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Introduction

The knots, links and spatial graphs are one circle, disjoint circles and graphs
which are embedded in 3-dimensional space R3 or S3, respectively. The
projections are the images of them obtained by the natural projection. The
projection has some information of the original knot, link or spatial graph.
We investigate some information from the projection.

In Chapter 1, we introduce the notion of pseudo diagram. A pseudo
diagram of a spatial graph is a spatial graph projection on the 2-sphere
with over/under information at some of the double points. We introduce
the trivializing (resp. knotting) number of a spatial graph projection by
using its pseudo diagrams as the minimum number of the crossings whose
over/under information lead the triviality (resp. nontriviality) of the spatial
graph. We determine the set of non-negative integers which can be realized by
the trivializing (resp. knotting) numbers of knot and link projections, and
characterize the projections which have a specific value of the trivializing
(resp. knotting) number.

In Chapter 2, we show that a finite set of specific knotted double-handcuff
graphs is shown to be minimal among those which produce all projections of
knotted double-handcuff graphs. In addition, we show that a double-handcuff
graph has no strongly almost trivial spatial embeddings.

In Chapter 3, we present new classes of graphs which have a strongly
almost trivial embedding and that of graphs which have no strongly almost
trivial embeddings. We show that both a property that a graph has a strongly
almost trivial embedding and a property that a graph has no strongly almost
trivial embeddings are not inherited by minors.

Throughout this paper we work in the piecewise linear category. Let G
be a finite graph. We consider G as a topological space in the usual way. We
give other definitions in each chapter.
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Chapter 1

Pseudo diagrams of knots, links
and spatial graphs

1.1 Introduction

Let G be a finite graph which does not have degree zero or one vertices. Let
f be an embedding of G into the 3-sphere S3. Then f is called a spatial em-
bedding of G and the image G = f(G) is called a spatial graph. In particular,
f(G) is called a knot if G is homeomorphic to a circle and an r-component
link if G is homeomorphic to disjoint r circles. In this paper, we say that
two spatial graphs G1 and G2 are said to be ambient isotopic if there exists
an orientation-preserving self-homeomorphism h on S3 such that h(G1) = G2.
A graph G is said to be planar if there exists an embedding of G into the
2-sphere S2. A spatial graph G is said to be trivial (or unknotted) if G is
ambient isotopic to a graph in S2 where we consider S2 as a subspace of S3.
Thus only planar graphs have trivial spatial graphs. We consider only planar
graphs from now on. It is known in [23] that a trivial spatial graph of G is
unique up to ambient isotopy in S3.

A continuous map ϕ : G → S2 is called a regular projection, or simply a
projection, of G if the multiple points of ϕ are only finitely many transversal
double points away from the vertices. Then P = ϕ(G) is also called a
projection. A diagram D is a projection P with over/under information
at the every double point. Then we say that D is obtained from P and P is
a projection of D. A diagram D uniquely represents a spatial graph up to
ambient isotopy. Let G be a spatial graph represented by D and G ′ a spatial
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graph ambient isotopic to G. Then we also say that P is a projection of
G ′. A double point with over/under information and a double point without
over/under information are called a crossing and a pre-crossing, respectively.
Thus a diagram has crossings and has no pre-crossings, and a projection has
pre-crossings and has no crossings.

A projection P is said to be trivial if any diagram obtained from P repre-
sents a trivial spatial graph. On the other hand, a projection P is said to be
knotted [38] if any diagram obtained from P represents a nontrivial spatial
graph. Moreover, the following definitions for a projection P are known. A
projection P is said to be identifiable [16] if every diagram obtained from
P yields a unique labeled spatial graph, and completely distinguishable [26]
if any two different diagrams obtained from P represent different labeled
spatial graphs. Nikkuni showed in [25, Theorem 1.2] that a projection P is
identifiable if and only if P is trivial.

Let G be a spatial graph and P a projection of G. Then we ask the
following question.

Question 1.1.1. Can we determine from P whether the original spatial
graph G is trivial or knotted?

If P is neither trivial nor knotted, then the (non)triviality of G cannot be
determined from P . For example, let P be a projection of a circle with 3 pre-
crossings as illustrated in Fig. 1.1. Then we have 23 diagrams obtained from
P . Two diagrams represent a nontrivial knot and six diagrams represent a
trivial knot.

Figure 1.1: Projection and diagrams obtained from it.

It is well known in knot theory that for any projection P of disjoint circles
there exists a diagram D obtained from P such that D represents a trivial
link. Namely P never admits a knotted projection. However it is known in
[38] that there exists a knotted projection of a planar graph. For example,
let G be a spatial graph of the octahedron graph and P a projection of G
as illustrated in Fig. 1.2. Then we can see that any diagram obtained from
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P contains a diagram of a Hopf link. Namely P is knotted. However there
exists a projection of G which is neither trivial nor knotted. In general, we
have the following proposition.

octahedron graph knotted projectionG

Figure 1.2: Octahedron graph and a knotted projection of it.

Proposition 1.1.2. For any spatial graph G of a graph G, there exists a
projection P of G such that P is neither trivial nor knotted.

We give a proof of Proposition 1.1.2 in section 1.2.
Then it is natural to ask the following question.

Question 1.1.3. Let G be a spatial graph and P a projection of G. Which
pre-crossings of P and the over/under information lead the (non)triviality of
G?

Now we introduce the notion of a pseudo diagram as a generalization of
a projection and a diagram. Let P be a projection of a graph G. A pseudo
diagram Q of G is a projection P with over/under information at some of the
pre-crossings. Then we say that Q is obtained from P and P is a projection
of Q. Thus a pseudo diagram Q has crossings and pre-crossings. Here we
allow the possibility that a pseudo diagram has no crossings or has no pre-
crossings, that is, a pseudo diagram is possibly a projection or a diagram.
We denote the number of crossings and pre-crossings of Q by c(Q) and p(Q),
respectively. For a pseudo diagram Q, by giving over/under information to
some of the pre-crossings, we can get another (possibly same) pseudo diagram
Q′. Then we say that Q′ is obtained from Q.

We say that a pseudo diagram Q is trivial if for any diagram obtained
from Q represents a trivial spatial graph. On the other hand, we say that Q is
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knotted if any diagram obtained from Q represents a nontrivial spatial graph.
For example, in Fig. 1.3, a pseudo diagram (a) is trivial, (b) is knotted, and
(c) is neither trivial nor knotted.

(a) (b) (c)

Figure 1.3: Pseudo diagrams.

Let P be a projection of a graph G. Then we define the trivializing number
(resp. knotting number) of P by the minimum of c(Q), where Q varies over
all trivial (resp. knotted) pseudo diagrams obtained from P , and denote it by
tr(P ) (resp. kn(P )). Note that there does not exist a knotted (resp. trivial)
pseudo diagram obtained from P if and only if tr(P ) = 0 (resp. kn(P ) = 0),
namely P is trivial (resp. knotted). In this case we define that kn(P ) = ∞
(resp. tr(P ) = ∞). Note that for any graph G there exists a projection P
of G with kn(P ) = ∞. For example, P is an image of a planar embedding
of G. We also note that for a certain graph G there exists a projection P of
G with tr(P ) = ∞ as in Fig. 1.2.

We remark here that the observation of DNA knots was an opportunity of
this research, namely we cannot determine over/under information at some
of the crossings in some photos of DNA knots. DNA knots barely become
visual objects by examining the protein-coated one by electromicroscope.
However there are still cases in which it is hard to confirm the over/under
information of some of the crossings. If we can know the (non-)triviality of
a knot without checking every over/under information of crossings, then it
may give a reasonable way to detect the (non-)triviality of a DNA knot. In
addition, it is known that there exists an enzyme, called topoisomerase, which
plays a role of crossing change. The research of pseudo diagrams may provide
an effective method to change a given DNA knot to a trivial (nontrivial) one.
See [8, 4, 24] on DNA knots.

We start from two questions on the trivializing number and the knotting
number of projections of a circle.
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Question 1.1.4. For any non-negative integer n, does there exist a projection
P of a circle with tr(P ) = n?

Question 1.1.5. For any non-negative integer n, does there exist a projection
P of a circle with kn(P ) = n?

We have the following theorem and propositions as answers to Questions
1.1.4 and 1.1.5.

Theorem 1.1.6. For any projection P of a circle, the trivializing number of
P is even.

Proposition 1.1.7. For any non-negative even number n, there exists a
projection P of a circle with tr(P ) = n.

Proposition 1.1.8. There does not exist a projection of a circle whose knot-
ting number is less than three. For any positive integer n ≥ 3, there exists a
projection P of a circle with kn(P ) = n.

We give proofs of Theorem 1.1.6 and Proposition 1.1.7 in section 1.3
and a proof of Proposition 1.1.8 in section 1.4. Moreover we see from the
following proposition that there are no relations between trivializing number
and knotting number in general.

Proposition 1.1.9. For any non-negative even number n and any positive
integer l ≥ 3, there exists a projection P of a circle with tr(P ) = n and
kn(P ) = l.

We give a proof of Proposition 1.1.9 in section 1.5. In addition, we have
the following theorems.

Theorem 1.1.10. Let P be a projection of disjoint circles. Then tr(P ) = 2 if
and only if P is obtained from one of the projections as illustrated in Fig. 1.4
(a) and (b) where m is a positive integer by possibly adding trivial circles and
by a series of replacing a sub-arc of P as illustrated in Fig. 1.4 (c) where a
trivial circle means an embedding of a circle into S2 which does not intersect
any other component of the projection.

We see that for any projection P of disjoint circles, tr(P ) ≤ p(P ) by
the definitions. We also see that for any projection P with kn(P ) 6= ∞,
kn(P ) ≤ p(P ) by the definitions. Then we have the following theorems.
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m pre-crossings

}

(a) (c)(b)

Figure 1.4:

Theorem 1.1.11. Let P be a projection of a circle with at least one pre-
crossing. Then it holds that tr(P ) ≤ p(P )−1. The equality holds if and only
if P is one of the projections as illustrated in Fig. 1.5 where m is a positive
odd integer.

m pre-crossings

}

Figure 1.5:

Theorem 1.1.12. Let P be a projection of n disjoint circles. Let
C1, C2, . . . , Cn be the image of the circles of P . Then tr(P ) = p(P ) if
and only if each of C1, C2, . . . , Cn has no self-pre-crossings where a
self-pre-crossing is a pre-crossing whose preimage is contained in a circle.

Theorem 1.1.13. Let P be a projection of disjoint circles. Then kn(P ) =
p(P ) if and only if P is obtained from one of the projections as illustrated in
Fig. 1.6 by possibly adding trivial circles.

We give proofs of Theorems 1.1.10, 1.1.11 and 1.1.12 in section 1.3 and a
proof of Theorem 1.1.13 in section 1.4.
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(a) (b) (c)

Figure 1.6: Projections P of a circle with kn(P ) = p(P ).

Let Q be a pseudo diagram of a circle. By giving an orientation to the
circle, we can regard Q as a singular knot, namely an immersion of a circle
into S3 whose multiple points are only finitely many transversal double points
of arcs spanning a sufficiently small flat plane. We consider a singular knot up
to ambient isotopy preserving the flatness at each double point. A singular
knot K is said to be trivial if K is deformed by ambient isotopy preserving
the flatness at each double point to a singular knot in S2. See [31] for details.
We can also regard a singular knot as a spatial 4-valent graph up to rigid
vertex isotopy, see [18, 46]. Then we have the following.

Theorem 1.1.14. Let Q be a trivial pseudo diagram of a circle. Let KQ be
a singular knot obtained from Q by giving an orientation to the circle. Then
KQ is trivial.

We give a proof of Theorem 1.1.14 in section 1.3. In section 1.6 we give
an application of the trivializing number and the knotting number.

1.2 Fundamental property

First of all, we prove Proposition 1.1.2.

Proof of Proposition 1.1.2. First we show that G has a projection which is
not knotted. For any spatial graph G we can transform G into a trivial
spatial graph by crossing changes and ambient isotopies. Thus any spatial
graph can be expressed as a band sum of a trivial spatial graph and Hopf
links, see Fig. 1.7. See [34, 47, 41] for details. Then we can get a diagram D
of G which is identical with a planar embedding of G except the Hopf bands.
Let P be the projection of D. Then P is also a projection of a band sum of
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crossing

change

ambient

isotopy
Hopf band

sum

Figure 1.7:

a trivial spatial graph and trivial 2-component links which is itself a trivial
spatial graph. Therefore P is not knotted.

If P is not trivial then P is neither trivial nor knotted. Suppose that P is
trivial. Let l be a simple arc in P which belongs to the image of a cycle of P .
Let P ′ be a projection obtained from P by applying the local deformation to
l as illustrated in Fig. 1.8. Then P ′ is also a projection of G which is neither
trivial nor knotted.

Figure 1.8:

In the rest of this section, we show fundamental properties of the triv-
ializing number and the knotting number which are needed later. Let P
be a projection of a circle. We say that a simple closed curve S in S2 is a
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decomposing circle of P if the intersection of P and S is the set of just two
transversal double points. See Fig. 1.9.

Proposition 1.2.1. Let P be a projection of a circle and S a decomposing
circle of P . Let {q1, q2} = P ∩ S. Let B1 and B2 be the disks such that
B1∪B2 = S2 and B1∩B2 = S. Let l be one of the two arcs on S joining q1 and
q2. Let P1 = (P ∩B1)∪ l and P2 = (P ∩B2)∪ l. Then tr(P ) = tr(P1)+tr(P2)
and kn(P ) =min{kn(P1), kn(P2)}.

S

B1

P1 P2

B2
l

P

Figure 1.9: Decomposing circle.

Proof. Let Q be a pseudo diagram obtained from P . Let Q1 (resp. Q2) be
the pseudo diagram obtained from P1 (resp. P2) corresponding to Q. Then
Q is trivial if and only if both Q1 and Q2 are trivial. This implies that
tr(P ) = tr(P1) + tr(P2). We also see that Q is knotted if and only if either
Q1 or Q2 is knotted. This implies that kn(P ) =min{kn(P1), kn(P2)}.

The following proposition is shown in [6, 29, 36, 37] as a characterization
of trivializing number zero projections of disjoint circles.

Proposition 1.2.2. [6, 29, 36, 37] Let P be a projection of disjoint circles.
Then tr(P ) = 0 if and only if P is obtained from the projection in Fig. 1.10
(a) by possibly adding trivial circles and by a series of replacing a sub-arc of
P as illustrated in Fig. 1.4 (c).

As an example we illustrate a projection of two circles whose trivializing
number equals to zero in Fig. 1.10 (b).

Let P be a projection of disjoint circles. A pre-crossing p of a projection
P is said to be nugatory if the number of connected components of P − p
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(a) (b)

Figure 1.10: Projections P of a circle with tr(P ) = 0.

is greater than that of P . A crossing c of a diagram D obtained from a
projection P is also said to be nugatory if the pre-crossing corresponding to
c is nugatory in P . Then we can rephrase that P is a projection of disjoint
circles with tr(P ) = 0 if and only if all pre-crossings of P are nugatory. A
projection P (resp. a diagram D) is said to be reduced if P (resp. D) has
no nugatory pre-crossings (resp. no nugatory crossings). Then the following
propositions hold.

Proposition 1.2.3. Let P be a projection of disjoint circles with nugatory
pre-crossings and tr(P ) = k. Let p be a nugatory pre-crossing of P . Let Q
be a trivial pseudo diagram obtained from P with k crossings. Then p is a
pre-crossing of Q.

Proof. Suppose that p is a crossing in Q. By forgetting the over/under
information of p, we can get another trivial pseudo diagram. Then we have
tr(P ) < k. This is a contradiction.

Similarly we have the following proposition.

Proposition 1.2.4. Let P be a projection of disjoint circles with nugatory
pre-crossings and kn(P ) = k. Let p be a nugatory pre-crossing of P . Let Q
be a knotted pseudo diagram obtained from P with k crossings. Then p is a
pre-crossing of Q. ¤

1.3 Trivializing number

In this section, we study trivializing number. First we prove Theorem 1.1.6
and Proposition 1.1.7.
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For a pseudo diagram of a circle, we recall a chord diagram of pre-crossings
to prove Theorem 1.1.6. Let Q be a pseudo diagram of a circle with n pre-
crossings. A chord diagram of Q is a circle with n chords marked on it by
dashed line segment, where the preimage of each pre-crossing is connected
by a chord. We denote it by CDQ. For example, let Q be a pseudo diagram
(a) in Fig. 1.11. Then a chord diagram (b) in Fig. 1.11 is CDQ. Note that
for each chord of a chord diagram of a projection, each of the two arcs in
the circle bounded by the end points of the chord contains even number of
end points of the other chords. Moreover, a realization problem of a chord
diagram by a projection is known in [11].

(a) (b) (c)

Figure 1.11: Chord diagram.

To prove Theorem 1.1.6, we regard a pseudo diagram of a circle as a
singular knot by giving an orientation to the circle and consider the Vassiliev
invariant. Let v be a knot invariant which takes values in an additive group.
We can extend v to singular knots by the Vassiliev skein relation:

v(K×) = v(K+) − v(K−)

where K×, K+ and K− are singular knots which are identical except inside
the depicted regions as illustrated in Fig. 1.12. Then v is called a Vassiliev
invariant of order k if v(K) = 0 for any singular knot K with more than
k double points and there exists a singular knot J with exactly k double
points such that v(J) 6= 0. See [44, 2, 3, 31] for Vassiliev invariants. Then
the following lemmas hold.

Lemma 1.3.1. Let Q be a trivial pseudo diagram of a circle with p(Q) > 0.
Let KQ be a singular knot obtained from Q by giving an orientation to the
circle. Then v(KQ) = 0 where v is a Vassiliev invariant of oriented knots.

Proof. It is clear from the definitions of Vassiliev invariants.

12



KKK

Figure 1.12:

Lemma 1.3.2. Let Q be a pseudo diagram of a circle with two pre-crossings
such that CDQ is (c) in Fig. 1.11. Then Q is not trivial.

Proof. Let KQ be a singular knot obtained from Q. Let a2 be the second
coefficient of the Conway polynomial which is extended to singular knots as
above. It is well known that a2(KQ) = 1. Thus Q is not trivial by Lemma
1.3.1.

We have the following lemma by applying Lemma 1.3.2.

Lemma 1.3.3. Let Q be a trivial pseudo diagram of a circle. Then CDQ

contains no sub-chord diagrams as in Fig. 1.11 (c).

Proof. Suppose that Q contains sub-chord diagrams as in Fig. 1.11 (c). Let
Q′ be a pseudo diagram obtained from Q such that CDQ′ is (c) in Fig. 1.11.
By Lemma 1.3.2, a diagram representing nontrivial knot is obtained from
Q′, hence from Q. This implies that Q is not trivial. This completes the
proof.

Proof of Theorem 1.1.6. Let CD be a sub-chord diagram of CDP with the
maximum number of chords over all sub-chord diagrams of CDP which do
not contain (c) in Fig. 1.11. We show that a trivial pseudo diagram whose
chord diagram is CD is obtained from P . Let p1 be a pre-crossing of P which
corresponds to an outer most chord c1 in CD and l1 the sub-arc on P which
corresponds to the outer most arc. By giving over/under information to each
pre-crossing on l1 so that l1 goes over the others as in Fig. 1.13, we obtain
a pseudo diagram Q1 from P . Next, let p2 be a pre-crossing of Q1 which
corresponds to an outer most chord c2 under forgetting c1 in CD, and l2 the
sub-arc on Q1 which corresponds to the outer most arc. By giving over/under
information to each pre-crossing on l2 so that l2 goes over the others except
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l1, we obtain a pseudo diagram Q2 from Q1. By repeating this procedure
until all of the chords are forgotten, we obtain a pseudo diagram Q from P .
For any diagram D obtained from Q, first we can vanish the crossings on l1
and the crossing corresponding to p1, next we can vanish the crossings on l2
and the crossing corresponding to p2, similarly we can vanish all crossings of
D. Therefore, we see that Q is trivial. Moreover c(Q) is even because each li
has no self-crossings by the maximality of chords in CD. Since tr(P ) = c(Q)
by Lemma 1.3.3, tr(P ) is even.

p p

ll

CD

l

p

Figure 1.13:

Proof of Proposition 1.1.7. The projection of Fig. 1.5 where m = n + 1 has
trivializing number n.

Then we have the following corollary of Theorem 1.1.6 for projections of
n disjoint circles.

Corollary 1.3.4. Let P be a projection of n disjoint circles. Let
C1, C2, . . . , Cn be the images of the circles of P . Then the following formula
holds.

tr(P ) =
∑

1≤i<j≤n

](Ci ∩ Cj) +
n∑

k=1

tr(Ck)

where ]A is the cardinality of a set A. Therefore, tr(P ) is even.

Proof. First we show that

tr(P ) ≥
∑

1≤i<j≤n

](Ci ∩ Cj) +
n∑

k=1

tr(Ck).
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Let Q be a trivial pseudo diagram obtained from P . Suppose that there
exists a pre-crossing in Ci ∩ Cj(i 6= j) such that it is also a pre-crossing of
Q. Then a diagram whose sub-diagram represents a 2-component link with
nonzero linking number is obtained from Q, namely Q is not trivial. Thus
each of the pre-crossings in Ci ∩ Cj is a crossing of Q. Note that ](Ci ∩ Cj)
is even. Moreover each Ck(1 ≤ k ≤ n) has to be a trivial pseudo diagram in
Q. This implies that the above inequality holds.

Next we construct a trivial pseudo diagram obtained from P with∑
1≤i<j≤n ](Ci ∩ Cj) +

∑n
k=1 tr(Ck) crossings. We give over/under

information to the pre-crossings in Ci ∩ Cj so that Ci goes over Cj for i > j
and some pre-crossings of Ck so that a pseudo diagram obtained from Ck is
trivial and has tr(Ck) crossings. Then it is easy to see that the pseudo
diagram obtained from P by the above way is trivial. This completes the
proof.

In general, we have the following proposition.

Proposition 1.3.5. Let P a projection of a graph. Then tr(P ) 6= 1.

Proof. Suppose that there exists a projection P with tr(P ) = 1. Let Q be a
trivial pseudo diagram obtained from P with only one crossing c. Let Q′ be
the pseudo diagram obtained from Q by changing the over/under information
of c. We show that Q′ is trivial. Let D be a diagram obtained from Q′. The
mirror image diagram of D is obtained from Q. Since the mirror image of a
trivial spatial graph is also trivial, D represents a trivial spatial graph. Hence
Q′ is trivial. Thus this implies that tr(P ) = 0. This is a contradiction.

However, for a certain graph G there exists a projection P of G with
tr(P ) = 3. For example, let G be a graph which is homeomorphic to the dis-
joint union of a circle and a θ-curve as illustrated in the left side of Fig. 1.14.
Then there exists a projection P of G with tr(P ) = 3, see the right side of
Fig. 1.14. Moreover for each n ≥ 2 there exists a projection Pn of G with
tr(Pn) = n, see Fig. 1.15.

Next we prove Theorem 1.1.10 that characterizes trivializing number two
projections of disjoint circles.

Proof of Theorem 1.1.10. The ‘if’ part is obvious. Let P be a projection of n
disjoint circles with tr(P ) = 2. Let C1, C2, . . . , Cn be the image of the circles
in P . Suppose that there exist pre-crossings in Ci ∩ Cj(i 6= j). In this case,
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G P

Figure 1.14:

n : odd n : even

Figure 1.15:

such pre-crossings must be crossings in a trivial pseudo diagram by the same
reason as we said in the proof of Corollary 1.3.4. Since tr(P ) = 2, such pre-
crossings belong to the intersection of only one pair of Ci and Cj and each
Ci is a trivial projection by Corollary 1.3.4. Thus P is a projection obtained
from (b) in Fig. 1.4 by adding trivial circles and by a series of replacing a
sub-arc of P as illustrated in Fig. 1.4 (c).

Suppose that Ci ∩ Cj = ∅(i 6= j). Since tr(P ) = 2, by Theorem 1.1.6
and Corollary 1.3.4, only one of C1, C2, . . . , Cn is not a trivial projection.
Then by the proof of Theorem 1.1.6 we see that CDP is obtained from one
of the chord diagrams (a) or (b) in Fig. 1.16 by adding chords which do not
cross the other chords. These chord diagrams (a) or (b) in Fig. 1.16 are
realized by the projections (a) in Fig. 1.4. It follows from [11, Theorem 1]
that the realizations of these chord diagrams are unique up to mirror image
and ambient isotopy. Adding chords which do not cross the other chords
corresponds to a series of replacing a sub-arc as illustrated in Fig. 1.4 (c).
This completes the proof.

We use the following procedure which is called a descending procedure
to prove Theorem 1.1.11 and Proposition 1.1.8. Let P be a projection of n
disjoint circles. Let C1, C2, . . . , Cn be the image of the circles in P . We give an
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(a) (b)

}

odd

}
even

Figure 1.16:

arbitrary orientation and an arbitrary base point which is not a pre-crossing
to each Ci. We trace C1, C2, . . . , Cn in order and from their base points along
their orientation. We give the over/under information to each pre-crossing of
P so that every crossing may be first traced as an over-crossing as illustrated
in Fig. 1.17. Then the diagram obtained from P by the procedure as above
represents a trivial link.

1
2

Figure 1.17: A descending procedure.

Proof of Theorem 1.1.11. First we show that tr(P ) ≤ p(P ) − 1. Let P be a
projection of a circle. We give an orientation to the circle. Let b1 be a base
point on P which is not a pre-crossing. Let p be the pre-crossing of P which
first appears when we trace P from b1 along the orientation. Let b2 be a base
point which is slightly before it than p with respect to the orientation.

Let D1 (resp. D2) be the diagram obtained from P by the descending
procedure from a base point b1 (resp. b2) along the orientation. Here each of
D1 and D2 represents a trivial knot. The difference of D1 and D2 is only the
over/under information of p. Let Q be the pseudo diagram obtained from
D1 (or D2) by forgetting the over/under information of p. Then Q is trivial.
This implies that tr(P ) ≤ p(P ) − 1.
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Next we show that the equality holds if and only if P is one of the projec-
tions as illustrated in Fig. 1.5. The ‘if’ part is obvious. Let P be a projection
of a circle with tr(P ) = p(P )− 1. Then CDP is a chord diagram in Fig. 1.18
since there exists no pair of parallel chords by the proof of Theorem 1.1.6.
Note that CDP has odd chords. These chord diagrams are realized by the
projections as illustrated in Fig. 1.5 where m is a positive odd integer. It
follows from [11, Theorem 1] that the realizations of these chord diagrams
are unique up to mirror image and ambient isotopy. This completes the
proof.

Figure 1.18:

Proof of Theorem 1.1.12. This is an immediate consequence of Theorem
1.1.11 and Corollary 1.3.4.

Note that similar results on the unknotting number for knot diagrams
and link diagrams as Theorem 1.1.11 and Theorem 1.1.12 are known in [42,
Theorem 1.4, Theorem 1.5].

In the rest of this section, we prove Theorem 1.1.14. To accomplish this,
we use the following Theorem 1.3.6. Let D be a diagram of a circle and
K a knot represented by D. Then a disk E in S3 is called a crossing disk
for a crossing of D if E intersects K only in its interior exactly twice with
zero algebraic intersection number and these two intersections correspond
the crossing.

Theorem 1.3.6. [1] Let K be a trivial knot and D a diagram of K. Let
c1, c2, . . . , cn be crossings of D and E1, E2, . . . , En crossing disks correspond-
ing to c1, c2, . . . , cn respectively. Suppose that for any nonempty subset C ⊂
{c1, c2, . . . , cn} the diagram obtained from D by crossing changes at C repre-
sents a trivial knot. Then K bounds an embedded disk in the complement of
∂E1 ∪ ∂E2,∪ · · · ∪ ∂En.
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Proof of Theorem 1.1.14. Let p1, p2, . . . , pn be all of the pre-crossings of Q.
Let D be a diagram representing a trivial knot K obtained from Q. Let
c1, c2, . . . , cn be the crossings of D corresponding to p1, p2, . . . , pn respectively.
Let E1, E2, . . . , En be crossing disks corresponding to c1, c2, . . . , cn respec-
tively. For any nonempty subset C of {c1, c2, . . . , cn}, a diagram obtained
from D by crossing changes at C represents a trivial knot by the definition
of a trivial pseudo diagram. By Theorem 1.3.6, there exists an embedded
disk H whose boundary is K in the complement of ∂E1 ∪ ∂E2,∪ · · · ∪ ∂En.
By taking sufficiently small sub-disk of Ei if necessary, we may assume that
each H ∩ Ei(i = 1, 2, . . . , n) is a simple arc. By contracting each simple arc
to a point, we obtain a singular disk bounding KQ. Here, we stick two disks
at each double point of KQ as illustrated in Fig. 1.19. Then we have a disk
containing KQ. Therefore, KQ is trivial.

H

Figure 1.19:

1.4 Knotting number

In this section, we study knotting number and give proofs of Proposition
1.1.8 and Theorem 1.1.13.

Proof of Proposition 1.1.8. First we show that there does not exist a projec-
tion of a circle whose knotting number is less than three. Suppose that there
exists a projection P of a circle with kn(P ) = 2. Let Q be a knotted pseudo
diagram obtained from P with two crossings c1 and c2. Let p1 and p2 be the
pre-crossings of P which correspond to c1 and c2 respectively.

Without loss of generality, we may assume that the position of p1 and
p2 (resp. c1 and c2) on P (resp. Q) is (a) or (b) (resp. (c) or (d)) as in
Fig. 1.20. We give an orientation and a base point to the image of the circle
as illustrated in Fig. 1.20. In case (a) (resp. (b)), let D1 (resp. D2) be the
diagram obtained from P by the descending procedure from a base point b.
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Here under any of the over/under information of c1 and c2, each of D1 and D2

represents a trivial knot. This is a contradiction. In case (c) (resp. (d)), let
D3 (resp. D4) be the diagram obtained from Q by the descending procedure
from a base point b1 (resp. b2). Then each of D3 and D4 represents a trivial
knot. This is a contradiction.

c1

b1
c2 c1 c2

(c)

(a)

(d)

(b)

b2

p1 p2

b

p1
p2

b

Figure 1.20:

Similarly we can show that there do not exist projections of a circle whose
knotting number is less than two.

For n ≥ 3, the projection of Fig. 1.5 where m = 2n − 3 has knotting
number n. This completes the proof.

Note that there exists a projection P of two circles with kn(P ) = 2 as (c)
in Fig. 1.6. In general, we have the following proposition which is similar to
Proposition 1.3.5.

Proposition 1.4.1. Let P be a projection of a graph G. Then kn(P ) 6= 1.

Proof. Since the mirror image of a nontrivial spatial graph is also nontrivial,
we can prove it in the same way as the proof of Proposition 1.3.5.

We prepare some known theorems to prove Theorem 1.1.13. Let D be a
diagram of disjoint circles. We give an orientation to the image of each circle
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in D. Then each crossing has a sign as illustrated in Fig. 1.21. A diagram D
is said to be positive if all crossings of D are positive. Then the following is
known.

Figure 1.21:

Theorem 1.4.2. [6, 43, 29, 7] Let D be a positive diagram of disjoint circles
with a crossing which is not nugatory. Then D represents a nontrivial link.

A diagram D is said to be almost positive if all crossings except one
crossing of D are positive. The following theorem is shown in [33, 30] for
knots and in [30] for links.

Theorem 1.4.3. [33, 30] Let D be an almost positive diagram representing
a trivial link. Then D can be obtained from one of the diagrams (a), (b), (c)
in Fig. 1.22 by possibly adding trivial circles and by a series of replacing a
sub-arc by a part as illustrated in Fig. 1.22 (d).

(a) (b) (c) (d)

Figure 1.22:

Proof of Theorem 1.1.13. The ‘if’ part is obvious. Let P be a projection with
tr(P ) 6= 0 which is not obtained from any of the projections as illustrated
in Fig. 1.6 by possibly adding trivial circles. We show that there exists
a knotted pseudo diagram with at least one pre-crossing obtained from P ,
that is, kn(P ) < p(P ).
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First we suppose that P has a nugatory pre-crossing p1. By Proposition
1.2.4 there exists a knotted pseudo diagram obtained from P with a pre-
crossing p1. This implies that kn(P ) < p(P ).

Next we suppose that P has no nugatory pre-crossings. Suppose that P is
not a projection as (a) or (b) in Fig. 1.4. Let p2 be a pre-crossing of P and Q2

the pseudo diagram obtained from P by giving over/under information to all
pre-crossings except p2 to be positive. We show that Q2 is knotted. Let D2+

be the diagram obtained from Q2 by giving the over/under information to p2

to be positive. Since D2+ is a positive diagram, D2+ represents a nontrivial
link by Theorem 1.4.2. Let D2− be the diagram obtained from Q by giving
the over/under information to p2 to be negative. Since D2− is an almost
positive diagram, D2− represents a nontrivial link by Theorem 1.4.3. Thus
Q2 is knotted.

Suppose that P is a projection (a) in Fig. 1.4. Note that m > 2 since P is
not obtained from one of the projections as illustrated in Fig. 1.6. Let p3 be
one of m pre-crossings in a row. Let Q3 be the pseudo diagram obtained from
P by giving over/under information to all crossings except p3 to be positive.
We show that Q3 is knotted. Let D3+ be the diagram obtained from Q3

by giving the over/under information to p3 to be positive. Since D3+ is a
positive diagram, D3+ represents a nontrivial link by Theorem 1.4.2. Let
D3− be the diagram obtained from Q3 by giving the over/under information
to p3 to be negative. We deform D3− into D′

3− as illustrated in Fig. 1.23.
Since D′

3− is a positive diagram with crossings which are not nugatory, D′
3−

represents a nontrivial link by Theorem 1.4.2. Thus Q3 is knotted.

D3- D3-

or

Figure 1.23:

Note that for a certain graph G there exist infinitely many projections
P of G with kn(P ) = p(P ). For example, let G be a handcuff graph and
{Pi}i=1,2,... is the family of the projections as illustrated in Fig. 1.24. It
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is known in [39] that a diagram representing a nontrivial spatial graph is
obtained from Pi (i = 1, 2, 3, . . .). Then it is easy to check kn(Pi) = p(Pi).

handcuff graph P1

P3 P4

P2

Figure 1.24:

1.5 Relations between trivializing number

and knotting number

In this section, we study relations between the trivializing number and the
knotting number. We give a proof of Proposition 1.1.9.

Proof of Proposition 1.1.9. Let P1 be a projection of a circle as illustrated in
Fig. 1.4 where l = 2m − 5. Then we have tr(P1) = 2 and kn(P1) = l. Let P
be the projection which is the composition of n/2 copies of P1 as illustrated
in Fig. 1.25. Thus tr(P ) = n and kn(P1) = l by Proposition 1.2.1.

1.6 An application of trivializing number and

knotting number

We ask the following question. For a projection P of a graph, how many
diagrams obtained from P which represent trivial spatial graphs (resp. non-
trivial spatial graphs)? We denote the number of diagrams obtained from
P which represent trivial spatial graphs (resp. nontrivial spatial graphs) by
ntri(P ) (resp. nnontri(P )). Then we have the following inequality between
ntri(P ) (resp. nnontri(P )) and tr(P ) (resp. kn(P )) for any graphs.
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n

2

Figure 1.25:

Proposition 1.6.1. Let P be a projection of a graph. If P is neither trivial
nor knotted, then ntri(P ) ≥ 2p(P )−tr(P )+1 and nnontri(P ) ≥ 2p(P )−kn(P )+1.

Proof. We show that ntri(P ) ≥ 2p(P )−tr(P )+1. Let Q be a trivial pseudo
diagram obtained from P with tr(P ) crossings. Then 2p(P )−tr(P ) diagrams
which represent trivial spatial graphs are obtained from Q. Let Q′ be the
pseudo diagram obtained from Q by changing over/under information at all
crossings of Q. Then Q′ is trivial in the same way as the proof of Propo-
sition 1.3.5. Then 2p(P )−tr(P ) diagrams which represent spatial graphs are
obtained from Q′. Thus ntri(P ) ≥ 2p(P )−tr(P )+1. Similarly we can show that
nnontri(P ) ≥ 2p(P )−kn(P )+1.
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Chapter 2

Regular projections of knotted
double-handcuff graphs

2.1 Introduction

An embedding of G into R3 is called a spatial embedding of G, and its image is
called a spatial graph. Two spatial embeddings f and f ′ of G are equivalent if
there exists a (possibly orientation reversing) self-homeomorphism h : R3 →
R3 such that h(f(G)) = f ′(G). We consider spatial embeddings of a graph
up to this equivalence. A spatial embedding f of G is trivial (or unknotted )
if there exists a spatial embedding f ′ of G which is equivalent to f such that
f ′(G) ⊂ R2 × {0} ⊂ R3.

A continuous map ϕ : G → R2 is called a regular projection, or simply
a projection, of G if its multiple points are only finitely many transversal
double points away from vertices. Then its image is also called a (regular)

projection and we denote it by Ĝ = ϕ(G). Similarly we denote the image of

a subspace A of G by Â = ϕ(A). A double point of a projection is called
a crossing. In particular, a crossing whose preimage is contained in an edge
is called a self-crossing. For a spatial embedding f of G, we say that ϕ is a
projection of f if there exists a spatial embedding f ′ of G which is equivalent
to f such that ϕ = π ◦ f ′ where π : R3 → R2 is the natural projection. Then
we also say that Ĝ is a projection of f , and f is obtained from ϕ (or Ĝ).

A projection with over/under information of crossings is called a regular
diagram. A regular diagram uniquely represents a spatial graph up to equiv-
alence. Thus, for a spatial embedding f of G, Ĝ is a projection of f if and
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only if there exists a regular diagram produced by Ĝ which represents f(G).
A projection ϕ of G is said to be trivial if only trivial spatial embeddings
of G are obtained from ϕ. A set E of nontrivial spatial embeddings of G is
called elementary if every nontrivial projection of G is a projection of at least
one element of E and no proper subset of E satisfies this property. In general
an elementary set of G is not unique. We denote by elm(G) the minimal
cardinality of all elementary sets of G, and we call it the elementary number
of G.

It is shown in [36] that if a graph G is homeomorphic to a circle, then E
consists of a trefoil knot, therefore elm(G) = 1. It is shown in [37] that if a
graph G is homeomorphic to the disjoint union of two circles, then E consists
of the Hopf link and the split union of the trefoil knot and the trivial knot,
therefore elm(G) = 2. In these cases, E is uniquely determined. It is shown
in [20] and [14] that if a graph G is a θ-curve, then the set that consists
of three spatial embeddings illustrated in Fig. 2.1 is an elementary set, and
elm(G) = 3. In general for each n ≥ 3, an elementary set of G = θn is shown
in [14] and we have elm(θn) = n.

Figure 2.1: An elementary set of θ-curve

It is shown in [39] that if a graph G is the handcuff graph illustrated in
Fig. 2.2, then the set E that consists of infinite spatial embeddings illustrated
in Fig. 2.3 is an elementary set, and there exist no finite elementary sets of
G, therefore elm(G) = ∞. In general it is shown in [39] that if a graph G
is a connected planar graph with a cut edge e such that both components of
G− inte contain cycles, then elm(G) = ∞.

Figure 2.2: A handcuff graph

26



Figure 2.3: An elementary set of a handcuff graph

Our purpose in this paper is to find an elementary set and determine the
elementary number of the double-handcuff graph. Here the double-handcuff
graph H is a graph illustrated in Fig. 2.4 with four vertices u1, u2, v1, v2

and six edges e1, e2, e3, e4, e5, e6, where each of e1 and e2 joins u1 and
v1, each of e3 and e4 joins u2 and v2, e5 joins u1 and u2, and e6 joins v1 and
v2. Note that a double-handcuff graph is a graph that is obtained from a
subdivision of a handcuff graph or from a subdivision of a θ-curve by adding
an edge which is not a loop.

e1 e2 e3

e5u1

v1

u2

v2

e4

e6

Figure 2.4: A double-handcuff graph

We shall show that elm(H) = 7. We note that the elementary number of
H is finite even if H contains a handcuff graph whose elementary is infinite.

Theorem 2.1.1. Let E be the set of nontrivial spatial embeddings of a double-
handcuff graph illustrated in Fig. 2.5. Then E is an elementary set of H, and
elm(H) = 7.
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E2

E6

E3

E7

E4E1

E5

Figure 2.5: An elementary set of H

2.2 Proof of Theorem 2.1.1

In this section we shall prove Theorem 2.1.1 by some lemmas. We show that
for any nontrivial projection ϕ of H it is a projection of at least one element
of E , that is, elm(H) ≤ 7 by Lemmas 2.2.3, 2.2.4, 2.2.5, and 2.2.6, and
elm(H) ≥ 7 by Lemma 2.2.7. Before proving these lemmas, we introduce
Propositions 2.2.1 and 2.2.2.

Proposition 2.2.1. Let P̂ be a projection that has a self-crossing s. Let l
be the sub-arc of P̂ that is from s to s. Let P̂ ′ be a projection obtained from
P̂ by eliminating l. If a spatial graph G is obtained from P̂ ′, then G is also
obtained from P̂ .

Proof. See Fig. 2.6.

A crossing c of a projection P̂ of G is nugatory if the number of connected
components of P̂ − c is more than that of P̂ . A projection P̂ is reduced if P̂
has no nugatory crossings. We denote the set of all spatial embeddings of G
obtained from P̂ by EMB(P̂ ). Then we get the following proposition.

Proposition 2.2.2. For any projection P̂ of G that has nugatory crossings,
there exists a reduced projection P̂ ′ of G such that EMB(P̂ ′) =EMB(P̂ ).

Proof. Let P̂1 be a connected component of a projection P̂ of G with a
nugatory crossing c. Let T̂1 and T̂2 be the parts of P̂1 such that P̂1 = T̂1 ∪ T̂2

and T̂1 ∩ T̂2 = {c}. Let P̂2 be a projection illustrated in Fig. 2.7. Then
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s

P
^

P
^

Figure 2.6: Proof of Proposition 2.2.1

it is clear that EMB(P̂1) =EMB(P̂2). Therefore we can eliminate nugatory
crossings.

T1 T2
^

P1
^

P2
^

^
T1
^ T2

^

nugatory crossing

c

Figure 2.7: Eliminating a nugatory crossing

By Proposition 2.2.2, we may assume that ϕ in Lemmas 2.2.3, 2.2.4, 2.2.5,
and 2.2.6 is a reduced projection. For points x and y on an edge e, we denote
by [x, y; e] = [x, y] the simple arc in e bounded by x and y.

Lemma 2.2.3. If (ê1 ∪ ê2)∩ (ê3 ∪ ê4) is not empty, then ϕ is a projection of
E1.

Proof. Without loss of generality, we may assume ê1 ∩ ê3 is not empty. Let p
be the crossing on ê1 that is the nearest to u1 in ê1 ∩ ê3. Let p1 = ϕ−1(p)∩ e1
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and p2 = ϕ−1(p) ∩ e3. Let p′2 be a point on e3 that is slightly nearer to v2

than p2, p′′2 a point on e3 that is slightly farther from v2 than p2. We suppose
that there are no self-crossings in [u1, p1; e1] and [u2, p2; e3] by Proposition
2.2.1.

Let h : H → R be a continuous function with the following properties,
where hi : ei → R (i = 1, 2, . . . , 6) is a restriction map of h and ε is a
sufficiently small positive real number.

1. h(u1) = 0, h(v1) = 1, h(u2) = −1, h(v2) = 0.

2. h1([u1, p1]) = {0}. h1|[p1,v1] is injective.

3. hi is injective (i = 2, 4, 5, 6).

4. h3([v2, p
′
2]) = {0}. h3|[p′2,p2] → [0, ε] is homeomorphism. h3|[p2,p′′2 ] →

[0, ε] is homeomorphism. h3|[p′′2 ,u2] → [−1, 0] is homeomorphism.

5. If x 6= y and ϕ(x) = ϕ(y) then h(x) 6= h(y) for all x, y ∈ H.

Let (ϕ × h) : H → R2 × R1 = R3 be a spatial embedding of H defined
by (ϕ × h)(x) = (ϕ(x), h(x)). Let H ′ be the image of ϕ × h. By an ambient
isotopy preserving the third coordinate H ′ is deformed into a spatial double-
handcuff graph illustrated in Fig. 2.8. Here Fig. 2.8 is a regular diagram
on the xz-plane and boxes B1 and B2 represent pure 3-braids. Then by the
repeated application of deformation of Fig. 2.9, we see that H ′ is ambient
isotopic to E1.

Let S2 ⊂ S3 be the one point compactification of the pair R2 ⊂ R3.
We consider projections on S2 and spatial double-handcuff graphs in S3 for
the convenience. A circle S on S2 is called a separating circle if S meets
ê5 transversally at one point and ê6 transversally at one point and does not
meet any other edges. Note that S bounds two 2-balls A1 and A2 in S2. We
may assume without loss of generality that A1 ⊃ ê1 ∪ ê2 and A2 ⊃ ê3 ∪ ê4.

Lemma 2.2.4. If there exists a separating circle S, then ϕ is a projection of
E2, E3, E4, E5, or E6.
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e5 e4

e3u1 v2
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Figure 2.8:

Figure 2.9: Eliminating a crossing

u1

e5 c1

c2
e6

e1

e2

e4

e3

S

v1

u2

v2

Figure 2.10: A separating circle
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Proof. By contracting A1 (resp. A2) to a point in S2, we may consider
A1 ∪ ê5 ∪ ê6 (resp. A2 ∪ ê5 ∪ ê6) to be a projection of an edge, say e0 (resp.
e′0). Therefore we consider ϕ to be a projection, say ψ (resp. ψ′), of a θ-curve
which consists of two vertices u2 and v2 (resp. u1 and v1) and three edges
e3, e4 and e0 (resp. e1, e2 and e′0). Here ψ or ψ′ is nontrivial because ϕ is
nontrivial. Without loss of generally, we may suppose that ψ is nontrivial.

There exists a height function h such that ψ×h is a spatial embedding of
an elementary set illustrated in Fig. 2.1 ([14]). Let c1 = S ∩ ê5, c2 = S ∩ ê6.
We can extend h to a height function h′ of a double-handcuff graph with the
following properties, where [u1, c1] (resp. [v1, c2]) is the simple arc in e5 (resp.
e6) bounded by u1 and c1 (resp. v1 and c2), ε is a sufficiently small positive
real number.

1. h′(c2) − h′(c1) = ε.

2. h′(c1) < h′(u1) < h′(v1) < h′(c2).

3. h′|ei
, h′|[u1,c1], and h′|[v1,c2] is injective (i = 1, 2).

4. If x 6= y and ϕ(x) = ϕ(y) then h′(x) 6= h′(y) for all x, y ∈ H.

Let H ′ be the image of ϕ × h′. By an ambient isotopy preserving the
third coordinate H ′ is deformed into a spatial double-handcuff graph. Here
Fig. 2.11 is a part of a regular diagram on the xz-plane.

u1

v1

c2

c1

Figure 2.11:

We eliminate crossings in Fig. 2.11. Hence ϕ × h′ is E2, E3, E4, E5, or
E6.
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Lemma 2.2.5. If ê5 or ê6 has self-crossings, then ϕ is a projection of E5 or
E6.

Proof. Without loss of generality, we may assume ê5 has self-crossings. We
can choose a self-crossing p of ê5 such that the sub-arc, say l, of ê5 from p to
p has no other self-crossings. Let R1 be the region as illustrated in Fig. 2.12.
We can suppose that a shape of R1 is a teardrop in the right side of Fig. 2.12,
since we consider that a projection is on S2.

l

p l

p R1

Figure 2.12:

Case 1. l ∩ ê5 is not empty.
Let p′ ∈ l ∩ ê5. Let {p1, p3} = ϕ−1(p), {p2, p4} = ϕ−1(p′) and we may

suppose without loss of generality that u1, p1, p2, p3, p4 and u2 are arranged
in this order on e5. Let p′i be a point on e5 that is slightly nearer to u1 than
pi, and p′′i a point on e5 that is slightly farther from u1 than pi (i = 1, 3, 4).

Let h : H → R be a continuous function with the following properties,
where hi : ei → R (i = 1, 2, . . . , 6) is a restriction map of h and ε is a
sufficiently small positive real number.

1. h(u1) = −1, h(v1) = h(u2) = −2, h(v2) = −3.

2. hi is injective (i = 1, 2, 3, 4, 6).

3. All of the following maps are homeomorphisms and h5([p
′′
1, p

′′
3]) = {0}.

h5|[u1,p′1] → [−1, 0], h5|[p′1,p1] → [0, ε], h5|[p1,p′′1 ] → [0, ε], h5|[p′′3 ,p′4] → [0, 1],
h5|[p′4,p4] → [ε, 1], h5|[p4,p′′4 ] → [0, ε], and h5|[p′′4 ,u2] → [−2, 0].

4. If x 6= y and ϕ(x) = ϕ(y) then h(x) 6= h(y) for all x, y ∈ H.

Let (ϕ × h) : H → R2 × R1 = R3 be a spatial embedding of H defined
by (ϕ × h)(x) = (ϕ(x), h(x)). Let H ′ be the image of ϕ × h. By an ambient
isotopy preserving the third coordinate H ′ is deformed into a spatial double-
handcuff graph illustrated in Fig. 2.13. Here Fig. 2.13 is a regular diagram on
the xz-plane and boxes B1 and B2 represent pure 2-braids, boxes B3 and B4
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represent pure 3-braids. First we eliminate crossings in B1, B2 and B4. By
deforming, we obtain H ′ in lower left of Fig. 2.13 and we eliminate crossings
in B3. Thus we see that H ′ is ambient isotopic to E5.

u1

p1

p4

p1

p4

v1 u2

v2

u1

v1 u2

v2

u2

v2

B1

B2

B3

B4

B3

u1

v1

B3

u2

v2

u1

v1

Figure 2.13: Case 1

Case 2. v̂1 ∈ R1 or v̂2 ∈ R1.
Without loss of generality, we may assume v̂1 ∈ R1. Let {p1, p2} = ϕ−1(p)

and we may suppose without of loss generality that u1, p1, p2 and u2 are
arranged in this order on e5. Let p′1 be a point on e5 that is slightly nearer
to u1 than p1, and p′′1 a point on e5 that is slightly farther from u1 than p1.

Let h : H → R be a continuous function with the following properties,
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where hi : ei → R (i = 1, 2, . . . , 6) is a restriction map of h and ε is a
sufficiently small positive real number.

1. h(u1) = 1, h(v1) = 0, h(u2) = −1, h(v2) = −2.

2. hi is injective (i = 1, 2, 3, 4, 6).

3. All of the following maps are homeomorphism and h5|[p′′1 ,p2] → {0}.
h5|[u1,p′1] → [0, 1], h5|[p′1,p1] → [−ε, 0], h5|[p1,p′′1 ] → [−ε, 0], and h5|[p2,u2] →
[−1, 0] .

4. If x 6= y and ϕ(x) = ϕ(y) then h(x) 6= h(y) for all x, y ∈ H.

Let (ϕ × h) : H → R2 × R1 = R3 be a spatial embedding of H defined
by (ϕ × h)(x) = (ϕ(x), h(x)). Let H ′ be the image of ϕ × f . By an ambient
isotopy preserving the third coordinate H ′ is deformed into a spatial double-
handcuff graph illustrated in Fig. 2.14. Here Fig. 2.14 is a regular diagram
on the xz-plane and boxes B1 and B3 represent pure 3-braids, a box B2

represents a pure 2-braid. Then we eliminate crossings in B1, B2 and B3.
Thus we see that H ′ is ambient isotopic to E5.

B1

B2

B3

u1

v1

u2

v2

u1

v1

u2

v2

Figure 2.14: Case 2

Case 3. êi ∩ l(i = 1, 2, 3, 4) is not empty, v̂1 /∈ R1 and v̂2 /∈ R1.
Without loss of generality, we may assume ê1 ∩ l is not empty. Let

{p1, p2} = ϕ−1(p) and we may suppose without loss of generality that
u1, p1, p2 and u2 are arranged in this order on e5. Let p′1 be a point on e5

that is slightly nearer to u1 than p1, and p′′1 a point on e5 that is slightly
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farther from u1 than p1. Let p3 be a point on e1 such that ϕ(p3) ∈ R1 and
p4 a point on e2 that is a sufficiently near to v1.

Let h : H → R be a continuous function with the following properties,
where hi : ei → R (i = 1, 2, . . . , 6) is a restriction map of h and ε is a
sufficiently small positive real number.

1. h(u1) = 1, h(v1) = h(u2) = −1, h(v2) = −2.

2. h1 is injective and h1(p3) = 0.

3. h2 is injective and h2(p4) = 0.

4. hi is injective (i = 3, 4, 6).

5. All of the following maps are homeomorphisms and h5([p
′′
1, p2]) = {0}.

h5|[u1,p′1] → [0, 1], h5|[p′1,p1] → [−ε, 0], h5|[p1,p′′1 ] → [−ε, 0], and h5|[p2,u2] →
[−1, 0].

6. If x 6= y and ϕ(x) = ϕ(y) then h(x) 6= h(y) for all x, y ∈ H.

Let (ϕ × h) : H → R2 × R1 = R3 be a spatial embedding of H defined
by (ϕ × h)(x) = (ϕ(x), h(x)). Let H ′ be the image of ϕ × h. By an ambient
isotopy preserving the third coordinate H ′ is deformed into a spatial double-
handcuff graph illustrated in Fig. 2.15. Here Fig. 2.15 is a regular diagram
on the xz-plane and boxes B1 and B3 represent pure 3-braids, a box B2

represents a pure 2-braid. First we eliminate crossings in B1 and B3. Then
we eliminate crossings in B2. Thus we see that H ′ is ambient isotopic to E6.
Case 4. ê6 ∩ l is not empty.

Let {p1, p2} = ϕ−1(p) and we may suppose that u1, p1, p2 and u2 are
arranged in this order on e5. Let p′1 be a point on e5 that is slightly nearer
to u1 than p1, and p′′1 a point on e5 that is slightly farther from u1 than p1.
Let p3 be a point on e6 in R1.

Let h : H → R be a continuous function with the following properties,
where hi : ei → R (i = 1, 2, . . . , 6) is a restriction map of h and ε is a
sufficiently small positive real number.

1. h(u1) = 2, h(v1) = 1, h(u2) = −1, h(v2) = −2.

2. hi is injective (i = 1, 2, 3, 4).
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Figure 2.15: Case 3

3. All of the following maps are homeomorphisms and h5([p
′′
1, p2]) = {0}.

h5|[u1,p′1] → [0, 2], h5|[p′1,p1] → [−ε, 0], h5|[p1,p′′1 ] → [−ε, 0], and h5|[p2,u2] →
[−1, 0].

4. h6 is injective and h6(p3) = 0.

5. If x 6= y and ϕ(x) = ϕ(y) then h(x) 6= h(y) for all x, y ∈ H.

Let (ϕ × h) : H → R2 × R1 = R3 be a spatial embedding of H defined
by (ϕ × h)(x) = (ϕ(x), h(x)). Let H ′ be the image of ϕ × h. By an ambient
isotopy preserving the third coordinate H ′ is deformed into a spatial double-
handcuff graph illustrated in Fig. 2.16. Here Fig. 2.16 is a regular diagram
on the xz-plane and boxes B1 and B4 represent pure 3-braids, boxes B2 and
B3 represent pure 2-braids. Then we eliminate crossings in B1, B2, B3 and
B4. Thus we see that H ′ is ambient isotopic to E5.

We suppose that (ê1∪ ê2)∩(ê3∪ ê4) is empty. Let R1 be the closure of the
union of the connected components of S2 − (ê1 ∪ ê2) that does not contain
ê3 ∪ ê4. Let R̄1 be the closure of S2 − R1. Let M1 be a sufficiently small
regular neighbourhood of R1 in S2. Then M1 is homeomorphic to a closed
disk.

Similarly let R2 be the closure of the union of the connected components
of S2 − (ê3 ∪ ê4) that does not contain M1. Let R̄2 be the closure of S2 −R2.
Let M2 be a sufficiently small regular neighbourhood of R2 in S2. Then M2

is also homeomorphic to a closed disk.
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Figure 2.16: Case 4

Let [0, 1] be the unit closed interval. Let ē5 : [0, 1] → e5 be a parametriza-
tion with ē5(0) = u1 and ē5(1) = u2. Let ē6 : [0, 1] → e6 be a parametrization
with ē6(0) = v1 and ē6(1) = v2.

Lemma 2.2.6. If (ê1 ∪ ê2) ∩ (ê3 ∪ ê4) is empty, there exist no separating
circles, and ê5 and ê6 has no self-crossings, then ϕ is a projection of E6 or
E7.

Proof. First we shall show that if there exists a pair of points x, y in [0, 1]
such that x < y, ϕ ◦ ē5(x) ∈ R2 and ϕ ◦ ē5(y) ∈ R1, then it is a projection of
E7. In this case we note that there exist no separating circles.

Let U = {(x, y)|x, y ∈ [0, 1], x < y, ϕ ◦ ē5(x) ∈ R2, ϕ ◦ ē5(y) ∈ R1},
X = ρ1(U), Y = ρ2(U) where ρ1(x, y) = x, ρ2(x, y) = y. Let x1 ∈ X such
that ϕ ◦ ē5(x1) is the nearest to v̂2 on ê3. Let y1 =min{y|x1 < y, y ∈ Y }.

Without loss of generality, we may assume that ê1∩ϕ◦ē5(y1) is not empty.
Let t5 = ē5(x1), t3 = ϕ−1(ϕ(t5)) ∩ e3 and s5 = ē5(y1), s1 = ϕ−1(ϕ(s5)) ∩ e1.
Let {p1, p2, . . . , pn} = ê1 ∩ ϕ ◦ ē5((0, x1]) (possibly ê1 ∩ ϕ ◦ ē5((0, x1]) = ∅),
and p5,1 = ϕ−1(p1) ∩ e5, p5,2 = ϕ−1(p2) ∩ e5, . . . , p5,n = ϕ−1(pn) ∩ e5. Here
we can suppose that ē−1

5 (p5,1) < ē−1
5 (p5,2) < · · · < ē−1

5 (p5,n). Let p′5,i be a
point on e5 that is slightly nearer to u1 than p5,i, and p′′5,i a point on e5 that
is slightly farther from u1 than p5,i (i = 1, 2, . . . , n). Let t′5 be a point on
e5 that is slightly nearer to u1 than t5, and t′′5 a point on e5 that is slightly
farther from u1 than t5. Let s′5 be a point on e5 that is slightly nearer to u1
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than s5, and s′′5 a point on e5 that is slightly farther from u1 than s5. We
can suppose that there are no self-crossings in [u1, s1; e1] and [u2, t3; e3] by
Proposition 2.2.1.

e1

e2 e3

e5
t5p5,1 p5,2 p5,3 p5,5p5,4 s5

s1

t3

u1

v1

u2

v2

e4

e6

Figure 2.17:

Let h : H → R be a continuous function with the following properties,
where hi : ei → R (i = 1, 2, . . . , 6) is a restriction map of h and ε is a
sufficiently small positive real number.

1. h(u1) = 0, h(v1) = 1, h(u2) = −1, h(v2) = 0.

2. h1([u1, s1]) = {0}. h1|[s1,v1] is injective.

3. hi is injective (i = 2, 4, 6).

4. h3([v2, t3]) = {0}. h3|[t3,u2] is injective.

5. All of the following maps are homeomorphisms and
h5([u1, p

′
5,1]) = h5([p

′′
5,1, p

′
5,2]) = h5([p

′′
5,2, p

′
5,3]) = · · · =

h5([p
′′
5,n−1, p

′
5,n]) = h5([p

′′
5,n, t

′
5]) = h5([t

′′
5, s

′
5]) = {0}.

h5|[p′5,1,p5,1] → [−ε, 0], h5|[p5,1,p′′5,1] → [−ε, 0], h5|[p′5,2,p5,2] → [−ε, 0],

h5|[p5,2,p′′5,2] → [−ε, 0], · · · h5|[p′5,n,p5,n] → [−ε, 0], h5|[p5,n,p′′5,n] → [−ε, 0],

h5|[t′5,t5] → [−ε, 0], h5|[t5,t′′5 ] → [−ε, 0], h5|[s′5,s5] → [0, ε], and
h5|[s5,u2] → [−1, ε].

6. If x 6= y and ϕ(x) = ϕ(y) then h(x) 6= h(y) for all x, y ∈ H.
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Let (ϕ × h) : H → R2 × R1 = R3 be a spatial embedding of H defined
by (ϕ × h)(x) = (ϕ(x), h(x)). Let H ′ be the image of ϕ × h.

We eliminate crossings p1, p2, . . . , pn as illustrated in Fig. 2.18. Then
there are two cases (I), (II) as illustrated in Fig. 2.19. By an ambient isotopy
preserving the third coordinate H ′ is deformed into a spatial double-handcuff
graph illustrated in Fig. 2.20. Here Fig. 2.20 is a regular diagram on the xz-
plane and boxes B1 and B2 represent pure 3-braids. Then we eliminate
crossings in B1 and B2. Thus we see that H ′ is ambient isotopic to E7.

u1

p1

p2
p3

s5

 t3

p4

p5

v2
u1

s5

t3

v2

Figure 2.18: Eliminating crossings p1, p2, . . . , pn

u1

s5

t3

v2
u1

s5
t3

v2

( I ) ( II )

Figure 2.19:

Similarly if there exists a pair of points x, y in [0, 1] such that x < y, ϕ ◦
ē6(x) ∈ R2 and ϕ ◦ ē6(y) ∈ R1, then ϕ is a projection of E7.

Next we shall show that if there exist no pairs as above, then ϕ is a
projection of E6.

Let x11 = min {x ∈ [0, 1]|ϕ ◦ ē5(x) ∈ R̄1}. Here if x11 = 0 and ϕ ◦ ē5(ε) /∈
R̄1, let x11 = min {x ∈ (0, 1]|ϕ ◦ ē5(x) ∈ R̄1}, where ε is a sufficiently small
positive real number. Let x12 = min {x ∈ [x11, 1]|ϕ◦ ē5(x) ∈ R̄1}. There may
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Figure 2.20:

not exist x12. Let x21 = min {x ∈ [x12, 1]|ϕ ◦ ē5(x) ∈ R̄1}. Let x22 = min
{x ∈ [x21, 1]|ϕ ◦ ē5(x) ∈ R̄1}. Then we repeat the process above. Similarly
let y11 = min {y ∈ [0, 1]|ϕ ◦ ē6(y) ∈ R̄1}. Here if y11 = 0 and ϕ ◦ ē6(ε) /∈ R̄1,
let y11 = min {y ∈ (0, 1]|ϕ ◦ ē6(y) ∈ R̄1}, where ε is a sufficiently small
positive real number. Let y12 = min {y ∈ [y11, 1]|ϕ◦ ē6(y) ∈ R̄1}. There may
not exist y12. Let y21 = min {y ∈ [y12, 1]|ϕ ◦ ē6(y) ∈ R̄1}. Let y22 = min
{y ∈ [y21, 1]|ϕ ◦ ē6(y) ∈ R̄1}. Then we repeat the process above.

x11
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e5

e6

e1

e5

e6

e1
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t
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Figure 2.21:
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Here ϕ ◦ ē5([x11, x12] ∪ [x21, x22] ∪ · · · ∪ [xm1, xm2]) ∩ ê6 is not empty or
ϕ ◦ ē6([y11, y12] ∪ [y21, y22] ∪ · · · ∪ [yn1, yn2]) ∩ ê5 is not empty because there
exist no separating circles. Without loss of generality, we may assume ϕ ◦
ē5([x11, x12] ∪ [x21, x22] ∪ · · · ∪ [xm1, xm2]) ∩ ê6 is not empty. Let ŝ ∈ ϕ ◦
ē5([x11, x12] ∪ [x21, x22] ∪ · · · ∪ [xm1, xm2]) ∩ ê6 such that ŝ is the nearest to
v̂1 on ê6. Let s = ϕ−1(ŝ) ∩ e6. Let s′ be a point on e6 that is slightly nearer
to v1 than s, and s′′ a point on e6 that is slightly farther from v1 than s.
Suppose that ŝ ∈ ϕ ◦ ē5([xi1, xi2]). Let t̂ be ϕ ◦ ē5(xi2). We can assume that
ϕ−1(t) ∈ e1. Let t1 = e1 ∩ ϕ−1(t), t5 = e5 ∩ ϕ−1(t). We can suppose that
there are no self-crossings in [u1, t1; e1] by Proposition 2.1 (Fig. 2.21). Let
{p1, p2, . . . , pn} = ϕ([u1, t1; e1])∩ϕ ◦ ē5((0, x1]) (possibly ê1 ∩ϕ ◦ ē5((0, x1]) =
∅), and p5,1 = ϕ−1(p1)∩ e5, p5,2 = ϕ−1(p2)∩ e5, . . . , p5,n = ϕ−1(pn)∩ e5. Here
we can suppose that ē−1

5 (p5,1) < ē−1
5 (p5,2) < · · · < ē−1

5 (p5,n). Let p′5,i be a
point on e5 that is slightly nearer to u1 than p5,i, and p′′5,i a point on e5 that
is slightly farther from u1 than p5,i (i = 1, 2, . . . , n). Let t′5 be a point on
e5 that is slightly nearer to u1 than t5, and t′′5 a point on e5 that is slightly
farther from u1 than t5.

There are four cases about the position of v̂1 and
ϕ([u1, t1; e1]) ∪ ϕ([u1, t5; e5]) in R2 as illustrated in Fig. 2.22.

u1 u1u1u1

e5
e6

e6

e6

e6e5 e5 e5

e1e1 e1 e1

v1

v1

v1

v1
t

s s s

s

t t t

( I ) ( II ) ( III ) ( IV )

Figure 2.22:

If the projection satisfies case (I) or (IV) (resp. (II) or (III)), let h :
H → R be a continuous function with the following properties, where hi :
ei → R (i = 1, 2, . . . , 6) is a restriction map of h and ε is a sufficiently small
positive real number.

1. h(u1) = 0, h(v1) = 1, h(u2) = −2, h(v2) = −1.

2. h1([u1, t1]) = {0}. h1|[t1,v1] is injective.
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3. hi is injective (i = 2, 3, 4).

4. All of the following maps are homeomorphisms and
h5([u1, p

′
5,1]) = h5([p

′′
5,1, p

′
5,2]) = h5([p

′′
5,2, p

′
5,3]) = · · · =

h5([p
′′
5,n−1, p

′
5,n]) = h5([p

′′
5,n, s

′
5]) = h5([s

′′
5, t

′
5]) = {0}.

h5|[p′5,1,p5,1] → [−ε, 0], h5|[p5,1,p′′5,1] → [−ε, 0], h5|[p′5,2,p5,2] → [−ε, 0],

h5|[p5,2,p′′5,2] → [−ε, 0], · · · , h5|[p′5,n,p5,n] → [−ε, 0], h5|[p5,n,p′′5,n] → [−ε, 0],

h5|[s′5,s5] → [−ε, 0], h5|[s5,s′′5 ] → [−ε, 0], h5|[t′5,t5] → [0, ε], and
h5|[t5,u2] → [−2, ε].

5. h6 is injective and h6(s
′′) = 0 (resp. h6(s

′) = 0).

6. If x 6= y and ϕ(x) = ϕ(y) then h(x) 6= h(y) for all x, y ∈ H.

Let (ϕ×h) : H → R2×R1 = R3 be a spatial embedding of H defined by
(ϕ × h)(x) = (ϕ(x), h(x)). Let H ′ be the image of ϕ × h. By a deformation
that is similar to the deformation illustrated in Fig. 2.18, we eliminate cross-
ings p1, p2, . . . , pn. By an ambient isotopy preserving the third coordinate
H ′ is deformed into a spatial double-handcuff graph illustrated in Fig. 2.23.
Here Fig. 2.23 is a regular diagram on the xz-plane and boxes B1 and B3

represent pure 3-braids, a box B2 represents a pure 2-braid. Then we elimi-
nate crossings in B1, B2 and B3. Thus we see that H ′ is ambient isotopic to
E6.

Lemma 2.2.7. elm(H) ≥ 7.

Proof. Let P̂1, P̂2, . . . , P̂6 and P̂7 be projections of H illustrated in Fig. 2.24.
Let E(P̂i) be the set of all nontrivial spatial embeddings obtained from P̂i

(i = 1, 2, . . . , 7).

We shall show that E(P̂i)∩E(P̂j)(i 6= j) is empty. The set E(P̂1) consists

of only one element and it contains a Hopf link. The set E(P̂2) consists of
only one element and three trefoil knots are obtained from it as subgraphs.
The set E(P̂3) consists of only one element and it contains exactly one trefoil.

Any element of E(P̂4) contains neither a trefoil knot nor a Hopf link. The

set E(P̂5) consists of only one element and two trefoil knots are obtained

from it as subgraphs. The set E(P̂6) consists of only one element and four

trefoil knots are obtained from it as subgraphs. The set E(P̂7) consists of two
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Figure 2.23:

elements. We call one of E(P̂7) E7 as illustrated in Fig. 2.5 and another E ′
7

as illustrated in Fig. 2.25. Then E7 contains exactly one trefoil, E ′
7 contains

exactly one figure-eight knot. Thus it remains that we show E3 is not ambient
isotopic to E7. The trefoil knot obtained from E3 is constructed by two edges,
the trefoil knot obtained from E7 is constructed by four edges. Therefore E3

is not ambient isotopic to E7.

P1
^

P5
^

P6
^

P7
^

P2
^

P3
^

P4
^

Figure 2.24:
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E7

Figure 2.25: E ′
7

It is known in [20] that the set that consists of three spatial embeddings
illustrated in Fig. 2.26 is also an elementary set of a θ-curve. Then the proof
of Theorem 2.1.1 implies that the set E ′ that is obtained from E by replacing
E4 with the spatial embedding E ′

4 illustrated in Fig. 2.27 is also an elemen-
tary set of a double-handcuff graph. However we have not characterized an
elementary set of a double-handcuff graph yet.

Figure 2.26: An elementary set of a θ-curve

Figure 2.27: The spatial embedding E ′
4 of a double-handcuff graph

2.3 Corollary

A nontrivial spatial embedding f of a planar graph G is said to be strongly
almost trivial if there exists a projection f̂ of f such that f̂ |H is trivial for
any proper subgraph H of G. For example, a handcuff graph and a θ-curve
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have strongly almost trivial spatial embeddings. See Fig. 2.28(1) and (2).
Huh and Oh [15] showed certain sufficient conditions for planar graphs to
have no strongly almost trivial spatial embeddings.

(1) (2)

Figure 2.28: Strongly almost trivial spatial embeddings

Theorem 2.3.1. [15, Theorem 1.1] Let G be a connected planar graph whose
vertices are not separating and have valency at least 3. Suppose that G sat-
isfies the following three assumptions;

1. G does not contain a cycle consisting exactly a pair of edges.

2. For any pair of disjoint edges of G, there exist two disjoint cycles of
edges each of which contains an edge of the pair.

3. For any path consisting of three consecutive edges of G, there exists a
cycle of edges containing the path.

Then G has no strongly almost trivial spatial embeddings.

In addition, Huh and Oh [15] showed that although the complete graph
on four vertices K4 does not satisfy (ii) in Theorem 2.3.1, K4 has no strongly
almost trivial spatial embeddings [15]. A double-handcuff graph does not
satisfy (i) and (ii) in Theorem 2.3.1. However the following corollary holds.

Corollary 2.3.2. A double-handcuff graph H has no strongly almost trivial
spatial embeddings.

Lemma 2.3.3. Let H be a double-handcuff graph, E the elementary set in
Theorem 2.1.1. For each element f of E, there exists a proper subgraph H ′

of H such that f |H′ is a nontrivial spatial embedding.

46



Proof. See Fig. 2.5.

Proof of Corollary 2.3.2. Let f be a nontrivial spatial embedding of H, and
f̂ a projection of f . Since f̂ is nontrivial, there exists an element g of E such
that g is obtained from f̂ by Theorem 2.1.1. By Lemma 2.3.3 there exists a
proper subgraph H ′ of H such that f |H′ is a nontrivial spatial embedding.
Hence f̂ |H′ is nontrivial.

2.4 Question

A handcuff graph is a 1-connected graph, and the elementary number of it is
infinite. A double-handcuff graph is a 2-connected graph, and the elementary
number of it is finite. In general, we suggest the following question.

Question 2.4.1. Is the elementary number of a 2-connected planar graph
always finite?
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Chapter 3

On strongly almost trivial
embeddings of graphs

3.1 Introduction

We allow multiple edges and loops and suppose that G does not have a degree
two vertex. We refer the reader to [5] and [10] for fundamental terminology
of graph theory. An embedding of G into R3 is called a spatial embedding of
G, and its image is called a spatial graph. In particular, f(G) is called a knot
(resp. a link) if G is homeomorphic to a circle (resp. disjoint circles). Two
spatial embeddings f and f ′ of G are equivalent if there exists a (possibly
orientation reversing) self-homeomorphism h on R3 such that h(f(G)) =
f ′(G). We consider spatial embeddings of a graph up to this equivalence. A
spatial embedding f of G is said to be trivial (or unknotted) if there exists a
spatial embedding f ′ such that f ′ is equivalent to f and f ′(G) ⊂ R2 ×{0} ⊂
R3. Note that only planar graphs have a trivial spatial embedding. A spatial
embedding f of G is said to be minimally knotted if f is nontrivial and for
any proper subgraph H of G, f |H is trivial.

A continuous map ϕ : G → R2 is called a projection of G if its multiple
points are only finitely many transversal double points away from the vertices.
Then its image is also called a projection. A double point of a projection
is called a crossing. For a spatial embedding f of G, we say that ϕ is a
projection of f if there exists a spatial embedding f ′ of G which is equivalent
to f such that ϕ = π ◦ f ′ where π : R3 → R2 is the natural projection. Then
we also say that f is obtained from ϕ. A projection ϕ of G is said to be
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trivial if only trivial spatial embeddings of G are obtained from ϕ.
A projection with over/under information of the crossings is called a dia-

gram. Then a crossing with over/under information is also called a crossing.
A diagram D uniquely represents a spatial embedding f up to the equiva-
lence. Then we say that D is a diagram of f .

A spatial embedding f of a planar graph G is said to be strongly almost
trivial, or simply SAT, ([20] and [15]) if f is nontrivial and there exists a pro-
jection f̂ of f such that f̂ |H is trivial for any proper subgraph H of G. Then
we call such a projection a strongly almost trivial projection. For example, a
handcuff graph which consists of two loops and an edge joining these loops
has a SAT embedding. Also a θn-curve which consists of two vertices and n
multiple edges joining these vertices and n ≥ 3 has a SAT embedding. See
Fig. 3.1(a) and (b). Note that the embedding (a) is appeared in [39] and (b)
is known in [35]. We see that these diagrams without over/under information
are SAT projections.

(a) (b)

Figure 3.1: SAT embeddings

We introduce known results on SAT embeddings. From the definitions,
we see that if f is SAT then f is minimally knotted. It is known in [19]
and [45] that any planar graph without vertices of degree less than two has
a minimally knotted embedding. However, Huh and Oh showed in [15] that
there exists a planar graph which has no SAT embeddings. For example, in
Fig. 3.2, the graph P5 and the complete graph with four vertices have no SAT
embeddings [15], the double-handcuff graph also has no SAT embeddings [12].
However, it is open which graphs have a SAT embedding and which graphs
have no SAT embeddings.

The following is a question on SAT embeddings in [21, Problem 5.16] due
to Kinoshita and Mikasa.

Question 3.1.1. Does there exist an embedding of a θ-curve which is mini-
mally knotted but not strongly almost trivial?
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P5 K4 double-handcuff graph

Figure 3.2: Graphs which have no SAT embeddings

This question is investigated in [13] and is conjectured that the answer
is yes. In this article, we have new classes of graphs which have a SAT
embedding. Therefore, we have the following.

Question 3.1.2. Does there exist a planar graph G which has a strongly
almost trivial embedding such that G has a minimally knotted but not strongly
almost trivial embedding?

First, we present fundamental propositions.

Proposition 3.1.3. Let ϕ be a projection of a planar graph G. Then ϕ is
trivial if and only if for any subgraph H of G which has a strongly almost
trivial embedding, ϕ|H is trivial.

Recently, the following is defined and studied in [9]. A projection ϕ
of G is said to be knottable (resp. linkable) [9] if there exists a nontrivial
spatial embedding of G obtained from ϕ whose image contains nontrivial knot
(resp. nonsplittable link). Moreover, Kobayashi generalizes the definitions.
A projection ϕ of G is said to be twistable [22] if there exists a planar subgraph
H of G such that ϕ|H is not trivial. Note that if ϕ of G is knottable or
linkable then ϕ is twistable, and if ϕ is twistable then ϕ is not trivial. A
graph G is said to be intrinsically knottable (resp. intrinsically linkable) [9]
if every projection of G is knottable (resp. linkable). A graph G is said to
be intrinsically twistable [22] if every projection of G is twistable. We have
the following.

Proposition 3.1.4. Let G be an intrinsically twistable graph. For any pro-
jection ϕ of G, there exists a planar subgraph H of G which has a strongly
almost trivial embedding such that ϕ|H is not trivial.
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We present new classes of graphs which have a SAT embedding and that
of graphs which have no SAT embeddings.

Theorem 3.1.5. Let G be an n-bouquet which consists of one vertex with n
loops. Then G has a strongly almost trivial embedding.

As an example, we give a SAT embedding of an n-bouquet as illustrated
in Fig. 3.3.

Figure 3.3: n-bouquet and a SAT embedding of it

Proposition 3.1.6. Let G be a disconnected graph without cut edges such
that G is not homeomorphic to two disjoint circles. Then G has no strongly
almost trivial embeddings.

Let F be a forest, namely a graph which does not contain a cycle. We
define GF to be the graph obtained from F by adding a loop to the vertices
v with dF (v) ≤ 1 where dF (v) denotes the degree of v in F . For example,
see Fig. 3.4.

Theorem 3.1.7. Let F be a forest with at least one edge. Then GF has a
strongly almost trivial embedding.

As an example, we give a SAT embedding of GF in Fig. 3.4 as illustrated
in Fig. 3.5.

Theorem 3.1.8. Let G be a connected graph with exactly one cut edge e
such that G is not homeomorphic to a handcuff graph and each connected
component of G − e has at least one cycle. Then G has no strongly almost
trivial embeddings.
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GFF

Figure 3.4: Forest F and GF

Figure 3.5: SAT embedding of GF
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As an example, in Fig. 3.6, we give graphs which satisfy the conditions
in Theorem 3.1.8.

Figure 3.6: Graphs which have no SAT embeddings

From Theorems 3.1.5, 3.1.7 and 3.1.8, we get the following corollary on
graph minors with respect to SAT.

Corollary 3.1.9. Both a property that a graph has a strongly almost trivial
embedding and a property that a graph has no strongly almost trivial embed-
dings are not inherited by minors. ¤

As an example, we give the following graphs as illustrated in Fig. 3.7
where G1 ≺m G2 denotes that G1 is a minor of G2. We see that the graphs
(a) and (c) have a SAT embedding from Theorems 3.1.5 and 3.1.7, and (b)
has no SAT embeddings from Theorem 3.1.8.

m m

(a) SAT (b) no SAT (c) SAT

Figure 3.7: On graph minors

We give proofs in sections 3.2, 3.3, 3.4 and 3.5. In section 3.6, we introduce
some topics related to SAT.
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3.2 Proofs of Propositions 3.1.3, 3.1.4 and

3.1.6

We give proofs of Propositions 3.1.3, 3.1.4 and 3.1.6.

Proof of Proposition 3.1.3. The ‘only if’ part is obvious. We show that if ϕ is
not trivial then there exists a subgraph H of G which has a SAT embedding
such that ϕ|H is not trivial. If G has a SAT embedding then we put H = G.
If G has no SAT embeddings then there exists a proper subgraph H1 of G
such that ϕ|H1 is not trivial from the definition of SAT. If H1 has a SAT
embedding then we put H = H1. Similarly, if H1 has no SAT embeddings
then there exists a proper subgraph H2 of H1 such that ϕ|H2 is not trivial.
We continue in this manner. Since G is finite, Hi has a SAT embedding for
some i. Thus we put H = Hi.

Proof of Proposition 3.1.4. Let ϕ be a projection of G. Since G is intrinsi-
cally twistable, there exists a planar graph H ′ such that ϕ|H′ is not trivial.
By Proposition 3.1.3, there exists a subgraph H of H ′ which has a SAT
embedding such that ϕ|H is not trivial.

We recall the following lemma in [15, Lemma 2.1] to show Proposition
3.1.6.

Lemma 3.2.1. Let C1 and C2 be disjoint cycles of a graph G and G 6=
C1 ∪ C2. Let ϕ be a projection of G. If ϕ(C1) ∩ ϕ(C2) 6= ∅, then ϕ|C1∪C2 is
not trivial, namely ϕ is not strongly almost trivial.

Proof of Proposition 3.1.6. Let ϕ be a SAT projection. If ϕ(G) is discon-
nected, then there exists a proper subgraph H such that ϕ|H is not trivial
and ϕ(H) is connected. Let v be a vertex not in H. Then ϕ|G−v is not trivial,
this is a contradiction. Suppose that ϕ(G) is connected. Let H1 and H2 be
connected components such that ϕ(H1)∩ϕ(H2) 6= ∅. Let c ∈ ϕ(H1)∩ϕ(H2)
be a crossing. Let e1 (resp. e2) be the edge in H1 (resp. H2) such that
c ∈ ϕ(e1) (resp. c ∈ ϕ(e2)). Since e1 (resp. e2) is not a cut edge, there
exists a cycle C1 (resp. C2) such that e1 ∈ E(C1) (resp. e2 ∈ E(C2)). Then,
ϕ(C1) ∩ ϕ(C2) 6= ∅. By Lemma 3.2.1, ϕ is not SAT.
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3.3 Proof of Theorem 3.1.5

First we recall a color invariant defined in [17] to prove nontriviality of spatial
embeddings. In a diagram, edges are divided at each crossing. Here, each
part of edge is called a segment. A spatial graph diagram is said to be 3-
colorable if the diagram has the following four properties: (1) each segment
is drawn by one of three colors, (2) at least two colors are used, (3) either all
three colors or only one color are appeared at each crossing, (4) all segments
with the same end vertex are assigned by the same color. It is known in
[17] that for any connected graph G without odd degree vertices, if a spatial
embedding f of G has a 3-colorable diagram then f is nontrivial.

Proof of Theorem 3.1.5. Let f be a spatial embedding which is represented
by the diagram in Fig. 3.3. Since the diagram is 3-colorable as in Fig. 3.8, f is
nontrivial. Let f̂ be the projection which is the diagram without over/under
information in Fig. 3.3. It is obvious that for any proper subgraph H of G,
f̂ |H is trivial.

Figure 3.8: 3-colorable diagram

3.4 Proof of Theorem 3.1.7

First we recall the theorem in [40] to prove nontriviality of spatial embed-
dings. Let S2 ⊂ S3 be the one point compactification of the pair R2 ⊂ R3.
In this section, we consider projections on S2 and spatial graphs in S3 for the
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convenience. A spatial graph G is said to be irreducible if for any 2-sphere
S in S3 which intersects with G at most one point, G is contained in one of
the two 3-balls which are bounded by S. A 2-disk D embedded in S3 is said
to be good for G if ∂D is contained in G, intD ∩ G contains at most finitely
many points and for any x ∈ intD∩G a neighborhood of x looks like Fig. 3.9
where p and q are some positive integers. Here, there is a possibility that x
is an interior point of an edge or a vertex. Then a 2-disk D embedded in S3

is said to be contractible for G if D is good for G, and intD ∩ G is not empty
or ∂D∩cl(G − ∂D) is not just one point where cl denotes the closure. For
example, see Fig. 3.10.

p q
x

D

Figure 3.9:

contractible disks not contractible disk

Figure 3.10: Contractible disks and not contractible disk

Theorem 3.4.1. [40] Let G be a spatial graph in S3 and D a contractible
disk for G. Let G ′ be a spatial graph obtained from G by contracting D to one
point. If G ′ is irreducible then G is irreducible.

This theorem is useful to show that a spatial embedding f of G is non-
trivial for a graph G which has a cut edge or a cut vertex or a disconnected
graph G. In fact, if a spatial embedding f of such a graph is trivial then a
spatial graph f(G) is not irreducible. Therefore, if f(G) is irreducible then
f is not trivial. We give a proof of Theorem 3.1.7.
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Proof of Theorem 3.1.7. Let G1, G2, . . . , Gn be the connected components of
GF such that each of G1, . . . , Gm has an edge which is not a loop and each of
Gm+1, . . . , Gn has only one edge as a loop. We construct a SAT embedding
f of GF in the following way. We consider on a diagram. Here, we denote a
Hopf band by a broken line as in Fig. 3.11.

denotes or

Figure 3.11: Hopf band

1. For each set of the edges which are incident with a vertex v with dF (v) ≥
3, we attach a Hopf band to the edges as in Fig. 3.12.

2. For each edge which is incident with a vertex v with dF (v) = 1, we
attach a Hopf band to the edges as in Fig. 3.12.

3. For each edge which is not a loop, we replace Hopf bands as in
Fig. 3.13(3).

4. We choose an edge e1 of G1 which is not a loop. We add Hopf bands
as in Fig. 3.13(4) so that e1 has Hopf bands on oneself bn/2c times.

5. We choose an edge ei of Gi which is not a loop for each i = 2, 3, . . . ,m.
We add Hopf bands as in Fig. 3.13(4) so that ei has Hopf bands on
oneself. For each pair of edges e1 and ei and that of edges e1 and a loop
of Gk (k = m + 1, . . . , n), we replace Hopf bands as in Fig. 3.14(4’).

(1) (2)

Figure 3.12: Constructions (1) and (2)
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(3) (4)

Figure 3.13: Construction (3) and (4)

(4 )

G2

Gn

Gm+2

Gm+1 GnGm+1

G3

G1

G2

Gm+2

G3

G1

e2

e1

e3

e2

e1

e3

Figure 3.14: Construction (4)

We will see that each connected component is a SAT embedding by con-
structions (1), (2) and (3). The diagram in Fig. 3.5 is obtained in the above
way.

First we show that f is nontrivial by applying Theorem 3.4.1. Assume
that GF is connected. We recall that there exists a vertex v in a tree such
that every vertex adjacent to v, except possibly for one, has degree one. Let
v be such a vertex in F . Let v1, v2, . . . , vl be the vertices adjacent to v with
dF (vi) = 1 (i = 1, 2, . . . , l). Let Di be the disk in S3 whose boundary is the
loop incident with vi (i = 1, 2, . . . , l). Note that the disks are contractible.
We contract the disks as in Fig. 3.15. Then we contract the resultant disks
as in Fig. 3.15. If F is a star graph (resp. E(F ) is the set of one edge),
then we get a wheel graph (resp. a θ-curve) as in Fig. 3.16, and hence f is
nontrivial by Theorem 3.4.1. If F is the others, then we repeat this process
and get a wheel graph or a θ-curve, and hence f is nontrivial by Theorem
3.4.1.

Assume that GF is disconnected. First, we contract each Gi except ei

as above (i = 1, 2, . . . ,m). Then we get a diagram as in Fig. 3.17, and
further contract. The graph obtained in Fig. 3.17 is 2-connected. Hence f is
irreducible by Theorem 3.4.1, and therefore f is nontrivial.
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Figure 3.15: Contracting contractible disks

Figure 3.16: Contracting contractible disks

GnGm+1

G2

Gm+2

G3

G1

Figure 3.17: Contracting contractible disks
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Let f̂ be the projection which is a diagram obtained above without
over/under information. We show that for any proper subgraph H of GF , f̂ |H
is trivial. For the purpose we construct a digraph Df̂ from f̂ in the following
way. Let V (Df̂ ) be the set of the vertices corresponding to the edges of GF

and A(Df̂ ) the set of the arcs such that an arc joins a vertex corresponding
to e to a vertex corresponding e′ if and only if f(e′) has a cutting circle in
f̂ |G−e or e′ is a loop adjacent to e where a cutting circle intersects with f̂(e′)
transversally at exactly one point on S2. Note here that for any diagram D
obtained from f̂ , we can vanish all crossings on e in D as in Fig. 3.18 if f̂(e)
has a cutting circle.

C C

Figure 3.18: Vanishing crossings

Hence, it is sufficient to show that Df̂ is strongly connected, namely for
any pair of vertices w and w′ there exists a directed path from w to w′. For
vertices in Df̂ corresponding to the edges which are incident with a vertex
v with dF (v) ≥ 3, the induced subdigraph of Df̂ by these vertices is as
in Fig. 3.19(a) from construction (1) and (3). For a pair of vertices in Df̂

corresponding to a loop and the edge incident with the loop, the induced
subdigraph of Df̂ by these vertices is as in Fig. 3.19(b) from construction (2)
and (3). For a pair of vertices in Df̂ corresponding to edges e1 and ej and
edges e1 and a loop of Gk, the induced subdigraph of Df̂ by these vertices is
as in Fig. 3.19(c) from construction (4). For example, the digraph in Fig. 3.20
is constructed from a projection as in Fig. 3.5. Therefore we see that Df̂ is
strongly connected.

3.5 Proof of Theorem 3.1.8

In this section, we give a proof of Theorem 3.1.8.
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(a) (b) (c)

e
i

e1

Figure 3.19: Subdigraphs

Figure 3.20: Digraph of a projection in Fig. 3.5
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Proof of Theorem 3.1.8. We show that for any projection ϕ of G which is not
trivial, there exists a proper subgraph H of G such that ϕ|H is not trivial.
Let H1 and H2 be the connected subgraphs of G such that H1 ∪H2 = G− e.
If ϕ|H1 (resp. ϕ|H2) is not trivial then we put H = H1 (resp. H = H2). We
may assume that both ϕ|H1 and ϕ|H2 are trivial.

Assume that ϕ(H1) ∩ ϕ(H2) 6= ∅. Let c ∈ ϕ(H1) ∩ ϕ(H2) be a crossing.
Let e1 (resp. e2) be the edge in H1 (resp. H2) such that c ∈ ϕ(e1) (resp.
c ∈ ϕ(e2)). Since e1 (resp. e2) is not a cut edge, there exists a cycle C1 (resp.
C2) such that e1 ∈ E(C1) (resp. e2 ∈ E(C2)). Let H = C1 ∪ C2. Then ϕ|H
is not trivial by Lemma 3.2.1.

Assume that ϕ(H1) ∩ ϕ(H2) = ∅. We show that there exists a subgraph
H of G such that H is a handcuff graph and ϕ|H is not trivial. Now, there
exist no cutting circles on ϕ(e). Because, if there exists a cutting circle on
ϕ(e), then ϕ is trivial since both ϕ|H1 and ϕ|H2 are trivial. Let v1 ∈ V (H1)
(v2 ∈ V (H2)) be the end vertex of e. Let ē : [0, 1] → e be a parameter with
ē(v1) = 0 and ē(v2) = 1. Let t1 =max{t ∈ [0, 1]|ϕ ◦ ē(t) ∈ ϕ(H1)}. If t1 = 0
then this contradicts to the fact that there exist no cutting circles on ϕ(e).
We have t1 > 0. Let p1 = ϕ ◦ ē(t1). Let C ′

1 be a cycle of H1 such that
p1 ∈ ϕ(C ′

1). Similarly let t2 =min{t ∈ [0, 1]|ϕ ◦ ē(t) ∈ ϕ(H2)}. If t2 = 1 then
this contradicts to the fact that there exist no cutting circles on ϕ(e). We
have t2 < 1. Let p2 = ϕ◦ ē(t2). Let C ′

2 be a cycle of H2 such that pm ∈ ϕ(C ′
2).

Let P be a shortest path of G such that P contains both a vertex of C ′
1 and

that of C ′
2. Let H = C ′

1 ∪ C ′
2 ∪ P . Note that H is a handcuff graph. Since

there exist no cutting circles on ϕ(e), ϕ(H) has no cutting circles. It is known
in [39, Lemma 2] that one of the spatial embeddings in Fig. 3.21 is obtained
from ϕ|H if ϕ(H) has no cutting circles. Note that each spatial embedding
in Fig. 3.21 is nontrivial since we have a θ-curve by contracting contractible
disks. Therefore ϕ|H is not trivial.

Figure 3.21: Nontrivial spatial handcuff graphs
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3.6 Related Topics

We introduce some topics related to SAT embeddings. The following defini-
tion is known for knots. A knot diagram D is said to be everywhere n-trivial
[32] if for any subset C with n crossings of the set of the crossings of D, the
diagram obtained from D by switching over/under information at the cross-
ings of C represents the trivial knot. Then it is known that the trivial knot,
the trefoil knot and the figure-eight-knot have everywhere 1-trivial diagrams
as in Fig. 3.22. Moreover, Stoimenow and Askitas conjecture that the only
knots which have an every-where 1-trivial diagram are the trivial knot, the
trefoil knot and the figure-eight-knot [32, Conjecture 5.2].

Figure 3.22: Everywhere 1-trivial diagrams of the trefoil knot and the figure-
eight-knot

Now, we generalize this definition for diagrams of a spatial embedding.
Namely, a diagram D is said to be everywhere n-trivial if for any subset C
with n crossings of the set of the crossings of D, the diagram obtained from
D by switching over/under information at the crossings of C represents the
trivial spatial graph. Then we see that the diagram in Fig. 3.3 is everywhere
1-trivial and so are diagrams constructed in the proof of Theorem 3.1.7. Also,
the diagrams in Fig. 3.1 and Fig. 3.21 are everywhere 1-trivial. Finally we
remark that these spatial graphs have n-trivial diagrams for certain n in the
sense of [28]. Therefore they have trivial finite type invariants of order less
than n in the sense of [31].

63



Bibliography

[1] N. Askitas, E. Kalfagianni, On knot adjacency, Topology Appl. 126 (2002), 63–81.

[2] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), 423–472.

[3] J. S. Birman, X.-S. Lin, Knot polynomials and Vassiliev’s invariants. Invent. Math.
111 (1993), 225–270.

[4] A. D. Bates and A. Maxwell, “DNA Topology” (2nd ed.), Oxford university press,
2005.

[5] J. Clark and D. A. Holton, “A first look at graph theory”, World Scientific Publishing
Co., 1991.

[6] T. D. Cochran and R. E. Gompf, Applications of Donaldson’s theorems to classical
knot concordance, homology 3-spheres and property P, Topology 27 (1988) 495–512.

[7] P. R. Cromwell, Homogeneous links, J. London Math. Soc. (2) 39 (1989), 535–552.

[8] F. B. Dean, A. Stasiak, Th. Koller, N. R. Cozzarelli, Duplex DNA knots produced by
Escherichia coli topoisomerase I, structure and requirements for formation, J. Biol.
Chem. 260 (1985), 4975–4983.

[9] A. DeCelles, J. Foisy, C. Versace and A. Wilson, On graphs for which every planar
immersion lifts to a knotted spatial embedding, Involve 1 (2008), 145–158.

[10] R. Diestel, “Graph theory”, Springer-Verlag, 2005.

[11] C. H. Dowker, B. Thistlethwaite, Classification of knot projections, Topology Appl.
16 (1983), 19–31.

[12] R. Hanaki, Regular projections of knotted double-handcuff graphs, to appear in J.
Knot Theory Ramifications.

[13] Y. Huh, G. T. Jin and S. Oh, Strongly almost trivial θ-curves, J. Knot Theory Ram-
ifications 11 (2002), 153–164.

[14] Y. Huh, G. T. Jin and S. Oh, An elementary set for θn-curve projections, J. Knot
Theory Ramifications 11 (2002), 1243–1250.

[15] Y. Huh and S. Oh, Planar graphs producing no strongly almost trivial embedding, J.
Graph Theory 43 (2003), 319–326.

64



[16] Y. Huh, K. Taniyama, Identifiable projections of spatial graphs, J. Knot Theory Ram-
ifications 13 (2004), 991–998.

[17] Y. Ishii and A. Yasuhara, Color invariant for spatial graphs, J. Knot Theory Rami-
fications 6 (1997), 319–325.

[18] L. H. Kauffman, Invariants of graphs in three-space, Trans. Amer. Math. Soc. 311
(1989), 697–710.

[19] A. Kawauchi, Almost identical imitations of (3, 1)-dimensional manifold pairs, Osaka
J. Math. 26 (1989), 743–758.

[20] S. Kinoshita and J. Mikasa, On projections of spatial theta-curves, Kwansei Gakuin
University (1993) In Japanese.

[21] R. Kirby, Problems in low-dimensional topology, Geometric topology, Amer. Math.
Soc., Providence, RI, (1997), 35–473.

[22] K. Kobayashi, private communication.

[23] W. Mason, Homeomorphic continuous curves in 2-space are isotopic in 3-space,
Trans. Amer. Math. Soc. 142 (1969), 269–290.

[24] K. Murasugi, “Knot theory & its applications”, Modern Birkhäuser Classics, 2008.
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