By IP λ
X(A, w) we denote the set of all interactive processes

in A with λ-input mode in X manner for the input w.

3
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For an interactive process π in A with input w, if EnX
A (Dm) = ∅ for some

m ≥ |w|, then we have that ResA(Dm) = {Dm} and Dm = Dm+1 = · · · . In

this case, considering the smallest m, we say that π converges on Dm (at the

m-th step). If an interactive process π converges on Dm, then Dm is called

the converging state of π and each Di of π is omitted for i ≥ m+ 1.

Definition 5. Let A = (S,Σ, A,D0, f) be an RA and X = {sq,mp}. Then,
the set of accepting interactive processes is defined as follows:

AIPX(A, w) = {π ∈ IPX(A, w) | π converges on Dm at the m-th step for

some m ≥ |w| and f ⊆ Dm},
AIP λ

X(A, w) = {π ∈ IP λ
X(A, w) | π converges on Dm at the m-th step for

some m ≥ |w| and f ⊆ Dm}.

The language accepted by A is defined as follows:

LX(A) = {w ∈ Σ∗ |AIPX(A, w) ̸= ∅},
Lλ
X(A) = {w ∈ Σ∗ |AIP λ

X(A, w) ̸= ∅}.

Example 1. Let us consider a reaction automaton A = (S,Σ, A,D0, f)

defined as follows:

S = {p0, p1, a, b, a′, f} with Σ = {a, b},
A = {a0, a1, a2, a3, a4}, where

a0 = (p0, aba
′, f), a1 = (p0a, b, p0a

′), a2 = (p0a
′b, ∅, p1),

a3 = (p1a
′b, a, p1), a4 = (p1, aba

′, f),

D0 = p0.

Figure 1 illustrates the whole view of possible interactive processes in A with

inputs anbn for n ≥ 0. Let w = aaabbb ∈ Σ∗ be the input string and consider

an interactive process π in sequential manner such that

π : p0 →a p0a
′ →a p0a

′2 →a p0a
′3 →b p1a

′2 →b p1a
′ →b p1 → f.

It can be easily seen that π ∈ IPsq(A, w) and w ∈ Lsq(A). We may see that

Lsq(A) = {anbn |n ≥ 0} which is a context-free language.

We note the following remark: this interactive process can be also per-

formed by A in maximally parallel manner, i.e. π ∈ IPmp(A, w). Moreover,

it holds that Lmp(A) = {anbn |n ≥ 0}.

We shall show the equivalence of the accepting powers between reaction

machines and Turing machines. For the details of proof, we refer [6], [7].
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Figure 1: A graphic illustration of interactive processes for accepting strings
in the language L = {anbn |n ≥ 0} in terms of a reaction automaton A.

Theorem 1. ([6], [7]) The following relations hold :

(1) Every recursively enumerable language is accepted by a reaction automa-

ton in maximally parallel manner.

(2) Every recursively enumerable language is accepted by a reaction automa-

ton in sequential manner with λ-input mode.

On the other hand, the equivalence may not hold for reaction automata

in sequential manner with ordinary input mode.

Theorem 2. ([6]) There exists a recursively enumerable language which can-

not be accepted by any reaction automaton in sequential manner.

4 Space Complexity Classes

We now consider space complexity issues of reaction automata. That is, we

introduce some subclasses of reaction automata and investigate the relation-

ships between classes of languages accepted by those subclasses of automata

and language classes in the Chomsky hierarchy.

Let A be an RA and f be a function defined on N. otivated by the notion

of a workspace for a phrase-structure grammar ([9]), we define: for w ∈ L(A)

with n = |w|, and for π in AIPX(A, w),

WS(w, π) = max{|Di| | Di appears in π }.

Further, the workspace of A for w is defined as:

WS(w,A) = min{WS(w, π) | π ∈ AIPX(A, w) }.

Definition 6. Let s be a function defined on N and X = {sq,mp}.
(1) An RA A is s(n)-bounded if for any w ∈ L(A) with n = |w|, WS(w,A)

5
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RE = RAmp = RA
λ
sq

RAsq

LRAsq

LRAmp

REG=

PR(RAsq)=

CF

CS

=CRAmp CRAsq

= ERAmp= ERA
λ
sq

Figure 2: The diagram of the relation between the language classes regarding
RA. A proper inclusion relation is denoted by a solid line.

is bounded by s(n).

(2) If a function s(n) is a constant k (linear, exponential), then A is termed

constant-bounded (resp. linear-bounded, exponential-bounded).

(3) The class of languages accepted by constant-bounded RAs (linear-bounded,

exponential-bounded, arbitrary RAs) in X manner is denoted by CRAX

(resp. LRAX , ERAX , RAX).

(4) The class of languages accepted by constant-bounded RAs (linear-bounded,

exponential-bounded, arbitrary RAs) with λ-input mode in X manner is de-

noted by CRAλ
X (resp. LRAλ

X , ERAλ
X , RAλ

X).

Let us denote by REG (CF , CS,RE) the class of regular (resp. context-

free, context-sensitive, recursively enumerable) languages.

For reaction automata and their space-bounded subclasses, the following

results have been shown in [6], [7], [8].

Proposition 1. ([6], [7], [8]) The following relations hold :

(1) REG = CRAmp = CRAsq ⊂ LRAsq ⊂ LRAmp ⊂ ERAmp ⊂ RAmp.

(2) CF , LRAmp and RAsq are incomparable one another.

(3) RE = RAmp = PR(LRAmp) = PR(RAsq).

(4) CS = ERAmp = ERAλ
sq.

5 Concluding Remarks

Based on the formal framework presented in a series of papers [3, 4, 5], we

have introduced the notion of reaction automata and investigated the lan-

guage accepting powers of the automata. Roughly, a reaction automaton
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may be characterized in terms of three key words as follows : a language

accepting device based on the multiset rewriting in the two ways of rule ap-

plications, maximally parallel manner and sequential manner. Specifically,

we have shown that reaction automata can perform the Turing universal

computation in both ways of rule applications.

Moreover, we investigate reaction automata with a focus on the formal

language theoretic properties of subclasses of reaction automata. Figure

2 summarizes the relationship among the classes of languages accepted by

various types of RAs, TMs and the Chomsky hierarchy. Specifically, we have

shown the followings:

• a language L is accepted by an exponential-bounded RA in maximally

parallel manner if and only if L is a context-sensitive language,

• a language L is accepted by an exponential-bounded RA with λ-input

mode in sequential manner if and only if L is a context-sensitive lan-

guage,

• any recursively enumerable language can be expressed as a homomor-

phic image of a language in RAsq,

• the three classes of languages CF , LRAmp and RAsq are incomparable

one another.

Many subjects remain to be investigated along the research direction

suggested by reaction automata in this paper. Most of all, it is of importance

to explore the relationship between RAs and other computing devices that

are based on the multiset rewriting, such as a variety of P-systems and their

variants ([2]). It would be also useful to develop a method for simulating a

variety of chemical reactions in the real world by the use of the framework

based on reaction automata.
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