
A Study of Syntactic Typed-Dependency Trees for English and Japanese

and Graph-Centrality Measures

A doctoral dissertation

submitted in the partial satisfaction of the requirements

for the degree of Doctor of Education

Waseda University

Masanori Oya

2014

ii

Acknowledgements

First of all, I am truly honored to express my deepest gratitude to my supervisor, Dr. Michiko

Nakano, for her critical, profound and wide-reaching suggestions on my work, and also for her

longstanding and enthusiastic help for my study as a graduate student at Waseda University, and as

a graduate student at School of Computing, Dublin City University. Her suggestions

substantially improved the quality of this dissertation, and she taught me a variety of significant

ideas through her teaching and work at Waseda University. Moreover, her recommendation of me

to Prof. Josef van Genabith at School of Computing, Dublin City University, gave me the

opportunity to study there as a fully-scholarshipped graduate student. I would also like to thank

Dr. Masakazu Kuno, Dr. Tomoko Okuma, Dr. Ryo Otoguro, and Dr. Yasuyo Sawaki for their

careful reviews and critical suggestions.

I would like to thank all my colleagues at Graduate School of Education, Waseda University:

Dr. Junko Negishi, Koichi Ano, Kazuharu Owada, Norifumi Ueda, Kanji Horiguchi, Eiichiro

Tsutsui, Dr. Yusuke Kondo, Aya Kitagawa, Akiko Watanabe, Kota Wachi, Satoshi Yoshida, Yutaka

Ishii, and all the other members of Dr. Nakano’s laboratory. Thanks to them, I have been enjoying

my academic and social life in Tokyo.

Special thanks go to my parents, Tetsuro Oya and Sanae Oya, who always wish me good health

and a happy life. Thank you very much indeed, and I wish you good health and longevity.

Lastly, but not the least, I thank my wife Seiko for her wholehearted help and determined

encouragement for me to complete this dissertation. Seiko, I love you, and your smile.

iii

Table of Contents

Acknowledgements ...ii

Table of Contents ...iii

List of Figures ..ix

List of Tables..xl

1. Introduction ...1

2. Dependency Grammar...6

2.1 Introduction ...6

2.2 Dependency Grammar: an Overview ..6

2.3 Tesnière’s (1959) Dependency Grammar..7

2.4 Mel’čuk’s Dependency Grammar ... 9

2.4.1 Deep-Syntactic representation and Surface-Syntactic representation10

2.4.2 DSyntRels: language-independent dependency relations ...11

2.4.3 SSyntRels: language-specific dependency relations...14

2.4.4 Significance of Mel’čuk’s Criteria .. 24

2.5 Dependency Grammar and Phrase-structure Grammar...24

2.5.1 Comparison of two formalisms...25

2.5.2 Translation of phrase structure into dependency structure ...26

2.6 Summary..32

3. Typed-Dependency Trees and Lexical-Functional Grammar ...34

3.1 Introduction ...34

3.2 Lexical-Functional Grammar (LFG) ...35

3.2.1 Structural correspondence...35

3.2.2 Well-formedness constraints...44

3.3 Equivalence of the Functional-Structure Representation and the Typed-Dependency Tree

Representation for a Sentence ...47

iv

3.3.1 Overview...48

3.3.2 Fragment functional structure and dependency ..50

3.3.3 Integrating fragment functional structures..53

3.3.4 Fragment functional structures and Mel’čuk’s Criterion A .. 61

3.4 Functional Structure as an Extension of Dependency Grammar: an Example from

Pseud-Cleft Sentences ...64

3.5 Summary..66

4. Typed-Dependency Trees and Graph Theory ...67

4.1 Introduction ...67

4.2 Graph Theory...68

4.3 Graph Centrality ..72

4.3.1 Degree Centrality ..72

4.3.2 Closeness Centrality..79

4.4 Typed-Dependency Tree Centralities as Similarity Measures for Their

Functional-Structure Representations..82

4.5 Centrality Measures and Different Genres of Texts..93

4.6 Dependency Distance ..97

4.7 Summary..99

5. Dependency Parsing of English Sentences by Stanford Parser...101

5.1 Introduction ...101

5.2 The Output Format of the Stanford Parser ..102

5.3 The Definition of Each Dependency Type used in Stanford Dependencies104

5.3.1 Root...107

5.3.2 Aux - auxiliaries..111

5.3.3 Arg - arguments ..123

5.3.4 Mod - modifiers ..193

5.3.5 Parataxis..294

v

5.3.6. Punct...296

5.4 Different Typed-Dependency Output Styles ...296

5.4.1 Basic dependencies ...297

5.4.2 Collapsed dependencies ..299

5.4.3 Collapsed dependencies with propagation of conjunct dependencies301

5.4.4 Collapsed tree..302

5.4.5 Non-collapsed dependencies...304

5.5 Summary..304

6. Dependency Parsing of Japanese Sentences by KNP ...306

6.1 Introduction ...306

6.2 The Output Format of KNP...307

6.3 Dependency-Type Annotation to KNP Output ...310

6.4 Treatment of Zero Pronouns..312

6.4.1 Examples of “elliptic” sentences ..312

6.4.2 Functional-structure representation of elliptic Japanese sentences314

6.4.3 Semantic types of Japanese zero pronouns ...318

6.4.4 Zero pronouns and topic ...335

6.5 The Definition of Each Dependency Type for Japanese ...344

6.5.1 Postp..345

6.5.2 Topic ...369

6.5.3 Focus ...375

6.5.4 Advmod...380

6.5.5 Amod...386

6.5.6 Det...388

6.5.7 Rcmod ...392

6.5.8 Ccomp...397

vi

6.5.9 Advcl...399

6.5.10 Treatment of Coordinates ...404

6.6 Summary..406

7. Data analyses...408

7.1 Introduction ...408

7.2 Features Extractable from Typed-Dependency Trees ...409

7.3 Parsing Accuracy of the Stanford Parser ...410

7.3.1 Two types of dependency parse errors..410

7.3.2 Data description ..415

7.3.3 Procedure ..415

7.3.4 Results...421

7.3.5 Discussion ...427

7.3.6 Related work ...428

7.4 Parsing Accuracy of KNP..428

7.4.1 Data description ..428

7.4.2 Four types of dependency parse errors ...429

7.4.3 Procedure ..429

7.4.4 Results...430

7.4.5 Discussion ...436

7.4.6 Related work ...437

7.5 Degree and Closeness Centralities of English-Japanese Sentence Pairs437

7.5.1 Data description ..438

7.5.2 Procedure ..438

7.5.3 Results...439

7.5.4 Discussion ...447

vii

7.6 Degree and Closeness Centralities of sentences from Manually Annotated Sub Corpus of

American National Corpus (MASC 500k) ..447

7.6.1 Data description ..448

7.6.2 Procedure ..449

7.6.3 Results...450

7.6.4 Discussion ...459

7.7 Summary..460

8. Conclusion...462

References ...467

Appendix I: The Hierarchy of Dependency Types (de Marneffe & Manning 2012)479

Appendix II: The list of incorrect parses for English sentences in Basic 300 (Iida 2010) by

Stanford Parser ..482

Appendix III: The list of incorrect parses for Japanese sentences in Basic 300 (Iida 2010) by

KNP...517

Appendix IV: The Ruby script for converting Stanford Parser output into Pajek .net files547

Appendix V: The Ruby script for converting KNP output into Stanford-Parser-style

typed-dependency triples...549

Appendix VI: The Ruby script for calculating the precision, recall, and f-score of each

dependency type..558

Appendix VII: The Ruby script for calculating the degree centrality, the closeness centrality, and

the average dependency distance from the Pajek-style .net files of the typed-dependency trees564

Appendix VIII: The degree centralities and closeness centralities in each section of MASC 500K

...573

Blog section ...573

Essay section..575

Ficlets section ..577

Fiction section..579

Government document section ..581

viii

Joke section..583

Journal section ...585

News section..587

Non-fiction section ..589

Technical report section...591

Travel guide section...593

ix

List of Figures

Figure 2.1. The dependency relation between ‘the’ and ‘window’ in the phrase ‘the window’....15

Figure 2.2. The dependency tree for ‘Sarah has read this book.’..19

Figure 3.3. The phrase-structure tree for ‘Sarah read this book.’ ...25

Figure 3.4. The dependency tree for ‘Sarah read this book.’ ..26

Figure 2.5. The phrase structure for ‘This structure is exocentric.’ ..28

Figure 2.6. The dependency structure for ‘This structure is exocentric.’29

Figure 2.7. The phrase structure for ‘Will this sentence make sense?’ ...30

Figure 2.8. The dependency structure for ‘Will this sentence make sense?’30

Figure 2.9. The phrase structure for ‘Will this sentence make sense?’ with traces of the moved

auxiliary. ..30

Figure 2.10. The dependency structure for ‘Will this sentence make sense?’ with traces of the

moved auxiliary. ..31

Figure 2.11. The dependency structure for ‘Will this sentence make sense?’ in Stanford-

Dependencies format...32

Figure 3.1 The correspondence between the phrase structure and the functional structure

represented by the PS rule (3.2) ..37

Figure 3.2. The correspondence between the phrase structure and the functional structure

represented by the PS rule (3.4) ..39

Figure 3.3. The correspondence between the phrase structure and the functional structure

represented by the PS rule (3.6) ..40

x

Figure 3.4. The correspondence between the phrase structure and the functional structure

represented by the PS rules (3.2), (3.4) and (3.6)..41

Figure 3.5. The constituent structure for ‘John studies languages’ with the lexical information for

each word ..43

Figure 3.6. The functional structure for ‘John studies languages.’ ...44

Figure 3.7. The f-structure for ‘Sarah reads.’..44

Figure 3.8. The f-structure for ‘Sarah fell the book.’ ..45

Figure 3.9. The f-structure for ‘*Sarah has read these book.’...47

Figure 3.10. The functional structure for the sentence (3.13) ...49

Figure 3.11. The typed-dependency tree for the sentence (3.13) ..49

Figure 3.12. Schema for the equivalence between a typed-dependency tree and a functional

structure (Oya 2013c, p.24)...50

Figure 3.13. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘written’ and ‘David’ in (3.13)...51

Figure 3.14. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘written’ and ‘has’ in (3.13) ...52

Figure 3.15. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘written’ and ‘article’ in (3.13) ..52

Figure 3.16. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘article’ and ‘this’ in (3.13) ..53

Figure 3.17. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘written’ and ‘.’ in (3.13) ...53

xi

Figure 3.18. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘written’ and ‘David’ in the sentence (3.13).............................55

Figure 3.19. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘write’ and ‘article’ in the sentence (3.13)56

Figure 3.20. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘David,’ ‘written’ and ‘article’ in the sentence (3.13)57

Figure 3.21. Lexicalized schema for the equivalence between the typed-dependency tree and the

f-structure for ‘written’ and ‘has’ in the sentence (3.13) ...57

Figure 3.22. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘David,’ ‘has,’ ‘written’ and ‘article’ in the sentence (3.13)58

Figure 3.23. Lexicalized schema for the equivalence between the typed-dependency tree and the

f-structure for ‘article’ and ‘this’ in the sentence (3.13)..58

Figure 3.24. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘David,’ ‘has,’ ‘written,’ ‘this’ and ‘article’ in the sentence

(3.13) ...59

Figure 3.25. Lexicalized schema for the equivalence between the typed-dependency tree and the

f-structure for ‘write’ and ‘.’ in the sentence (3.13) ..60

Figure 3.26. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘David,’ ‘has,’ ‘written,’ ‘this,’ ‘article’ and ‘.’ in the sentence

(3.13) ...60

Figure 3.27. The typed-dependency tree and its functional-structure equivalent for the sentence

(3.13) ...61

Figure 3.28. Non-equivalence between a wrong dependency and functional structure................62

xii

Figure 3.29. The typed-dependency tree for ‘*What the chairman has resigned is from the board.’

...64

Figure 3.30. The functional structure for ‘*What the chairman has resigned is from the board.’ 65

Figure 4.1. An example of a graph (n=5) (Oya 2010b, p. 394)...68

Figure 4.2. An example of a directed acyclic graph (n=5) (Oya 2010b, p. 394)...........................69

Figure 4.3. The typed-dependency directed acyclic graph for ‘I am studying graph theory.’70

Figure 4.4. An ill-formed typed-dependency tree (more than one indegree)70

Figure 4.5. An ill-formed typed-dependency tree (cycled) ...71

Figure 4.6. The typed-dependency tree for ‘Sarah would have read this book.’ (Oya 2013a, p.44)

...74

Figure 4.7. The typed-dependency tree for ‘Sarah made David read this book.’ (Oya 2013a, p.44)

...75

Figure 4.8. The typed-dependency tree for ‘Sarah-wa David-ni kono hon-wo yomaseta (Sarah

made David read this book.)’ (Oya 2013a, p.44) ..75

Figure 4.9. The functional-structure representation for ‘Sarah made David read this book.’.......76

Figure 4.10. The functional-structure representation for ‘Sarah-wa David-ni kono hon-wo

yomaseta (Sarah made David read this book.)’...77

Figure 4.11. The biclausal typed-dependency tree for ‘Sarah-wa David-ni sono hon-wo yomaseta.

(Sarah made David read this book.)’...77

Figure 4.12. The biclausal functional-structure representation for ‘Sarah-wa David-ni sono

hon-wo yomaseta. (Sarah made David read this book.)’ ..78

Figure 4.13. The typed-dependency tree for ‘My brother has read this book.’ (Oya 2013a, p.45)

xiii

...81

Figure 4.14. The typed-dependency tree for ‘Sarah read the books David has.’ (Oya 2013a, p.45)

...82

Figure 4.15. The flattest possible typed-dependency tree for a string ‘W1 W2 W3 W4 W5’83

Figure 4.16. The functional structure equivalent to the flattest possible typed-dependency tree for

the string ‘W1 W2 W3 W4 W5’..83

Figure 4.17. The most embedded possible typed-dependency tree for the string ‘W1 W2 W3 W4

W5’..84

Figure 4.18. The functional structure equivalent to the most embedded possible typed-dependency

tree for the string “W1 W2 W3 W4 W5” ..84

Figure 4.19. The typed-dependency tree for (4.1a) ‘Sarah has already read this book.’86

Figure 4.20. The typed-dependency tree for (4.1b) ‘Sarawa mou kono honwo yonda.’87

Figure 4.21. The f-structure for (4.1a) ‘Sarah has already read this book.’87

Figure 4.22. The f-structure for (4.1b) ‘Sarawa mou kono honwo yonda.’88

Figure 4.23. The typed-dependency tree for (4.2a) ‘The convenience store is on the other side of

the street.’ ..88

Figure 4.24. The typed-dependency tree for (4.2b) ‘Konbiniwa toorino mukougawani arimasu.’

...89

Figure 4.25. The f-structure for (4.2a) ‘The convenience store is on the other side of the street.’

...89

Figure 4.26. The f-structure for (4.2b) ‘Konbiniwa toorino mukougawani arimasu.’90

Figure 4.27. The typed-dependency tree for (4.3a) ‘There seems to be something wrong with this

xiv

computer.’..90

Figure 4.28. The typed-dependency tree for (4.3b) ‘Kono pasokonwa dokoka

koshoushiteirumitaida.’ ...91

Figure 4.29. The f-structure for (4.3a) ‘There seems to be something wrong this this computer.’

...91

Figure 4.30. The f-structure for (4.3b) ‘Kono pasokonwa dokoka koshoushiteirumitaida.’92

Figure 4.31. The centrality continuums of Group 1 sentences (represented as circles) and Group

2 sentences (represented as stars)..94

Figure 4.32. The distribution of degree centralities and closeness centralities of the

typed-dependency trees in Japanese (n=342)..95

Figure 4.33. The distribution of the degree centralities and closeness centralities of the

typed-dependency trees in SLA (n=160)...95

Figure 4.34. The distribution of the degree centralities and closeness centralities of the

typed-dependency trees in Golden Bough (n=156)...96

Figure 4.35. The typed-dependency tree representation for ‘Sarah has read this book.’..............97

Figure 5.1. The typed-dependency tree for ‘Sarah will read this book.’.....................................103

Figure 5.2. The functional structure for ‘Sarah will read the book.’...104

Figure 5.3. The typed-dependency tree for ‘Sarah has read this book.’......................................107

Figure 5.4. The typed-dependency tree for ‘Sarah has read this book. She enjoyed it.’.............108

Figure 5.5. The typed-dependency tree with discourse dependency types for ‘Sarah has read this

book. She enjoyed it.’..109

Figure 5.6. The functional structure for ‘Sarah has read the book. She enjoyed it.’................ 110

xv

Figure 5.7. The typed-dependency tree for ‘Sarah can read the book.’ 112

Figure 5.8. The functional structure for ‘Sarah can read the book.’ ... 113

Figure 5.9. The typed-dependency tree for ‘Sarah is reading the book.’ 113

Figure 5.10. The functional structure for ‘Sarah is reading the book.’ 114

Figure 5.11. The typed-dependency tree for ‘Sarah will have been reading the book.’ 115

Figure 5.12. The functional structure for ‘Sarah will have been reading the book.’ 116

Figure 5.13. The typed-dependency tree for ‘This book could have been read by Sarah.’......... 117

Figure 5.14. The functional structure for ‘This book could have been read by Sarah.’.............. 118

Figure 5.15. The typed-dependency tree for ‘Sarah is a student.’...120

Figure 5.16. The functional structure for ‘Sarah is a student.’..121

Figure 5.17. The typed-dependency tree for ‘Sarah is intelligent.’...122

Figure 5.18. The functional structure for ‘Sarah is intelligent.’..122

Figure 5.19. The typed-dependency tree for ‘This book could have been read by Sarah’ with the

dependency type “agent”...124

Figure 5.20. The functional structure for ‘This book could have been read by Sarah.’ with the

dependency type “agent.”..124

Figure 5.21. The typed-dependency tree for ‘It has become possible.’126

Figure 5.22. The functional structure for ‘It has become possible.’ ...126

Figure 5.23. The typed-dependency tree for ‘Sarah fell asleep.’ ..127

Figure 5.24. The functional structure for ‘Sarah fell asleep.’ ...127

Figure 5.25. The typed-dependency tree for ‘Sarah looks healthy.’ ...128

xvi

Figure 5.26. The functional structure for ‘Sarah looks healthy.’ ..128

Figure 5.27. The typed-dependency tree for ‘The story sounds interesting.’129

Figure 5.28. The functional structure for ‘The story sounds interesting.’...................................129

Figure 5.29. The typed-dependency tree for ‘Sarah kept silent.’ ..130

Figure 5.30. The functional structure for ‘Sarah kept silent.’ ...130

Figure 5.31. The typed-dependency tree for ‘Sarah stood still.’...131

Figure 5.32. The functional structure for ‘Sarah stood still.’ ..131

Figure 5.33. The typed-dependency tree for ‘Sarah seems healthy.’ ..132

Figure 5.34. The functional structure for ‘Sarah seems healthy.’ ...132

Figure 5.35. The typed-dependency tree for ‘Sarah appears healthy.’..133

Figure 5.36. The functional structure for ‘Sarah appears healthy.’ ...133

Figure 5.37. The typed-dependency tree for ‘What is that?’...134

Figure 5.38. The functional structure for ‘What is that?’..135

Figure 5.39. The typed-dependency tree for ‘Sarah says that David is honest.’.........................136

Figure 5.40. The functional structure for ‘Sarah says that David is honest.’137

Figure 5.41. The typed-dependency tree for ‘Sarah wonders whether David is honest.’137

Figure 5.42. The functional structure for ‘Sarah wonders whether David is honest.’138

Figure 5.43. The typed-dependency tree for ‘Sarah tried to go there.’140

Figure 5.44. The functional structure for ‘Sarah tried to go there.’ ..141

Figure 5.45. The typed-dependency tree for ‘Sarah persuaded David to go there.’142

xvii

Figure 5.46. The functional structure for ‘Sarah persuaded David to go there.’.........................142

Figure 5.47. The typed-dependency tree for ‘Sarah persuaded David to go there.’ in Stanford

Parser output..143

Figure 5.48. The functional structure for ‘Sarah persuaded David to go there.’ which is

equivalent to the typed-dependency tree in Figure 5.47 ...144

Figure 5.49. The typed-dependency tree for ‘Sarah promised David to go there.’.....................145

Figure 5.50. The functional structure for ‘Sarah promised David to go there.’..........................145

Figure 5.51. The typed-dependency tree for ‘Sarah promised David to go there’ in the Stanford

Parser output..146

Figure 5.52. The functional structure for ‘Sarah promised David to go there.’ which is equivalent

to the typed-dependency tree in Figure 5.51 ...147

Figure 5.53. The typed-dependency tree for ‘Sarah has to read this book.’ in the Stanford Parser

output...148

Figure 5.54. The functional structure for ‘Sarah has to read this book.’.....................................149

Figure 5.55. The typed-dependency tree for ‘Sarah is to read this book.’ in the Stanford Parser

output...150

Figure 5.56. The functional structure for ‘Sarah is to read this book.’150

Figure 5.57. The typed-dependency tree for ‘Sarah ought to read this book.’............................151

Figure 5.58. The functional structure for ‘Sarah ought to read this book.’.................................152

Figure 5.59. The typed-dependency tree for ‘Sarah is fond of reading books.’..........................153

Figure 5.60. The functional structure for ‘Sarah is fond of reading books.’...............................154

xviii

Figure 5.61. The typed-dependency tree for ‘Sarah helped David with writing a book.’...........154

Figure 5.62. The functional structure for ‘Sarah helped David with writing a book.’................155

Figure 5.63. The typed-dependency tree for ‘Sarah apologized for being late.’.........................156

Figure 5.64. The functional structure for ‘Sarah apologized for being late.’..............................156

Figure 5.65. The typed-dependency tree for ‘Sarah has written this book.’159

Figure 5.66. The functional structure for ‘Sarah has written this book.’159

Figure 5.67. The typed-dependency tree for ‘Sarah has given David a book.’...........................160

Figure 5.68. The functional structure for ‘Sarah has given David a book.’161

Figure 5.69. The typed-dependency tree for ‘Sarah has read David a book.’.............................161

Figure 5.70. The functional structure for ‘Sarah has read David a book.’162

Figure 5.71. The typed-dependency tree for ‘Sarah has given this book to David.’...................163

Figure 5.72. The functional structure for ‘Sarah has given this book to David.’........................163

Figure 5.73. The typed-dependency tree for ‘This book, Sarah has written.’.............................164

Figure 5.74. The functional structure for ‘This book, Sarah has written.’..................................165

Figure 5.75. The typed-dependency tree for ‘This book, Sarah has written.’ with the dependency

type “topic.” ..166

Figure 5.76. The functional structure for ‘This book, Sarah has written.’ with the dependency

type “topic.” ..167

Figure 5.77. The incorrect typed-dependency tree for ‘This book, Sarah has written’ in the

Stanford Parser output ...168

Figure 5.78. The typed-dependency tree for ‘What has Sarah written?’ in the Stanford Parser

xix

output...169

Figure 5.79. The functional structure for ‘What has Sarah written?’..169

Figure 5.80. The incorrect typed-dependency tree for ‘Who has Sarah given this book?’ in the

Stanford Parser output. ..170

Figure 5.81. The correct typed-dependency tree for ‘Who has Sarah given this book?’............171

Figure 5.82. The functional structure for ‘Who has Sarah given this book?’171

Figure 5.83. The typed-dependency tree for ‘Who has Sarah given this book to?’ in the Stanford

Parser output..172

Figure 5.84. The correct typed-dependency tree for ‘Who has Sarah given this book to?’........173

Figure 5.85. The functional structure for ‘Who has Sarah given this book to?’173

Figure 5.86. The typed-dependency tree for ‘Sarah will write an article.’174

Figure 5.87. The functional structure for ‘Sarah will write an article.’175

Figure 5.88. The typed-dependency tree for ‘What Sarah said surprised David.’176

Figure 5.89. The functional structure for ‘What Sarah said surprised David.’176

Figure 5.90. The typed-dependency tree for ‘To write a thesis is fun.’177

Figure 5.91. The functional structure for ‘To write a thesis is fun.’ ...178

Figure 5.92. The typed-dependency tree for ‘Writing a thesis is fun.’178

Figure 5.93. The functional structure for ‘Writing a thesis is fun.’...179

Figure 5.94. The typed-dependency tree for ‘Writing is fun.’ in the Stanford Parser output......180

Figure 5.95. The functional structure for ‘Writing is fun.’ ...180

Figure 5.96. The typed-dependency tree for ‘Running in the morning is fun.’180

xx

Figure 5.97. The functional structure for ‘Running in the morning is fun.’181

Figure 5.98. The typed-dependency tree for ‘Running is fun.’ ...181

Figure 5.99. The functional structure for ‘Running is fun.’ ..182

Figure 5.100. The typed-dependency tree for ‘This could have been read by Sarah.’................183

Figure 5.101. The typed-dependency tree for ‘That Sarah lied was suspected by everyone.’....184

Figure 5.102. The functional structure for ‘That Sarah lied was suspected by everyone.’185

Figure 5.103. The asymmetric typed-dependency tree for ‘Sarah has read this book and that

book.’...186

Figure 5.104. The symmetric typed-dependency tree for ‘Sarah has read this book and that book.’

...187

Figure 5.105. The functional structure for ‘Sarah has read this book and that book.’................188

Figure 5.106. The typed-dependency tree for ‘Sarah is the best and the brightest.’189

Figure 5.107. The typed-dependency tree for ‘Sarah has read this book and written this book.’

...189

Figure 5.108. The typed-dependency tree for ‘There are some books on the desk.’190

Figure 5.109. The functional structure for ‘There are some books on the desk.’191

Figure 5.110. The typed-dependency tree for ‘There seems to be some books on the desk.’.....192

Figure 5.111. the functional structure for ‘There seems to be some books on the table.’...........192

Figure 5.112. The typed-dependency tree for ‘Sarah does not like David.’194

Figure 5.113. The functional structure for ‘Sarah does not like David.’.....................................194

Figure 5.114. The typed-dependency tree for ‘Sarah has never gone there.’..............................194

xxi

Figure 5.115. The functional structure for ‘Sarah has never gone there.”195

Figure 5.116. The typed-dependency tree for ‘Nobody has read this book.’195

Figure 5.117. The typed-dependency tree for ‘Sarah has read nothing.’196

Figure 5.118. The typed-dependency tree for ‘Sarah has read these books.’..............................197

Figure 5.119. The functional structure for ‘Sarah has read these books.’...................................198

Figure 5.120. The typed-dependency tree for ‘Which book has Sarah read?’............................198

Figure 5.121. The functional structure for ‘Which book has Sarah read?’199

Figure 5.122. The typed-dependency tree for ‘Sarah will read whatever books David has.’200

Figure 5.123. The functional structure for ‘Sarah will read whatever books David has.’200

Figure 5.124. A typed-dependency tree for ‘Sarah has read the book in the room.’ (according to

the default Stanford Parser output)..202

Figure 5.125. The functional structure for ‘Sarah has read the book in the room.’ equivalent to

the typed-dependency tree in Figure 5.124 ...203

Figure 5.126. Another typed-dependency tree for ‘Sarah has read the book in the room.’204

Figure 5.127. The functional structure for ‘Sarah has read the book in the room.’ equivalent to

the typed-dependency tree in Figure 5.126 ...205

Figure 5.128. The typed-dependency tree for ‘Sarah is at work in her office.’ (according to the

default Stanford Parser output) ...205

Figure 5.129. The functional structure for ‘Sarah is at work in her office.’ equivalent to the

typed-dependency tree in Figure 5.128 ...206

Figure 5.130. Another typed-dependency tree for ‘Sarah is at work in her office.’....................206

xxii

Figure 5.131. The functional structure for ‘Sarah is at work in her office.’ equivalent to the

typed-dependency tree in Figure 5.130 ...207

Figure 5.132. The typed-dependency tree for ‘Sarah has read the book without using dictionaries.’

...209

Figure 5.133. The functional structure for ‘Sarah has read this book without using dictionaries.’

...210

Figure 5.134. The typed-dependency tree for ‘Sarah had no difficulty in understanding the book.’

... 211

Figure 5.135. The functional structure for ‘Sarah had no difficulty in understanding the book.’

...212

Figure 5.136. The typed-dependency tree for ‘Sarah is responsible for writing a report.’213

Figure 5.137. The functional structure for ‘Sarah is responsible for writing a report.’213

Figure 5.138. The typed-dependency tree for ‘Sarah has read an interesting book.’..................215

Figure 5.139. The functional structure for ‘Sarah has read an interesting book.’.......................215

Figure 5.140. The typed-dependency tree for ‘Sarah has read something interesting.’..............216

Figure 5.141. The incorrect typed-dependency tree for ‘Sarah has read something interesting’ in

the Stanford Parser output ...216

Figure 5.142. The typed-dependency tree for ‘Sarah has read the latest book of linguistics

carefully.’...218

Figure 5.143. The functional structure for ‘Sarah has read the latest book of linguistics carefully.’

...218

Figure 5.144. The typed-dependency tree for ‘Naturally, Sarah speaks Russian’ in the output of

xxiii

the Stanford Parser. ...219

Figure 5.145. The typed-dependency tree for ‘Sarah speaks Russian naturally’ in the output of the

Stanford Parser. ...219

Figure 5.146. A possible typed-dependency tree for ‘Naturally, Sarah speaks Russian.’220

Figure 5.147. The functional structure for ‘Naturally, Sarah speaks Russian.’220

Figure 5.148. The typed-dependency tree for ‘David likes Sarah’s books.’221

Figure 5.149. The functional structure for ‘David likes Sarah’s books.’222

Figure 5.150. The typed-dependency tree for ‘David likes her books.’......................................222

Figure 5.151. The functional structure for ‘David likes her books.’...223

Figure 5.152. The typed-dependency tree for ‘David likes Sarah’s.’..223

Figure 5.153. The functional structure for ‘David likes Sarah’s.’...224

Figure 5.154. Another functional structure for ‘David likes Sarah’s.’ ..224

Figure 5.155. The typed-dependency tree for ‘David likes hers.’...225

Figure 5.156. The functional structure for ‘David likes hers.’..225

Figure 5.157. The typed-dependency tree for ‘Sarah has something to say.’227

Figure 5.158. The functional structure for ‘Sarah has something to say.’228

Figure 5.159. The typed-dependency tree for ‘Sarah knows what to do.’229

Figure 5.160. The functional structure for ‘Sarah knows what to do.’229

Figure 5.161. The typed-dependency tree for ‘Sarah knows where to go.’230

Figure 5.162. The functional structure for ‘Sarah knows where to go.’230

Figure 5.163. The incorrect typed-dependency tree for ‘Sarah knows what to do’ in the Stanford

xxiv

Parser output..231

Figure 5.164. The incorrect typed-dependency tree for ‘Sarah knows where to go’ in the Stanford

Parser output..231

Figure 5.165. The typed-dependency tree for ‘The essay written by Sarah is interesting.’........233

Figure 5.166. The functional structure for ‘The essay written by Sarah is interesting.’.............234

Figure 5.167. The typed-dependency tree for ‘Writing the essay, Sarah was thinking about David.’

...235

Figure 5.168. The typed-dependency tree for ‘Sarah had read the books written by David before

she visited him.’ ..236

Figure 5.169. The typed-dependency tree for ‘Sarah has read the books written by David because

she admires him.’ ..237

Figure 5.170. The typed-dependency tree for ‘Sarah didn’t know if it was true.’238

Figure 5.171. The typed-dependency tree for ‘Sarah didn’t know if it was true.’ in the Stanford

Parser output..238

Figure 5.172. The typed-dependency tree for ‘Sarah has read the book David wrote.’..............240

Figure 5.173. The functional structure for ‘Sarah has read the book David wrote.’...................241

Figure 5.174. The typed-dependency tree for ‘Sarah has read the book David gave to her.’242

Figure 5.175. The functional structure for ‘Sarah has read the book David gave to her.’243

Figure 5.176. The typed-dependency tree for ‘Sarah has read the book which David wrote.’...244

Figure 5.177. The functional structure for ‘Sarah has read the book which David wrote.’245

Figure 5.178. The typed-dependency tree for ‘Sarah has read the book which David gave to her.’

xxv

...246

Figure 5.179. The functional structure for ‘Sarah has read the book which David gave to her.’247

Figure 5.180. The typed-dependency tree for ‘Sarah has visited the office where David works.’

...248

Figure 5.181. The functional structure for ‘Sarah has visited the office where David works.’ ..249

Figure 5.182. The dependency tree containing the dependency type “ref” for ‘Sarah has read the

book which David wrote.’...250

Figure 5.183. The dependency tree for ‘I saw the man whose wife you love.’252

Figure 5.184. The typed-dependency tree for ‘Sarah has read this book in order to understand

LFG.’ ...252

Figure 5.185. The typed-dependency tree for ‘Sarah read David’s book last night.’253

Figure 5.186. The functional structure for ‘Sarah read David’s book last night.’.......................254

Figure 5.187. The typed-dependency tree for ‘Sarah cancelled the meeting last night.’ in the

Stanford Parser output ...255

Figure 5.188. The functional structure equivalent to the typed-dependency tree for ‘Sarah

cancelled the meeting last night.’ in the Stanford Parser output ...255

Figure 5.189. Another typed-dependency tree for ‘Sarah cancelled the meeting last night.’256

Figure 5.190. The functional structure for ‘Sarah cancelled the meeting last night.’256

Figure 5.191. The typed-dependency tree for ‘Sarah worked out the program.’258

Figure 5.192. The functional structure for ‘Sarah worked out the program.’258

Figure 5.193. The typed-dependency tree for ‘Sarah worked the program out.’259

xxvi

Figure 5.194. The typed-dependency tree for ‘Sarah worked it out.’ ...259

Figure 5.195. The typed-dependency tree for ‘Sarah read through the book.’260

Figure 5.196. The typed-dependency tree for ‘Sarah read the book through.’260

Figure 5.197. The typed-dependency tree for ‘Sarah read it through.’260

Figure 5.198. The typed-dependency tree for ‘Sarah read through the book.’ in the Stanford

Parser output..261

Figure 5.199. An incorrect typed-dependency tree for ‘Sarah read the book through.’ in the

Stanford Parser output ...261

Figure 5.200. An incorrect typed-dependency tree for ‘Sarah read it through.’ in Stanford Parser

output...262

Figure 5.201. The typed-dependency tree for ‘Sarah, David’s niece, has read this book.’.........263

Figure 5.202. The functional structure for ‘Sarah, David’s niece, has read this book.’..............264

Figure 5.203. The typed-dependency tree for ‘Sarah will visit Isaac, her friend.’......................265

Figure 5.204. The functional structure for ‘Sarah will visit Isaac, her friend.’...........................265

Figure 5.205. The typed-dependency tree for ‘Sarah has read all the books she has.’267

Figure 5.206. The functional structure for ‘Sarah has read all the books she has.’268

Figure 5.207. The typed-dependency tree for ‘Sarah has read half the books she has.’268

Figure 5.208. The functional structure for ‘Sarah has read half the books she has.’269

Figure 5.209. The typed-dependency tree for ‘Sarah will not read such a book.’269

Figure 5.210. The functional structure for ‘Sarah will not read such a book.’270

Figure 5.211. The asymmetric typed-dependency tree for ‘Both Sarah and David have read this

xxvii

book.’...271

Figure 5.212. The asymmetric typed-dependency tree for ‘Either Sarah or David has read this

book.’...272

Figure 5.213. The asymmetric typed-dependency tree for ‘Neither Sarah nor David has read this

book.’...272

Figure 5.214. The symmetric typed-dependency tree for ‘Both Sarah and David have read this

book.’...273

Figure 5.215. The functional structure for ‘Both Sarah and David have read this book.’274

Figure 5.216. The typed-dependency tree for ‘Sarah has about 200 books.’..............................275

Figure 5.217. The functional structure for ‘Sarah has about 200 books.’...................................275

Figure 5.218. The typed-dependency tree for ‘Sarah has less than 200 books.’.........................276

Figure 5.219. The functional structure for ‘Sarah has less than 200 books.’..............................276

Figure 5.220. The typed-dependency tree for ‘Sarah has two hundred books.’..........................278

Figure 5.221. The functional structure for ‘Sarah has two hundred books.’...............................278

Figure 5.222. The typed-dependency tree for ‘Sarah has five thousand dollars.’.......................279

Figure 5.223. The functional structure for ‘Sarah has five thousand dollars.’............................279

Figure 5.224. The typed-dependency tree for ‘Sarah studies second language acquisition.’281

Figure 5.225. The functional structure for ‘Sarah studies second language acquisition.’281

Figure 5.226. The typed-dependency tree for ‘Sarah studies noun compound modifiers.’282

Figure 5.227. The typed-dependency tree for ‘Sarah studies noun compound modifiers’ in

Stanford Parser output. ..282

xxviii

Figure 5.228. The typed-dependency tree for ‘Sarah studies second language acquisition (SLA).’

...284

Figure 5.229. The functional structure for ‘Sarah studies second language acquisition (SLA).’284

Figure 5.230. The typed-dependency tree for ‘Sarah is 38 years old.’286

Figure 5.231. The functional structure for ‘Sarah is 38 years old.’ ..286

Figure 5.232. The typed-dependency tree for ‘Sarah is five feet tall.’..287

Figure 5.233. The functional structure for ‘Sarah is five feet tall.’...287

Figure 5.234. The typed-dependency tree for ‘The temperature is 30 degrees Celsius.’............288

Figure 5.235. The functional structure for ‘The temperature is 30 degrees Celsius.’.................288

Figure 5.236. The typed-dependency tree for ‘Sarah likes dogs as well as cats.’ in the Stanford

Parser output..290

Figure 5.237. A better typed-dependency tree for ‘Sarah likes dogs as well as cats.’291

Figure 5.238. The functional structure for ‘Sarah likes dogs as well as cats.’............................292

Figure 5.239. The typed-dependency tree for ‘Sarah likes dogs rather than cats.’ in the Stanford

Parser output..292

Figure 5.240. A better typed-dependency tree for ‘Sarah likes dogs rather than cats.’...............293

Figure 5.241. The functional structure for ‘Sarah likes dogs rather than cats.’293

Figure 5.242. The typed-dependency tree for ‘David has, Sarah said, read this book.’294

Figure 5.243. The typed-dependency tree for ‘David has, Sarah said, read this book.’295

Figure 5.244. The typed-dependency tree for ‘Sarah has read the book which David bought in

Tokyo.’ (in the output style “Basic dependencies”) ..298

xxix

Figure 5.245. The typed-dependency tree for ‘Sarah has read this book and that book.’ (In the

output style “Basic dependencies”)...299

Figure 5.246. The dependency tree for ‘Sarah has read the book which David bought in Tokyo.’

(In the output style “Collapsed dependencies”) ..300

Figure 5.247. The typed-dependency tree for ‘Sarah has read this book and that book.’ (in the

output style “Collapsed dependencies”)..301

Figure 5.248. The dependency tree for ‘Sarah has read this book and that book.’ (in the output

style “Collapsed dependencies with propagation of conjunct dependencies”)302

Figure 5.249. The typed-dependency tree for ‘Sarah has read the book which David bought in

Tokyo.’ (In the output style “Collapsed tree”) ..303

Figure 5.250. The typed-dependency tree for ‘Sarah has read this book and that book.’ (In the

output style “Collapsed tree”). ..303

Figure 5.251. The dependency tree for ‘Sarah has read the book which David bought in Tokyo.’

(In the output style “Non-collapsed tree”). ...304

Figure 6.1. The functional structure for ‘yondayo.’ (Oya 2013d, Oya 2014)315

Figure 6.2. The typed-dependency tree for ‘yondayo.’ (Oya 2013d, Oya 2014)317

Figure 6.3. The functional structure for ‘yondayo’ with zero pronouns. (Oya 2013d, Oya 2014)

...317

Figure 6.4. The typed-dependency tree for ‘Sarahwa Davidwo sasotta. Johnmo sasotta.’.........320

Figure 6.5. The functional structure for ‘Sarah-wa David-wo sasotta. John-mo sasotta.’ (meaning:

‘Sarah invited David. She also invited John.’)...321

Figure 6.6. The functional structure for ‘Sarah-wa David-wo sasotta. John-mo sasotta.’ (meaning:

xxx

‘Sarah invited David. John also invited him.’)...323

Figure 6.7. The typed-dependency tree for ‘Dono gakusei-mo Sarah-ni okorare-ta-to itta (Every

student said that he or she was scolded at by Sarah).’ (Oya 2014) ...324

Figure 6.8. The functional structure for ‘Dono gakusei-mo Sarah-ni okorare-ta-to itta. (Every

student said that he or she was scolded at by Sarah)’ (Oya 2014) ..325

Figure 6.9. The typed-dependency tree for ‘Sarah-wa David-ni atarashii hon-wo kat-ta-ga,

David-wa suguni nakushita. (Sarah had bought a new book for David, but he immediately lost

it.)’ (Oya 2014) ..326

Figure 6.10. The functional structure for ‘Sarah-wa David-ni atarashii hon-wo kat-ta-ga,

David-wa suguni nakushita. (Sarah had bought a new book for David, but he immediately lost

it.)’ (Oya 2014) ..328

Figure 6.11. The typed-dependency tree for ‘Sarawa jibuno iewo utta. Davidmo utta (Sarah sold

her own house. David did so, too).’ ..329

Figure 6.12. The functional structure for ‘Sarawa jibuno iewo utta. Davidmo utta.’330

Figure 6.13. The typed-dependency tree for ‘Sarawa kurumawo utta. Davidmo utta.’331

Figure 6.14. The functional structure for ‘Sarawa kurumawo utta. Davidmo utta.’332

Figure 6.15. The typed-dependency tree for ‘Sarawa shuuni sansatsu honwo yomuga, Davidwa

issatsushika yomanai.’ (Oya 2014)..333

Figure 6.16. The functional structure for ‘Sarawa shuuni sansatsu honwo yomuga, Davidwa

issatsushika yomanai.’ (Oya 2014)..334

Figure 6.17. The typed-dependency tree for ‘Bokuwa unagida.’..335

Figure 6.18. The functional structure for ‘Bokuwa unagida.’ with a thematic ‘-wa’ noun336

xxxi

Figure 6.19. The functional structure for ‘Bokuwa unagida’ with a contrastive ‘-wa’ noun337

Figure 5.20. The typed-dependency tree for ‘Kono honwa bokuga yonda.’...............................337

Figure 5.21. The functional structure for ‘Kono honwa bokuga yonda (As for this book, I have

read it).’ ...338

Figure 5.22. The typed-dependency tree for ‘Kono hon yonda?’ ...339

Figure 5.23. The functional structure for ‘Kono hon yonda?’ ..339

Figure 5.24. The typed-dependency tree for ‘Watashiwa eigoga hanaseru.’341

Figure 5.25. The typed-dependency tree for ‘Watashiwa eigowo hanaseru.’341

Figure 5.26. The functional structure for ‘Watashiwa eigoga hanaseru.’342

Figure 5.27. The functional structure for ‘Watashiwa eigowo hanaseru.’343

Figure 5.28. The typed-dependency tree for ‘Watashiwa ekikara iemade aruita (I walked from the

station to my house).’ ..346

Figure 5.29. The functional structure for ‘Watashiwa ekikara iemade aruita (I walked from the

station to my house).’ ..347

Figure 5.30. The typed-dependency tree for ‘Kono hanashiwa anikara kiita (I heard this story

from my elder brother).’..348

Figure 5.31. The functional structure for ‘Kono hanashiwa anikara kiita.’348

Figure 5.32. The typed-dependency tree for ‘Samazamana jijitsukara hitotsuno ketsuronga

michibikidasareta (One conclusion is induced from various facts).’ ..349

Figure 5.33. The functional structure for ‘Samazamana jijitsukara hitotsuno ketsuronga

michibikidasareta (One conclusion is induced from various facts).’ ..350

xxxii

Figure 5.34. The typed-dependency tree for ‘Ashitakara toukikyuukaga hajimaru’ (Winter

holidays start tomorrow). ..351

Figure 5.35. The functional structure for ‘Ashitakara toukikyuukaga hajimaru’ (Winter holidays

start tomorrow). ...351

Figure 5.36. The typed-dependency tree for ‘Daizukara tofuga tsukurareru (Tofu is made from

soybeans).’...352

Figure 5.37. The functional structure for ‘Daizukara tofuga tsukurareru (Tofu is made from

soybeans).’...353

Figure 5.38. The typed-dependency tree for ‘Watashiga kono honwo yonda’ (I have read this

book)..355

Figure 5.39. The functional structure for ‘Watashiga kono honwo yonda’ (I have read this book).

...356

Figure 5.40. The typed-dependency tree for ‘Hakuchowa mizuumino uewo susundeita. (Swans

were moving on the surface of the lake.)’ ...357

Figure 5.41. The functional structure for ‘Hakuchowa mizuumino uewo susundeita. (Swans were

moving on the surface of the lake.)’..358

Figure 5.42. The typed-dependency tree for ‘Watashiwa daigakuwo daitai gogorokujini deta. (I

left university around 6 P.M.)’ ..359

Figure 5.43. The functional structure for ‘Watashiwa daigakuwo daitai gogorokujini deta. (I left

university around 6 P.M.)’...359

Figure 5.44. The typed-dependency tree for ‘Kenwa Naomini sono honwo kashita (Ken lent

Naomi the book).’ ...361

xxxiii

Figure 5.45. The functional structure for ‘Kenwa Naomini sono honwo kashita (Ken lent Naomi

the book).’ ...362

Figure 5.46. The typed-dependency tree for ‘Watashiwa kinou Uenoni itta (I went to Ueno

yesterday).’ ..362

Figure 5.47. The functional structure for ‘Watashiwa kinou Uenoni itta (I went to Ueno

yesterday).’ ..363

Figure 5.48. The typed-dependency tree for ‘Watashino nikkiga aneni yomareta (My diary was

read by my elder sister).’...364

Figure 5.49. The functional structure for ‘Watashino nikkiga aneni yomareta (My diary was read

by my elder sister).’...365

Figure 5.50. The typed-dependency tree for ‘Watashiwa jibunno nikkiwo aneni yomareta (I had

my diary read by my elder sister).’ ...366

Figure 5.51. The typed-dependency tree for ‘Watashiwa jibunno nikkiwo aneni yomareta (I had

my diary read by my elder sister).’ ...367

Figure 5.52. The typed-dependency tree for ‘Watashiwa ototoni kono honwo yomaseta (I had my

younger brother read this book).’ ..368

Figure 5.53. The functional structure for ‘Watashiwa ototoni kono honwo yomaseta (I had my

younger brother read this book).’ ..368

Figure 5.54. The typed-dependency tree for ‘Kono ekiwa ookuno hitobitoga mainichi riyousiteiru

(Many people use this station every day).’ ...370

Figure 5.55. The functional structure for ‘Kono ekiwa ookuno hitobitoga mainichi riyousiteiru

(Many people use this station every day).’ ...371

xxxiv

Figure 5.56. The typed-dependency tree for ‘Imotoniwa kono honwo ageta (To my sister, I gave

this book).’ ..371

Figure 5.57. The functional structure for ‘Imotoniwa kono honwo ageta (To my sister, I gave this

book).’ ...372

Figure 5.58. The typed-dependency tree for ‘Kono minatokarawa mainichi ookuno funega

deteiru (From this port, many ships depart every day).’ ...373

Figure 5.59. The functional structure for ‘Kono minatokarawa mainichi ookuno funega deteiru

(From this port, many ships depart every day).’ ...374

Figure 5.60. The typed-dependency tree for ‘Watashimo kono honwo yonda (I, too, have read

this book).’ ..376

Figure 6.61. The functional structure for ‘Watashimo kono honwo yonda (I, too, have read this

book).’ ...376

Figure 6.62. The typed-dependency tree for ‘Watashiwa kono honmo yonda (I have read this

book, too).’ ..377

Figure 6.63. The functional structure for ‘Watashiwa kono honmo yonda (I have read this book,

too).’ ..378

Figure 6.64. The typed-dependency tree for ‘Watashiwa konna honwa yomanai (I will not read

such a book).’ ..379

Figure 6.65. The functional structure for ‘Watashiwa konna honwa yomanai (I will not read such

a book).’ ..379

Figure 6.66. The typed-dependency tree for ‘Watashiwa jibunno shorainitsuite itsumo

kangaeteiru (I am always thinking about my future).’ ..381

xxxv

Figure 6.67. The functional structure for ‘Watashiwa jibunno shorainitsuite itsumo kangaeteiru (I

am always thinking about my future).’ ...382

Figure 6.68. The typed-dependency tree for ‘Watashiwa jibunno shorainitsuite yoku kangaeteiru

(I am often thinking about my future).’...383

Figure 6.69. The functional structure for ‘Watashiwa jibunno shorainitsuite yoku kangaeteiru (I

am often thinking about my future).’ ..384

Figure 6.70. The typed-dependency tree for ‘Watashiwa jibunno shorainitsuite mainichi

kangaeteiru (I am thinking about my future every day).’ ...384

Figure 6.71. The functional structure for ‘Watashiwa jibunno shorainitsuite mainichi kangaeteiru

(I am thinking about my future every day).’ ...385

Figure 6.72. The typed-dependency tree for ‘Watashiwa furuhonyani tsumaranai honwo utta (I

sold uninteresting books to a second-hand bookshop).’ ...387

Figure 6.73. The functional structure for ‘Watashiwa furuhonyani tsumaranai honwo utta (I sold

uninteresting books to a second-hand bookshop).’ ...387

Figure 6.74. The typed-dependency tree for ‘Watashiwa konna honwo yomanai (I will not read

this sort of books).’..389

Figure 6.75. The functional structure for ‘Watashiwa konna honwo yomanai (I will not read this

sort of books).’ ..390

Figure 6.76. The typed-dependency tree for ‘Kimiwa imamadeni donna honwo yonda? (What

kind of books have you ever read?)’ ...391

Figure 6.77. The functional structure for ‘Kimiwa imamadeni donna honwo yomimashitaka?

(What kind of books have you ever read?)’ ..391

xxxvi

Figure 6.78. The typed-dependency tree for ‘Watashiga kinou katta honga nakunatta (The book I

bought yesterday is lost).’ ...393

Figure 6.79. The functional structure for ‘Watashiga kinou katta honga nakunatta (The book I

bought yesterday is lost).’ ...394

Figure 6.80. The typed-dependency tree for ‘Sarahga sono honwo yomanakatta riyuwa shiranai.’

...395

Figure 6.81. The functional structure for ‘Sarahga sono honwo yomanakatta riyuwa shiranai.’396

Figure 6.82. The typed-dependency tree for ‘Kono honwa omoshiroito aniwa itta (My elder

brother said that this book was interesting).’ ..398

Figure 6.83. The functional structure for ‘Kono honwa omoshiroito aniwa itta (My elder brother

said that this book was interesting).’ ...398

Figure 6.84. The typed-dependency tree for ‘Anino hanashiwo kiite watashino jinseiwa kawatta

(After listening to my elder brother’s talk, my life changed).’ ...400

Figure 6.85. The functional structure for ‘Anino hanashiwo kiite watashino jinseiwa kawatta

(After listening to my elder brother’s talk, my life changed).’ ...401

Figure 6.86. The typed-dependency tree for ‘Anino hanashiwo kikinagara, watashiwa honwo

yondeita (I was reading a book while listening to my elder brother’s talk).’..............................402

Figure 6.87. The functional structure for ‘Anino hanashiwo kikinagara, watashiwa honwo

yondeita (I was reading a book while listening to my elder brother’s talk).’..............................403

Figure 6.88. The typed-dependency tree for ‘Watashiwa gengogakuto jinruigakuwo mananda (I

studied linguistics and anthropology)’ with a dummy syntactic unit for coordinates.................404

Figure 6.89. The typed-dependency tree for ‘Watashiwa gengogakuto jinruigakuwo mananda (I

xxxvii

studied linguistics and anthropology)’ without a dummy syntactic unit for coordinates............405

Figure 6.90. The functional structure for ‘Watashiwa gengogakuto jinruigakuwo mananda (I

studied linguistics and anthropology)’ without a dummy syntactic unit for coordinates............406

Figure 7.1. The typed-dependency tree for ‘Sarah has written this book.’ 411

Figure 7.2. A typed-dependency tree for ‘Sarah has written this book’ with an incorrect

dependency type between ‘book’ and ‘this.’ ...412

Figure 7.3. A typed-dependency tree for ‘Sarah has written this book’ with an incorrect

dependency relation between ‘has’ and ‘this.’ ..412

Figure 7.4. A typed-dependency tree for ‘Sarah has written this book’ with an incorrect

dependency type and an incorrect dependency relationship ...413

Figure 7.5. The typed-dependency tree for “Sarah has written this book” in Pajek417

Figure 7.6. An incorrect typed-dependency tree for “Sarah has written this book” in Pajek418

Figure 7.7. The typed-dependency tree for “Sarah has read this.” (before manual correction)..419

Figure 7.8. The typed-dependency tree for “Sarah has read this.” (after manual correction).....419

Figure 7.9. The distribution of degree centralities of the English sentences in Basic300 before and

after manual correction (Before: the degree centralities before manual correction; After: the

degree centralities after manual correction). ...424

Figure 7.10. The distribution of closeness centralities of the English sentences in Basic300 before

and after manual correction (Before: the closeness centralities before manual correction; After:

the closeness centralities after manual correction)..424

Figure 7.11. The distribution of dependency distances of the English sentences in Basic300

before and after manual correction (Before: the dependency distances before manual correction;

xxxviii

After: the dependency distances after manual correction) ..425

Figure 7.12. The distribution of degree centralities of the Japanese sentences in Basic300 before

and after manual correction (Before: the degree centralities before manual correction; After: the

degree centralities after manual correction). ...433

Figure 7.13. The distribution of closeness centralities of the Japanese sentences in Basic300

before and after manual correction (Before: the closeness centralities before manual correction;

After: the closeness centralities after manual correction). ..433

Figure 7.14. The distribution of dependency distances of the Japanese sentences in Basic300

before and after manual correction (Before: the dependency distances before manual correction;

After: the dependency distances after manual correction) ..434

Figure 7.15. The distribution of degree centralities (flatness measures) and word counts (n = 339)

(Oya 2013b, p.159)..440

Figure 7.16. The distribution of closeness centralities and word counts (n = 339) (Oya 2013b,

p.161)...441

Figure 7.17. The ratios of different flatness measures (degree centralities) of all the eight-word

sentences in Basic300..442

Figure 7.18. The ratios of different flatness measures (degree centralities) of all the nine-word

sentences in Basic300..443

Figure 7.19. The ratios of different flatness measures (degree centralities) of all the ten-word

sentences in Basic300..444

Figure 7.20. The ratios of different embeddedness measures (closeness centralities) of all the

eight-word sentences in Basic300 ...444

Figure 7.21. The ratios of different embeddedness measures of all the nine-word sentences in

xxxix

Basic 300. ..445

Figure 7.22. . The ratios of different embeddedness measures of all the ten-word sentences in

Basic 300. ..446

Figure 7.23. The typed-dependency tree for “Now, it made no sense at all.” (Oya 2013a, p.48)

...451

Figure 7.24. The typed-dependency tree for “They moved westward to start a new life.” (Oya

2013a, p.48)...452

Figure 7.25. The typed-dependency tree for “This is the big lie the wholesalers tell.” (Oya 2013a,

p.49)...452

Figure 7.26. The typed-dependency tree for “There is no such thing as too many flowers.” (Oya

2013a, p.49)...453

Figure 7.27. The distribution of degree centralities (flatness measures) of 10-word sentences in

each genre of MASC500k ...455

Figure 7.28. The distribution of degree centralities (flatness measures) of 20-word sentences in

each genre of MASC500k ...456

Figure 7.29. The distribution of closeness centralities (embeddedness measures) of 10-word

sentences in each genre of MASC500k...457

Figure 7.30. The distribution of closeness centralities (embeddedness measures) of 20-word

sentences in each genre of MASC500k...458

xl

List of Tables

Table 2.1. Inventory of DSynt-Rels in Mel’čuk (2011, p.6) ... 11

Table 4.1. The degree centralities and closeness centralities of the typed-dependency trees (Oya

2013b, p.157)...92

Table 4.2. The descriptive statistics of the corpora used in Oya (2010b)94

Table 5.1. English dependency types in Stanford Dependencies categorized according to the

inventory of DSynt-Rels in Mel’čuk (2011, p.6) .. 105

Table 6.1. Japanese dependency types categorized into the inventory of Dsynt-Rels in Mel’čuk

(2011, p.6) ...344

Table 7.1. The precision, recall, and f-score of each dependency type in the English sentences in

Basic300 ..422

Table 7.2. The descriptive statistics of word count, degree centralities, closeness centralities, and

dependency distances before and after manual corrections of the typed-dependency trees for the

English sentences in Basic300. ...423

Table 7.3. The recall, precision, and f-score of each dependency type in Japanese....................431

Table 7.4. The descriptive statistics of word counts, degree centralities and closeness centralities

before and after manual corrections of the typed-dependency trees for the Japanese sentences in

Basic300. ...431

Table 7.5. The descriptive statistics of the degree centralities, closeness centralities, and word

counts of the sentences in Basic300 (n = 339) (Oya 2013b, p.159)..439

Table 7.6. The numbers of different values of degree centralities and of closeness centralities

among eight-word, nine-word, and ten-word sentences of English and Japanese446

xli

Table 7.7. The total number of sentences, the total number of words and the mean length of a

sentence in each genre (Oya 2013a)..448

Table 7.8. The descriptive statistics of the degree centrality, closeness centrality, and Dep.Dist. of

the sentences in each subsection of the written section of MASC500k......................................450

Table 7.9. The degree centralities, closeness centralities, and average dependency distances of

the example typed-dependency trees (Oya 2013a, p.49) ..453

Table 7.10. The different values of closeness centrality and the number of sentences which have

the same closeness centrality value (Oya 2013a, p.51)...458

1

1. Introduction

The aim of this thesis is to introduce the typed-dependency trees for English and Japanese

sentences, and to introduce graph-centrality measures to capture the structural characteristics of

these typed-dependency trees. Typed-dependency trees are syntactic structures for sentences

that illustrate the dependency relationships among the words in a sentence as a network of words.

The structural characteristics of the network can be captured by a number of measures that have

been developed in the field of graph theory and network analysis. Introducing these measures

into the typed-dependency trees for sentences allows us to capture the structural characteristics

of these sentences as networks of words, and ultimately, this analysis sheds new light on

Japanese and English speakers’ syntactic intuitions.

In order to accomplish this aim, this thesis asks several questions. First, what are the

dependency relationships among the words in a sentence? Chapters 2 and 3 answer this question.

Chapter 2 introduces the concept of dependency grammar through a discussion of Tesnière’s

(1959) seminal assumption about dependency along with more recent theories of dependency

grammar proposed by I. Mel’čuk and his colleagues (Iordanskaja & Mel’čuk 2000; Mel’čuk &

Pertsov 1987; Mel’čuk 1988, 2003, 2004, 2009, and 2011). This chapter also addresses the

difference between dependency grammar and phrase-structure grammar. Section 2.2 presents

an overview of dependency grammar and Section 2.3 focuses specifically on Tesnière’s (1959)

seminal work on dependency grammar. Section 2.4 discusses Mel’čuk’s work on Deep

Syntactic Relations and Surface Syntactic Relations as a development of Tesnière’s (1959)

concept of dependency. Finally, the difference between dependency and phrase-structure

grammar is briefly discussed in Section 2.5 with reference to Osborne, Putnam, & Gross (2011).

Chapter 3 examines whether a typed-dependency tree for a sentence is equivalent to a

functional-structure representation according to Lexical-Functional Grammar (LFG) (Bresnan

2

1978; Bresnan 1982; Kaplan & Bresnan 1982; Bresnan 2001). Both LFG and dependency

grammar theory assume that the individual pieces of lexical information contained in a sentence

are integrated into the whole, and both frameworks are concerned with making explicit the

process through which these pieces of lexical information are integrated. Dependency grammar

does so at only one level of representation (i.e., a dependency tree for a sentence), while LFG

does so by connecting multiple levels of representation (i.e., constituent structure, functional

structure, argument structure, and phonological structure). The idea of structural

correspondence in LFG can be seen as an extension of typed-dependency tree representation of

grammatical knowledge. In this sense, LFG represents one direction of development of the

dependency grammar tradition started by Tesnière (1959). In Chapter 3, the revised version of

Mel’čuk’s Criteria for surface syntactic dependencies is proposed; the idea behind this revision is

that two words in a sentence establish a dependency relationship iff they constitute one fragment

functional structure.

Second, what are the graph centrality measures, and how are they calculated? Chapter 4

answers this question by introducing the representation of a typed-dependency syntactic tree as a

directed acyclic graph (DAG) and examining the idea of quantifying the structural property of

typed-dependency trees in terms of graph centrality. The advantage of dependency grammar

representation is that a sentence’s dependency can be interpreted as a DAG, allowing the formal

syntactic properties to be defined and analyzed mathematically in terms of graph theory (Oya

2010b, 2011, 2013a, and 2013b). Dependency grammar makes explicit the connections among

the words in a sentence, or the network of words (Tesnière 1959). Approaches in the field of

graph theory and network analysis can help make salient the characteristics of these networks.

In other words, the structural properties of networks of words in sentences can be made explicit

in dependency grammar and then quantified by applying graph theory. Quantified structural

properties are useful for linguistic analyses that have previously relied on the subjective

3

judgment of researchers, such as investigations into stylistic differences across different genres

or similarities in syntactic structures across different languages. Quantitative approaches to

syntactic structure contribute to these types of linguistic analyses by incorporating more

objectivity. The centrality measures used in this thesis are degree centrality and closeness

centrality, based on Freeman 1979 and Wasserman & Faust 1994. Degree centrality of a given

typed-dependency tree indicates how flat the tree is, while Closeness centrality of a given

typed-dependency tree indicates how embedded the tree is (Oya 2010b).

Third, how can we obtain the typed-dependency trees for given sentences, and what are their

characteristics? Chapter 5 answers this question for English sentences, and Chapter 6 for

Japanese sentences. Chapter 5 introduces the Stanford Parser (Klein & Manning 2003; de

Marneffe & Manning 2012), along with the definition of each dependency type according to the

revised version of Mel’čuk’s Criteria introduced in Chapter 3. Stanford Parser is a

state-of-the-art parser used in this study for acquiring typed-dependency tree representations for

English sentences. In traditional analyses, it is time-consuming for the researcher to construct

typed-dependency trees for each sentence in a corpus and manually calculate their centrality

measures. This chapter proposes this syntactic parser as a more efficient method to obtain

typed-dependency trees for individual sentences in large corpora. Each dependency type is

defined according to the revised version of Mel’čuk’s criteria, which is proposed in Chapter 3, so

that it is based on a tradition of dependency grammar which was started by Tesnière and

developed by Mel’čuk. The functional structures for example sentences are also provided in

this chapter, so as to examine the equivalence between the typed-dependency tree for a sentence

and its functional-structure representation, which is proposed in Chapter 3. Chapter 6

introduces another parser for Japanese called KNP (Kurohashi & Nagao 1992, 1994, 1998;

Kawahara & Kurohashi 2007), including the dependency-type annotation for KNP output and

the definition of each dependency type and functional structures for sentences containing each

4

dependency type. KNP is a rule-based dependency parser used for generating automatic

dependency tree representations for Japanese sentences. The accuracy of this parser has been

improved since its use in the development of Kyoto University Text Corpus ver. 4, a parsed

corpus of Japanese (Kurohashi & Nagao 1998). Since the parsed output of KNP does not

contain the type of each dependency, it is necessary to annotate the parsed output. Doing so

allows us to use the KNP output to obtain cross-linguistic typed-dependency tree representations

of Japanese. The annotated dependency types must be based on a tradition of dependency

grammar which was started by Tesnière and developed by Mel’čuk. Similarly to dependency

types of English, dependency types of Japanese are defined according to the revised version of

Mel’čuk’s criteria, which is proposed in Chapter 3. The functional structures for example

Japanese sentences are also provided in this chapter, so as to examine the equivalence between

the typed-dependency tree for a sentence and its functional-structure representation, which is

proposed in Chapter 3.

Fourth, from which source are the graph centrality measures obtained, and what is the

result? Chapter 7 answers this question. The accuracies of the Stanford Parser and the KNP

are examined by comparing the typed-dependency trees obtained from the parsed output of the

English sentences and their Japanese counterparts in a small-scale parallel corpus (Iida 2010) to

their manually corrected typed-dependency trees. Results show that the distributions of both

degree centralities and closeness centralities before and after manual corrections are almost

identical. Thus, the Stanford Parser and KNP are accurate enough to obtain degree centralities

and closeness centralities. Next, the distributions of degree and closeness centralities for

English typed-dependency trees are compared to those for their Japanese counterparts, and

results show that their distributions are different. Thus, the structural properties of the

typed-dependency trees for sentences in these two languages are different in terms of their

degree centralities (flatness) and closeness centralities (embeddedness). Lastly, the

5

distributions of degree centralities and of closeness centralities obtained from the parsed output

of sentences from different genres of texts in Manually Annotated Sub-corpus of American

National Corpus (MASC 500k) (Ide, Baker, Fellbaum, Fillmore, & Passonnau 2008) are

compared to each other. It is shown that sentences from different genres have different

distributions of these measures; sentences in the subsections Fiction, Ficlets and Jokes are flatter

and more embedded than sentences in other subsections. However, it is pointed out that these

different distributions are dependent on the word counts of the sentences. It is also pointed out

that controlling the word count of the sentences taken from different genres could make explicit

that difference in genre is reflected on the number of sentences of the same degree centrality and of

the same closeness centrality.

6

2. Dependency Grammar

2.1 Introduction

This chapter introduces the concept of dependency grammar through a discussion of Tesnière’s

(1959) seminal assumption about dependency along with more recent theories of dependency

grammar proposed by I. Mel’čuk and his colleagues (Iordanskaja & Mel’čuk 2000: Mel’čuk &

Pertsov 1987; Mel’čuk 1988, 2003, 2004, 2009, and 2011). This chapter also addresses the

difference between dependency grammar and phrase-structure grammar. Section 2.2 presents

an overview of dependency grammar and Section 2.3 focuses specifically on Tesnière’s (1959)

seminal work on dependency grammar. Section 2.4 discusses Mel’čuk’s work on Deep

Syntactic Relations and Surface Syntactic Relations as a development of Tesnière’s (1959)

concept of dependency. Finally, the difference between dependency and phrase-structure

grammar is briefly discussed in Section 2.5 with reference to Osborne et al. (2011).

2.2 Dependency Grammar: an Overview

The role of dependency in syntactic representations of a sentence has a long history in linguistic

inquiry. Gerdes, Hajičová, & Wanner (2011) point out that Ibn Mada, a 12th-century Cordobian,

first used the term dependency in the grammatical sense. More recent approaches to

dependency grammar can be traced back to Tesnière (1959). Some argue that his work has

been somewhat obscure in the field of syntax because of the advance of Chomskyan generative

syntax. However, dependency grammar has been used in computational linguistic research,

such as work on ontology construction (Snow, Jurafsky, & Ng 2005), machine translation (Ding

& Palmer 2004a, 2004b, and 2005), and parsing (Buchholz & Marsi 2006; Nivre, Hall, Kübler,

McDonald, Nilsson, Riedel, & Yuret 2007).

7

Dependency representations have advantages over phrase-structure grammar representations

because of their “conciseness, intuitive appeal, and closeness to semantic representations such as

predicate-argument structures” (Debusmann & Kuhlmann 2007, p.1). In fact, McDonald &

Nivre (2011, p.198) argue that the advantage of dependency representations is their “natural

mechanism for representing discontinuous constructions, which arise due to long-distance

dependencies or in languages where grammatical relations are often signaled by morphology

instead of word order.”

2.3 Tesnière’s (1959) Dependency Grammar

Our current understanding of dependency grammar has its origins in the following assumption

about dependency by Tesnière (1959, p.12-14) (translation from French by the author):

Les connections structurales établissent entre les mots des rapports de dépendance.

Chaque connexion unit en principe un terme supérieur à un terme inférieur.

(The structural connections among words establish dependency relations. In principle,

each connection unites a superior term and an inferior term.)

Le terme supérieur reçoit le nom de régissant. Le terme inférieur reçoit le nom de

subordonné. Ainsi dans la phrase Alfred parle …, parle est le régissant et Alfred le subordonné.

(The superior term is called “régissant” (governor). The inferior terms are called

“subordonné” (dependent). For example, in the phrase “Alfred parle (Alfred speaks),”

‘parle’ is the governor and ‘Alfred’ the dependent.)

On exprime la connexion supérieure en disant que le subordonné dépend du régissant, et la

connexion inférieure en disant que le régissant commande ou régit le subordonné. Ainsi

dans la phrase Alfred parle …, Alfred dépend de parle, tandis que parle commande Alfred.

(The superior connection can be expressed by saying that the dependent depends on the

governor, and the inferior connection can be expressed by saying that the governor

commands or governs the dependent. In the example above, ‘Alfred’ depends on ‘parle,’

and ‘parle’ commands on ‘Alfred.’)

8

Un mot peut être à la fois subordonné à un mot supérieur et régissant d’un mot inférieur.

Ainsi dans la phrase mon ami parle …, ami est à la fois le subordonné de parle et le

régissant de mon.

(A word can be a dependent to a superior word and a governor to another, inferior word at

the same time. For example, in the phrase “mon ami parle” (My wife speaks), ‘ami’ is the

dependent of ‘parle’ and the governor of ‘mon’ at the same time.)

L’ensemble des mots d’une phrase constitue donc une véritable hiérarchie. …

(The ensemble of words in a phrase constitutes an actual hierarchy. …)

L’étude de la phrase, qui est l’objet propre de la syntaxe structurale …, est essentiellement

l’étude de sa structure, qui n’est autre que la hiérarchie de ses connexions.

(The study of a phrase, which is the object of structural syntax, is essentially the study of its

structure, which is nothing other than the hierarchy of its connections.)

Le trait de connexion sera en principe vertical ..., puisq’il symbolise le lien entre un terme

supérieur et un terme inférieur.

(The character of the connection will be vertical in principle, because it symbolizes the line

between a superior term and an inferior term.)

This account describes the core tenets of Tesnière’s dependency grammar theory that have been

extended by later researchers. These tenets propose that each word in a sentence is dependent

on another word, no word in a sentence is independent, and the dependency relationship between

words is characterized by a governor and a dependent.

However, Tesnière’s (1959) concept of dependency does not provide a full description of the

structure of a sentence and raises several questions. For example, what principle determines

which words function as governors and which words function as dependents? Are all the

dependent relationships among words in a sentence the same? Furthermore, what is the

difference between dependency grammar and phrase-structure grammar? Moreover, is the

concept of dependency a universal feature of language? Following Tesnière (1959), a number

9

of researchers have tried to answer these questions, and their research is summarized in the

following section.

2.4 Mel’čuk’s Dependency Grammar

Igor Mel’čuk is one of the most prominent linguists who has worked within the framework of

dependency grammar, focusing on the formalisms of this theory (Mel’čuk 1988, 2003, 2004,

2009, and 2011). In his work, he takes a Meaning-Text approach and examines linguistic forms

“from meaning to text” (Mel’čuk 2011, p.2). He also argues that linguists need different

formalisms for different levels of linguistic representation and a set of rules that govern the

relationships between these formalisms. Specifically, he poses three types of relationships:

semantic dependency (“Sem-D” in his terminology, a predicate-argument relations), syntactic

dependency (“Synt-D”), and morphological dependency (“Morph-D;” agreement relations

between words1). Syntactic dependency “determines the distribution of the phrase within

sentences” (Mel’čuk 2011, p.3). In other words, the position of a word is determined by its

governor. Mel’čuk considers this general relationship to be a universal feature of dependency

in language; whether the dependent or the governor comes first is a language-specific feature.

For example, in the English phrase ‘red books,’ there is a dependency relation from ‘book’ to

‘red.’ The governor in this dependency relation is the noun ‘book’ and the dependent is the

1 The distinction between syntactic dependency and morphological dependency is relevant to the constructions in

which two words that agree with each other morphologically are not in syntactic dependency relationship. One of

such cases is the subject-verb agreement, such as ‘David has written this book.’ Morphologically, the subject

agrees with the auxiliary because the former depends on the latter. Syntactically, on the other hand, the subject and

the auxiliary have no dependency relationship; hence, the subject-verb agreement is not necessarily represented in,

or defined in terms of, the typed-dependency tree. See Section 3.3 for the treatment of morphological agreement in

functional structures.

10

adjective ‘red.’ In English, if the dependent is an adjective and the governor is a noun, the

dependent is positioned before its governor. Different languages have different positions for a

noun governor and an adjective dependent (e.g., French livres rouges) as well as for governors

and dependents in other lexical categories.

2.4.1 Deep-Syntactic representation and Surface-Syntactic representation

Mel’čuk distinguishes two levels of linguistic representation in syntax: Deep-Syntactic

representation (DSyntR) and Surface-Syntactic representation (SSyntR). DSyntR is

language-independent and SSyntR is language-specific. In order to explain the relationship

between DSyntR and SSyntR in different languages, Mel’čuk (2011, p.5) examines the different

grammatical functions of the English verb ‘help’ and its Russian equivalent ‘pomogat’ by

showing that the former takes a direct object and the latter takes an indirect object. The

difference of grammatical functions in these examples is represented at SSyntR.

(2.1)

a. Sarah helps David.

b. Сара помогат Давиду.

Sarah pomogat David-u

Sarah help-sg.3rd David-IO

At the DSyntR level, these two constructions are “homogenized.” The different grammatical

functions of these two constructions are integrated into one deep syntactic relation called “II.”

(2.2)

a. Help =II=> David

b. Pomogat =II=> David

11

The number “II” is one of the types of deep syntactic relations (DSyntRels in Mel’čuk’s terms).

This type of syntactic relation is discussed in more detail in the next section.

2.4.2 DSyntRels: language-independent dependency relations

Mel’čuk (2011, p.6) describes twelve types of DSyntRels, as shown in Table 2.1.

Table 2.1. Inventory of DSynt-Rels in Mel’čuk (2011, p.6)

COORD
QUASI-

COORD
APPEND ATTR ATTRdescr I II III IV V VI IIdir-sp

coordinate

DSyntRels

subordinate DSyntRels

weak

subordi-

nate

DSyntRel

modification

strong subordinate DSyntRels

complementation

These DSyntRels are characterized by five binary oppositions, discussed in turn below.

1. Coordinations vs. Subordinations

Coordinate constructions connect words or phrases. In Mel’čuk’s categorization of DSyntRels,

coordinate constructions are divided into two types: COORD and Quasi-COORD. COORD

refers to the dependency relations among coordinates of words. For example, in ‘Sarah, David

and Abraham have read this book,’ there are two DSyntRels categorized as COORD:

Sarah=COORD=>David=COORD=>Abraham. QUASI-COORD refers to the dependency

relations among coordinates of prepositional phrases. For example, in ‘David is now at his

dormitory on Santry in Dublin,’ there are two QUASI-COORDs: at his dormitory

=QUASI-COORD=> on Santry =QUASI-COORD=> in Dublin.

12

Subordination constructions include all constructions that are not characterized by

coordination. These constructions can be categorized as either weak or strong, and this binary

opposition is discussed in more detail below.

2. Weak subordinations vs. Strong subordinations

Weak subordinations do not have strong structural links. In Mel’čuk’s categorization of

DSyntRels, weak subordinations are called APPEND. For example, in ‘David is, surprisingly,

present at the meeting,’ the dependency between ‘is’ and ‘surprisingly’ is a DSyntRel categorized

as APPEND. This dependency is represented as follows: is =APPEND=> surprisingly.

On the other hand, strong subordinations are described in terms of the binary opposition

between modification and complementation, discussed in the next section.

3. Modification vs. Complementation

Modification involves a DSyntRels in which the dependent modifies its governor (e.g., David

works hard). There are two types of modification: restrictive modification and descriptive

modification, discussed in the next section.

Complementation, on the other hand, involves a DSyntRels in which the dependent is a

complement of its governor. Complementation is further characterized according to seven

actantial roles, discussed in Section 5 below.

4. Restrictive Modification vs. Descriptive modification

Restrictive modification involves a DSyntRels (called ATTR) in which the dependent identifies

13

the governor. For example, in ‘Sarah reads only interesting books,’ there is one ATTR:

books=ATTR=>interesting.

Descriptive modification involves a DSyntRels (called ATTRdescr) in which the dependent

describes the governor. For example, in ‘Sarah, who has read this book, says it is interesting,’

there is one ATTRdescr: Sarah=ATTRdescr=>read.

5. Different Actantial Roles

Actantial roles are related to Tesnière’s (1959) idea about the syntactic roles of nouns in relation

to verbs, i.e., subject, direct object, and indirect object. Tesnière (1959, p.102) coined the word

actant and circumstant as follows:

The verbal node [in a clause] … expresses a whole little drama. As a drama, it implies a

process and, most often, actors and circumstances. The verb expresses the process ….

Actants are beings or things that … participate in the process … Circumstants express the

circumstances of time, place, manner, etc. [translation in Mel’čuk (2004)]

The idea of actants and circumstants is further developed in Mel’čuk (2004) whereby three types

of actants are proposed: semantic actants, deep-syntactic actants, and surface-syntactic actants.

Semantic actants correspond to argument structure (Grimshaw 1990), and syntactic actants

correspond to grammatical relations. Deep-syntactic actants (DSynt-As) are divided into seven

categories numbered with Roman numerals:

DSyntA I: the subject in the surface syntactic relation

DSyntA II: the direct object in the surface syntactic relation, or the complement of a preposition

14

or conjunction in the surface syntactic relation

DSyntA III: the indirect object in the surface syntactic relation

DSyntA IV - VI: more oblique or prepositional object

DSyntA IIdir-sp: direct speech, such as ‘I have read this book,’ said Sarah.

2.4.3 SSyntRels: language-specific dependency relations

Given the abstract nature of DSyntRel, it is necessary to establish the criteria for surface

syntactic relationships (SSyntRel in Mel’čuk’s terms), or language-specific dependency relations,

for a particular language. Mel’čuk (2009, 2011) proposes three types of criteria for SSyntRels

for particular languages. First, Criterion A accounts for the SSyntRel between two words.

This criterion explains why two given words have a dependency relation in a sentence. Second,

Criterion B accounts for the orientation of a SSyntRel between two words. This criterion

explains which word functions as the governor. Third, Criterion C accounts for the type of a

SSyntRel. This criterion explains which type of dependency connects the two words. Each

criterion is discussed in turn below.

2.4.3.1 Criterion A: the presence of a SSyntRel between two words

Mel’čuk (2011, p.6) states that Criterion A determines the presence of a SSyntRel in the

following way:

Criterion A:

In a sentence, the lexemes L1 and L2 have a direct Synt-D link, only if L1 and L2 can form

in language L an utterance – i.e., a prosodic unit, or a prosodic phrase of L – such as the

15

window, of John, spouts water or stained glass, out of any context; the linear position of one

of these lexemes in the sentence must be specified with respect to the other. (Mel’čuk

2011, p.6)

For example, the phrase ‘the window’ has the following dependency relation:

window

the

Figure 2.1. The dependency relation between ‘the’ and ‘window’ in the phrase ‘the window’

The former part of the definition of Criterion A is ambiguous, because Mel’čuk (2011) does not

make explicit what he means by the phrase prosodic units or prosodic phrases.2 In addition,

there are instances of dependency relationships in which the head and its dependent do not

constitute what can be called a prosodic unit (e.g., ‘Sarah’ and ‘read’ in the sentence ‘Sarah has

read this book.’). For example, a subject-taking element and its dependent usually constitute a

prosodic unit (e.g., ‘Sarah reads’), and their linear order is such that the noun precedes the

subject-taking element. However, the subject-taking element and its dependent do not

constitute a prosodic unit if a subject-taking element is accompanied by an auxiliary, which is the

case for the present perfect aspect (e.g., ‘has gone’), the present progressive aspect or the passive

2
It is not necessarily irrelevant to define the possibility for words to be in a dependency relationship in terms of

prosody. For example, Ohsuga, Horiuchi and Ichikawa (2003) introduced a method for estimating the syntactic

structure of Japanese speech using two prosodic features (F0 contour and pause duration). They defined prosodic

units as being “divided by the local minimal point of an F0 contour or pause” (Ohsuga et al. 2003, p.558).

16

voice (e.g., ‘is going’ or ‘is taken’), or modal auxiliaries (e.g., ‘can’ or ‘ought to’). For example,

‘Sarah’ and ‘gone’ do not constitute a prosodic unit in ‘Sarah has gone there.’ Thus, we need to

revise Mel’čuk’s (2011) Criterion A in order to account for cases with a subject-taking element

and its dependent in which the two words do not constitute a prosodic unit. Specifically, the

subject-taking element and its dependent must be defined in terms of the type of subject-taking

element, such as its argument structure (Grimshaw 1990) or its lexical form according to

Lexical-Functional Grammar (Kaplan & Bresnan 1982). This logic applies to dependency

types other than subjects (see Section 5.3 for other dependency types in English, and Section 6.4

for those in Japanese).

Instead of defining the possibility for two words to be in a dependency relationship in terms

of prosody, it is preferable to define this possibility in terms of semantics. In other words, two

words can have a dependency relationship if they function as a semantic unit. In this way, the

word ‘Sarah’ and the word ‘gone’ in the example above can have a dependency relationship

because they form a semantic unit in the sentence; the word ‘gone’ is a subject-taking element

and the word ‘Sarah’ can function as the subject of the word ‘gone.’ With respect to this, Oya

(2013c, p. 29) proposed a tentative revision of Mel’čuk’s (2011) Criterion A as follows:

Criterion A (revised):

In a sentence, the lexemes L1 and L2 have a direct Synt-D link, only if L1 and L2 can form a

semantic unit in language L.

This revision needs more clarification in terms of the definition of semantic units. In the

example ‘Sarah has gone there,’ the semantic unit is considered to be a subject-taking element

17

and its subject. However, this is not the only way a semantic unit can be constructed. We

return to this issue in Section 3.3 by comparing the functional-structure representation and the

typed-dependency tree representation for a sentence, and in Section 5.3 during a discussion of

the definition of dependency types in Stanford Dependencies (de Marneffe & Manning 2008,

2012, 2013).

2.4.3.2 Criterion B: the orientation of a SSyntRel between two words

Mel’čuk’s (2009, 2011) Criterion B involves identifying the governor of a given dependency

relation. He divides Criterion B into three subcriteria: syntactic (Criterion B1), morphological

(Criterion B2), and semantic (Criterion B3) SSyntRels. He argues that these subcriteria are

hierarchically ordered; B1≻B2≻B3. In other words, Criterion B2 is applied if, and only if,

Criterion B1 cannot determine the governor of a given dependency relation, and Criterion B3 is

applied if, and only if, Criterion B2 cannot determine the governor. These subcriteria are

further explained below.

Criterion B1

Criterion B1 has to do with the ability of a word to be dependent on another word. Mel’čuk

(2011, p.7) states Criterion B1 as follows:

Criterion B1 (syntactic):

In the syntactic phrase L1=synt=L2, the lexeme L1 is the Synt-governor, if the passive

SSynt-valence of the whole phrase is determined to a greater extent by the passive

SSynt-valence of L1 rather than by that of L2. (Mel’čuk 2011, p.7)

18

The passive (SSynt-) valence of a lexeme refers to “its ability to be subordinated, in a specified

role, to lexemes of a certain class.” (Mel’čuk & Pertsov 1987, p.80). For example, the passive

valence of the phrase ‘for Sarah’ is determined by the preposition ‘for’; in ‘David has read this

book for Sarah,’ it is the preposition ‘for,’ not ‘Sarah,’ that depends on the verb ‘read’ and also

acts as its modifier. Therefore, the orientation of the SSyntRel between ‘for’ and ‘Sarah’ is

for=synt=>Sarah.

Criterion B2

Criterion B2 has to do with the inflectional marking on the lexemes. Mel’čuk (2011, p.7) states

Criterion B2 as follows:

Criterion B2 (morphological):

In the syntactic phrase L1=synt=L2, the lexeme L1 is the Synt-governor, if L1 controls the

inflection of lexemes external to the phrase or its own inflection is controlled by such

lexemes. (Mel’čuk 2011, p.7)

For example, in the English phrase ‘operations manager’ in (2.3), the Synt-governor is ‘manager,’

not ‘operations,’ because the verb agrees with ‘manager’ and not ‘operations.’ The noun

‘manager’ controls the inflection of the verb ‘rejects,’ which is external to the phrase ‘operations

manager.’

(2.3)

a. The operations manager rejects Sarah’s proposal.

b. *The operations manager reject Sarah’s proposal.

19

There are cases whereby Criterion B2 is not satisfied, yet a dependency relation between

particular lexical categories in a dependency tree is still considered valid in a dependency

grammar framework. For example, in Stanford Dependencies (de Marneffe & Manning 2008,

2012, 2013), the root of the dependency tree for a sentence is its main verb, regardless of the

presence of an auxiliary (or auxiliaries). Consider the sentence (2.4) below along with the

dependency tree in the style of Stanford Dependencies (Figure 2.2), in which the auxiliaries

depend on the main verb3.

(2.4)

Sarah has read this book.

Root

NSUBJ Aux PUNCT

DOBJ .-6

DET

this-4

ROOT-0

read-3

Sarah-1 has-2 book-5

Figure 2.2. The dependency tree for ‘Sarah has read this book.’

3
In this dissertation, the number next to each word specifies the place in which it appears in the sentence, just like

the output style of the Stanford Parser.

20

For the phrase ‘has read,’ if the head is the word “has” and its dependent is the word “read”,

contrary to the style of Stanford Dependencies, this phrase satisfies Criterion B2; the inflection

of the word “has” is controlled by the word “Sarah”, which is external to the phrase.

Criterion B3

Criterion B3 involves the semantics of the words. Mel’čuk (2011, p.7) states Criterion B3 as

follows:

Criterion B3 (semantic):

In the syntactic phrase L1=synt=L2, the lexeme L1 is the Synt-governor, if L1=synt=L2

denotes a kind/an instance of the denotation of L1 rather than a kind/an instance of the

denotation of L2. (Mel’čuk 2011, p.7)

For example, the noun compound ‘a white house’ has a dependency relation ‘house=synt=>white’

where the governor is ‘house’ and the dependent is ‘white’ because this phrase denotes a kind of

house, rather than a kind of white.

2.4.3.3 Criterion C: the type of a SSyntRel between two words

Mel’čuk’s (2009, 2011) Criterion C clarifies the different types of syntactic dependencies. He

divides Criterion C into three subcriteria, namely absence of semantic contrast, syntactic

substitutability, and repeatability with the same Synt-governor. For a given dependency

L1=r=>L2, if at least one of these subcriteria of Criterion C is satisfied, the SSyntRel r must be

categorized as a unique type. These subcriteria are discussed in turn below.

21

Criterion C1 (minimal pairs): Absence of semantic contrast

Criterion C1 has to do with the absence of semantic contrast for two SSyntRels. Mel’čuk (2011,

p.8) states Criterion C1 as follows:

An SSyntRel r cannot describe two phrases W1(L1)=r[?]=>W2(L2) and

W3(L1)=r[?]=>W4(L2), which 1) contrast semantically and 2) differ formally by some

syntactic means of expression – i.e., by word order, syntactic prosody or syntactic

grammemes. (the notation “W(L) denotes “a wordform w of the lexeme L”) (Mel’čuk

2011, p.8)

An example of how Criterion C1 is applied to English word order is found in sentences (2.5a and

b).

(2.5)

a. Sarah saw David.

b. David saw Sarah.

The dependency relations between ‘saw=r[?]=>Sarah’ in (2.5a) and ‘saw=r[?]=>Sarah’ in (2.5b)

contrast semantically and also differ formally, in this case by word order. Therefore, the

SSyntRels of ‘saw=r[?]=>Sarah’ in (2.5a) must be different from the SSyntRels of

‘saw=r[?]=>Sarah’ in (2.5b).

In principle, this criterion states that a particular dependency type can imply a certain kind of

semantic relationship between two words, and this semantic relationship is different from what is

implied by another dependency type.

22

Criterion C2 (substitutability in context): syntactic substitutability

Criterion C2 involves substitutability in context. Mel’čuk (2011, p.8) states Criterion C2 as

follows:

An SSyntRel r of L must possess the following (= “quasi-Kunze”) property: L has a

syntactic class X, different from substitute pronouns and such that, for any SSynt-phrase

L=r=>D(Y), replacing ∆(Y) by ∆ (X) (but not necessarily vice versa!) in any SSyntS of L does

not affect its syntactic well-formedness. (Mel’čuk 2011, p.8)

Mel’čuk then paraphrases this definition by stating that “an SSyntRel must have a prototypical

Dependent, which passes with any possible Governor” (Mel’čuk 2011, p.8).

Thus, this criterion states that the type of a given dependency determines the prototypical

dependent. Moreover, the syntactic well-formedness of the dependency for a given type (e.g.,

subj) is not affected by replacing its dependent A with a new dependent B, as long as A and B are

both prototypical dependents of the dependency type subj.

Criterion C3 (repeatability):

Criterion C3 has to do with repeatability with the same Synt-governor. Mel’čuk (2011, p.8)

states Criterion C3 as follows:

A SSyntRel r must be either non-repeatable (= no more than one branch labeled r can start

from a Synt-governor) or unlimitedly repeatable (= any number of branches labeled r can

start from a Synt-governor). (Mel’čuk 2011, p.8)

23

However, Criterion C3 does not function as a clear criterion for differentiating two SSyntRels;

rather, it simply describes some of the properties that SSyntRels can have. For example,

dependency types for the arguments of a verbal predicate are not repeatable, while those for the

adjuncts to a verbal predicate are repeatable4.

 Taking into account these three subcriteria, Mel’čuk’s Criterion C must be revised so that it

can define a given dependency type in a more straightforward manner. First, the type of a given

dependency implies a certain kind of semantic relationship between the governor and its

dependent. Thus, I propose to revise Mel’čuk’s Criterion C1 as follows:

Criterion C1 (revised):

In the syntactic phrase L1=synt=L2, the syntactic dependency must be categorized into a

type so that the type implies a unique semantic relationship between the governor and its

dependent.

Second, the type of a given dependency also determines the prototypical dependent. Thus, I

propose to revise Mel’čuk’s Criterion C2 as follows:

Criterion C2 (revised):

4
The arguments of a verbal predicate seem to be repeatable when they are in conjunction. For example, in ‘Sarah

has read this book and that book,’ the verb ‘read’ seems to have two objects; hence, the dependency type ‘obj’ seems

to be repeated. We will return to this issue with respect to the dependency type ‘conj’ in Section 5.3.

24

In the syntactic phrase L1=synt=L2, the syntactic dependency type must be clarified so that

the type determines the prototypical dependent.

2.4.4 Significance of Mel’čuk’s Criteria

These criteria can be used to create a list of SSyntRels for a particular language with reference to

how each type is related to DSyntRels (e.g., SSyntRels for English in Mel’čuk & Pertsov 1987,

p.85-156, Mel’čuk 2009, p.52-58, and Mel’čuk 2011, p.13-15).

In addition, these criteria can be used to provide other dependency-oriented syntactic

frameworks with a theoretical basis created by Tesnière (1959) and later developed by Mel’čuk

(1988, 2003, 2004, 2009 and 2011). For example, Stanford Dependencies (de Marneffe &

Manning 2008, 2012, 2013), the framework I will use in this dissertation, make only a brief

reference to the tradition of dependency grammar. However, it is possible to support de

Marneffe & Manning’s (2012) dependency framework with a theoretical backbone established in

the works of Tesnière and Mel’čuk. Chapter 5 specifically addresses this issue through a

detailed discussion of the dependency types presented in Stanford Dependencies.

As a means to define language-specific dependency types, these criteria can be employed to

account for the dependency types of natural languages other than English, for example, Japanese

language. Chapter 6 deals with the typed-dependency trees for Japanese language, and in

Section 6.5, each dependency type in Japanese is defined with reference to these criteria for

SSynt-Rel.

2.5 Dependency Grammar and Phrase-structure Grammar

The previous section discussed the basic idea of dependency grammar and its development.

25

Another important topic to address is the relationship between dependency grammar and other

formal approaches to grammar, such as phrase-structure grammar. Debusmann and Kuhlmann

(2007, p.1) argue that researchers who work with dependency-oriented grammar formalisms

have not yet made clear how dependency approaches relate to phrase-structure frameworks.

This section deals with this specific issue.

2.5.1 Comparison of two formalisms

In order to understand the difference between these two approaches, the syntactic structures of

the same sentence are shown under phrase-structure grammar (Figure 2.3) and dependency

grammar (Figure 2.4) below.

NP

N V

Sarah read

NP

Det N

this book

S

VP

Figure 3.3. The phrase-structure tree for ‘Sarah read this book.’

26

ROOT

NSUBJ DOBJ

DET

Root

read

Sarah book

this

Figure 3.4. The dependency tree for ‘Sarah read this book.’

The chief difference between phrase-structure grammar and dependency grammar is that the

former contains non-terminal nodes (NP, VP, etc.) while the latter does not. In this way,

dependency grammar is simpler than phrase-structure grammar, and therefore easier to handle

(Horáček, Zámečníková, & Burgetová 2011).

2.5.2 Translation of phrase structure into dependency structure

This section addresses the issue of translating phrase structure into dependency structure. It is

possible to argue that the difference between phrase structure and dependency structure is not an

essential one, and that the two frameworks are simply variations of the same representation. If

this claim is true, then dependency structure can serve as a viable alternative to phrase-structure

representations. This section presents a discussion that supports this claim by showing that the

phrase structure of a sentence can be translated into a dependency structure, without losing any

information contained in the original phrase structure. Other researchers who have attempted

this translation have hit various roadblocks in their analyses. For example, Osborne et al.

(2011) explore the possibility of translation across phrase structure and dependency structure,

concluding that they are “not merely notational variants” (Osborne et al. 2011, p.325) because

27

exocentric structures can be properly represented in phrase structure, but not in dependency

structure 5 . Another well-known difference between phrase-structure representation and

dependency-structure representation is that the former cannot properly account for

non-projective structures while the latter can (McDonald, Pereira, Ribarov, & Hajič 2005). This

section reviews the issues related to translating phrase structure into dependency structure (and

vice versa), paying careful attention to the account of endo- and exocentricity and flatness of

structure provided in Osborne et al. (2011), as well as to the production of dependency trees from

phrase structure parses provided in de Marneffe, MacCartney & Manning (2006).

Osborne et al. (2011, p.322) summarizes the difference between dependency and

constituency by presenting the following structures as examples. Both (2.6a) and (2.6b)

represent the structure for the phrase ‘drink wine.’

(2.6)

a. drink b. drink

wine drink wine

In (2.6b), the category label for each projection is replaced by the word. This structure is an

example of Bare Phrase Structure (BPS) discussed in Chomsky (1995). The authors claim that

the difference between these two structures is not substantial; however, they do not go so far as

5
Exocentricity or endocentricity of a syntactic structure depends on the theoretical framework, and it is not possible

to attempt a comprehensive comparison of all of them in this section. In this dissertation, I focus on Osborne et

al.’s (2011) framework and de Marneffe et al.’s (2006) dependency-tree framework. For purely exocentric

syntactic structure, see Bresnan (2001) and Dalrymple (2001) on Warlpiri and Walsh syntactic structures.

28

to discard BPS as redundant.

Osborne et al. (2011, p.325) also argue that an exocentric phrase structure cannot be

translated to a corresponding dependency structure. They provide the following phrase

structure, shown below in Figure 2.5, as an example (Osborne et al. 2011, p.325).

S

NP VP

D N V A

This structure is exocentric

Figure 2.5. The phrase structure for ‘This structure is exocentric.’

They argue that this structure is exocentric because the category S is distinct from the categories

N(P) and V(P), and that this exocentric structure cannot be represented in dependency structure

(they do not provide us with a BPS structure of the same sentence). However, the same

sentence can be represented in terms of the dependencies among words, as shown in Figure 2.6

below (the style of this dependency tree follows de Marneffe & Manning (2012)).

ROOT

PUNCT

NSUBJ

AUX

DET

.-5

Root-0

exocentric-4

structure-2

This-1

is-3

29

Figure 2.6. The dependency structure for ‘This structure is exocentric.’

In the dependency structure above, the root word (or, the presumed node Root in Stanford

Dependencies), not the category S, is at the top of the structure. This makes the copula ‘is’ a

dependent on the adjective rather than the root of the sentence. Note that this analysis follows

Mel’čuk’s Criterion B1, which states that the head determines how it can be subordinated to

another element. Adjectives can appear on their own in an utterance, especially in

exclamations (e.g., ‘Beautiful!’), while copulas cannot. The adjective ‘exocentric’ also can

appear on its own within a certain context; for example, ‘Sarah, is this structure exocentric, or

endocentric?’ ‘Exocentric.’ Therefore, in the example sentence above, the adjective

‘exocentric,’ not the copula ‘is,’ functions as the root of the sentence.

In terms of endocentric structure, Osborne et al. (2011, p.325) argue that endocentric phrase

structure can be translated into a corresponding dependency structure. They provide an

example of the endocentric phrase structure in the style of BPS, in which the category label for

each projection is replaced by the word, and a second example of the dependency structure. In

this case, the translation across the two frameworks appears straightforward. Their examples

are shown below in Figures 2.7 and 2.8.

Will sentence make

this sentence make sense

Will this sentence make sense?

Will

30

Figure 2.7. The phrase structure for ‘Will this sentence make sense?’

sentence make

this sense

Will this sentence make sense?

Will

Figure 2.8. The dependency structure for ‘Will this sentence make sense?’

In terms of the flatness of structure, Osborne et al. (2011, p.326) discuss the issue of movement

in the tradition of Government and Binding and the Minimalist Program (GB/MP). The phrase

structure in that tradition for the same sentence is shown below in Figure 2.9, in which there are

traces of the auxiliary.

ti

Willi sentence ti

ti make

this sentence

make sense

Willi this sentence ti make sense?

Willi

Figure 2.9. The phrase structure for ‘Will this sentence make sense?’ with traces of the moved

31

auxiliary.

ti

sentence

make

this

sense

Willi this sentence ti make sense?

Willi

Figure 2.10. The dependency structure for ‘Will this sentence make sense?’ with traces of the

moved auxiliary.

Osborne et al. (2011, p.327) admit that the dependency structure above is problematic because it

contains the traces of the moved auxiliary, which is uncommon in dependency formalisms. A

better dependency structure would show that the root of the sentence is the verb and the auxiliary

is its dependent. The Stanford-Dependencies model would generate the structure in this way, as

shown in Figure 2.11.

32

ROOT

PUNCT ?-6

NSUBJ

AUX DOBJ

DET

Root-0

make-4

sentence-3 Will-1 sense-5

this-2

Figure 2.11. The dependency structure for ‘Will this sentence make sense?’ in Stanford-

Dependencies format.

Note that this analysis follows Mel’čuk’s Criterion B1, which states that the head determines

how it can be subordinated to another element. Verbs can appear on their own in an utterance,

especially in the imperative mood (e.g., ‘Run!’), while auxiliaries cannot. Therefore, in the

sentence shown in Figure 2.11 above, the verb ‘make,’ not the auxiliary ‘will,’ should function as

the root of the sentence.

2.6 Summary

This chapter introduced the concept of dependency grammar through a discussion of Tesnière’s

(1959) seminal assumption about dependency along with more recent theories of dependency

grammar proposed by I. Mel’čuk and his colleagues (Iordanskaja & Mel’čuk 2000: Mel’čuk &

Pertsov 1987; Mel’čuk 1988, 2003, 2009, 2011). This chapter also addressed the difference

between dependency grammar and phrase-structure grammar. Section 2.2 presented an

overview of dependency grammar and Section 2.3 focused specifically on Tesnière’s (1959)

seminal work on dependency grammar. Section 2.4 discussed Mel’čuk’s work on Deep

Syntactic Relations and Surface Syntactic Relations as a development of Tesnière’s (1959)

33

concept of dependency. Finally, the difference between dependency and phrase-structure

grammar was briefly discussed in Section 2.5 with reference to Osborne et al. (2011).

34

3. Typed-Dependency Trees and Lexical-Functional Grammar6

3.1 Introduction

The previous chapter reviewed the basic ideas of dependency grammar, and examined the

similarities and differences between dependency-based and phrase-structure-based

representations of syntactic structure. This chapter continues to explore the equivalence between

a typed-dependency tree for a sentence and its functional-structure representation according to

Lexical-Functional Grammar (LFG) (Bresnan 1978; Bresnan 1982; Kaplan & Bresnan 1982).

Both LFG and dependency grammar theory assume that the individual pieces of lexical

information of a sentence are integrated into the representation for the whole sentence, and both

frameworks make explicit the process through which these pieces of lexical information are

integrated. Dependency grammar employs one level of representation (i.e., a dependency tree

for a sentence), while LFG employs multiple levels of representation (i.e., constituent structure,

functional structure, argument structure, etc.). The idea of structural correspondence in LFG

can be considered as an extension of typed-dependency tree representation of grammatical

knowledge. In other words, LFG represents one direction of development of the dependency

grammar tradition started by Tesnière (1959).

This chapter is organized as follows. First, the basic architecture of the LFG framework is

briefly summarized in Section 3.2. Next, Section 3.3 shows the equivalence between a

functional-structure representation for a sentence and its typed-dependency tree. This

equivalence supports the idea that LFG is one direction of development of the dependency

grammar. This section also introduces the revision of Mel’čuk’s Criterion A for the existence of

dependency relationship between two words, in terms of their possibility to constitute a fragment

6
This chapter is based on Oya (2013c).

35

functional structure.

3.2 Lexical-Functional Grammar (LFG)

This section is a brief introduction of the basic framework of LFG. This system of grammatical

representation was first proposed by Bresnan (1978), and has since been developed by a number

of linguists and incorporated in various fields of research (e.g., Bresnan 1982, 2001; Butt, King,

Niño & Segond 1999; Dalrymple 2001; Kaplan & Bresnan 1982). The LFG framework

proposes different levels of representation for grammatical knowledge about a sentence, and the

pieces of information represented at each of these different levels correspond to each other

through functional descriptions of the phrase-structure tree for the sentence. The three levels of

representation in the LFG framework are constituent structure (c-structure), functional structure

(f-structure), and argument structure (a-structure).

3.2.1 Structural correspondence7

Describing the syntactic properties of natural languages only at the language-specific tree level

can lead us to postulate operations that are linguistically unmotivated, such as movement in the

tradition of Government and Binding (Chomsky 1981). In contrast, LFG can capture invariant

properties of grammatical knowledge across languages at the functional level of representation,

which is called functional structure or f-structure. The functional structure for a grammatical

sentence is constructed in a step-by-step manner by integrating the lexical information of each

word in the sentence. The functional structure for a grammatical sentence observes

7
This subsection is based on Kaplan and Bresnan (1982), and Oya (2013c).

36

well-formedness constraints (see Section 3.2.2). Various linguistic phenomena, such as

long-distance dependency, control, and anaphora, can be represented at f-structure.

The f-structure for a sentence corresponds to its c-structure, and vice versa. C-structure is a

phrase-structure tree that is specified by the phrase structure rules (PS rules) of a context-free

grammar. Each node of a phrase-structure tree is annotated with functional equations and

corresponds to the f-structure. Functional equations specify the correspondence between

f-structures and the nodes, and the top node S corresponds to the f-structure for the sentence as a

whole.

The PS rule in (3.1) states that the syntactic category S (=sentence) is expanded into NP

(=noun phrase) and VP (verbal phrase). The up arrows in the functional equations refer to the

functional structures which correspond to the nodes that immediately dominate the annotated

nodes. The functional equation annotated below NP states that the value of the SUBJ

(=subject) feature of the f-structure corresponding to S is the f-structure corresponding to NP.

The equation annotated below VP states that the f-structure corresponding to S equals the

f-structure corresponding to VP.

(3.1)

S → NP VP

 (↑SUBJ)=↓ ↑=↓

The up arrows and the down arrows are instantiated by variables which stand for an

underspecified functional structure. In the PS rule below, the up arrows are instantiated by f1,

which is the functional structure corresponding to the node S. The down arrow in the

functional equation (↑SUBJ)=↓ annotated to the NP is instantiated by f2, which is the functional

37

structure corresponding to the node NP. The down arrow in the functional equation ↑=↓ is

instantiated by f3, which is the functional structure corresponding to the node VP.

(3.2)

S → NP VP

(f1SUBJ)=f2 f1= f3

The instantiated functional equation (f1SUBJ)=f2 states that the functional structure f1 has an

attribute SUBJ whose value is a functional structure f2. The instantiated functional equation

f1= f3 states that the functional structure f1 equals the functional structure f3, thus they merge8

with each other. The PS rule (3.2) represents the correspondence between the phrase structure

and the functional structure, as illustrated below

S: f 1

f1,f3 SUBJ f2

NP: f 2 VP: f 3

(f1 SUBJ)=f2 f1 = f3

Figure 3.1 The correspondence between the phrase structure and the functional structure

represented by the PS rule (3.2)

The PS rule in (3.3) states that the syntactic category VP is divided into V and NP. The

8 Bresnan and Kaplan (1982, p.191) use the term Merge which “checks to see whether those values are the same and

hence already satisfy the equality relation”, prior to Chomsky (1999).

38

equation below V states that the f-structure corresponding to V is equal to the one corresponding

to VP. The equation below NP states that the value of the OBJ feature of the f-structure

corresponding to VP is the f-structure corresponding to NP.

(3.3)

VP → V NP

 ↑=↓ (↑OBJ)=↓

In the instantiated PS rule below, the up arrows are instantiated by f3 which is the functional

structure corresponding to the node VP. The down arrow in the functional equation ↑=↓

annotated to V is instantiated by f4 which is the functional structure corresponding to the node V.

The down arrow in the functional equation (↑OBJ)=↓ is instantiated by f5 which is the functional

structure corresponding to the node NP.

(3.4)

VP → V NP

f3= f4 (f3OBJ)= f5

The instantiated functional equation f3=f4 states that the functional structure f3 equals the

functional structure f4, thus they merge with each other. The instantiated functional equation

(f3OBJ)= f5 states that the functional structure f3 has an attribute OBJ whose value is a

functional structure f5. The PS rule (3.4) thus represents the correspondence between the

phrase structure and the functional structure, as illustrated below

39

VP: f3

f3, f4 OBJ f5

V:f4 NP:f5

(f3OBJ)=f5f3 = f4

Figure 3.2. The correspondence between the phrase structure and the functional structure

represented by the PS rule (3.4)

The PS rule in (3.5) states that the syntactic category NP is divided into DET (=determiner)

and N (=noun). The DET and the functional equation are parenthesized because they are

optional. The functional equation below DET states that the value of the DET feature of the

f-structure corresponding to NP is the f-structure corresponding to DET. The functional

equation below N states that the f-structure corresponding to N is equal to the one corresponding

to NP.

(3.5)

NP → DET N

(↑DET)=↓ ↑=↓

In the instantiated PS rule below, the up arrows are instantiated by f2 which is the functional

structure corresponding to the node NP. The down arrow in the functional equation (↑DET)=↓

is instantiated by f6 which is the functional structure corresponding to the node DET. The

down arrow in the functional equation ↑=↓ annotated to N is instantiated by f7, which is the

functional structure corresponding to the node N.

40

(3.6)

NP → DET N

(f2DET)=f6 f2=f7

The instantiated functional equation (f2DET)= f6 states that the functional structure f2 can

have an attribute DET whose value is a functional structure f6. The instantiated functional

equation f2=f7 states that the functional structure f2 equals the functional structure f7, thus they

merge with each other. The PS rule (3.6) thus represents the correspondence between the

phrase structure and the functional structure, as illustrated below

NP: f2

f2, f7 DET f6

DET:f6 NP:f7

(f2 DET)=f6 f2 = f7

Figure 3.3. The correspondence between the phrase structure and the functional structure

represented by the PS rule (3.6)

Thus, all the functional structures above are integrated into one functional structure

corresponding to the root node S, as illustrated below.

41

S: f1

NP: f2 VP: f3

(f1 SUBJ)=f2 f 1=f 3

N: f4 V:f5 NP: f6

f 2=f 4 f 3=f 5 (f 3OBJ)=f 6

N: f7

f 6=f 7

SUBJ f2, f4

OBJ f6, f7

f1, f3, f5

Figure 3.4. The correspondence between the phrase structure and the functional structure

represented by the PS rules (3.2), (3.4) and (3.6)

The lexical information for each word in a sentence is integrated into a single f-structure that

corresponds to the S node of the phrase-structure tree. For example, the pieces of lexical

information in the sentence ‘John studies languages,’ which are shown in (3.7), (3.8), and (3.9)

below, are integrated into one f-structure at the S node of the phrase-structure tree. These

pieces of information are called functional equations, and they are attribute-value pairs. For

example, the first functional equation of the word ‘John’ is (↑PRED)=‘John,’ which shows that

this word has an attribute PRED whose value is ‘John.’ The second functional equation

(↑NUMBER) = Singular shows that the word ‘John’ has an attribute NUMBER whose value is

‘Singular.’ The lexical information for the words ‘studies’ and ‘languages’ are shown in (3.8)

and (3.9), respectively. The equations (↑SUBJ NUMBER) =C SINGULAR and (↑SUBJ

PERSON) =C 3RD are constraining equations; unlike ordinary equations, they do not define the

value of the designated attribute. Rather, they give a constraint on the value of the designated

attribute in the functional structure. If the attribute does not have the value as indicated in a

42

constraining equation, then the functional structure is not well-formed. For example, the

equation (↑SUBJ NUMBER) =C SINGULAR states that the NUMBER attribute in the SUBJ

must have the value SINGULAR.

(3.7)

John, N:

(↑PRED)= ‘John’

(↑NUMBER) = Singular

(↑PERSON) = 3RD

(3.8)

studies, V:

(↑PRED) = ‘study <SUBJ, OBJ>’

(↑SUBJ NUMBER) =C SINGULAR

(↑SUBJ PERSON) =C 3RD

(↑TENSE) = PRESENT

(3.9)

languages, N:

(↑PRED) = ‘language’

(↑PERSON) = 3RD

(↑NUMBER) = PLURAL

Figures 3.5 and 3.6 illustrate the constituent and function structures for the sentence ‘John

43

studies languages,’ respectively. The subscript on each node of the tree in Figure 3.5 represents

a functional variable that refers to the f-structure corresponding to the node. The up and down

arrows on the functional equations are replaced by these functional variables, so that the

f-structures are integrated through equations, and we obtain the f-structure for the whole

sentence corresponding to the root S, as shown in Figure 3.6.

S: f1

NP: f2 VP: f3

(f1 SUBJ)=f2 f1=f3

N: f4 V:f5 NP: f6

f2=f4 f3=f5 (f3 OBJ)=f6

John studies N: f7
(↑PRED)= 'John' (↑PRED) = 'study<SUBJ, OBJ>' f6=f7
(↑NUMBER) = SINGULAR (↑SUBJ NUMBER) =c SINGULAR

(↑PERSON)=3RD (↑SUBJ PERSON) =c 3RD languages
(↑TENSE) = PRESENT (↑PRED) = 'language'

(↑PERSON)=3RD

(↑NUMBER)=PLURAL

Figure 3.5. The constituent structure for ‘John studies languages’ with the lexical information for

each word

SUBJ PRED 'John'

NUMBER SINGULAR

f2, f4 PERSON 3rd

OBJ PRED 'languages'

f6, f7 NUMBER PLURAL

PERSON 3rd

PRED

f1, f3, f5 TENSE PRESENT

'study<SUBJ, OBJ>'

44

Figure 3.6. The functional structure for ‘John studies languages.’

3.2.2 Well-formedness constraints

According to LFG, an f-structure for a sentence must observe the following well-formedness

constraints: completeness, coherence, and consistency. Each constraint is discussed in turn

below.

The completeness constraint states that a predicate and all its arguments must be present in

an f-structure (Kaplan & Bresnan 1982, p.211-212). The sentence presented in (3.10) is

ungrammatical because the f-structure lacks the object required for the predicate ‘read.’ In other

words, the f-structure, shown in Figure 3.7, does not observe completeness constraint.

(3.10) Sarah reads.

PRED 'read<SUBJ, OBJ>'

SUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

OBJ ?

TENSE PRESENT

PUNCT FORM '.'
STMT-TYPEDECLARATIVE

Figure 3.7. The f-structure for ‘Sarah reads.’

The completeness constraint addresses some issues not covered by Mel’čuk’s criteria for

syntactic relations (SSyntRel, discussed in Section 2.4.3). The completeness constraint does

not have any equivalent in Mel’čuk’s criteria for surface syntactic relations. This is the case

45

because Criterion A is concerned with whether two given words actually present in a sentence

have a dependency relationship. Criterion A is not concerned with the lack of a dependent word

(or phrase) that might be required by a head word, as exemplified above in sentence (3.10). In

addition, Criterion B is concerned with the direction of existing dependency relations, and

Criterion C simply determines the type of these dependency relations. Thus, Criteria B and C

are not relevant measures to identify whether a head word lacks a dependent. In this way, the

completeness constraint is an extension of Mel’čuk’s criteria for syntactic relations (SSyntRel).

The coherence constraint states that all arguments in an f-structure must be required by the

predicate (Kaplan & Bresnan 1982, p.212). The following sentence (3.11) is ungrammatical

because the f-structure contains an argument that is not required by the predicate ‘fell.’ Put

another way, the f-structure, as shown in the figure below, does not observe coherence.

(3.11) *Sarah fell the book.

PRED 'fall<SUBJ>'

SUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

OBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

DET FORM THE

TYPE DET

TENSE PAST

PUNCT FORM '.'
STMT-TYPEDECLARATIVE

Figure 3.8. The f-structure for ‘Sarah fell the book.’

46

Finally, the consistency constraint states that every attribute in an f-structure must have a

unique value (Kaplan & Bresnan 1982, p.181). In other words, there must be no inconsistency

between an attribute and its value. The following sentence (3.12) is ungrammatical because the

number of the determiner does not agree with the noun. The lexical information for the

determiner ‘these’ is presented in (3.13). This determiner requires that the noun it modifies be

plural. However, the noun after ‘these’ in (3.12) does not satisfy this requirement; hence, this

sentence violates the consistency constraint. The f-structure for this sentence is shown in the

figure below.

(3.12) *Sarah has read these book.

(3.13)

these, determiner:

(↑NUMBER) =C PLURAL

(↑FORM) = ‘these’

(↑TYPE)=DEMONSTRATIVE

47

PRED 'read<SUBJ, OBJ>'

SUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

OBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

NUMBER PLURAL?

DET FORM THESE

TYPE DEMONSTRATIVE

AUX TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'
STMT-TYPE DECLARATIVE

Figure 3.9. The f-structure for ‘*Sarah has read these book.’

3.3 Equivalence of the Functional-Structure Representation and the Typed-Dependency

Tree Representation for a Sentence9

This section proposes the idea of equivalence between the functional-structure representation for

a sentence and the typed-dependency tree representation for the same sentence. This idea is

related to the basic assumption of unification grammar (Sag, Kaplan, Karttunen, Kay, Pollard,

Shieber & Zaenen 1986) that the lexical information contained in each word in a sentence is

integrated into one complete and coherent level of syntactic representation for the sentence.

This integration is processed according to the dependency relationship between the words in a

sentence (See Section 3.2.1 for structural correspondence between the constituent structure and

the functional structure for a sentence). Therefore, the lexical information of each word in a

9
This section is based on Oya (2013c).

48

sentence can be integrated into one single representation only if it is clearly defined which word

is related to, or dependent on, which word in the sentence. There must be well-defined criteria

for rejecting incorrect dependencies between words in a sentence; without such criteria, incorrect

connections between words in a sentence would yield an incorrect representation.

Mel’čuk’s Criterion A (see Section 2.4.3) can work for the purpose mentioned above;

however, his version of Criterion A employs the notion of prosodic unit. This notion, however,

is too vague to be a criterion for identifying the dependency relationship between two words in a

sentence. To solve the problem of dependency-relationship identification, Gerdes & Kahane

(2011) introduced the notion of “acceptable fragments of an utterance.” They argue that

acceptable fragments are the building blocks of their dependency grammar. In this section, we

attempt to define “acceptable fragments of an utterance” in terms of functional structure in the

LFG framework which is the building block of our dependency grammar.

3.3.1 Overview

Consider the sentence presented in (3.13). The functional structure for the sentence is shown in

Figure 3.10, and the corresponding typed-dependency tree is shown in Figure 3.1110.

(3.13) David has written this article.

10 In this study, the form of the verbal predicate in a functional structure is in its dictionary form, following the

convention of standard Lexical-Functional Grammar, while its form in the corresponding typed-dependency tree is as

appeared in the sentence.

49

PRED 'write<SUBJ, OBJ>'

SUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

OBJ PRED 'article'

PERSON 3RD

NUMBER SINGULAR

DET FORM 'this'
TYPE DEMONSTRATIVE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 3.10. The functional structure for the sentence (3.13)

Root

NSUBJ Aux PUNCT

DOBJ .-6

DET

this-4

ROOT-0

written-3

David-1 has-2 article-5

Figure 3.11. The typed-dependency tree for the sentence (3.13)

For two words in a dependency relationship, the lexical information for the tail word is

50

unified with the information for its head word. This process goes backward along the

typed-dependency arc of the tree. As a result of this unification process, the information for the

whole sentence is at the ROOT level. In the example above, the information for the word ‘this’ is

unified with the information for the word ‘article,’ whose information is unified with the word

‘written.’ The information for ‘David’ and ‘has’ is also unified with the information for the word

‘written.’ At the ROOT level, we have the information for the whole sentence ‘David has

written this article.’

3.3.2 Fragment functional structure and dependency

The unification process of lexical information along the typed-dependency tree that was

described briefly in the previous section needs further explanation. To do this, let us look at the

minimum dependency relationship between two words. The dependency relationship between

the head and tail of a typed-dependency tree is interpreted as a fragment functional structure (Oya

2013c, p.24), and can be schematized as shown in Figure 3.12.

'Head'

X

X ['Tail']

Head

Tail

Figure 3.12. Schema for the equivalence between a typed-dependency tree and a functional

structure (Oya 2013c, p.24)

Fragment functional structures are constructed from two words, and one of these words

51

functions as an argument or an adjunct (a modifier) for the other word11. In Figure 3.12 above,

the “X” next to the dependency arc represents the type of the dependency. The schema shows that

the head of the typed-dependency tree has an attribute whose name is “X,” and the value of the

attribute “X” equals the tail of the same typed-dependency tree. For example, the relation

between ‘David’ and ‘written’ in sentence (3.13) is such that the word ‘written’ has a value ‘David’

in terms of the attribute NSUBJ. This relation can be schematized in a fragment functional

structure below. In this fragment functional structure, the word ‘David’ functions as an

argument for the verb ‘written.’

'written'

NSUBJ

NSUBJ ['David']

written

David

Figure 3.13. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘written’ and ‘David’ in (3.13)

The relation between ‘written’ and ‘has’ is such that the word ‘written’ has a value ‘has’ in

terms of the attribute ‘AUX.’ In the fragment functional structure below, the auxiliary ‘has’

11
The definition of surface syntactic fragments of an utterance by Gerdes & Kahane (2011, p.23) is not the same as

that of fragment functional structures. In their definition, if fragments “can stand alone,” they are autonomizable,

and if a single word can replace them, then they belong to a distributional class. On the other hand, fragment

functional structures are not always autonomizable, because two words which constitute a fragment functional

structure do not always stand alone. In addition to this, fragment functional structures do not belong to a

distributional class, because they are not always replaced by a single word. The idea of fragment functional

structure, though, is based on their assumption that fragments are the building block of dependency grammar.

52

functions as a modifier for the verb ‘written.12’ Notice here that the dependency relationship

between them is not the other way round. That is, ‘has’ provides ‘written’ with lexical

information about the tense and the aspect of the clause, and the number and person of the

subject (3rd person and singular).

'written'

AUX AUX ['has']

written

has

Figure 3.14. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘written’ and ‘has’ in (3.13)

The relation between ‘written’ and ‘article’ is such that the word ‘written’ has a value ‘article’

in terms of the attribute OBJ. In the fragment functional structure below, the noun ‘article’

functions as one of the arguments of the verb ‘written.’

'written'

DOBJ

DOBJ['article']

written

article

Figure 3.15. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘written’ and ‘article’ in (3.13)

12 This analysis does not follow the standard LFG analysis on auxiliaries with reference to the notion of f-structure

co-head (Falk 1984, Grimshaw 1991). This is due to the definition of the dependency type AUX in Stanford

Dependency that, for a dependency between a verb and an auxiliary, the verb functions as the head and the auxiliary

functions as the tail. See Section 5.3.2 for the definition of the dependency type AUX.

53

The relation between ‘article’ and ‘this’ is such that the word ‘article’ has a value ‘this’ in terms

of the attribute DET. In the fragment functional structure below, ‘this’ functions as a modifier

for ‘article.’

'article'

DET

DET ['this']

article

this

Figure 3.16. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘article’ and ‘this’ in (3.13)

The relation between ‘written’ and ‘.’ is such that the word ‘written’ has a value ‘.’ in terms of

the attribute PUNCT. In the fragment functional structure below, ‘.’ functions as a modifier for

‘written.’

'written'

PUNCT

PUNCT['.']

written

'.'

Figure 3.17. Schema for the equivalence between the typed-dependency tree and the fragment

functional structure for ‘written’ and ‘.’ in (3.13)

3.3.3 Integrating fragment functional structures

The lexical information for each word is integrated into the functional-structure representation.

For example, the lexical entries for the words in the sentence (3.13) are shown below in (3.14) to

(3.19).

54

(3.14)

write, V

(↑PRED) = ‘write<(↑SUBJ), (↑OBJ)>’

(3.15)

David, N

(↑PRED) = ‘David’

(↑PERSON)=3RD

(↑NUMBER)=SINGULAR

(↑GENDER)=MASCULINE

(3.16)

has, AUX

(↑FORM)= ‘has’

(↑TENSE)=PRESENT

(↑ASPECT)=PERFECT

(↑SUBJECT PERSON)=c 3rd

(↑SUBJECT NUMBER) =c SINGULAR

(3.17)

article, N

(↑PRED) = ‘article’

(↑PERSON)=3RD

(↑NUMBER)=SINGULAR

55

(3.18)

this, DET

(↑TYPE) = DEMONSTRATIVE

(↑FORM) = ‘this’

(3.19)

. PERIOD

(↑FORM)= ‘.’

(↑STMT-TYPE) = DECLARATIVE

The equivalence schema in Figure 3.12 in Section 3.3.2 can be lexicalized, as shown in Figure

3.18 below. The verb ‘written’ is a transitive verb, which requires that the attributes “nsubj” and

“dobj” be specified. The noun ‘David’ provides the verb ‘written’ with the “nsubj” value. The

attribute “nsubj” is one of the subcategories of “subj” in Stanford Dependencies (de Marneffe &

Manning 2012).

The “obj” attribute in Figure 3.18 is not specified because no element in the dependency

specifies this attribute. Therefore, this fragment functional structure does not satisfy the

completeness constraint (see Section 3.2.2).

PRED 'write<(↑SUBJ), (↑OBJ)>'

NSUBJ NSUBJ PRED 'David'

PERSON 3rd

NUMBER SINGULAR

GENDER MASCLUINE

OBJ […]

written

David

Figure 3.18. Lexicalized schema for the equivalence between the typed-dependency tree and the

56

fragment functional structure for ‘written’ and ‘David’ in the sentence (3.13)

Notice that a fragment functional structure does not necessarily follow the well-formedness

constraints (Section 3.2.2). For example, the functional structure in Figure 3.18 is not

well-formed; it is not complete because the “obj” value is not specified. Oya (2013c, p.27) points

out that the well-formedness constraints should be applied to the functional structure for a

sentence as a whole, not to the fragment functional structures for the words in dependency

relationship in the sentence.

The equivalence schema in Figure 3.15 can be lexicalized, as shown in Figure 3.19. The noun

‘article’ provides the verb ‘written’ with the “obj” value, while the “subj” value remains

underspecified.

PRED "write<(↑SUBJ), (↑OBJ)>"

SUBJ […]

obj OBJ PRED "article"

PERSON 3rd

NUMBER SINGULAR

written

article

Figure 3.19. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘write’ and ‘article’ in the sentence (3.13)

Lexicalized schema in Figure 3.18 for ‘David’ and ‘written,’ and that in Figure 3.19 for ‘written’

and ‘article,’ share the same dependency head; hence, they are integrated to form one lexicalized

schema, as shown in the figure below.

57

PRED 'write<(↑SUBJ), (↑OBJ)>'

SUBJ PRED 'David'

SUBJ OBJ PERSON 3rd

NUMBER SINGULAR

David article GENDER MASCULINE

OBJ PRED 'article'

PERSON 3rd

NUMBER SINGULAR

written

Figure 3.20. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘David,’ ‘written’ and ‘article’ in the sentence (3.13)

The equivalence schema in Figure 3.14 for ‘written’ and ‘has’ can also be lexicalized, as

shown in Figure 3.21. The auxiliary ‘has’ provides the verb ‘written’ with the tense and aspect

values, and also specifies the person and number values of the subject of the verb.13

PRED 'write<(↑SUBJ), (↑OBJ)>'

SUBJ …

(PERSON 3RD)

(NUMBER SINGULAR)

aux OBJ […]

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

written

has

Figure 3.21. Lexicalized schema for the equivalence between the typed-dependency tree and the

13 In the convention of standard LFG, the verb form at the PRED value must be in its dictionary form; however, this

convention does not clearly show the agreement between the auxiliary and the past participle form. This is due to the

idea that the agreement relationship should be represented in morphological structure (m-structure) (Butt, Niño &

Segond 1996, p.117), another attribute-value pair matrix for auxiliaries. M-structure can be similar to Morph-D

(See Section 2.4), because both of them are independent from, but related to, the syntactic representation of a

sentence. The equivalence between them will be a topic of future research.

58

f-structure for ‘written’ and ‘has’ in the sentence (3.13)

Lexicalized schema in Figure 3.20 for ‘David,’ ‘written’ and ‘article,’ and that in Figure 3.21

for ‘written’ and ‘has,’ share the same dependency head; hence they are integrated to form one

lexicalized schema, as shown in the figure below.

written PRED 'write<(↑SUBJ), (↑OBJ)>'

SUBJ PRED 'David'

SUBJ OBJ PERSON 3rd

AUX NUMBER SINGULAR

David has article GENDER MASCULINE

OBJ PRED 'article'

PERSON 3rd

NUMBER SINGULAR

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

Figure 3.22. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘David,’ ‘has,’ ‘written’ and ‘article’ in the sentence (3.13)

The equivalence schema in Figure 3.16 for ‘this’ and ‘article’ can be lexicalized, as shown in

Figure 3.23. The determiner ‘this’ provides the noun ‘article’ with the DET value.

PRED 'article'

DET TYPE DEMONSTRATIVE

det FORM 'this'

article

this

Figure 3.23. Lexicalized schema for the equivalence between the typed-dependency tree and the

59

f-structure for ‘article’ and ‘this’ in the sentence (3.13)

Lexicalized schema in Figure 3.23 for ‘this’ and ‘article,’ and that in Figure 3.22 for ‘David,’

‘has,’ ‘written,’ and ‘article,’ share the same word; hence they are integrated to form one

lexicalized schema, as shown in the figure below.

written PRED 'write<(↑SUBJ), (↑OBJ)>'

SUBJ PRED 'David'

SUBJ OBJ PERSON 3rd

AUX NUMBER SINGULAR

David has article GENDER MASCULINE

DET

OBJ PRED 'article'

this PERSON 3rd

NUMBER SINGULAR

DET TYPE DEMONSTRATIVE

FORM 'this'

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

Figure 3.24. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘David,’ ‘has,’ ‘written,’ ‘this’ and ‘article’ in the sentence

(3.13)

The equivalence schema in Figure 3.17 for ‘written’ and ‘.’ can be lexicalized, as shown in

Figure 3.25. The punctuation mark ‘.’ provides the verb ‘written’ with the PUNCT value.

60

PRED 'write<(↑SUBJ),(↑OBJ)>'

SUBJ […]

punct OBJ […]

PUNCT FORM '.'
STMT-TYPEDECLARATIVE

written

.

Figure 3.25. Lexicalized schema for the equivalence between the typed-dependency tree and the

f-structure for ‘write’ and ‘.’ in the sentence (3.13)

Lexicalized schema in Figure 3.25 for ‘write’ and ‘.,’ along with that in Figure 3.24, share the

same word; hence they are integrated to form one lexicalized schema, as shown in the figure

below.

written PUNCT PRED 'write<(↑SUBJ), (↑OBJ)>'

. SUBJ PRED 'David'

SUBJ OBJ PERSON 3rd

AUX NUMBER SINGULAR

David has article GENDER MASCULINE

DET

OBJ PRED 'article'

this PERSON 3rd

NUMBER SINGULAR

DET TYPE demonstrative

FORM 'this'

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'
STMT-TYPE DECLARATIVE

Figure 3.26. Lexicalized schema for the equivalence between the typed-dependency tree and the

fragment functional structure for ‘David,’ ‘has,’ ‘written,’ ‘this,’ ‘article’ and ‘.’ in the sentence

61

(3.13)

Finally, the whole sentence depends on an abstract element “Root” (see Section 5.3.1 for the

definition of “Root”), as shown in the figure below. The result is the typed-dependency tree for

the sentence ‘David has written this article.’ and its functional-structure equivalent.

Root PRED 'write<(↑SUBJ), (↑OBJ)>'

ROOT SUBJ PRED 'David'

PERSON 3rd

written PUNCT NUMBER SINGULAR

. GENDER MASCULINE

SUBJ OBJ

AUX OBJ PRED 'article'

David has article PERSON 3rd

DET NUMBER SINGULAR

DET TYPE DEMONSTRATIVE

this FORM 'this'

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 3.27. The typed-dependency tree and its functional-structure equivalent for the sentence

(3.13)

3.3.4 Fragment functional structures and Mel’čuk’s Criterion A

Notice that not all pairs of words in a sentence are in a dependency relationship in the sentence,

and that they do not have equivalent fragment functional structures. For example, the word

62

‘David’ and ‘article’ cannot constitute a typed dependency relationship, because they cannot

unify with each other to form a fragment functional structure, as shown in Figure 3.28. The

word ‘article’ cannot be an argument or an adjunct for the word ‘David.’

PRED 'David'

PERSON 3rd

? NUMBER SINGULAR

GENDER MASCULINE

PRED 'article'

PERSON 3rd

NUMBER SINGULAR

David

article ?

Figure 3.28. Non-equivalence between a wrong dependency and functional structure

This example shows that not all word pairs in a sentence necessarily form a dependency

relationship. In other words, the word pair ‘David’ and ‘article’ does not constitute one of the

“acceptable fragments of an utterance” (Gerdes & Kahane 2011, p.17) in the sentence ‘David has

written this article.’

Notice that the fragment ‘David written’ would not be considered to have dependency

relationship according to Mel’čuk’s Criterion A. This is because this fragment does not always

constitute a prosodic unit (see Section 2.4.3.1), for example, when an adverb appears between

the subject and the verb (e.g., Sarah sometimes read). However, this word pair can constitute a

fragment functional structure, as already shown in Figure 3.13 above. Therefore, they are

acceptable as one of the fragments of the utterance.

Oya (2013c, p.29) argued that two words in a sentence can constitute a dependency

relationship if they can correspond to a fragment functional structure, with respect to the

63

equivalence of a dependency relation between two words and its fragment functional structure.

Oya also argued that Mel’čuk’s Criteria A (see Section 2.4.3.1) for the presence of a dependency

relationship between two words in a sentence (SSyntRel in Mel’čuk’s term) can be revised in

terms of the fragment functional structure. Note that Criterion A is proposed in Mel’čuk (2011,

p.6), and Oya (2013c, p.29) proposed a revision of this criterion (Also see Section 2.4.3.1).

Criterion A

In a sentence, the lexemes L1 and L2 have a direct Synt-D link, only if L1 and L2 can form

in language L an utterance – i.e., a prosodic unit, or a prosodic phrase of L – such as the

window, of John, spouts water or stained glass, out of any context; the linear position of one

of these lexemes in the sentence must be specified with respect to the other. (Mel’čuk

2011, p.6)

Criterion A (revised):

In a sentence, the lexemes L1 and L2 have a direct Synt-D link, only if L1 and L2 can form

a semantic unit in language L.

Oya (2013c) argued that the term semantic unit in this revised Criterion A can be defined in

terms of fragment functional structure. In other words, a word (or an lexical element in Oya

(2013c)’s term) can form a semantic unit with another word in the same sentence iff the lexical

information of these words can be integrated into one fragment functional structure. This study

adapts Oya (2013c)’s revision of Mel’čuk’s Criterion A.

64

3.4 Functional Structure as an Extension of Dependency Grammar: an Example from

Pseud-Cleft Sentences

Oya (2013c, p. 29) argues that the ungrammaticality of pseudo-cleft sentences can be accounted

for by the equivalence between typed-dependency trees and functional structures described in the

previous section. Consider the sentence below.

(3.20) (=(18) in Oya (2013c, p.29))

*What the chairman has resigned is from the board

The typed-dependency tree for the sentence (3.22) is as follows.

ROOT

NSUBJ

PUNCT

PREP .-10

RCMOD

POBJ

NSUBJ

DET

AUX

DET

chairman-3

the-2

Root

is-6

from-7

resigned-5

has-4

What-1

board-9

the-8

Figure 3.29. The typed-dependency tree for ‘*What the chairman has resigned is from the board.’

The typed-dependency tree itself is a well-formed one, yet the functional structure shown below

for the same sentence violates the completeness constraint. The attribute PREP that is required

65

by the verb ‘resigned’ is not given any value; hence, the sentence is ungrammatical.

PRED 'is<NSUBJ>'

PREP PRED 'from<POBJ>'

POBJ PRED 'board'

DET FORM 'the'

TYPE DEFINITE

NSUBJ PRED 'PRO'

FORM 'what'

TYPE RELATIVE

RCMOD PRED resigned<NSUBJ, PREP>'

NSUBJ PRED 'chairman'

DET FORM 'the'

TYPE DEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PREP ???

TENSE PRESENT

PUNCT FORM '.'

STMT-TYPE DECLARATIVE

Figure 3.30. The functional structure for ‘*What the chairman has resigned is from the board.’

The typed-dependency tree representation cannot account for the ungrammaticality of the

sentence above. On the other hand, the completeness condition can account for the

ungrammaticality of the functional structure that is equivalent to the typed-dependency tree.

Based on this instance, Oya (2013c, p.30) argues that “the functional-structure representation has

more explanatory capability than the typed-dependency representation.” It is also argued that

“the equivalence of typed-dependency trees and functional structures can be regarded as a

necessary extension of dependency grammar.” (Oya 2013c, p.30).

Obviously, only one instance is not enough to verify Oya’s (2013c) argument for the

equivalence of typed-dependency trees and functional structures. What we need here is to

66

explore other instances which seem to support the claim, that is, to find out ungrammatical

sentences whose typed-dependency trees are well-formed, while their functional structures are

ill-formed. This is one of the research questions in future study.

3.5 Summary

This chapter examined whether a typed-dependency tree for a sentence is equivalent to a

functional-structure representation according to Lexical-Functional Grammar (LFG) (Bresnan

1978; Bresnan 1982; Kaplan & Bresnan 1982). The basic architecture of LFG was summarized

in Section 3.2, with emphasis on structural correspondence between the constituent structure and

the functional structure for a sentence, and on the well-formedness constraints for a functional

structure. Next, Section 3.3 showed that a functional-structure representation for a sentence

and its typed-dependency tree are equivalent. This equivalence supports the idea that LFG

represents one direction of development of dependency grammar. This section also argued that

Mel’čuk’s Criterion A for the existence of dependency relationship between two words can be

revised in terms of their possibility to constitute a fragment functional structure.

67

4. Typed-Dependency Trees and Graph Theory

4.1 Introduction

The previous chapter investigated the equivalence between typed-dependency syntactic trees and

functional-structure syntactic representations according to the principles of LFG. This chapter

continues the discussion of typed-dependency by exploring the representation of a

typed-dependency syntactic tree as a directed acyclic graph (DAG). Moreover, this chapter also

examines the idea of quantifying the structural property in terms of graph centrality. The

advantage of dependency grammar representation is that a sentence’s dependency can be

interpreted as a DAG, allowing the formal syntactic properties to be defined and analyzed

mathematically in terms of graph theory (Oya 2010b, 2011, 2013a, 2013b). Dependency

grammar makes explicit the connections among the words in a sentence, or the network of words

(Tesnière 1959). The characteristics of such a network can be quantified in several ways by

drawing on approaches in the field of graph theory and network analysis. In other words, the

structural properties of networks of words in sentences can be made explicit in dependency

grammar and then quantified, using graph theory. Quantified structural properties can be useful

for linguistic analyses that have previously relied on the subjective judgment of researchers, such

as investigations into stylistic differences across different genres or similarities in syntactic

structures for sentences in different languages. Quantitative approaches to syntactic structure

can contribute to these types of linguistic analyses by bringing more objectivity.

The structure of this chapter is as follows. Section 4.2 introduces the basic tenets of graph

theory. Section 4.3 examines centrality measures, including degree centrality and closeness

centrality. The process for employing these centrality measures to analyze structural properties

of typed-dependency trees is discussed in Sections 4.4 and 4.5. Specifically, Section 4.4

explores the application of centrality measures to show the similarity of functional-structure

68

representations, and Section 4.5 illustrates how stylistic differences across genres are reflected by

different distributions of centralities. Finally, Section 4.6 addresses the role of dependency

distance in these representations.

4.2 Graph Theory

In order to understand how a typed-dependency tree can be represented as directed acyclic

graphs, we first need to discuss the basic framework of graph theory (de Nooy, Mrvar & Batagelj

2005; Wasserman & Faust 1994; Wilson 1975, among many others). Figure 4.1 presents an

example of a graph.

Figure 4.1. An example of a graph (n=5) (Oya 2010b, p. 394)

A graph consists of a set of nodes (or vertices) and a set of edges connecting these nodes

(Wasserman & Faust 1994, p.94-95). In the figure above, the circles are the nodes and the lines

connecting them are edges. The number of edges connected to a node is called the degree of

the node (Wasserman & Faust 1994, p.101). Edges are considered directed if a direction from

one node to the other is specified (directed edges are also called arcs) (Wasserman & Faust 1994,

p.121). For a directed edge, the node from which an edge is extended is called the head, while

the node into which an edge enters is called the tail (de Nooy et al. 2005, p.7). The number of

69

edges extending from a head is called outdegree, while the number of edges entering a tail is

called indegree (de Nooy et al. 2005, p.74). Nodes and edges can be given labels. A path is

defined as a sequence of nodes and edges,

n0, e1, n1, e2, n2, … , nr-1, er, nr

where each edge ei connects the nodes ni-1 and ni (1 ≤i≤r) (Biggs, Lloyd, & Wilson 1999, p.9).

A graph is acyclic if no path from any node in the graph leads to the same node. Figure 4.2

presents an example of a directed acyclic graph.

Figure 4.2. An example of a directed acyclic graph (n=5) (Oya 2010b, p. 394)

We can represent each word in a sentence as a node, and the edge connecting them as the

dependency relationship between the words. We can label these edges with the grammatical

functions that exist between words, i.e., we can categorize the dependency relationships into a

number of dependency types. The result would be a typed-dependency directed acyclic graph

of the sentence (Debusmann 2003; Debusmann & Kuhlmann 2007; Oya 2009, 2010a, 2010b,

2011, 2012). A typed-dependency directed acyclic graph for the sentence ‘I am studying graph

theory’ is presented in Figure 4.3 below.

70

PUNCT

.-6

NSUBJ AUX DOBJ

NN

theory-5

graph-4

Root-0

studying-3

am-2

ROOT

I-1

Figure 4.3. The typed-dependency directed acyclic graph for ‘I am studying graph theory.’

Typed-dependency directed acyclic graphs follow a number of constraints on

well-formedness (Debusmann & Kuhlmann 2007). Two of these constraints are particularly

relevant in this study. One constraint states that the indegree of all the nodes must be one,

except for the abstract node “Root” (see Section 5.3.1). This is relevant to the equivalence of

the typed-dependency tree representation and the functional-structure representation for a

sentence (see Section 3.3), because the lexical information in each word in a sentence cannot be

unified if any of the word depends on more than one word. Consider the figure below.

word1 word2

X Y

word3

Figure 4.4. An ill-formed typed-dependency tree (more than one indegree)

In the typed-dependency tree above, the lexical information in word3 will not be unified to the

71

lexical information at one unique head; hence, there is no functional structure that is equivalent

to the typed-dependency tree above14.

The other constraint for the well-formedness of typed-dependency trees states that it has no

cycle, as the word “acyclic” suggests (Oya 2010b). That is, no path in this graph leads from

one node to the same node. Consider the figure below.

X

Z

Y

word2

word1

word3

Figure 4.5. An ill-formed typed-dependency tree (cycled)

In the figure above, word2 depends on word1 with the dependency type X, word3 depends on

word2 with the dependency type Y, and word1 depends on word3 with the dependency type Z.

The lexical information in word2 is unified to that in word1, the lexical information in word1 is

unified to that in word3, the lexical information in word3 is unified to that in word2, and this

unification process forms an endless loop; hence, this tree has no functional-structure equivalent.

Directed acyclic graphs have been studied in other fields and they are often abbreviated as

DAGs.

14
The basic assumption of dependency grammar is that one word depends on only one word, i.e., one word is

dependent on one dependency head. Words in constructions such as coordination or raising also depend on one

dependency head. For the dependency structure of coordination, see Section 5.3.3 on the dependency type “conj,”

and for the dependency structure of raising verbs, see Section 5.3.3 on the dependency type “acomp.”

72

4.3 Graph Centrality15

Various measures are defined in graph theory to specify the characteristics of a given graph

(Freeman 1979; Wasserman & Faust 1994). Among these measures, centrality determines the

relative importance of a node within a given graph.

Centrality can be defined in various ways, and the different definitions reflect what aspect of

a given graph is made salient during the calculation. Following Oya (2010b, 2011, 2012, 2013a,

2013b), I focus on two types of centrality: degree centrality and closeness centrality. The

following sections explore the relevance of these centrality measures for determining the

structural property of the typed-dependency tree for a sentence.

4.3.1 Degree Centrality

Degree centrality is defined by the number of edges a given node has, i.e., the degree of a given

node (Freeman 1979; Wasserman & Faust 1994). According to Wasserman & Faust (1994,

p.179), for a graph with g nodes, the degree centrality C’D(ni) of node ni is the degree of this

node divided by the number of nodes in the graph minus one. In the formula below, d(ni) is the

degree of the ith node of the graph n, and g is the number of the nodes in the graph.

C’D(ni) = d(ni) / (g-1) (4.1)

Wasserman & Faust (1994, p.179)

15 This section is based on Oya (2013a).

73

This definition can be extended to the whole graph, as shown in Freeman (1979) and

Wasserman & Faust (1994). According to these authors, the degree centrality of a given graph

is the sum of the maximum degree in the graph minus the degree of each of all the other nodes,

divided by the largest possible sum of the maximum degree of the graph minus the degree of all

the other nodes (Wasserman & Faust 1994, p.180). This calculation is represented in the

following formula.

(4.2)

(Wasserman & Faust 1994, p.180)

The denominator of the formula above can be calculated directly, and equals (g-1)(g-2) (Freeman

1979).

The degree centrality of a given typed-dependency tree indicates the flatness of the

typed-dependency tree for a sentence (Oya 2010b, 2011, 2013a). The flatness of a

typed-dependency tree means the extent to which the words in a sentence are dependent on one

particular word. Larger degree centralities indicate flatter typed-dependency trees.

For example, Oya (2013a) compares the degree centrality of the example sentence ‘Sarah has

read this book.’ to that of ‘Sarah would have read this book.’ First, the sentence ‘Sarah has read

this book.’ contains seven words, including the Root and the period (the typed-dependency tree

for this sentence is Figure 2.2 above). The maximum degree in the typed-dependency graph for

this sentence is five at the word ‘read’; the sum of the maximum degree in the graph minus the

74

degree of each of all the other vertices is (5-1)+(5-1)+(5-5)+(5-1)+(5-1)+(5-2)+(5-1)=23. The

denominator is (7-2)(7-1)=30; hence the degree centrality of the typed-dependency tree for the

sentence ‘Sarah has read this book.’ is 23/30⋍0.767.

Next, consider the sentence ‘Sarah would have read this book.’ Figure 4.6 presents the

typed-dependency tree for this sentence.

ROOT

PUNCT .

NSUBJ DOBJ

AUX

would have

DET

Root

read

Sarah book

this

Figure 4.6. The typed-dependency tree for ‘Sarah would have read this book.’ (Oya 2013a, p.44)

This sentence contains eight words, with the Root and the period included in the word count, and

the maximum degree is six at the word ‘read’; the sum of the maximum degree in the graph minus

the degree of each of all the other vertices is (6-1)+(6-1)+(6-1)+(6-6)+(6-1)+(6-1)+(6-2)+(6-1)=34.

The denominator is (8-2)(8-1)=42; hence the degree centrality of the typed-dependency tree for

the sentence ‘Sarah would have read this book.’ is 34/42⋍0.81. Oya (2013a) concludes that a

typed-dependency tree with a flatter setting has a larger degree centrality, as the degree centralities

of these examples indicate.

Oya (2013a) also argued that degree centralities of typed-dependency trees can indicate the

flatness of sentences across English and Japanese. Consider a typed-dependency tree for an

75

English sentence in Figure 4.7 and its Japanese equivalent in Figure 4.8.16

ROOT

NSUBJ XCOMP PUNCT

NSUBJ DOBJ

DET

this

.

Root

Sarah read

David book

made

Figure 4.7. The typed-dependency tree for ‘Sarah made David read this book.’ (Oya 2013a, p.44)

ROOT

PUNCT .

TOPIC POSTP_WO

POSTP_NI

DET

Root

yomaseta

David-niSarah-wa hon-wo

kono

Figure 4.8. The typed-dependency tree for ‘Sarah-wa David-ni kono hon-wo yomaseta (Sarah

made David read this book.)’ (Oya 2013a, p.44)

The degree centrality of the typed-dependency tree in Figure 4.7 is approximately 0.428, while

that in Figure 4.8 is approximately 0.766. As this illustration suggests, the larger degree

centrality of the typed-dependency tree for a Japanese sentence in Figure 4.8 quantitatively

indicates that this tree has a flatter structure than its English counterpart.

16
The dependency types for Japanese sentences used in this study are defined with examples in Section 6.

76

This study treats complex predicates in Japanese such as causatives (e.g., “yomaseru”) or

passives (e.g., “yomareru”) as monoclausal both in typed-dependency trees and in their

functional-structure representations. In other words, “yomaseta” in the tree above is one word.

This analysis for Japanese complex predicates can result in non-parallel functional structures

for English and Japanese. The English functional structure contains two verbal predicates;

hence, it is biclausal. The Japanese counterpart functional structure, on the other hand,

contains one verbal predicates; hence, it is monoclausal (Matsumoto (1996) and Masuichi &

Okuma (2003)). The treatment of zero pronouns will be discussed later in Section 6.4.

NSUBJ PRED 'Sarah'

PRED 'make<NSUBJ, XCOMP>'

TENSE PAST

XCOMP PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'David'

DOBJ PRED 'book'

DET TYPE definite

FORM 'this'

PERSON 3rd

NUM SINGULAR

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 4.9. The functional-structure representation for ‘Sarah made David read this book.’

77

PRED 'yomaseta<SUBJ,OBJ,OBJ2>'

SUBJ PRED 'PROi'

TYPE ZERO

OBJ PRED 'PROj'

TYPE ZERO

OBJ2 PRED 'PROk'

TYPE ZERO

TOPIC PRED 'Sarahi'

PERSON 1ST

NUMBER SINGULAR

POSTP_wo PRED 'hon'

DET FORM 'kono'

TYPE DEMONSTRAT IVE j

POSTP_ni PRED 'Davidk'

PERSON 3RD

NUMBER SINGULAR

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 4.10. The functional-structure representation for ‘Sarah-wa David-ni kono hon-wo

yomaseta (Sarah made David read this book.)’

The biclausal analysis of complex predicates of Japanese sentences will yield the following

typed-dependency tree and its functional-structure representation. The causative morpheme

“-seta” is the root of the sentence, and it is the head of ‘Sarah-wa,’ ‘David-ni,’ and ‘yoma.’

ROOT

PUNCT .

TOPIC XCOMP

POSTP_NI

yoma

POSTP_WO

DET

kono

Root

-seta

David-niSarah-wa

hon-wo

Figure 4.11. The biclausal typed-dependency tree for ‘Sarah-wa David-ni sono hon-wo yomaseta.

78

(Sarah made David read this book.)’

PRED '-seta<SUBJ,XCOMP>'

SUBJ PRED 'PRO i'

TYPE ZERO

TOPIC PRED 'Sarahi'

PERSON 3rd

NUMBER SINGULAR

POSTP_NI PRED 'Davidj'

PERSON 3rd

NUMBER SINGULAR

XCOMP 'yom<SUBJ, OBJ>'

SUBJ PRED 'PROj'

TYPE ZERO

OBJ PRED 'PROk'

TYPE ZERO

POSTP_WO PRED 'honk'

DET 'kono'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 4.12. The biclausal functional-structure representation for ‘Sarah-wa David-ni sono

hon-wo yomaseta. (Sarah made David read this book.)’

In addition to the non-parallelism of functional structures for English and Japanese, the

monoclausal analysis also yields a degree centrality which is different from the biclausal analysis.

The degree centrality of the biclausal typed-dependency tree is approximately 0.618. This is

smaller than the degree centrality of the monoclausal typed-dependency tree for the same

sentence (approx. 0.766).

This study adopts monoclausal analysis for all the Japanese complex predicates, on the

assumption that Japanese complex predicates function as independent syntactic units in the

typed-dependency tree representation, while morphemes such as “-eru,” “-areru” or “-seru”

79

cannot. Non-parallelism of functional structures for English and Japanese indicates the

typological difference between these two languages (inflecting vs. agglutinative), and this

difference can be numerically expressed by the degree centralities calculated from the

monoclausal typed-dependency trees for Japanese complex predicates, which are larger than the

degree centralities calculated from the biclausal typed-dependency trees.

4.3.2 Closeness Centrality

The distance from one node to another is represented by the number of arcs between them or the

path between them. Freeman (1979) and Wasserman & Faust (1994) define closeness centrality

as the reciprocal of the sum of the length of a path from one node to another in a graph.

Closeness centrality of a graph is calculated through the following formula (Sabidussi 1966;

Wasserman & Faust 1994, p.184). In this formula, g means the number of nodes, and d(ni,nj) is

the shortest path (geodesic distance) between the node ni and nj.

Cc(ni)=1/ ∑ൣ ݀(݊, ݊)

ୀଵ ൧ (4.3)

(Wasserman & Faust 1994, p.184)

Wasserman & Faust (1994, p.185) point out that the maximum value attained by the formula

(4.3) above depends on the number of nodes in a graph, and therefore it is difficult to compare

values across networks of different sizes. Therefore, they refer to Beauchamp (1965) which

suggests using the closeness centralities which are standardized by the following formula.

Cc(ni)=
ିଵ

∑ ௗ(,ೕ)

ೕసభ

(4.4)

80

(Wasserman & Faust 1994, p.185)

Wasserman & Faust (1994, p.185) point out that the value which is calculated through this

formula can be viewed as the inverse average distance between node i and all the other nodes.

This inverse average distance ranges from 0 to 1. It equals 1 when a node is adjacent

(connected by one edge) to all the other nodes, and decreases as the nodes are aligned to a line.

Oya (2010b) proposed the term path length for the average length of a path from the ROOT

to all the other in a graph. However, this figure does not range between 0 and 1. Therefore,

Oya (2011) used the concept of closeness centrality as defined by Beauchamp (1965), and this

study also follows this idea, expecially in Chapter 7.

The closeness centrality of a given typed-dependency tree indicates the embeddedness of the

typed-dependency tree for a sentence (Oya 2010b, 2011, 2013a). The embeddedness of a tree

means the extent to which one particular word is distant from other words along the paths in the

tree. Larger closeness centralities mean that the words in a sentence are close to each other

along the dependency paths, indicating that the typed-dependency tree is less embedded.

For example, Oya (2013a) compares the closeness centralities of the three example sentences

as follows. First, there are six paths from the Root in the sentence ‘Sarah has read this book.’

(the typed-dependency tree for this sentence is Figure 2.2 above). The pahts are as follows:

Root-read, Root-read-Sarah, Root-read-has, Root-read-., Root-read-book, and

Root-read-book-this. The lengths of these paths are 1, 2, 2, 2, 2, and 3, respectively. The

starting vertex is not included in the counting. Their average is 2, and the closeness centrality of

this sentence is the inverse of 2, that is, 0.5.

Next, consider another example sentence ‘My brother has read this book.’ Figure 4.13 is the

typed-dependency tree for this sentence.

81

ROOT

PUNCT .

NSUBJ DOBJ

AUX

POSS

DET

Root

read

brother book

thisMy

has

Figure 4.13. The typed-dependency tree for ‘My brother has read this book.’ (Oya 2013a, p.45)

This sentence has seven paths from the Root; Root-read, Root-read-brother, Root-read-brother-My,

Root-read-has, Root-read-., Root-read-book, and Root-read-book-this. The lengths of these

paths are 1, 2, 3, 2, 2, 2, and 3. The average length of them is 15/7⋍2.142, whose inverse is the

closeness centrality of this sentence, that is, 1/2.142⋍0.467.

Finally, consider an example sentence ‘Sarah read the books David has.’ Figure 4.14 is the

typed-dependency tree for this sentence.

ROOT

NSUBJ PUNCT

DOBJ

RCMOD

DET

NSUBJ

David

.

Root

read

Sarah books

the has

82

Figure 4.14. The typed-dependency tree for ‘Sarah read the books David has.’ (Oya 2013a, p.45)

This sentence has seven paths from the Root; Root-read, Root-read-Sarah, Root-read-books-the,

Root-read-books, Root-read-books-has-David, Root-read-books-has, and Root-read-.. The

lengths of these paths are 1, 2, 3, 2, 4, 3, and 2. The average length of them is 17/7⋍2.44, whose

inverse is the closeness centrality of this sentence, that is, 1/2.44⋍0.41. Oya (2013a) concludes

that a typed-dependency tree with a more embedded setting has a smaller closeness centrality, as

the closeness centralities of these example sentences show.

4.4 Typed-Dependency Tree Centralities as Similarity Measures for Their

Functional-Structure Representations17

This section discusses how typed-dependency tree centralities function as similarity measures for

corresponding functional-structure representations. Dependency graphs are equivalent to

functional structures (see Section 3.3). Therefore, the centrality measures of a given graph can

indicate the structural characteristics of the corresponding equivalent functional structure. For

example, consider the string “W1 W2 W3 W4 W5.” This string can be parsed to show a number

of different typed-dependency trees and their equivalent functional structures. On one end, we

could produce a typed-dependency tree that would represent the flattest type (Figure 4.15), and on

the other end, we could produce a tree that would represent the most embedded type (Figure 4.17).

Each of these typed-dependency trees also has an equivalent functional structure, namely the

flattest functional structure (Figure 4.16) and the most embedded functional structure (Figure

4.17).

17 This section is based on Oya (2013b).

83

The typed-dependency tree in Figure 4.15 and the functional structure in Figure 4.16 both have

a flat setting, which means that W1 has the value ‘W2’ in terms of D1, ‘W3’ in terms of D2, and so

on. This type of graph is called a star graph. The pieces of information for each of the words

other than W1 are all unified to W1 immediately.

D1 D4

D2 D3

W2 W3 W4 W5

W1

Figure 4.15. The flattest possible typed-dependency tree for a string ‘W1 W2 W3 W4 W5’

'W1'

D1 ['W2']

D2 ['W3']

D3 ['W4']

D4 ['W5']

Figure 4.16. The functional structure equivalent to the flattest possible typed-dependency tree for

the string ‘W1 W2 W3 W4 W5’

The typed-dependency tree in Figure 4.17 and the corresponding functional structure in Figure

4.18 both have a linear setting, which means that W1 has the value ‘W2’ in terms of D1, ‘W2’ has

the value ‘W3’ in terms of D2, and so on. This type of graph is called a line graph. The pieces

of information for each word are all embedded in its head.

84

W1

W2

W3

W4

W5

D1

D2

D3

D4

Figure 4.17. The most embedded possible typed-dependency tree for the string ‘W1 W2 W3 W4

W5’

"W1"

D1 "W2"

D2 "W3"

D3 "W4"

D4 "W5"

Figure 4.18. The functional structure equivalent to the most embedded possible typed-dependency

tree for the string “W1 W2 W3 W4 W5”

Oya (2013b, p.155) claimed that “these two dependency graphs (the star-graph and the

line-graph) are two extreme cases that represent the same number of nodes (or words) in terms of

centrality.” The star-graph has both the highest degree centrality and the highest closeness

centrality, as far as the graphs of the same node numbers are concerned. On the other hand, the

line-graph has both the lowest degree centrality and the lowest closeness centrality, also as far as

the graphs of the same node numbers are concerned. All the other dependency graphs of the

same node numbers fall between these two extreme types of dependency graphs.

85

Oya (2010b) argued that it is possible to compare the centrality measures of graphs whose

node numbers are different, because these centrality measures are calculated with the number of

nodes in a given graph as the denominator and, therefore, these measures are normalized across

graphs with different node numbers. Later on, however, Oya (2012) showed that longer

sentences tend to have smaller degree centralities. Therefore, the argument by Oya (2010b)

should be revised, and calculation of degree centrality should take into consideration the

difference in word count.

Centrality measures of functional structures can also be employed to show structural similarity

between different functional structures in the same language. If two functional structures for two

sentences in the same language share a centrality measure, it is probable that these functional

structures also share a structural aspect. This argument can be supported by employing more than

one centrality measure, such as degree centrality to indicate the flatness of a sentence and

closeness centrality to indicate the embeddedness of a sentence. By taking both degree

centrality and closeness centrality into consideration, we can objectively determine the similarity

of f-structures for different sentences without relying on subjective researcher judgments.

Centrality measures of functional structures can also be employed to indicate the structural

similarity among different functional structures in English and Japanese (Oya 2013b). For

example, we can choose an English sentence and its Japanese equivalent and calculate their

similarity indices in order to quantify their structural similarity. Consider the following

English-Japanese sentence pairs in (4.1–4.3). Their corresponding types-dependency trees and

functional structures are then presented in Figures 4.19–4.3018.

18 The example sentences and their typed-dependency trees in this section are from Oya (2013b).

86

(4.1)

a. Sarah has already read this book.

b. Sarahwa mou kono honwo yonda.

(4.2)

a. The convenience store is on the other side of the street.

b. Konbiniwa toorino mukougawani arimasu.

(4.3)

a. There seems to be something wrong with this computer.

b. Kono pasokonwa dokoka koshoushiteirumitaida.

Root

NSUBJ Aux ADVMOD PUNCT

DOBJ .-7

has-2 already-3

DET

this-5

ROOT-0

read-4

Sarah-1 book-6

Figure 4.19. The typed-dependency tree for (4.1a) ‘Sarah has already read this book.’

87

PUNCT

TOPIC .-6

POSTP_wo

DET

kono-3

ADVMOD

ROOT

yonda-5

Sarawa-1

mou-2 honwo-4

Figure 4.20. The typed-dependency tree for (4.1b) ‘Sarawa mou kono honwo yonda.’

PRED

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

DET FORM THE

TYPE DET

AUX TENSE PRESENT

ASPECT PERFECT

ADVMOD {PRED already'}

STMT-TYPE DECLARATIVE

'read<SUBJ, OBJ>'

Figure 4.21. The f-structure for (4.1a) ‘Sarah has already read this book.’

88

PRED 'yom-<SUBJ, OBJ>'

TOPIC PRED 'Sarah'

CASE WA

POSTP PRED 'book'

CASE WO

SUBJ PRED 'PRO'

TYPE ZERO

OBJ PRED 'PRO'

TYPE ZERO

TENSE PAST

ADV {PRED 'mou'}

STMT-TYPE DECLARATIVE

Figure 4.22. The f-structure for (4.1b) ‘Sarawa mou kono honwo yonda.’

PUNCT .-12

NSUBJ

PREP_ON

DET NN DET PREP_OF

AMOD

DET

street-11

the-10

Root

is-4

store-3 side-8

The-1 convenience-2 the-6 other-7

Figure 4.23. The typed-dependency tree for (4.2a) ‘The convenience store is on the other side of

the street.’

89

PUNCT .-5

POSTP_NO

toorino-2

Root

ROOT

arimasu-4

TOPIC POSTP_NI

konbiniwa-1 mukougawani-3

Figure 4.24. The typed-dependency tree for (4.2b) ‘Konbiniwa toorino mukougawani arimasu.’

PRED 'be<NSUBJ,PREP>'

NSUBJ PRED 'store'

PERSON 3RD

NUMBER SINGULAR

DET FORM THE

TYPE DET

NN PRED 'convenience'

PERSON 3RD

NUMBERSINGULAR

PREP_ON PRED 'side'

PERSON 3RD

NUMBER SINGULAR

DET FORM THE

TYPE DET

AMOD PRED 'other'

PREP_OF PRED 'street'

PERSON 3RD

NUMBERSINGULAR

TENSE PRESENT

STMT-TYPE DECLARATIVE

Figure 4.25. The f-structure for (4.2a) ‘The convenience store is on the other side of the street.’

90

PRED 'arimasu<SUBJ,OBL>'

TOPIC PRED 'konbini'

CASE WA

POSTP_NI PRED 'mukougawa'

CASE NI

POSTP_NO PRED 'toori'

CASE NO

SUBJ PRED 'PRO'

TYPE ZERO

OBL PRED 'PRO'

TYPE ZERO

TENSE PRESENT

STMT-TYPEDECLARATIVE

Figure 4.26. The f-structure for (4.2b) ‘Konbiniwa toorino mukougawani arimasu.’

PUNCT .-10

EXPL NSUBJ

AUX AMOD

COP

PREP_WITH

DET

There-1 something-5

to-3 be-4 wrong-6

computer-9

this-8

Root

seems-2

Figure 4.27. The typed-dependency tree for (4.3a) ‘There seems to be something wrong with this

computer.’

91

TOPIC PUNCT

ADVMOD

.-5

kono-1

Root

ROOT

koshoushiteirumitaida-4

pasokonwa-2

DET
dokoka-3

Figure 4.28. The typed-dependency tree for (4.3b) ‘Kono pasokonwa dokoka

koshoushiteirumitaida.’

PRED 'seems<NSUBJ>'

EXPL PRED 'there'

NSUBJ PRED 'something'

PERSON 3RD

NUMBERSINGULAR

AUX 'to'

COP 'be'

AMOD PRED 'wrong'

PREP_WITHPRED 'computer'

DET FORM 'the'

TYPE DET

TENSE PRESENT

STMT-TYPE DECLARATIVE

Figure 4.29. The f-structure for (4.3a) ‘There seems to be something wrong this this computer.’

PRED

TOPIC PRED 'pasokon'

CASE WA

DET kono'

NSUBJ PRED 'PRO'

TYPE ZERO

ADVMOD PRED 'dokoka'

STMT-TYPE DECLARATIVE

'koshoushiteirumitaida<NSUBJ>'

92

Figure 4.30. The f-structure for (4.3b) ‘Kono pasokonwa dokoka koshoushiteirumitaida.’

The degree centralities and closeness centralities for these English-Japanese sentence pairs are

presented in Table 4.1 below.

Table 4.1. The degree centralities and closeness centralities of the typed-dependency trees (Oya

2013b, p.157)

(4.1a) (4.1b) (4.2a) (4.2b) (4.3a) (4.3b)

D 0.81 0.77 0.24 0.7 0.29 0.7

C 0.53 0.53 0.41 0.55 0.38 0.55

D: degree centrality; C: closeness centrality

The degree centralities of the English sentences (4.1a), (4.2a), and (4.3a) show that (4.1a) is the

flattest of the three, because larger degree centralities indicate flatter typed-dependency trees.

The degree centralities of the Japanese sentences (4.1b), (4.2b), and (4.3b) show that the flatness

measures of their typed-dependency trees are quite similar. Comparing the English-Japanese

pairs, we find that the difference between (4.1a) and (4.1b) is not as wide as other pairs.

The reason for this difference might have to do with the fact that they have different word

counts. The word count of (4.1a) is eight, and that of (4.1b) is seven, including the root. The

word count of (4.2a) is 11, and that of (4.2b) is six. Oya (2012) showed that sentences with

smaller numbers of words tend to have larger degree centralities. It is difficult to draw any

conclusions here, due to the limited data set of only three English-Japanese sentence pairs. In

order to fully understand the relationship between degree centrality and structural similarity of

93

sentences, it would be necessary to calculate the degree centralities of English-Japanese pairs in

a parallel corpus, with their word counts taken into consideration. The same argument will be

applied to closeness centralities. This issue will be discussed later in Section 7.5 of this study.

4.5 Centrality Measures and Different Genres of Texts

Oya (2010b) proposes that different distributions of degree centralities and closeness centralities

in more than one set of sentences indicate the tendency of the sentences toward flat or embedded

structures, which in turn, reflects genre differences. In order to visually represent these

similarities and differences, we can plot these sentences on an x-y plane where the degree

centrality of each sentence is indicated on the horizontal axis and the closeness centrality of each

sentence is represented on the vertical axis. If the group of sentences has a tendency toward

flatter structures (parataxis), the plots gather in the top right quadrant of the plane. In contrast,

if the group of sentences has more embedded structures (hypotaxis), the plots gather in the

bottom left quadrant of the plain. If two sets of sentences have different degrees of flatness and

embeddedness, we will have two plot graphs on the x-y plane with different distributions, as

shown in Figure 4.31 below.

94

Figure 4.31. The centrality continuums of Group 1 sentences (represented as circles) and Group

2 sentences (represented as stars)

This type of representation shows how groups of sentences or texts written by writers with

different levels of ability or for different purposes can produce different distributions on an x-y

plane in terms of their degrees of centrality and closeness.

In order to see how the distribution of degree centralities and closeness centralities reflect

differences in genres, Oya (2010b) calculated the degree and closeness centralities of the

typed-dependency trees acquired from three small-scale corpora: (1) essays in English on the

same topics (“self-introduction” and “happiness factors”) written by Japanese students studying

English (these data were also used in Yoshida et al. (2009)) (henceforth Japanese), (2) abstracts

of research articles in Studies in Second Language Acquisition vol. 31 (published in 2009) and

vol. 32 (published in 2010) (henceforth SLA), and (3) the first chapter of the abridged version of

The Golden Bough (by Sir James Frazer, published in 1912; henceforth Golden). The

descriptive statistics for these data are presented in Table 4.2. The distributional results for the

degree centralities and closeness centralities for the Japanese, SLA, and Golden data sets are

presented in Figures 4.32, 4.33, and 4.34, respectively.

Table 4.2. The descriptive statistics of the corpora used in Oya (2010b)

Japanese SLA Golden Japanese SLA Golden Japanese SLA Golden

Mean 16.92 24.34 24.01 0.32 0.18 0.23 0.33 0.33 0.37

SD 8.03 8.72 10.78 0.18 0.08 0.16 0.09 0.09 0.14

Word per sentence Degree centrality Closeness centrality

95

Figure 4.32. The distribution of degree centralities and closeness centralities of the

typed-dependency trees in Japanese (n=342)

Figure 4.33. The distribution of the degree centralities and closeness centralities of the

typed-dependency trees in SLA (n=160)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

Closeness
centrality

Degree centrality

sentence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

Closeness
centrality

Degree centrality

Sentences

96

Figure 4.34. The distribution of the degree centralities and closeness centralities of the

typed-dependency trees in Golden Bough (n=156)

Oya’s (2010b) proposal and analysis has a number of drawbacks. First, it is uncertain

whether the degree centrality and closeness centrality constitute rectangular coordinates. If

they do not, it is meaningless to consider the distribution of sentences with the degree centrality

on the horizontal axis and the closeness centrality on the vertical axis. Second, since the degree

centrality of a typed-dependency tree can take only a fixed number of values that are determined

by the number of words in the typed-dependency tree, it is also meaningless to compare the

degree centralities of sentences with different word counts.

To address these drawbacks, Oya (2012) focused on the relationship between the centrality

measure and the word count of each sentence in different sets of sentences, as well as the

distribution of degree centralities for sentences with fixed word counts. The results of Oya

(2012) will be discussed and replicated later in Section 7.6.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

Closeness
centrality

Degree centrality

Sentences

97

4.6 Dependency Distance

Another drawback of these centrality measures is that they abstract away the linear order of

words in a sentence, and in this way, they do not show the surface dependency distance between

a head and its dependent. Dependency distance is another feature that can be extracted from the

typed-dependency tree representation of a sentence. This feature takes into consideration the

surface dependency distance between a head and its dependent (Oya 2011). The dependency

distance of a dependency relation is the number of words between its head and tail in the surface

word order of a sentence. Consider the typed-dependency tree shown below in Figure 4.31.

ROOT

PUNCT

NSUBJ .-6

AUX DOBJ

DET

Root-0

read-3

Sarah-1 has-2 book-5

this-4

Figure 4.35. The typed-dependency tree representation for ‘Sarah has read this book.’

The number that corresponds to each word represents its place in the surface word order. Thus,

the dependency distance between ‘Sarah’ and ‘read’ is two, ‘has’ and ‘read’ is one, and so on.

We can obtain the average dependency distance of the typed-dependency tree above as the sum

of all the dependency distances divided by the number of dependency relations. In the

typed-dependency tree above, the average dependency distance is (3 + 2 + 1 + 2 + 1 + 3) / 4 = 3.

This calculation can serve as one of the measures for sentence complexity, with the

assumption that a sentence becomes more complex in proportion to its average dependency

distance. Dependency Locality Theory (DLT) (Gibson 1998, 2000) proposes that the syntactic

98

complexity of sentences increases in proportion to the length of syntactic dependency, and that

syntactic complexity can be predicted by two factors: ‘‘storage cost’’ and “integration cost.”

Storage cost refers to the cost of keeping the previous words in a speaker’s memory.

Integration cost refers to the cost of connecting the words in a speaker’s memory. Longer

dependency lengths require more storage cost, thus increasing the difficulty of processing the

dependency relationships.

Temperley (2007) proposes that DLT can be applied to the production of sentences. He

suggests that there are different preferences for longer or shorter dependency distances with

respect to the syntactic environments in which dependency relations appear. For example, he

shows that subject noun phrases in S-V order quotations tend to have a smaller number of words

than subject noun phrases in V-S order quotations (Temperley 2007, p.307). Consider the

examples below in (4.3a-d), taken from Oya (2011).

(4.3)

a. “I’ve read this book,” Sarah said.

b. “I’ve read this book,” said Sarah.

c. “I’ve read this book,” my supervisor said.

d. “I’ve read this book,” said my supervisor.

The subject noun phrase in the S-V order quotation in (4.3a) has one word, while the subject

noun phrase in the V-S order quotation in (4.3d) has two words. The dependency distance of

the main verb ‘said’ and its indirect-speech complement is shorter in (4.3d) than that in (4.3c),

and (4.3d) is preferred to (4.3c).

Temperley’s (2007) observation about the differences in dependency-length preference

according to syntactic environments can be applied to our methods for calculating sentence

99

complexity. For example, if Japanese learners of English prefer less complex sentences to more

complex ones when they produce English sentences, the average dependency distance of their

written productions will be shorter than that of native speakers. In this way, the average

dependency distance in a given text can reflect the writer’s preference in terms of sentence

complexity. This point will be further explored in Chapter 7 where this assumption is tested

with a large amount of corpus data.

4.7 Summary

This chapter continued the discussion of typed-dependency by exploring the representation of a

typed-dependency syntactic tree as a directed acyclic graph (DAG). Moreover, this chapter also

examined the idea of quantifying structural properties in terms of graph centrality. The

advantage of dependency grammar representation is that a sentence’s dependency can be

interpreted as a DAG, allowing the formal syntactic properties to be defined and analyzed

mathematically in terms of graph theory (Oya 2010b, 2011). Section 4.2 introduced the basic

tenets of graph theory. Section 4.3 examined centrality measures, including degree centrality

and closeness centrality. The process for employing these centrality measures to analyze

structural properties of typed-dependency trees was discussed in Sections 4.4 and 4.5.

Specifically, Section 4.4 explored the application of centrality measures to show the similarity of

functional-structure representations by comparing the typed-dependency trees of English and

Japanese sentences in terms of their centrality measures. It is pointed out that it would be

necessary to calculate the centrality measures of English-Japanese pairs, not just only three

sentence pairs, but an English-Japanese parallel corpus with their word counts taken into

consideration, so as to understand the relationship between centrality measures and structural

similarity of sentences. This issue will be the topic of Section 7. Section 4.5 illustrated how

100

stylistic differences across genres are reflected by different distributions of centralities (Oya

2010b). It is pointed out that Oya’s (2010b) analysis on different distribution of centralities had

some drawbacks (degree centralities and closeness centralities may not be rectangular

coordinates, and the number of different values of the degree centrality of a typed-dependency

tree is determined by the number of words in the tree), and that these drawbacks will be

addressed in Section 7. Finally, Section 4.6 addressed the role of dependency distance in these

representations.

101

5. Dependency Parsing of English Sentences by Stanford Parser

5.1 Introduction

The preceding chapters have examined the significance of typed-dependency representations for

investigating syntactic structure. This chapter furthers this discussion by introducing the

Stanford Parser (de Marneffe & Manning 2012), which is a state-of-the-art parser used in this

study for acquiring typed-dependency tree representations for English sentences. Chapter 4

explored typed-dependency trees and their graph-theoretical analyses, showing that graph

centrality measures can be employed for more objective linguistic analyses. However, it is

time-consuming for the researcher to construct typed-dependency trees for each sentence in a

corpus and manually calculate their centrality measures. This chapter proposes a more efficient

method, namely a syntactic parser, to obtain typed-dependency trees for individual sentences in

large corpora.

Syntactic parsers are computer applications that are designed to obtain the syntactic parse for

an input sentence. The Stanford Parser is a state-of-the-art dependency parser that extracts

typed-dependency parses from phrase-structure parses (de Marneffe, MacCartney & Manning

2006). It was created in 2005 because the other available dependency parsers, such as Minipar

(Lin 1998) and the Link Parser (Sleator & Temperley 1993), were not as robust and accurate as

phrase-structure statistical parsers, such as Collins (1999) and Charniak (2000). Since then, the

Stanford Parser has been implemented by researchers in a diverse set of fields, such as

biomedical text mining (Pyysalo, Ginter, Haverinen, Heimonen, Salakoski, & Laippala 1997),

sentiment extraction (Kessler 2008), textual entailment recognition (Adams, Nicolae, Nicolae, &

Harabagiu 2007), machine translation (Genzel 2010), and sentence complexity calculation (Lu

2010).

This chapter is structured as follows. Section 5.2 describes the output format of the

102

Stanford Parser. Section 5.3 provides the definition of each dependency type used in the parsed

output of the Stanford Parser. These definitions are based on the revised version of Mel’čuk’s

Criteria introduced in Chapter 3. By doing this, these dependency types are provided with a

theoretical backbone, viz. a tradition of dependency grammar which was started by Tesnière and

developed by Mel’čuk. In addition to this, each dependency type is defined with respect to

example sentences which contain the dependency type. For each example sentence, its

typed-dependency tree and its equivalent functional-structure representation are provided, so that

it can be shown that the typed-dependency tree is equivalent to the functional-structure

representation, as indicated in Section 3.3. Section 5.4 explains the differences among the

different output styles of the Stanford Parser.

5.2 The Output Format of the Stanford Parser

This section introduces the output format of the Stanford Parser. The Stanford Parser’s parsed

output for a sentence consists of a number of triples and has the following format presented in

(5.1).

(5.1)

Dependency-type(head-x, tail-y)

This format is called a triple because it is made up of three parts. For example, the parsed

output for the sentence ‘Sarah has read this book’ is shown below in (5.2).

(5.2)

nsubj(read-3, Sarah-1)

103

aux(read-3, has-2)

root(ROOT-0, read-3)

det(book-5, this-4)

dobj(read-3, book-5)

punct(read-3, .-6)

Each line of the output represents a dependency relationship between two words in the input

sentence. The first line of this parsed output shows (1) that the head of the dependency relation

is ‘read,’ which is the third word of this sentence, (2) that the tail of the dependency relation is

‘Sarah,’ which is the first word of the sentence, and (3) that their dependency type is ‘nsubj’ (the

definition of each dependency type used in the Stanford Parser is discussed in the following

section).

The parsed output of the Stanford Parser for a sentence is equivalent to the typed-dependency

tree of the same sentence. The dependency-tree representation of the sentence ‘Sarah will read

the book.’ is shown in the figure below.

ROOT

NSUBJ AUX PUNCT

DOBJ .-6

DET

this-4

Root-0

read-3

Sarah-1 will-2 book-5

Figure 5.1. The typed-dependency tree for ‘Sarah will read this book.’

104

The typed-dependency tree is equivalent to the functional-structure representation (see

Section 3.3). The functional-structure representation of the sentence ‘Sarah will read the book.’

is shown below in the figure below.

PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

AUX FORM 'will'

TENSE FUTURE

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.2. The functional structure for ‘Sarah will read the book.’

5.3 The Definition of Each Dependency Type used in Stanford Dependencies

This section introduces the definitions for each dependency type in Stanford Dependencies (de

Marneffe & Manning 2012), following Mel’čuk’s dependency grammar. Stanford

Dependencies contain 55 dependency types for the parsing output of the Stanford Parser. The

105

dependency types represent the different functions of dependents in terms of their heads. Each

dependency type is defined with example sentences and dependency trees. The hierarchy of

dependency types is shown in Appendix I. Some of these types (e.g., agent, xdep, and xsubj)

are not implemented in the default setting of the Stanford Parser (for different output format

options of the Stanford Parser, see Section 5.4). In terms of the output of the Stanford Parser,

the dependency type “arg” and “mod” are always realized as their subtypes, and they do not

appear in the parsed output. In addition, the subtypes “comp,” “obj,” and “subj” are also

realized as their subtypes (e.g., “nsubj” and “iobj”) and do not appear in the parsed output.

Though the category “aux” has two subcategories (namely, “auxpass” and “cop”), “aux” itself

appears in the parsed output if the tail of the given dependency is a modal auxiliary. If the

parser cannot determine a given dependency type, it yields “dep.”

The definitions of the dependency types are presented in this section in almost the same order

as the dependency hierarchy shown in Appendix I, i.e., “root,” “aux,” “arg,” “cc,” “conj,” “expl,”

“mod,” “parataxis,” and “punct.” Note that “ref” is defined along with “rcmod” and “rel,” and

“sdep” is omitted because it is not implemented in the Stanford Parser. The subcategories of

“aux,” “arg,” and “mod” are also defined. There are some instances in which the actual parsed

output for a sentence by the Stanford Parser does not yield a correct typed-dependency tree. In

this section, these instances are pointed out as much as possible. The parsing accuracy of the

Stanford Parser will be dealt with in Section 7.3.

These dependency types are categorized according to the deep syntactic relations

(DSyntRels) in Mel’čuk’s dependency grammar, as shown in Table 5.1.

Table 5.1. English dependency types in Stanford Dependencies categorized according to the

inventory of DSynt-Rels in Mel’čuk (2011, p.6)

106

COORD
QUASI-

COORD
APPEND ATTR ATTRdescr I II III IV V VI IIdir-sp

rcmod

prep, pobj, pcomp ccomp

coordinate

DSyntRels

subordinate DSyntRels

weak

subordi-

nate

DSyntRel

modification

strong subordinate DSyntRels

complementation

nsubj,

nsubjpass,

csubj,

csubjpass

dobj,

acomp,

ccomp,x

comp

iobjconj prep advmod

Those

typed as

"mod"

In the following sections, each dependency type is defined with respect to the criteria for surface

syntactic relations (SSyntRels) proposed by Mel’čuk (2009, 2011), i.e., Criterion A for the

presence of the surface syntactic relation between two words (or elements), Criterion B for the

orientation of the surface syntactic relation, and Criterion C for the type of the surface syntactic

relation. Along with these definitions, typed-dependency trees and functional-structure

representations for the example sentences are also illustrated, in order to clarify the equivalence

between typed-dependency trees and functional-structure representations (see Section 3.3).

Some dependency types in Stanford Dependencies are used to cover the grammatical

functions used in the standard LFG, e.g., “nsubj” for SUBJ, “dobj” for OBJ, or “prep” and

“pcomp” for PCASE19. This fact, however, does not necessarily lead Stanford Dependencies to

yield the same analysis of a given sentence as the standard LFG does, and therefore, the

functional structure which is equivalent to the typed-dependency tree of a given sentence can be

different from the f-structure within the framework of the standard LFG. This study does not

account for the difference between them in detail, because the main theme of this section is to

define each of the dependency types in Stanford Dependencies in terms of Mel’čuk’s criteria.

19
The grammatical function PCASE is introduced by Kaplan & Bresnan (1982, p.197). This specifies that a

preposition has the function to assign a case to a noun.

107

5.3.1 Root

This dependency type is one where the dependency head is an abstract element “Root” and the

dependent is the root word of the sentence. The presence of the abstract element “Root”

enables us to produce an analysis in which all the words in a sentence are dependent on another

entity. In the example sentence below, the root of the sentence is the verb ‘read.’

ROOT

NSUBJ AUX PUNCT

DOBJ .-6

DET

this-4

Root-0

read-3

Sarah-1 has-2 book-5

Figure 5.3. The typed-dependency tree for ‘Sarah has read this book.’

This dependency type is exceptional because the head of this dependency is not a word. This is

because the main predicate of a sentence must depend on some element in a level of

representation higher than the sentence level, i.e., the discourse level. Moreover, all the

sentences in a text must depend on some element in that higher level of representation.20 The

20 Gerdes & Kahane (2011, p.22) also argue that we can define discourse structures for a whole text if we consider

the sentences in the text as “discourse units”, which are minimal fragments of “a discourse connection graph” for the

text.

108

typed-dependency tree shown below illustrates how these two sentences depend on the same

node.

Root Root

PUNCT

NSUBJ Aux PUNCT NSUBJ DOBJ .-10

DOBJ .-6

DET

enjoyed-8

it-9

this-4

ROOT-0

read-3

Sarah-1 has-2 book-5 She-7

Figure 5.4. The typed-dependency tree for ‘Sarah has read this book. She enjoyed it.’

Thus, it is possible to consider the discourse structure as a typed-dependency tree, i.e., each

sentence in a discourse depends on the discourse root with a discourse dependency type. For

example, the first sentence in the typed-dependency tree above depends on the discourse root

with the discourse dependency type “TOPIC,” and the second sentence depends on the discourse

root with the discourse dependency type “RESULT,” as shown in the figure below.

109

TOPIC RESULT

PUNCT

NSUBJ Aux PUNCT NSUBJ DOBJ .-10

DOBJ .-6

DET

read-3

Sarah-1 has-2 book-5 She-7

enjoyed-8

it-9

this-4

ROOT-0

Figure 5.5. The typed-dependency tree with discourse dependency types for ‘Sarah has read this

book. She enjoyed it.’

The typed-dependency tree above is equivalent to the functional structure below.

110

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED

PERSON

NUMBER

GENDER

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM

TOPIC STMT-TYPE

PRED 'enjoy<NSUBJ, DOBJ>'

NSUBJ PRED

PERSON

NUMBER

GENDER

CASE

FORM

DOBJ PRED

PERSON

NUMBER

GENDER

CASE

FORM

TENSE PAST

PUNCT FORM

RESULT STMT-TYPEDECLARATIVE

'.'

DECLARATIVE

'Sarah'

3RD

SINGULAR

FEMININE

'PRO'

3RD

SINGULAR

FEMININE

NOMINATIVE

'she'

SINGULAR

NEUTRAL

ACCUSATIVE

'it'

'PRO'

3RD

'.'

Figure 5.6. The functional structure for ‘Sarah has read the book. She enjoyed it.’

This example shows that representing discourse structure as a typed-dependency tree enables us

111

to illustrate the function of each sentence in a discourse, just like the function of each word in a

sentence. However, the specification of discourse-structure representation and the definitions

of possible discourse dependency types are beyond the scope of this dissertation and I leave this

topic for further research.21

 In terms of the definition for the dependency type “root,” not all of Mel’čuk’s original

criteria for SSyntRels seem to apply in this case. In terms of Criterion A (Section 2.4.3.1), the

node “root” and the verb do not seem to constitute a prosodic unit. However, considering that

the node “root” is a discourse element rather than a syntactic one, we can safely argue that the

node “root” is not applicable to the criteria that concern syntactic, morphological, and semantic

dependencies.

5.3.2 Aux - auxiliaries

This dependency type is used for cases where the dependency head is the main predicate of a

clause and the dependent is a modal auxiliary or a progressive ‘be.’ This dependency has two

subcategories: auxpass (passive auxiliary) and cop (copula). As previously mentioned, the

category ‘aux’ is also used in the parsed output. If a sentence has more than one auxiliary for a

verb, then each auxiliary depends on the verb.

21
The sentences I use as examples in this dissertation are actually one-sentence texts, which are a type of text that

contains only one sentence. They are analogous to one-word sentences, i.e., a type of sentence that contains only

one word. Studying one-word sentences provides interesting insights into their function, structure, and use;

however, not into more-than-one-word sentences. By analogy, studying one-sentence texts can give us interesting

insights into the function, structure, and use of them as we have already seen especially in syntax, but not into

more-than-one-sentence texts.

112

ROOT

PUNCT

NSUBJ

DOBJ

AUX

DET

the-4

.-6

Root-0

read-3

Sarah-1

can-2

book-5

Figure 5.7. The typed-dependency tree for ‘Sarah can read the book.’

The functional structure that is equivalent to the typed-dependency tree above is as follows;

the modal auxiliary ‘can’ adds the modal meaning ‘possible’22 to the sentence.

22
This study follows Palmer’s (2001) categorization of modality, in which modal meanings are aligned according

to two major axes: propositional modality and event modality. Propositional modality is divided into epistemic

modality and evidential modality, which “are concerned with the speaker’s attitude to the truth-value or factual

status of the proposition” (Ibid 2001, p.7), while event modality is divided into deontic modality and dynamic

modality, which “refer to events that are not actualized” (Ibid 2001, p.7). As for the sentence ‘Sarah can read this

book.,” the modal meaning of this sentence is not unique; it can mean either that Sarah has the ability to read the

book (dynamic meaning), or that Sarah is allowed to read the book (deontic meaning). In this study, the term

“possible” is used to cover both of these modality meanings.

113

PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

AUX FORM 'can'

TENSE PRESENT
MODALITY POSSIBILITY

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.8. The functional structure for ‘Sarah can read the book.’

In the figure below, the copula depends on the present participle of a verb, and this

construction indicates the present progressive aspect.

ROOT

PUNCT

NSUBJ

DOBJ

AUX

DET

the-4

.-6

Root-0

reading-3

Sarah-1

is-2

book-5

Figure 5.9. The typed-dependency tree for ‘Sarah is reading the book.’

The figure below is the functional structure that is equivalent to the typed-dependency tree above.

114

Notice that the auxiliary ‘is’ specifies the tense and aspect values of this sentence.

PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

AUX FORM 'is'

TENSE PRESENT

ASPECT PROGRESSIVE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.10. The functional structure for ‘Sarah is reading the book.’

A single sentence can have more than one auxiliary, as shown in the typed-dependency tree

in the figure below.

115

ROOT

NSUBJ PUNCT

DOBJ .-8

AUX AUX AUX

book-7

will-2 have-3 been-4

the-6

Sarah-1

DET

Root-0

reading-5

Figure 5.11. The typed-dependency tree for ‘Sarah will have been reading the book.’

Each of the different auxiliaries carries different types of information, which are unified at the

root level of the functional structure. In the functional structure below, ‘will’ and ‘have’

indicate the future time23 and the perfective aspect of the sentence respectively, and ‘been’ and

the present participle ‘reading’ indicate the progressive aspect.24

23 Some grammarians (e.g., Quirk, Greenbaum, Leech, & Svartvik 1985, p.176) assume that English does not have

future tense as a formal category. The background of this assumption is that they consider the tense in general as a

category expressed by the morphology of a verb. In this dissertation, I do not share this assumption with these

grammarians, and consider the tense as a category expressed not only by the morphology of verbs, but also by

various constructions which may involve more than one word.

24 The attribute AUX can have a set of values; the curly brackets around the values of the attribute AUX in Figure

5.12 indicate that they are the elements of the value set for the attribute AUX. In this study, curly brackets around

the value(s) of an attribute indicate that the attribute can have a set of values. In addition, m-structure

representation of auxiliaries (Sadler & Spencer 2004) is not used here, in order to highlight the equivalence of the

functional-structure representation and the typed-dependency tree representation for a sentence. See Section 3.3.

116

PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

AUX FORM 'will'

TENSE FUTURE

FORM 'have'

ASPECT PERFECT

FORM 'been'

ASPECT PROGRESSIVE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.12. The functional structure for ‘Sarah will have been reading the book.’

In the Stanford Parser output, the auxiliaries that include to-infinitive (e.g., ‘have to,’ ‘be to,’

‘ought to’) are analyzed as the root of the sentence, and the ‘to’ is considered an auxiliary

depending on the verb, which depends on the root with the type “XCOMP.” This study follows

this analysis, and the example sentences that contain to-infinitive auxiliaries will be shown in the

subsection for “XCOMP.”

 The dependency type “aux” follows Mel’čuk’s Criteria. First, a verb and an auxiliary (or at

most two auxiliaries) clearly form a prosodic unit (e.g., ‘can take,’ ‘may have seen’) and the

auxiliary always precedes the verb, following Mel’čuk’s original Criterion A. In addition, a

verb and an auxiliary form a semantic unit, which follows the revised Criterion A discussed in

117

Section 2.4.3.1.

 Second, this dependency type follows Mel’čuk’s Criterion B. The verb, not the auxiliary,

serves as the head of the dependency between the verb and the auxiliary. This is the case

because the verb-auxiliary phrase is a form of the verb, which follows Mel’čuk’s Criterion B3.

For example, the phrase ‘can take’ represents a form of the verb ‘take,’ not of the auxiliary ‘can.’

Third, this dependency type implies a unique semantic relationship between the governor and

its dependent, and the prototypical dependent of this type is an auxiliary. Therefore, this

dependency type follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3.

Auxpass - passive auxiliaries

The dependency type “auxpass” is used when the dependency head is a verb and the dependent

is an auxiliary for sentences in the passive voice.

ROOT

NSUBJPASS PUNCT

PREP .-9

AUX AUX AUXPASS

DET by-7

could-3 have-4 been-5

Sarah-8

book-2

This-1

POBJ

Root-0

read-6

Figure 5.13. The typed-dependency tree for ‘This book could have been read by Sarah.’25

25
The dependency type “prep” is used for prepositional phrases, indicating the agent of the action. The

dependency type “agent” is not used here. The dependency type “agent” will be discussed later in this section.

118

The figure below is the functional structure that is equivalent to the typed-dependency tree above.

Notice that the AUXPASS attribute has the attribute VOICE whose value is PASSIVE.

PRED 'read<NSUBJPASS>'

NSUBJPASS PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM ''this'

TYPE demonstrative

AUX FORM 'could'

MOOD SUBJUNCT IVE

FORM 'have'

ASPECT PERFECT

AUXPASS FORM 'been'

VOICE PASSIVE

PREP PRED 'by<POBJ>'

POBJ PRED

PERSON

NUMBER

GENDER

PUNCT FORM '.'

ROOT STMT-TYPEDECLARAT IVE

'Sarah'

3RD

SINGULAR

FEMININE

Figure 5.14. The functional structure for ‘This book could have been read by Sarah.’

The dependency type “auxpass” follows Mel’čuk’s Criteria for the same reasons as the ones

presented for the type “aux.” First, a verb and a passive auxiliary clearly form a prosodic unit

(e.g., ‘was taken’ and ‘may have been taken’), and the auxiliary precedes the verb. Therefore,

this type follows Mel’čuk’s Criterion A.

 Second, this dependency type follows Mel’čuk’s Criterion B. The verb, not the passive

auxiliary, functions as the head of the dependency because the verb-auxiliary phrase represents a

form of the verb. For example, the phrase ‘was taken’ represents a form of the verb ‘take,’ not

119

the passive auxiliary ‘was.’

Third, this dependency type implies a unique semantic relationship between the governor and

its dependent, and the prototypical dependent of this type is a passive auxiliary. Therefore, this

dependency type follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3.

Cop - copula

This dependency type is used for cases where the dependent is a form of the verb ‘be.’ This

type is used for sentences in which an adjective or a noun serves as the root of the sentence, and

the verb ‘be’ is the auxiliary modifier of the root26. In Stanford Dependencies, the nominal or

adjectival complement is considered as the root of a clause and the copula is an auxiliary

modifier, and the prepositional complement as the dependent on the copula. This analysis

distinguishes the existential usage of the copula ‘be’ from the other usages. This distinction is

reminiscent of Halliday’s (1967, p.66) classification of ‘be.’ He argues that the copula ‘be’ is

not different from other verbs except for the fact that it can be categorized into more than one

class. The three classes he assigns to the copula ‘be’ are as follows.

26
There are two different analyses for copular constructions in LFG (Butt et al. 1999; Dalrymple, Dyvik, & King

2004). One is an open complement analysis, in which the complement of a copula is an XCOMP whose subject is

also the subject of the copula. The other is a closed complement analysis, in which the complement of a copula is

PREDLINK which does not have its subject. Open complement analysis is appropriate for constructions in which

the complement of a copula is a verbal predicate (e.g., Sarah is reading a book), while closed complement analysis is

appropriate for constructions in which the complement of a copula is a nominal predicate (e.g., Sarah is a student),

adjectival predicate (e.g., Sarah is intelligent), or a prepositional predicate (e.g., Sarah is in the classroom), because

these non-verbal complements do not need to have subject arguments (Butt et al. 1999, p.70). Both analyses

presuppose that the copula “be” is always the root of a clause.

120

(5.3)

Class 0 be means “can be characterized as, has the attribute of being”

Class 1 be means “exists, happens, is found or located”

Class 2 be means “identifies or is identifiable as, can be equated with”

Halliday (1967, p.67) states that Class 0 be is intensive, while Class 2 be is extensive effective:

intensitive ‘be’ clauses answer questions about the attribute or quality of the subject (e.g., ‘What

is Sarah?’ ‘She is a student’); extensive effective ‘be’ clauses answer questions about the identity

of the subject (e.g., ‘Who is Sarah?’ ‘She is David’s wife.’) Class 1 ‘be’ is descriptive, and

used with a locative adjunct (e.g., ‘Where is Sarah?’ ‘She is in her room.’) (Halliday 1967, p.71).

Although the Stanford Parser has an option for the output format in which the copula is the

root of the sentence (de Marneffe & Manning 2012, p.17), this study does not use this option,

because the default option of the Stanford Parser reflects the syntactic difference between Class

1 be and Class 0 and Class 2 be; Class 1 be requires a locative adjunct, while Class 0 and Class

2 be do not.

The figure below is the typed-dependency tree for ‘Sarah is a student.’ The complement of

‘is’ in this sentence is a noun.

ROOT

PUNCT

NSUBJ

DET

COP

.-6

Root-0

student-4

Sarah-1

is-2

a-3

Figure 5.15. The typed-dependency tree for ‘Sarah is a student.’

121

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'student<NSUBJ>'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULAR/FEMININE

DET FORM 'a'

TYPE INDEFINITE

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

COP FORM 'is'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.16. The functional structure for ‘Sarah is a student.’27

The figure below is the typed-dependency tree for ‘Sarah is intelligent.’ The root of this

sentence is an adjective.

27
This functional-structure representation raises a problem of whether a noun can have a nominal subject. The

solution for this problem is to treat the noun modified by a copular auxiliary as subcategorizing for its subject.

Chafe (1970, p.201-202) states that predicative nouns are “stative verbs derived from nouns through a derivational

unit that was labeled predicativizer”. Predicativizer in this context can be understood as a copular auxiliary.

Being stative verbs necessitates predicate nouns to have their subjects. He also argues that the semantics of

predicate nouns are such that the subject is a “proper subset of the objects specified by the root of the predicate noun”

(Ibid 1970, p.202). According to this view, ‘Sarah’ in the sentence ‘Sarah is a student’ is a proper subset of all

students.

122

ROOT

NSUBJ PUNCT

COP

is-2

.-6

Root-0

intelligent-3

Sarah-1

Figure 5.17. The typed-dependency tree for ‘Sarah is intelligent.’

The figure below is the functional structure that is equivalent to the typed-dependency tree

above.

PRED 'intelligent<NSUBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

COP FORM 'is'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.18. The functional structure for ‘Sarah is intelligent.’

 The dependency type “cop” follows Mel’čuk’s Criteria for SSyntRel. First, a noun or an

adjective and a copula clearly form a prosodic unit (e.g., ‘is intelligent’), and the copula precedes

the verb. Therefore, this type follows Mel’čuk’s Criterion A. In addition, a noun or an

123

adjective and a copula can form a semantic unit, which follows the revised Criterion A proposed

in Section 2.4.3.1.

 Second, this dependency type follows Mel’čuk’s Criterion B3 because a copula-noun phrase

or a copula-adjective phrase represents a form the noun or the adjective. For example, the

phrase ‘is intelligent’ is considered a form of the adjective ‘intelligent,’ not the auxiliary ‘is.’

Third, this dependency type implies a unique semantic relationship between the governor and

its dependent, and the prototypical dependent of this type is a copula. Therefore, this

dependency type follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3.

5.3.3 Arg - arguments

This dependency type describes cases in which the dependency head is an argument-taking

element (verbs or prepositions) and the dependent is its argument. This dependency type has

three subtypes (“agent,” “comp,” and “subj”), and two of them (“subj” and “comp”) have

sub-subtypes. Each type is discussed in turn below.

Agent

This dependency type is a subtype of “arg” and describes cases in which the dependency head is

a verb in the passive voice and the dependent is the agent of the verb. This dependency type is

realized in the Stanford Parser when the parsing option is not set to the default option

(basicDependencies); see Section 5.4 for the output options of the Stanford Parser. The

preposition ‘by’ is not realized in the parsed output.

124

ROOT

NSUBJPASS PUNCT

AGENT .-9

AUX AUX AUXPASS

DET Sarah-8

could-3 have-4 been-5

book-2

This-1

Root-0

read-6

Figure 5.19. The typed-dependency tree for ‘This book could have been read by Sarah’ with the

dependency type “agent”

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'read<NSUBJPASS>'

NSUBJPASS PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM ''this'

TYPE demonstrative

AUX FORM 'could'

MOOD SUBJUNCTIVE

FORM 'have'

ASPECT PERFECT

AUXPASS FORM 'been'

VOICE PASSIVE

AGENT PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.20. The functional structure for ‘This book could have been read by Sarah.’ with the

125

dependency type “agent.”

Comp - complement

This dependency type is a subtype of “arg” and describes cases in which the dependent is the

complement of the head of a clause. This dependency type is further subcategorized into

eleven subtypes, discussed in turn below.

Acomp - adjectival complement

The dependency type “acomp” is a subtype of “comp” used for cases where the dependent is an

adjective. The verbs that take adjectives as their complement are divided into the following

four subcategories (Nakano 1998, p.33-34): (1) verbs that express a change of state (e.g., become,

fall, get, turn); (2) perception verbs (e.g., look, sound, smell, taste, feel); (3) stative verbs (e.g.,

remain, stay, keep); and (4) contingent verbs (e.g., seem, appear). Contingent verbs express an

accidental, not essential, state of an entity.

Change-of-state verbs

The figure below presents an example typed-dependency tree in which an adjective depends on a

change-of-state verb, with the dependency type “acomp.”

126

Root

NSUBJ PUNCT

AUX ACOMP

has-2 possible-4 .-5

ROOT-0

become-3

It-1

Figure 5.21. The typed-dependency tree for ‘It has become possible.’

The typed-dependency tree above is equivalent to the following functional structure. Notice

that the dependency type “acomp” is subcategorized for by the main predicate ‘become.’

PRED 'become<NSUBJ, ACOMP>'

NSUBJ PRED 'PRO'

FORM it

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

ACOMP PRED 'possible'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.22. The functional structure for ‘It has become possible.’

The typed-dependency tree below is another example in which an adjective depends on a

change-of-state verb with the dependency type “acomp.”

127

Root

NSUBJ PUNCT

ACOMP

.-4

ROOT-0

fell-2

Sarah-1 asleep-3

Figure 5.23. The typed-dependency tree for ‘Sarah fell asleep.’

The typed-dependency tree above is equivalent to the functional structure shown below. The

dependency type “acomp” is subcategorized for by the verb ‘fell.’

PRED 'fall<NSUBJ, ACOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PAST

ACOMP PRED 'asleep'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.24. The functional structure for ‘Sarah fell asleep.’

Perception verbs

The figure below presents an example typed-dependency tree in which an adjective depends on a

perception verb.

128

Root

NSUBJ PUNCT

ACOMP

.-4

ROOT-0

looks-2

Sarah-1 healthy-3

Figure 5.25. The typed-dependency tree for ‘Sarah looks healthy.’

The typed-dependency tree above is equivalent to the functional structure shown below. The

dependency type “acomp” is subcategorized for by the verb ‘looks.’

PRED 'look<NSUBJ, ACOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PRESENT

ACOMP PRED 'healthy'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.26. The functional structure for ‘Sarah looks healthy.’

The figure below is another example in which an adjective depends on a perception verb.

129

Root

NSUBJ PUNCT

ACOMP

DET

The-1

.-4

ROOT-0

sounds-3

story-2 interesting-4

Figure 5.27. The typed-dependency tree for ‘The story sounds interesting.’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'sound<NSUBJ, ACOMP>'

NSUBJ PRED 'story'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

TENSE PRESENT

ACOMP PRED 'interesting'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARAT IVE

Figure 5.28. The functional structure for ‘The story sounds interesting.’

Stative verbs

The figure below presents an example typed-dependency tree in which an adjective depends on a

stative verb.

130

Root

NSUBJ PUNCT

ACOMP

.-4

ROOT-0

kept-2

Sarah-1 silent-3

Figure 5.29. The typed-dependency tree for ‘Sarah kept silent.’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'keep<NSUBJ, ACOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PAST

ACOMP PRED 'silent'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.30. The functional structure for ‘Sarah kept silent.’

The figure below is another example in which an adjective depends on a stative verb. The

adjective ‘still’ depends on the stative verb ‘stood.’

131

Root

NSUBJ PUNCT

ACOMP

.-4

ROOT-0

stood-2

Sarah-1 still-3

Figure 5.31. The typed-dependency tree for ‘Sarah stood still.’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'stand<NSUBJ, ACOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PAST

ACOMP PRED 'still'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.32. The functional structure for ‘Sarah stood still.’

Contingent verbs

The figure below presents an example of a typed-dependency tree which contains a contingent

verb. The adjective ‘healthy’ depends on the contingent verb ‘seems.’

132

Root

NSUBJ PUNCT

ACOMP

.-4

ROOT-0

seems-2

Sarah-1 healthy-3

Figure 5.33. The typed-dependency tree for ‘Sarah seems healthy.’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'seem<NSUBJ, ACOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PRESENT

ACOMP PRED 'healthy'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.34. The functional structure for ‘Sarah seems healthy.’

The figure below is another example of a typed-dependency tree which contains a contingency

verb. In this case, the adjective ‘healthy’ depends on the contingency verb ‘appears.’

133

Root

NSUBJ PUNCT

ACOMP

.-4

ROOT-0

appears-2

Sarah-1 healthy-3

Figure 5.35. The typed-dependency tree for ‘Sarah appears healthy.’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'appear<NSUBJ, ACOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PRESENT

ACOMP PRED 'healthy'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.36. The functional structure for ‘Sarah appears healthy.’

 The dependency type “acomp” follows Mel’čuk’s Criteria for SSyntRel. First, a verb and

its adjectival complement clearly form a prosodic unit (e.g., ‘looks intelligent,’ ‘kept silent,’ etc.),

and the verb precedes its adjectival complement. Therefore, this type follows Mel’čuk’s

Criterion A. In addition, a verb and its adjectival complement form a semantic unit, which

follows the revised Criterion A proposed in Section 2.4.3.1.

Second, this dependency type follows Criterion B3 because the verb-complement phrase

134

represents a form, or denotation, of the verb. For example, the phrase ‘looks beautiful’ denotes

the verb ‘looks,’ not the adjective ‘beautiful.’

Third, this dependency type implies a unique semantic relationship between the governor and

its dependent, and the prototypical dependent of this dependency type is an adjective.

Therefore, this dependency type follows the revised Criteria C1 and C2 proposed in Section

2.4.3.3.

Attr – attributive

The dependency type “attr” is a subtype of “comp” and represents cases where the dependency

head is a copula and the dependent is an interrogative pronoun. The figure below is an example

typed-dependency tree in which the interrogative pronoun ‘what’ depends on the copula ‘is’ with

the type “attr.”

Root

ATTR PUNCT

NSUBJ

?-4

ROOT-0

is-2

What-1 that-3

Figure 5.37. The typed-dependency tree for ‘What is that?’

The typed-dependency tree above is equivalent to the functional structure below. The pronoun

‘what’ is typed as INTERROGATIVE, and the pronoun ‘that’ is typed as DEMONSTRATIVE.

135

The question mark adds to the sentence the value of the statement-type attribute.

PRED 'be<NSUBJ>'

ATTR PRED 'PRO'

FORM What

TYPE INTERROGATIVE

NSUBJ PRED 'PRO'

FORM that

TYPE DEMONSTRATIVE

PUNCT FORM '?'

ROOT STMT-TYPE INTERROGATIVE

Figure 5.38. The functional structure for ‘What is that?’

The dependency type “attr” seems to be an ad hoc type because it does not follow all of

Mel’čuk’s criteria. On one hand, a copula and an interrogative pronoun form a prosodic unit

(e.g., ‘Where is,’ ‘How are,’ etc.), thus following Mel’čuk’s Criterion A. However, the copula,

not the interrogative pronoun, serves as the head of the dependency. This contrasts with the

analysis for the dependency type “cop,” in which the adjective or noun functions as the head

while the copula is the dependent. There is no well-established reason to treat the copula as the

head if it exists in a dependency relationship with an interrogative pronoun. Therefore, this

dependency type seems to be ad hoc, and a better analysis would interpret the interrogative

pronoun as the head and the copula as the dependent.

Ccomp - Clausal Complement with Internal Subject

Complm – complementizer

The dependency type “ccomp” is a subtype of “comp” and represents cases where the dependent

136

clause has an internal subject. The dependency type “complm” is another subtype of “comp”

used to represent cases where the dependent is the word introducing the dependent clause, such

as ‘that’ in the example sentence below.

Root

NSUBJ PUNCT

CCOMP

COMPLM COP

NSUBJ

that-3 is-5David-4

ROOT-0

says-2

Sarah-1 honest-6 .-7

Figure 5.39. The typed-dependency tree for ‘Sarah says that David is honest.’

The typed-dependency tree above is equivalent to the functional structure below. The attribute

COMPLM has a local functional structure, which has an attribute FORM whose value is ‘that.’

137

PRED 'say<NSUBJ,CCOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

CCOMP PRED 'honest'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

COP FORM 'is'

TENSE PRESENT

COMPLM FORM 'that'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.40. The functional structure for ‘Sarah says that David is honest.’

The typed-dependency tree below is an example which contains the complementizer ‘whether.’

Root

NSUBJ PUNCT

CCOMP

COMPLM COP

NSUBJ

whether-3 is-5

.-7

David-4

ROOT-0

wonders-2

Sarah-1 honest-6

Figure 5.41. The typed-dependency tree for ‘Sarah wonders whether David is honest.’

138

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the word ‘whether’ is the value of the attribute FORM in the local functional structure, and this

local functional structure is the value of the attribute COMPLM.

PRED 'wonder<NSUBJ,CCOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

CCOMP PRED 'honest'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

COP FORM 'is'

TENSE PRESENT

COMPLM FORM 'whether'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.42. The functional structure for ‘Sarah wonders whether David is honest.’

 The dependency type “ccomp” does not follow all of Mel’čuk’s original criteria for SSyntRel.

The main verb precedes the dependent clause; however, the main verb and the subordinate verb

do not form a prosodic unit (e.g., ‘…says…honest’), in contrast to Mel’čuk’s original Criterion A.

However, the verb of the main clause and the subordinate verb definitely form a semantic unit,

thus following the revised Criterion A discussed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B because the main verb determines the

passive valence of the subsequent phrase. In other words, in the sentence, the subsequent verb

has the “ability to be subordinated, in a specified role, to lexemes of a certain class” (Mel’čuk &

Pertsov 1987, p.80). For example, a verb taking a subordinate clause can be dependent on

139

another verb, such as ‘John believes Sarah has said that David was honest.’ Therefore, the main

verb and the additional verb in an internal-subject clause both follow Mel’čuk’s Criterion B1.

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3

because it implies a certain kind of semantic relationship between the verbs, and this semantic

relationship cannot be expressed by any other dependency type.

Xcomp - clausal complement with external subject28

The dependency type “xcomp” is a subtype of “comp” and represents cases where the clausal

complement does not have its overt subject; in other words, the subject of the verb in the

complement is external to the complement. This type of clausal complements is called ‘open

complement.’ The term “xcomp” is an abbreviation of ‘an external open complement.’ Verbs

that take a clausal complement are divided into three categories29: (1) intransitive subject-control

verbs, such as ‘try’ in ‘Sarah tries to go there’; (2) transitive subject-control verbs, such as

‘promise’ in ‘Sarah promised David to go there’; (3) transitive object-control verbs, such as

‘persuade’ in ‘Sarah persuaded David to go there.’

As for an intransitive subject-control verb, the external subject of its open complement is the

28
This study follows de Marneffe & Manning’s (2012) terminology for this dependency type, yet it must be pointed

out here that it is appropriate to use the name “vcomp” rather than “xcomp” for this dependency type, because the

dependent of this dependency type is a verb, and the term “xcomp” breaks the parallelism with “acomp” whose

dependent is an adjective.

29
This study does not follow the tradition of standard LFG in terms of the distinction between functional control

and anaphoric control (Mohanan 1983, p.641; Dalrymple 2001, p.325). In functional control, the control equation

in the lexical entry of a control verb identifies the controllee, and the control relationship is obligatory. In

anaphoric control, on the other hand, the controller is optional. The assumption in this study is that we need not

distinguish between them, because they both involve the subject zero pronoun of a complement.

140

same as its subject. An example of an intransitive subject-control verb is shown below. In

this sentence, the subject of ‘tried’ and the subject of ‘go’ are both ‘Sarah.’ The subject of ‘tried’

is ‘PRO,’ which refers to ‘Sarah’ (this relationship is represented in a functional structure by the

same index ‘i’ on ‘PRO’ and ‘Sarah’).

Root

NSUBJ PUNCT

XCOMP

AUX

there-5
to-3

ADVMOD

ROOT-0

tried-2

Sarah-1 .-6go-4

Figure 5.43. The typed-dependency tree for ‘Sarah tried to go there.’

The typed-dependency tree above is equivalent to the functional structure below. Notice

that the same index ‘i’ is assigned to the subject zero pronoun of the verb ‘go’ and to ‘Sarah.’

This indicates that the subject zero pronoun of the verb ‘go’ refers to ‘Sarah.’

141

PRED 'try<NSUBJ, XCOMP>'

NSUBJ PRED 'Sarahi'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

XCOMP PRED 'go<NSUBJ>'

NSUBJ PRED 'PROi'

TYPE ZERO

ADVMOD PRED 'there'

AUX FORM 'to'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.44. The functional structure for ‘Sarah tried to go there.’

As for a transitive object-control verb, the external subject of its open complement is the

same as its object. An example of transitive object-control verbs is shown below. In this

sentence, the external subject of an open complement of the verb ‘persuaded’ is the direct object

of ‘persuade.’

Root

NSUBJ PUNCT

DOBJ XCOMP

David-3 go-5

AUX ADVMOD

to-4 there-6

ROOT-0

persuaded-2

Sarah-1 .-7

142

Figure 5.45. The typed-dependency tree for ‘Sarah persuaded David to go there.’

PRED 'persuade<NSUBJ, DOBJ, XCOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

DOBJ PRED 'Davidi'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

XCOMP PRED 'go<NSUBJ>'

NSUBJ PRED 'PROi'

TYPE ZERO

ADVMOD PRED 'there'

AUX FORM 'to'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.46. The functional structure for ‘Sarah persuaded David to go there.’

In the Stanford Parser output, however, the subject of the open complement of a transitive

object-control verb depends on this open-complement verb with the dependency type “nsubj”, as

shown in the typed-dependency tree below. This analysis allows the dependency tree to reflect

the semantic relation between the one which is often considered to be the object of a transitive

object-control verb (‘David’ in the example below) and the open complement verb (‘go’ in the

example below).

143

Root

NSUBJ PUNCT

XCOMP

AUX

David-3 there-6
to-4

ADVMOD

NSUBJ

ROOT-0

persuaded-2

Sarah-1 .-7go-5

Figure 5.47. The typed-dependency tree for ‘Sarah persuaded David to go there.’ in Stanford

Parser output

The equivalent functional structure for the tree in Figure 5.47 is shown below. Notice that there

is no PRO, and that the lexical form of the verb ‘persuaded’ in this functional structure is not the

same as the lexical form of the same verb in the functional structure in Figure 5.46, because this

functional structure does not contain the direct object of the verb ‘persuade.’ For this functional

structure to be complete, the verb ‘persuade’ should not require its direct object.

144

PRED 'persuade<NSUBJ, XCOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

XCOMP PRED 'go<NSUBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

ADVMOD PRED 'there'

AUX FORM 'to'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.48. The functional structure for ‘Sarah persuaded David to go there.’ which is

equivalent to the typed-dependency tree in Figure 5.47

As for a transitive subject-control verb, the external subject of its open complement is the

same as its subject. For example, the external subject of an external complement of the verb

‘promised’ is also the subject of ‘promised.’

145

Root

NSUBJ PUNCT

DOBJ XCOMP

David-3 go-5

AUX ADVMOD

to-4 there-6

ROOT-0

promised-2

Sarah-1 .-7

Figure 5.49. The typed-dependency tree for ‘Sarah promised David to go there.’

PRED 'promise<NSUBJ, DOBJ, XCOMP>'

NSUBJ PRED 'Sarah i'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

XCOMP PRED 'go<NSUBJ>'

NSUBJ PRED 'PRO i'

TYPE ZERO

ADVMOD PRED 'there'

AUX FORM 'to'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.50. The functional structure for ‘Sarah promised David to go there.’

146

However, the Stanford Parser yields an incorrect parse for a transitive subject-control verb,

because the subject of the complement is not open. In the example below, the subject of the

verb ‘go’ is ‘David,’ which does not reflect the actual meaning of the sentence.

Root

NSUBJ PUNCT

XCOMP

AUX

David-3 there-6
to-4

ADVMOD

NSUBJ

ROOT-0

promised-2

Sarah-1 .-7go-5

Figure 5.51. The typed-dependency tree for ‘Sarah promised David to go there’ in the Stanford

Parser output

147

PRED 'promise<NSUBJ, XCOMP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

XCOMP PRED 'go<NSUBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

ADVMOD PRED 'there'

AUX FORM 'to'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.52. The functional structure for ‘Sarah promised David to go there.’ which is equivalent

to the typed-dependency tree in Figure 5.51

These examples show that the Stanford Parser does not differentiate transitive subject-control

verbs from transitive object-control verbs, and it yields incorrect output for transitive

subject-control verbs. This analysis is a plausible one, because the majority of transitive

control verbs are object-control, while there are only two transitive subject-control verbs:

promise and vow (Davies & Dubinsky 2008, p.351).

As previously mentioned in the subsection for “aux”, the Stanford Parser analyzes the

auxiliaries that include to-infinitives (e.g., ‘have to,’ ‘be to,’ ‘ought to’) as the root of the

sentence, and the ‘to’ to be an auxiliary depending on the verb after the auxiliary, which depends

on the root with the type “xcomp.” Figure 5.53 is the typed-dependency tree for ‘Sarah has to

read this book.,’ and Figure 5.54 is the functional structure for the same sentence. Notice that

the preposition ‘to’ is an auxiliary whose lexical information is its FORM attribute. Also notice

148

that the MODALITY attribute has the value DEONTIC-NECESSITY.

ROOT

PUNCT

NSUBJ

XCOMP

DET

this-5

DOBJAUX

to-3

.-7

Root-0

has-2

Sarah-1

book-6

read-4

Figure 5.53. The typed-dependency tree for ‘Sarah has to read this book.’ in the Stanford Parser

output.

149

PRED 'have<NSUBJ,XCOMP>'

NSUBJ PRED 'Sarahi'

PERSON 3RD
NUMBER SINGULAR
GENDER FEMININE

XCOMP PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'PRO i'

FORM ZERO

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

AUX FORM 'to'

TENSE PRESENT
MODALIT Y DEONTIC-NECESSITY

PUCNT FORM '.'

ROOT STMT -T YPE DECLARATIVE

Figure 5.54. The functional structure for ‘Sarah has to read this book.’

Figure 5.55 is the typed-dependency tree for ‘Sarah is to read this book.,’ and Figure 5.56 is

the functional-structure representation for the same sentence. Notice that the TENSE attribute

has the value FUTURE30, and the MODALITY attribute has the value DEONTIC-NECESSITY;

this information is carried by the chunk ‘is to infinitive verb.’

30
In this dissertation, it is assumed that English has the future tense (see section 5.3.2).

150

ROOT

PUNCT

NSUBJ

XCOMP

DET

Root-0

is-2

Sarah-1

book-6

read-4

this-5

DOBJAUX

to-3

.-7

Figure 5.55. The typed-dependency tree for ‘Sarah is to read this book.’ in the Stanford Parser

output.

PRED 'be<NSUBJ,XCOMP>'

NSUBJ PRED 'Sarahi'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

XCOMP PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'PROi'

FORM ZERO

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

AUX FORM 'to'

TENSE FUTURE
MODALITY DEONTIC-NECESSITY

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.56. The functional structure for ‘Sarah is to read this book.’

151

Figure 5.57 is the typed-dependency tree for ‘Sarah ought to read this book.,’ and Figure 5.58

is the functional-structure representation for the same sentence.

ROOT

PUNCT

NSUBJ

XCOMP

DET

this-5

DOBJAUX

to-3

.-7

Root-0

ought-2

Sarah-1

book-6

read-4

Figure 5.57. The typed-dependency tree for ‘Sarah ought to read this book.’

152

PRED 'ought<NSUBJ,XCOMP>'

NSUBJ PRED 'Sarahi'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

XCOMP PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'PRO i'

FORM ZERO

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

AUX FORM 'to'

TENSE PRESENT
MODALITY DEONTIC-NECESSIT Y

PUCNT FORM '.'

ROOT STMT-TYPE DECLARAT IVE

Figure 5.58. The functional structure for ‘Sarah ought to read this book.’

 The dependency type “xcomp” does not completely follow Mel’čuk’s original Criterion A for

SSyntRel. The linear order of the words in this dependency type is such that the main verb

precedes the verb in the subject-external clause; however, the verb in the main clause and the

verb in the subject-external clause do not form a prosodic unit (e.g., ‘…persuaded… go’). On

the other hand, the verb in the main clause and the verb in the subject-external clause do form a

semantic unit. Therefore, this type follows the revised Criterion A discussed in Section 2.4.3.1.

 This dependency type also follows Mel’čuk’s Criterion B. The main verb determines the

passive valence of the phrase. For example, a verb that takes an external-subject clause can be

dependent on another verb, such as ‘John believes Sarah persuaded David to go there.’

Therefore, both the main verb and the verb in the external-subject clause follow Mel’čuk’s

Criterion B1.

153

In addition, this dependency type follows the revised Criterion C proposed in Section 2.4.3.3

because it implies a certain kind of semantic relationship between verbs, and this semantic

relationship cannot be expressed by any other dependency type.

Pcomp – clausal complement of a preposition

The dependency type “pcomp” is a subtype of “comp” and represents cases where the head of

the dependency is a preposition and the dependent is a clausal complement. Figures 5.59

through 5.62 present example sentences that contain the dependency type “pcomp” and their

functional structures. In each of these examples, the prepositional object is a present participle

of a verb whose subject is a zero pronoun.

Root

NSUBJ PUNCT

COP PREP

Sarah-1 is-2 of-4 .-7

reading-5

books-6

ROOT-0

fond-3

PCOMP

DOBJ

Figure 5.59. The typed-dependency tree for ‘Sarah is fond of reading books.’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the same index ‘i’ assigned to ‘Sarah’ and to ‘PRO’ indicates that this ‘PRO’ refers to ‘Sarah.’

154

PRED 'fond<NSUBJ, PREP>'

NSUBJ PRED 'Sarahi'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

COP FORM 'is'

PREP PRED 'of<PCOMP>'

PCOMP PRED 'read<SUBJ, OBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

DOBJ PRED 'books'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.60. The functional structure for ‘Sarah is fond of reading books.’

Root

NSUBJ PUNCT

DOBJ PREP

Sarah-1 David-3 with-4 .-8

writing-5

book-7

a-6

ROOT-0

helped-2

PCOMP

DOBJ

DET

Figure 5.61. The typed-dependency tree for ‘Sarah helped David with writing a book.’

155

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'help<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

PREP PRED 'with<PCOMP>'

PCOMP PRED 'write<NSUBJ,DOBJ>'

NSUBJ PRED 'PRO'

TYPE ZERO

DOBJ PRED 'book'

PERSON 3RD

GENDER NEUTRAL

DET FORM 'a'

TYPE INDEFINITE

NUMBER SINGULAR

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.62. The functional structure for ‘Sarah helped David with writing a book.’

When the main predicate of a prepositional complement is an adjective, this adjective

depends on the preposition, as shown below.

156

Root

NSUBJ PUNCT

PREP

Sarah-1 .-8

PCOMP

COP

ROOT-0

apologized-2

for-3

being-4

late-5

Figure 5.63. The typed-dependency tree for ‘Sarah apologized for being late.’

PRED 'apologize <NSUBJ, PREP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

PREP PRED 'for<PCOMP>'

PCOMP PRED 'late<NSUBJ>'

NSUBJ PRED 'PRO'

TYPE ZERO

COP FORM 'being'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.64. The functional structure for ‘Sarah apologized for being late.’

 The dependency type “pcomp” partly follows Mel’čuk’s Criteria for SSyntRel. The

preposition and the present-participial verb form a prosodic unit (e.g., ‘of reading’), and the

linear order of the words in this dependency type is such that the preposition precedes the

157

present-participle verb. However, when the main predicate is an adjective and the copula is in

the present participle form, as in ‘Sarah apologized for being late’ in the example above, the

preposition and the adjective do not form a prosodic unit. However, this type follows the

revised Criterion A discussed in Section 2.4.3.1, because the preposition and the adjective in this

dependency type represent a semantic unit. In other words, they constitute a fragment

functional structure (see Section 3.3).

The passive valence of the phrase ‘of reading’ in the example above is determined by the

preposition ‘of,’ and according to Mel’čuk’s Criterion B1, the preposition is the head and the

present-participial verb is the dependent.

This dependency type also implies a unique semantic relationship between the governor and

its dependent, and the prototypical dependent of this type is a present-participle verb, or an

adjective accompanied by a copula. Therefore, this dependency type follows the revised

Criteria C1 and C2 proposed in Section 2.4.3.3.

Obj – object

This dependency type is a subtype of “comp” and describes cases where the dependency head is

an object-taking element and the dependent is the object of the head. This dependency type is

further subcategorized into three subtypes: “dobj,” “iobj,” and “pobj.”

 These dependency types follow Mel’čuk’s criteria for SSyntRel. In all cases, the

object-taking element and its dependent form a prosodic unit (e.g., ‘read books,’ ‘give him,’ and

‘about books’), and the linear order of the words in this dependency type is such that the verb

precedes the noun. These types also follow the revised Criterion A (see Section 2.4.3.1)

because they represent semantic units, even though they do not form prosodic units (e.g., ‘read’

158

and ‘books’ in ‘Sarah has read these old, expensive books’).

In addition, the object-taking element, not its dependent, determines the passive valence of

the phrase. Therefore, the object-taking element and its dependent follow Mel’čuk’s Criterion

B1. For example, for the dependency relation between ‘read’ and ‘book’ in the sentence ‘Sarah

has read this book’ shows that ‘read’ depends on another element (“root”).

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between a noun and a verb, and this

semantic relationship cannot be expressed by any other dependency type.

Dobj - direct object

This dependency type is a subtype of “obj” used for cases where the dependency head is an

object-taking element and the dependent is the direct object of the head. Several cases of “dobj”

have been shown in the example sentences so far. In the figure below, the noun ‘book’ is the

direct object of the verb ‘written.’ In other words, the noun ‘book’ depends on the verb ‘written’

with the dependency type “dobj.”

Root

NSUBJ Aux PUNCT

DOBJ .-6

DET

this-4

ROOT-0

written-3

Sarah-1 has-2 book-5

159

Figure 5.65. The typed-dependency tree for ‘Sarah has written this book.’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'write<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.66. The functional structure for ‘Sarah has written this book.’

Iobj - indirect object

This dependency type is a subtype of “obj” and describes cases where the dependency head is an

object-taking element and the dependent is the indirect object of the head. Figures 5.67 through

5.70 present the typed-dependency trees for example sentences that contain the dependency type

“iobj” along with their functional structures.

160

Root

PUNCT

NSUBJ DOBJ .-7

AUX IOBJ

has-2 David-4

DET

Sarah-1

a-5

ROOT-0

given-3

book-6

Figure 5.67. The typed-dependency tree for ‘Sarah has given David a book.’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'give<NSUBJ,IOBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

IOBJ PRED 'David'

PERSON 3RD

NUMBERSINGULAR

GENDER MASCULINE

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'a'

TYPE INDEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

161

Figure 5.68. The functional structure for ‘Sarah has given David a book.’

Root

PUNCT

NSUBJ DOBJ .-7

AUX IOBJ

has-2 David-4

DET

Sarah-1

a-5

ROOT-0

read-3

book-6

Figure 5.69. The typed-dependency tree for ‘Sarah has read David a book.’

The typed-dependency tree above is equivalent to the functional structure below.

162

PRED 'read<NSUBJ,IOBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

IOBJ PRED 'David'

PERSON 3RD

NUMBERSINGULAR

GENDER MASCULINE

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'a'

TYPE INDEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.70. The functional structure for ‘Sarah has read David a book.’

Pobj - object of preposition

This dependency type is a subtype of “obj” and describes cases where the dependency head is a

preposition and the dependent is the object of the preposition. Figure 5.71 presents an example

sentence with this dependency type and Figure 5.72 presents its equivalent functional structure.

163

Root

NSUBJ PUNCT

PREP .-8

AUX DOBJ

Sarah-1 to-6

David-7

ROOT-0

given-3

DET

this-4

has-2 book-5

POBJ

Figure 5.71. The typed-dependency tree for ‘Sarah has given this book to David.’

PRED 'give<NSUBJ,DOBJ,PREP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'this'
TYPE DEMONSTRATIVE

PREP PRED 'to<POBJ>'

POBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

AUX FORM 'has'

ASPECT PERFECT

TENSE PRESENT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.72. The functional structure for ‘Sarah has given this book to David.’

164

Objects in topicalized sentences and interrogatives

There are some instances of marked syntactic structures whereby a phrase that is not usually

placed at the beginning of a sentence occurs in that position, such as interrogatives or

topicalization (Prince 1981, 1998). These cases carry a particular discourse function, such as

“topic.”

Topicalization

As for topicalized direct objects, one possible analysis is that the topicalized phrase depends on

the predicate as a direct object, and thus the dependency would not be labeled as “topic,” as

shown in the following typed-dependency tree. The functional structure for this sentence is

identical with that for ‘Sarah has written this book.’ except for the presence of “PUNCT.”

Root

.-7

DOBJ NSUBJ PUNCT

Aux

DET ,-3

This-1

ROOT-0

written-6

book-2 Sarah-4 has-5

PUNCT

Figure 5.73. The typed-dependency tree for ‘This book, Sarah has written.’

165

PRED 'write<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

PUNCT FORM ','

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.74. The functional structure for ‘This book, Sarah has written.’

Another possible analysis is that the topicalized phrase depends on the predicate as a topic, and

thus the dependency would be labeled as “topic,” as shown in the following typed-dependency

tree.

166

Root

.-7

TOPIC NSUBJ PUNCT

Aux

DET ,-3

has-5

PUNCT

This-1

ROOT-0

written-6

book-2 Sarah-4

Figure 5.75. The typed-dependency tree for ‘This book, Sarah has written.’ with the dependency

type “topic.”

In the functional structure for this typed-dependency tree, the DOBJ attribute has ‘PRO’ as its

value, and this ‘PRO’ refers to ‘book,’ which is the PRED value of the TOPIC.

167

PRED 'write<NSUBJ,DOBJ>'

TOPIC PRED 'booki'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

PUNCT FORM ','

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

DOBJ PRED 'PRO i'

TYPE ZERO

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.76. The functional structure for ‘This book, Sarah has written.’ with the dependency

type “topic.”

The latter analysis is better than the former one, because it includes the discourse function “topic”

in the typed-dependency tree and its functional structure. Unfortunately, Stanford

Dependencies do not include the dependency type “topic;” therefore, we cannot obtain correct

parses for sentences with a topicalized object. In addition, the Stanford Parser does not parse

sentences correctly with a topicalized object. In the output typed-dependency tree, the word

‘book’ is correctly parsed to depend on ‘written,’ but with an incorrect type “nsubj”, and the

word ‘Sarah’ is incorrectly parsed to depend on ‘book’ with an incorrect type “appos.”

168

Root

PUNCT

NSUBJ

Aux .-7

book-2 has-5

DET APPOS

PUNCT

This-1

,-3

ROOT-0

written-6

Sarah-4

Figure 5.77. The incorrect typed-dependency tree for ‘This book, Sarah has written’ in the

Stanford Parser output

The Stanford Parser has to be tuned up in order to yield a correct parse for sentences that contain

topicalized phrases. We cannot deal with this problem at present, so we leave this topic for

further research.

Interrogatives

Interrogative direct objects, which are also placed at the beginning of a sentence, are correctly

parsed by the Stanford Parser.

169

Root

DOBJ Aux PUNCT

NSUBJ ?-5

ROOT-0

written-4

What-1 has-2 Sarah-3

Figure 5.78. The typed-dependency tree for ‘What has Sarah written?’ in the Stanford Parser

output

PRED 'write<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED

FORM

TYPE INTERROGATIVE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUCNT FORM '?'

ROOT STMT-TYPE INTERROGATIVE

'PRO'

what

Figure 5.79. The functional structure for ‘What has Sarah written?’31

31
This study does not distinguish the functional structures for interrogative sentences from those for echo questions

such as ‘Sarah has written what?’ In both cases, the interrogative pronoun has one grammatical function (e.g., OBJ

in Figure 5.79), and the difference in word order results in the difference in the tree, but not in functional structure.

This is due to the insight that one functional structure can correspond to more than one constituent structure (or

typed-dependency tree).

170

Interrogative indirect objects, on the other hand, are not correctly parsed by the Stanford Parser.

In the example below, the word ‘Who’ is correctly parsed to depend on ‘given,’ but the

dependency type is “dep”, which means that the parser cannot give a correct type for the

dependency. The correct dependency type is “iobj.”

Root

PUNCT

DEP DOBJ ?-7

AUX NSUBJ

has-2 Sarah-3

DET

Who-1

this-5

ROOT-0

given-4

book-6

Figure 5.80. The incorrect typed-dependency tree for ‘Who has Sarah given this book?’ in the

Stanford Parser output.

171

Root

PUNCT

IOBJ DOBJ ?-7

AUX NSUBJ

has-2 Sarah-3

DET

Who-1

this-5

ROOT-0

given-4

book-6

Figure 5.81. The correct typed-dependency tree for ‘Who has Sarah given this book?’

PRED 'give<NSUBJ,IOBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBERSINGULAR

GENDER FEMININE

IOBJ PRED 'PRO'

FORM who

TYPE INTERROGATIVE

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'this'
TYPE DEMONSTRATIVE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUCNT FORM '?'

ROOT STMT-TYPEINTERROGATIVE

Figure 5.82. The functional structure for ‘Who has Sarah given this book?’

172

Interrogative prepositional objects are also not correctly parsed by the Stanford Parser. In the

example below, the word ‘What’ is incorrectly parsed to depend on ‘given,’ and the dependency

type is “dep.” The correct parse would be that ‘What’ depend on ‘on’ with the type “pobj.”

Root

PUNCT

DEP DOBJ ?-8

AUX NSUBJ PREP

has-2 Sarah-3 to-7

DET

Who-1

this-5

ROOT-0

given-4

book-6

Figure 5.83. The typed-dependency tree for ‘Who has Sarah given this book to?’ in the Stanford

Parser output.

Root

PUNCT

DOBJ ?-8

AUX NSUBJ PREP

has-2 Sarah-3 to-7

DET POBJ

Who-1this-5

ROOT-0

given-4

book-6

173

Figure 5.84. The correct typed-dependency tree for ‘Who has Sarah given this book to?’

PRED 'give<NSUBJ,DOBJ,PREP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'this'
TYPE DEMONSTRATIVE

PREP PRED 'to<POBJ>'

POBJ PRED 'PRO'

FORM who

TYPE INT ERROGATIVE

AUX FORM 'has'

ASPECT PERFECT

TENSE PRESENT

PUCNT FORM '?'

ROOT STMT -T YPE INTERROGATIVE

Figure 5.85. The functional structure for ‘Who has Sarah given this book to?’

Subj – subject

This dependency type is a subtype of “arg” and describes cases where the dependency head is a

subject-taking element and the dependent is the subject of the head. This dependency type is

further subcategorized into four subtypes: “nsubj,” “nsubjpass,” “csubj,” and “csubjpass.”

 There are some instances in which these dependency types do not follow Mel’čuk’s Criteria

A for SSyntRel (see Section 2.4.3.1). The linear order of the words in this dependency type is

such that the dependent precedes the head.

174

 The subject-taking element and its dependent follow Mel’čuk’s Criterion B1 because the

subject-taking element, not its dependent, determines the passive valence of the phrase. For

example, the dependency relation between ‘read’ and ‘Sarah’ in the sentence ‘Sarah has read this

book’ shows that ‘read’ depends on another element (i.e., the “root”).

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between a noun and a verb, and this

semantic relationship cannot be expressed by any other dependency type.

Nsubj - nominal subject

This dependency type is a subtype of “subj” and describes cases where the head is a

subject-taking element and the dependent is the nominal subject of the head. Cases of “nsubj”

have been shown in the example sentences so far. In the figure below, the noun ‘Sarah’ is the

nominal subject of the verb ‘write.’ In other words, the noun ‘Sarah’ depends on the verb ‘write’

with the dependency type “nsubj.”

Root

NSUBJ Aux PUNCT

DOBJ .-6

DET

an-4

ROOT-0

write-3

Sarah-1 will-2 article-5

Figure 5.86. The typed-dependency tree for ‘Sarah will write an article.’

175

PRED 'write<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'article'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'an'
TYPE INDEFINITE

AUX FORM 'will'

TENSE FUTURE

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.87. The functional structure for ‘Sarah will write an article.’

In addition to this, the subject of an external open complement of a transitive control verb is also

typed as “nsubj,” as shown in the section on “xcomp” (the typed-dependency trees and

functional structures for sentences that contain “xcomp” have already been shown in the section

on “xcomp” above).

Csubj - clausal subject

This dependency type is a subtype of “subj” and represents cases where the dependency head is a

subject-taking element and the dependent is the head of a clausal subject. The figure below

presents the typed-dependency tree for an example sentence. In the figure below, the head of

the clausal subject ‘said’ depends on the verb ‘makes’ with the dependency type “csubj.”

176

Root

CSUBJ PUNCT

DOBJ

DOBJ NSUBJ

.-6

Sarah-2What-1

ROOT-0

surprised-4

said-3 David-5

Figure 5.88. The typed-dependency tree for ‘What Sarah said surprised David.’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the zero pronoun, which is the DOBJ of ‘said,’ refers to nothing in this structure. This zero

pronoun refers to something inter-clausally, i.e., it refers to something in the context.

PRED 'surprise<CSUBJ, DOBJ>'

CSUBJ PRED 'say<NSUBJ,DOBJ>'

NSUBJ PRED Sarah

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'PRO'

FORM what

TYPE RELATIVE

TENSE PAST

DOBJ PRED David

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE
TENSE PAST
PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.89. The functional structure for ‘What Sarah said surprised David.’

177

This dependency type is used for to-infinitive clauses or present-participle clauses.

ROOT

CSUBJ PUNCT

COP

AUX

To-1 thesis-4

a-3

.-7write-2

DET

DOBJ

ROOT

fun-6

is-5

Figure 5.90. The typed-dependency tree for ‘To write a thesis is fun.’

The typed-dependency tree above is equivalent to the functional structure below. The zero

pronoun, which is the NSUBJ of ‘write,’ refers to nothing within this structure; rather, it refers to

some people who can be identified according to the context in which this sentence is used.

178

PRED 'fun<CSUBJ>'

CSUBJ PRED 'write<NSUBJ,DOBJ>'

NSUBJ PRED 'PRO'

TYPE ZERO

DOBJ PRED 'thesis'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'a'
TYPE INDEFINITE

AUX FORM to

COP FORM 'is'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.91. The functional structure for ‘To write a thesis is fun.’

The dependency type “csubj” is also used for a participle functioning as an argument of a verb,

as shown in the typed-dependency tree blow.

ROOT

CSUBJ PUNCT

COP

DOBJ

DET

.-6Writing-1

thesis-3

a-2

ROOT

fun-5

is-4

Figure 5.92. The typed-dependency tree for ‘Writing a thesis is fun.’

The typed-dependency tree above is equivalent to the functional structure below. The zero

179

pronoun, which is the NSUBJ of ‘writing,’ refers to people in general.

PRED 'fun<CSUBJ>'

CSUBJ PRED 'write<NSUBJ,DOBJ>'

NSUBJ PRED 'PRO'

TYPE ZERO

DOBJ PRED 'thesis'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'a'
TYPE INDEFINITE

COP FORM 'is'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.93. The functional structure for ‘Writing a thesis is fun.’

When the head of a present-participle clause is an intransitive verb without adverbials, or a

transitive verb without its object, the Stanford Parser parses the head as a noun and the

dependency type “csubj” is not used. For example, in the figure below, the word ‘writing’ has

no direct object; hence it is analyzed as a noun that depends on the word ‘fun’ with the

dependency type “nsubj.”

ROOT

NSUBJ PUNCT

COP

.-4Writing-1

ROOT

fun-3

is-2

180

Figure 5.94. The typed-dependency tree for ‘Writing is fun.’ in the Stanford Parser output

PRED 'fun<NSUBJ>'

NSUBJ PRED 'writing'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

COP FORM 'is'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.95. The functional structure for ‘Writing is fun.’

In the figure below, the verb ‘Running’ is modified by a prepositional phrase, and it is analyzed

as a verb that depends on ‘fun’ with the dependency type “csubj.”

ROOT

CSUBJ PUNCT

COP

PREP

POJB

DET

.-7Running-1

morning-4

the-3

ROOT

fun-6

in-2

is-5

Figure 5.96. The typed-dependency tree for ‘Running in the morning is fun.’

181

PRED 'fun<CSUBJ>'

CSUBJ PRED 'running<NSUBJ,PREP>'

NSUBJ PRED 'PRO'

TYPE ZERO

PREP PRED 'in<POBJ>'

POBJ PRED 'morning'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL
DET FORM 'the'

TYPE DEFINITE

COP FORM 'is'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.97. The functional structure for ‘Running in the morning is fun.’

When, on the other hand, there is no element modifying an intransitive present participle that

depends on a verbal predicate and the present participle precedes the verbal predicate, the

Stanford Parser analyses this participle as a nominal subject; hence, the dependency type is

“nsubj.”

ROOT

NSUBJ PUNCT

COP

.-4Running-1

ROOT

fun-3

is-2

Figure 5.98. The typed-dependency tree for ‘Running is fun.’

182

PRED 'fun<NSUBJ>'

NSUBJ PRED 'running'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

COP FORM 'is'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.99. The functional structure for ‘Running is fun.’

It must be pointed out that the Stanford Parser’s parsing policy on present-participle subjects

shown above is not linguistically well-motivated at present. A present-participle subject with

no other words dependent on it (e.g., ‘Running’ in the example just above) can be considered to

be a clausal head, and therefore it can be analysed to depend on the main predicate (‘fun’ in the

same example) with the dependency type “csubj.” Actually, with respect to Criterion C132,

there seems to be no reason to distinguish nominal subjects and clausal subjects, because the

semantic relationships which are implied by both of these dependency subtypes seem to be the

same, and therefore we may only need the dependency type ‘subj’ for both of the cases.

However, this parsing policy (labeling all of them as “subj”) may oversimplify the difference

between the semantics of nominal subjects and clausal subjects, even though it is yet unclear to

us. In this study, the distinction between “nsubj” and “csubj” is retained when parsing the

sentences in different corpora (discussed in Chapter 7), for the sake of avoiding

oversimplification. This policy does not deny the fact that the distinction of nominal subjects

32
Criterion C1 states that a particular dependency type can imply a certain kind of semantic relationship between

two words, and this semantic relationship is different from what is implied by another dependency type. See

Section 2.4.3.3.

183

and clausal subjects by the Stanford Parser needs linguistic motivation, which is one of the issues

to be addressed in future research.

Nsubjpass - passive nominal subject

This dependency type is a subtype of “subj” whereby the dependency head is a subject-taking

element, the dependent is the nominal subject of the head, and the sentence is produced in the

passive voice. The figure below presents an example of this dependency type (for the

functional structure for the same sentence, see Figure 5.14).

Root

PUNCT

NSUBJPASS .-9

Aux PREP

Aux Auxpass

could-3 have-4 by-7

DET

POBJ

Sarah-8

ROOT-0

read-6

book-2

been-5

This-1

Figure 5.100. The typed-dependency tree for ‘This could have been read by Sarah.’

De Marneffe & Manning (2012) do not specify the reason for distinguishing between the type

“nsubj” and “nsubjpass.” As is the distinction between “nsubj” and “csubj” mentioned in the

previous subsection, we need to have a linguistic motivation to distinguish “nsubj” and

“nsubjpass,” with respect to Criterion C. We can infer that the different type names were

intended to reflect the different meanings of active nominal subjects (i.e., the agent of the action)

184

and passive nominal subjects (i.e., the theme of the action).

Csubjpass - passive clausal subject

This dependency type is a subtype of “subj” and describes cases where the dependency head is a

subject-taking element, the dependent is the clausal subject of the head, and the sentence is

produced in passive voice. The figure below presents an example of this dependency type. In

the figure below, the verb ‘lied’ depends on the verb ‘suspected’ with the dependency type

“csubjpass.”

Root

CSUBJPASS PREP PUNCT

AUX

by-6

NSUBJ

everyone-7

POBJ

.-8

COMPLM

That-1 Sarah-2

ROOT-0

suspected-5

lied-3 was-4

Figure 5.101. The typed-dependency tree for ‘That Sarah lied was suspected by everyone.’

185

PRED 'suspect<CSUBJPASS>'

CSUBJPASS PRED 'lie<NSUBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

COMPLM FORM 'that'

AUXPASS FORM 'was'

TENSE PAST

VOICE PASSIVE

PREP PRED 'by<POBJ>'

POBJ PRED 'PRO'

FORM 'everyone'

TYPE PERSONAL

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.102. The functional structure for ‘That Sarah lied was suspected by everyone.’

Cc - coordination

Coordination is “the relation between an element of a conjunct and the coordinating conjunction

word of the conjunct” (de Marneffe & Manning 2012, p.4). Coordinating conjunction words

include ‘and’ and ‘or.’ An example of “cc” is shown in the example presented below for

“conj.”

Conj - conjuncts

This dependency type ‘is the relation between two elements connected by a coordinating

conjunction’ (de Marneffe & Manning 2012, p.4). In Stanford Parser output, conjuncts are

treated asymmetrically; in other words, one conjunct depends on the other. The figure below

presents an example of this type. In the phrase ‘this book and that book,’ the second ‘book’

186

(indicated as ‘book-7’ in the typed-dependency tree below) depends on the first ‘book’ (indicated

as ‘book-5’ in the typed-dependency tree below).

Root

NSUBJ

Aux DOBJ PUNCT

DET CONJ

CC

DET

that-6

book-7

ROOT-0

read-3

Sarah-1 has-2 book-5

and-6this-4

.-8

Figure 5.103. The asymmetric typed-dependency tree for ‘Sarah has read this book and that

book.’

The correct typed-dependency tree, however, has a symmetrical structure in which both

conjuncts depend on the same head with the same dependency type. As a result, the typed

dependency “conj” should be replaced by other typed dependencies. For example, in the above

tree, “conj” should be replaced by “dobj,” as shown in the figure below.

187

PUNCT .-9

NSUBJ

CC

Sarah-1 AUX DOBJ

and-6 DET

has-2

DET that-7

book-8

ROOT

read-3

book-5

this-4

DOBJ

Figure 5.104. The symmetric typed-dependency tree for ‘Sarah has read this book and that book.’

The typed-dependency tree above is equivalent to the functional structure below. The presence

of ‘and’ ensures that the two direct objects do not result in a violation of the coherence constraint

(see Section 3.2.2). The curled bracket around the local functional structures for ‘this book’ and

‘that book’ indicates that both of these local functional structures are the values of the one

attribute “dobj.”

188

PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

CC 'and'

PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'that'

TYPE DEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.105. The functional structure for ‘Sarah has read this book and that book.’

If one of the conjuncts serves as the root of the sentence, so does the other conjunct, and in that

case, both depend on the abstract element “ROOT,” as shown in Figures 5.106 and 5.107.

ROOT ROOT

NSUBJ PUNCT

DET .-8

Sarah-1 COP and-5

DET

is-2

best-4 brightest-7

the-3

Root-0

CC

the-6

189

Figure 5.106. The typed-dependency tree for ‘Sarah is the best and the brightest.’

Root-0

ROOT ROOT

CC

and-5

NSUBJ PUNCT

Sarah-1 AUX DOBJ DOBJ .-9

DET DET

read-3 written-6

book-8book-5

this-4 that-7

has-2

Figure 5.107. The typed-dependency tree for ‘Sarah has read this book and written this book.’

This study does not follow de Marneffe and Manning’s (2011) treatment of coordination in

which conjuncts are aligned asymmetrically whereby the first conjunct is the head and the

second conjunct is its dependent, and this second conjunct is another head and the third one is its

dependent, and so on. This study does not use the option in the Stanford Parser for output in

which the first two conjuncts are propagated so that they are aligned symmetrically to depend on

one single head (see Section 5.4). This methodological decision was made because this option

does not allow the third conjunct and later conjuncts to be propagated; therefore the output does

not preserve tree structure (de Marneffe & Manning 2012).

In this study, the asymmetrical conjunct alignment in the Stanford Parser output is

automatically fixed to have symmetrical conjunct alignment. Along with this adjustment, the

typed dependency “conj” is replaced by another typed dependency according to the syntactic

environment of the “conj” in the original parsed output. For example, when the first conjunct

in the original Stanford Parser output is a direct object of a verb, then all the following conjuncts

190

that depend on the first are adjusted to depend on the verb as direct objects. However, not all

“conj” are replaced in this way, because the dependency between conjuncts and a preconjunct

must be indicated. This issue will be discussed in more detail later in Section 5.3.4.

Expl - expletives

An existential ‘there’ depends on the head of a clause. The figure below is the

typed-dependency tree for an example sentence in which an existential ‘there’ depends on ‘are’

with the type “expl.” The noun ‘books’ depends on ‘are’ with the type “nsubj.”

PUNCT .-8

EXPL PREP

NSUBJ

Root-0

are-2

on-5

desk-7

There-1 books-4

some-3

the-6

DET POBJ

DET

Figure 5.108. The typed-dependency tree for ‘There are some books on the desk.’

191

PRED 'be<NSUBJ,PREP>

EXPL FORM 'there'

NSUBJ PRED 'books'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

DET FORM 'some'

TYPE INDEFINITE

PREP PRED 'on<POBJ>'

POBJ PRED 'desk'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.109. The functional structure for ‘There are some books on the desk.’

When an existential ‘there’ depends on a verb ‘seem,’ and ‘seem’ is followed by ‘to be noun’

construction, then the noun depends on ‘seem’ with the type “xcomp.” The subject of this open

complement is absent in the sentence.

192

PUNCT .-10

EXPL PREP

XCOMP

AUX

COP DET

to-3 be-4 some-5

the-8

POBJ

DET

Root-0

seems-2

on-7

desk-9

There-1 books-6

Figure 5.110. The typed-dependency tree for ‘There seems to be some books on the desk.’

PRED 'seem<NSUBJ,PREP>'

EXPL FORM 'there'

XCOMP PRED 'books'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

DET FORM 'some'

TYPE INDEFINITE

AUX FORM 'to'

COP FORM 'be'

PREP PRED 'on<POBJ>'

POBJ PRED 'desk'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.111. the functional structure for ‘There seems to be some books on the table.’

193

The dependency type “expl” follows Mel’čuk’s criteria for SSyntRel. First, the head of a clause

and existential ‘there’ form a prosodic unit (e.g., ‘there are’), and the expletive precedes the

copula.

Second, the passive valence of the phrase ‘there are’ in the example above is determined by

the proposition ‘are.’ According to Mel’čuk’s Criterion B1, the copula is the head and the

existential ‘there’ is the dependent.

Third, this dependency type implies a unique semantic relationship between the governor and

its dependent, and the prototypical dependent of this type is an existential ‘there.’ Therefore,

this dependency type follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3.

5.3.4 Mod - modifiers

The dependency type “mod” describes cases in which the dependent modifies the head. This

dependency type has 25 subcategories, which are discussed in turn below.

Neg – negation modifier

The dependency type “neg” is a subtype of “mod” and represents cases where the dependent is a

negation modifier, as shown in Figure 5.112 and Figure 5.113.

PUNCT .-6

NSUBJ AUX NEG DOBJ

does-2 not-3

Root-0

like-4

Sarah-1 David-5

194

Figure 5.112. The typed-dependency tree for ‘Sarah does not like David.’

PRED 'like<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

NEG FORM 'not'

DOBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

AUX FORM 'does'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.113. The functional structure for ‘Sarah does not like David.’

PUNCT .-6

NSUBJ AUX NEG ADVMOD

has-2 never-3

Root-0

gone-4

Sarah-1 there-5

Figure 5.114. The typed-dependency tree for ‘Sarah has never gone there.’

195

PRED 'go<NSUBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

NEG FORM 'never'

ADVMOD PRED 'there'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.115. The functional structure for ‘Sarah has never gone there.”

Dependencies between predicates and negative pronouns are not typed as “neg,” because

negative pronouns are not negative modifiers, but rather arguments of the predicates.

PUNCT .-6

NSUBJ AUX DOBJ

book-5

this-4

Root-0

read-3

Nobody-1 has-2

Figure 5.116. The typed-dependency tree for ‘Nobody has read this book.’

196

PUNCT .-6

NSUBJ AUX DOBJ

nothing-4

Root-0

read-3

Sarah-1 has-2

Figure 5.117. The typed-dependency tree for ‘Sarah has read nothing.’

 There are some instances in which the dependency type “neg” does not follow Mel’čuk’s

original Criterion A for SSyntRel. The linear order of the words in this dependency type is such

that the negative modifier precedes the verb or adjective; however, the head of a clause and the

negation modifier do not constitute a prosodic unit (e.g., ‘not like’ in the example above).

However, this type follows the revised Criterion A, proposed in Section 2.4.3.1, because the

verb in the main clause and the subordinate verb form a semantic unit in which the semantic

meaning of the verb is negated by the negative modifier.

 This dependency type follows Mel’čuk’s Criterion B1, because the passive valence of the

phrase is determined by the verb. For example, the passive valence of the phrase ‘not like’ is

determined by the verb ‘like.’ According to Mel’čuk’s Criterion B1, the verb is the head and

the negative modifier is the dependent.

This dependency type also follows the revised Criteria C1 and C2, proposed in Section

2.4.3.3, because it implies a unique semantic relationship between the governor and its

dependent (i.e., the dependent negates the content of its governor), and the prototypical

dependent of this dependency type is a negative modifier.

197

Det - determiner

The dependency type “det” is a subtype of “mod” and represents cases where the head is a noun

and the dependent is a determiner. There are four types of determiners in English:

definite/indefinite articles, demonstratives, interrogatives, and relatives.

English definite articles agree with the nouns they modify in terms of number (see Section

3.2.2 on the consistency constraint on functional structures), as shown in the following example.

PUNCT .-6

NSUBJ AUX DOBJ

books-5

DET

these-4

Root-0

read-3

Sarah-1 has-2

Figure 5.118. The typed-dependency tree for ‘Sarah has read these books.’

198

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'books'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

DET FORM 'these'

TYPE DEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.119. The functional structure for ‘Sarah has read these books.’

In addition, the Stanford Parser analyzes the interrogative adjective ‘which’ as a determiner, as

shown in the tree below.

PUNCT ?-6

DOBJ AUX NSUBJ

Sara-4

DET

Root-0

read-5

book-2 has-3

Which-1

Figure 5.120. The typed-dependency tree for ‘Which book has Sarah read?’

199

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'which'

TYPE INTERROGATIVE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '?'

ROOT STMT-TYPE INTERROGATIVE

Figure 5.121. The functional structure for ‘Which book has Sarah read?’

The Stanford parser also analyzes compound relative pronouns as determiners. The

dependency type “rcmod” in the tree below will be explained later in this section.

PUNCT .-8

NSUBJ AUX DOBJ

books-5

DET

whatever-4 has-7

NSUBJ

David-6

Root-0

read-3

Sarah-1 will-2

RCMOD

200

Figure 5.122. The typed-dependency tree for ‘Sarah will read whatever books David has.’

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'books i'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

DET FORM 'whatever'

TYPE RELATIVE

RCMOD PRED 'have<NSUBJ, DOBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DOBJ PRED 'PRO i'

TYPE ZERO

TENSE PRESENT

AUX FORM 'will'

TENSE FUTURE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.123. The functional structure for ‘Sarah will read whatever books David has.’

 This dependency type does not always follow Mel’čuk’s original Criterion A for SSyntRel

because a noun and its determiner do not always constitute a prosodic unit (e.g., ‘the latest

book’). However, this dependency type has a fixed linear order where the dependent always

precedes the head and they form a semantic unit. In this way, this type follows the revised

201

Criterion A discussed in Section 2.4.3.1.

 This dependency type clearly follows Mel’čuk’s Criterion B1 because the noun determines

the passive valence of the phrase. For example, the dependency relation between ‘book’ and

‘this’ in the sentence ‘Sarah has read this book’ shows that ‘this’ depends on the noun ‘book’

because this ‘book’ is a dependent on another word, namely ‘read.’

In addition, this dependency type follows the revised Criterion C because it implies a certain

kind of semantic relationship between the governor and the dependent, i.e., the dependent adds

definite or indefinite information to the semantic meaning of the governor. This semantic

relationship cannot be expressed by any other dependency type, and the prototypical dependent

of this dependency type is a determiner. Therefore, this dependency type follows the revised

Criteria C1 and C2 proposed in Section 2.4.3.3.

Prep - prepositional modifier

The dependency type “prep” is a subtype of “mod” and represents cases where the head is a noun

or a verb and the dependent is a preposition. The fact that the head of this dependency can be

either a noun or a verb results in ambiguous syntactic analyses for the same sentence. Let us

consider the sentence ‘Sarah has read the book in the room.’ One analysis of this sentence is

such that the prepositional phrase depends on the noun phrase preceding it; the

typed-dependency tree as a result of this analysis is shown in the figure below.

202

PUNCT .-9

NSUBJ AUX DOBJ

book-5

DET

the-4 in-6

POBJ

room-8

DET

the-7

Root-0

read-3

Sarah-1 has-2

PREP

Figure 5.124. A typed-dependency tree for ‘Sarah has read the book in the room.’ (according to

the default Stanford Parser output)

The typed-dependency tree above is equivalent to the functional structure below.

203

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

PREP PRED 'in<POBJ>'

POBJ PRED 'room'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.125. The functional structure for ‘Sarah has read the book in the room.’ equivalent to

the typed-dependency tree in Figure 5.124

Another analysis would be that the prepositional phrase depends on the main verb of the

sentence; the typed-dependency tree as a result of this analysis is shown in the figure below.

204

PUNCT .-9

NSUBJ AUX DOBJ PREP

book-5 in-6

DET POBJ

the-4 room-8

DET

the-7

Root-0

read-3

Sarah-1 has-2

Figure 5.126. Another typed-dependency tree for ‘Sarah has read the book in the room.’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

PREP PRED 'in<POBJ>'

POBJ PRED 'room'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

205

Figure 5.127. The functional structure for ‘Sarah has read the book in the room.’ equivalent to

the typed-dependency tree in Figure 5.126

ROOT

NSUBJ PREP PUNCT

.-8

POBJ

PREP

POBJ

POSS

office-7

her-6

Root-0

is-2

Sarah-1 at-3

work-4

in-5

Figure 5.128. The typed-dependency tree for ‘Sarah is at work in her office.’ (according to the

default Stanford Parser output)

206

PRED 'be<NSUBJ, PREP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

PREP PRED 'at<POBJ>'

POBJ PRED 'work'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

PREP PRED 'in<POBJ>'

POBJ PRED 'office'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

POSS FORM 'her'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.129. The functional structure for ‘Sarah is at work in her office.’ equivalent to the

typed-dependency tree in Figure 5.128

ROOT

PUNCT

NSUBJ PREP

PREP .-8

POBJ

POBJ

POSS

her-6

Root-0

is-2

Sarah-1 at-3

in-5

work-4

office-7

Figure 5.130. Another typed-dependency tree for ‘Sarah is at work in her office.’

207

PRED 'be<NSUBJ, PREP>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

PREP PRED 'at<POBJ>'

POBJ PRED 'work'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

PREP PRED 'in<POBJ>'

POBJ PRED 'office'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

POSS FORM 'her'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.131. The functional structure for ‘Sarah is at work in her office.’ equivalent to the

typed-dependency tree in Figure 5.130

The Stanford Parser yields only one parsed output for each input sentence by default, and one

option (-printPCFGkBest n) allows it to yield n-best parses. However, the Stanford Parser does

not determine which parse is the best fit for the context of a given sentence. Manually

determining which parse is best will be a difficult task for researchers with large-scale corpora.

In addition, it is impossible to determine which is the best parse if there is no context for an input

sentence. Therefore, when sentences are parsed by the Stanford Parser in this study, the default

setting is used in order to obtain only one parse for each sentence.

The dependency type “prep” does not follow Mel’čuk’s Criterion A for SSyntRel because a

preposition and the word on which it depends do not constitute a prosodic unit (e.g., ‘book of’ or

208

‘know about’), and they are not aligned in a fixed word order in sentences whose heads are verbs.

The prepositional phrase dependent on a verb can precede or follow the verb (e.g., ‘Sarah

teaches English on Tuesday’ or ‘On Tuesday, Sarah teaches English’). However, this type

forms a semantic unit, and therefore follows the revised Criterion A proposed in Section 2.4.3.1.

This dependency type also follows Mel’čuk’s Criterion B. In a dependency between a noun

and a preposition, the noun determines the passive valence of the phrase. For example, the

dependency relation between ‘book’ and ‘of’ in the sentence ‘Sarah has read the latest book of

linguistics carefully’ shows that the preposition ‘of’ depends on the noun ‘book,’ which can be

subordinated to the verb ‘read.’ The same logic applies for dependencies between verbs and

prepositions.

In addition, this dependency type follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between a preposition and the word it

depends on, and this semantic relationship cannot be expressed by any other dependency type.

Moreover, the prototypical dependent of this type is a preposition.

Prepc – prepositional clausal modifier

The dependency type “prepc” is a subtype of “mod” and represents cases where the head is an

adjective, a noun or a verb and the dependent is a clause introduced by a preposition. This

dependency type is used in the “collapsed” output style (See Section 5.4). Each instance of

“prepc” is subtyped by the name of the preposition.

The figures below are examples of a typed-dependency tree and its corresponding functional

structure with the dependency type “prepc” where the head is a verb and its tail is another verb.

In the example below, the head of this type in this tree is a verb ‘read,’ and its tail is ‘using.’

209

The subject of ‘using’ is a zero pronoun that refers to the subject of ‘read,’ represented as a PRO

in the functional structure.

ROOT

PUNCT .-9

NSUBJ PREPC_WITHOUT

AUX DOBJ

DOBJ

Sarah-1 has-2 book-5 using-7

dictionaries-8the-4

Root-0

read-3

Figure 5.132. The typed-dependency tree for ‘Sarah has read the book without using

dictionaries.’

210

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM this

TYPE DEFINITE

PREPC_ PRED 'use<NSUBJ,DOBJ>'

WITHOUT NSUBJ PRED 'PRO'

TYPE ZERO

DOBJ PRED 'dictionaries'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.133. The functional structure for ‘Sarah has read this book without using dictionaries.’

The figures below are examples of a typed-dependency tree and its corresponding functional

structure with the dependency type “prepc” where the head is a noun and its tail is a verb. In

the example below, the head of this type in this tree is a noun ‘difficulty’ and its tail is

‘understanding.’33

33
As for the sentence “Sarah had no difficulty understanding the book.”, the word “understanding” depends on the

noun “difficulty” with the dependency type “partmod” which will be defined later in this section.

211

ROOT

NSUBJ PUNCT

DOBJ

DET PREPC_IN

DOBJ

DET

no-3 understanding-6

book-8

the-7

Root-0

had-2

difficulty-4Sarah-1 .-9

Figure 5.134. The typed-dependency tree for ‘Sarah had no difficulty in understanding the book.’

212

PRED 'have<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'difficulty'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM no

TYPE NEGATIVE

PREPC_ PRED 'understand<NSUBJ,DOBJ>'

IN NSUBJ PRED 'PRO'

TYPE ZERO

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DET FORM the

TYPE DEFINITE

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.135. The functional structure for ‘Sarah had no difficulty in understanding the book.’

The next figures below are an example of a typed-dependency tree and its corresponding

functional structure with the dependency type “prepc” where the head is an adjective and its tail

is a verb. In the example below, the head is ‘responsible’ and its tail is ‘writing.’

213

ROOT

PUNCT .-8

NSUBJ PREPC_FOR

AUX

DOBJ

DET

a-6

Root-0

responsible-3

Sarah-1 is-2 writing-5

report-7

Figure 5.136. The typed-dependency tree for ‘Sarah is responsible for writing a report.’

PRED 'responsible<NSUBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

AUX FORM 'is'

TENSE PRESENT

PREPC_ PRED 'write<NSUBJ,DOBJ>'

FOR NSUBJ PRED 'PRO'

TYPE ZERO

DOBJ PRED 'report'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'a'

TYPE INDEFINITE

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.137. The functional structure for ‘Sarah is responsible for writing a report.’

The dependency type “prepc” does not follow Mel’čuk’s Criterion A for SSyntRel because the

214

head and its tail do not form a prosodic unit (e.g., read … using, difficulty … understanding,

interested … studying). Moreover, they do not necessarily have a fixed order in sentences; for

example, it is acceptable to say ‘Without using a dictionary, Sarah has read the book.,’ but not ‘In

understanding the book, Sarah had no difficulty.’ nor ‘In studying linguistics, Sarah is interested.’

However, this type forms a semantic unit, thus following the revised Criterion A proposed in

Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B because the head determines the passive

valence of the phrase. For example, for the dependency relation between ‘read’ and ‘using’ in

the sentence ‘Sarah has read the book without using a dictionary,’ ‘using’ depends on the verb

‘read,’ which has the ability to be subordinated to the root of the sentence.

Additionally, this dependency type follows the revised Criterion C proposed in Section

2.4.3.3, because it implies a certain kind of semantic relationship between the head and its tail,

and this semantic relationship cannot be expressed by any other dependency type. The

prototypical dependent of this dependency type is a verb.

Amod - adjectival modifier

The dependency type “amod” is a subtype of “mod” and describes cases where the head is a

noun and the dependent is an attributive adjective. In the figures below, the word ‘interesting’

depends on ‘book’ with the type ‘amod.’ In other words, the word ‘interesting’ modifies ‘book’

as an adjective.

215

PUNCT .-7

NSUBJ AUX DOBJ

book-6

DET

an-4 interesting-5

Root-0

read-3

Sarah-1 has-2

AMOD

Figure 5.138. The typed-dependency tree for ‘Sarah has read an interesting book.’

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'an'

TYPE INDEFINITE

AMOD PRED 'interesting'

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.139. The functional structure for ‘Sarah has read an interesting book.’

Attributive adjectives can follow ‘something,’ ‘somebody,’ or ‘someone.’ The word ‘interesting’

depends on the word ‘something’ with the dependency type “amod.”

216

PUNCT .-6

NSUBJ AUX DOBJ

something-4

AMOD

interesting-5

Root-0

read-3

Sarah-1 has-2

Figure 5.140. The typed-dependency tree for ‘Sarah has read something interesting.’

When an attributive adjective modifies ‘something,’ ‘someone’ or ‘somebody’ that is the object

of a predicate, the Stanford Parser incorrectly analyzes the adjective as an open complement that

takes ‘something’ (in this example) as its nominal subject.

PUNCT .-6

NSUBJ AUX XCOMP

interesting-5

NSUBJ

something-4

Root-0

read-3

Sarah-1 has-2

Figure 5.141. The incorrect typed-dependency tree for ‘Sarah has read something interesting’ in

the Stanford Parser output

 The dependency type “amod” follows Mel’čuk’s Criterion A for SSyntRel because a noun

217

and its adjective modifier form a prosodic unit (e.g., ‘latest book’), and they have a fixed order in

sentences (attributive adjectives precede the nouns on which they depend, and they follow words

such as ‘something,’ ‘someone,’ or ‘somebody’). Moreover, this type forms a semantic unit,

thus following the revised Criterion A proposed in Section 2.4.3.1.

 This dependency type also follows Mel’čuk’s Criterion B because the noun determines the

passive valence of the phrase. For example, for the dependency relation between ‘book’ and

‘latest’ in the sentence ‘Sarah has read the latest book of linguistics carefully,’ it is ‘latest’ that

depends on the noun ‘book,’ which has the ability to be subordinated to the verb ‘read.’

Additionally, this dependency type follows the revised Criterion C proposed in Section

2.4.3.3, because it implies a certain kind of semantic relationship between a noun and an

adjective, and this semantic relationship cannot be expressed by any other dependency type.

The prototypical dependent of this dependency type is an adjective.

Advmod - adverbial modifier

The dependency type “advmod” is a subtype of “mod” and represents cases where the dependent

is an adverb.

ROOT

PUNCT .-10

NSUBJ ADVMOD

AUX DOBJ

DET PREP

AMOD

POBJ

carefully-9

of-7

linguistics-8

Root-0

read-3

Sarah-1 has-2 book-6

the-4 latest-5

218

Figure 5.142. The typed-dependency tree for ‘Sarah has read the latest book of linguistics

carefully.’

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

AMOD PRED 'latest'

PREP PRED 'of<POBJ>'

POBJ PRED

PERSON

NUMBER

GENDER NEUTRAL

ADVMOD PRED 'carefully'

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

SINGULAR

'linguistics'

3RD

Figure 5.143. The functional structure for ‘Sarah has read the latest book of linguistics carefully.’

The difference between sentential adverbs and verbal adverbs are not represented in the output of

the Stanford Parser. For example, in both Figure 5.144 and Figure 5.145, the adverb ‘Naturally’

depends on the verb ‘speaks.’

219

ROOT

PUNCT .-6

ADVMOD NSUBJ DOBJ

PUNCT

Russian-5

Root-0

speaks-3

Naturally-1 Sarah-4

,-2

Figure 5.144. The typed-dependency tree for ‘Naturally, Sarah speaks Russian’ in the output of

the Stanford Parser.

ROOT

PUNCT .-5

NSUBJ DOBJ ADVMOD

naturally-4

Root-0

speaks-2

Sarah-1 Russian-3

Figure 5.145. The typed-dependency tree for ‘Sarah speaks Russian naturally’ in the output of the

Stanford Parser.

It is possible to consider sentential adverbials as being dependent on Root, so that it can modify

the whole sentence. In the typed-dependency tree below, the adverb ‘Naturally’ depends on

Root, modifying the whole sentence.

220

ADVMOD ROOT

PUNCT

,-2

NSUBJ DOBJ PUNCT

Sarah-4 Russian-5 .-6

Root-0

Naturally-1 speaks-3

Figure 5.146. A possible typed-dependency tree for ‘Naturally, Sarah speaks Russian.’

PRED 'speak<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'Russian'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

PUNCT FORM ','

ADVMOD PRED 'naturally'

Figure 5.147. The functional structure for ‘Naturally, Sarah speaks Russian.’

The dependency type “advmod” does not follow Mel’čuk’s Criterion A, because a verb and its

adverb modifier do not always constitute a prosodic unit (e.g., ‘read the book carefully’), and the

linear order of an adverb and a verb is not fixed. However, this dependency type follows the

revised Criterion A because a verb and its adverb modifier form a semantic unit.

221

 This dependency type follows Mel’čuk’s Criterion B because the verb determines the passive

valence of the phrase. For example, the dependency relation between ‘read’ and ‘carefully’ in

the sentence ‘Sarah has read the latest book of linguistics carefully,’ shows that ‘carefully’

depends on the verb ‘read,’ which can be subordinated to the root node.

The dependency type “advmod” also follows the revised Criterion C proposed in Section

2.4.3.3, because it implies a certain kind of semantic relationship between a verb and an adverb,

and this semantic relationship cannot be expressed by any other dependency type. The

prototypical dependent of this dependency type is an adverb.

Poss (possession modifier) and Possessive (possessive modifier)

The dependency type “poss” is a subtype of “mod” whereby the dependent is a possession

modifier, and the dependency type “possessive” is also a subtype of “mod” and describes cases

where the dependent is a possessive modifier ‘’s.’ The example sentences of “poss” and

“possessive” are shown below.

NSUBJ PUNCT

DOBJ

POSS

POSSESSIVE

Root-0

likes-2

books-5

Sarah-3

's-4

David-1 .-6

Figure 5.148. The typed-dependency tree for ‘David likes Sarah’s books.’

222

PRED 'like<NSUBJ,DOBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'books'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

POSS PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

POSSESSIVE FORM 's'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.149. The functional structure for ‘David likes Sarah’s books.’

NSUBJ PUNCT

DOBJ

Root-0

likes-2

books-4

her-3

David-1 .-5

POSS

Figure 5.150. The typed-dependency tree for ‘David likes her books.’

223

PRED 'like<NSUBJ,DOBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'books'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

POSS PRED 'PRO'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

FORM 'her'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.151. The functional structure for ‘David likes her books.’

A noun with the possessive modifier ‘’s’ can function as a possessive pronoun. For example,

‘Sarah’s’ in the typed-dependency tree below refers to something Sarah possesses. The

Stanford Parser yields the following typed-dependency tree in which the possessor is the direct

object of the verb.

NSUBJ PUNCT

DOBJ

David-1 .-5

POSESSIVE

Root-0

likes-2

Sarah-3

's-4

Figure 5.152. The typed-dependency tree for ‘David likes Sarah’s.’

224

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'like<NSUBJ,DOBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

POSSESSIVE FORM 's'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.153. The functional structure for ‘David likes Sarah’s.’

Another possible functional structure is that the phrase ‘Sarah’s’ depends on a zero pronoun

which refers to the thing Sarah possess.

PRED 'like<NSUBJ,DOBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'PRO'

TYPE ZERO

POSS PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

POSSESSIVE FORM 's'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.154. Another functional structure for ‘David likes Sarah’s.’

225

Notice, however, that the functional structure above is not equivalent to the typed-dependency

tree that the Stanford Parser yields, because the Stanford Parser output does not contain zero

pronouns. Therefore, this study does not apply the zero-pronoun analysis for nouns with the

possessive modifier ‘’s’ functioning as a possessive pronoun, as shown in the functional structure

above.

Possessive absolute pronouns are not categorized as dependents with the type “poss” or

“possessive”, because they are directly dependent on a predicate as arguments, as shown below.

The number and gender of the possessee (the thing that is possessed) are underspecified, hence

not included in the functional structure.

NSUBJ PUNCT

DOBJ

David-1 .-4

Root-0

likes-2

hers-3

Figure 5.155. The typed-dependency tree for ‘David likes hers.’

PRED 'like<NSUBJ,DOBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'PRO'

PERSON 3RD

FORM 'hers'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-T YPE DECLARATIVE

Figure 5.156. The functional structure for ‘David likes hers.’

226

 The dependency type “poss” does not completely follow Mel’čuk’s Criterion A. The head

and the dependent have a fixed linear order (the possessive modifier precedes the noun it

modifies); however they do not constitute a prosodic unit (e.g., ‘Sarah book’ in the example

sentence in Figure 5.148 and Figure 5.149). On the other hand, they do form a semantic unit,

and thus follow the revised Criterion A proposed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s criterion B. The noun, not its possession modifier,

determines the passive valence of the phrase. For example, the dependency relation between

‘Sarah’ and ‘books’ in the sentence ‘David likes Sarah’s books’ shows that ‘Sarah’ depends on

the noun ‘books,’ which can be subordinated to the verb ‘likes.’

The dependency type “poss” also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between nouns, i.e., possession. This

semantic relationship cannot be expressed by any other dependency type, and the prototypical

dependent of this dependency type is a noun with a possessive modifier.

 The dependency type “possessive” follows Mel’čuk’s Criterion A because a noun and its

possessive modifier constitute a prosodic unit (e.g., ‘Sarah’s’), and they have a fixed linear order

(the noun precedes the possessive modifier).

 In addition, this dependency type follows Mel’čuk’s Criterion B, because the noun

determines the passive valence of the phrase. For example, the dependency relation between

‘Sarah’ and ‘’s’ in the sentence ‘David likes Sarah’s books’ illustrates that ‘’s’ depends on the

noun ‘Sarah,’ which can be subordinated to the noun ‘books.’

The dependency type “possessive” also follows the Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between a noun and its possessive

227

modifier, and this semantic relationship cannot be expressed by any other dependency type.

Moreover, the prototypical dependent of this dependency type is the possessive modifier.

Infmod - infinitival modifier

The dependency type “infmod” is a subtype of “mod” whereby the head is a noun and the

dependent is an infinitival modifier. The preposition ‘to’ is analyzed as an auxiliary, and the

dependency between the head verb and the preposition ‘to’ is typed as “aux.” An example of

this type is presented in the typed-dependency tree below, in which the word ‘say’ modifies the

word ‘something’ as an infinitival modifier. In other words, the word ‘say’ in this figure

depends on the word ‘something’ with the dependency type “infmod.”

NSUBJ PUNCT

INFMOD

AUX

Sarah-1 something-3

say-5

to-4

DOBJ

Root-0

has-2

.-6

Figure 5.157. The typed-dependency tree for ‘Sarah has something to say.’

The typed-dependency tree above is equivalent to the functional structure below. The same

indices ‘i’ on ‘Sarah’ and on the zero pronoun as the NSUBJ of the verb ‘say’ indicate that this

zero pronoun refers to ‘Sarah.’ The same indices ‘j’ on ‘something’ and on the zero pronoun as

228

the DOBJ of the verb ‘say’ indicate that this zero pronoun refers to ‘something.’

PRED 'have<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarahi'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'PRO'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

FORM 'somethingj'

INFMOD PRED 'say<NSUBJ,DOBJ>'

NSUBJ PRED 'PROi'

TYPE ZERO

DOBJ PRED 'PROj'

TYPE ZERO

AUX FORM 'to'

TENSE PRESENT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.158. The functional structure for ‘Sarah has something to say.’

Infinitival modifiers can modify interrogative pronouns such as ‘what,’ ‘where’ to constitute

phrases such as ‘what to do’ or ‘where to go.’ In these cases, the infinitival modifier depends

on the interrogative pronoun with the dependency type “infmod”, as shown in Figure 5.159 and

Figure 5.161. These typed-dependency trees are equivalent to the functional structures in

Figure 5.160 and Figure 5.162, respectively.

229

NSUBJ PUNCT

INFMOD

AUX

Root-0

knows-2

.-6Sarah-1 what-3

do-5

to-4

DOBJ

Figure 5.159. The typed-dependency tree for ‘Sarah knows what to do.’

PRED 'know<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarahi'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'PROj'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

FORM 'what'

INFMOD PRED 'do<NSUBJ,DOBJ>'

NSUBJ PRED 'PROi'

TYPE ZERO

DOBJ PRED 'PROj'

TYPE ZERO

AUX FORM 'to'

TENSE PRESENT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.160. The functional structure for ‘Sarah knows what to do.’

230

NSUBJ PUNCT

INFMOD

AUX

go-5

to-4

DOBJ

Root-0

knows-2

.-6Sarah-1 where-3

Figure 5.161. The typed-dependency tree for ‘Sarah knows where to go.’

PRED 'know<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarahi'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'PROj'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

FORM 'where'

INFMOD PRED 'go<NSUBJ,PREP>'

NSUBJ PRED 'PROi'

TYPE ZERO

PREP PRED 'PRO j'

TYPE ZERO

AUX FORM 'to'

TENSE PRESENT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.162. The functional structure for ‘Sarah knows where to go.’

231

The Stanford Parser does not parse infinitival modifiers correctly when they depend on

interrogative pronouns. As the figure below shows, the infinitival modifier ‘do’ is incorrectly

parsed to depend on ‘know’ with the dependency type “ccomp,” and the interrogative pronoun

‘what’ is incorrectly parsed to depend on ‘do’ with an incorrect dependency type “nsubj.”

NSUBJ PUNCT

NSUBJ AUX

CCOMP

what-3 to-4

Root-0

knows-2

.-6Sarah-1 do-5

Figure 5.163. The incorrect typed-dependency tree for ‘Sarah knows what to do’ in the Stanford

Parser output.

The figure below shows that the infinitival modifier ‘go’ is incorrectly parsed to depend on

‘know’ with the dependency type “xcomp,” and the interrogative pronoun ‘where’ is incorrectly

parsed to depend on ‘go’ with an incorrect dependency type “advmod.”

NSUBJ PUNCT

ADVMOD AUX

XCOMP

where-3 to-4

Root-0

knows-2

.-6Sarah-1 go-5

Figure 5.164. The incorrect typed-dependency tree for ‘Sarah knows where to go’ in the Stanford

Parser output.

232

 This dependency type does not completely follow Mel’čuk’s Criterion A. The head and the

dependent have a fixed linear order; however, they do not constitute a prosodic unit (e.g.,

‘something say’ in the examples above). On the other hand, they do form a semantic unit and

follow the revised Criterion A proposed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B. The noun, not its infinitival modifier,

determines the passive valence of the phrase. For example, the dependency relation between

‘something’ and ‘say’ in the sentence ‘Sarah has something to say’ shows that ‘something’

depends on the verb ‘has,’ which can be subordinated to the root.

The dependency type “infmod” also follows the revised Criterion C proposed in Section

2.4.3.3, because it implies a certain kind of semantic relationship between a noun and an

infinitival modifier. This semantic relationship cannot be expressed by any other dependency

type, and the prototypical dependent of this dependency type is an infinitival verb.

Partmod - participial modifier

The dependency type “partmod” is a subtype of “mod” whereby the head is a noun or a verb, and

the dependent is a participial modifier. In the typed-dependency tree below, the past participle

‘written’ modifies ‘essay’ as a participial modifier. In other words, the word ‘written’ depends

on ‘essay’ with the dependency type “partmod.”

233

NSUBJ PUNCT

COP

is-6 .-8

DET PARTMOD

by-4

Sarah-5

PREP

POBJ

Root-0

interesting-7

essay-2

The-1 written-3

Figure 5.165. The typed-dependency tree for ‘The essay written by Sarah is interesting.’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the same indices ‘i’ on ‘essay’ and on the zero pronoun as the NSUBJ of the past participle

‘written’ indicate that this zero pronoun refers to ‘essay;’ hence, this ‘essay’ is also the NSUBJ of

‘written.’

234

PRED 'interesting<NSUBJ,>'

NSUBJ PRED 'essayi'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

PARTMOD PRED 'written<NSUBJ>'

NSUBJ PRED 'PRO i'

TYPE ZERO

PREP PRED 'by<POBJ>'

POBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

COP FORM 'is'

TENSE PRESENT

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.166. The functional structure for ‘The essay written by Sarah is interesting.’

In the typed-dependency tree below, the present participle ‘writing’ modifies the verb ‘thinking’

as a participial modifier. In other words, the word ‘writing’ depends on ‘thinking’ with the

dependency type “partmod.”

235

ROOT

PUNCT .-10

PARTMOD

PUNCT COP

Writing-1 was -6 about-8

NSUBJ POBJ

,-4 Sarah-5

essay-3 David-9

the-2

Root

thinking-7

PREP

DOBJ

DET

Figure 5.167. The typed-dependency tree for ‘Writing the essay, Sarah was thinking about

David.’

 This dependency type does not follow Mel’čuk’s Criterion A because a noun and its

participial modifier do not constitute a prosodic unit (e.g., ‘Writing thinking’ in the example

sentence above). However, they do form a semantic unit and therefore follow the revised

Criterion A proposed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B because the noun, not its participial

modifier, determines the passive valence of the phrase. For example, the dependency relation

between ‘essay’ and ‘written’ in the sentence ‘Writing the essay, Sarah was thinking about David’

is such that ‘Writing’ depends on the verb ‘thinking,’ which can be subordinated to the root.

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between a noun and a participial

modifier. This semantic relationship cannot be expressed by any other dependency type, and

the prototypical dependent of this dependency type is a participle.

236

Advcl - adverbial clause modifier

Mark - markers (words introducing an adverbial clause)

The dependency type “advcl” is a subtype of “mod” whereby the head is a verb and the

dependent is the main predicate of an adverbial clause that modifies the verb. Adverbial

clauses are often introduced by a marker. The dependency type “mark” is another subtype of

“mod” whereby the head is the main predicate of an adverbial clause and the dependent

functions as a marker, such as ‘before,’ ‘after,’ ‘because’ or ‘if.’ Examples of both subtypes are

shown in the figure below. The marker ‘before’ introduces the adverbial clause headed by

‘visited.’ This verb modifies the main verb ‘read.’ In other words, the word ‘before’ depends

on ‘visited’ with the dependency type “mark,” and ‘visited’ depends on ‘read’ with the

dependency type “advcl.”

PUNCT .-13

NSUBJ ADVCL

AUX DOBJ

Sarah-1 had-2 books-5 visited-11
PARTMOD MARK DOBJ

NSUBJ

the-4 written-6 before-9 she-10 him-12

by-7

David-8

PREP

POBJ

DET

Root-0

read-3

Figure 5.168. The typed-dependency tree for ‘Sarah had read the books written by David before

she visited him.’

237

In the figure below, the marker ‘because’ introduces the adverbial clause headed by ‘admires.’

This verb modifies the main verb ‘read.’ In other words, the word ‘because’ depends on

‘admires’ with the dependency type “mark,” and ‘admires’ depends on ‘read’ with the

dependency type “advcl.”

PUNCT .-13

NSUBJ ADVCL

AUX DOBJ

Sarah-1 has-2 books-5 admires-11
PARTMOD MARK DOBJ

NSUBJ

the-4 written-6 because-9 she-10 him-12

by-7

David-8

PREP

POBJ

DET

Root-0

read-3

Figure 5.169. The typed-dependency tree for ‘Sarah has read the books written by David because

she admires him.’

The Stanford Parser analyzes clauses introduced by the marker ‘if’ as adverbial clauses, and this

can cause an incorrect parse. In the sentence ‘Sarah didn’t know if it was true,’ the word ‘true’

is parsed to be the main predicate of a clausal complement of the word ‘know.’ Therefore, ‘true’

depends on ‘know’ with the dependency type “ccomp,” and the word ‘if’ depends on ‘true’ with

the dependency type “complm.”

238

ROOT

NSUBJ CCOMP

AUX NEG

Sarah did not true

COMPLM NSUBJ COP

if it is

Root

know

Figure 5.170. The typed-dependency tree for ‘Sarah didn’t know if it was true.’

In the Stanford Parser output for the same sentence, however, the word ‘true’ is parsed to be the

main predicate of an adverbial complement of the word ‘know.’ Therefore, ‘true’ depends on

‘know’ with an incorrect dependency type “advcl,” and the word ‘if’ depends on ‘true’ with an

incorrect dependency type “mark.”

ROOT

NSUBJ ADVCL

AUX NEG

Sarah did not true

MARK NSUBJ COP

if it is

Root

know

Figure 5.171. The typed-dependency tree for ‘Sarah didn’t know if it was true.’ in the Stanford

Parser output.

This study does not address this type of incorrect parsed outputs, and accepts them as they

are, because it is difficult to determine whether a given verb takes a clausal complement.

239

 The dependency type “advcl” does not follow Mel’čuk’s original Criterion A because the

verb in the main clause and the verb in the adverbial clause do not form a prosodic unit (e.g.,

‘…read… visited’). Moreover, their linear order is not fixed. However, the main clause verb

and the subordinate verb definitely form a semantic unit, thus following the revised Criterion A

proposed in Section 2.4.3.1.

This dependency type follows Mel’čuk’s Criterion B because the main verb determines the

passive valence of the phrase. For example, a verb taking a subordinate clause can be

dependent on another verb, such as ‘John believes Sarah had read the books written by David

before she visited him.’ Therefore, the main verb and the verb in the adverbial clause follow

Mel’čuk’s Criterion B1.

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between the verbs, and this semantic

relationship cannot be expressed by any other dependency type. In addition, the prototypical

dependent of this dependency type is a verb.

Rcmod - relative clause modifier

The Stanford-Dependencies framework proposes three dependency types that are related to

relative clauses: “rcmod,” “ref,” and “rel.” First, the dependency type “rcmod” is a subtype of

“mod.” The head of this dependency type is a noun and the dependent is the head of a relative

clause modifying the noun. In the figure below, the verb ‘wrote’ is the main predicate of a

relative clause modifying the noun ‘book.’ In other words, the verb ‘wrote’ depends on the

noun ‘book’ with the dependency type ‘rcmod.’

240

ROOT

PUNCT .-8

NSUBJ DOBJ

AUX

DET RCMOD

NSUBJ

Root-0

read-3

Sarah-1 has-2 book-5

the-4 wrote-7

David-6

Figure 5.172. The typed-dependency tree for ‘Sarah has read the book David wrote.’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the word ‘book’ is assigned the same index as the zero pronoun of the DOBJ of the verb ‘wrote,’

which indicates that this zero pronoun refers to ‘book.’

241

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'booki'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

RCMOD PRED 'write<NSUBJ,DOBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'PRO i'

TYPE ZERO

TENSE PAST

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.173. The functional structure for ‘Sarah has read the book David wrote.’

In the figure below, the verb ‘gave’ is the main predicate of a relative clause modifying the noun

‘book.’ In other words, the verb ‘gave’ depends on the noun ‘book’ with the dependency type

‘rcmod.’

242

ROOT

PUNCT .-10

NSUBJ DOBJ

AUX

DET RCMOD

NSUBJ PREP

David-6

POBJ

the-4 gave-7

to-8

her-9

Root-0

read-3

Sarah-1 has-2 book-5

Figure 5.174. The typed-dependency tree for ‘Sarah has read the book David gave to her.’

243

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarahj'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'booki'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

RCMOD PRED 'give<NSUBJ,DOBJ,PREP>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'PROi'

TYPE ZERO

PREP PRED 'to<POBJ>'

POBJ PRED 'PROj'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

FORM 'her'

TENSE PAST

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.175. The functional structure for ‘Sarah has read the book David gave to her.’

When a relative pronoun introduces a relative clause, it functions as an argument or an

adjunct of the main predicate of the relative clause. In the figure below, the relative pronoun

‘which’ introduces the relative clause, and it functions as the direct object of the ‘wrote.’ In

other words, the relative pronoun ‘which’ depends on the verb ‘wrote’ with the dependency type

“dobj.”

244

ROOT

PUNCT .-9

NSUBJ DOBJ

AUX

DET RCMOD

DOBJ

which-6 David-7

Sarah-1 has-2 book-5

the-4 wrote-8

NSUBJ

Root-0

read-3

Figure 5.176. The typed-dependency tree for ‘Sarah has read the book which David wrote.’

The typed-dependency tree above is equivalent to the functional structure below. Notice

that the indices ‘i’ on ‘which’ and ‘book’ indicate that the relative pronoun ‘which’ refers to

‘book.’

245

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'booki'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

RCMOD PRED 'write<NSUBJ,DOBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'PROi'

TYPE RELATIVE

FORM 'which'

TENSE PAST

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.177. The functional structure for ‘Sarah has read the book which David wrote.’

In the figure below, the relative pronoun ‘which’ introduces the relative clause, and it

functions as the direct object of the ‘gave.’ In other words, the relative pronoun ‘which’

depends on the verb ‘gave’ with the dependency type “dobj.”

246

ROOT

PUNCT .-11

NSUBJ DOBJ

AUX

DET RCMOD

NSUBJ PREP

which-6 to-9

POBJ

her-10

Sarah-1 has-2 book-5

David-7

DOBJ

the-4 gave-8

Root-0

read-3

Figure 5.178. The typed-dependency tree for ‘Sarah has read the book which David gave to her.’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the indices ‘i’ on ‘which’ and ‘book’ indicate that the relative pronoun ‘which’ refers to ‘book,’

and the indices ‘j’ on ‘Sarah’ and ‘her’ indicate that this ‘her’ refers to ‘Sarah.’

247

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarahj'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'booki'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

RCMOD PRED 'give<NSUBJ,DOBJ,PREP>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'PRO i'

TYPE RELATIVE

FORM 'which'

PREP PRED 'to<POBJ>'

POBJ PRED 'PRO j'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

FORM 'her'

TENSE PAST

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.179. The functional structure for ‘Sarah has read the book which David gave to her.’

In the figure below, the relative pronoun ‘where’ introduces the relative clause, and it

functions as an adverbial modifier for the verb ‘works.’ In other words, the relative pronoun

‘where’ depends on the verb ‘works’ with the dependency type “advmod.”

248

ROOT

PUNCT .-9

NSUBJ DOBJ

AUX

DET RCMOD

ADVMOD

where-6 David-7

NSUBJ

Root-0

visited-3

Sarah-1 has-2 office-5

the-4 works-8

Figure 5.180. The typed-dependency tree for ‘Sarah has visited the office where David works.’

The typed-dependency tree above is equivalent to the functional structure below. The

relative pronoun ‘where’ refers to ‘office.’

249

PRED 'visit<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'office i'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

RCMOD PRED 'work<NSUBJ>'

NSUBJ PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

ADVMOD PRED 'PROi'

TYPE RELATIVE

FORM 'where'

TENSE PRESENT

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT ST MT-TYPE DECLARATIVE

Figure 5.181. The functional structure for ‘Sarah has visited the office where David works.’

 This dependency type does not follow Mel’čuk’s Criterion A, because nouns and their

relative-clause modifiers do not constitute prosodic units (e.g., ‘book wrote’ in the example

sentence above). However, this dependency type forms a semantic unit whereby the noun is an

argument or adjunct of the verb in the relative clause. In this way, this type follows the revised

Criterion A proposed in Section 2.4.3.1.

 This dependency type also follows Mel’čuk’s Criterion B. The noun, not its relative-clause

modifier, determines the passive valence of the phrase. For example, the dependency relation

between ‘book’ and ‘wrote’ in the sentence ‘Sarah has read the book David wrote’ shows that

250

‘wrote’ depends on the noun ‘book,’ which can be subordinated to the verb ‘read.’

In addition, this dependency type follows the revised Criterion C proposed in Section 2.4.3.3.

This type implies a certain kind of semantic relationship between a noun and a relative-clause

modifier. Moreover, this semantic relationship cannot be expressed by any other dependency

type, and the prototypical dependent of this dependency type is a verb.

Ref – referent (word which a relative pronoun refers to)

The second dependency type related to relative clauses is “ref,” which is a subtype of “mod.”

The head of this type of dependency is a noun and the dependent is a relative pronoun that refers

to the noun. An example of the “ref” dependency type is presented in the figure below. The

relative pronoun ‘which’ refers to the noun ‘book,’ and it also functions as the direct object of the

verb ‘wrote.’ In other words, the relative pronoun ‘which’ depends on the noun ‘book’ with the

dependency type “ref,” and it also depends on ‘wrote’ with the dependency type “dobj.”

ROOT

PUNCT .-9

NSUBJ DOBJ

AUX

DET RCMOD

REF

NSUBJ

wrote-8

David-7

Root-0

read-3

Sarah-1 has-2 book-5

the-4

which-6

DOBJ

Figure 5.182. The dependency tree containing the dependency type “ref” for ‘Sarah has read the

book which David wrote.’

251

This type is different from other dependency types in Stanford Dependencies in that it represents

a semantic dependency whereby the semantic content of a relative pronoun is identified. This

dependency type is not implemented in the default output style of the Stanford Parser (cf.

Section 5.4.5).

Rel - relative (word introducing a relative clause modifier)

The third dependency type which is related to relative clauses is “rel,” which is another subtype

of “mod.” The head of this type of dependency is the head of a relative clause, and the

dependent is the relative pronoun that introduces the relative clause. De Marneffe and Manning

(2012, p.10) state that this type characterizes the relative word that does not function as the

subject of the relative clause. Consider again the sentence ‘I saw the man whose wife you love.’

According to this definition, the dependency between ‘love’ and ‘wife’ should be typed as “rel,”

as shown in the typed-dependency tree representation below.

ROOT

PUNCT .-9

NSUBJ DOBJ

DET RCMOD

REL NSUBJ

POSS

whose-5

you-7

Root-0

saw-2

I-1 man-4

the-3 love-8

wife-6

252

Figure 5.183. The dependency tree for ‘I saw the man whose wife you love.’

However, this dependency type is redundant and can be replaced by other dependency types (e.g.,

“nsubj,” “dobj,” “iobj”) that describe the relation between a noun and the head of a relative

clause. In this study, the type “rel,” if it occurs in the parsed output, will be treated as a parse

error, and will be replaced by an appropriate dependency type.

Purpcl - purpose clause modifier

The dependency type “purpcl” is another subtype of “mod” used to describe cases where the

dependent is the head of a purpose clause introduced by ‘in order to.’ This dependency is not

actually implemented in the Stanford Parser, and the dependency of a purpose clause is parsed as

“xcomp,” as shown in the figure below.

ROOT

PUNCT .-11

NSUBJ PREP

AUX DOBJ

AUX DOBJ

in-6

order-7

to-8

understand-9

LFG-10

DET POBJ

XCOMP

this-4

Root-0

read-3

Sarah-1 has-2 book-5

Figure 5.184. The typed-dependency tree for ‘Sarah has read this book in order to understand

253

LFG.’

Tmod - temporal modifier

The dependency type “tmod” is another subtype of “mod” for cases where the dependent is the

head of a temporal modifier. In the figure below, the temporal adverbial phrase ‘last night’

modifies the verb ‘read.’ In other words, the main predicate of the temporal adverbial ‘night’

depends on the verb ‘read’ with the dependency type “tmod.”

ROOT

PUNCT .-8

NSUBJ TMOD

DOBJ

's-4

Root-0

read-2

Sarah-1 book-5

David-3

night-7

last-6

POSS

POSSESSIVE

AMOD

Figure 5.185. The typed-dependency tree for ‘Sarah read David’s book last night.’

254

PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

POSS PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

POSSESSIVE FORM 's'

TMOD PRED 'night'

AMOD PRED 'last'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-T YPE DECLARAT IVE

Figure 5.186. The functional structure for ‘Sarah read David’s book last night.’

The fact that the head of this dependency can be either a noun or a verb results in ambiguous

syntactic analyses for the same sentence, similar to prepositional modifiers. For example, the

temporal adverbial phrase ‘last night’ can modify either the verb or the noun. In the figure

below, the temporal adverbial phrase ‘last night’ depends on the word ‘cancelled.’ Therefore, in

this analysis, this sentence means that Sarah’s cancellation of the meeting took place last night.

255

ROOT

PUNCT .-7

NSUBJ TMOD

DOBJ
night-6

last-5

DET AMOD

Root-0

cancelled-2

Sarah-1 meeting-4

the-3

Figure 5.187. The typed-dependency tree for ‘Sarah cancelled the meeting last night.’ in the

Stanford Parser output

PRED 'cancel<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'meeting'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

TMOD PRED 'night'

AMOD PRED 'last'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-T YPE DECLARATIVE

Figure 5.188. The functional structure equivalent to the typed-dependency tree for ‘Sarah

cancelled the meeting last night.’ in the Stanford Parser output

On the other hand, in the figure below, the temporal adverbial phrase ‘last night’ depends on the

word ‘meeting.’ In this analysis, this sentence means that Sarah’s cancellation of the meeting

256

took place before last night.

ROOT

NSUBJ PUNCT

DOBJ

.-7

TMOD

Root-0

cancelled-2

Sarah-1 meeting-4

the-3 night-6

last-5

DET

AMOD

Figure 5.189. Another typed-dependency tree for ‘Sarah cancelled the meeting last night.’

PRED 'cancel<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'meeting'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

TMOD PRED 'night'

AMOD PRED 'last'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.190. The functional structure for ‘Sarah cancelled the meeting last night.’

257

 This dependency type does not follow Mel’čuk’s original Criterion A for SSyntRel because a

verb and its temporal modifier do not constitute a prosodic unit (e.g., ‘read… night’ in the

example sentence above). In addition, the linear order of the words in this dependency type

cannot be determined because it is possible to say ‘Sarah read David’s book last night’ or ‘Last

night, Sarah read David’s book.’ However, this type forms a semantic unit in which the

temporal adverb modifies the meaning of the verb. Thus, this type follows the revised Criterion

A discussed in Section 2.4.3.1.

 This dependency type also follows Mel’čuk’s Criterion B because the verb, not its temporal

modifier, determines the passive valence of the phrase. For example, the dependency relation

between ‘read’ and ‘night’ in the sentence ‘Sarah read David’s book last night’ shows that ‘night’

depends on the verb ‘read,’ which can be subordinated to the root of the sentence.

In addition, this dependency type follows the revised Criterion C because it implies a certain

kind of semantic relationship between a verb and a temporal modifier. This semantic

relationship cannot be expressed by any other dependency type, and the prototypical dependent

of this dependency type is a temporal adverbial or a temporal noun. Therefore, this dependency

type follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3.

Prt - phrasal verb particle

The dependency type “prt” is an additional subtype of “mod” and represents cases where the

head is a verb and the dependent is a particle, which creates a phrasal verb. In the figure below,

the verb ‘worked’ and the particle ‘out’ create a phrasal verb ‘worked out.’ In other words, the

particle ‘out’ depends on the verb ‘worked’ with the dependency type “prt.”

258

ROOT

PUNCT .-6

NSUBJ DOBJ

PRT

the-4

DET

Root-0

worked-2

Sarah-1 out-3 program-5

Figure 5.191. The typed-dependency tree for ‘Sarah worked out the program.’

PRED 'work<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'program'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

PRT FORM 'out'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-T YPE DECLARATIVE

Figure 5.192. The functional structure for ‘Sarah worked out the program.’

Transitive phrasal verbs can have another word order in which the particle follows the direct

object. This word order is obligatory when the direct object is a pronoun. In the figure below,

the number next to each word indicates that the direct object ‘the program’ precedes the particle.

259

ROOT

PUNCT .-6

NSUBJ PRT

DOBJ

Root-0

worked-2

Sarah-1 program-4 out-5

DET

the-3

Figure 5.193. The typed-dependency tree for ‘Sarah worked the program out.’

In the figure below, the direct object is a pronoun, so it must precede the particle.

ROOT

PUNCT .-5

NSUBJ PRT

DOBJ

Root-0

worked-2

Sarah-1 it-3 out-4

Figure 5.194. The typed-dependency tree for ‘Sarah worked it out.’

There are instances in which a verb and a preposition form a phrasal verb. For example, ‘read

through’ can take its direct object either before or after the word ‘through,’ as shown in the

following figures.

260

ROOT

PUNCT .-6

NSUBJ DOBJ

PRT

the-4

DET

Root-0

read-2

Sarah-1 through-3 book-5

Figure 5.195. The typed-dependency tree for ‘Sarah read through the book.’

ROOT

PUNCT .-6

NSUBJ PRT

DOBJ

Root-0

read-2

Sarah-1 book-4 through-5

DET

the-3

Figure 5.196. The typed-dependency tree for ‘Sarah read the book through.’

ROOT

PUNCT .-5

NSUBJ PRT

DOBJ

Root-0

read-2

Sarah-1 it-3 through-4

Figure 5.197. The typed-dependency tree for ‘Sarah read it through.’

The Stanford Parser parses the word ‘through’ as a preposition. In the example sentence ‘Sarah

read through the book,’ the word ‘book’ is parsed as the prepositional object, as shown below.

261

ROOT

PUNCT .-6

NSUBJ PREP

DET

the-4

Root-0

read-2

Sarah-1 through-3

book-5

Figure 5.198. The typed-dependency tree for ‘Sarah read through the book.’ in the Stanford

Parser output

When the word ‘through’ is put after the direct object, it is parsed to be a preposition which lacks

its object, as shown in the figure below.

ROOT

PUNCT .-6

NSUBJ PREP

DOBJ

Root-0

read-2

Sarah-1 book-4 through-5

DET

the-3

Figure 5.199. An incorrect typed-dependency tree for ‘Sarah read the book through.’ in the

Stanford Parser output

262

The Stanford Parser yields the same incorrect parse when the word ‘through’ is placed after the

pronominal direct object, as shown in the figure below.

ROOT

PUNCT .-5

NSUBJ PREP

DOBJ

Root-0

read-2

Sarah-1 it-3 through-4

Figure 5.200. An incorrect typed-dependency tree for ‘Sarah read it through.’ in Stanford Parser

output

 This dependency type does not follow Mel’čuk’s Criterion A completely. The linear order

of the head and the dependent is fixed (the verb always precedes the particle), yet phrasal verbs

do not always constitute a prosodic unit. For example, when the particle immediately follows

the verb (e.g., ‘worked out’ in the example sentence above), they constitute a prosodic unit;

however, when the particle follows the direct object, they do not constitute a prosodic unit

(worked … out). On the other hand, this type forms a semantic unit because the particle

modifies the meaning of the verb. In this way, this type follows the revised Criterion A

proposed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B as well. The verb, not the particle,

determines the passive valence of the phrasal verb. For example, the dependency relation

between ‘worked’ and ‘out’ in the sentence ‘Sarah worked out the program’ is such that ‘out’

depends on the verb ‘worked,’ which can be subordinated to the root of the sentence.

This dependency type also follows the revised Criterion C because it implies a certain kind of

263

semantic relationship between a verb and a particle. This semantic relationship cannot be

expressed by any other dependency type, and the prototypical dependent of this dependency type

is a particle. Therefore, this dependency type follows the revised Criteria C1 and C2 proposed

in Section 2.4.3.3.

Appos - appositional modifier

The dependency type “appos” is another subtype of “mod” whereby the dependent is an

appositional modifier. An appositional modifier is a noun phrase immediately to the right of

another noun phrase “that serves to define or modify” the noun phrase (de Marneffe & Manning

2012, p.3). In the figure below, the noun phrase ‘David’s niece’ defines the word ‘Sarah.’ In

other words, the word ‘niece,’ which is the main predicate of the noun phrase ‘David’s niece,’

depends on the word ‘Sarah’ with the dependency type “appos.”

PUNCT .-11

NSUBJ

AUX DOBJ

PUNCT APPOS DET

,-2

POSSESSIVE

's-4

Root-0

read-8

ROOT

has-7

Sarah-1 book-10

this-9

David-3

niece-5

,-6

PUNCT

Figure 5.201. The typed-dependency tree for ‘Sarah, David’s niece, has read this book.’

264

PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

PUNCT FORM ','

APPOS PRED 'niece'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

POSS PRED 'David'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

POSSESSIVE FORM ''s'

PUNCT FORM ','

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.202. The functional structure for ‘Sarah, David’s niece, has read this book.’

In the figure below, the noun phrase ‘her friend’ defines the word ‘Isaac.’ In other words, the

word ‘friend,’ which is the main predicate of the noun phrase ‘her friend,’ depends on the word

‘Isaac’ with the dependency type “appos.”

265

PUNCT .-8

NSUBJ

DOBJ

AUX

PUNCT APPOS

,-5 son-7

POSS

her-6

Isaac-4

will-2

Root

visit-3

ROOT

Sarah-1

Figure 5.203. The typed-dependency tree for ‘Sarah will visit Isaac, her friend.’

PRED 'visit<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarahi'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'Issac'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

APPOS PRED 'friend'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

POSS PRED 'PRO i'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

FORM 'her'

PUNCT FORM ','

AUX FORM 'will'

TENSE FUTURE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.204. The functional structure for ‘Sarah will visit Isaac, her friend.’

266

 This dependency type does not follow Mel’čuk’s Criterion A because nouns in apposition do

not constitute prosodic units (e.g., ‘Sarah… niece’ in the example sentence above). However,

these nouns do form a semantic unit, because one of the nouns is a paraphrase of the other noun.

Thus, this type follows the revised Criterion A discussed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B. The first noun, not the second one,

determines the passive valence of an appositional phrase. For example, the dependency relation

between ‘Sarah’ and ‘niece’ in the sentence ‘Sarah, David’s niece, has read the book’ shows that

‘niece’ depends on ‘Sarah,’ which can be subordinated to the root of the sentence.

This dependency type also follows the revised Criterion C given that it implies a certain kind

of semantic relationship between nouns. This semantic relationship cannot be expressed by any

other dependency type, and the prototypical dependent of this dependency type is a noun.

Therefore, this dependency type follows the revised Criteria C1 and C2 proposed in Section

2.4.3.3.

Predet – predeterminer

The dependency type “predet” is another subtype of “mod” whereby the head is a noun and the

dependent is a predeterminer, as shown in the figures below.

267

PUNCT .-9

NSUJB DOBJ

AUX

RCMOD

DET

all-4 the-5 has-8

she-7

ROOT

NSUBJ

PREDET

Root-0

Sarah-1

read-3

has-2 books-6

Figure 5.205. The typed-dependency tree for ‘Sarah has read all the books she has.’

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarahj'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'books i'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

PREDET FORM 'all'

RCMOD PRED 'have<NSUBJ,DOBJ>'

NSUBJ PRED 'PRO j'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

FORM 'she'

DOBJ PRED 'PRO i'

TYPE ZERO

TENSE PRESENT

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

268

Figure 5.206. The functional structure for ‘Sarah has read all the books she has.’

PUNCT .-9

NSUJB DOBJ

AUX

RCMOD

DET

half-4 the-5

Root-0

Sarah-1

read-3

has-2 books-6

has-8

she-7

ROOT

NSUBJ

PREDET

Figure 5.207. The typed-dependency tree for ‘Sarah has read half the books she has.’

269

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarahj'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'books i'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

PREDET FORM 'half'

RCMOD PRED 'have<NSUBJ,DOBJ>'

NSUBJ PRED 'PRO j'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

FORM 'she'

DOBJ PRED 'PRO i'

TYPE ZERO

TENSE PRESENT

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.208. The functional structure for ‘Sarah has read half the books she has.’

PUNCT .-8

NSUBJ AUX NEG DOBJ

will-2 not-3

PREDET DET

a-6

Root-0

read-4

Sarah-1 book-7

such-5

Figure 5.209. The typed-dependency tree for ‘Sarah will not read such a book.’

270

Figure 5.210. The functional structure for ‘Sarah will not read such a book.’

 This dependency type does not completely follow Mel’čuk’s Criterion A. The linear order

of the words in this type is such that the predeterminer precedes the determiner. However, a

predeterminer and a noun do not constitute a prosodic unit (e.g., ‘all … books’ in the example

sentence above). Therefore, this type does not follow Criterion A. On the other hand, this

type forms a semantic unit because the predeterminer modifies the meaning of the noun. In this

way, this type follows the revised Criterion A proposed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B because the passive valence of the

phrase is determined by the noun. For example, the dependency relation between ‘all’ and

‘noun’ in the sentence ‘Sarah has read all the books she has’ is such that ‘all’ depends on ‘noun,’

which can be subordinated to the main predicate of the sentence.

This dependency type also follows the revised Criterion C, because it implies a certain kind

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarahj'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'a'

TYPE INDEFINITE

PREDET FORM 'such'

AUX FORM 'will'

TENSE FUTURE

NEG FORM 'not'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

271

of semantic relationship between a noun and a predeterminer. This semantic relationship

cannot be expressed by any other dependency type, and the prototypical dependents of this

dependency type include words such as ‘all’ and ‘such.’ Therefore, this dependency type

follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3.

Preconj – preconjunct

The dependency type “preconj” is a subtype of “mod” whereby the dependency head is one of

the conjuncts and the dependent is a preconjunct, such as ‘both,’ ‘either,’ or ‘neither.’ As

previously mentioned, the Stanford Parser treats conjuncts asymmetrically, i.e., one conjunct

depends on the other. For the dependency type “preconj,” the first conjunct acts as the head of

the dependency, and the preconjunct word acts as the tail. The following three

typed-dependency trees present examples of this type.

PUNCT .-9

NSUBJ DOBJ

AUX

PRECONJ CONJ

CC

Both-1 David-4

book-8

this-7

ROOT

DET

Root-0

read-6

have-5Sarah-2

and-3

Figure 5.211. The asymmetric typed-dependency tree for ‘Both Sarah and David have read this

book.’

272

PUNCT .-9

NSUBJ DOBJ

AUX

PRECONJ CONJ

CC

Either-1 David-4

Sarah-2

or-3

book-8

this-7

ROOT

DET

Root-0

read-6

has-5

Figure 5.212. The asymmetric typed-dependency tree for ‘Either Sarah or David has read this

book.’

PUNCT .-9

NSUBJ DOBJ

AUX

PRECONJ CONJ

CC

Neither-1 David-4

Root-0

read-6

has-5Sarah-2

nor-3

book-8

this-7

ROOT

DET

Figure 5.213. The asymmetric typed-dependency tree for ‘Neither Sarah nor David has read this

book.’

The correct typed-dependency tree, however, has a symmetrical structure in which the conjuncts

depend on the same head with the same dependency type. This study applies this

symmetrical-structure analysis to the dependency type “preconj.” This means that the

dependency type “preconj” should be replaced with other dependency types. For example, in

the tree above, “conj” should be replaced with “nsubj.” In addition, the dependency

relationship must be changed. Thus, in the example above, ‘Sarah’ and ‘David’ should be

analyzed as conjuncts depending on ‘both.’ In this way, the dependency types between ‘both’

273

and ‘Sarah’ and between ‘both’ and ‘David’ are both considered “conj.” The modified tree as a

result of these changes is shown in the figure below.

PUNCT .-9

NSUBJ DOBJ

AUX

CONJ

CC

Sarah-2 David-4

Both-1

and-3

CONJ

book-8

this-7

ROOT

DET

Root-0

read-6

have-5

Figure 5.214. The symmetric typed-dependency tree for ‘Both Sarah and David have read this

book.’

The typed-dependency tree above is equivalent to the functional structure below.

274

PRED 'read<NSUBJ, DOBJ>'

NSUBJ PRED 'PRO'

PERSON 3RD

NUMBER PLURAL

FORM 'both'

CONJ PRED 'Sarahj'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

CC FORM 'and'

CONJ PRED 'Davidj'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

DOBJ PRED 'book'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

AUX FORM 'have'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.215. The functional structure for ‘Both Sarah and David have read this book.’

Num (numeric modifier) and Quantmod (quantifier modifier)

The dependency type “num” is another subtype of “mod” and describes cases where the

dependency head is a noun and the dependent is a numeric modifier. The dependency type

“quantmod” is also a subtype of “mod” and represents cases where the dependency head is a

number and the dependent is any element modifying the number (known as a quantifier modifier,

or quantifier for short). Examples of these dependency types are shown below. In the figure

below, the numeric modifier “200” modifies the noun “books.” In other words, the numeric

modifier “200” depends on the noun “books” with the dependency type “num.” In addition, the

word “about” quantifies the numeric modifier “200.” In other words, the word ‘about’ depends

275

on ‘200’ with the dependency type “quantmod.”

NSUBJ PUNCT

DOBJ

.-6

NUM

QUANTMOD

Root-0

Sarah-1

has-2

about-3

200-4

books-5

ROOT

Figure 5.216. The typed-dependency tree for ‘Sarah has about 200 books.’

PRED 'have<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'books'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

NUM PRED '200'

QUANTMOD PRED 'about'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.217. The functional structure for ‘Sarah has about 200 books.’

More than one quantifier modifier can modify a noun. In the figure below, the phrase ‘less than’

276

modifies the numeric modifier ‘200.’ Therefore, each word in the phrase ‘less than’ depends on

‘200’ with the dependency type “quantmod.”

NSUBJ PUNCT

DOBJ

.-7

NUM

QUANTMOD

QUANTMOD

than-4

Root-0

Sarah-1

has-2

200-5

books-6

ROOT

less-3

Figure 5.218. The typed-dependency tree for ‘Sarah has less than 200 books.’

PRED 'have<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'books'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

NUM PRED '200'

PRED 'less'

QUANTMOD

PRED 'than'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.219. The functional structure for ‘Sarah has less than 200 books.’

277

 The dependency type ‘num’ follows Mel’čuk’s original Criterion A, yet the dependency type

“quantmod” does not always follow Criterion A. A numerical modifier and a noun constitute a

prosodic unit (e.g., ‘200 books’ in the example sentence above). On the other hand, there are

instances in which a quantifier and a numerical modifier do not constitute a prosodic unit (e.g.,

‘less … 200’ in the example above). However, both of these types form a semantic unit

because a numerical modifier modifies the meaning of the noun, and a quantifier modifies the

meaning of a numerical modifier. In addition, the linear order of the words in these dependency

relations is such that the quantifier or the numerical modifier precedes the noun. Therefore,

these types follow Criterion A.

 These dependency types also follow Mel’čuk’s Criterion B. For example, the dependency

relation between ‘200’ and ‘book’ in the example sentence ‘Sarah has about 200 books’ shows

that ‘200’ depends on ‘books,’ which can be subordinated to the verb ‘has.’ The passive

valence of the phrase is determined by the noun ‘books.’ Similarly, the dependency relation

between ‘about’ and ‘200’ in the same sentence shows that ‘about’ depends on ‘200.’

In addition, these dependency types follow the revised Criterion C because “num” implies a

certain kind of semantic relationship between a noun and a numerical modifier, and “quantmod”

implies a semantic relationship between a numerical modifier and a quantifier. These semantic

relationships cannot be expressed by any other dependency type, and the prototypical dependents

of “num” are numbers, and those of “quantmod” include adverbs such as ‘about’ or ‘almost.’

Therefore, this dependency type follows the revised Criteria C1 and C2 proposed in Section

2.4.3.3.

278

Number - element of compound number

The dependency type “number” is another subtype of “mod” whereby the dependent is an

element of a compound number. The typed-dependency trees below present examples of this

subtype.

NSUBJ PUNCT

DOBJ

.-6

NUM

NUMBER

two-3

hundred-4

Root

Root-0

Sarah-1

has-2

books-5

Figure 5.220. The typed-dependency tree for ‘Sarah has two hundred books.’

PRED 'have<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'books'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

NUM PRED 'hundred'

NUMBER PRED 'two'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.221. The functional structure for ‘Sarah has two hundred books.’

279

NSUBJ PUNCT

DOBJ

.-6

NUM

NUMBER

five-3

thousand-4

Root

Root-0

Sarah-1

has-2

dollars-5

Figure 5.222. The typed-dependency tree for ‘Sarah has five thousand dollars.’

PRED 'have<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'dollars'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

NUM PRED 'thousand'

NUMBER PRED 'five'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.223. The functional structure for ‘Sarah has five thousand dollars.’

 The dependency type “number” follows Mel’čuk’s Criterion A because a compound number

constitutes a prosodic unit (e.g., ‘five thousand’ in the example sentence above), and the word

order is fixed.

280

 This dependency type also follows Mel’čuk’s Criterion B. For example, the dependency

relation between ‘five’ and ‘million’ in the example sentence ‘Sarah has five million dollars’ is

such that ‘five’ depends on ‘million,’ which can be subordinated to the noun ‘dollars.’ The

passive valence of the phrase is determined by the noun ‘million.’

In addition, this dependency type follows the revised Criterion C because it implies a

semantic relationship between numbers that cannot be expressed by any other dependency type,

and the prototypical dependents of “number” are numbers. Therefore, this dependency type

follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3. Notice that the difference

between “num” and “number” resides in the different prototypical heads for these dependency

types. That is, the head of “num” is a noun, while that of “number” is another number.

Nn - noun compound modifier

This dependency type is a subtype of “mod” that describes cases where the dependent is an

element in a noun compound. An example of this subtype is shown below. In the figure

below, the noun ‘language’ modifies the word ‘acquisition’ as a noun compound. In other

words, the word ‘language’ depends on ‘acquisition’ with the dependency type “nn.”

281

PUNCT

NSUBJ .-6

DOBJ

acquisition-5

NN

language-4

second-3

ROOT

Root-0

Sarah-1

studies-2

AMOD

Figure 5.224. The typed-dependency tree for ‘Sarah studies second language acquisition.’

PRED 'study<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'acquisition'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

NN PRED 'language'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

AMOD PRED 'second'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.225. The functional structure for ‘Sarah studies second language acquisition.’

A compound noun can be formed by more than two nouns. In the typed-dependency tree

below, the words ‘noun,’ ‘compound’ and ‘modifiers’ form a compound noun ‘noun compound

282

modifiers.’ In this compound noun, the nouns are aligned asymmetrically. In other words, the

first noun depends on the second, and the second noun depends on the third.

PUNCT

NSUBJ .-6

DOBJ

modifiers-5

NN

compound-4

NN

noun-3

ROOT

Root-0

Sarah-1

studies-2

Figure 5.226. The typed-dependency tree for ‘Sarah studies noun compound modifiers.’

However, the Stanford Parser parses a noun compound symmetrically. In other words, both the

first noun and the second noun depend on the third noun.

PUNCT

NSUBJ .-6

DOBJ

modifiers-5

NN NN

noun-3 compound-4

ROOT

Root-0

Sarah-1

studies-2

Figure 5.227. The typed-dependency tree for ‘Sarah studies noun compound modifiers’ in

Stanford Parser output.

283

De Marneffe & Manning (2012, p.6) state that all the nouns in a compound noun are parsed

to modify the rightmost noun of the compound noun in the current version of the Stanford Parser,

and that this will be fixed when the Penn Treebank, the corpus with which the parser has been

trained, represents the branching structure of NPs.

 This dependency type follows Mel’čuk’s Criterion A because a noun compound constitutes a

prosodic unit (e.g., ‘language acquisition’ in the example sentence below), and the word order is

fixed.

 This dependency type also follows Mel’čuk’s Criterion B. For example, the dependency

relation between ‘language’ and ‘acquisition’ in the example sentence ‘Sarah is learning

language acquisition’ shows that ‘language’ depends on ‘acquisition,’ which can be subordinated

to the verb ‘learning.’ The passive valence of the phrase is determined by the noun

‘acquisition.’

In addition, this dependency type follows the revised Criterion C, because it implies a certain

kind of semantic relationship between nouns that cannot be expressed by any other dependency

type, and the prototypical dependents of “nn” are nouns. Therefore, this dependency type

follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3.

Abbrev - abbreviation modifier

This dependency type is another subtype of “mod” and it describes cases where the dependent is

an abbreviation represented by a parenthesized NP. In the parser output below, the expression

“-lrb-” stands for ‘left round bracket’ and “-rrb-” stands for ‘right round bracket.’

284

PUNCT .-9

NSUBJ DOBJ

NN ABBREV

PUNCT PUNCT

Root-0

Sarah-1

studies-2

second-3

language-4

-lrb--6

SLA-7

-rrb--8

ROOT

AMOD

acquisition-5

Figure 5.228. The typed-dependency tree for ‘Sarah studies second language acquisition (SLA).’

PRED 'study<NSUBJ, DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'acquisition'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

NN PRED 'language'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

AMOD PRED 'second'

ABBREV PRED 'SLA'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

PUNCT FORM '('

PUNCT FORM ')'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.229. The functional structure for ‘Sarah studies second language acquisition (SLA).’

285

 The dependency type “abbrev” does not follow Mel’čuk’s Criterion A, because an

abbreviation depends on the last noun in a noun compound, and this noun and the abbreviation

do not constitute a prosodic unit (e.g., ‘acquisition’ and ‘SLA’ in the example sentence).

Semantically, an abbreviation is a type of apposition, i.e., the noun compound and its

abbreviation are in apposition. For example, the sentence ‘Sarah studies second language

acquisition (SLA)’ can be paraphrased as ‘Sarah studies second language acquisition, or SLA.’

 This dependency type follows Mel’čuk’s Criterion B. It is not the abbreviation, but the

noun, that determines the passive valence of the phrase. For example, the dependency relation

between ‘acquisition’ and ‘SLA’ in the sentence ‘Sarah studies second language acquisition

(SLA)’ shows that ‘SLA’ depends on the adjective ‘acquisition,’ which can be subordinated to the

verb ‘studies.’

This dependency type follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3.

This dependency type must be treated differently from “conj” because it implies a particular

semantic relationship between a noun compound and its abbreviation. That is, the abbreviation

of the noun compound is a kind of paraphrase because it refers to the same entity using different

words, and this semantic relationship cannot be expressed by the dependency type “conj.”

Npadvmod – noun phrase adverbial modifier

The dependency type “npadvmod” is a subtype of “mod” whereby the dependency head is an

adjective and the dependent is a noun that adverbially modifies the head adjective, as shown in

the figures below.

286

PUNCT .-6

NSUBJ NPADVMOD

AUX

Root-0

Sarah-1 is-2

38-3

years-4

old-5

NUM

ROOT

Figure 5.230. The typed-dependency tree for ‘Sarah is 38 years old.’

PRED 'old'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

COP FORM 'is'

TENSE PRESENT

NPADVMOD PRED 'years'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

NUM PRED '38'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.231. The functional structure for ‘Sarah is 38 years old.’

287

PUNCT .-6

NSUBJ NPADVMOD

AUX

Sarah-1 is-2 feet-4

five-3

ROOT

NUM

Root-0

tall-5

Figure 5.232. The typed-dependency tree for ‘Sarah is five feet tall.’

PRED 'tall'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

COP FORM 'is'

TENSE PRESENT

NPADVMOD PRED 'feet'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

NUM PRED 'five'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.233. The functional structure for ‘Sarah is five feet tall.’

288

PUNCT .-6

NSUBJ NPADVMOD

AUX

Root-0

Celsius-5

The-1

temperature-2 is-3 degrees-4

30-3

ROOT

NUM

Figure 5.234. The typed-dependency tree for ‘The temperature is 30 degrees Celsius.’

PRED 'Celsius'

NSUBJ PRED 'temperature'

PERSON 3RD

NUMBER SINGULAR

GENDER NEUTRAL

DET FORM 'the'

TYPE DEFINITE

COP FORM 'is'

TENSE PRESENT

NPADVMOD PRED 'degrees'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

NUM PRED '30'

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.235. The functional structure for ‘The temperature is 30 degrees Celsius.’

 The dependency type “npadvmod” does not completely follow Mel’čuk’s Criterion A

because an adjective and the noun that modifies it do not always constitute a prosodic unit (e.g.,

‘feet tall’); however, the linear order is fixed. On the other hand, this dependency type follows

289

the revised Criterion A because it forms a semantic unit.

 This dependency type follows Mel’čuk’s Criterion B. The adjective determines the passive

valence of the phrase. For example, the dependency relation between ‘tall’ and ‘feet’ in the

sentence ‘Sarah is five feet tall’ shows that ‘feet’ depends on the adjective ‘tall,’ which can be

subordinated to the root node.

This dependency type also follows the revised Criterion C, because it implies a certain kind

of semantic relationship between an adjective and a noun that cannot be expressed by any other

dependency type. The prototypical dependent of this dependency type is a noun.

Mwe – multi-word modifier

The dependency type “mwe” is a subtype of “mod” for cases where the dependency head

contains “certain multi-word idioms that behave like a single function word” (de Marneffe &

Manning 2012, p.6). They state that the Stanford Parser at present uses this dependency type

for the following multi-word idioms: ‘rather than,’ ‘as well as,’ ‘instead of,’ ‘such as,’ ‘because

of,’ ‘in addition to,’ ‘all but,’ ‘such as,’ and ‘due to.’ However, the Stanford Parser seems to

have difficulties to parse sentences containing one of these multi-word idioms, because the

parsed outputs for such sentences are often incorrect. For example, the figure below shows the

parsed output for a sentence with the phrase ‘as well as.’ The noun ‘dogs’ and ‘cats’ are aligned

asymmetrically, and the first ‘as’ depends on the word ‘well’ with the dependency type “advmod”

whereas the second ‘as’ also depends on the word ‘well’ with the dependency type “mwe.” The

word ‘well’ depends on the noun ‘dogs,’ the first conjunct in this sentence, with the dependency

type “cc” (coordination).

290

Figure 5.236. The typed-dependency tree for ‘Sarah likes dogs as well as cats.’ in the Stanford

Parser output

A better typed-dependency tree is such that the conjuncts are aligned symmetrically, the phrase

‘as well as’ depends on the verb with the dependency type “mwe”, and the first and the second

‘as’ both depends on the word ‘well’ with the dependency type “mwe”, as shown below. The

fact that the first and second ‘as’ both depend on the word ‘well’ with the dependency type “mwe”

ensures that these three words are united through the same dependency types.

NSUBJ PUNCT

DOBJ

CC CONJ

ADVMOD MWE

as-6

Root-0

likes-2

Sarah-1 .-8

well-5 cats-7

as-4

dogs-3

291

PUNCT .-8

NSUBJ

DOBJ DOBJ

MWE

MWE MWE

as-4 as-6

Root

likes-2

Sarah-1 dogs-3 cats-7

well-5

Figure 5.237. A better typed-dependency tree for ‘Sarah likes dogs as well as cats.’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the “dobj” attribute has a set of values, whose elements are ‘cats’ and ‘dogs.’

PRED 'like<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

PRED 'dogs'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

DOBJ

PRED 'cats'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

MWE FORM 'well'

MWE FORM 'as'

FORM 'as'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT -TYPE DECLARAT IVE

292

Figure 5.238. The functional structure for ‘Sarah likes dogs as well as cats.’

Other multi-word expressions can be represented in the same way described above as well.

The Stanford Parser output for a sentence including the multi-word expression ‘rather than’ is

shown below.

NSUBJ PUNCT

DOBJ

CC CONJ

MWE

rather-4

Root-0

likes-2

Sarah-1 .-7

dogs-3

than-5 cats-6

Figure 5.239. The typed-dependency tree for ‘Sarah likes dogs rather than cats.’ in the Stanford

Parser output

A better typed-dependency tree for the same sentence is shown below, in which the word ‘rather’

depends on ‘likes,’ the word ‘than’ depends on ‘rather,’ and the word ‘cats’ depends on ‘than.’

The type of all of these dependencies is “mwe.” This analysis is chosen in this study, and in the

manual correction of the Stanford Parser output (see Section 7.3), the parsed output for the

‘rather than’ construction will be corrected as such.

293

NSUBJ PUNCT

DOBJ MWE

.-7

MWE

MWE

than-5

rather-4

Root

likes-2

Sarah-1 dogs-3

cats-6

Figure 5.240. A better typed-dependency tree for ‘Sarah likes dogs rather than cats.’

PRED 'like<NSUBJ,DOBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

DOBJ PRED 'dogs'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

MWE FORM 'rather'

MWE FORM 'than'

MWE PRED 'cats'

PERSON 3RD

NUMBER PLURAL

GENDER NEUTRAL

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.241. The functional structure for ‘Sarah likes dogs rather than cats.’

294

5.3.5 Parataxis

This dependency type is used to represent a parataxis relation between clauses, as shown in the

typed-dependency tree below.

PUNCT .-10

NSUBJ DOBJ

PARATAXIS

NSUBJ PUNCT

David-1 has-2 book-9

Root-0

read-7

said-5

Sarah-4 ,-6

AUX

ROOT

PUNCT DET

this-8,-3

Figure 5.242. The typed-dependency tree for ‘David has, Sarah said, read this book.’

The typed-dependency tree above is equivalent to the functional structure below.

295

PRED 'read<NSUBJ,DOBJ>'

NSUBJ PRED 'Dabid'

PERSON 3RD

NUMBERSINGULAR

GENDER MASCULINE

DOBJ PRED 'book'

PERSON 3RD

NUMBERSINGULAR

GENDER NEUTRAL

DET FORM 'this'

TYPE DEFINITE

AUX FORM 'has'

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM ','

PARATAXIS PRED 'say<NSUBJ>'

NSUBJ PRED 'Sarah'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PAST

PUNCT FORM ','

PUCNT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.243. The typed-dependency tree for ‘David has, Sarah said, read this book.’

 The dependency type “parataxis” does not follow Mel’čuk’s original Criterion A because the

verb in the main clause and the verb in the paratactic clause do not form a prosodic unit. This is

the case for the verbs ‘read’ and ‘said’ in the above example. However, the main clause verb

and the subordinate verb form a semantic unit, and therefore this type follows the revised

Criterion A proposed in Section 2.4.3.1.

 This dependency type also follows Mel’čuk’s Criterion B. In the above example, the

passive valence of the phrase ‘read … said’ is determined by the verb ‘read,’ because this verb

296

further depends on the Root.

In addition, this dependency type follows the revised Criterion C given that it implies a

certain kind of semantic relationship between verbs that cannot be expressed by any other

dependency type, and the prototypical dependent of this dependency type is a verb. Therefore,

this dependency type follows the revised Criteria C1 and C2 proposed in Section 2.4.3.3.

5.3.6. Punct

This dependency type is used to show the dependency relationship between a word and

punctuation marks. As already shown in the example typed-dependency trees, a period and a

question mark depend on the main predicate of a sentence, while a comma depends on the word

that immediately precedes it. A period specifies the statement type (STMT-TYPE for short) of

the sentence as declarative, while a question mark specifies the statement type of the sentence as

interrogative 34 . A comma has a number of functions that we will not include in the

functional-structure representation of a sentence.

5.4 Different Typed-Dependency Output Styles

The Stanford Parser provides us with five different output styles: basic dependencies, collapsed

dependencies, collapsed dependencies with propagation of conjunct dependencies, collapsed

34
Butt et al (1999, p.18) introduces the attribute-value pair STMT-TYPE DECLARATIVE as the default, and

special constructions like interrogatives and imperatives provide their own statement types. As far as written texts

are concerned, it is appropriate to consider that a period provides a sentence with the value DECLARATIVE for the

attribute STMT-TYPE, and a question mark with the value INTERROGATIVE for the same attribute, because a

sentence not in the interrogative construction can function as a question if accompanied by a question mark (e.g.,

‘OK?’, ‘Sarah read this book?’).

297

dependencies preserving a tree structure, and non-collapsed dependencies. One of these styles

is chosen as an option for parsing input text, and the default style is basic dependencies.

Different styles are employed for different purposes. For example, if the acyclic-graph

representation of dependencies is required, output styles that preserve acyclic-graph structure

must be chosen. If the focus of the analysis is the semantic relationships among content words,

collapsed dependencies provide more concise representation than the non-collapsed style. Each

output style is discussed in detail below.

5.4.1 Basic dependencies

Basic dependencies are the output style shown in Section 3.3 whereby each word in a sentence,

with the exception of the root, depends on another word. This output style preserves

acyclic-graph structure.

In the output style “basic dependencies”, relative pronouns are analyzed as they occur, and

their referents are not specified, as shown in the figure below.

298

PUNCT

NSUBJ

AUX DOBJ

DET RCMOD

DOBJ PREP

NSUBJ

in-9

Tokyo-10

ROOT-0

read-3

.-11

Sarah-1 has-2 book-5

POBJ

the-4 bought-8

which-6

David-7

Figure 5.244. The typed-dependency tree for ‘Sarah has read the book which David bought in

Tokyo.’ (in the output style “Basic dependencies”)

In this output style, conjuncts are analyzed asymmetrically. For example, in the figure below,

the second ‘book’ depends on the first ‘book.’

PUNCT .-9

NSUBJ

AUX DOBJ

DET
CC CONJ

this-4

book-8

DET

that-7

and-6

ROOT-0

read-3

Sarah-1 has-2 book-5

299

Figure 5.245. The typed-dependency tree for ‘Sarah has read this book and that book.’ (In the

output style “Basic dependencies”)

5.4.2 Collapsed dependencies

Collapsed dependencies are designed where some of dependencies are collapsed to represent

“direct dependencies between content words” (de Marneffe & Manning 2012, p.13). The

collapsed dependencies in this output style are prepositions, conjuncts, and the referents of

relative clauses. This output style does not preserve acyclic-graph structure because there is a

cyclical dependency between the head of a relative clause and the word on which the relative

clause depends. For example, in the dependency representation in the figure below, there is a

cyclical relationship between ‘bought’ and ‘book’ where ‘bought’ depends on ‘book’ with the

type “rcmod,” while ‘book’ depends on ‘bought’ with the type “dobj.” In addition to this

cyclical analysis, this output style includes an extra dependency type “rel.” This dependency

type is such that the head functions as the head of a relative clause, and the dependent functions

as the relative pronoun that introduces the relative clause (see Section 5.3.4).

300

PUNCT

NSUBJ

AUX DOBJ

DOBJ

DET RCMOD

REL

PREP_IN

NSUBJ

Tokyo-10

ROOT-0

read-3

.-11

Sarah-1 has-2 book-5

the-4 bought-8

which-6

David-7

Figure 5.246. The dependency tree for ‘Sarah has read the book which David bought in Tokyo.’

(In the output style “Collapsed dependencies”)

In this output style, prepositions are collapsed and fused with the dependency type “prep.” In

the example above, the preposition ‘in’ is fused with the dependency type “prep” to yield another

dependency type “prep_in,” and the word ‘Tokyo’ depends on ‘bought’ with this dependency

type.

In this output style, conjuncts are analyzed asymmetrically; however, the dependency between

one of the conjuncts and a conjunction is collapsed, as shown in the figure below.

301

PUNCT .-9

NSUBJ

AUX DOBJ

DET
CONJ_AND

this-4

DET

that-7

book-8

ROOT-0

read-3

Sarah-1 has-2 book-5

Figure 5.247. The typed-dependency tree for ‘Sarah has read this book and that book.’ (in the

output style “Collapsed dependencies”)

The following multi-word conjunct-relation expressions are collapsed to one dependency type

“conj_and”: ‘as well as,’ ‘not to mention,’ ‘but also,’ and ‘&.’ The following multi-word

negative conjunct-relation expressions are collapsed to one dependency type “conj_negcc”: ‘but

not,’ ‘instead of,’ ‘rather than,’ and ‘but rather.’

5.4.3 Collapsed dependencies with propagation of conjunct dependencies

This output type is an extension of the collapsed dependencies discussed in the previous section.

Similar to collapsed dependencies, the first two conjuncts in this output style are analyzed both

symmetrically and asymmetrically. In the example below, the first and second conjunct both

depend on the word ‘read.’

302

PUNCT .-9

NSUBJ

AUX DOBJ

DOBJ

DET
CONJ_AND

this-4

DET

that-7

book-8

ROOT-0

read-3

Sarah-1 has-2 book-5

Figure 5.248. The dependency tree for ‘Sarah has read this book and that book.’ (in the output

style “Collapsed dependencies with propagation of conjunct dependencies”)

5.4.4 Collapsed tree

This output style preserves the tree structure of dependencies because it ignores the cyclical

dependency between the head of a relative clause and the word on which the relative clause

depends. On the other hand, prepositions and conjuncts are collapsed to show the direct

dependency between content words, as shown in the figures below.

303

PUNCT

NSUBJ

AUX DOBJ

DET RCMOD

DOBJ PREP_IN

NSUBJ

Tokyo-10

the-4 bought-8

which-6

David-7

ROOT-0

read-3

.-11

Sarah-1 has-2 book-5

Figure 5.249. The typed-dependency tree for ‘Sarah has read the book which David bought in

Tokyo.’ (In the output style “Collapsed tree”)

PUNCT .-9

NSUBJ

AUX DOBJ

DET
CONJ_AND

this-4

DET

that-7

book-8

ROOT-0

read-3

Sarah-1 has-2 book-5

Figure 5.250. The typed-dependency tree for ‘Sarah has read this book and that book.’ (In the

output style “Collapsed tree”).

304

5.4.5 Non-collapsed dependencies

This output style is very similar to the style called basic dependencies, with the addition of the

dependency types “ref” and “rel.” The dependency type “ref” is relevant when the head is a

noun and the dependent is a relative pronoun that refers to the noun (see Section 5.3.4). In the

example below, note that the dependency between the head of the relative clause (‘bought’) and

the relative pronoun (‘which’) is typed as “dobj” and “rel” at the same time.

PUNCT

NSUBJ

AUX DOBJ

DET RCMOD

REF

PREP

NSUBJ

in-9

Tokyo-10

POBJ

the-4 bought-8

which-6

David-7

DOBJ, REL

ROOT-0

read-3

.-11

Sarah-1 has-2 book-5

Figure 5.251. The dependency tree for ‘Sarah has read the book which David bought in Tokyo.’

(In the output style “Non-collapsed tree”).

5.5 Summary

This chapter introduced the Stanford Parser (de Marneffe & Manning 2012), which is a

state-of-the-art parser used in this study for acquiring typed-dependency tree representations for

305

English sentences. Section 5.2 described the output format of the Stanford Parser. Section 5.3

provided the definition of each dependency type used in the parsed output of the Stanford Parser,

with reference to the criteria for surface syntactic relations by Mel’čuk (2009, 2011), along with

example sentences for each of the dependency types, their typed dependency trees, and the

functional structure representations equivalent to these trees. By doing this, each of the

dependency types in Stanford Dependencies is given a theoretical backbone based on Mel’čuk’s

Criteria, and the parse output of Stanford Parser is shown to be equivalent to functional-structure

representation in the framework of LFG. Section 5.4 explained the differences among the

different output styles of the Stanford Parser.

306

6. Dependency Parsing of Japanese Sentences by KNP

6.1 Introduction

The previous chapter discussed the details of the Stanford Parser for the syntactic analysis of

English sentences. This chapter introduces another parser for the Japanese language, called

KNP (Kurohashi & Nagao 1992, 1994, 1998; Kawahara & Kurohashi 2007), and also introduces

the dependency-type annotation to KNP output, along with definitions for each dependency type.

KNP is a rule-based dependency parser used for generating automatic dependency tree

representations for Japanese sentences. The accuracy of this parser was improved during the

time in which it was used for the development of Kyoto University Text Corpus ver. 4, a parsed

corpus of Japanese (Kurohashi & Nagao 1998).

Because the parsed output of KNP does not contain the type of each dependency, it is

necessary to annotate them to the parsed output; this will allow us to obtain cross-linguistic

typed-dependency tree representations of Japanese based on the KNP output. As mentioned in

Section 2.4.4, by defining each of the dependency types with respect to Mel’čuk’s criteria for

surface syntactic relations (SSyntRels in Mel’čuk’s terms), these types can be established in the

tradition of dependency grammar which was started by Tesnière and developed by Mel’čuk.

The structure of this chapter is as follows. Section 6.2 briefly introduces KNP and its

output format. Section 6.3 describes the process through which KNP parsed output is annotated

with dependency types. Section 6.4 deals with zero pronouns in elliptic sentences often used in

Japanese. In section 6.5, each dependency type used with this parser in this study is defined

with reference to the criteria for surface syntactic relations by Mel’čuk (2009, 2011). Similar to

the dependency types of English in Chapter 5, these Japanese dependency types are provided

with a traditional backbone started by Tesnière and developed by Mel’čuk.

307

6.2 The Output Format of KNP

This section introduces the output format of KNP. KNP starts with the output of JUMAN, a

morphological analyzer for Japanese (the grammatical terms and analyses used in JUMAN are

drawn from Masuoka & Takubo 1992). KNP builds on the output produced by JUMAN and

adds information about the dependency relationships among the syntactic units (or bunsetsu in

Japanese, which means ‘the joints in a sentence’) in the input sentence. In Japanese, syntactic

units are the basic unit of syntactic dependency within a sentence (Hashimoto 1948). Each

syntactic unit has a head, and the type of (or absence of) particle following the head determines

the unit’s grammatical function in the sentence (Nomura & Koike, 1992). For example, the

sentence (6.1) ‘Watashino aniga kono honwo yonda (My brother read this book)’ has five

syntactic units.

(6.1)

Watashi-no ani-ga kono hon-wo yon-da35

I-postp elder.brother-postp this book-postp read-past

‘My brother read this book.’

35
In this study, Japanese sentences are presented in the following format. In the first line, one sentence is

presented with one space between syntactic units, and with a hyphen between a word and a postposition or a

morpheme. In the second line, the gloss for each word, postposition or morpheme is indicated in italics. The last

line provides the English translation of the Japanese sentence. The sentence-ending period in Japanese ‘。’ and

the phrase-segmenting comma ‘、’ are not used in this dissertation.

308

(6.2) is the KNP parsed output for this sentence, and (6.3) is a simplified English translation of

this KNP output, which contains information relevant to the topic here.

(6.2)

S-ID:1 KNP:4.0-CF1.1 DATE:2013/01/01 SCORE:-8.15215

* 1D <体言><係:ノ格>

+ 1D <体言><係:ノ格>

私 わたし 私 名詞 6 普通名詞 1 * 0 * 0 “代表表記:私/わたし 漢字読み:訓 カテゴリ:人”

の の の 助詞 9 接続助詞 3 * 0 * 0 NIL

* 4D <体言><係:未格>

+ 4D <体言><係:未格>

兄 あに 兄 名詞 6 普通名詞 1 * 0 * 0 “代表表記:兄/あに 漢字読み:訓 カテゴリ:人 ドメイン:家庭・暮ら

し”

は は は 助詞 9 副助詞 2 * 0 * 0 NIL

* 3D <係:連体>

+ 3D <係:連体>

この この この 指示詞 7 連体詞形態指示詞 2 * 0 * 0 “疑似代表表記 代表表記:この/この”

* 4D <体言><係:ヲ格>

+ 4D <体言><係:ヲ格>

本 ほん 本 名詞 6 普通名詞 1 * 0 * 0 “代表表記:本/ほん 漢字読み:音 カテゴリ:人工物-その他;抽象物”

を を を 助詞 9 格助詞 1 * 0 * 0 NIL

* -1D <用言:動><レベル:C><ID:（文末）><係:文末>

+ -1D <用言:動><レベル:C><ID:（文末）><係:文末><格解析結果:読む/よむ:動 2:ガ/N/兄/1/0/1;ヲ/C/本/3/0/1;

ニ/U/-/-/-/-;ト/U/-/-/-/-;デ/U/-/-/-/-;カラ/U/-/-/-/-;ヨリ/U/-/-/-/-;マデ/U/-/-/-/-;ヘ/U/-/-/-/-;時間/U/-/-/-/-;外の関係

/U/-/-/-/-;ノ/U/-/-/-/-;修飾/U/-/-/-/-;トスル/U/-/-/-/-;ニツク/U/-/-/-/-;ニツヅク/U/-/-/-/-;トイウ/U/-/-/-/-;ニアワセ

ル/U/-/-/-/-;ニヨル/U/-/-/-/-;ニトル/U/-/-/-/->

309

読んだ よんだ 読む 動詞 2 * 0 子音動詞マ行 9 タ形 10 “代表表記:読む/よむ”

。 。 。 特殊 1 句点 1 * 0 * 0 NIL

EOS

(6.3)

* 1D

watashi noun

no particle

* 2D

ani noun

wa particle

* 3D

kono determiner

* 4D

hon book

wo particle

* -1D

yonda verb

The first line ‘* 1D’ indicates that the syntactic unit ‘watashino’ depends on the first syntactic

unit ‘aniwa’ (KNP starts counting the number of syntactic units with zero; therefore, the syntactic

unit ‘watashino’ is the 0th syntactic unit of this sentence). The second line ‘watashi noun’ and

the third line ‘no particle’ indicates that the 0th syntactic unit consists of two morphemes where

the first morpheme ‘watashi’ is a noun and the second morpheme ‘wa’ is a particle. Thus, the

KNP output indicates: (1) the syntactic units in the sentence; (2) the morphemes in each syntactic

unit; and (3) the dependency relationships among these syntactic units.

310

6.3 Dependency-Type Annotation to KNP Output

This section introduces the process to annotate dependency types for each dependency

relationship among the syntactic units in the output of KNP. Unlike the output of the Stanford

Parser, the output of KNP does not specify the grammatical relations among syntactic units (such

as “nsubj” or “rcmod”). In order to have cross-linguistic functional-structure representation for

the Japanese language, Oya (2010a) introduced an automatic grammatical-relation annotation

method for the output of KNP. This method employs the part-of-speech information for each

morpheme in a syntactic unit so that all syntactic units are divided into the following four

categories (Oya 2010a, p.212):

(6.4)

Particled inflective units: units which have at least one particle, and which have an inflecting

element (verb, adjective, verbal suffix or copula) as their head

Particled non-inflective units: units which have at least one particle, and which do not have an

inflecting element as their head.

Non-particled, inflective units: units which have no particle, and which have an inflecting unit

as their head.

Non-particled, non-inflective units: units which have no particle, and which do not have an

inflecting element as their head.

The syntactic units in each category are further divided into subcategories according to the

particle or to their inflection form. One dependency type is assigned for each of the

311

subcategories. For example, the syntactic unit ‘watashino’ in the sentence (6.1) is a particled

non-inflective unit. The particle is ‘no,’ which functions to constitute a postpositional unit.

Therefore, it is assigned the dependency type ‘postp_no.’ It depends on the syntactic unit

‘aniwa.’ The dependency relationship between ‘watashino’ and ‘aniwa’ is represented in the

Stanford-Parser style triple shown below in (6.5).36

(6.5)

postp_no(aniwa-2, watashino-1)

(6.6) below is the Stanford-Parser style triples for the sentence (6.1) as a whole.

(6.6)

postp_no(aniwa-2, watashino-1)

topic(yonda-5, aniwa-2)

det(honwo-4, kono-3)

postp_wo(yonda-5, honwo-4)

root(root-0, yonda-5)

Dependency-type annotation for KNP output is automatically processed by an original Ruby

script (see Appendix V).

36
The numbering for syntactic unit in this study starts with zero, like Oya(2010a), but this study sets the root unit

as 0th syntactic unit.

312

6.4 Treatment of Zero Pronouns37

This section deals with the treatment of zero pronouns in Japanese. Japanese uses elliptic38

sentences quite often. Both in spoken and in written Japanese, it is common to find sentences

whose main predicate lacks nouns with its core grammatical functions such as subject or object

(Kanatani 2002; Mikami 1972; Toyama 1973, among others). In addition to this, the main

predicate of the sentence does not have morphological means to indicate the person and the

number of the subject, unlike head-marking languages such as Latin or Russian. In terms of

functional well-formedness in the framework of LFG (see Section 3.2.2), these elliptic sentences

are problematic because their functional structures seem to violate the completeness constraint.

Oya (2010a) argued that the completeness constraint is observed in such elliptic sentences

because they contain zero pronouns which are the values of the core grammatical-function

attributes. In this section, we look at examples of sentences containing zero pronouns which

belong to different semantic types, and explain how the completeness constraint is observed in

the functional structures for these elliptic sentences.39

6.4.1 Examples of “elliptic” sentences

It is often the case that Japanese sentences do not have overt subjects or overt objects. For

37
This section is based on Oya (2013d) and Oya (2014).

38
Actually, it will be argued later in Section 6.4.2 that they are not “elliptic” sentences, because they lack nothing.

The term “ellipsis” and “elliptic sentences” are used for a while in this section, in order to avoid misunderstandings.

39
Oya (2010a) treated zero pronouns as nodes in the typed-dependency tree for an elliptic sentence. This study,

however, does not do so, because it assumes that what is not syntactic should not enter into syntactic representations.

Zero pronouns are concerned with verbal semantics that is independent from syntax, and their referents are specified

contextually or conventionally.

313

example, consider the following dialogue (6.7).

(6.7)

Sarah: David, have you read this book?

David: Yes, I have.

Sarah: Is this interesting?

David: Yes, it is.

The Japanese translation of this dialogue is shown in (6.8). Each sentence in (6.8) is followed

by an English gloss in parentheses.

(6.8)

Sarah: David, kono hon yonda?

(Sarah: David, this book read-past)

David: Un, yondayo.

(David: Yes read-past-ending)

Sarah: Omoshiroi?

(Sarah: interesting)

David: Un, omoshiroiyo.

(David: Yes interesting-ending)

There is no overt subject in all the sentences in the Japanese translation in (6.8). The absence

of overt subjects does not pose any problem to native speakers of Japanese, because it is obvious

for them from the context who read what. In this sense, native speakers of Japanese interpret

sentences with more reference to the context than native speakers of English, which requires the

314

presence of pronouns.40

The absence of overt subjects is an unmarked phenomenon in Japanese. Oya (2010a)

reported that about 96% of the subjects of all the verbs in 500 sentences which are randomly

selected from Kyoto University Text Corpus (Kurohashi & Nagao 1998) are not overt, or

expressed as a topic (a noun with the topic marker ‘–wa’). See Section 6.4.4 for the reason why

a noun with ‘-wa’ depending on a verb is not the subject of the verb.

We also have to notice that the noun ‘hon (book)’ in the first utterance by Sarah lacks the

postposition which is often considered as the object marker, yet it is natural to native speakers’

ears. If the postposition ‘-wo’ is the only means to indicate the grammatical function OBJ, it is

unclear how to interpret the noun ‘hon’ in the sentence as the object of the verb ‘yonda (read in

the past tense).’ In this sense, it is safe to argue that postpositions in Japanese are not the only

means to indicate the grammatical functions of the nouns in a sentence.

6.4.2 Functional-structure representation of elliptic Japanese sentences

As indicated in the previous section, these elliptic sentences in Japanese seem to violate the

completeness constraint, which states that a predicate and all its arguments must be present in a

functional structure (Kaplan & Bresnan 1982, pp.211-212). For example, the subject and the

object are absent from the sentence ‘yondayo (I have read it)’ in David’s first utterance in the

dialogue (6.6). The functional structure for this sentence would be like Figure 6.1 below.

This functional structure violates the completeness constraint, because the value of the SUBJ

40
Oya (2013d) points out that the frequent use of zero pronouns in Japanese language seems to reflect the

high-context culture (Hall 1976) of Japanese people, while the frequent use of pronouns in English language seems

to reflect the low-context culture of English-speaking people.

315

attribute and the value of the OBJ attribute are both missing; they are required by the verb

‘yondayo.’

PRED 'yonda<SUBJ, OBJ>'

SUBJ []

OBJ []

TENSE PAST

Figure 6.1. The functional structure for ‘yondayo.’ (Oya 2013d, Oya 2014)

However, the fact that this sentence is natural to native speakers of Japanese suggests that the

functional structure for an elliptic sentence such as ‘yondayo’ is actually complete and there are

no missing elements; hence, we should not use the term ‘ellipsis’ for sentences like ‘yondayo.’

Oya (2010a) argued that the presence of zero pronouns fills the gap. The lexical

information for the verb ‘yondayo’ is as follows. This lexical entry contains the equations for

the subject zero pronouns and for the object zero pronouns.

(6.8)

(↑PRED)= ‘yonda<SUBJ,OBJ>’

(↑SUBJ PRED)= ‘PRO’

(↑SUBJ FORM)=ZERO

(↑OBJ PRED)= ‘PRO’

(↑OBJ FORM)=ZERO

(↑TENSE)=PAST

316

(↑ENDING)= ‘yo’41

The claim that verbal predicates contain zero pronouns for core arguments (subjects, direct

objects and indirect objects) has been made in Bresnan (1982, p.385) and Bresnan (2001, p.295),

and other works cited there. For example, Bresnan (2001, p.295) states that “null pronominals

are provided as a lexical default to core arguments of verbal argument structures.” Bresnan’s

(2001) term “null pronominals” is equivalent to zero pronouns.

This study is different from them in a number of ways. First, this study claims that

Japanese core arguments are zero pronouns by default; they are better considered to be not only

“lexical default,” but also discourse default. This claim is supported by the observation in Oya

(2010a) that about 96% of subjects of the verbs in 500 sentences randomly chosen from a text

corpus are zero pronouns, as mentioned in the previous section. Second, this study also claims

that the postpositions on overt noun phrases such as ‘-ga,’ ‘-wo,’ or ‘-ni,’ which are considered to

be so-called case markers for core arguments, actually do not function as case markers, because

they have functions other than expressing subjects, direct objects, or indirect objects, and

because they can be absent, especially in speaking (e.g., ‘Boku kono hon yonda’ I have read this

book).

The typed-dependency tree for ‘yondayo.’ is shown below.

41
The ‘-yo’ is a sentence-final particle which indicates that the speaker asserts the meaning of the sentence to the

listener (Ono & Nakagawa 1997).

317

ROOT

PUNCT

Root

yondayo-1

'.'

Figure 6.2. The typed-dependency tree for ‘yondayo.’ (Oya 2013d, Oya 2014)

The typed-dependency tree above is equivalent to the functional structure below. Notice that

this functional structure contains the subject zero pronoun and the object zero pronoun; therefore,

this functional structure observes the completeness constraint.

PRED 'yonda<SUBJ, OBJ>'

SUBJ PRED 'PRO'

FORM ZERO

OBJ PRED 'PRO'

FORM ZERO

TENSE PAST

ENDING 'YO'

PUNCT FORM '.'

ROOT STMT-TYPEDECLARATIVE

Figure 6.3. The functional structure for ‘yondayo’ with zero pronouns. (Oya 2013d, Oya 2014)

The zero pronouns are pronouns without phonological features. The antecedent of a given zero

pronoun is determined by the context, inter-clausally or intra-clausally. In the sentence

‘yondayo’ in the dialogue above, the antecedent of the zero pronouns are determined

inter-clausally. In addition to this, a verb with no core argument overtly depending on it can

function as a one-word sentence, as far as the antecedents of its zero pronouns are determined

318

inter-clausally.

If, on the other hand, overt core arguments depend on a verb, they function as the intra-clausal

antecedents of the zero pronouns of the verb. They also have the function of making explicit

the meaning of the zero pronouns. Instances of intra-clausal antecedents of zero pronouns will

be illustrated in next sections.

6.4.3 Semantic types of Japanese zero pronouns

This section deals with the different semantic types of Japanese zero pronouns. Their semantic

types are based on Tomioka (2003, p.324), which claims that Japanese zero pronouns (null

pronouns in his terms) have the same semantic functions that the English overt pronouns have.

(6.9) below is the list of the semantic functions:

(6.9)(= (9) in Tomioka 2003, p.324)

a. Referential

b. Bound variable

c. Unselectively bound variable

d. Pronouns with pronoun-containing antecedents

e. Indefinite pronouns

f. Property anaphora

319

6.4.3.1 Referential zero pronouns

Example (6.10) contains referential zero pronouns (shown as PRO) which function as either as

the subject or the direct object of the verb ‘sasotta (someone invited someone)’.

(6.10)

Sarah-wa David-wo sasot-ta. John-mo sasotta42.

Sarah-topic David-postp invite-past John-focus invite-past

‘Sarah invited David. She also invited John.’ or ‘Sarah invited David. John also invited him.’

The second sentence has two interpretations: one is that Sarah also invited John; the other is that

John also invited David. This ambiguity is due to the fact that a noun with the focus marker

‘-mo’ can express either the subject of the object of a verb, and the zero pronoun in the second

sentence can refer to either the subject or the object of the first sentence. The reader/listener of

this sentence must judge whom this zero pronoun refers to, based on the context where it is

uttered.

The typed-dependency tree for the sentence above is shown below. Notice that there is no

node for ‘PRO.’ This is because this ‘PRO’ is considered to be registered in the lexical entry of

the verb ‘sasotta (someone invited someone),’ as indicated in the previous section. Notice that

this representation does not yield these two different interpretations mentioned above.

42 Oya (2014) included a PRO in each of the example sentences, yet it is not included in the example sentences in

this section, in order to highlight the property of a PRO that it has no phonological feature.

320

ROOT ROOT

TOPIC POSTP_wo FOCUS

PUNCT PUNCT

Sarah-wa . .

Root-0

sasotta sasotta

John-moDavid-wo

Figure 6.4. The typed-dependency tree for ‘Sarahwa Davidwo sasotta. Johnmo sasotta.’

The typed-dependency tree above is equivalent to the functional structure below, and it is this

functional structure where these two interpretations above are differentiated. Notice which

index is assigned to which elements in the functional structure.

321

PRED 'sasotta<SUBJ, OBJ>'

SUBJ PRED 'PROi'

FORM ZERO

OBJ PRED 'PROj'

FORM ZERO

TOPIC PRED 'Sarahi'

POSTP_wo PRED 'Davidj'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPEDECLARATIVE

PRED 'sasotta<SUBJ, OBJ>'

SUBJ PRED 'PROi'

FORM ZERO

OBJ PRED 'PROk'

FORM ZERO

FOCUS PRED 'Johnk'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPEDECLARATIVE

Figure 6.5. The functional structure for ‘Sarah-wa David-wo sasotta. John-mo sasotta.’ (meaning:

‘Sarah invited David. She also invited John.’)

In the local functional structure for the first sentence, the index ‘i’ is assigned to the topic ‘Sarah’

and the subject zero pronoun of the verb ‘sasotta.’ In the same functional structure, the index ‘j’

is assigned to the postp_wo ‘David’ and the object zero pronoun of the same verb. This means

that the subject zero pronoun of the verb ‘sasotta’ in the first sentence refers to ‘Sarah,’ and the

322

object zero pronoun refers to ‘David.’ In the local functional structure for the second sentence,

the index ‘i’ is assigned to the subject zero pronoun of the verb ‘sasotta’ and the index ‘k’ is

assigned to the focus ‘John’ and the object zero pronoun of the same verb. This means that the

subject zero pronoun of the verb ‘sasotta’ in the functional structure for the second sentence

refers to ‘Sarah’ and the object zero pronoun of the same verb refers to ‘John’; therefore, the

second sentence means that Sarah also invited John.

The following functional structure is also equivalent to the typed-dependency tree above, yet

with a different interpretation. Notice that in the functional structure for the second sentence

the index ‘k’ is assigned to the subject zero pronoun of the verb ‘sasotta’ and to the focus ‘John,’

and the index ‘j’ is assigned to the object zero pronoun of the ‘sasotta’ in the first sentence and to

the object zero pronoun of the ‘sasotta’ in the first sentence. This means that the subject zero

pronoun of the verb ‘sasotta’ in the functional structure for the second sentence refers to ‘John’

and the object zero pronoun of the same verb refers to ‘David’; therefore, the second sentence

means that John also invited David.

323

PRED 'sasotta<SUBJ, OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

TOPIC PRED 'Sarah i'

POSTP_wo PRED 'Davidj'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPEDECLARATIVE

PRED 'sasotta<SUBJ, OBJ>'

SUBJ PRED 'PRO k'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

FOCUS PRED 'Johnk'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPEDECLARATIVE

Figure 6.6. The functional structure for ‘Sarah-wa David-wo sasotta. John-mo sasotta.’ (meaning:

‘Sarah invited David. John also invited him.’)

These examples above illustrate that the referential zero pronouns of a verb can refer something

inter-clausally or intra-clausally, and that this flexibility causes ambiguous interpretations.

6.4.3.2 Zero pronouns as bound variables

Example (6.11) contains a zero pronoun as a bound variable which functions as the subject of the

324

verb ‘okorareta (someone was scolded at by someone)’. The construction ‘dono ~mo’ means

‘every ~’ if the sentence is affirmative, or ‘no ~’ if the sentence is negative.

(6.11)

Dono gakusei-mo Sarah-ni okorare-ta-to it-ta.

Which student-focus Sarah-postp be.scolded.at-past-ccomp say-past

‘Every student said that he or she was scolded at by Sarah.’

The typed-dependency tree for the sentence above is shown below.

FOCUS PUNCT

CCOMP

DET POSTP_ni

.

Root

itta

gakusei-mo

dono

okorare-ta-to

Sarah-ni

Figure 6.7. The typed-dependency tree for ‘Dono gakusei-mo Sarah-ni okorare-ta-to itta (Every

student said that he or she was scolded at by Sarah).’ (Oya 2014)

The typed-dependency tree above is equivalent to the functional structure below. The index ‘i’

is assigned to the subject zero pronoun of ‘itta (someone said something),’ the subject zero

pronoun of ‘okorareta (someone was scolded at by someone),’ and the local functional structure

which is the value of the attribute ‘FOCUS.’ The word ‘gakusei (student)’ with the focus

marker ‘-mo’ is modified by an interrogative determiner ‘dono (which),’ and this construction

means ‘every student’ as mentioned before. Therefore, these zero pronouns with the index ‘i’ in

325

the functional structure below refer to the every student.

PRED 'itta<SUBJ, CCOMP>'

SUBJ PRED 'PRO i'

FORM ZERO

CCOMP PRED 'okorareta<SUBJ>'

SUBJ PRED 'PRO i'

TYPE ZERO

POSTP_ni PRED 'Sarah'

TENSE PAST

VOICE PASSIVE

FOCUS PRED 'gakusei'

DET FORM 'dono'

TYPE INTERROGATIVE i

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.8. The functional structure for ‘Dono gakusei-mo Sarah-ni okorare-ta-to itta. (Every

student said that he or she was scolded at by Sarah)’ (Oya 2014)

6.4.3.3 Zero pronouns as unselectively bound variables

Zero pronouns function as unselectively bound variables when their antecedents are not referential,

and they appear beyond the scope of their antecedents (Tomioka 2003, p. 322). Oya (2014) interprets

this as follws: “zero pronouns of this type refer to a definite entity, while their antecedents refer to an

indefinite entity.” Example (6.12) contains a zero pronoun as an unselectively bound variable.

326

(6.12)

Sarah-wa David-ni atarashii hon-wo kat-ta-ga,

Sarah-topic David-postp new book-postp buy-past-advcl,

David-wa suguni nakushi-ta.

David-topic immediately lose-past

‘Sarah had bought a new book for David, but he immediately lost it.’

The typed-dependency tree for the sentence above is shown in the figure below.

ADVCL PUNCT

TOPIC ADVMOD

TOPIC POSTP_wo

POSTP_ni

AMOD

,

David-ni hon-woSarah-wa

atarashii

PUNCT

Root

nakushi-ta

.suguniDavid-wakat-ta-ga

Figure 6.9. The typed-dependency tree for ‘Sarah-wa David-ni atarashii hon-wo kat-ta-ga,

David-wa suguni nakushita. (Sarah had bought a new book for David, but he immediately lost

it.)’ (Oya 2014)

The typed-dependency tree above is equivalent to the functional structure below43. Notice that

43
Notice that the verb “katta” is analyzed as a transitive verb that takes the subject and the direct object, not as a

ditransitive verb which takes the subject, the direct object and the indirect object. It is not an essential syntactic

327

the index ‘i’ is assigned to ‘Sarah’ and the subject zero pronoun of the verb ‘kattaga (someone

bought something, but …).’ In addition, the index ‘j’ is assigned to the object zero pronoun of

the verb ‘nakushita,’ the object zero pronoun of the verb ‘kattaga,’ and the local functional

structure that is the value of the attribute POSTP_wo. Finally, the index ‘k’ is assigned to

‘David’ and the subject zero pronoun of the verb ‘nakushita (someone lost something).’

issue whether the “David-ni” is an argument that is subcategorized for by the verb “katta”, because the

(di-)transitivity of a given verb is an issue of language use, or a matter of convention. I strongly believe that we

should do away with any attempt to treat something not syntactic as syntactic.

328

PRED 'nakushita<SUBJ, DOBJ>'

SUBJ PRED 'PROk'

FORM ZERO

DOBJ PRED 'PROj'

FORM ZERO

ADVCL PRED 'katta<SUBJ,OBJ>'

SUBJ PRED 'PRO i'

TYPE ZERO

OBJ PRED 'PRO j'

TYPE ZERO

TOPIC PRED 'Sarahi'

POSTP_ni PRED 'Davidk'

POSTP_wo PRED 'hon'

AMOD PRED 'atarashii' j

TENSE PAST

TOPIC PRED 'Davidk'

ADVMOD PRED 'suguni'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.10. The functional structure for ‘Sarah-wa David-ni atarashii hon-wo kat-ta-ga,

David-wa suguni nakushita. (Sarah had bought a new book for David, but he immediately lost

it.)’ (Oya 2014)

6.4.3.4 Zero pronouns with a pronominal-containing antecedent.

Example (6.13) contains a zero pronoun with a pronominal-containing antecedent.

329

(6.13)

Sarah-wa jibun-no ie-wo ut-ta. David-mo ut-ta.

Sarah-topic self-postp house-postp sell-past David-focus sell-past

‘Sarah sold her own house. David did so, too.’

Root

ROOT ROOT

TOPIC

POSTP_wo PUNCT FOCUS PUNCT

. .

POSTP_no

utta

David-mo

utta

Sarah-wa ie-wo

jibun-no

Figure 6.11. The typed-dependency tree for ‘Sarawa jibuno iewo utta. Davidmo utta (Sarah sold

her own house. David did so, too).’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the index ‘i’ is assigned to the subject zero pronoun of the verb ‘utta (someone sold something)’

in the first sentence, and also to the topic ‘Sarah’ in the first sentence. The subject zero pronoun

in the first sentence refers to ‘Sarah’ intra-clausally.

On the other hand, the index ‘j’ is assigned to the local functional structure which is the value

of the attribute POSTP_wo in the first sentence, the object zero pronoun of the verb ‘utta’ in the

first sentence, and the object zero pronoun of the verb ‘utta’ in the second sentence. The object

zero pronoun in the second sentence refers to the local functional structure inter-clausally.

Notice that this object zero pronoun does not refer to ‘ie (house).’ If it does, then it must be

interpreted as referring to an indefinite house.

330

Lastly, the index ‘k’ is assigned to the subject zero pronoun of the verb ‘utta’ in the second

sentence, and also to the focus ‘David’ in the second sentence. The subject zero pronoun refers

to ‘David’ intra-clausally.

PRED 'utta<SUBJ,OBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

OBJ PRED 'PROj'

TYPE ZERO

TOPIC PRED 'Sarahi'

POSTP_wo PRED 'ie'

POSTP_no PRED 'PRO'

FORM 'jibun'

TYPE REFLEXIVE j

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

PRED 'utta<SUBJ,OBJ>'

SUBJ PRED 'PROk'

TYPE ZERO

OBJ PRED 'PROj'

TYPE ZERO

FOCUS PRED 'Davidk'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.12. The functional structure for ‘Sarawa jibuno iewo utta. Davidmo utta.’

Oya (2014) argued that the reflexive pronoun ‘jibun’ cannot be assigned a unique index. In the

331

example functional structure above, ‘jibun’ refers to ‘Sarah’ in the first clause; hence, ‘jibun’ should be

indexed “i”. On the other hand, ‘jibun’ is also contained in the local functional structure in the second

clause, and this local functional structure is referred to by the object zero pronoun in the second clause.

Then, ‘jibun’ comes to refer to the subject zero pronoun, which refers to ‘David’; hence, ‘jibun’ should be

indexed “k.” For the binding of reflexive pronouns with respect to the notion of f-structure nucleus, see

Bresnan (2001, p.215).

6.4.3.5 Zero pronouns as indefinite pronouns

Example (6.14) contains a zero pronoun as an indefinite pronoun.

(6.14)

Sarah-wa kuruma-wo ut-ta. David-mo ut-ta.

Sarah-topic car-postp sell-past David-focus sell-past

‘Sarah sold a car. David also sold one.’

Root

ROOT ROOT

TOPIC

POSTP_wo PUNCT FOCUS PUNCT

. .

utta

David-mo

utta

Sarah-wa kuruma-wo

Figure 6.13. The typed-dependency tree for ‘Sarawa kurumawo utta. Davidmo utta.’

The typed-dependency tree above is equivalent to the functional structure below. Notice that no

index is assigned to the object zero pronoun of the verb ‘utta’ in the second sentence. This is

332

because the object zero pronoun of the first sentence refers to an entity (a car in the example

above) which is different from what the object zero pronoun of the second sentence refers to;

Sarah sold a car which is not the same car that David sold. In this case, the object zero pronoun

in the second sentence functions as an indefinite pronoun referring to an entity whose identity

can be interpreted through the context.

PRED 'utta<SUBJ,OBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

OBJ PRED 'PROj'

TYPE ZERO

TOPIC PRED 'Sarahi'

POSTP_wo PRED 'kuruma j'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

PRED 'utta<SUBJ,OBJ>'

SUBJ PRED 'PROk'

TYPE ZERO

OBJ PRED 'PRO'

TYPE ZERO

FOCUS PRED 'Davidk'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.14. The functional structure for ‘Sarawa kurumawo utta. Davidmo utta.’

333

6.4.3.6 Zero pronouns as property anophora

Example (6.15) contains a zero pronoun as a property anaphor. Property anaphors are such that

are modified by a numerical classifier. The construction ‘~shika V-nai’ (V stands for a verb)

means ‘do only ~.’ The expression ‘issatsu-shika yoma-nai’ means ‘someone reads only one

book.’

(6.15)

Sarah-wa shuu-ni san-satsu hon-wo yomu-ga,

Sarah-topic week-postp three-books book-postp read-advcl,

David-wa issatsu-shika yoma-nai.

David-topic one.book-focus read-neg

‘Sarah reads three books a week, but David reads only one (a week).’

ADVCL PUNCT

TOPIC FOCUS

TOPIC POSTP_wo

ADVMOD

POSTP_ni

David-wayomu-ga

shuuni

PUNCT

Root

yomanai

.issatsushika

,

sansatsu hon-woSarah-wa

Figure 6.15. The typed-dependency tree for ‘Sarawa shuuni sansatsu honwo yomuga, Davidwa

issatsushika yomanai.’ (Oya 2014)

334

The typed-dependency tree above is equivalent to the functional structure below. The index ‘j’

is assigned to the object zero pronoun of the verb ‘yomu (someone reads something)’ in the

adverbial clause, and to the word ‘hon (book)’ which is the value of the POSTP_wo attribute.

However, the index ‘j’ is not assigned to the object zero pronoun of the verb ‘yomanai (someone

does not read something).’ This is because the focus of this sentence is to express their habit,

not the identity of the books they read, and it is natural to interpret this sentence that Sarah and

David read different books.

PRED 'yomanai<SUBJ, DOBJ>'

SUBJ PRED 'PROk'

FORM ZERO

DOBJ PRED 'PRO'

FORM ZERO

ADVCL PRED 'yomu<SUBJ,OBJ>'

SUBJ PRED 'PRO i'

TYPE ZERO

OBJ PRED 'PRO j'

TYPE ZERO

TOPIC PRED 'Sarahi'

ADVMOD PRED 'sansatsu'

POSTP_ni PRED 'shuuni'

POSTP_wo PRED 'honj'

TENSE PRESENT

TOPIC PRED 'Davidk'

FOCUS PRED 'issatsu'

TENSE PAST

NEG +

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.16. The functional structure for ‘Sarawa shuuni sansatsu honwo yomuga, Davidwa

335

issatsushika yomanai.’ (Oya 2014)

6.4.4 Zero pronouns and topic

Oya (2010a) argued that the determination of the antecedent of a given zero pronoun is relevant

to the ambiguity of the topic marker ‘-wa.’ Consider the following tree for an example sentence

‘Bokuwa unagida.’

Root

unagida-2

bokuwa-1

ROOT

.-3

PUNCTTOPIC

Figure 6.17. The typed-dependency tree for ‘Bokuwa unagida.’

Kuno (1972) pointed out that the Japanese particle ‘-wa’ has a thematic function and a

contrastive function because a noun with ‘-wa’ can be interpreted either thematically or

contrastively. The essence of Oya’s (2010a) argument is that a thematic ‘-wa’ noun is the

antecedent of the zero-pronoun subject, while a contrastive ‘-wa’ noun is not the antecedent of

the zero-pronoun subject; in the example above, the subject zero pronoun and the personal

pronoun ‘boku’ refer to the same person. Therefore, the Japanese sentence ‘Bokuwa’ unagida.’

with thematic interpretation of ‘wa’ means ‘I am an eel’ in English. This is indicated by the

same index ‘i’ on the ‘PRO’ in SUBJ and on the ‘PRO’ in TOPIC.

336

PRED 'unagi<SUBJ>'

SUBJ PRED 'PROi'

FORM ZERO

TOPIC PRED 'PROi'

FORM 'boku'

PERSON 1ST

NUMBER SINGULAR

STYLE INFORMAL

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.18. The functional structure for ‘Bokuwa unagida.’ with a thematic ‘-wa’ noun

On the other hand, Oya (2010a) argued that a contrastive ‘-wa’ noun is not the antecedent of

the zero-pronoun subject. This means that the subject zero pronoun and the personal pronoun

‘boku’ refer to different entities. The ‘PRO’ in TOPIC refers to the speaker, while the ‘PRO’ in

SUBJ refers to something other than the speaker. Therefore, the Japanese sentence ‘Bokuwa

unagida.’ with a contrastive interpretation of ‘wa’ means ‘As for me, it is an eel’ in English.

This is indicated by the different indices ‘i’ on the subject zero pronoun and ‘j’on the ‘PRO’ in

TOPIC.

PRED 'unagi<SUBJ>'

SUBJ PRED 'PROi'

FORM ZERO

TOPIC PRED 'PROj'

FORM 'boku'

PERSON 1ST

NUMBER SINGULAR

STYLE INFORMAL

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

337

Figure 6.19. The functional structure for ‘Bokuwa unagida’ with a contrastive ‘-wa’ noun

In addition to the thematic ‘-wa’ noun, other postpositional nouns can also function as the

inter-clausal antecedent for a core-argument zero pronoun. For example, consider the sentence

‘Kono honwa bokuga yonda (As for this book, I have read it).’ The typed-dependency tree for

this sentence is shown below.

ROOT

TOPIC PUNCT

POSTP_GA

DET

Root-0

yonda-4

bokuga-3honwa-2

Kono-1

.-5

Figure 5.20. The typed-dependency tree for ‘Kono honwa bokuga yonda.’

The typed-dependency tree above is equivalent to the functional structure below. The noun

‘honwa’ is the antecedent for the object zero pronoun of the verb ‘yonda,’ and the index ‘j’

indicates this anaphoric relation. In addition, the postpositional phrase ‘bokuga’ is the

antecedent for the subject zero pronoun of the verb ‘yonda,’ and the index ‘i’ indicates this

anaphoric relation.

338

PRED 'yonda<SUBJ, OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

TOPIC PRED 'hon'

DET PRED ''kono' j

POSTP_GA PRED 'PROi'

FORM 'boku'

PERSON 1ST

NUMBER SINGULAR

STYLE INFORMAL

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.21. The functional structure for ‘Kono honwa bokuga yonda (As for this book, I have

read it).’

Nouns without postposition can be the antecedent for a zero pronoun. For example,

consider the sentence ‘Kono hon yonda?’ in the dialogue (6.31). The typed-dependency tree for

this sentence is shown below. The phrase ‘hon’ depends on the verb ‘yonda’ with the

dependency type “advmod” because the phrase has no particle.

ROOT

ADVMOD PUNCT

DET

Kono-1

?-4

Root-0

yonda-3

hon-2

339

Figure 5.22. The typed-dependency tree for ‘Kono hon yonda?’

The noun ‘hon’ does not have a postposition in this sentence. It is also the antecedent for

the object zero pronoun. Contextual judgment prevents the hearer from interpreting ‘hon’ as

the antecedent for the subject zero pronoun because books cannot read anything.

PRED 'yonda<SUBJ, OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

ADVMOD PRED 'hon'

DET PRED ''kono' j

TENSE PAST

PUNCT FORM '?'

ROOT STMT-TYPE INTERROGATIVE

Figure 5.23. The functional structure for ‘Kono hon yonda?’

The existence of zero pronouns is also relevant for cases in which the postposition ‘-ga’ and

‘-wo’ are interchangeable in a sentence. For example, Masuoka & Takubo (1997, p.75) state

that nouns with ‘-ga’ can express the theme of an action the speaker is able to do (e.g.,

‘Watashiwa eigoga hanaseru,’ which means ‘I can speak English’), or the theme of an action the

speaker wants to do (e.g., ‘Watashiwa eigoga hanashitai,’ which means ‘I want to speak in

English’). The ‘-ga’ can be replaced by ‘-wo.’ For example, it is possible to say either

‘Watashiwa eigoga hanaseru’ or ‘Watashiwa eigowo hanaseru.’ Different particles imply

different meanings; the use of ‘-ga’ in such constructions implies that the speaker is emphasizing

the noun with ‘-ga.’ Therefore, the postposition ‘-ga’ does not have the function to indicate the

340

subject of a verb; rather, its function is determined by the context in which the sentence

containing it is used.44

(6.16)

a. Watashiwa eigoga hanaseru.

b. Watashiwa eigowo hanaseru.

The lexical information for ‘hanaseru’ is as follows. The subject and object are lexically

specified as zero pronouns.45

(6.17)

(↑PRED)= ‘hanaseru<SUBJ,OBJ>’

(↑SUBJ PRED)= ‘PRO’

(↑SUBJ FORM)=ZERO

(↑OBJ PRED)= ‘PRO’

(↑OBJ FORM)=ZERO

(↑TENSE)=PRESENT

(↑MODALITY)=POSSIBLE

44
Oya (2004) argued that the grammatical function of the particle “-ga” is represented in the constituent structure of

Japanese. This study, however, does not take this stance, because this study does not presuppose the existence of

the constituent structure of Japanese.

45
This study treats complex predicates as monoclausal. See Section 4.3.1.

341

The typed-dependency tree for ‘Watashiwa eigoga hanaseru’ is shown below. The noun

‘eigoga’ depends on the verb ‘hanaseru’ with the dependency type “postp_ga.”

ROOT

TOPIC PUNCT

POSTP_GA

Root-0

hanaseru-3

Watashiwa-1

eigoga-2

.-4

Figure 5.24. The typed-dependency tree for ‘Watashiwa eigoga hanaseru.’

The typed-dependency tree for ‘Watashiwa eigowo hanaseru’ is shown below. The noun

‘eigowo’ depends on the verb ‘hanaseru’ with the dependency type “postp_wo.”

ROOT

TOPIC PUNCT

POSTP_WO

Root-0

hanaseru-3

Watashiwa-1

eigowo-2

.-4

Figure 5.25. The typed-dependency tree for ‘Watashiwa eigowo hanaseru.’

The typed-dependency tree for ‘Watashiwa eigoga hanaseru’ is equivalent to the functional

342

structure shown below. The indices indicate that the topic ‘watashiwa’ is the antecedent of the

subject zero pronoun, and the noun with the dependency type “postp_ga” is the antecedent of the

object zero pronoun.

PRED 'hanaseru<SUBJ, OBJ>'

SUBJ PRED 'PROi '

FORM ZERO

OBJ PRED 'PROj '

FORM ZERO

TOPIC PRED 'PROi '

FORM 'watashi'

PERSON 1st

NUMBER SINGULAR

POSTP_ga PRED 'eigoj '

TENSE PRESENT

MOOD POSSIBLE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.26. The functional structure for ‘Watashiwa eigoga hanaseru.’

The functional structure for ‘Watashiwa eigowo hanaseru’ is shown below. The indices

indicate that the topic ‘watashiwa’ is the antecedent of the subject zero pronoun, and the noun

with the dependency type “postp_wo” is the antecedent of the object zero pronoun.

343

PRED 'hanaseru<SUBJ, OBJ>'

SUBJ PRED 'PROi '

FORM ZERO

OBJ PRED 'PROj '

FORM ZERO

TOPIC PRED 'PROi '

FORM 'watashi'

PERSON 1st

NUMBER SINGULAR

POSTP_wo PRED 'eigoj '

TENSE PRESENT

MOOD POSSIBLE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.27. The functional structure for ‘Watashiwa eigowo hanaseru.’

The functional structures in this section show that the verbal predicates of Japanese language

contain the core arguments as zero pronouns in their lexicon. These zero pronouns refer to

something or someone either intra-clausally or inter-clausally. These zero pronouns ensure that

elliptic sentences that are often used in Japanese language do not violate the completeness

constraint of functional structure; in other words, these “elliptic” sentences actually lack nothing.

From the standpoint which has been explained in this section, we must explore the condition

on which a verb needs overt arguments. Intuitively speaking, such conditions must take the

speaker’s/writer’s intention into consideration. For example, it can be claimed that a verb needs

an overt noun phrase with the postposition ‘-ga’ when the speaker/writer intends to have the

listener/hearer pay attention to one of the arguments of the verb. A detailed account of possible

conditions on overt arguments goes beyond the scope of this dissertation, so I will leave it to

future research.

344

6.5 The Definition of Each Dependency Type for Japanese

This section introduces the dependency types for Japanese sentences, and provides definitions to

each of them with example sentences. The different dependency types in Japanese are

presented in Table 6.1 along with their corresponding categories according to Mel’čuk’s

syntactic relations framework (see Section 2.4.2 for the definition of Dsynt-Rels, and see Section

2.4.3 for the criteria for Ssynt-Rels).

Table 6.1. Japanese dependency types categorized into the inventory of Dsynt-Rels in Mel’čuk

(2011, p.6)

COORD
QUASI-

COORD
APPEND ATTR ATTRdescr I II III IV V VI IIdir-sp

postp rcmod ccomp

coordinate

DSyntRels

subordinate DSyntRels

weak

subordi-

nate

DSyntRel

modification

strong subordinate DSyntRels

complementation

advmod

advmod,

amod,

focus,

det,

postp,

advcl,

topic

postp

Similar to the discussion of English dependency types presented earlier in Section 5.3, this

section defines each dependency type in Japanese with respect to the criteria for surface syntactic

relations (SsyntRels) by Mel’čuk (2009, 2011). This discussion defines each Japanese

dependency type in terms of Criterion A (i.e., the presence of the syntactic dependency between

two words or elements), Criterion B (i.e., the orientation of the syntactic dependency), and

345

Criterion C (i.e., the type of the syntactic dependency). Also similar to the discussion of

English dependency types, typed-dependency trees and functional-structure representations for

the example Japanese sentences are illustrated, so that we can clarify the equivalence between

typed-dependency trees and functional-structure representations (see Section 3.3).

6.5.1 Postp

Cases where a verb or a noun is the dependency head and a noun with a postposition (or a case

particle) is the dependency tail are typed as “postp” (POSTPositional elements).

The dependency type “postp” has a number of subtypes according to the postposition

particles used. For example, the dependency between a noun with the postposition ‘-ga’ and a

verb is subtyped as “postp_ga.”46 This subtyping is necessary because postpositions are not

interchangeable with each other. In addition, the different subtypes allow us to derive

dependency types that follow the revised Criterion C for SsyntRel, i.e., that each dependency

type implies a specific semantic relationship between two words that is different from what is

implied by any other dependency type (see Section 2.4.3.3).

Each postposition has more than one meaning, and some postpositions have ranges of

meaning. For example, the case particle ‘-kara’ can have the following meanings: the starting

point of an event of moving, source of information, evidence, the date on which an event starts,

or the material of a product (Masuoka & Takubo 1992, p.77-78). These different meanings are

shown below.

The sentence (6.18) is an example in which the postposition ‘-kara’ indicates the starting

46
This study does not assume that a noun with the particle “-ga” is a subject, because there are instances where a

noun with “-ga” does not function as a subject (Matsuoka & Takubo 1997, p.75).

346

point of an event of moving.

(6.18)

Watashi-wa eki-kara ie-made arui-ta.

I-topic station-postp house-postp walk-past

‘I walked from the station to my house.’

The dependency relationships among the syntactic units in the sentence above are represented in

the following typed-dependency tree. The nominal syntactic unit47 ‘ekikara (from the station)’

depends on the verbal syntactic unit ‘aruita (someone walked),’ and this dependency is typed as

“postp_kara.”

TOPIC PUNCT

POSTP_made

Root

aruita-4

watashiwa-1

ekikara-2 iemade-3

POSTP_kara

.-5

ROOT

Figure 5.28. The typed-dependency tree for ‘Watashiwa ekikara iemade aruita (I walked from the

station to my house).’

The typed-dependency tree above is equivalent to the functional structure shown below (see

Section 6.4 on the treatment of zero pronouns).

47 In this study, a nominal syntactic unit means a unit that contains one noun.

347

PRED 'aruita<SUBJ>'

SUBJ PRED 'PRO i'

TYPE ZERO

TOPIC PRED 'PRO i'

PERSON 1ST

NUMBER SINGULAR

FORM 'watashi'

POSTP_kara PRED 'eki'

POSTP_made PRED 'ie'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.29. The functional structure for ‘Watashiwa ekikara iemade aruita (I walked from the

station to my house).’

The sentence (6.19) is an example in which the postposition ‘-kara’ indicates the source of

information.

(6.19)

Kono hanashi-wa ani-kara kii-ta.

this story-topic brother-postp hear-past

‘I heard this story from my elder brother.’

The dependency relationships among the syntactic units in the sentence above are represented in

the following typed-dependency tree. The nominal syntactic unit ‘anikara (from my elder

brother)’ depends on ‘kiita (someone heard something).’

348

TOPIC PUNCT

DET

hanashiwa-2

kono-1 anikara-3

.-5POSTP_kara

ROOT

Root

kiita-4

Figure 5.30. The typed-dependency tree for ‘Kono hanashiwa anikara kiita (I heard this story

from my elder brother).’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the subject zero pronoun of the verb ‘kiita’ is not assigned any index. This indicates that this

zero pronoun does not refer to anything in the sentence, but to someone or something

inter-clausally (it is naturally interpreted that the speaker of this sentence is also the subject of

the verb ‘kiita’).

PRED 'kiita<SUBJ,OBJ>'

SUBJ PRED 'PRO'

TYPE ZERO

OBJ PRED 'PROj'

TYPE ZERO

TOPIC PRED 'hanashi'

DET FORM 'kono'

TYPE DEMONSTRATIVE j

POSTP_kara PRED 'ani'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

TENSE PAST

PUNCT FORM '.'

ROOT ST MT -TYPE DECLARATIVE

Figure 5.31. The functional structure for ‘Kono hanashiwa anikara kiita.’

349

The sentence (6.20) is an example in which the postposition ‘-kara’ indicates evidence.

(6.20)

Samazama-na jijitu-kara hitotsu-no ketsuron-ga

various-adj fact-postp one-postp conclusion-postp

michibikidas-are-ta.

induce-passive-past.

‘One conclusion was induced from various facts.’

The dependency relationships among the syntactic units in the sentence above are represented in

the following typed-dependency tree. The nominal syntactic unit ‘jijitsukara (from facts)’

depends on ‘michibikidasareta (something was induced).’

POSTP_kara PUNCT

Root

michibikidasareta-5

jijitsukara-2

samazamana-1

ketsuronga-4

hitotsuno-3

POSTP_no

.-6

ROOT

AMOD

POSTP_ga

Figure 5.32. The typed-dependency tree for ‘Samazamana jijitsukara hitotsuno ketsuronga

michibikidasareta (One conclusion is induced from various facts).’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the verb ‘michibikidasareta’ is a passive form of the verb ‘michibikidasu,’ and the attribute

350

VOICE has the value PASSIVE.48

Figure 5.33. The functional structure for ‘Samazamana jijitsukara hitotsuno ketsuronga

michibikidasareta (One conclusion is induced from various facts).’

The sentence (6.21) is an example in which the postposition ‘-kara’ indicates the date on

which an event starts.

(6.21)

Ashita-kara toukikyuuka-ga hajimar-u.

tomorrow-postp winter.holidays-postp start-present

‘Winter holidays start tomorrow.’

The dependency relationships among the syntactic units in the sentence above are represented in

48
This study analyses complex predicate monoclausally both in typed-dependency trees and in functional-structure

representations. See Section 4.3.1.

PRED 'michibikidasareta<SUBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

POSTP_kara PRED 'jijitsu'

ADJ PRED 'samazamana'

POSTP_ga PRED 'ketsuron'

POSTP_no PRED 'hitotsu' i

TENSE PAST

VOICE PASSIVE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

351

the following typed-dependency tree. The syntactic unit ‘ashitakara (from tomorrow)’ depends

on the syntactic unit ‘hajimaru (something starts).’

POSTP_kara PUNCT

Root

hajimaru-3

toukikyuukaga-2

ashitakara-1 .-4

ROOT

POSTP_ga

Figure 5.34. The typed-dependency tree for ‘Ashitakara toukikyuukaga hajimaru’ (Winter

holidays start tomorrow).

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'hajimaru<SUBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

POSTP_ga PRED 'toukikyuukai'

POSTP_kara PRED 'ashita'

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.35. The functional structure for ‘Ashitakara toukikyuukaga hajimaru’ (Winter holidays

start tomorrow).

The sentence (6.22) is an example in which the postposition ‘-kara’ indicates the material of a

352

product.

(6.22)

Daizu-kara toufu-ga tsukur-are-ru.

soybeans-postp tofu-postp make-passive-present

‘Tofu is made from soybeans.’

The dependency relationships among the syntactic units in the sentence above are represented in

the following typed-dependency tree. The syntactic unit ‘daizukara (from soybeans)’ depends

on the syntactic unit ‘tsukurareru (something is made).’

POSTP_kara PUNCT

Root

tsukurareru-3

tofuga-2

daizukara-1 .-4

ROOT

POSTP_ga

Figure 5.36. The typed-dependency tree for ‘Daizukara tofuga tsukurareru (Tofu is made from

soybeans).’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the verb ‘tsukurareru’ is a passive form of the verb ‘tsukuru,’ and the attribute VOICE has the

value PASSIVE.

353

PRED 'tsukurareru<SUBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

POSTP_kara PRED 'daizu'

POSTP_ga PRED 'toufui'

TENSE PRESENT

VOICE PASSIVE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.37. The functional structure for ‘Daizukara tofuga tsukurareru (Tofu is made from

soybeans).’

The prototypical meaning of a case particle is the underlying sense from which the different

meanings emerge. In the case of ‘-kara,’ the different meanings seem to convey the sense of

something coming into existence. Further exploration of these meaning relationships is beyond

the scope of this dissertation. Nevertheless, the underlying meaning of a case particle cannot be

expressed by another case particle, and in this way, particles are not usually interchangeable.

Thus, we must differentiate the dependency type “postp” in terms of the case particle used, i.e.,

“padj_kara” in the examples above, which is similar to the output format of the Stanford Parser

for collapsed dependencies (see Section 5.4.2).

The dependency type “postp” follows Mel’čuk’s criteria for SsyntRel. First, a verbal

predicate and the noun with a postposition constitute a prosodic unit, and they have a fixed linear

order in a sentence, e.g., the noun with a postposition precedes the predicate on which it depends.

They also follow the revised Criterion A (see Section 2.4.3.1) because it constitutes a semantic

unit, as we have seen in the functutional structure representations above. Second, the predicate

determines the passive valence of the phrase. Therefore, the predicate and the noun with a case

particle follow Mel’čuk’s Criterion B1. This dependency type also follows the revised

354

Criterion C proposed in Section 2.4.3.3, because it implies a unique semantic relationship

between the noun with the ‘-ni’ case and a verb that cannot be expressed by any other

dependency type.

In this study, the subject, direct object, and indirect object in Japanese sentences are included

in the “postp” subtypes. For example, a noun with the postposition ‘-ga,’ which is usually

considered as the subject of a verb, depends on a verb with the dependency type “postp_ga;” a

noun with the postposition ‘-wo’ depends on a verb with the dependency type “postp_wo;” and a

noun with the postposition ‘-ni’ depends on a verb with the dependency type “postp_ni.”

Postp_ga

The dependency type “postp_ga” implies several unique semantic relationships not represented

by other dependency types, and these semantic relationships are not restricted to the subject of a

verbal predicate. For example, Masuoka & Takubo (1992, p.75) state that this type can express

the agent of an action (an example of this is shown above), the theme of an action the speaker is

able to do (e.g., ‘Watashiwa eigoga hanaseru,’ which means ‘I can speak English.’ See Section

6.4.4 for the typed-dependency tree and the functional structure for the example sentence), or the

theme of an action the speaker wants to do (e.g., ‘Watashiwa eigoga hanashitai,’ which means ‘I

want to speak in English.’ See Section 6.4.4 for the typed-dependency tree and the functional

structure for the example sentence).

The sentence (6.23) is an example in which the postposition ‘-ga’ is used.

(6.23)

Watashi-ga kono hon-wo yon-da.

I-postp this book-postp read-past

355

‘I have read this book.’49

The dependency relationships among the syntactic units in the sentence above are represented in

the following typed-dependency tree. The syntactic unit ‘watashiga (I)’ depends on ‘yonda

(someone has read something).’

POSTP_ga PUNCT

POSTP_WO

DET

Root

yonda-4

watashiga-1

honwo-3

kono-2

.-5

ROOT

Figure 5.38. The typed-dependency tree for ‘Watashiga kono honwo yonda’ (I have read this

book).

The typed-dependency tree above is equivalent to the functional structure below. The subject

zero pronoun of the verb ‘yonda (someone has read something)’ refers to the syntactic unit

‘watashiga (I).’ The object zero pronoun of the same verb refers to the phrase ‘kono honwo

(this book).’

49
Japanese past-tense verbs can express the perfect aspect.

356

PRED 'yonda<SUBJ,OBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

OBJ PRED 'PROj'

TYPE ZERO

POSTP_ga PRED 'PROi'

PERSON 1ST

NUMBER SINGULAR

FORM 'watashi'

POSTP_wo PRED 'hon'

DET FORM 'kono'

TYPE DEMONSTRATIVE j

TENSE PRESENT

ASPECT PERFECT

PUNCT FORM '.'

ROOT ST MT -TYPE DECLARATIVE

Figure 5.39. The functional structure for ‘Watashiga kono honwo yonda’ (I have read this book).

Postp_wo

The dependency type “postp_wo” implies several unique semantic relationships not represented

by other dependency types. Masuoka & Takubo (1992, p.75) state that there are three different

semantic relationships expressed by “postp_wo”: the object of an action or emotion (e.g.,

‘Watashi-ga kono hon-wo yon-da,’ which means ‘I have read this book.’); the place where

something or someone moves (e.g., ‘Hakucho-wa mizuumi-no ue-wo susunde-ita,’ which means

‘Swans were moving on the surface of the lake.’); or the place where something or someone

starts moving (e.g., ‘Watashi-wa daigaku-wo daitai gogorokuji-ni de-ta,’ which means ‘I left

university around 6 P.M.’).

The following sentence (6.24) is an example in which ‘-wo’ indicates the place where

something or someone moves.

(6.24)

Hakucho-wa mizuumi-no ue-wo susunde-ita

357

swan-topic lake-postp surface-postp move-past.progressive

‘Swans were moving on the surface of the lake.’

The dependency relationships among the syntactic units in the sentence above are represented in

the following typed-dependency tree. The syntactic unit ‘ue-wo (on the surface)’ depends on

the syntactic unit ‘susunde-ita (something was moving),’ expressing the place where the swans

were moving.

ROOT

TOPIC PUNCT
POSTP_WO

POSTP_NO

Root-0

susundeita-4

uewo-3Hakuchowa-1

mizuumino-2

.-5

Figure 5.40. The typed-dependency tree for ‘Hakuchowa mizuumino uewo susundeita. (Swans

were moving on the surface of the lake.)’

The typed-dependency tree above is equivalent to the functional structure below. The verb

‘susundeita (was moving)’ is an intransitive verb; therefore, it does not have its object zero

pronoun, and the syntactic unit ‘uewo’ is not the object of the verb ‘susundeita.’

358

PRED 'susundeita<SUBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

TOPIC PRED 'hakuchoi'

POSTP_wo PRED 'ue'

POSTP_no PRED 'mizuumi'

TENSE PAST

ASPECT PROGRESSIVE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.41. The functional structure for ‘Hakuchowa mizuumino uewo susundeita. (Swans were

moving on the surface of the lake.)’

The following sentence (6.25) is an example in which ‘-wo’ indicates the place where

something or someone starts moving.

(6.25)

Watashi-wa daigaku-wo daitai gogorokuji-ni de-ta

I-topic university-postp around 6P.M.-postp leave-past

‘I left university around 6 P.M.’

The dependency relationships among the syntactic units in the sentence above are represented in

the following typed-dependency tree. The syntactic unit ‘daigaku-wo (university)’ depends on

the syntactic unit ‘deta (someone left),’ expressing the place where the person which the pronoun

‘watashi’ refers to started the action of leaving.

359

ROOT

PUNCT .-6

TOPIC POSTP_NI
POSTP_WO

ADVMOD

gogorokujini-4

daitai-3

Root-0

deta-5

daigakuwo-2Watashiwa-1

Figure 5.42. The typed-dependency tree for ‘Watashiwa daigakuwo daitai gogorokujini deta. (I

left university around 6 P.M.)’

The typed-dependency tree above is equivalent to the functional structure below. The verb

‘deta (someone left)’ is an intransitive verb; therefore, it does not have an object zero pronoun,

and the syntactic unit ‘daigakuwo’ is not the object of the verb.

PRED 'deta<SUBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

TOPIC PRED 'PROi'

PERSON 1ST

NUMBER SINGULAR

FORM 'watashi'

POSTP_wo PRED 'daigaku'

POSTP_ni PRED 'gogokuji'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.43. The functional structure for ‘Watashiwa daigakuwo daitai gogorokujini deta. (I left

university around 6 P.M.)’

360

Postp_ni

The dependency type “postp_ni” represents dependency between a verb and a noun with the

postposition ‘-ni.’ This dependency type can imply the following semantic relationships: the

receiver in a giving event, the goal of a moving event, the agent of a passive sentence, the agent

of an adversative passive sentence, or the causee of a causative sentence. These different

meanings are illustrated in the examples below.

The following sentence (6.26) is an example in which the postposition ‘-ni’ indicates the

receiver in a giving event.

(6.26)

Ken-wa Naomi-ni sono hon-wo kashi-ta.

Ken-topic Naomi-postp the book-postp lend-past

‘Ken lent Naomi the book.’

The dependency relationships among the syntactic units in the sentence above are represented in

the following typed-dependency tree. The syntactic unit ‘Naomini’ depends on the verb

‘kashita (someone lent something to someone),’ indicating the receiver in the event expressed by

the verb ‘kashita.’

361

PUNCT

TOPIC .-6

POSTP_wo

POSTP_ni

sono-3

DET

Root

kashita-5

Kenwa-1

Naomini-2

honwo-4

Figure 5.44. The typed-dependency tree for ‘Kenwa Naomini sono honwo kashita (Ken lent

Naomi the book).’

The typed-dependency tree above is equivalent to the functional structure below. The index ‘k’

is assigned to the second-object (OBJ2) zero pronoun of the verb ‘kashita (lent)’ and to ‘Naomi,’

indicating that this second-object zero pronoun refers to ‘Naomi.’ Therefore, she is the receiver

of the action expressed by the verb ‘kashita’ in this functional structure.

PRED 'kashita<SUBJ,OBJ,OBJ2>'

SUBJ PRED 'PRO i'

TYPE ZERO

OBJ PRED 'PRO j'

TYPE ZERO

OBJ2 PRED 'PROk'

TYPE ZERO

TOPIC PRED 'Ken i'

POSTP_wo PRED 'hon'

DET FORM 'sono'

TYPE DEMONSTRATIVE j

POSTP_ni PRED 'Naomik'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

362

Figure 5.45. The functional structure for ‘Kenwa Naomini sono honwo kashita (Ken lent Naomi

the book).’

The sentence (6.27) is an example in which the postposition ‘-ni’ indicates the goal of a

motion event.

(6.27)

Watashi-wa Kinou Ueno-ni it-ta.

I-postp Yesterday Ueno-postp go-past

“I went to Ueno yesterday.”

The dependency relationships among the syntactic units in the example sentence above are the

typed-dependency tree below. The dependency type “postp_ni” is used for the dependency

between the syntactic unit ‘uenoni’ and ‘itta.’

Watashiwa-1

TOPIC

PUNCT

ADVMOD

.-5

ROOT

Root

itta-3

kinou-2

Uenoni-3

POSTP_ni

Figure 5.46. The typed-dependency tree for ‘Watashiwa kinou Uenoni itta (I went to Ueno

yesterday).’

The typed-dependency tree above is equivalent to the functional structure below. The syntactic

363

unit ‘Uenoni’ modifies the clause with the meaning of the event’s goal.

PRED 'itta<SUBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

TOPIC PRED 'PROi'

PERSON 1ST

NUMBER SINGULAR

FORM 'watashi'

POSTP_ni PRED 'Ueno'

ADVMOD PRED 'kinou'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.47. The functional structure for ‘Watashiwa kinou Uenoni itta (I went to Ueno

yesterday).’

The following sentence (6.28) is an example in which the postposition “-ni” indicates the

agent of a passive sentence.

(6.28)

Watashi-no nikki-ga ane-ni yom-are-ta.

I-postp diary-postp elder.sister-postp read-passive-past

‘My diary was read by my elder sister.’

The dependency relationships among the syntactic units in the example sentence above are

shown in the typed-dependency tree below. The dependency type “postp_ni” is used for the

364

dependency between the syntactic unit ‘aneni (by my sister)’ and ‘yomareta (something was

read).’

POSTP_ga PUNCT

POSTP_ni .-5

Root

yomareta-4

nikkiga-2

watashino-1

aneni-3

ROOT

POSTP_no

Figure 5.48. The typed-dependency tree for ‘Watashino nikkiga aneni yomareta (My diary was

read by my elder sister).’

The typed-dependency tree above is equivalent to the functional structure below. The subject

zero pronoun of the verb ‘yomareta (something was read)’ refers to ‘watashino nikkiga (my

diary),’ which corresponds to the local functional structure as the value of the POSTP_ga

attribute. The passivized verb ‘yomareta’ does not syntactically require the “postp_ni”

syntactic unit; rather, the “postp_ni” syntactic unit modifies the clause with the meaning of the

agent of the event.

365

PRED 'yomareta<SUBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

POSTP_ga PRED 'nikki'

POSTP_no PRED 'PRO'

PERSON 1ST

NUMBER SINGULAR

FORM watashi' i

POSTP_ni PRED 'ane'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

VOICE PASSIVE

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.49. The functional structure for ‘Watashino nikkiga aneni yomareta (My diary was read

by my elder sister).’

The next sentence (6.29) is an example in which the postposition “-ni” indicates the agent of

an adversative passive sentence.50

(6.29)

Watashi-wa jibun-no nikki-wo ane-ni yom-are-ta.

I-topic self-postp diary-postp elder.sister-postp read-passive-past

‘I had my diary read by my elder sister.’

50
The subject of an adversative passive sentence is “adversely affected by the event denoted by the rest of the

sentence” (Tsujimura 2007). The example sentence (6.29) means that the subject “I” suffers from the fact that his

or her diary was read by his or her elder sister. The example sentence (6.28), on the other hand, is an objective

description of an event, and the subject’s suffering is not evident in its sentential meaning without context. In a

certain context, the example sentence (6.28) can imply that the speaker suffers from the event; the example sentence

(6.29), on the other hand, explicitly means that the subject “I” suffers from the event.

366

The dependency relationships among the syntactic units in the example sentence above are

shown in the typed-dependency tree below. The dependency type “postp_ni” is used for the

dependency between the syntactic unit ‘aneni (by my elder sister)’ and ‘yomareta (something

was read).’

TOPIC PUNCT

POSTP_wo POSTP_ni .-6

POSTP_no

jibunno-2

Root

yomareta-5

watashiwa-1

aneni-4

ROOT

nikki-3

Figure 5.50. The typed-dependency tree for ‘Watashiwa jibunno nikkiwo aneni yomareta (I had

my diary read by my elder sister).’

The typed-dependency tree above is equivalent to the functional structure below. The topic is

not required by the main verb of this sentence; rather, it modifies the verb with the meaning of

the person who suffers from the event which the main verb of the sentence describes. The

subject zero pronoun of the verb ‘yomareta (something was read)’ refers to ‘watashino nikkiwo

(my diary),’ which corresponds to the local functional structure as the value of the POSTP_wo

attribute.51

51
In this study, we assume that the selection of the postposition “wo” for the theme argument of the

adversative-passivized transitive verb is a matter of convention, probably to indicate the difference between normal

passives and adversative passives.

367

PRED 'yomareta<SUBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

TOPIC PRED 'PROj'

PERSON 1ST

NUMBER SINGULAR

FORM 'watashi'

POSTP_wo PRED 'nikki'

POSTP_no PRED 'PROj'

TYPE REFLEXIVE

FORM jibun' i

POSTP_ni PRED 'ane'

PERSON 3RD

NUMBER SINGULAR

GENDER FEMININE

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.51. The typed-dependency tree for ‘Watashiwa jibunno nikkiwo aneni yomareta (I had

my diary read by my elder sister).’

The sentence (6.30) is an example in which the postposition ‘-ni’ indicates the causee of a

causative sentence:

(6.30)

Watashi-wa ototo-ni kono hon-wo yoma-se-ta.

I-topic younger.brother-postp this book-postp read-cause-past

‘I had my younger brother read this book.’

368

TOPIC

PUNCT

POSTP_ni POSTP_wo

kono-3

DET

Root

yomaseta-5

watashiwa-1

honwo-4ototoni-2

.-6

ROOT

Figure 5.52. The typed-dependency tree for ‘Watashiwa ototoni kono honwo yomaseta (I had my

younger brother read this book).’

PRED 'yomaseta<SUBJ,OBJ,OBJ2>'

SUBJ PRED 'PRO i'

TYPE ZERO

OBJ PRED 'PRO j'

TYPE ZERO

OBJ2 PRED 'PRO k'

TYPE ZERO

TOPIC PRED 'PRO i'

PERSON 1ST

NUMBER SINGULAR

FORM 'watashi'

POSTP_wo PRED 'hon'

DET FORM 'kono'

TYPE DEMONSTRATIVE j

POSTP_ni PRED 'ototok'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.53. The functional structure for ‘Watashiwa ototoni kono honwo yomaseta (I had my

younger brother read this book).’

369

6.5.2 Topic

The dependency between a verb and a noun with the postposition ‘-wa’ is typed as “TOPIC.”

The noun with the postposition ‘-wa’ introduces the topic of the sentence.

(6.31)

Kono eki-wa ooku-no hitobito-ga mainichi

This station-topic many-post people-postp every.day

riyousi-tei-ru.

use-progressive-present

‘Many people use this station every day.’

The dependency relationships among the syntactic units in the example sentence above are

represented by the typed-dependency tree below. The dependency type “topic” is used for the

dependency relationship between ‘ekiwa (station)’ and ‘riyoushiteiru (be using).’

370

PUNCT

TOPIC .-7

POSTP_ga ADVMOD

ookuno-3

AMOD

mainichi-5
DET

kono-1

ROOT-0

Root

riyoushiteiru-6

ekiwa-2

hitobitoga-4

Figure 5.54. The typed-dependency tree for ‘Kono ekiwa ookuno hitobitoga mainichi riyousiteiru

(Many people use this station every day).’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the index ‘i’ is assigned to the subject zero pronoun of the verb ‘riyoushiteiru’ (be using) and the

local functional structure as the value of the POSTP_ga attribute.

PRED 'riyoushiteiru<SUBJ,OBJ>'

SUBJ PRED 'PRO i'

TYPE ZERO

OBJ PRED 'PRO j'

TYPE ZERO

TOPIC PRED 'eki'

DET FORM 'kono'

TYPE DEMONSTRATIVE j

POSTP_ga PRED 'hitobito'

NUM PLURAL

AMOD PRED 'ookuno' i

TENSE PRESENT

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

371

Figure 5.55. The functional structure for ‘Kono ekiwa ookuno hitobitoga mainichi riyousiteiru

(Many people use this station every day).’

The postposition ‘-wa’ can co-occur with another postposition. The sentence (6.32) is an

example in which ‘-wa’ co-occurs with ‘-ni.’ The English translation indicates that the phrase

‘to my sister’ is put at the beginning of the sentence and thus topicalized.

(6.32)

Imoto-ni-wa kono hon-wo age-ta.

younger.sister-postp-postp this book-postp give-past

‘To my sister, I gave this book.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “topic” is used for the

dependency between ‘imotoniwa (to my sister)’ and ‘ageta (gave).’

TOPIC PUNCT

imotoniwa-1 honwo-3

POSTP_wo

kono-2

.-5

DET

ROOT

Root

ageta-4

Figure 5.56. The typed-dependency tree for ‘Imotoniwa kono honwo ageta (To my sister, I gave

372

this book).’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'ageta<SUBJ,OBJ,OBJ2>'

SUBJ PRED 'PRO i'

TYPE ZERO

OBJ PRED 'PRO j'

TYPE ZERO

OBJ2 PRED 'PROk'

TYPE ZERO

TOPIC PRED 'imoto'

PERSON 3RD

GENDER FEMININE

POSTP 'ni' k

POSTP_wo PRED 'hon'

DET FORM 'kono'

TYPE DEMONSTRATIVE j

TENSE PAST

PUNCT FORM '.'

Figure 5.57. The functional structure for ‘Imotoniwa kono honwo ageta (To my sister, I gave this

book).’

The sentence (6.33) is an example in which ‘-wa’ co-occurs with ‘-kara.’ The English

translation indicates that the phrase ‘from this port’ is put at the beginning of the sentence and

thus topicalized.

(6.33)

Kono minato-kara-wa mainichi ooku-no fune-ga

373

This port-postp-postp every.day many-postp ship-postp

De-te-iru

depart-progressive-present

‘From this port, many ships depart every day.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “topic” is used for the

dependency between ‘minatokarawa’ and ‘deteiru.’

PUNCT

TOPIC

POSTP_ga .-6

ADVMOD

kono-1 ookuno

AMODDET

Root

deteiru-5

minatokarawa-2

mainichi-3

funega-4

ROOT

Figure 5.58. The typed-dependency tree for ‘Kono minatokarawa mainichi ookuno funega

deteiru (From this port, many ships depart every day).’

The typed-dependency tree above is equivalent to the functional structure below.

374

PRED 'deteiru<SUBJ>'

SUBJ PRED 'PRO i'

TYPE ZERO

TOPIC PRED 'minato'

DET FORM 'kono'

TYPE DEMONSTRATIVE

POSTP 'kara'

POSTP_ga PRED 'fune'

AMOD PRED 'ookuno' i

TENSE PRESENT

ASPECT PROGRESSIVE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 5.59. The functional structure for ‘Kono minatokarawa mainichi ookuno funega deteiru

(From this port, many ships depart every day).’

 The dependency type “topic” follows Mel’čuk’s criteria for SsyntRel. First, a verbal

predicate and a topic constitute a prosodic unit, and they have a fixed linear order in a sentence,

e.g., the topic precedes the predicate. They also follow the revised Criterion A (see Section

2.4.3.1) because they constitute a semantic unit, as we have seen in the functional structure

representations above.

Second, the predicate, not the topic, determines the passive valence of the phrase. In the

example above, the topic ‘bokuwa’ depends on the predicate ‘unagida,’ not vice versa, because

the predicate depends on another element in the sentence (i.e., Root). Therefore, the predicate

and the topic follow Mel’čuk’s Criterion B1.

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between the topic and a verb that

cannot be expressed by any other dependency type.

375

6.5.3 Focus

The dependency between a verb and a noun with a postposition other than ‘-ga,’ ‘-ni,’ ‘-wo,’ or

‘-wa’ is typed as “focus.” Different postpositions have different discourse functions. For

example, the postposition ‘-mo’ functions like ‘too’ in English.

The following sentence (6.34) is an example in which the postposition ‘-mo’ indicates that

the subject ‘watashi’ is focused. The English translation indicates that the adverb ‘too’ modifies

the pronoun ‘I.’

(6.34)

Watashi-mo kono hon-wo yon-da.

I-postp this book-postp read-past

‘I, too, have read this book.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “focus” is used for the

dependency between ‘watashimo (I, too)’ and ‘yonda (read).’

376

FOCUS_mo PUNCT

POSTP_wo

DET

Root

yonda-4

watashimo-1

honwo-3

kono-2

.-5

ROOT

Figure 5.60. The typed-dependency tree for ‘Watashimo kono honwo yonda (I, too, have read

this book).’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'yonda<SUBJ, OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

FOCUS_mo PRED 'PRO i'

FORM 'watashi'

PERSON 1ST

NUMBER SINGULAR

POSTP_wo PRED 'hon'

DET PRED ''kono' j

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.61. The functional structure for ‘Watashimo kono honwo yonda (I, too, have read this

book).’

377

The sentence (6.35) is an example in which the postposition ‘-mo’ indicates that the direct

object ‘hon’ is focused. The English translation indicates that the adverb ‘too’ modifies the

noun ‘book’:

(6.35)

Watashi-wa kono hon-mo yon-da.

I-postp this book-postp read-past

‘I have read this book, too.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “focus” is used for the

dependency between ‘watashiwa (I)’ and ‘yonda (read).’

TOPIC PUNCT

FOCUS_mo

Root

yonda-4

watashiwa-1 honmo-3

kono-2

.-5

ROOT

DET

Figure 6.62. The typed-dependency tree for ‘Watashiwa kono honmo yonda (I have read this

book, too).’

The typed-dependency tree above is equivalent to the functional structure below.

378

PRED 'yonda<SUBJ, OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

TOPIC PRED 'PRO i'

FORM 'watashi'

PERSON 1ST

NUMBER SINGULAR

FOCUS_mo PRED 'hon'

DET PRED ''kono' j

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.63. The functional structure for ‘Watashiwa kono honmo yonda (I have read this book,

too).’

If a sentence contains two nouns with the postposition ‘-wa,’ as in the sentence (6.36), the

second ‘wa’ functions like ‘such’ in English.

(6.36)

Watashiwa konna hon-wa yoma-nai.

I-postp such book-postp read-neg

‘I will not read such a book.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “focus” is used for the

dependency between ‘honwa (book)’ and ‘yomanai (do not read).’

379

TOPIC PUNCT

FOCUS_wa

watashiwa-1 honwa-3

konna-2

.-5

ROOT

DET

Root

yomanai-4

Figure 6.64. The typed-dependency tree for ‘Watashiwa konna honwa yomanai (I will not read

such a book).’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'yomanai<SUBJ, OBJ>'

SUBJ PRED 'PROi'

FORM ZERO

OBJ PRED 'PROj'

FORM ZERO

TOPIC PRED 'PROi'

FORM 'watashi'

PERSON 1ST

NUMBER SINGULAR

FOCUS_wa PRED 'hon'

DET PRED ''konna' j

TENSE PAST

NEG +

PUNCT FORM '.'

ROOT ST MT -TYPE DECLARAT IVE

Figure 6.65. The functional structure for ‘Watashiwa konna honwa yomanai (I will not read such

a book).’

380

 This dependency type follows Mel’čuk’s criteria for SsyntRel. First, a verbal predicate and

the focused element constitute a prosodic unit, and they have a fixed linear order in a sentence,

e.g., the focused element precedes the predicate. They also follow the revised Criterion A (see

Section 2.4.3.1) because they constitute a semantic unit, as we have seen in the functional

structure representations in this subsection.

Second, the predicate determines the passive valence of the phrase. Therefore, the predicate

and the focused element follow Mel’čuk’s Criterion B1.

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between the focused element and the

verb that cannot be expressed by any other dependency type.

6.5.4 Advmod

This dependency type describes the dependency between a verb and an adverb, an adjunct in the

adverbial form,52 or a noun without a particle. Examples of this type are presented below.

The sentence (6.37) is an example in which an adverb is used.

(6.37)

Watashi-wa jibun-no shorai-nitsuite itsumo kangae-te-iru.

I-postp myself-postp future-postp always think-progressive-present

‘I am always thinking about my future.’

52
Japanese adjectives inflect to function as adverbs. For example, the adjective ‘osoi’, which means ‘late’ in

English, is inflected to ‘osoku’, which means ‘lately.’

381

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “advmod” is used for

the dependency between ‘itsumo (always)’ and ‘kangaeteiru (be thinking about).’

PUNCT

TOPIC .-6

ADVMOD

itsumo-4

POSTP_no

Root

kangaeteiru-5

Watashiwa-1

shorainitsuite-3

jibunno-2

POSTP_nitsuite

ROOT

Figure 6.66. The typed-dependency tree for ‘Watashiwa jibunno shorainitsuite itsumo

kangaeteiru (I am always thinking about my future).’

The typed-dependency tree above is equivalent to the functional structure below. The reflexive

pronoun ‘jibun’ refers to ‘watashi.’

382

PRED 'kangaeteiru<SUBJ, OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

TOPIC PRED 'PRO i'

FORM 'watashi'

PERSON 1ST

NUMBER SINGULAR

POSTP_ PRED 'shorai'

nitsuite POSTP_no PRED ''PRO i'

TYPE REFLEXIVE

FORM 'jibun' j

ADVMOD PRED 'itsumo'

TENSE PRESENT

ASPECT PROGRESSIVE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.67. The functional structure for ‘Watashiwa jibunno shorainitsuite itsumo kangaeteiru (I

am always thinking about my future).’

The sentence (6.34) is an example in which an adjective in the adverbial form is used. The

adverb ‘yoku’ is the adverbial form of an adjective ‘yoi (good).’

(6.34)

Watashi-wa jibun-no shorai-nitsite yoku kangae-te-iru.

I-postp myself-postp future-postp often think-progressive-present

‘I am often thinking about my future.’

The dependency relationships among the words in the sentence above are represented in the

following typed-dependency tree. The dependency type “advmod” is used for the dependency

between ‘yoku (often)’ and ‘kangaeteiru (be thinking about).’

383

PUNCT

TOPIC .-6

ADVMOD

yoku-4

POSTP_no

Root

kangaeteiru-5

Watashiwa-1

shorainitsuite-3

jibunno-2

POSTP_nitsuite

ROOT

Figure 6.68. The typed-dependency tree for ‘Watashiwa jibunno shorainitsuite yoku kangaeteiru

(I am often thinking about my future).’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'kangaeteiru<SUBJ, OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

TOPIC PRED 'PRO i'

FORM 'watashi'

PERSON 1ST

NUMBER SINGULAR

POSTP_ PRED 'shorai'

nitsuite POSTP_no PRED ''PRO i'

TYPE REFLEXIVE

FORM 'jibun' j

ADVMOD PRED 'yoku'

TENSE PRESENT

ASPECT PROGRESSIVE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

384

Figure 6.69. The functional structure for ‘Watashiwa jibunno shorainitsuite yoku kangaeteiru (I

am often thinking about my future).’

The sentence (6.35) is an example in which a noun without a particle is used.

(6.35)

Watashi-wa jibunno shorai-nituite mainichi

I-postp myself-postp future-postp every.day

kangaeteiru.

think-progressive-present

‘I am thinking about my future every day.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “advmod” is used for

the dependency between ‘mainichi (every day)’ and ‘kangaeteiru (be thinking about).’

PUNCT

TOPIC .-6

ADVMOD

mainichi-4

POSTP_no

Root

kangaeteiru-5

Watashiwa-1

shorainitsuite-3

jibunno-2

POSTP_nitsuite

ROOT

Figure 6.70. The typed-dependency tree for ‘Watashiwa jibunno shorainitsuite mainichi

385

kangaeteiru (I am thinking about my future every day).’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'kangaeteiru<SUBJ, OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

TOPIC PRED 'PRO i'

FORM 'watashi'

PERSON 1ST

NUMBER SINGULAR

POSTP_ PRED 'shorai'

nitsuite POSTP_no PRED ''PRO i'

TYPE REFLEXIVE

FORM 'jibun' j

ADVMOD PRED 'mainichi'

TENSE PRESENT

ASPECT PROGRESSIVE

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.71. The functional structure for ‘Watashiwa jibunno shorainitsuite mainichi kangaeteiru

(I am thinking about my future every day).’

 The dependency type “advmod” in Japanese follows Mel’čuk’s Criterion A for SsyntRel

because a verb and its adverb constitute a prosodic unit and have a fixed linear order in a

sentence whereby the adverb precedes the verb. This dependency type also follows the revised

Criterion A because a verb and its adverb constitute a semantic unit.

 This dependency type follows Mel’čuk’s Criterion B because the verb determines the passive

valence of the phrase. For example, the dependency relation between ‘kangaeteiru (…be

thinking …)’ and ‘shorainitsuite (about future)’ in the sentence above shows that ‘shorainitsuite’

386

depends on the verb ‘kangaeteiru,’ which can be subordinated to the root node.

This dependency type also follows the revised Criterion C, because it implies a certain kind

of semantic relationship between a verb and an adverb that cannot be expressed by any other

dependency type. Moreover, the prototypical dependent of this dependency type is an adverb.

However, this is not necessarily the case with adjectives in the adverbial form and particle-less

nouns. Therefore, this dependency type follows the revised Criteria C1 and C2 proposed in

Section 2.4.3.3.

6.5.5 Amod

The dependency type “amod” represents cases where the dependent is an adjective and the head

is a noun. The following example illustrates this dependency type in Japanese.

(6.36)

Watashi-wa huruhonya-ni tsumaranai hon-wo

I-postp second-hand.bookshop-postp uninteresting book-postp

ut-ta.

sell-past

‘I sold uninteresting books to a second-hand bookshop.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “amod” is used for the

dependency between the syntactic unit ‘tsumaranai (uninteresting)’ and ‘honwo (book).’

387

TOPIC PUNCT

POSTP_wo

tsumaranai-3

.-6

ROOT

AMOD

Root

utta-5

furuhonyani-2

POSTP_ni

watashiwa-1

honwo-4

Figure 6.72. The typed-dependency tree for ‘Watashiwa furuhonyani tsumaranai honwo utta (I

sold uninteresting books to a second-hand bookshop).’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'utta<SUBJ,OBJ,OBJ2>'

SUBJ PRED 'PROi'

TYPE ZERO

OBJ PRED 'PROj'

TYPE ZERO

OBJ2 PRED 'PROk'

TYPE ZERO

TOPIC PRED 'PROi'

FORM 'watashi'

PERSON 1ST

NUMBER SINGULAR

POSTP_wo PRED 'hon'

AMOD PRED 'tsumaranai' j

POSTP_ni PRED 'furuhonyak'

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.73. The functional structure for ‘Watashiwa furuhonyani tsumaranai honwo utta (I sold

388

uninteresting books to a second-hand bookshop).’

 The dependency type “amod” in Japanese follows Mel’čuk’s Criterion A for SsyntRel

because a noun and an adjective modifying the verb constitute a prosodic unit, and they have a

fixed linear order whereby the adjective precedes the noun on which it depends. This

dependency type also follows the revised Criterion A because a noun and its adjective modifier

constitute a semantic unit.

 This dependency type follows Mel’čuk’s Criterion B. The noun, not the adjective,

determines the passive valence of the phrase. For example, the dependency relation between

‘tsumaranai (uninteresting)’ and ‘honwo (books)’ in the sentence above shows that ‘tsumaranai’

depends on the noun ‘honwo,’ which can be subordinated to the verb ‘utta (sold).’

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between a noun and an adjective that

cannot be expressed by any other dependency type. The prototypical dependent of this

dependency type is an adjective.

6.5.6 Det

The dependency type “det” represents a dependency between a noun and a determiner. The

noun is the head and the determiner is the dependent.

Japanese has several kinds of determiners. They do not inflect and can express a variety of

meanings such as the speaker’s judgment about a noun or an interrogative adjective, as shown in

the following example.

The sentence (6.37) is an example in which the determiner ‘konna’ indicates the speaker’s

389

pejorative judgment about a noun.

(6.37)

Watashi-wa konna hon-wo yoma-nai.

I-postp this.sort.of book-postp read-neg

‘I will not read this sort of books.’

The dependency relationship among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “det” is used for the

dependency relationship between the syntactic unit ‘konna’ and the syntactic unit ‘honwo.’

TOPIC PUNCT

.-5

ROOT

DET

POSTP_wo

Root

yomanai-4

watashiwa-1 honwo-3

konna-2

Figure 6.74. The typed-dependency tree for ‘Watashiwa konna honwo yomanai (I will not read

this sort of books).’

The typed-dependency tree above is equivalent to the functional structure below.

390

PRED 'yomanai<SUBJ, OBJ>'

SUBJ PRED 'PROi'

FORM ZERO

OBJ PRED 'PROj'

FORM ZERO

TOPIC PRED 'PROi'

FORM 'watashi'

PERSON 1ST

NUMBER SINGULAR

POSTP_wo PRED 'hon'

DET Form ''konna'
TYPE PEJORATIVE j

TENSE PAST

NEG +

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.75. The functional structure for ‘Watashiwa konna honwo yomanai (I will not read this

sort of books).’

The sentence (6.38) is an example in which the determiner ‘donna’ is an interrogative

adjective:

(6.38)

Kimi-wa ima-made-ni donna hon-wo yomi-mashi-ta-ka?

you-topic now-postp-postp det book-postp read-polite-past-end

‘What kind of books have you ever read?’

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “det” is used for the

391

dependency between ‘donna (what kind of)’ and ‘honwo (book).’

TOPIC PUNCT

POSTP_wo

donna-3

?-6

ROOT

DET

Root

yonda-5

imamadeni-2

POSTP_ni

kimiwa-1

honwo-4

Figure 6.76. The typed-dependency tree for ‘Kimiwa imamadeni donna honwo yonda? (What

kind of books have you ever read?)’

PRED 'yonda<SUBJ, OBJ>'

SUBJ PRED 'PROi'

FORM ZERO

OBJ PRED 'PROj'

FORM ZERO

TOPIC PRED 'PROi'

FORM 'kimi'

PERSON 2ND

NUMBER SINGULAR

STYLE INFORMAL

POSTP_wo PRED 'hon'

DET FORM ''donna'
TYPE INTERROGATIVE j

POSTP_ni PRED 'imamade'

TENSE PAST

PUNCT FORM '?'

ROOT STMT-TYPE INTERROGATIVE

Figure 6.77. The functional structure for ‘Kimiwa imamadeni donna honwo yomimashitaka?

392

(What kind of books have you ever read?)’

 The dependency type “det” in Japanese follows Mel’čuk’s Criterion A for SsyntRel because a

noun and its determiner constitute a prosodic unit and have a fixed linear order whereby the

determiner precedes the noun on which it depends. This dependency type also follows the

revised Criterion A because a noun and its determiner constitute a semantic unit.

 This dependency type follows Mel’čuk’s Criterion B. The noun, not the determiner,

determines the passive valence of the phrase. For example, the dependency relation between

‘donna (what kind of …)’ and ‘honwo (books)’ in the sentence above shows that ‘donna’ depends

on the noun ‘honwo,’ which can be subordinated to the verb ‘yomimashitaka (did you read?).’

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between a noun and its determiner that

cannot be expressed by any other dependency type. The prototypical dependent of this

dependency type is a determiner.

6.5.7 Rcmod

The head of this dependency type is a noun and the dependent is the head of a relative clause

modifying the noun, similar to the dependency type “rcmod” in Stanford Dependencies (see

Section 5.3.4).

The sentence (6.39) is an example that contains a relative clause. The verb ‘nakunatta’

depends on the noun ‘hon,’ and the dependency type is “rcmod.”

(6.39)

393

Watashi-ga kinou kat-ta hon-ga nakunat-ta.

I-postp yesterday buy-past book-postp be.lost-past

‘The book I bought yesterday is lost.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency tree below. The dependency type “rcmod” is used for the

dependency between ‘honga (book)’ and ‘nakunatta (lost).’

PUNCT

.-6

RCMOD

POSTP_ga ADVMOD

watashiga-1 kinou-2

Root

nakunatta-5

honga-4

katta-3

POSTP_ga

Figure 6.78. The typed-dependency tree for ‘Watashiga kinou katta honga nakunatta (The book I

bought yesterday is lost).’

The typed-dependency tree above is equivalent to the functional structure below. Notice that

the object zero pronoun of the verb ‘katta’ refers to the noun ‘hon.’ They are assigned with the

same index ‘j;’ therefore, ‘hon’ functions as the object of the verb ‘katta.’ The subject zero

pronoun of the verb ‘nakunatta’ refers to the local functional structure as the value of the

394

attribute “postp_ga” of the same verb. They are assigned the same index ‘k;’ therefore, the

phrase ‘watashiga katta hon’ functions as the subject of the verb ‘nakunatta.’

PRED 'nakunatta<SUBJ>'

SUBJ PRED 'PROk'

FORM ZERO

POSTP_ga PRED 'honj'

RCMOD PRED 'katta<SUBJ,OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

OBJ PRED 'PRO j'

FORM ZERO

POSTP_ga PRED 'PRO i'

FORM 'watashi'

PERSON 1ST

NUMBER SINGULAR

ADVMOD PRED kinou'

TENSE PAST k

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.79. The functional structure for ‘Watashiga kinou katta honga nakunatta (The book I

bought yesterday is lost).’

Japanese language has another type of relative clause in which the noun is not the argument

of the predicate of the relative clause modifying the noun. Teramura (1992, p.202) called such

relative clauses “soto no kankei (external relation).” The example sentence (6.40) contains an

external relative clause. The noun ‘riyu (reason)’ is not the argument of the verb

‘yomanakatta.’

(6.40)

Sarah-ga sono hon-wo yoma-nakat-ta riyu-wa shira-nai.

Sarah-postp det book-postp read-neg-past reason-topic know-neg

‘I don’t know the reason why Sarah did not read the book.’

395

The dependency relationships among the syntactic units in the example sentence above are

represented in the typed-dependency below. The dependency type “rcmod” is used for the

dependency between ‘yomanakatta’ and ‘riyu.’

PUNCT

.-7

RCMOD

POSTP_ga

DET

sono-2

POSTP_wo

Sarah-1 honwo-3

Root-0

shiranai-6

riyuwa-5

yomanakatta-4

TOPIC

Figure 6.80. The typed-dependency tree for ‘Sarahga sono honwo yomanakatta riyuwa shiranai.’

The typed-dependency tree above is equivalent to the functional structure below. The subject

zero pronoun of the verb ‘shiranai’ refers to nothing within the sentence; it is conventionally

interpreted to refer to the speaker of this sentence. The object zero pronoun of the verb

‘shiranai’ refers to the local functional structure which is the value of the attribute TOPIC of the

verb ‘shiranai’ (this reference is indicated by the index ‘i’). Neither the subject zero pronoun of

the verb ‘yomanakatta’ nor the object zero pronoun of the same verb refer to the noun ‘riyu.’

Therefore, the noun ‘riyu’ in the functional structure below does not function as the subject or

the object of the verb ‘yomanakatta.’

396

PRED 'shiranai<SUBJ,OBJ>'

SUBJ PRED 'PRO'

FORM ZERO

OBJ PRED 'PROi'

FORM ZERO

TOPIC PRED 'riyu'

RCMOD PRED 'yomanakatta<SUBJ,OBJ>'

SUBJ PRED 'PROj'

FORM ZERO

OBJ PRED 'PROk'

FORM ZERO

POSTP_ga PRED 'Sarah' j

POSTP_wo PRED hon' k

NEG +

TENSE PAST i

NEG +

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.81. The functional structure for ‘Sarahga sono honwo yomanakatta riyuwa shiranai.’

 This dependency type follows Mel’čuk’s Criterion A for SsyntRel because a noun and its

relative-clause modifier constitute a prosodic unit (e.g., ‘katta honga’ in the example sentence

above), and they have a fixed linear order whereby the relative-clause modifier precedes the

noun on which it depends. In addition, they form a semantic unit in which the noun is the

argument or adjunct of the verb in the relative clause. In this way, this type follows the revised

Criterion A proposed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B. The noun, not its relative-clause

modifier, determines the passive valence of the phrase. For example, the dependency relation

between ‘honga’ and ‘katta’ in the example sentence above shows that ‘katta’ depends on the

noun ‘honga,’ which can be subordinated to the verb ‘nakunatta.’

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between a noun and a relative-clause

modifier. This semantic relationship cannot be expressed by any other dependency type, and

the prototypical dependent of this dependency type is a verb.

397

6.5.8 Ccomp

The head of this dependency type is a verb and the dependent is the head of a clausal

complement of the verb. In this type, “the grammatical function COMP labels a subordinate

clause followed by a case particle ‘-to’ which is equivalent to an English complementizer ‘that’”

(Oya 2010a, p.142). The sentence (6.40) illustrates this type in Japanese.

(6.40)

Kono hon-wa omoshiroi-to ani-wa

this book-postp interesting-ccomp elder.brother-topic

it-ta

say-past

‘My elder brother said that this book was interesting.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the following typed-dependency tree. The verbal syntactic unit ‘omoshiroito

(that it is interesting)’ depends on ‘itta (said).’

398

CCOMP PUNCT

TOPIC

TOPIC

DET

kono

aniwa

Root

itta

.omoshiroito

honwa

Figure 6.82. The typed-dependency tree for ‘Kono honwa omoshiroito aniwa itta (My elder

brother said that this book was interesting).’

The typed-dependency tree above is equivalent to the functional structure below.

PRED 'itta<SUBJ>'

SUBJ PRED 'PROi'

FORM ZERO

TOPIC PRED 'ani'

GENDER MASCULINE

NUMBER SINGULAR i

CCOMP PRED 'omoshiroi<SUBJ>'

TOPIC PRED 'hon'

DET FORM 'kono'

TYPE DEMONSTRATIVE j

SUBJ PRED 'PROj'

FORM ZERO

TENSE PRESENT

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARATIVE

Figure 6.83. The functional structure for ‘Kono honwa omoshiroito aniwa itta (My elder brother

said that this book was interesting).’

 The dependency type “ccomp” follows Mel’čuk’s original Criterion A for SsyntRel because

the dependent clause and the main verb have a fixed order whereby the dependent clause

399

precedes the main verb, and they form a prosodic unit (e.g., ‘omoshiroito itta’ in the example

above). In addition, they form a semantic unit and therefore this type follows the revised

Criterion A proposed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B. In the example above, ‘omoshiroito’

depends on the verb ‘itta,’ not vice versa, because ‘itta’ depends on another element, namely, the

root of this sentence.

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between verbs that cannot be expressed

by any other dependency type, the prototypical dependent of this dependency type is a verb.

6.5.9 Advcl

The head of this dependency type is a verb and the dependent is the head of an adverbial clause

modifying the verb. In this type, ‘sentential adjuncts or SADJ are the grammatical functions

that are assigned to verbal units whose heads have inflections other than the base form or the –ta

form’ (Oya 2010a, p.150). This study uses the term advcl, not SADJ used in Oya (2010a), in

order to ensure the parallelism between the Stanford Parser output for English sentences and the

KNP output for Japanese sentences. The sentence (6.48) below illustrates this type in which the

verb ends with the inflection ‘-te.’ This inflection indicates the sequence of events. In the

example below, the event of listening to the elder brother’s talk precedes the change in the

speaker’s life.

(6.41)

Ani-no hanashi-wo kii-te watashino

elder.brother-postp talk-postp listen-infl I-postp

400

jinsei-wa kawat-ta

life-topic change-past

‘After listening to my elder brother’s talk, my life changed.’

The dependency relationships among the syntactic units in the example sentence above are

represented in the following typed-dependency tree. The dependency type “advcl” is used for

the dependency relationship between the verbal syntactic unit ‘kiite (after listening to)’ and

‘kawatta (changed).’

ADVCL PUNCT

TOPIC

.-7

POSTP_wo POSTP_no

POSTP_no

anino-1

ROOT

Root

kawatta-6

jinseiwa-5

watashino-4

kiite-3

hanashiwo-2

Figure 6.84. The typed-dependency tree for ‘Anino hanashiwo kiite watashino jinseiwa kawatta

(After listening to my elder brother’s talk, my life changed).’

The typed-dependency tree above is equivalent to the following functional structure.

401

PRED 'kawatta<SUBJ>'

SUBJ PRED 'PROi'

FORM ZERO

TOPIC PRED 'jinsei'

POSTP_no PRED 'PRO'

PERSON 1ST

NUMBER SINGULAR

FORM 'watashi' i

ADVCL PRED 'kiite<SUBJ,OBJ>'

SUBJ PRED 'PRO'

FORM ZERO

OBJ PRED 'PROj'

FORM ZERO

POSTP_wo PRED hanashi'

POSTP_no PRED 'ani'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE j

TENSE PAST

PUNCT FORM '.'

ROOT STMT-TYPE DECLARAT IVE

Figure 6.85. The functional structure for ‘Anino hanashiwo kiite watashino jinseiwa kawatta

(After listening to my elder brother’s talk, my life changed).’

Different verbal inflections of the sentential adverbials indicate different semantic

relationships between the main predicate and the sentential adverbials. For example, the verbal

inflection ‘-nagara’ in the sentence (6.42) below indicates that the event described by the main

predicate and the event described by the sentential adverbial occurred at the same time.

(6.42)

Ani-no hanashi-wo kiki-nagara watashi-wa

elder.brother-postp talk-postp listen-infl I-topic

hon-wo yonde-ita

book-postp read-past

‘I was reading a book while listening to my elder brother’s talk.’

402

The dependency relationships among the syntactic units in the example sentence above are

represented in the following typed-dependency tree. The dependency type “advcl” is used for

the dependency relationship between the verbal syntactic unit ‘kikinagara (while listening to)’

and ‘yondeita (was reading).’

ADVCL PUNCT

TOPIC

.-7

POSTP_wo POSTP_wo

honwo-5

POSTP_no

anino-1

ROOT

Root

yondeita-6

watashiwa-4kikinagara-3

hanashiwo-2

Figure 6.86. The typed-dependency tree for ‘Anino hanashiwo kikinagara, watashiwa honwo

yondeita (I was reading a book while listening to my elder brother’s talk).’

403

PRED 'yondeita<SUBJ,OBJ>'

SUBJ PRED 'PRO i'

FORM ZERO

SUBJ PRED 'PRO j'

FORM ZERO

TOPIC PRED 'PRO'

PERSON 1ST

NUMBER SINGULAR

FORM 'watashi' i

POSTP_wo PRED 'hon' j

ADVCL PRED 'kikinagara<SUBJ,OBJ>'

SUBJ PRED 'PRO'

FORM ZERO

OBJ PRED 'PROk'

FORM ZERO

POSTP_wo PRED hanashi'

POSTP_no PRED 'ani'

PERSON 3RD

NUMBER SINGULAR

GENDER MASCULINE k

TENSE PAST

ASPECT PROGRESSIVE

PUNCT FORM '.'

ROOT ST MT-TYPE DECLARATIVE

Figure 6.87. The functional structure for ‘Anino hanashiwo kikinagara, watashiwa honwo

yondeita (I was reading a book while listening to my elder brother’s talk).’

 This dependency type follows Mel’čuk’s original Criterion A for SsyntRel because the

dependent clause and the main verb have a fixed word order whereby the dependent clause

precedes the main verb, and they form a prosodic unit. In addition, they form a semantic unit,

thus following the revised Criterion A proposed in Section 2.4.3.1.

 This dependency type follows Mel’čuk’s Criterion B. In the example sentence above, ‘kiite’

depends on ‘kawatta,’ not vice versa, because ‘kawatta’ depends on another element, namely, the

root of this sentence.

This dependency type also follows the revised Criterion C proposed in Section 2.4.3.3,

because it implies a certain kind of semantic relationship between verbs that cannot be expressed

by any other dependency type, and the prototypical dependent of this dependency type is a verb.

404

6.5.10 Treatment of Coordinates

Unlike Stanford Dependency, the dependency-type inventory for Japanese in this dissertation

does not contain any dependency type for coordinates. This is due to the fact that coordinates

are indicated by certain types of postpositions such as ‘-to’ or ‘-ya,’ hence coordinates are treated

as the dependents of the dependency type “postp.” This treatment is also intended to highlight

the symmetric structure of coordinates, as described later in this section.

Oya (2010a, p.151) stated that “… the coordinates must depend on one ‘dummy’ syntactic

unit which has the grammatical function of the last coordinate.” In addition, the dependency

relation between the dummy and each coordinate is called “coord”. An example of this type is

presented below.

(6.43)

Watashi-wa gengogaku-to jinruigaku-wo manan-da.

I-postp linguistics-postp anthropology-postp read-past

‘I studied linguistics and anthropology.’

TOPIC PUNCT

OBJ

Root

mananda-5

watashiwa-1 dummy-4

gengogakuto-2 jinruigakuwo-3

.-6

COORDCOORD

Figure 6.88. The typed-dependency tree for ‘Watashiwa gengogakuto jinruigakuwo mananda (I

studied linguistics and anthropology)’ with a dummy syntactic unit for coordinates.

405

The use of dummy syntactic units was a measure taken in Oya (2010a) to transform the

asymmetric coordinates in the output of KNP into symmetric ones. However, the presence of a

dummy in a typed-dependency tree is an ad-hoc measure and not linguistically motivated.

Therefore, this study discards the dummy syntactic unit for coordinate construction, and all the

coordinates are treated as being dependent on one head, and the dependency type is “postp.”

The dependency type is further subtyped according to the postposition used, as shown in the

figure below.

TOPIC PUNCT

POSTP_to

POSTP_wo

Root

mananda-4

watashiwa-1

gengogakuto-2 jinruigakuwo-3

.-5

Figure 6.89. The typed-dependency tree for ‘Watashiwa gengogakuto jinruigakuwo mananda (I

studied linguistics and anthropology)’ without a dummy syntactic unit for coordinates.

The typed-dependency tree above is equivalent to the functional structure below. The object

zero pronoun of the verb ‘mananda (someone studied something)’ refers to both of the syntactic

units ‘gengogakuto (linguistics and)’ and ‘jinruigakuwo (anthropology).’

406

PRED 'mananda<SUBJ,OBJ>'

SUBJ PRED 'PROi'

TYPE ZERO

OBJ PRED 'PROj'

TYPE ZERO

TOPIC PRED 'PROi'

PERSON 1ST

NUMBER SINGULAR

FORM 'watashi

POSTP_to PRED 'gengogaku' j

POSTP_wo PRED 'jinruigaku' j

TENSE PAST

PUNCT FORM '.'

ROOT ST MT -T YPE DECLARATIVE

Figure 6.90. The functional structure for ‘Watashiwa gengogakuto jinruigakuwo mananda (I

studied linguistics and anthropology)’ without a dummy syntactic unit for coordinates.

6.6 Summary

This chapter introduced KNP (Kurohashi & Nagao 1992, 1994, 1998; Kawahara & Kurohashi

2007), which is a rule-based dependency parser used for generating automatic typed-dependency

tree representations for Japanese sentences. Section 6.2 briefly introduced KNP and its output

format. Section 6.3 described the process through which KNP parsed output is annotated with

dependency types. Section 6.4 dealt with zero pronouns in elliptic sentences often used in

Japanese, and it is argued that Japanese verbs contain zero pronouns in its lexical entry so that

they can stand as one-word sentences by themselves. In section 6.5, each dependency type

used with this parser in this study was defined with reference to the criteria for surface syntactic

relations by Mel’čuk (2009, 2011), along with example sentences for each of the dependency

types, their typed dependency trees, and the functional structure representations equivalent to

these trees. By doing this, each of the Japanese dependency types proposed in this section is

407

given a theoretical backbone based on Mel’čuk’s Criteria, and the parse output of KNP annotated

with dependency types is shown to be equivalent to functional-structure representation in the

framework of LFG.

408

7. Data analyses

7.1 Introduction

This chapter attempts to answer the following question: from which source are the graph

centrality measures obtained, and what is the result? In this section, the meaning of the word

“result” here is further defined as follows: (1) the difference between the centrality measures of

the parsed output of sentences and those of the correct typed-dependency trees for the same

sentences, (2) the difference between the centrality measures of the parsed output for English

sentences and those of the parsed output for Japanese counterparts, and (3) the difference among

centrality measures of the parsed output for English sentences in different genres of texts.

These results have relevance to different issues; (1) is relevant to the accuracy of the parsers

used in this study, (2) is relevant to the issue of how centrality measures capture cross-linguistic

differences in terms of syntactic dependency structure, and (3) is relevant to the issue of how

centrality measures capture intra-linguistic variations of syntactic dependency structure.

First, Section 7.3 addresses the issue of parsing accuracy for English sentences. The

accuracy of Stanford Parser is examined by comparing the typed-dependency trees which are

automatically obtained from the parsed output of the English sentences to their

manually-corrected typed-dependency trees, and it is shown that the distributions of both degree

centralities and closeness centralities before and after manual corrections are almost identical.

Thus, Stanford Parser is found to be sufficiently accurate to obtain degree centralities and

closeness centralities of English sentences.

Second, Section 7.4 addresses the issue of parsing accuracy for Japanese sentences. The

accuracy of KNP is examined by comparing the typed-dependency trees which are automatically

obtained from the parsed output of the Japanese sentences to their manually-corrected

typed-dependency trees, and similarly to the result of parsing accuracy of English sentences

409

using the Stanford Parser, the distributions of both degree centralities and closeness centralities

before and after manual corrections are almost identical. Thus, KNP is found to be sufficiently

accurate to obtain degree centralities and closeness centralities of Japanese sentences.

Third, section 7.5 addresses the issue of cross-linguistic differences of centrality measures.

The distributions of degree centralities and of closeness centralities obtained from English

typed-dependency trees are compared to those obtained from the Japanese counterparts, and it is

shown that their distributions are different. Thus, the structural properties of the

typed-dependency trees for the sentences in these two languages are different in terms of their

degree centralities (flatness) and closeness centralities (embeddedness).

Lastly in section 7.6, the distributions of degree centralities and of closeness centralities

obtained from the parsed output of sentences from different genres texts in Manually annotated

sub-corpus of American National Corpus (MASC 500k) (Ide, Baker, Fellbaum, Fillmore, &

Passonnau 2008) are compared to each other, and it is shown that their distributions are different;

however, it is pointed out that these different distributions are dependent on the word counts of

the sentences.

7.2 Features Extractable from Typed-Dependency Trees

In principle, a number of features can be extracted from the typed-dependency tree for a

sentence.

1. A dependency relation between two words provides us with information about which word

depends on which word. A dependency relation is a directed edge (or arc) from the head

word to its tail word.

2. A dependency type provides us with information on the category to which the dependency

410

relation belongs. A dependency type is the label assigned to a dependency relation. This

is equivalent to the term “grammatical function” used in other syntactic theories such as

Lexical-Functional Grammar (LFG) (Kaplan & Bresnan 1982; Bresnan 2001).

3. Embeddedness of a typed-dependency tree for a sentence provides us with information on

how embedded the dependency structure of the sentence is. Embeddedness of a

typed-dependency tree can be represented as the closeness centrality (Freeman 1979) of the

root node of the tree.

4. Flatness of a typed-dependency tree for a sentence provides us with information on how flat

the dependency structure of the sentence is, that is, to what extent the dependency structure is

concentrated on one particular node. Flatness of a typed-dependency tree can be

represented as the degree centrality (Freeman 1979) of the entire tree.

5. Dependency distance of a dependency relation provides us with information on how many

words a given tail is away from its head. Dependency relations of different dependency

types are expected to have different dependency distances on average.

7.3 Parsing Accuracy of the Stanford Parser

This section deals with the parsing accuracy of the Stanford Parser (de Marneffe & Manning

2012), and the effect of parse errors to the centrality measures and dependency distances

discussed above. First, the two types of dependency errors are defined. Then, the issue of

parsing errors is briefly introduced.

7.3.1 Two types of dependency parse errors

There are two types of dependency parse errors in the output of the Stanford Parser:

411

dependency-relation errors and dependency-type errors. Dependency-relation errors are those

in which the head-tail relationship between words is incorrectly parsed. Dependency-type

errors are those in which the head-tail relationship between words is correctly parsed, but typed

incorrectly. For example, consider the typed-dependency tree for the sentence ‘Sarah has

written this book.’

ROOT

NSUBJ DOBJ

AUX

DET

this-4

Root-0

written-3

Sarah-1 has-2 book-5

Figure 7.1. The typed-dependency tree for ‘Sarah has written this book.’

The following typed-dependency tree contains an incorrect dependency type between ‘book’ and

‘this.’ The dependency relation between these words is correct, while the dependency type is

incorrect. The output states that the dependency type between ‘book’ and ‘this’ is “amod”

(adjectival modification), but it must be “det” (determiner).

412

ROOT

NSUBJ DOBJ

AUX

AMOD

this-4

Root-0

written-3

Sarah-1 has-2 book-5

Figure 7.2. A typed-dependency tree for ‘Sarah has written this book’ with an incorrect

dependency type between ‘book’ and ‘this.’

The following typed-dependency tree contains an incorrect dependency relation between ‘has’

and ‘this’; the dependency type “det” for the word ‘this’ is correct, but the head of the

dependency is incorrect:

ROOT

NSUBJ DOBJ

AUX

DET

this-4

Root-0

written-3

Sarah-1 has-2 book-5

Figure 7.3. A typed-dependency tree for ‘Sarah has written this book’ with an incorrect

dependency relation between ‘has’ and ‘this.’

Notice that the correctness of a dependency type is assumed to be determined with respect to the

tail of the dependency.

413

Both of these types of parse errors can co-occur for the same word in a sentence. For

example, the following typed-dependency tree is incorrect in terms of dependency relation and

dependency type for the word ‘this.’ The tree shows that ‘this’ depends incorrectly on ‘has’

with an incorrect dependency type “amod”.

ROOT

NSUBJ DOBJ

AUX

AMOD

this-4

Root-0

written-3

Sarah-1 has-2 book-5

Figure 7.4. A typed-dependency tree for ‘Sarah has written this book’ with an incorrect

dependency type and an incorrect dependency relationship

These errors shown above are constructed for the clarity of explanation of dependency-error

types, although the parser does not yield such obvious errors.

There has been a significant amount of research on improving the accuracy of parsing. To

name a few, Charniak (2000) uses the maximum-entropy model for calculating the most

probable parse tree for a given sentence; Collins (1996) describes a statistical parser based on

probabilities of dependencies between pairs of two words; Zeman & Žaborkrtský (2005)

combine different parsers to improve parsing accuracy. The assumption shared by these

researchers is that, if we can fix incorrect dependency analyses in the parsed output as much as

possible, data processing based on the output will become more reliable. However, it is rather

difficult to detect all the incorrect analyses in the original parsed output and fix all of them; no

414

study has succeeded in achieving 100% accuracy in parsing. The Stanford Parser is one of the

state-of-the-art dependency parsers available at present, but like the other parsers, it cannot yield

a 100% correct dependency analysis for the sentences in a given text.

In this context, it is desirable to focus on the extent to which incorrect dependency analyses

may affect on the use of the parsed output for different purposes. If the aim of dependency

parsing is to create a best parser ever, all the dependency analysis errors must be eradicated

regardless of the type of the errors. If, on the other hand, the aim of dependency parsing is not

just obtaining the parsed output, but also extracting certain information from the parsed output,

e.g., the parsed output’s structural properties such as the centrality measures introduced above, it

is desirable to show how significantly dependency analysis errors affect the structural properties

calculated. In particular, if a parser correctly analyses the dependency relation between two

words in a sentence, but it yields an error in terms of the dependency type given to this

dependency relation, the degree and closeness centralities are not affected by this error because

these centrality measures ignore the information about dependency types.

This claim does not diminish the importance of improving the accuracy of parser output. It

is possible to detect the parse errors found in the parsed output of the sentences in a small corpus,

so that we can obtain information about the accuracy of a parser, which can contribute to the

work of parser developers. The small corpus must contain a variety of syntactic patterns, so

that we can obtain balanced data. By parsing the sentences in the corpus, it is expected that we

can identify syntactic patterns in which parse errors are found more often than in other syntactic

patterns.

From this standpoint, in this study the accuracy of the Stanford Parser is examined by

searching for incorrect dependency relations and types manually in the parsed output for a small

corpus. Then, the degree and closeness centralities are calculated, both from the parser output

415

before manual correction and from that after manual correction. The results are compared

statistically in order to see how dependency parse errors affect the degree and closeness

centralities of the parsed output.

7.3.2 Data description

The data chosen for the purpose introduced above are taken from “Eisakubun Kihon 300 Sen”

(Basic 300 Sentences for English Composition; henceforth Basic 300) (Iida 2010). Basic 300

contains 339 English sentences along with their Japanese translations, and it is compiled for

Japanese high school students to memorize basic syntactic structures of English; therefore, it

contains important syntactic constructions of English. These data are also used in the

calculation for degree and closeness centralities of English and Japanese sentences in Section

7.5.

7.3.3 Procedure

First, the English sentences in Basic 300 are parsed by the Stanford Parser ver.1.6.953. The

output option is set to Collapsed Tree (see Section 5.4.4) in order to keep the parallelism between

English prepositional phrases and Japanese postpositional phrases. Second, the parsed output

for each sentence is checked in terms of the dependency relation and dependency type. The

parsed output file is converted by an original Ruby script (Appendix IV) into .net files for Pajek

(Bategelj & Mrvar 1996), an application used for network analysis. Pajek shows us the

typed-dependency tree for a sentence. For example, the .net file format of the

53
The latest version of the Stanford Parser as of September 2013 is Version 3.2 (de Marneffe & Manning 2013).

416

typed-dependency tree for “Sarah has written this book” is as follows:

(7.1)

*Vertices 7

1 “ROOT”

2 “Sarah”

3 “have”

4 “write”

5 “this”

6 “book”

7 “.”

*Arcs

4 2 1 l “nsubj”

4 3 1 l “aux”

1 4 1 l “root”

6 5 1 l “det”

4 6 1 l “dobj”

4 7 1 l “punct”

Pajek reads a .net file in the format above, and outputs a graph, as shown in Figure 7.5. In this

output, the auxiliary ‘has’ and the verb ‘written’ are shown in their lemmas.

417

Figure 7.5. The typed-dependency tree for “Sarah has written this book” in Pajek

In this study, Pajek is used for the manual correction of parsed output because it is much easier to

detect incorrect dependency errors in the form of Pajek-style typed-dependency trees than in the

form of Stanford-Parser-style triples.

If any of the dependency relations and types in the output file is found incorrect, they are

manually corrected. For example, (7.2) is the .net file for ‘Sarah has written this book’ with an

incorrect dependency type, and Figure 7.6 shows the incorrect typed-dependency tree. The

dependency type “amod” between “this” and “book” is incorrect. It should be corrected to

“det.”

(7.2)

*Vertices 7

1 “ROOT”

418

2 “Sarah”

3 “have”

4 “write”

5 “this”

6 “book”

7 “.”

*Arcs

4 2 1 l “nsubj”

4 3 1 l “aux”

1 4 1 l “root”

6 5 1 l “amod”

4 6 1 l “dobj”

4 7 1 l “punct”

Figure 7.6. An incorrect typed-dependency tree for “Sarah has written this book” in Pajek

Incorrect dependency types and failed dependency types are counted as follows. Suppose

that the typed-dependency tree below is a parsed output for an example sentence “Sarah has read

419

this.” before manual correction.54 The dependency relationship between ‘read’ and ‘this’ is

typed incorrectly as “det;” hence, this “det” is counted as an incorrect dependency type.

ROOT

PUNCT .

NSUBJ

AUX DET

Root

read

Sarah has this

Figure 7.7. The typed-dependency tree for “Sarah has read this.” (before manual correction)

The typed-dependency tree after manual correction of the tree above is shown below. The

incorrect dependency type “det” is replaced by a correct type “dobj.” This “dobj” has been

failed to be parsed by the parser; hence, this “dobj” is counted as a failed dependency type.

ROOT

PUNCT .

NSUBJ

AUX DOBJ

Root

read

Sarah has this

Figure 7.8. The typed-dependency tree for “Sarah has read this.” (after manual correction)

The precision, recall and f-score of each dependency type are calculated by a Ruby script

54
This parsed error is constructed for the clarity of explanation of incorrect and failed types, and the parser does not

yield such an obvious error.

420

(see Appendix VI), in order to see which dependency type often fails to be correctly parsed.

The precision, recall, and f-score are calculated according to Manning & Schütze (1999,

p.268-269). The precision of a dependency type Pt is calculated by the following formula,

where cpt means the number of correctly parsed instances of a dependency type t, and ipt means

the number of incorrectly parsed instances of the dependency type t.

Pt =

ା
(1)

(Manning & Schütze 1999, p.268)

The recall of a dependency type Rt is calculated by the following formula, where cpt means the

number of correctly parsed instances of a dependency type t, and fpt means the number of

instances of the dependency type t which failed to be correctly parsed.

Rt =

ା
(2)

(Manning & Schütze 1999, p.269)

The f-score of a dependency type Ft is the harmonic mean of the precision and the recall of the

dependency type, calculated by the following formula.

Ft =
ଶோ

(ோା)
(3)

(Manning & Schütze 1999, p.269)

421

The centrality measures of both the parsed output before and after manual correction are also

calculated by a Ruby script (see Appendix VII), then compared with each other.

7.3.4 Results

The list of English sentences with incorrect parses is presented in Appendix II. Of all the

English sentences in Basic300 (339 in total), the number of sentences which contain at least one

wrong dependency is 120. This is around 35.39% of all the English sentences in Basic300.

Of all the dependencies in the English sentences in Basic300 (3405 in total), the number of

correctly parsed dependencies is 3161; hence, the parsing accuracy of the Stanford Parser is

more than 92% for Basic300.

Of all the incorrect dependencies, the number of dependencies that are parsed with an

incorrect relation and the correct type is 39 (about 1% of all the dependencies). The number of

dependencies that are parsed with an incorrect type and the correct relation is 94 (about 2.7% of

all the dependencies). The number of dependencies that are parsed with both an incorrect

relation and an incorrect type is 107 (about 3.1% of all the dependencies).

The recall, precision, and f-score of each dependency type in English are shown in Table 7.1.

In the table, the column ‘C’ shows the number of each dependency type which is correct in the

parsed output (cpt in the formula (1) and (2)). The column ‘I’ shows the number of each

dependency type which is incorrect in the parsed output (ipt in the formula (1)). The column ‘F’

shows the number of each dependency type which failed to be parsed, and added to the manually

corrected parsed output (fpt in the formula (2)).

422

Table 7.1. The precision, recall, and f-score of each dependency type in the English sentences in

Basic300

type C I FL P R F type C I FL P R F

acomp 12 0 1 1.000 0.923 0.960 prep_as 3 1 0 0.750 1.000 0.857

acomp_and 1 0 0 1.000 1.000 1.000 prep_at 9 0 3 1.000 0.750 0.857

advcl 74 2 27 0.974 0.733 0.836 prep_before 1 0 0 1.000 1.000 1.000

advcl_and 0 0 1 0.000 0.000 0.000 prep_behind 0 1 1 0.000 0.000 0.000

advmod 197 6 26 0.970 0.883 0.925 prep_besides 1 0 0 1.000 1.000 1.000

amod 140 3 5 0.979 0.966 0.972 prep_between 1 0 0 1.000 1.000 1.000

appos 2 1 0 0.667 1.000 0.800 prep_but 0 0 1 0.000 0.000 0.000

aux 294 0 4 1.000 0.987 0.993 prep_by 5 1 3 0.833 0.625 0.714

auxpass 28 0 1 1.000 0.966 0.982 prep_except_for 0 0 1 0.000 0.000 0.000

cc 1 0 1 1.000 0.500 0.667 prep_for 22 2 3 0.917 0.880 0.898

ccomp 70 16 19 0.814 0.787 0.800 prep_from 5 0 0 1.000 1.000 1.000

ccomp_but 1 0 0 1.000 1.000 1.000 prep_in 33 4 9 0.892 0.786 0.835

ccomp_or 0 0 1 0.000 0.000 0.000 prep_into 4 0 0 1.000 1.000 1.000

complm 22 2 1 0.917 0.957 0.936 prep_like 5 1 0 0.833 1.000 0.909

conj 0 0 2 0.000 0.000 0.000 prep_next_to 1 0 0 1.000 1.000 1.000

cop 101 1 4 0.990 0.962 0.976 prep_of 45 0 0 1.000 1.000 1.000

csubj 5 1 0 0.833 1.000 0.909 prep_on 18 3 3 0.857 0.857 0.857

det 299 4 7 0.987 0.977 0.982 prep_on_or 1 0 0 1.000 1.000 1.000

dobj 218 14 26 0.940 0.893 0.916 prep_out_of 1 0 0 1.000 1.000 1.000

dobj_and 2 0 0 1.000 1.000 1.000 prep_over 1 0 0 1.000 1.000 1.000

expl 9 0 0 1.000 1.000 1.000 prep_since 1 0 0 1.000 1.000 1.000

infmod 5 1 5 0.833 0.500 0.625 prep_than 2 0 0 1.000 1.000 1.000

iobj 4 0 4 1.000 0.500 0.667 prep_through 1 0 0 1.000 1.000 1.000

mark 64 3 20 0.955 0.762 0.848 prep_to 30 0 0 1.000 1.000 1.000

mwe 2 0 0 1.000 1.000 1.000 prep_until 1 0 0 1.000 1.000 1.000

neg 94 1 6 0.989 0.940 0.964 prep_upon 1 0 0 1.000 1.000 1.000

neg_or 0 0 1 0.000 0.000 0.000 prep_while 1 0 0 1.000 1.000 1.000

nn 26 7 0 0.788 1.000 0.881 prep_with 16 0 0 1.000 1.000 1.000

nn_and 1 1 0 0.500 1.000 0.667 prep_within 1 0 0 1.000 1.000 1.000

npadvmod 8 0 0 1.000 1.000 1.000 prep_without 2 0 0 1.000 1.000 1.000

nsubj 535 23 12 0.959 0.978 0.968 prepc_for 3 0 0 1.000 1.000 1.000

nsubj_and 2 0 0 1.000 1.000 1.000 prepc_from 2 0 0 1.000 1.000 1.000

nsubj_or 1 0 0 1.000 1.000 1.000 prepc_of 1 0 0 1.000 1.000 1.000

nsubjpass 24 0 0 1.000 1.000 1.000 prepc_on 1 0 0 1.000 1.000 1.000

num 24 2 0 0.923 1.000 0.960 prepc_to 1 0 0 1.000 1.000 1.000

num_and 0 1 1 0.000 0.000 0.000 prepc_while 2 0 0 1.000 1.000 1.000

number 1 1 1 0.500 0.500 0.500 prepc_with 1 0 0 1.000 1.000 1.000

parataxis 5 1 0 0.833 1.000 0.909 prepc_without 3 0 0 1.000 1.000 1.000

partmod 10 3 3 0.769 0.769 0.769 prt 27 1 1 0.964 0.964 0.964

pobj 4 3 0 0.571 1.000 0.727 purpcl 1 0 0 1.000 1.000 1.000

poss 90 2 3 0.978 0.968 0.973 quantmod 12 0 0 1.000 1.000 1.000

possessive 0 0 1 0.000 0.000 0.000 rcmod 27 2 7 0.931 0.794 0.857

predet 9 0 2 1.000 0.818 0.900 root 325 14 14 0.959 0.959 0.959

prep 7 3 0 0.700 1.000 0.824 root_and 12 0 0 1.000 1.000 1.000

prep_about 2 1 1 0.667 0.667 0.667 root_but 18 1 0 0.947 1.000 0.973

prep_across 2 0 0 1.000 1.000 1.000 root_or 2 0 0 1.000 1.000 1.000

prep_after 3 0 0 1.000 1.000 1.000 tmod 34 2 7 0.944 0.829 0.883

prep_around 1 0 0 1.000 1.000 1.000 xcomp 77 7 5 0.917 0.939 0.928

SUM 3161 143 244

423

(C; correctly parsed, I; incorrectly parsed, FL; failed to be parsed, P; precision, R; recall, F;

F-score)

Table 7.2 is the descriptive statistics of word count, degree centralities, closeness centralities, and

dependency distances before and after manual corrections of the typed-dependency trees for the

English sentences in Basic300.

Table 7.2. The descriptive statistics of word count, degree centralities, closeness centralities, and

dependency distances before and after manual corrections of the typed-dependency trees for the

English sentences in Basic300.

Wordcount

before after before after before after

Average 11.059 0.426 0.432 0.428 0.432 2.505 2.489

S.E. 0.165 0.010 0.011 0.004 0.004 0.031 0.029

median 11.00 0.389 0.389 0.419 0.421 2.400 2.417

mode 11.00 0.389 0.267 0.500 0.400 2.000 2.000

S.D. 3.036 0.184 0.197 0.082 0.082 0.568 0.543

Var. 9.215 0.034 0.039 0.007 0.007 0.323 0.295

Kurtosis -0.397 2.182 1.723 0.925 1.062 0.300 0.352

Skewness -0.429 1.385 1.350 0.873 0.910 0.626 0.654

Range 14 0.9 0.9 0.460 0.496 3.500 3.188

Min. 4 0.1 0.1 0.254 0.254 1.000 1.250

Max 18 1.0 1.0 0.714 0.750 4.500 4.438

Sum 3749 144.364 146.510 145.066 146.381 849.292 843.810

Sample 339 339 339 339 339 339 339

Degree centralities Closeness centralities Dependency Distance

The figures below show the distribution of degree centralities, closeness centralities and

dependency distances before and after manual corrections, respectively. As their near-linear

distributions indicate, these three measures do not greatly change before and after manual

correction.

424

Figure 7.9. The distribution of degree centralities of the English sentences in Basic300 before and

after manual correction (Before: the degree centralities before manual correction; After: the

degree centralities after manual correction).

Figure 7.10. The distribution of closeness centralities of the English sentences in Basic300 before

and after manual correction (Before: the closeness centralities before manual correction; After:

the closeness centralities after manual correction).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

A
ft

e
r

Before

sentence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

A
ft

e
r

Before

sentences

425

Figure 7.11. The distribution of dependency distances of the English sentences in Basic300

before and after manual correction (Before: the dependency distances before manual correction;

After: the dependency distances after manual correction)

7.3.4.1 Distribution of degree centralities of the English sentences in Basic300 before and

after manual correction

The distribution of the English sentences in Basic300 in terms of their degree centralities

(flatness measures) did not change dramatically before and after manual correction. In order to

determine if the degree centralities of the English sentences in Basic 300 before and after manual

correction were normally distributed, the Kolmogorov-Smirnov test for normality was conducted.

The software used for this test was R version 2.15.0. The results indicated that the distribution

of the degree centralities before manual correction deviated from a normal distribution (D=0.146,

p<0.05), and that the distribution of the degree centralities after manual correction also deviated

from a normal distribution (D=0.147, p<0.05).

Since the degree centralities before and after manual correction were not normally distributed,

a t-test could not be conducted to compare the degree centralities of the English sentences in

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5

A
ft

e
r

Before

sentence

426

Basic 300 before manual correction to those after manual correction. Therefore, a

Mann-Whitney U test was conducted to compare them, with alpha set at the 5% level, and the

null hypothesis is that the average degree centrality before manual correction is the same as the

average degree centrality after manual correction. The results were not significant (p=0.97);

hence the null hypothesis could not be rejected.

7.3.4.2 Distribution of closeness centralities of the English sentences in Basic300 before

and after manual correction

The distribution of the sentences in Basic300 in terms of their closeness centralities

(embeddedness measures) also did not change dramatically before and after manual correction,

as figures below show. In order to determine if the closeness centralities of the English

sentences in Basic 300 before and after manual correction were normally distributed, the

Kolmogorov-Smirnov test for normality was conducted. The software used for this test was R

version 2.15.0. The results indicated that the distribution of the closeness centralities before

manual correction deviated from a normal distribution (D=0.104, p<0.05), and that the

distribution of the degree centralities after manual correction also deviated from a normal

distribution (D=0.114, p<0.05).

Since the closeness centralities before and after manual correction were not normally

distributed, which was the same case for the degree centralities, a t-test could not be conducted

to compare the closeness centralities of the English sentences in Basic 300 before manual

correction to those after manual correction. Therefore, a Mann-Whitney U test was conducted

to compare them, with alpha set at the 5% level, and the null hypothesis is that the average

closeness centrality before manual correction is the same as the average closeness centrality after

manual correction. The results were not significant (p=0.52); hence the null hypothesis could

427

not be rejected.

7.3.4.3 Distribution of dependency distances of the English sentences in Basic300 before

and after manual correction

The distribution of the sentences in Basic300 in terms of their average dependency distances also

does not change dramatically before and after manual correction. In order to determine if the

dependency distances of the English sentences in Basic 300 before and after manual correction

were normally distributed, the Kolmogorov-Smirnov test for normality was conducted. The

software used for this test was R version 2.15.0. The results indicated that the distribution of

the dependency distances before manual correction deviated from a normal distribution

(D=0.081, p<0.05), and that the distribution of the dependency distances after manual correction

also deviated from a normal distribution (D=0.076, p<0.05).

Since the dependency distances before and after manual correction are not normally

distributed, similar to the cases for the degree centralities and the closeness centralities, a t-test

could not be conducted to compare the dependency distances of the English sentences in Basic

300 before manual correction to those after manual correction. Therefore, a Mann-Whitney U

test was conducted to compare them, with alpha set at the 5% level, and the null hypothesis is

that the average dependency distance before manual correction is the same as the average

dependency distance after manual correction. The results were not significant (p=0.81); hence

the null hypothesis could not be rejected.

7.3.5 Discussion

Statistical analyses show that the distributions of degree centralities, closeness centralities, and

428

dependency distances of the English typed-dependency trees of Basic300 (parsed output of the

English sentences by the Stanford Parser) before manual correction were not significantly

different from those after manual correction. This result is a desirable one, especially for

researchers who examine these measures obtained from the sentences in larger-scale corpora,

where manual correction of the parsed output is a laborious and time-consuming task.

7.3.6 Related work

Cer, de Marneffe, Jurafsky & Manning (2010) compared a number of parsers in terms of

Stanford Dependency representation. The data used in their study was the section 22 of Penn

Treebank. The parse output of each of the different parsers is systematically converted into

those using Stanford Dependency. The f-score of “labeled attachment” (correctly parsed

dependency relation with the correct dependency type) of Stanford Parser was 84.2. Their

research question was the trade-offs between parsing accuracy and parsing speed; therefore, they

did not report in detail the accuracy and precision of each dependency type in the parse output of

these different parsers; however, they reported that these parsers often yield errors of dependency

relationships and dependency types for subordinated clauses, prepositional and adverbial

phrases.

7.4 Parsing Accuracy of KNP

7.4.1 Data description

The data chosen for the analysis described below are the Japanese sentences in Basic 300, which

is the same corpus used for investigating the parsing accuracy of the Stanford Parser (see Section

7.3). This corpus contains 339 English sentences, along with their Japanese translations.

429

7.4.2 Four types of dependency parse errors

Along with the two types of parse errors found in the output of the Stanford Parser

(dependency-relation errors and dependency-type errors; see Section 7.3.1), there are two other

types of parse errors in the output of KNP. The first type of parse error is that two or more

syntactic units are incorrectly segmented as one single syntactic unit. The second type of parse

error is that one syntactic unit is incorrectly segmented as more than one syntactic unit.

Both types are due to syntactic-unit segmentation errors in the output of JUMAN, the

morphological analyzer. KNP uses the output of this morphological analyzer as it is; therefore,

incorrect morphological analyses by JUMAN yield incorrect dependency analyses by KNP.

This study does not attempt to improve the morphological analyses of Japanese sentences by

JUMAN, because it is not the main topic of this study. Rather, in this study, the accuracy of

KNP is examined by identifying incorrect dependency relations and types manually in the parsed

output of a small corpus. If any incorrect syntactic-unit segmentation is found in the parsed

output of a sentence, all the triples are treated as failed parses. Then, the degree and closeness

centralities are calculated, both from the parser output before manual correction and from that

after manual correction. The results are compared in order to see how dependency parse errors

affect the degree and closeness centralities of the parsed output.

7.4.3 Procedure

First, the Japanese sentences in Basic 300 are morphologically analyzed by JUMAN; then the

output is parsed by KNP. The output is then converted into Stanford-Parser style triples by an

original Ruby script (see Appendix V), which is further converted by an original Ruby script (see

430

Appendix IV) into .net files for Pajek, in order to simplify the manual correction compared to

that of the Stanford-Parser-style triples. If any of the dependency relations and dependency

types in the sentence is incorrect, the content of the .net file is manually corrected. Incorrect

morphological analyses are also manually corrected. The precision, recall and f-score of each

dependency type are calculated, in order to see which dependency type fails to be correctly

parsed most often. The centrality measures of both the parsed output before and after manual

correction are also calculated by a Ruby script (see Appendix VI) written by the author of this

thesis, then compared with each other.

7.4.4 Results

The list of Japanese sentences with incorrect parses is presented in Appendix III. Of all the 339

Japanese sentences in Basic300, 32 sentences (about 9.4%) are segmented into syntactic units

incorrectly. Of all the Japanese sentences in Basic300, the number of sentences that contain at

least one incorrect dependency is 69. This is around 20.35% of all the Japanese sentences in

Basic300. Of all the dependencies in the Japanese sentences in Basic300 (1937 in total), the

number of correctly parsed dependencies is 1715; hence, the parsing accuracy of KNP with

automatic dependency-type annotation is more than 88% for Basic300.

Of all the incorrect dependencies, the number of dependencies that are parsed with an

incorrect relation and the correct type is 72 (about 3.7% of all the dependencies). The number

of dependencies that are parsed with an incorrect type and the correct relation is 38 (about 1.9%

of all the dependencies). The number of dependencies that are parsed with an incorrect type

and an incorrect relation is 117 (about 6% of all the dependencies).

The recall, precision, and f-score of each dependency type in Japanese are shown in Table

7.3.

431

Table 7.3. The recall, precision, and f-score of each dependency type in Japanese

type C I FL P R F type C I FL P R F

advcl 14 5 6 0.737 0.700 0.718 advcl_yori 1 0 0 1.000 1.000 1.000

advcl_ba 12 1 3 0.923 0.800 0.857 advcl_youni 0 0 2 0.000 0.000 0.000

advcl_de 1 1 2 0.500 0.333 0.400 advmod 196 16 20 0.925 0.907 0.916

advcl_deatte 2 0 0 1.000 1.000 1.000 amod 38 1 2 0.974 0.950 0.962

advcl_dokoroka 0 0 1 0.000 0.000 0.000 appos 1 0 1 1.000 0.500 0.667

advcl_ga 19 1 1 0.950 0.950 0.950 ccomp 34 3 4 0.919 0.895 0.907

advcl_ka 0 0 1 0.000 0.000 0.000 det 92 4 3 0.958 0.968 0.963

advcl_kara 4 4 10 0.500 0.286 0.364 focus 43 7 5 0.860 0.896 0.878

advcl_keredomo 4 0 0 1.000 1.000 1.000 nn 0 0 3 0.000 0.000 0.000

advcl_kouga 1 0 0 1.000 1.000 1.000 postp_de 51 0 0 1.000 1.000 1.000

advcl_ku 4 0 0 1.000 1.000 1.000 postp_ga 117 13 20 0.900 0.854 0.876

advcl_kute 2 0 0 1.000 1.000 1.000 postp_he 5 0 0 1.000 1.000 1.000

advcl_kutemo 1 0 0 1.000 1.000 1.000 postp_kara 7 2 3 0.778 0.700 0.737

advcl_made 2 1 1 0.667 0.667 0.667 postp_ni 137 16 20 0.895 0.873 0.884

advcl_mama 0 0 1 0.000 0.000 0.000 postp_nitotte 0 0 1 0.000 0.000 0.000

advcl_nagara 2 0 0 1.000 1.000 1.000 postp_nitsuite 0 0 1 0.000 0.000 0.000

advcl_ni 2 0 1 1.000 0.667 0.800 postp_niyotte 1 0 0 1.000 1.000 1.000

advcl_nodakara 2 1 1 0.667 0.667 0.667 postp_no 113 2 3 0.983 0.974 0.978

advcl_node 8 0 0 1.000 1.000 1.000 postp_to 16 1 1 0.941 0.941 0.941

advcl_tara 8 1 1 0.889 0.889 0.889 postp_wo 143 12 11 0.923 0.929 0.926

advcl_te 17 2 2 0.895 0.895 0.895 postp_yori 3 0 0 1.000 1.000 1.000

advcl_temo 8 0 0 1.000 1.000 1.000 rcmod 105 12 20 0.897 0.840 0.868

advcl_tewa 3 0 1 1.000 0.750 0.857 root 304 35 36 0.897 0.894 0.895

advcl_to 9 0 3 1.000 0.750 0.857 topic 183 29 31 0.863 0.855 0.859

1715 170 222

(C; correctly parsed, I; incorrectly parsed, FL; failed to be parsed, P; precision, R; recall, F;

f-score)

Table 7.4 is the descriptive statistics of word counts, degree centralities and closeness

centralities before and after manual corrections of the typed-dependency trees for the Japanese

sentences in Basic300.

Table 7.4. The descriptive statistics of word counts, degree centralities and closeness centralities

before and after manual corrections of the typed-dependency trees for the Japanese sentences in

Basic300.

432

Word count

before after before after before after

Average 6.614 0.529 0.511 0.501 0.494 2.347008 2.32387

S.E. 0.111 0.014 0.014 0.007 0.007 0.0261 0.025537

median 7.000 0.444 0.429 0.471 0.471 2.4 2.333333

mode 8.000 1.000 1.000 0.500 0.500 2 2

S.D. 2.049 0.256 0.262 0.130 0.132 0.480556 0.470181

Var. 4.196 0.065 0.069 0.017 0.017 0.230934 0.22107

Kurtosis -0.351 -0.558 -0.532 3.024 2.996 0.476541 0.478793

Skewness -0.043 0.661 0.649 1.362 1.358 -0.20517 -0.19362

Range 10 0.933 0.952 0.788 0.750 3 2.875

Min. 2 0.067 0.048 0.212 0.250 1 1

Max 12 1.000 1.000 1.000 1.000 4 3.875

Sum 2242 179.479 173.096 169.824 167.447 795.6358 787.792

Sample 339 339 339 339 339 339 339

Degree centralit ies Closeness centralit ies Dependency distances

The figures below show the distribution of degree centralities, closeness centralities and

dependency distances before and after manual corrections, respectively. As their near-linear

distributions indicate, these three measures do not dramatically change before and after manual

correction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

A
ft

e
r

Before

sentences

433

Figure 7.12. The distribution of degree centralities of the Japanese sentences in Basic300 before

and after manual correction (Before: the degree centralities before manual correction; After: the

degree centralities after manual correction).

Figure 7.13. The distribution of closeness centralities of the Japanese sentences in Basic300

before and after manual correction (Before: the closeness centralities before manual correction;

After: the closeness centralities after manual correction).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

A
ft

e
r

Before

sentences

434

Figure 7.14. The distribution of dependency distances of the Japanese sentences in Basic300

before and after manual correction (Before: the dependency distances before manual correction;

After: the dependency distances after manual correction)

7.4.4.1 Distribution of degree centralities of the Japanese sentences in Basic300

The distribution of the Japanese sentences in Basic300 in terms of their degree centralities

(flatness measures) did not change dramatically before and after manual correction. In order to

determine if the degree centralities of the Japanese sentences in Basic 300 before and after

manual correction were normally distributed, the Kolmogorov-Smirnov test for normality was

conducted, as was the case for the English sentences. The software used for this test was R

version 2.15.0. The results indicated that the distribution of the degree centralities before

manual correction deviated from a normal distribution (D=0.151, p<0.05), and that the

distribution of the degree centralities after manual correction also deviated from a normal

distribution (D=0.145, p<0.05).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5

A
ft

e
r

Before

sentences

435

Since the degree centralities before and after manual correction were not normally distributed,

a t-test could not be conducted to compare the degree centralities of the Japanese sentences in

Basic 300 before manual correction to those after manual correction. Therefore, a

Mann-Whitney U test was conducted to compare them, with alpha set at the 5% level, and the

null hypothesis is that the average degree centrality before manual correction is the same as the

average degree centrality after manual correction. The results were not significant (p=0.276);

hence the null hypothesis could not be rejected.

7.4.4.2 Distribution of closeness centralities of the Japanese sentences in Basic300

The distribution of the Japanese sentences in Basic300 in terms of their closeness centralities

(embeddedness measures) also did not change dramatically before and after manual correction.

In order to determine if the closeness centralities of the Japanese sentences in Basic 300 before

and after manual correction were normally distributed, the Kolmogorov-Smirnov test for

normality was conducted. The software used for this test was R version 2.15.0. The results

indicated that the distribution of the closeness centralities before manual correction deviated

from a normal distribution (D=0.143, p<0.05), and that the distribution of the degree centralities

after manual correction also deviated from a normal distribution (D=0.137, p<0.05).

Since the closeness centralities before and after manual correction were not normally

distributed, which was also the case for degree centralities, a t-test could not be conducted to

compare the closeness centralities of the Japanese sentences in Basic 300 before manual

correction to those after manual correction. Therefore, a Mann-Whitney U test was conducted

to compare them, with alpha set at the 5% level, and the null hypothesis is that the average

closeness centrality before manual correction is the same as the average closeness centrality after

manual correction. The results were not significant (p=0.408); hence the null hypothesis could

436

not be rejected.

7.4.4.3 Distribution of dependency distances of the Japanese sentences in Basic300

The distribution of the Japanese sentences in Basic300 in terms of their average dependency

distance also did not change dramatically before and after manual correction. In order to

determine if the dependency distances of the Japanese sentences in Basic 300 before and after

manual correction were normally distributed, the Kolmogorov-Smirnov test for normality was

conducted. The software used for this test was R version 2.15.0. The results indicated that the

distribution of the dependency distances before manual correction deviated from a normal

distribution (D=0.111, p<0.05), and that the distribution of the dependency distances after

manual correction also deviated from a normal distribution (D=0.112, p<0.05).

Since the dependency distances before and after manual correction are not normally

distributed as is the case in the degree centralities and the closeness centralities, a t-test could not

be conducted to compare the dependency distances of the Japanese sentences in Basic 300 before

manual correction to those after manual correction. Therefore, Mann-Whitney U test was

conducted to compare them, with alpha set at the 5% level, and the null hypothesis is that the

average dependency distance before manual correction is the same as the average dependency

distance after manual correction. The results were not significant (p=0.483); hence the null

hypothesis could not be rejected.

7.4.5 Discussion

Statistical analyses show that the distributions of degree centralities, closeness centralities, and

dependency distances of the Japanese typed-dependency trees of Basic300 (i.e.,

437

Stanford-Dependency-style triples which were obtained from the parsed output of the Japanese

sentences by KNP) before manual correction were not significantly different from those after

manual correction, as was the case in the measures obtained from the English typed-dependency

trees. This result is a desirable one, especially for researchers who examine these measures

among the sentences in larger-scale corpora, where manual correction of the parsed output will

be a laborious and time-consuming task.

7.4.6 Related work

Kurohashi & Nagao (1998) reports that the accuracy of KNP is 91.1% with respect to about

40,000 sentences in a manually corrected corpus. Their result cannot be compared to mine

directly, because they did not take the dependency type of each dependency relation into

consideration, because the output of KNP does not include the dependency type of each

dependency relation. The result in my study, on the other hand, includes the accuracy of the

dependency type of each dependency relation in the parse output.

7.5 Degree and Closeness Centralities of English-Japanese Sentence Pairs55

This section deals with the degree and closeness centralities of English-Japanese sentence pairs,

in order to see how these centrality measures reflect their structural differences and similarities in

terms of flatness and embeddedness (see Section 4.4).

55 The content of this section is based on Oya (2013b).

438

7.5.1 Data description

The data used here are the same as in Section 7.3 for parsing accuracy of the Stanford Parser, and

in Section 7.4 for parsing accuracy of KNP, viz. the English-Japanese sentence pairs in Basic300

(Iida 2010).

7.5.2 Procedure

First, the English sentences in Basic300 are parsed by the Stanford Parser (the output option is

set to Collapsed Tree; see Section 5.4.4), and the Japanese counterparts are parsed by KNP.

Second, the parsed output for each sentence is checked in terms of the dependency relation

and dependency type. If any of the dependency relations and types in the output file is found

incorrect, they are manually corrected.

Then, the degree and closeness centrality of each sentence is calculated by a Ruby script

originally written by the author of this thesis (see Appendix VII).

The procedure taken in this section does not take the semantics of English-Japanese pairs

into consideration. The ten-word sentences in English do not necessarily correspond to

ten-word Japanese sentences. The aim of the data analysis in this section is to focus on the

structural setting of dependency trees in two particular languages, abstracting away the semantics

of each sentence. If it is shown that the distributions of the degree centralities or the closeness

centralities are found similar in both languages, then it can be argued that the sentences of these

languages share the similar structural settings for their syntactic dependency trees, regardless of

their meanings. If, on the other hand, the distributions of them are found different in both

languages, then it can be argued that the sentences of these languages do not share the similar

structural settings for their syntactic dependency trees.

439

7.5.3 Results

7.5.3.1 Descriptive statistics

The descriptive statistics presented in Table 7.5 show that English sentences have smaller degree

centralities than Japanese ones on average, which means that English sentences tend to have less

flat typed-dependency trees than Japanese ones. They have smaller closeness centralities than

Japanese ones on average, which means that English sentences tend to have more embedded

typed-dependency trees than Japanese ones. These two observations can be subsumed to the

fact that the English sentences are longer than Japanese ones on average, as Oya (2012) indicated

that longer sentences have smaller degree centralities (see Section 4.5); therefore, the degree

centralities of the English sentences of a certain word count are compared to those of the

Japanese sentences with the same word count, in order to abstract away the influence of different

word counts on the degree centralities of these two languages. The same type of comparison is

also conducted for closeness centralities.

Table 7.5. The descriptive statistics of the degree centralities, closeness centralities, and word

counts of the sentences in Basic300 (n = 339) (Oya 2013b, p.159)

English Japanese English Japanese English Japanese

Mean 0.39 0.53 0.43 0.50 11.04 6.61

SD 0.18 0.26 0.08 0.13 3.03 2.04

ClosenessDegree Word per sentence

440

7.4.3.2 Distributions of degree centralities

The distribution of sentences with the horizontal axis the degree centralities (flatness measures)

and with the vertical axis the word counts reveals that the variation of English sentences in terms

of their degree centralities is wider than that of Japanese sentences, as is shown in the figure

below.

Figure 7.15. The distribution of degree centralities (flatness measures) and word counts (n = 339)

(Oya 2013b, p.159)

A Mann-Whitney U test was conducted to compare the degree centralities of the English

sentences and those of the Japanese sentences, with alpha set at the 5% level, and the null

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

W
o
rd

co
u

n
ts

Flatness measures

English (n=339)

Japanese (n=339)

441

hypothesis is that the average degree centrality of the English sentences is the same as that of the

Japanese sentences. The results were significant (p<0.05), hence the null hypothesis was

rejected.

7.4.3.3 Distributions of closeness centrality

The distribution of closeness centralities makes a good contrast with that of degree centralities.

As the figure below shows, closeness centralities (embeddedness measures) decrease in

proportion to the word counts in the sentences:

Figure 7.16. The distribution of closeness centralities and word counts (n = 339) (Oya 2013b,

p.161)

0

2

4

6

8

10

12

14

16

18

20

0 0.2 0.4 0.6 0.8 1

W
o
rd

co
u

n
ts

Embeddedness measures

English (n=339)

Japanese (n=339)

442

As in the case of degree centralities, a Mann-Whitney U test was conducted to compare the

closeness centralities of the English sentences and those of the Japanese sentences, with alpha set

at the 5% level. The null hypothesis is that the average closeness centrality of the English

sentences is the same as that of the Japanese sentences. The results were significant (p<0.05);

hence the null hypothesis was rejected.

7.4.3.4 Distributions of Degree Centralities and Closeness Centralities among the

Sentences of the Same Word Count

The different distributions of degree centralities and closeness centralities can be explicated if we

focus on the sentences with the same word count. Here, we focus on eight-word, nine-word,

and ten-word sentences of English and Japanese.

The figure below shows the ratios of different flatness measures (degree centralities) of all

the eight-word sentences in Basic 300. 50% of Japanese eight-word sentences in Basic300

have flatness measure 0.428. No such prominent flatness measure is found in English

eight-word sentences in Basic300.

Figure 7.17. The ratios of different flatness measures (degree centralities) of all the eight-word

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

R
a

ti
o
s

(%
)

Flatness measures

English (n = 17)

Japanese (n = 62)

443

sentences in Basic300

The figure below shows the ratios of different flatness measures (degree centralities) of all

the nine-word sentences in Basic 300. About 42% of Japanese nine-word sentences in

Basic300 have the flatness measure 0.357. This flatness measure is also shared by about 25%

of English nine-word sentences in Basic300.

Figure 7.18. The ratios of different flatness measures (degree centralities) of all the nine-word

sentences in Basic300

The figure below shows the ratios of different flatness measures (degree centralities) of all the

ten-word sentences in Basic 300. About 43% of Japanese ten-word sentences in Basic300 have

the flatness measure 0.16, and about 24% of English ten-word sentences in Basic300 have the

flatness measure 0.411.

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

R
a

ti
o
s

(%
)

Flatness measures

English (n = 27)

Japanese (n = 33)

444

Figure 7.19. The ratios of different flatness measures (degree centralities) of all the ten-word

sentences in Basic300

The figure below shows the ratios of different embeddedness measures (closeness centralities) of

all the eight-word sentences in Basic 300. About 29% of Japanese eight-word sentences in

Basic300 have the embeddedness measure 0.47, and about 26% of English eight-word sentences

in Basic300 have the embeddedness measure 0.44.

Figure 7.20. The ratios of different embeddedness measures (closeness centralities) of all the

eight-word sentences in Basic300

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

R
a

ti
o
s

(%
)

Flatness measures

English (n = 29)

Japanese (n = 16)

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

R
a

ti
o
s

(%
)

Embeddedness measures

English (n = 17)

Japanese (n = 62)

445

The figure below shows the ratios of different embeddedness measures of all the nine-word

sentences in Basic 300. About 22% of Japanese nine-word sentences in Basic300 have the

embeddedness measure 0.42, and about 18% of English nine-word sentences in Basic300 also

have the embeddedness measure 0.42.

Figure 7.21. The ratios of different embeddedness measures of all the nine-word sentences in

Basic 300.

The figure below shows the ratios of different embeddedness measures of all the ten-word

sentences in Basic 300.

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

R
a

ti
o
s

(%
)

Embeddedness measures

English (n = 27）

Japanese (n = 33)

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

R
a

ti
o
s

(%
)

Embeddedness measures

English (n = 29)

Japanese (n = 16)

446

Figure 7.22. . The ratios of different embeddedness measures of all the ten-word sentences in

Basic 300.

The table below summarizes the number of different degree centralities and closeness centralities

among eight-word, nine-word and ten-word sentences of English and Japanese.

Table 7.6. The numbers of different values of degree centralities and of closeness centralities

among eight-word, nine-word, and ten-word sentences of English and Japanese

English Japanese English Japanese English Japanese

D 15 3 10 5 11 4

C 9 8 7 13 8 10

Word Count

10 9 8

D: the number of different values of degree centrality

C: the number of different values of closeness centrality

This table shows that degree centralities of English sentences of the same word count (within the

range of word counts from 8 to 10) are more diverse than those of Japanese sentences of the

same word count. This indicates that the word count of a given English sentence does not

determine its degree centrality as uniquely as that of a given Japanese sentence.

Closeness centralities of English sentences, on the other hand, of the same word count tend to

be less diverse than those of Japanese sentences of the same word count (except for ten-word

sentences).

447

7.5.4 Discussion

The result shows that the distribution of degree centralities of English typed-dependency trees is

more diverse than the distribution of degree centralities of Japanese typed-dependency trees.

This indicates that the structural settings of English typed-dependency trees are more diverse

than the structural settings of Japanese typed-dependency trees, in terms of their flatness. The

difference of the distribution of their closeness centralities, on the other hand, is not as obvious

as that of their degree centralities. This indicates that the structural settings of English

typed-dependency trees are as much diverse as the structural settings of Japanese

typed-dependency trees, in terms of their embeddedness. These results can be interpreted as

follows; degree centralities reflect the structural differences between English and Japanese, while

closeness centralities reflect the structural similarities between them.

As is mentioned in section 7.5.2, the procedure of this analysis does not take the semantics of

sentences into consideration. Comparing ten-word English sentences with ten-word Japanese

sentences ignores one of the essential aspects of language, viz. their meanings, and this might be

argued to be a drawback of this study. Therefore, the next research question is to take the

semantics of dependency trees into consideration, i.e., comparing the syntactic

typed-dependency trees of English sentences and their Japanese translation counterparts, which

will be one the topic of my research in future.

7.6 Degree and Closeness Centralities of sentences from Manually Annotated Sub Corpus

of American National Corpus (MASC 500k)56

Manually annotated sub-corpus of American National Corpus (MASC 500k) (Ide et al. 2008)

56 This subsection is based on Oya (2013a).

448

contains approximately 500,000 words of contemporary American English, drawn from Open

American National Corpus (OANC) (Ide & Suderman 2004). Original MASC 500k contains

various kinds of manually-annotated tags such as sentence boundaries, token, lemma, POSs,

noun and verb chunks, and named entities. MASC 500k covers a wide range of genres: the

written section contains texts from newspapers, fictions, non-fictions, technical reports, short

fictions taken from a website Ficlet (now closed), travel guides, essays, government documents,

jokes, blogs, emails, spam emails, movie scripts; the spoken section contains texts from speeches

and debates.

7.6.1 Data description

The descriptive statistics of each subsection in the written section of MASC 500k is as follows:

the e-mail section is not included in this study because it contains too many repetitions of the

same text due to the citations in the reply messages. The movie-script section is also not

included in this study because the sentences in this section are intended to be spoken by the

actors and actresses in the movies; hence, they must be regarded as spoken data.

Table 7.7. The total number of sentences, the total number of words and the mean length of a

sentence in each genre (Oya 2013a)

449

subsections Sentences Words

Mean S.D

Blog 1524 28381 18.62 12.34

Essay 1072 27367 25.52 13.18

Ficlets 2645 30555 13.34 7.15

Fiction 2639 37531 14.22 8.32

Govt-doc 1028 24277 23.61 12.55

Jokes 2254 31751 14.08 8.6

Journal 867 21997 25.37 14.45

News 1196 26877 22.47 10.43

Non-Fiction 1278 26441 20.68 11.41

Technical 825 19787 23.98 13.58

TravelGuide 1196 24187 20.23 8.6

16524 299151

WPS

WPS: Word per sentence

The table shows that the mean WPSs and the standard deviations in the subsections Fiction,

Ficlets and Jokes are relatively smaller than those in other subsections, and that the largest WPS

is found in the subsection Essay.

7.6.2 Procedure

The raw texts without tags (downloaded as a data-only file from the website of ANC:

http://www.anc.org/MASC/Download.html) are parsed by Stanford Parser after manual

extraction of unnecessary part of texts such as titles or dates. Then, the degree centrality,

closeness centrality and dependency distance of the output typed-dependency trees for the

sentences in the texts are calculated automatically. This is exerted by an original script written

in Ruby (see Appendix VII), in order to see whether the different genres of texts have different

distribution of degree centrality, closeness centrality, and dependency distances. In order to

examine their distributions more precisely without the effect of word counts of a sentence (see

Section 4.5), these three values of sentences of the same word count are chosen from each genre,

450

and the distributions of them are compared with each other.

7.6.3 Results

Table 7.8 shows the descriptive statistics of the degree centrality, closeness centrality and

dependency distance (Dep.Dist.) of the sentences in each subsection of the written section of

MASC500k.

Table 7.8. The descriptive statistics of the degree centrality, closeness centrality, and Dep.Dist. of

the sentences in each subsection of the written section of MASC500k

Mean S.D. Mean S.D. Mean S.D.

Blog 0.43 0.26 0.39 0.12 2.99 1.19

Essay 0.26 0.19 0.32 0.09 3.58 1.09

Ficlets 0.57 0.29 0.47 0.11 2.31 1.01

Fiction 0.54 0.27 0.43 0.11 2.65 1.05

Govt-doc 0.26 0.18 0.33 0.10 3.41 1.12

Jokes 0.51 0.27 0.44 0.13 2.55 1.15

Journal 0.27 0.19 0.33 0.09 3.63 1.35

News 0.27 0.17 0.33 0.09 3.34 0.94

Non-Fiction 0.37 0.22 0.36 0.10 3.20 1.07

Technical 0.32 0.22 0.34 0.12 3.37 1.27

TravelGuide 0.35 0.18 0.36 0.09 3.25 0.97

Degree Closeness Dep.Dist.

The top-three largest mean degree centralities are found in the subsections Ficlets, Fiction and

Jokes, whose standard deviation is also larger than those of other sections. The smallest degree

centrality among them is found in the subsection Essay.

The top-three largest mean closeness centralities are found in the subsections Ficlets, Fiction

and Jokes. The largest standard deviation among these subsections is found in Jokes. The

subsections Blog and Technical have standard deviations which are larger than those of Ficlets

and Fiction.

451

The top-three shortest dependency distances are found in the subsections Fiction, Ficlets and

Jokes. The longest dependency distance among these subsections is found in Journal, whose

standard deviation is also the largest. The smallest standard deviation is found in News.

Oya (2013a, p.48) argued that “example typed-dependency trees taken from these subsections

will illustrate the claim that flatter trees have larger degree centralities and more embedded trees

have smaller closeness centralities.” For example, the figure below is the typed-dependency tree

for an example of 10-word sentences57, selected from the subsection Journal.

ROOT

PUNCT .-9

ADVMOD PREP

PUNCT NSUBJ DOBJ

Now-1 ,-2 it-3 sense-6 at-7

DET POBJ

no-5 all-8

Root-0

made-4

Figure 7.23. The typed-dependency tree for “Now, it made no sense at all.” (Oya 2013a, p.48)

Figure 7.24 is the typed-dependency tree for another 10-word sentence selected from the

subsection Journal.

57
Notice that the term “word count” throughout this section includes punctuations (commas, quotation marks, or

periods) and the abstract node ROOT.

452

ROOT

PUNCT .-9

NSUBJ XCOMP

ADVMOD

AUX DOBJ

DET AMOD

a-6 new-7

Root-0

moved-2

They-1 westward-3 start-5

to-4 life-8

Figure 7.24. The typed-dependency tree for “They moved westward to start a new life.” (Oya

2013a, p.48)

Figure 7.25 is the typed-dependency tree for an example 10-word sentence selected from the

subsection Blog.

PUNCT

.-9

NSUBJ

RCMOD

COP DET AMOD

NSUBJ

DET

tell-8

wholesalers-7

the-6

Root-0

lie-5

This-1 is-2 the-3 big-4

Figure 7.25. The typed-dependency tree for “This is the big lie the wholesalers tell.” (Oya 2013a,

p.49)

Figure 7.26 is the typed-dependency tree for another 10-word sentence selected from the

453

subsection Blog.

ROOT

PUNCT

EXPL

NSUBJ

There-1

DET AMOD PREP_AS

no-3 flowers-9

many-8

too-7

Root-0

is-2

thing-5 .-10

such-4

AMOD

ADVMOD

Figure 7.26. The typed-dependency tree for “There is no such thing as too many flowers.” (Oya

2013a, p.49)

The degree centralities, closeness centralities, and average dependency distances of the

typed-dependency trees for the example 10-word sentences across different subsections are

summarized in Table 7.9 below. The same degree centrality of the trees in Figure 7.23 and in

Figure 7.25 indicates that these trees share the same flatness. The typed-dependency tree in

Figure 7.23 has the largest closeness centrality compared to other trees; hence, it is the least

embedded than others. The typed-dependency tree in Figure 7.26 has the smallest degree

centrality and the smallest closeness centrality; hence, it is the least flat and the most embedded

one among them. The average dependency distances of these typed-dependency trees do not

vary as much as their degree centralities and their closeness centralities.

Table 7.9. The degree centralities, closeness centralities, and average dependency distances of the

454

example typed-dependency trees (Oya 2013a, p.49)

Degree Closeness Dep.Dist

Figure 7.23 0.722 0.473 2.444

Figure 7.24 0.444 0.391 2.333

Figure 7.25 0.722 0.450 2.666

Figure 7.26 0.305 0.360 2.555

Notice that the different distributions of degree centrality and closeness centrality among

sentences in different genres can be “nothing but a paraphrase of different distribution of WPSs

among these sentences (Oya 2013a, p.49)”. For example, the degree centrality and closeness

centrality of the sentences in Fiction, Ficlet and Jokes are larger than those in other subsections.

This can be the result of the fact that they contain shorter sentences compared to those in other

genres on average, as their smaller WPSs indicate.58 In order to address this issue, it will be

desirable to control the number of words in a sentence to examine how both centralities of the

sentences of equal word count show different distributions.

7.6.3.1 Distributions of the degree centralities in MASC500k

This section deals with the distributions of degree centralities of the sentences of the same word

count. Figure 7.27 is the distribution of degree centralities of 10-word sentences in each genre of

MASC500k, and Figure 7.28 is the distribution of degree centralities of 20-word sentences in the

same corpus.

58 Degree centrality tends to become smaller in proportion to the number of words in sentences

(Satoshi Yoshida, p.c.).

455

Figure 7.27. The distribution of degree centralities (flatness measures) of 10-word sentences in

each genre of MASC500k

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

O
cc

u
rr

e
n

ce
s

(%
)

Flatness measures

blog (n=58)

essays (n=11)

ficlets (n=169)

fiction (n=160)

govt (n=32)

joke (n=124)

journal (n=28)

news (n=31)

non-fiction (n=34)

technical (n=6)

travel-guides (n=36)

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

O
cc

u
rr

e
n

ce
s

(%
)

Flatness measures

blog (n=43)

essays (n=45)

ficlets (n=37)

fiction (n=71)

govt (n=40)

jokes (n=63)

journal (n=36)

news (n=48)

non-fiction (n=53)

technical (n=32)

travel-guides (n=59)

456

Figure 7.28. The distribution of degree centralities (flatness measures) of 20-word sentences in

each genre of MASC500k

We can see that the distribution of degree centralities of 10-word sentences are more varied than

that of 20-word sentences. There are only a small number of degree centralities more than 0.5 in

the distribution of 20-word sentences.

Sentences of the same word count in different genres show different distributions of degree

centralities. We can see the different distributions more explicitly if we concentrate on one

particular degree centrality across different genres. For example, as for Fiction (n=160), 39

sentences of all the 10-word sentences have the degree centrality 0.72. This means that

approximately 24% of these sentences in Fiction have the degree centrality 0.72. On the other

hand, only 2 sentences of all the 10-word sentences in Journal (n=28) have the degree centrality

0.72. This means that approximately 7% of 10-word sentences in Journal have the degree

centrality 0.72. Oya (2013a, p.50) points out that “sentences in Fiction tend to be flatter than

those in Journal, as far as 10-word sentences in these genres are concerned.”

Next, as for 20-word sentences, 17 sentences of all the 20-word sentences in Fiction (n=71)

have the degree centrality 0.35, indicating that approximately 24% of these sentences in Fiction

have the degree centrality 0.35. On the other hand, only 1 sentence of all the 20-word sentences

in Journal (n=35) has the degree centrality 0.35, indicating that approximately 2% of these

sentences in Journal have the degree centrality 0.35. Again, Oya (2013a, p.50) points out that

“sentences in Fiction tend to be flatter than those in Journal, as far as 20-word sentences are

concerned.”

457

7.6.3.2 Distributions of the closeness centralities in MASC500k

This section deals with the distributions of closeness centralities of the sentences of the same word

count. The distribution of closeness centralities is somewhat different from that of degree

centralities. Figure 7.29 is the distribution of closeness centralities of 10-word sentences, and

Figure 7.30 is the distribution of closeness centralities of 20-word sentences.59

Figure 7.29. The distribution of closeness centralities (embeddedness measures) of 10-word

sentences in each genre of MASC500k

59 The x-axis of these graphs is set with the maximum of 0.6, because there is no embeddedness measure more than

0.6. The y-axis of them is set with the maximum of 50%, because there is no occurrences more than 50%.

0

5

10

15

20

25

30

35

40

45

50

0.0 0.2 0.4 0.6

O
cc

u
rr

e
n

ce
s

(%
)

Embeddedness measures

blog (n=58)

essay (n=11)

ficlets (n=169)

fiction (n=160)

govt (n=32)

jokes (n=124)

journal (n=28)

news (n=31)

non-fiction (n=34)

technical (n=6)

travel-guides (n=36)

458

Figure 7.30. The distribution of closeness centralities (embeddedness measures) of 20-word

sentences in each genre of MASC500k

We can see that the distribution of closeness centralities of 10-word sentences are more varied than

that of 20-word sentences, and we can find no closeness centrality more than 0.5 in the distribution

of 20-word sentences. On the other hand, the number of different closeness centralities increases

as the word count increases; for example, there are 11 different values of closeness centralities in

the 10-word sentences in Fiction, while there are 26 different values of closeness centralities for

the 20-word sentences in the same subsection Fiction. The closeness centralities are shown in

Table 7.10 below.

Table 7.10. The different values of closeness centrality and the number of sentences which have

the same closeness centrality value (Oya 2013a, p.51)

0

5

10

15

20

25

30

35

40

45

50

0.0 0.2 0.4 0.6

O
cc

u
rr

e
n

ce
s

(%
)

Embeddedness measures

blog (n=43)

essays (n=45)

ficlets (n=37)

fiction (n=71)

govt (n=40)

jokes (n=63)

journal (n=36)

news (n=48)

non-fiction (n=53)

technical (n=32)

travel-guides (n=59)

459

Closeness frequency Closeness frequency Closeness frequency

0.3571 1 0.2353 1 0.3226 2

0.3704 3 0.2381 1 0.3333 2

0.3846 2 0.2564 1 0.3390 3

0.4000 5 0.2632 1 0.3448 2

0.4167 14 0.2703 3 0.3509 2

0.4348 17 0.2740 1 0.3571 5

0.4545 25 0.2857 1 0.3636 1

0.4762 25 0.2941 4 0.3704 6

0.5000 33 0.2985 2 0.3774 4

0.5263 24 0.3030 4 0.3846 7

0.5556 11 0.3077 1 0.3922 5

0.3125 2 0.4000 2

0.3175 6 0.4082 2

10-word sentences

in fiction

20-word sentences

in fiction

As is the case in degree centralities, sentences of the same word count in different genres show

different distributions of closeness centralities. As for the 10-word sentences, Fiction has 33

10-word sentences with the closeness centrality 0.384 out of 160 (approximately 20%), while

Journal has 2 10-word sentences with the closeness centrality 0.384 out of 28 (approximately

10%). Oya (2013a, p.52) points out that “sentences in Journal tend to be more embedded than

those in Fiction” as far as 10-word sentences are concerned. As for the closeness centralities of

20-word sentences, we cannot find the same closeness centrality both in Fiction and in Journal.

7.6.4 Discussion

The distributions of degree centralities and those of closeness centralities among different genres

of texts suggest that both of the centrality measures of a sentence are dependent on the word count

of the sentence. The larger number of words a sentence has, the smaller degree centralities and

closeness centralities, and more diverse values of closeness centralities. This result may indicate

that both of these centrality measures cannot show the difference in genre by themselves.

However, Oya (2013a, p.52) argued that the difference in genre can be reflected on the number of

460

sentences of the same degree centrality and of the same closeness centrality if we control the word

count of the sentences taken from different genres, as is the case in Journal and Fiction. In order

to have a broader understanding of the distributions of degree centralities and closeness

centralities, we need to explore their differences across different word counts and different genres,

which will be the research topic in future.

7.7 Summary

This chapter attempted to answer the question: from which source are the graph centrality

measures obtained, and what is the result? Section 7.1 introduced the three issues that this

study focuses on: (1) the difference between the centrality measures of the parsed output of

sentences and those of the correct typed-dependency trees for the same sentences; (2) the

difference between the centrality measures of the parsed output for English sentences and those

of the parsed output for Japanese counterparts; (3) the difference among centrality measures of

the parsed output for English sentences in different genres of texts. Section 7.2 summarized a

number of features which can be extracted from the typed-dependency tree for a sentence.

Section 7.3 addressed the issue of parsing accuracy for English sentences, and it was shown

that the Stanford Parser was sufficiently accurate to obtain both degree centralities and closeness

centralities of English sentences. Section 7.4 addressed the issue of parsing accuracy for

Japanese sentences, and it was shown that KNP was also sufficiently accurate to obtain those of

Japanese sentences. Section 7.5 addressed the issue of cross-linguistic differences of centrality

measures of English-Japanese sentence pairs, in order to see how these centrality measures

reflect their structural differences and similarities in terms of flatness and embeddedness. The

result of comparing the degree centralities of English sentences and those of Japanese

counterparts in the small-scale parallel corpus showed that the typed-dependency trees for

461

English sentences tend to have more varied structural settings than those for Japanese sentences

in terms of their flatness. Section 7.6 addressed the issue of intra-language variations of

centrality measures using a large-scale corpus (MASC 500k). The distributions of degree

centralities and of closeness centralities obtained from the parsed output of sentences from

different genres of texts in MASC 500k are compared to each other. It is shown that sentences

from different genres have different distributions of these measures; sentences in the subsections

Fiction, Ficlets and Jokes are flatter and more embedded than sentences in other subsections.

However, it is pointed out that these different distributions were dependent on the word counts of

the sentences. It was also pointed out that controlling the word count of the sentences taken

from different genres could make explicit that difference in genre is reflected on the number of

sentences of the same degree centrality and of the same closeness centrality.

462

8. Conclusion

Chapter 1 stated the aim of this thesis: to introduce the typed-dependency trees for English and

Japanese sentences, and to introduce graph-centrality measures to capture the structural

characteristics of these typed-dependency trees. Typed-dependency trees are syntactic

structures for sentences that illustrate the dependency relationships among the words in a

sentence as a network of words. The structural characteristics of the network can be captured

by a number of measures that have been developed in the field of graph theory and network

analysis. Introducing these measures into the typed-dependency trees for sentences allows us to

capture the structural characteristics of these sentences as networks of words, and ultimately, this

analysis sheds new light on Japanese and English speakers’ syntactic intuitions.

Chapter 1 also raised the following four questions to be answered in order to accomplish the

aim: (1) What are the dependency relationships among the words in a sentence? (2) What are the

graph centrality measures, and how are they calculated? (3) How can we obtain the

typed-dependency trees for given sentences, and what are their characteristics? And (4) From

which source are the graph centrality measures obtained, and what is the result?

Chapter 2 and 3 attempted to answer the question: what are the dependency relationships

among the words in a sentence? Chapter 2 introduced the concept of dependency grammar

through a discussion of Tesnière’s (1959) seminal assumption about dependency along with more

recent theories of dependency grammar proposed by I. Mel’čuk and his colleagues (Iordanskaja

& Mel’čuk 2000: Mel’čuk & Pertsov 1987; Mel’čuk 1988; Mel’čuk 2003; Mel’čuk 2004;

Mel’čuk 2009; Mel’čuk 2011). This chapter also addressed the difference between dependency

grammar and phrase-structure grammar. Section 2.2 presented an overview of dependency

grammar and Section 2.3 focused specifically on Tesnière’s (1959) seminal work on dependency

grammar. Section 2.4 discussed Mel’čuk’s work on Deep Syntactic Relations and Surface

463

Syntactic Relations as a development of Tesnière’s (1959) concept of dependency. Finally, the

difference between dependency and phrase-structure grammar was briefly discussed in Section

2.5 with reference to Osborne et al. (2011).

Chapter 3 examined whether a typed-dependency tree for a sentence is equivalent to a

functional-structure representation according to Lexical-Functional Grammar (LFG) (Bresnan

1978; Bresnan 1982; Kaplan & Bresnan 1982). The basic architecture of the framework of

LFG was summarized in Section 3.2, with emphasis on structural correspondence between the

constituent structure and the functional structure for a sentence, and on the well-formedness

constraints for a functional structure. Next, Section 3.3 showed that a functional-structure

representation for a sentence and its typed-dependency tree are equivalent. This equivalence

supports the idea that LFG represents one direction of development of the dependency grammar.

This section also introduced the idea that Mel’čuk’s Criterion A for the existence of dependency

relationship between two words can be revised in terms of their possibility to constitute a

fragment functional structure.

Chapter 4 attempted to answer the question: what are the graph centrality measures, and how

are they calculated? This chapter continued the discussion of typed-dependency by exploring

the representation of a typed-dependency syntactic tree as a directed acyclic graph (DAG).

Moreover, this chapter also examined the idea of quantifying the structural property in terms of

graph centrality. The advantage of dependency grammar representation is that a sentence’s

dependency can be interpreted as a DAG, allowing the formal syntactic properties to be defined

and analyzed mathematically in terms of graph theory (Oya 2010b, Oya 2011). Section 4.2

introduced the basic tenets of graph theory. Section 4.3 examined centrality measures,

including degree centrality and closeness centrality. The process for employing these centrality

measures to analyze structural properties of typed-dependency trees was discussed in Sections

464

4.4 and 4.5. Specifically, Section 4.4 explored the application of centrality measures to show

the similarity of functional-structure representations, and Section 4.5 illustrated how stylistic

differences across genres are reflected by different distributions of centralities. Finally, Section

4.6 addressed the role of dependency distance in these representations.

Chapter 5 and 6 attempted to answer the following question: how can we obtain the

typed-dependency trees for given sentences, and what are their characteristics? Chapter 5

introduced Stanford Parser (de Marneffe & Manning 2012), which is a state-of-the-art parser

used in this study for acquiring typed-dependency tree representations for English sentences.

Section 5.2 described the output format of the Stanford Parser. Section 5.3 provided the

definition of each dependency type used in the parsed output of the Stanford Parser, with

reference to the criteria for surface syntactic relations by Mel’čuk (2009, 2011), along with

example sentences for each of the dependency types, their typed dependency trees, and the

functional structure representations equivalent to these trees. Section 5.4 explained the

differences among the different output styles of the Stanford Parser.

Chapter 6 introduced KNP (Kurohashi & Nagao 1992, 1994, 1998; Kawahara & Kurohashi

2007), which is a rule-based dependency parser used for generating automatic typed-dependency

tree representations for Japanese sentences. Section 6.2 briefly introduced KNP and its output

format. Section 6.3 described the process through which KNP parsed output is annotated with

dependency types. Section 6.4 dealt with zero pronouns in elliptic sentences often used in

Japanese. In section 6.5, each dependency type used with this parser in this study was defined

with reference to the criteria for surface syntactic relations by Mel’čuk (2009, 2011), along with

example sentences for each of the dependency types, their typed dependency trees, and the

functional structure representations equivalent to these trees.

In Chapter 5 and 6, each of the dependency types of English and Japanese is given a

465

theoretical backbone based on Mel’čuk’s Criteria, in other words, (1) which word depends on

which (Mel’čuk’s Criterion A), (2) which word is the governor (or the head) of a given

dependency (Mel’čuk’s Criterion B), and (3) what is the name of a given dependency (Mel’čuk’s

Criterion C). This result implies that the study of dependency in other languages will also be

further developed along the line proposed in this study, which will be the topic of further study.

In Chapter 5 and 6, the typed-dependency trees of English and Japanese are shown to be

equivalent to functional-structure representation in the framework of LFG. It can be pointed

out that the functional structures in this study sometimes deviate from the orthodox

functional-structure representation in terms of the issue of control (see Section 5.3.3 on the

dependency type “xcomp”), subcategorization (see some of the functional-structure

representation in Section 5.3.3), or zero pronouns (see Section 6.4). The study of both

dependency grammar and LFG will be further developed if the gap between these two

frameworks is bridged, and we should not exclude the possibility at this moment that they

eventually unite to establish a new theoretical framework, with the long tradition and intuitive

appeal of dependency grammar, and with the computer-friendliness and the richness of

cross-linguistic study of LFG.

Chapter 7 attempted to answer the following question: from which source are the graph

centrality measures obtained, and what is the result? The accuracies of the Stanford Parser and

the KNP were examined by comparing the typed-dependency trees obtained from the parsed

output of the English sentences and their Japanese counterparts in a small-scale parallel corpus

(Iida 2010) to their manually corrected typed-dependency trees. Results of the comparison

showed that the distributions of both degree centralities and closeness centralities before and

after manual corrections were almost identical. Thus, the Stanford Parser and KNP are accurate

enough to obtain degree centralities and closeness centralities. Next, the distributions of degree

466

and closeness centralities for English typed-dependency trees were compared to those for their

Japanese counterparts, and results showed that their distributions were different. Thus, the

structural properties of the typed-dependency trees for sentences in these two languages are

different in terms of their degree centralities (flatness) and closeness centralities (embeddedness).

Lastly, the distributions of degree centralities and of closeness centralities obtained from the

parsed output of sentences from different genres texts in Manually annotated sub-corpus of

American National Corpus (MASC 500k) were compared to each other, and it was shown that

their distributions were different; sentences in the subsections Fiction, Ficlets and Jokes are

flatter and more embedded than sentences in other subsections. However, it is pointed out that

these different distributions could be dependent on the word counts of the sentences. It was

also pointed out that controlling the word count of the sentences taken from different genres could

make explicit that the difference in genre is reflected on the number of sentences of the same

degree centrality and of the same closeness centrality.

This dissertation attempted to show that graph centrality measures (degree centralities and

closeness centralities) can be used to show the structural properties of typed-dependency trees of

English and Japanese sentences. The results of corpus analyses in Chapter 7 suggest that these

centrality measures need further improvement. These measures, however, open the possibility

to capture the structural property of typed-dependency trees of English and Japanese sentences in

a more objective manner. As far as the typed-dependency tree of a sentence can be represented

as a directed acyclic graph, the graph centrality measures other than degree centrality or

closeness centrality can be used to show the structural properties of a sentence more objectively

than linguists’ intuition can. Applying other graph centrality measures will be one of the

research issues in future.

467

References

Adams, R., Nicolae, G., Nicolae, C. & Harabagiu, S. (2007). Textual entailment through

extended lexical overlap and lexico-semantic matching. Proceedings of the ACLPASCAL

Workshop on Textual Entailment and Paraphrasing, 119-124, Prague, June 2007. Retrieved

from

http://delivery.acm.org/10.1145/1660000/1654560/p119-adams.pdf?ip=133.9.4.12&acc=OPE

N&CFID=147639811&CFTOKEN=80564240&__acm__=1346117205_d96e6b8d56d9bad7c

975c3ab305b9d81

Batagelj, V. & Mrvar, A. (1996). Pajek: Program for large network analysis.

Beauchamp, M.A. (1965). An improved index of centrality. Behavioral Science. 10, 161-163.

Biggs, N. L., Lloyd, E. K. & Wilson, R. J. (1999). Graph theory 1736-1936. Oxford, UK: Oxford

University Press.

Bresnan, J. (1978). A realistic transformational grammar. In M. Halle, J. Bresnan, & G.A. Miller

(Eds), Linguistic theory and psychological reality (pp.1-59). Cambrige, MA: The MIT Press.

Bresnan, J. (ed.) (1982). The mental representation of grammatical relations. Cambridge, MA:

The MIT Press.

Bresnan, J. (2001). Lexical-Functional Syntax. Oxford, UK: Blackwell.

Buchholz, S. & Marsi, E. (2006). Conll-X shared task on multilingual dependency parsing.

Proceedings of CONLL-X. 149-164.

Butt, M., Nino, M. E., & Segond, F. (1996, September). Multilingual processing of auxiliaries

within LFG. In KONVENS (pp. 111-122).

Butt, M., King, T. H., Niño, M. E. & Segundo, F. (1999). A grammar writer’s cookbook. Stanford,

CA: CSLI Publications.

468

Cer, D., de Marneffe, M., Jurafsky, D. & Manning, C. (2010). Parsing to Stanford Dependencies:

trade-offs between speed and accuracy. 7th International Conference on Language Resources

and Evaluation. Retrieved from http://nlp.stanford.edu/pubs/lrecstanforddeps_final_final.pdf.

Chafe, W. L. (1970). Meaning and the structure of language. Chicago, IL: The University of

Chicago Press.

Charniak, E. (2000). A maximum-entropy-inspired parser. NAACL 2000 Proceedings of the 1st

North American Chapter of the Association for Computational Linguistics Conference,

132-139.

Chomsky, N. (1981). Lectures on Government and Binding: The Pisa lectures. Mouton de

Gruyter.

Chomsky, N. (1995). The Minimalist Program. Cambridge, MA: MIT Press.

Chomsky, N. (1999). Derivation by phrase. Cambridge, MA: MIT Press.

Collins, M. (1996). A new statistical parser based on bigram lexical dependencies. Proceedings

of the 34th Annual Meeting on Association for Computational Linguistics, 184-191.

Collins, M. (1999). Head-driven statistical models for natural language parsing. Ph.D. thesis,

University of Pennsylvania. Retrieved from

http://www.dfki.de/~neumann/dop-seminar/References/collins-thesis.pdf

Davies, W.D. & Dubinsky, S. (2004). The grammar of raising and control. Blackwell.

Dalrymple, M. (2001). Syntax and semantics: Lexical Functional Grammar. San Diego, CA :

Academic Press.

Dalrymple, M., Dyvik, H., & King, T. H. (2004). Copular complements: closed or open?

Proceedings of the LFG04 Conference. 188-198.

469

Debusmann, R. (2003). Dependency Grammar as graph description. Prospects and Advances in

the Syntax-Semantics Interface, Nancy. Retrieved from

http://www.ps.uni-saarland.de/~rade/papers/passi03.pdf

Debusmann, R. & Kuhlmann, M. (2007). Dependency Grammar: Classification and exploration.

Project report (CHORUS, SFB 378). Retrieved from

http://www.ps.uni-saarland.de/~rade/papers/sfb.pdf

De Marneffe, M. C., MacCartney, B., & Manning, C. D. (2006). Generating typed dependency

parses from phrase structure parses. In LREC 2006.

De Marneffe, M. C., & Manning, C. D. (2008). The Stanford typed dependencies representation.

COLING Workshop on Cross-framework and Cross-domain Parser Evaluation. Retrieved

from http://nlp.stanford.edu/pubs/dependencies-coling08.pdf.

De Marneffe, M. C. & Manning, C. D. (2012). Stanford Typed Dependency Manual Revised for

the Stanford Parser v.2.0.4. Retrieved from

http://nlp.stanford.edu/software/dependencies_manual.pdf.

De Marneffe, M.C. & Manning, C. D. (2013). Stanford Typed Dependency Manual Revised for

the Stanford Parser v.3.2 in June 2013. Retrieved from

http://nlp.stanford.edu/software/dependencies_manual.pdf.

De Nooy, W., Mrvar, A., & Batagelj, V. (2005). Exploratory network analysis with Pajek.

Cambridge, UK: Cambridge University Press.

Ding, Y., & Palmer, M. (2004a). Automatic learning of parallel dependency treelet pairs. First

International Joint Conference on NLP (IJCNLP-04). Retrieved from

http://pdf.aminer.org/000/391/911/automatic_learning_of_parallel_dependency_treelet_pairs.

pdf

470

Ding, Y., & Palmer, M. (2004b). Synchronous dependency insertion grammars: A grammar

formalism for syntax based statistical MT. Workshop on Recent Advances in Dependency

Grammars, COLING-04. Retrieved from http://acl.ldc.upenn.edu/W/W04/W04-1513.pdf

Ding, Y., & Palmer, M. (2005). Machine translation using probabilistic synchronous dependency

insertion grammars. Proceedings of the 43rd Annual Meeting of the ACL, 541-548.

Retrieved from http://acl.ldc.upenn.edu/P/P05/P05-1067.pdf

Falk, Y. (1984). The English auxiliary system: A Lexical-Functional analysis. Language 60.

483-509.

Frazer, J. (1912). The Golden Bough. In Wikisource, The Free Library. Retrieved from

http://en.wikisource.org/w/index.php?title=The_Golden_Bough&oldid=92983

Freeman, L. (1979). Centrality in social networks. Social Networks vol.1, 215-239.

Genzel, D. (2010). Automatically learning source-side reordering rules for large scale machine

translation. In COLING-2010.

Gerdes, K., & Kahane, S. (2011). Defining dependencies (and constituents). Proceedings of

International Conference on Dependency Grammar, 17-27. Retrieved from

http://depling.org/proceedingsDepling2011/

Gerdes, K., Hajičová, E., & Wanner, L. (eds.). (2011). Proceedings of International Conference

on Dependency Grammar. Retrieved from http://depling.org/proceedingsDepling2011/

Gibson, E. (1998). Linguistic complexity: locality of syntactic dependencies. Cognition, 68, 1-76.

Gibson, E. (2000). Dependency locality theory: A distance-based theory of linguistic complexity.

In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, language, brain: Papers from the first

mind articulation project symposium. 95-126. Cambridge, MA: MIT Press.

Grimshaw, J. (1990). Argument Structure. MIT Press.

471

Hall, E. (1976). Beyond Culture. Knopf Doubleday Publishing Group.

Halliday, M.A.K. (1967). Notes on transitivity and theme in English Part I. Journal of

Linguistics, vol.3, Issue 1. 37-81.

Hashimoto, S. (1948). Kokugogaku Kenkyu “A Study of Japanese Language.” Tokyo, Japan:

Iwanami Shoten.

Horáček, P., Zámečníková, E., & Burgetová, I. (2011). Dependency Grammars [PowerPoint

slides]. Retrieved from

http://147.229.9.23/units/UIFS/grants/index.php?file=%2Fproj%2F533%2FPrintable%2Ffm

nl08-dependency-handout.pdf&id=533

Ide, N., & Suderman, K. (2004). The American National Corpus first release. Proceedings of the

Fourth Language Resources and Evaluation Conference (LREC), 1681-84.

Ide, N., Baker, C., Fellbaum, C., Fillmore, C., & Passonnau, R. (2008). MASC: The Manually

Annotated Sub-Corpus of American English. Proceedings of the Eighth Language Resources

and Evaluation Conference (LREC), 2455-2460.

Iida, Y. (2010). Eisakubun Kihon 300 Sen “Basic 300 Sentences for English Composition.”

Tokyo, Japan: Sundai Publishing.

Iordanskaja, L., & Mel’čuk, I. (2000). The Notion of Surface-Syntactic Relation Revisited

(Valence-Controlled Surface-Syntactic Relations in French). In L.L. Iomdin and L.P. Krysin

(eds.) 2000, 391-433. Retrieved from

http://olst.ling.umontreal.ca/pdf/IordanskajaMelcukSSyntRels.pdf

Kanatani, T. (2002). Nihongoni Shugowa Iranai, “Japanese Language does not require subjects.”

Tokyo, Japan: Kodansha.

Kaplan, R. & Bresnan, J. (1982). Lexical-Functional Grammar: A formal system for grammatical

472

representation. In J. Bresnan (ed.), The mental representation of grammatical relations

(pp.173-281). Cambridge, MA: The MIT Press.

Kawahara, D. & Kurohashi, S. (2007). Daikibokakuframeni modozuku koubun kakukaisekino

tougouteki kakuritumoderu “An integrated probabilistic model for syntactic and case analyses

based on a large-scale case frames.” Natural Language Processing vol. 14, no.4, 67-81.

Kessler, J.S. (2008). Polling the blogosphere: a rule-based approach to belief classification. In

International Conference on Weblogs and Social Media, 2008. Retrieved from

http://www.aaai.org/Papers/ICWSM/2008/ICWSM08-016.pdf

Klein, D. & Manning, C.D. (2003). Accurate unlexicalized parsing. Proceedings of the 41st

Meeting of the Association for Computational Linguistics, 423-430.

Kuno, S. (1972). Functional sentence perspective: A case study from Japanese and English.

Linguistic Inquiry, 3(3): 269-320.

Kurohashi, S. & Nagao, M. (1992). A method for analyzing conjunctive structures in Japanese.

Journal of Information Processing Society of Japan vol.33, no. 8. 1022-1031.

Kurohashi, S. & Nagao, M. (1994). A syntactic analysis method of long Japanese sentences

based on coordinate structure detection. Journal of Natural Language Processing vol.1,

no.1. 35-57.

Kurohashi, S. & Nagao, M. (1998). Building a Japanese parsed corpus while improving the

parsing system. Proceedings of the 1st International Conference on Language Resources

and Evaluation. 719-724.

Lin, D. (1998). Dependency-based evaluation of MINIPAR. In Workshop on the Evaluation of

Parsing Systems, Granada, Spain.

Lu, X. (2010). Automatic analysis of syntactic complexity in second language writing.

473

International Journal of Corpus Linguistics, 15:4, 474-496.

Manning, C. D. & Schütze, H. (1999). Foundations of statistical natural language processing.

Cambridge, MA: MIT Press.

Matsumoto, Y. (1996). Complex predicates in Japanese: A syntactic and semantic study of the

notion ‘word.’ Stanford. CA: CSLI Publications and Tokyo: Kuroshio Publishers.

Masuichi, H., & Ohkuma, T. (2003). Constructing a practical Japanese parser based on

Lexical-Functional Grammar. Journal of Natural Language Processing, 10(2), 79-109.

Masuoka, T. & Takubo, Y. (1992). Kiso Nihongo Bumpo “Basic Japanese Grammar.” Tokyo,

Japan: Kuroshio Publishers.

McDonald, R & Nivre, J. (2011). Analyzing and integrating dependency parsing. Computational

Linguistics. Vol.37, No.1. 197-230.

McDonald, R., Pereira, F., Ribarov, K. & Hajič, J. (2005). Non-projective dependency parsing

using spanning tree algorithms. Proceedings of Human Language Technology Conference

and Conference on Empirical Methods in Natural Language Processing, 523-530. Retrieved

from http://acl.ldc.upenn.edu/H/H05/H05-1066.pdf

Mel’čuk, I. (1988). Dependency syntax: theory and practice.Albany, NY: The SUNY Press.

Mel’čuk, I. (2003). Levels of dependency in linguistic description: Concepts and problems. In V.

Agel, L. Eichinnger, H.-W. Eroms, P. Hellwig, H.J. Herringer, & H. Lobin (eds), Dependency

and valency: An international handbook of contemporary research, vol. 1 (pp. 188-229).

Berlin - New York: W. de Gruyter.

Mel’čuk, I. (2004). Actants in semantics and syntax. I,II, Linguistics, 42:1,1-66;42:2,247-291.

Mel’čuk, I. (2009). Dependency in natural language. In A. Polguère & I. Mel’čuk (eds),

Dependency in linguistic description (pp.1-110). Amsterdam: Benjamins.

474

Mel’čuk, I. (2011). Dependency in language-2011. Proceedings of International Conference on

Dependency Linguistics, 1-16.

Mel’čuk, I. & Pertsov, N. (1987). Surface syntax of English: A formal model within the

Meaning-Text framework. Amsterdam: Benjamins.

Mikami, A. (1972). Zoku Gendaigohou Josetsu “Introduction to Modern Japanese Grammar

vol.2.” Tokyo: Kuroshio Publishers.

Mohanan, K. P. (1983). Functional and anaphoric control. Linguistic Inquiry vol.14, No.4.

641-674.

Nakano, M. (1998). Kihon Eisakubun Text “A text for basic English writing.” Tokyo, Japan:

Kenkyusha.

Nivre, J., Hall, J., Kübler, S., McDonald, R., Nilsson, J., Riedel, S., & Yuret, D. (2007). The

CoNLL 2007 shared task on dependency parsing. Proceedings of the Conference on

Empirical Methods in Natural Language Processing and Conference on Computational

Natural Language Learning (EMNLP-CoNLL). 915-932.

Nomura, M., & Koike, K. (1992). Nihongo Jiten, “A Dictionary of Japanese Language.” Tokyo,

Japan: Tokyodo Shuppan.

Ono, S. & Nakagawa, H. (1997). Semantics of Japanese sentence final particles presented by

hierarchical memory model: about YO, NE, NA, ZE and ZO. Cognitive Studies: Bulletin of

the Japanese Cognitive Science Society 4(2), 39-57.

Osuga, T., Horiuchi, Y., & Ichikawa, A. (2003). Estimating syntactic structure from prosody in

Japanese speech. IEICE TRANSACTIONS on Information and Systems. Vol.E86-D No.3,

558-564. Retrieved from

http://search.ieice.org/bin/pdf.php?lang=E&year=2003&fname=e86-d_3_558&abst=

475

Osborne, T., Putnam, M., & Gross, T.M. (2011). Bare phrase structure, label-less trees, and

specifier-less syntax: Is Minimalism becoming a Dependency Grammar? The Linguistic

Review 28, 315-364.

Oya, M. (2004). On the properties of Japanese case marker ‘-ga’: An LFG account. Proceedings

of the 8th Conference of Pan-Pacific Association of Applied Linguistics. 349-360.

Oya, M. (2009). A method of automatic acquisition of typed-dependency representation of

Japanese syntactic structure. Proceedings of the 14th Conference of Pan-Pacific Association of

Applied Linguistics. 337-340.

Oya, M. (2010a). Treebank-based automatic acquisition of wide coverage, deep linguistic

resources for Japanese. M.Sc. thesis, School of Computing, Dublin City University.

Oya, M. (2010b). Directed acyclic graph representation of grammatical knowledge and its

application for calculating sentence complexity. Proceedings of the 15th International

Conference of Pan-Pacific Association of Applied Linguistics, 393-400.

Oya, M. (2011). Syntactic dependency distance as sentence complexity measure. Proceedings of

the 16th Conference of Pan-Pacific Association of Applied Linguistics. 313-316.

Oya, M. (2012). Degree centralities, closeness centralities, and dependency distances of different

genres of texts. Proceedings of the 17th International Conference of Pan-Pacific Association

of Applied Linguistics. 89-90.

Oya, M. (2013a). Degree centralities, closeness centralities, and dependency distances of

different genres of texts. Selected Papers from the 17th International Conference of

Pan-Pacific Association of Applied Linguistics, 42-53.

Oya, M. (2013b). Syntactic dependency structures of English and Japanese. Mejiro Journal of

Humanities vol.9, 151-164.

476

Oya, M. (2013c). Lexical-Functional Grammar and Dependency Grammar. Information

Communication Technology Practice & Research 2012, 19-32.

Oya, M. (2013d). Treatment of zero pronouns in the framework of Lexical-Functional Grammar.

Proceedings of the 18th International Conference of Pan-Pacific Association of Applied

Linguistics.

Oya, M. (2014). Treatment of zero pronouns in the framework of Lexical-Functional Grammar.

Selected Papers from the 18th International Conference of Pan-Pacific Association of Applied

Linguistics.

Palmer, F. R. (2001). Mood and modality (2nd edition). Cambridge, UK: Cambridge University

Press.

Polguère, A. & Mel’čuk, I. (eds). (2009). Dependency in linguistic description. Amsterdam:

Benjamins.

Prince, E. (1981). Topicalization, focus-movement, and Yiddish-movement: A pragmatic

differentiation. Proceedings of the Seventh Annual Meeting of the Berkeley Linguistics

Society, 249-264.

Prince, E.F. (1998). On the limits of syntax, with reference to Topicalization and

Left-Dislocation. In P. Culicover & L. McNally (Eds.), Syntax and Semantics 29: The limits

of syntax (pp. 281-302). NY: Academic Press.

Pyysalo, S., Ginter, F., Haverinen, K., Heimonen, J., Salakoski, T., & Laippala, V. (2007). On the

unification of syntactic annotations under the Stanford dependency scheme: A case study on

BioInfer and GENIA. Proceedings of BioNLP 2007: Biological, Translational, and Clinical

Language Processing (ACL07), 2007. Retrieved from

http://delivery.acm.org/10.1145/1580000/1572397/p25-pyysalo.pdf?ip=133.9.4.12&acc=OPE

477

N&CFID=147639811&CFTOKEN=80564240&__acm__=1346117950_df739b58de8da5c0e

6455c868dcb47be

Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). A Comprehensive Grammar of the

English language. London: Longman.

Sabidussi, G. (1966). Then centrality index of a graph. Psychometrika. 31, 581-603.

Sadler, L. & Spencer, A. (2004). Projecting morphology. Stanford, California: CSLI

Publications.

Sag, I. (1976). Deletion and logical form. Ph.D. dissertation, MIT.

Sag, I., Kaplan, R., Karttunen, L., Kay, M., Pollard, C., Shieber, S., & Zaenen, A. (1986).

Unification and grammatical theory. Proceedings of the West Coast Conference on Formal

Linguistics, 238-254. Stanford Linguistics Association, Stanford University. Retrieved from

http://lingo.stanford.edu/sag/papers/sagetal-1986.pdf.

Scott, J.(ed.). (2002). Social networks vol.1. London: Routridge.

Sleator, D. D., & Temperley, D. (1993). Parsing English with a link grammar. Third International

Workshop on Parsing Technologies.

Snow, R., Jurafsky, D., & Ng, A. (2005). Learning syntactic patterns for automatic hypernym

discovery. Proceedings of NIPS 17. Retrieved from

http://www.stanford.edu/~jurafsky/paper887.pdf

Temperley, D. (2007). Minimization of dependency length in written English. Cognition. 105,

300-333.

Teramura, H. (1992). Teramura Hideo Ronbunshu I “The Treatises of Hideo Teramura vol.1.”

Tokyo, Japan: Kuroshio Publishers.

478

Tesnière, L. (1959). Éléments de syntaxe structural. Paris: Klincksieck.

Tomioka, S. (2003). The semantics of Japanese null pronouns and its cross-linguistic

implications. In K. Schwabe & S. Winkler (Eds.), The Interfaces: Deriving and Interpreting

Omitted Structures (pp. 321-339). Amsterdam; Philadelphia: J. Benjamins.

Toyama, S. (1973). Nihongono Ronri “The Logic of Japanese Language.” Tokyo: Chuo

Koronsha.

Tsujimura, N. (2007). An introduction to Japanese linguistics (2nd ed.). Oxford: Blackwell.

Valdman, A. & Gass, S. (eds.). (2010). Studies in Second Language Acquisition. Retrieved from

http://journals.cambridge.org/action/displayJournal?jid=SLA

Wasserman, S. & Faust, K. (1994). Social network analysis. Cambridge, UK: Cambridge

University Press.

Wilson, R.J. (1975). Introduction to Graph Theory. London: Longman

Yoshida, S., Kumaki, H. & Watanabe, A. (2009). Range analysis of Cross-Cultural Distance

Learning (CCDL) reflection work sheet: A pilot study. Proceedings of the 14th Conference of

Applied Linguistics, 351- 356.

Zeman, D. & Žaborkrtský, Z. (2005). Improving parsing accuracy by combining diverse

dependency parsers. Proceedings of the Ninth International Workshop on Parsing

Technologies (IWPT), 171-178.

479

Appendix I: The Hierarchy of Dependency Types (de Marneffe & Manning 2012)

dep - dependent

aux - auxiliary

auxpass - passive auxiliary

cop - copula

arg - argument

(agent – agent)

comp - complement

acomp - adjectival complement

attr - attributive

ccomp - clausal complement with internal subject

xcomp - clausal complement with external subject

pcomp – clausal complement of a preposition

compl - complementizer

obj - object

dobj - direct object

iobj - indirect object

pobj - object of preposition

subj - subject

nsubj - nominal subject

nsubjpass - passive nominal subject

csubj - clausal subject

csubjpass - passive clausal subject

cc - coordination

conj - conjunct

expl - expletive (expletive “there”)

mod - modifier

neg - negation modifier

480

det - determiner

prep - prepositional modifier

amod - adjectival modifier

advmod - adverbial modifier

poss - possession modifier

possessive - possessive modifier ('s)

infmod - infinitival modifier

partmod - participial modifier

advcl - adverbial clause modifier

mark - marker (word introducing an adverbial clause)

rcmod - relative clause modifier

rel - relative (word introducing a relative clause modifier)

purpcl - purpose clause modifier

prt - phrasal verb particle

predet - predeterminer

preconj - preconjunct

mwe – multi-word modifier

quantmod - quantifier modifier

tmod - temporal modifier

measure - measure-phrase modifier

nn - noun compound modifier

npadvmod – noun phrase adverbial modifier

num - numeric modifier

number - element of compound number

abbrev - abbreviation modifier

appos - appositional modifier

parataxis - parataxis

481

punct - punctuation

ref – referent

root – the root of the sentence

(sdep - semantic dependent)

(xsubj - controlling subject)

482

Appendix II: The list of incorrect parses for English sentences in Basic 300 (Iida 2010) by

Stanford Parser

10eng.: “Those oranges taste too sour, so I don’t like them.”

The word “so” is incorrectly parsed to depend on “taste” with an incorrect type “dep.” The

correct parse is that it depends on “like” with the type “mark.”

17eng.: “I’m sure a cup of coffee will wake you up.”

The word “wake” is parsed to depend on “sure” with an incorrect type “dep.” The correct type

is “ccomp.”

22eng.: “I'd appreciate it if you could call the airline and reserve seats for me.”

The word “the” and “airline” are incorrectly parsed to depend on “seats;” the dependency type

between this “the” and this “seats” is “det,” and that between “airline” and “seats” is “nn.” The

correct parse is that this “the” depends on “airline” with the dependency type “det,” and this

“airline” depends on the “call” with the dependency type “dobj.”

The word “reserve” is incorrectly analyzed to depend on “airline” with an incorrect type

“nn_and.” The correct dependency relation is that it depends on “appreciate” with the type

“advcl_and.”

The word “searts” is incorrectly analyzed to depend on “call” with the correct type “dobj.”

The correct dependency relation is that it depends on “reserve.”

23eng. “Please explain to me why you failed to come yesterday.”

483

The word “Please” is parsed to depend on “explain” with an incorrect type “dep.” The correct

type is “advmod.”

25eng.: “Experts say too much exercise does us more harm than good.”

The word “us” is incorrectly parsed to depend on “harm” with an incorrect dependency type

“nsubj.” The correct dependency relation is that it depends on the verb “does” and the correct

dependency type is “iobj.”

The word “harm” is correctly parsed to depend on “does,” yet with an incorrect dependency

type “xcomp;” the correct dependency type is “dobj.”

26eng.: “A short walk will give my father a good appetite.”

The word “father” is correctly parsed to depend on “give,” yet with an incorrect dependency type

“dep.” Its correct dependency type is “iobj.”

28eng.: “A glance at the map will tell you where you are.”

The word “you” is correctly parsed to depend on “tell,” yet with an incorrect dependency type

“dobj.” Its correct dependency type is “iobj.”

31eng.: “You should make sure that he is at home before you call on him.”

The word “at” is incorrectly parsed to depend on “call,” with an incorrect dependency type

“advmod.” The word “home” is parsed to depend on “at,” with an incorrect dependency type

“dep.” These two words’ dependency should be collapsed, because the “at” is a preposition;

484

therefore, the correct parse is that the “home” depends on “be” with the dependency type

“prep_at.”

The word “before” is correctly parsed to depend on “call,” yet with an incorrect dependency

type “dep.” Its dependency type is “mark.”

The verb “call” is incorrectly parsed to depend on “be” with an incorrect dependency type

“ccomp.” Its correct parse is that it depends on “make” with the dependency type “advcl.”

32eng “The doctor advised me neither to drink nor to smoke.”

The word “neither” is correctly parsed to depend on the verb “advise,” but with an incorrect type

“preccomp.” This type is the result of converting asymmetric coordination into symmetric

coordination; the original Stanford-Parser dependency type “preconj” is converted incorrectly,

with the part of the word “conj” being replaced by “ccomp.” The correct dependency type for

the word “neither” and the verb “advise” in this sentence is “ccomp.”

The word “drink” and “smoke” are both incorrectly parsed to depend on the verb “advise.”

The correct parse is that they depend on “neither,” with the dependency type “conj.”

The word “nor” is collapsed in the output option “collapsed tree;” hence, it is absent in the

original output. However, in the symmetric analysis of sentences that contain preconjuncts, it

must be present in the typed-dependency tree. The correct parse is that the word “nor”

depends on the word “neither,” with the dependency type “cc.”

36eng.: “I’d like these pieces of furniture sent to my house by the weekend.”

The word “by” is incorrectly analyzed to indicate the agent of the passive “sent,” therefore it is

parsed to depend on “sent” with an incorrect dependency type “agent.” The correct dependency

485

type is “prep_by.”

38eng.: “If you’ll be a good boy, we’ll let you watch television tonight.”

The word “television” is incorrectly parsed to depend on “tonight” with an incorrect type “nn,”

and the word “tonight” is incorrectly parsed to depend on “watch” with an incorrect type “dobj.”

The correct parse is that the “television” depends on “watch” with the type “dobj,” and “tonight”

on “watch” with the type “tmod.”

40eng.: “No, I had my brother help it.”

The word “No” depends on “had” with an incorrect type “dep.” The correct type is “advmod.”

41eng.: “I’ve never had such a terrible thing happen to me before.”

The word “thing” incorrectly parsed to depend on “had” with an incorrect type “dobj,” and

“happen” on “had” with “dep.” The correct parse is that “thing” depends on “happen” with

“nsubj” and “happen” on “had” with “ccomp.”

44eng.: “I shouted loudly, but I couldn’t make myself heard across the large room.”

The word “heard” is parsed to depend on “make,” but with an incorrect type “dep;” the correct

type is “ccomp.”

46eng.: “I was watching TV, so I didn’t notice you come in.”

486

The word “so” is incorrectly parsed to depend on “watching” with an incorrect type “dep;” the

correct parse is that it depends on “notice” with “mark.”

47eng.: “The teacher caught a student cheating on the test this afternoon.”

The word “cheating” is parsed to depend on “caught” with an incorrect type “dobj,” and both the

“a” and the “student” are parsed to depend on the “cheating.” The dependency type between

the “student” and “cheating” is also incorrect; it is parsed to be “nn.” In addition, the

preposition “on” is incorrectly parsed to depend on “caught.” The correct parse is that the

“cheating” depends on the “caught” with the type “ccomp,” the “a” depends on the “student,” the

“student” depends on the “cheating” with “nsubj,” and the “on” depends on the “cheating.”

48eng.: “Yesterday for the first time I saw that boxer knocked down.”

The word “Yesterday” is correctly parsed to depend on “saw,” yet with an incorrect dependency

type “nsubj.” The correct parse is that it depends on “say” with the type “tmod.”

The word “for” is incorrectly parsed to depend on “Yesterday,” and also incorrectly parsed to

have “I” as its dependent. The correct parse is that the dependency between this “for” and the

“time” is collapsed and the “time” depends on “saw” with the type “prep_for.”

The word “the” is incorrectly parsed to depend on “I.” The correct parse is that it depends

on “time” with the type “det.”

The word “first” is also incorrectly parsed to depend on “I.” The correct parse is that it

depends on “time” with the type “amod.”

The word “I” is also incorrectly parsed to depend on “Yesterday” with an incorrect type

“prep_for.” The correct parse is that it depends on “saw” with the type “nsubj.”

487

The word “that” is also incorrectly parsed to depend on “knocked” with an incorrect type

“complm.” The correct parse is that it depends on the “boxer” with the type “det.”

54eng.: “I had my passport stolen while travelling in Italy several years ago.”

The word “Italy” is incorrectly parsed to depend on “years” with an incorrect type “nn.” The

correct parse is that there is a dependency between the “in” and this “Italy,” which is collapsed to

form a dependency between the “travelling” and “Italy” with the type “prep_in.”

The word “year” is parsed to depend on the “travelling,” yet with an incorrect type “prep_in.”

The correct type for this dependency is “tmod.”

58eng. “My car is being repaired, so I borrowed my brother’s.”

The word “so” is incorrectly parsed to depend on “repaired” with an incorrect type “dep;” the

correct parse is that it depends on “borrowed” with the type “mark.”

The word “borrowed” is parsed to depend on “repaired,” yet with an incorrect type “ccomp;”

the correct type is “advcl.”

The possessive “’s” is incorrectly analyzed to be a copula that takes “brother” as its nominal

subject. The correct parse is that the “brother” depends on the “borrowed” with the type “dobj”

and “’s” depends on the “brother” with the type “possessive.” The intuition behind this analysis

is that a noun with a possessive can function pronominally, viz. the noun phrase “my brother’s”

can refer to something which the person possesses, and therefore can be a dependent of an

argument-taking element (“borrow” in the sentence above). In this study, no element is

supposed to be elided in such constructions for the sake of simplicity.

488

59eng.: “She is always saying unpleasant things about other people behind their backs.”

The word “about” is incorrectly parsed to depend on the “saying;” the correct parse is that it

depends on the word “things.”

The word “behind” is incorrectly parsed to depend on the word “people;” the correct parse is

that it depends on the word “saying.”

61eng.: “This time next year I’ll be working for a trading company in Tokyo.”

The word “this” is parsed to depend on the word “time,” yet with an incorrect type “nsubj;” the

correct type is “det.”

The word “time” is incorrectly parsed to be the root of the sentence; the correct parse is that

it depends on “working” with the type “tmod.”

The word “working” is incorrectly parsed to depend on the word “time” with an incorrect

type “ccomp;” the correct parse is that it is the root of the sentence.

63eng.: “I’ll go and see who it is.”

The word “is” is incorrectly parsed to depend on the word “go;” the correct parse is that it

depends on the word “see.”

64eng.: “I’ll be visiting a friend of mine in Kyoto this weekend.”

The word “in” is incorrectly parsed to depend on the word “mine;” the correct parse is that it

depends on the word “friend.”

The word “weekend” is incorrectly parsed to depend on “mine;” the correct parse is that it

489

depends on the word “visiting.”

68eng.: “No, it’s gone.”

The word “No” is correctly parsed to depend on the word “gone,” yet with an incorrect type

“dep;” the correct type is “advmod.”

69eng.: “I’m all right now.”

The word “all” is correctly parsed to depend on the word “right,” yet with an incorrect type “dep;”

the correct type is “advmod.”

70eng.: “Have you ever been to Hawaii?”

The word “ever” is incorrectly parsed to depend on “you;” the correct parse is that it depends on

the word “been.”

71eng.: “No, I never have”

The word “No” is correctly parsed to depend on the word “have,” yet with an incorrect type

“dep;” the correct type is “advmod.”

74eng.: “So you know my uncle.”

The word “So” is correctly parsed to depend on the word “know,” yet with an incorrect type

“dep;” the correct type is “advmod.”

490

75eng.: “How long have you known him?”

The word “long” is correctly parsed to depend on the word “known,” yet with an incorrect type

“dep;” the correct type is “advmod.”

76eng. “Mr. Suzuki has been teaching here ever since he came to Tokyo 25 years ago.”

The word “since” is parsed to depend on “came” with an incorrect type “dep.” The correct type

is “mark.”

77eng.: “I recognized him right away because I had seen him on TV quite a few times.”

The word “seen” is incorrectly parsed to depend on the word “away,” with an incorrect type

“dep;” the correct parse is that it depends on “recognized” with the type “advcl.”

78eng.: “We'd been married for two years when we had our first child.”

The word “had” is parsed to depend on the word “when” with an incorrect type “dep;” the

correct type is “rcmod.”

79eng.: “I hadn't seen him for about a year when he died.”

The word “died” is parsed to depend on the word “year” with an incorrect type “dep;” the correct

type is “rcmod.”

491

81eng.: “My son had hardly lain down on the bed when he fell asleep.”

The word “fell” is incorrectly parsed to depend on the word “bed” with an incorrect type “dep;”

the correct parse is that it depends on the word “lain” with the type “advcl.”

84eng.: “The new hall will have been built by the end of this month.”

The “by” is incorrectly analyzed to indicate the agent of the passive “built,” therefore it is parsed

to depend on “built” with an incorrect dependency type “agent.” The correct dependency type

is “prep_by.”

90eng.: “Weren't you taught at school that whales are mammals?”

The word “Were,” “n’t” and “you” are incorrectly parsed to depend on the word “school.” The

correct parse is that they depend on “taught.”

The word “taught” is incorrectly parsed to depend on the word “you” with an incorrect type

“partmod;” the correct parse is that it is the root of the sentence.

The word “school” is incorrectly parsed to be the root of the sentence. The correct parse is

that it depends on the word “taught” with the type “prep_at.”

The word “mammals” is incorrectly parsed to depend on “school” with an incorrect type “dep;”

the correct parse is that it depends on “taught” with the type “ccomp.”

Subjunctive mood

95eng.: “If you hadn’t had to go to school yesterday, what would you have done?”

The word “have” is parsed to depend on the word “do,” yet with an incorrect type “dep;” the

492

correct type is “advcl.”

The word “what” is incorrectly parsed to depend on the word “would” with an incorrect type

“nsubj;” the correct parse is that it depends on the word “do” with the type “dobj.”

The word “would” is incorrectly parsed to depend on the word “yesterday” with an incorrect

type “rcmod;” the correct parse is that it depends on “do” with the type “aux.”

97eng.: “If I were Hanako, I wouldn't have married such a terrible alcoholic.”

The word “such” is incorrectly parsed to depend on the word “married” with an incorrect type

“prep;” the correct parsed is that it depends on “alcoholic” with the type “predet.”

The word “alcoholic” is incorrectly parsed to depend on the word “such” with an incorrect

type “dep;” the correct parse is that it depends on the word “marry” with the type “dobj.”

99eng.: “If you should win 300,000,000 yen in the lottery, let me have half of it.”

The word “win” is correctly parsed to depend on the word “let,” yet with an incorrect type “dep;”

the correct type is “advcl.”

100eng.: “If Taro's parents met Hanako, I'm sure they would like her.”

The word “like” is correctly parsed to depend on the word “sure,” yet with an incorrect type

“dep;” the correct type is “ccomp.”

101eng.: “Everyone in the Suzuki family treated me kindly, as if I were a family member.”

493

The word “if” is correctly parsed to depend on the word “member,” yet with an incorrect type

“dep;” the correct type is “mark.”

The word “member” is correctly parsed to depend on the word “treated,” yet with an

incorrect type “dep;” the correct type is “advcl.”

102eng.: “Does your son like his new school?”

The word “Does” is incorrectly parsed to depend on the word “son” with an incorrect type “dep;”

the correct parse is that it depends on the word “like” with the type “aux.”

The word “your” is correctly parsed to depend on the word “son,” yet with an incorrect parse

“nsubj;” the correct type is “poss.”

The word “son” is incorrectly parsed to be the root of the sentence; the correct parse is that it

is the subject of the word “like.”

The word “like” is incorrectly parsed to a preposition; the correct parse is that it is the root of

the sentence.

The word “school” is correctly parsed to be the object of the word “like;” however, this “like”

is incorrectly parsed to be a preposition that is incorrectly parsed to depend on “son.”

Therefore, the dependency of this preposition is collapsed, and the result is that the word “school”

is incorrectly parsed to be dependent on the word “son” with an incorrect type “prep_like.” The

correct parse is that it depends on the word “like” with the type “dobj.”

103eng. “Oh, I wish he did.”

The word “Oh” is parsed to depend on “wish” with an incorrect type “dep.” The correct type is

494

“advmod.”

104eng. “If only my father had seen a doctor a little sooner!”

The word “If” is incorrectly parsed to be the root of the sentence. The correct parse is that it

depends on “seen” with the type “mark.”

The word “seen” is incorrectly parsed to depend on “if” with an incorrect type “dep.” The

correct parse is that it is the root of the sentence.

106eng. “If only the rain would stop!”

The word “If” is incorrectly parsed to be the root of this sentence. The correct parse is that it

depends on the word “stop” with the type “mark.”

The word “stop” is incorrectly parsed to depend on “If” with an incorrect type “dep.” The

correct parse is that it is the root of the sentence.

Auxiliaries

118eng. “Yesterday I left the office before eleven, so I was able to catch the last train.”

The word “so” is incorrectly parsed to depend on “left” with an incorrect type “dep.” The

correct parse is that it depends on “able” with the type “mark.”

121eng. “You must come and see us.”

495

The word “us” is incorrectly parsed to depend on “come.” The correct parse is that it depends

on “see” with the type “dobj.”

125eng. “Did you study English last night?”

The word “English” is incorrectly parsed to depend on “night” with an incorrect type “amod.”

The correct parse is that it depends on “study” with the type “dobj.”

126eng. “No, but I should have.”

The word “no” is correctly parsed to depend on “have,” but with an incorrect type “dep;” the

correct type is “advmod.”

The word “I” is incorrectly parsed to depend on ROOT with an incorrect type “root_but;” the

correct parse is that it depends on “have” with the type “nsubj.”

131eng. “I may have met him somewhere before, but I can’t recall where.”

The word “where” is correctly parsed to depend on “recall,” but with an incorrect type “dep;” the

correct type is “dobj.”

Infinitives, gerunds, and participles

135eng. “Please remember to feed the goldfish every three days when I am away.”

The word “Please” is correctly parsed to depend on “remember,” but with an incorrect type “dep;”

the correct type is “advmod.”

496

136eng. “Every time I travel abroad, I regret not studying English harder when I was young.”

The word “English” is incorrectly parsed to depend on “young” with an incorrect type “nsubj;”

the correct parse is that it depends on “studying” with the type “dobj.”

The word “harder” is incorrectly parsed to depend on “young” with an incorrect type “dep;”

the correct parse is that it depends on “studying” with the type “advmod.”

The word “young” is correctly parsed to depend on “studying,” but with an incorrect type

“xcomp;” the correct type is “advcl.”

140eng. “I’ll do everything else.”

The word “everything” is incorrectly parsed to depend on “else” with an incorrect type “nsubj.”

The correct parse is that it depends on “do” with the type “dobj.”

The word “else” is incorrectly parsed to depend on “do” with an incorrect type “xcomp;” the

correct type is that it depends on “everything” with the type “amod.”

142eng. “I’ve got something important to tell you.”

The word “something” is incorrectly parsed to depend on “important” with an incorrect type

“nsubj;” the correct parse is that it depends on “got” with the type “dobj.”

The word “important” is incorrectly parsed to depend on “got” with an incorrect type

“xcomp;” the correct parse is that it depends on “something” with the type “amod.”

The word “tell” is incorrectly parsed to depend on “important” with an incorrect type

“xcomp;” the correct parse is that it depends on “something” with the type “infmod.”

497

145eng. “I hurried to the airport so as not to miss the flight, but it was too late.”

The word “not” is correctly parsed to depend on “miss,” but with an incorrect type “dep;” the

correct type is “neg.”

148eng. “Be careful not to catch a cold because you have a job interview next week.”

The word “catch” is parsed to depend on “careful” with an incorrect type “dep.” The correct

type is “xcomp.”

150eng. “The class goes too fast for me to keep up with.”

The word “for” is incorrectly parsed to depend on “keep” with an incorrect type “mark,” and the

word “me” is incorrectly parsed to depend on “keep” with an incorrect type “nsubj;” the correct

parse is that these dependencies are collapsed and the word “me” depends on “fast” with the type

“prep_for.”

The word “keep” is correctly parsed to depend on “fast,” but with an incorrect type “dep;”

the correct type is “infmod.”

160eng. “Seen from a distance, the huge rock looked like a human face.”

The word “Seen” is correctly parsed to depend on “look,” but with an incorrect type “nsubj;” the

correct type is “partmod.”

The word “rock” is incorrectly parsed to depend on “distance” with an incorrect type “appos;”

the correct parse is that it depends on “look” with the type “nsubj.”

498

161eng. “Last night I stayed up until three o'clock, watching the Open on TV.”

The word “watching” is correctly parsed to depend on “stayed,” but with an incorrect type

“xcomp;” the correct type is “partmod.”

164eng. “I watched the movie standing because every seat was taken.”

The word “the” is incorrectly parsed to depend on “standing.” The correct parse is that it

depends on “movie.”

The word “movie” is incorrectly parsed to depend on “standing” with an incorrect type “nn.”

The correct parse is that it depends on “watched” with the type “dobj.”

The word “standing” is correctly parsed to depend on “watched,” but with an incorrect type

“dobj;” the correct type is “partmod.”

166eng. “Judging from the way he speaks, I'm sure he is not a native of Osaka.”

The word “Judging” is correctly parsed to depend on “sure,” but with an incorrect type “dep;”

the correct type is “partmod.”

The word “speaks” is incorrectly parsed to depend on “sure” with an incorrect type

“parataxis;” the correct parse is that it depends on “way” with the type “rcmod.”

The word “native” is correctly parsed to depend on “sure,” but with an incorrect type “dep;”

the correct type is “ccomp.”

Adverbial clauses

499

174eng. “I can’t bring myself to go out when tired.”

The word “tired” is incorrectly parsed to depend on “go” with an incorrect type “dep.” The

correct parse is that it depends on “bring” with the type “advcl.”

181eng. “He was late again this morning.”

The word “late” is incorrectly parsed to depend on “again;” the correct parse is that it depends on

“was.”

182eng. “He arrived an hour after school began”

The word “hour” is incorrectly parsed to depend on “begin” with an incorrect type “dep.” The

correct parse is that it depends on “after” with the type “tmod.”

The word “after” is parsed to depend on “began” with an incorrect type “dep.” The correct

type is “mark.”

The word “began” is parsed to depend on “arrived” with an incorrect type “ccomp.” The

correct type is “advcl.”

186eng. “Now that our children are grown up, we can do anything we like.”

The word “that” is parsed to depend on “grown” with an incorrect type “dep.” The correct type

is “mark.”

The word “grown” is parsed to depend on “do” with an incorrect type “dep.” The correct

type is “advcl.”

500

192eng. “Please put the magazine back where you found it.”

The word “Please” is correctly parsed to depend on “put,” but with an incorrect type “dep;” the

correct type is “advmod.”

196eng. “Don’t look down upon a person just because he or she is poor.”

The word “because” is correctly parsed to depend on “poor,” but with an incorrect type “dep;”

the correct type is “mark.”

197eng. “I set the alarm for five in the morning so that I could study earlier.”

The word “morning” is incorrectly parsed to depend on “set” with the correct type “prep_in;” the

correct parse is that it depends on “five.”

The word “that” is correctly parsed to depend on “study,” but with an incorrect type “dep;”

the correct type is “mark.”

198eng. “Wear your raincoat so that you will not get wet.”

The word “that” is correctly parsed to depend on “wet” with an incorrect type “dep.” The

correct type is “mark.”

The word “get” is correctly parsed to depend on “wet” as a copula, but with an incorrect type

“dep.” The correct type is “cop.”

199eng. “Take these sandwiches with you in case you get hungry on the way.”

501

The word “Take” is incorrectly parsed to depend on “hungry” with an incorrect type “dep.”

The correct parse is that it is the root of the sentence.

The word “case” is incorrectly parsed to depend on “you” with the type “prep_in.” The

correct parse is that it depends on “Take.”

The word “hungry” is incorrectly parsed to depend on “Take” with an incorrect type “dep.”

The correct parse is that it depends on “case” with the type “ccomp.”

The word “get” is correctly parsed to depend on “hungry,” but with an incorrect type “dep.”

The correct type is “cop.”

200eng. “I lowered my voice for fear I might be overheard.”

The word “lowered” is incorrectly parsed to depend on “overheard” with an incorrect type “dep.”

The correct parse is that it is the root of the sentence.

The word “overheard” is incorrectly parsed to be the root of the sentence. The correct parse

is that it depends on “fear” with the type “ccomp.”

202eng. “Even though I love the Beatles, I’m tired of listening to Yesterday.”

The word “though” is correctly parsed to depend on “love,” but with an incorrect type “dep.”

The correct type is “mark.”

The word “love” is correctly parsed to depend on “tired,” but with an incorrect type “dep.”

The correct type is “advcl.”

203eng. “Whether you like it or not, you should be here by eight tomorrow morning.”

502

The word “Whether” is correctly parsed to depend on “like” with an incorrect type “dep.” The

correct type is “mark.”

The word “like” is correctly parsed to depend on “be,” but with an incorrect type “dep.”

The correct type is “advcl.”

The word “not” is incorrectly parsed to depend on “be” with an incorrect type “dep_or.”

The correct parse is that it depends on “like” with the type “neg_or.”

The word “eight” is incorrectly parsed to depend on “tomorrow” with an incorrect type “nn.”

The correct parse is that it depends on “be” with the type “prep_by.”

The word “tomorrow” is incorrectly parsed to depend on “be” with an incorrect type

“prep_by.” The correct parse is that it depends on “morning” with the type “advmod.”

204eng. “No matter what you wear, you look pretty.”

The word “No” is correctly parsed to depend on “matter,” but with an incorrect type “dep.”

The correct type is “neg.”

The word “matter” is incorrectly parsed to depend on “look” with an incorrect type “advmod.”

The correct parse is that it depends on “wear” with the type “mark.”

The word “wear” is incorrectly parsed to depend on “matter” with an incorrect type “dep.”

The correct parse is that it depends on “look” with the type “advcl.”

205eng. “Whichever candidate we choose, we should not expect too much of him.”

The word “Whichever” is correctly parsed to depend on “candidate,” but with an incorrect type

“nsubj.” The correct type is “amod.”

503

The word “candidate” is incorrectly parsed to depend on “expect” with an incorrect type “ccomp.”

The correct parse is that it depends on “choose” with the type “dobj.”

The word “choose” is incorrectly parsed to depend on “candidate” with an incorrect type

“ccomp.” The correct parse is that it depends on “expect” with the type “advcl.”

206eng. “No matter how fast I drive, I can’t get to the office in thirty minutes.”

The word “No” is correctly parsed to depend on “matter,” but with an incorrect type “dep.”

The correct type is “neg.”

The word “matter” is incorrectly parsed to depend on “get” with an incorrect type “advmod.”

The correct parse is that it depends on “drive” with the type “mark.”

The word “fast” is correctly parsed to depend on “drive,” but with an incorrect type “dep.”

The correct type is “advmod.”

The word “drive” is incorrectly parsed to depend on “matter” with an incorrect type “dep.”

The correct parse is that it depends on “get” with the type “advcl.”

207eng. “I know nothing about him except that he used to be a professional singer.”

The word “that” is correctly parsed to depend on “used,” but with an incorrect type “dep.” The

correct type is “mark.”

208eng. “There's a rumor that the movie star is going to get married soon.”

The word “going” is incorrectly parsed to depend on “is” with the type “cccomp.” The correct

parse is that it depends on “rumor” with the type “ccomp.”

504

209eng. “There was little hope that the rescue party would come back safe and sound.”

The word “come” is incorrectly parsed to depend on “was” with the type “cccomp.” The

correct parse is that it depends on “hope” with the type “ccomp.”

210eng. “Take your temperature to see if you have a fever.”

The word “see” is incorrectly parsed to depend on “temperature.” The correct parse is that it

depends on “Take.”

Relative clauses

214eng. “Do customers who smoke in restaurants bother you?”

The word “Do” is incorrectly parsed to be the root of the sentence. The correct parse is that it

depends on “bother” with the type “aux.”

The word “customers” is incorrectly parsed to depend on “Do” with an incorrect type “dobj.”

The correct parse is that it depends on “bother” with the type “nsubj.”

The word “in” is incorrectly parsed to depend on “bother” with the type “mark.” The

correct parse is that it is collapsed to be the dependency type “prep_in” for the dependency

between “smoke” and “restaurant.”

The word “restaurant” is incorrectly parsed to depend on “bother” with an incorrect type

“nsubj.” The correct parse is that it depends on “smoke” with the type “prep_in.”

The word “bother” is incorrectly parsed to depend on “smoke” with an incorrect type “advcl.”

The correct parse is that it is the root of the sentence.

505

216eng. “The man who I first thought was the criminal turned out to be a detective.”

The word “man” is incorrectly parsed to depend on “was” with the type “nsubj.” The correct

parse is that it depends on “turned” with the type “nsubj.”

The word “criminal” is incorrectly parsed to be the root of the sentence. The correct parse

is that it depends on “thought” with the type “ccomp.”

The word “turned” is incorrectly parsed to depend on “criminal” with an incorrect type

“partmod.” The correct parse is that it is the root of the sentence.

218eng. “My friend’s sister is a famous singer whose songs many people sing.”

The word “whose” is incorrectly parsed to depend on “people” with the type “poss.” The

correct parse is that it depends on “songs” with the type “poss.”

The word “songs” is incorrectly parsed to depend on “people” with an incorrect type “amod.”

The correct parse is that it depends on “sing” with the type “dobj.”

219eng. “I may have to work overtime, in which case I’ll call you.”

The word “overtime” is correctly parsed to depend on “work,” but with an incorrect type “dobj.”

The correct type is “advmod.”

The word “case” is correctly parsed to depend on “call,” but with an incorrect type “rel.”

The correct type is “prep_in.”

224eng. “There seemed to be something he wanted done.”

506

The word “done” is correctly parsed to depend on “wanted” with an incorrect type “dep.” The

correct type is “xcomp.”

231eng. “He often leaves undone what he ought to do.”

The word “undone” is correctly parsed to depend on “leaves,” but with an incorrect type “dep.”

The correct type is “xcomp.”

The word “what” is correctly parsed to depend on “ought,” but with an incorrect type “dep.”

The correct type is “dobj.”

The word “ought” is incorrectly parsed to depend on “undone” with the type “ccomp.” The

correct parse is that it depends on “leaves.”

233eng. “The father gave his son what little money he had saved.”

The word “son” is correctly parsed to depend on “gave,” but with an incorrect type “dobj.” The

correct type is “iobj.”

The word “money” is incorrectly parsed to depend on “save” with the type “dobj.” The

correct parse is that it depends on “gave” with the type “dobj.”

The word “saved” is incorrectly parsed to depend on “gave” with an incorrect type “dep.”

The correct parse is that it depends on “money” with the type “rcmod.”

236eng. “This is how we get rid of things we no longer need.”

The word “get” is correctly parsed to depend on “rid,” but with an incorrect type “dep.” The

correct type is “cop.”

507

240eng. “Choose whichever one of the three methods you think is best.”

The word “whichever” is incorrectly parsed to depend on “best” with an incorrect type “dobj.”

The correct parse is that it depends on “one” with the type “amod.”

The word “one” is incorrectly parsed to depend on “best” with an incorrect type “nsubj.”

The correct parse is that it depends on “choose” with the type “dobj.”

The word “best” is incorrectly parsed to depend on “choose” with the type “ccomp.” The

correct parse is that it depends on “think” with the type “ccomp.”

Comparison:

241eng. “You should read as many different books as you can.”

The word “as” is incorrectly parsed to be a preposition and is collapsed to be the dependency

type “prep_as” between “read” and “newspaper.” The correct parse is that it depends on “many”

with the type “advmod.”

The word “newspaper” is parsed to depend on “read” with an incorrect type “prep_as.” The

correct type is “dobj.”

243eng. “The pain was more than I could bear, so I took some medicine.”

The word “bear” is parsed to depend on “more” with an incorrect type “dep.” The correct type

is “advcl.”

The word “so” is incorrectly parsed to depend on “more” with an incorrect type “dep.” The

correct parse is that it depends on “took” with the type “mark.”

508

The word “took” is parsed to depend on “more” with an incorrect type “ccomp.” The

correct type is “advcl.”

246eng. “In order to keep in good health, you should smoke fewer cigarettes and drink less.”

The word “In” is incorrectly parsed to depend on “keep” with an incorrect type “mark.” The

correct parse is that it is collapsed to be the dependency type “prep_in” between “smoke” and

“keep.”

The word “keep” is incorrectly parsed to depend on “smoke” with an incorrect type “dep.”

The correct parse is that it depend on “order” with the type “infmod.”

248eng. “My brother plays the guitar much better than he used to.”

The word “guitar” is incorrectly parsed to depend on “better” with an incorrect type “nsubj.”

The correct parse is that it depends on “plays” with the type “dobj.”

The word “better” is parsed to depend on “plays” with an incorrect type “xcomp.” The

correct type is “advmod.”

The word “used” is incorrectly parsed to depend on “plays” with the type “advcl.” The

correct parse is that it depends on “better.”

256eng. “He was the last person I expected to run into in London.”

The word “into” is parsed to depend on “run” with an incorrect type “prep.” The correct type is

“prt.”

The word “in” is incorrectly parsed to depend on “into” with an incorrect type “pcomp.”

509

The correct parse is that it is collapsed to be the dependency type “prep_in” between “run” and

“London.”

259eng. “You should know better than to take an examination without preparing for it.”

The word “better” is incorrectly parsed to depend on “than” with an incorrect type “dep.” The

correct parse is that it depends on “know” with the type “advmod.”

The word “take” is parsed to depend on “than” with an incorrect type “dep.” The correct

type is “infmod.”

260eng. “I didn’t even speak to him, much less talk it over with him.”

The word “less” is incorrectly parsed to depend on “speak” with the type “advmod.” The

correct parse is that it depends on “talk” with the type “advmod.”

The word “talk” is parsed to depend on “speak” with an incorrect type “dep.” The correct

type is “advcl.”

261eng. “The older we get, the less innocent we become.”

The word “older” is correctly parsed to depend on “get” with an incorrect type “dep.” The

correct type is “advmod.”

The word “get” is correctly passed to depend on “become,” with an incorrect type “dep.”

The correct type is “advcl.”

The word “innocent” is correctly parsed to depend on “become” with an incorrect type “dep.”

The correct type is “advmod.”

510

264eng. “I can no more play the violin than a baby can.”

The word “no” is parsed to depend on “more” with an incorrect type “dep.” The correct type is

“neg.”

266eng. “I'm afraid it'll be difficult for you to find a new job in Tokyo.”

The word “difficult” is correctly parsed to depend on “afraid” with an incorrect type “dep.”

The correct type is “ccomp.”

268eng. “I found it very difficult to adjust myself to life in the new school.”

The word “it” is incorrectly parsed to depend on “adjust” with an incorrect type “nsubj.” The

correct parse is that it depends on “found” with the type “dobj.”

The word “difficult” is incorrectly parsed to depend on “adjust” with an incorrect type “dep.”

The correct parse is that it depends on “found” with the type “acomp.”

The word “adjust” is incorrectly parsed to depend on “found” with the type “xcomp.” The

correct parse is that it depends on “difficult.”

270eng. “It costs a huge sum of money to travel around the world by ship.”

The word “sum” is incorrectly parsed to depend on “travel” with the type “nsubj.” The correct

parse is that it depends on “cost” with the type “dobj.”

511

271eng. “I tell you that it’s no good your being angry with me.”

The word “good” is incorrectly parsed to depend on “your” with an incorrect type “advmod.”

The correct parse is that it depends on “tell” with the type “ccomp.”

The word “your” is incorrectly parsed to depend on “tell” with an incorrect type “ccomp.”

The correct parse is that it depends on “angry” with the type “poss.”

The word “angry” is incorrectly parsed to depend on “your” with an incorrect type “xcomp.”

The correct parse is that it depends on “good” with the type “ccomp.”

274eng. “It’s what you do that matters, not the way you do it.”

The word “what” is parsed to depend on the first “do” with an incorrect type “dep.” The

correct type is “dobj.”

The word “that” is incorrectly parsed to depend on the second “do” with the type “compln.”

The correct parse is that it depends on “matters.”

The word “matters” is incorrectly parsed to depend on the second “do” with an incorrect type

“nsubj.” The correct parse is that it depends on the first “do” with the type “rcmod.”

The word “not” is parsed to depend on “way” with an incorrect type “dep.” The correct

type is “neg.”

The word “way” is incorrectly parsed to depend on “do” with an incorrect type “dep.” The

correct parse is that it depends on “is” with the type “ccomp.”

The second “do” is incorrectly parsed to depend on the first “do” with an incorrect type

“ccomp.” The correct parse is that it depends on “way” with the type “rcmod.”

512

279eng. “How long have you had that car of yours?”

The word “long” is parsed to depend on “had” with an incorrect type “dep.” The correct type is

“advmod.”

284eng. “Okay, where shall we go?”

The word “Okay” is parsed to be the root of the sentence. The correct parse is that it depends

on “go” with “advcl.”

The word “go” is incorrectly parsed to depend on “Okay” with an incorrect type “rcmod.”

The correct parse is that it is the root of the sentence.

285eng. “The bus hasn’t come yet, has it?”

The word “has” is parsed to depend on “come” with an incorrect type “dep.” The correct type

is “advcl.”

The word “it” is parsed to depend on “has,” with an incorrect type “dobj.” The correct type

is “nsubj.”

286eng. “Oh, no, it hasn’t.”

The word “Oh” is parsed to depend on “not” with an incorrect type “dep.” The correct type is

“advcl.”

The word “no” is incorrectly parsed to depend on “Oh” with an incorrect type “dep.” The

correct parse is that it depends on “not” with the type “advcl.”

513

287eng. “Would you mind posting a letter for me on your way home?”

The word “way” is incorrectly parsed to depend on “home” with an incorrect type “nn.” The

correct parse is that it depends on “post” with the type “prep_on.”

The word “your” is incorrectly parsed to depend on “home” with the type “poss.” The

correct parse is that it depends on “way.”

The word “home” is incorrectly parsed to depend on “post” with an incorrect type “prep_on.”

The correct parse is that it depends on “way” with the type “advmod.”

288eng. “Not at all.

The word “at” is not collapsed to be the dependency-type “prep_at” between “Not” and “all.”

290eng. “No, go ahead.”

The word “No” is parsed to depend on “go” with an incorrect type “nsubj.” The correct type is

“advcl.”

298eng. “Well, I don’t think I am being arrogant.”

The word “Well” is parsed to depend on “think” with an incorrect type “dep.” The correct type

is “advcl.”

300eng. “I don’t know who or what he is, or where he lives.”

The word “who” is incorrectly parsed to depend on “know” with an incorrect type “dep.” The

514

correct parse is that it depends on “is” with the type “dobj.”

The word “is” is parsed to depend on “know” with an incorrect type “dep_or.” The correct

type is “ccomp.”

The word “lives” is incorrectly parsed to depend on “who” with an incorrect type

“conj_or_or.” The correct parse is that it depends on “know” with the type “ccomp_or.”

303eng. “I can’t walk along this street without running into someone I know.”

The word “walk” is incorrectly parsed to depend on “know” with an incorrect type “dep.” The

correct parse is that it is the root of the sentence.

The word “know” is incorrectly parsed to be the root of the sentence. The correct parse is

that it depends on “someone” with the type “rcmod.”

314eng. “While at college, they fell in love with each other.”

The word “fell” is incorrectly parsed to depend on “love” with an incorrect type “csubj.” The

correct parse is that it is the root of the sentence.

The word “in” is parsed to depend on “fell” with an incorrect type “prt.” This preposition

must be collapsed to be the dependency type “prep_in” between “fell” and “love.”

The word “love” is incorrectly parsed to be the root of the sentence. The correct parse is

that it depends on “fell” with the type “prep_in.”

315eng. “Many people have cars, but only a few of them use them to go to work.”

The second “them” is incorrectly parsed to depend on “go” with an incorrect type “nsubj.” The

515

correct parse is that it depends on “use” with the type “dobj.”

317eng. “Yes, quite a few.”

The word “Yes” is incorrectly parsed to depend on “quite” with an incorrect type “advmod.”

The correct parse is that it depends on “few” with the type “advcl.”

The word “quite” is incorrectly parsed to be the root of the sentence. The correct parse is

that it depends on “few” with the type “predet.”

The word “few” is incorrectly parsed to depend on “quite” with the type “dobj.” The

correct parse is that it is the root of the sentence.

320eng. “Almost all the passengers on the bus are tourists.”

The word “bus” is incorrectly parsed to depend on “tourists” with the type “prep_on.” The

correct parse is that it depends on “passengers” with the type “prep_on.”

323eng. “That comedy isn’t amusing; in fact, it is anything but funny.”

The word “funny” is incorrectly parsed to depend on “amusing” with an incorrect type

“parataxis_but.” The correct parse is that it depends on “anything” with the type “prep_but.”

325eng. “One and a half years is a long time to have to wait for a visa.”

The word “One” is incorrectly parsed to depend on “half” with the type “number.” The correct

parse is that it depends on “years.”

516

The word “a” is incorrectly parsed to depend on “year” with an incorrect type “num_and.”

The correct parse is that it depends on “half” with the type “det.”

The word “half” is parsed to depend on “year” with an incorrect type “num.” The correct

type is “num_and.”

333eng. “My brother and I went skating on the lake yesterday afternoon.”

The word “yesterday” is incorrectly parsed to depend on “skating” with the type “tmod.” The

correct parse is that it depends on “went.”

339eng. “Except for a slight fever, Taro doesn’t seem to be very ill.”

The word “for” is incorrectly parsed not to be collapsed to a dependency type. The word “fever”

is parsed to depend on “seem” with an incorrect type “pobj.” The correct parse is that it

depends on “seem” with the type “prep_except_for.”

517

Appendix III: The list of incorrect parses for Japanese sentences in Basic 300 (Iida 2010) by

KNP

5jpn.

“Kimi-wa jibun-ga yat-ta koto-wo sugu tomodachi-ni

You-topic yourself-postp do-past thing-postp right.away friend-postp

ayamat-ta hou-ga ii.”

apologize-past side-postp good

“You should apologize to your friend right away for what you did.”

The syntactic unit “jibunga (myself)” is incorrectly parsed to depend on “ayamatta (someone

apologized for something)” with the type “postp_ga.” The correct parse is that it depends on

“yatta (someone did something).”

6jpn.

“Kanja-ga nakunat-ta-no-wa naze-ka, ima-mo kaimoku

Patirent-postp die-past-postp-topic why-int now-focus at.all

wakara-nai.”

understand-neg

“The cause of the patient’s death remains a big mystery.”

The syntactic unit “nakunattanowa (that something got lost as a topic)” is incorrectly parsed

to depend on “wakaranai (nobody knows)” with an incorrect type “advcl.” The correct parse is

that it depends on “nazeka” with the type “topic.”

14jpn

“Ano oto-wa gaman-nara-nai.”

That sound-topic endurance-become-neg

“I cannot stand that noise.”

518

The syntactic unit “gamannaranai (I cannot stand)” is incorrectly segmented into “gamannara”

and “nai.”

21jpn

“Tanaka-san go-fuufu-ga konya-no

Tanaka-end polite-married.couple-postp tonight-postp

tanjoukai-ni kite-kudasaru-to ii-na.”

birthday.party-postp come-polite-postp good-end

“I hope Mr. and Mrs. Tanaka come to my birthday party tonight.”

The syntactic unit “Tanaka-san (Mr. Tanaka)” is parsed to depend on “go-fufu-ga (wife and

husband)” with an incorrect type “dep.” The correct type is “nn.”

31jpn

“Ano kata-wo houmon-suru mae-ni, ie-ni iru

That person-postp visit-do before-postp house-postp be.present

koto-wo kakunin-shi-ta hou-ga ii-desu-yo.”

fact-postp confirmation-do-past side-postp good-polite.present-end

“You should make sure that he is at home before you call on him.”

The syntactic unit “maeni (before something)” is incorrectly parsed to depend on “iru

(someone is somewhere)” with the correct type “postp_ni.” The correct parse is that it depends

on “kakuninshita (someone checked something).”

32jpn.

“Isha-kara, sake-mo tabako-mo yara-nai hou-ga

Doctor-postp sake-focus tobacco-focus do-neg side-postp

519

ii-to iwa-re-mashi-ta.”

good-ccomp say-passive-polite-past

“The doctor advised me neither to drink nor to smoke.”

The syntactic unit “ishakara (from a doctor)” is incorrectly parsed to depend on “iito (that

something is good)” with the correct type “postp_kara.” The correct parse is that it depends on

“iwaremashita (someone was told).”

The syntactic unit “sakemo (alcohol, too)” is incorrectly parsed to depend on “tabakomo

(tobacco, too)” with the type “focus.” The correct parse is that it depends on “yaranai

(someone doesn’t do something)” with the type “focus.”

33jpn.

“Kekkon-shi-te kudasait-te iwa-re-ta toki, joudan-da-to omot-ta-wa.”

Marriage-do-infl give-infl say-passive-past time joke-be-ccomp think-past-end

“When he asked me to marry him, I thought he was joking.”

The syntactic unit “kekkonshite (someone marries someone, and)” is incorrectly parsed to

depend on “iwareta (someone was told)” with the correct type “advcl_te.” The correct parse is

that it depends on “kudasaitte (that you give me your favor).”

34jpn.

“Watashitachi-noaida-ni-wa, ikanaru gokai-mo atte-wa

We-postp between-postp-topic any misunderstanding-focus be-postp

komaru.”

troublesome

“I don’t want there to be any misunderstanding between us.”

The syntactic unit “aidaniwa (between)” is incorrectly parsed to depend on “komaru (it is

520

troublesome).” The correct parse is that it depends on “attewa (that something is somewhere as

a topic).”

50jpn.

“Watashi-wa seigo wazuka ikkagetu-de ryoushin-ni shina-re,

I-topic after.birth only one.month-postp parents-postp die-passive,

sofubo-ni sodate-rare-mashi-ta.”

grand.parents-postp raise-passive-polite-past

“My parents died only a month after I was born, and my grandparents brought me up.”

The syntactic unit “seigo (after the birth)” is incorrectly parsed to depend on “wazuka (only)”

with an incorrect type “dep.” The correct parse is that it depends on “ikkagetsu” with the type

“amod.”

52jpn.

“Sono bakuhatsu-jiko-de, shisha-ga futari, juushousha-ga

The explosion-accident-postp, victim-postp two.person, severely.wounded-postp

san-nin de-ta.”

three-person result-past

“Two people were killed and three seriously injured in the explosion.”

The syntactic unit “shishaga (victims)” is incorrectly parsed to depend on “sannin (three

people)” with the correct type “postp_ga.” The correct parse is that it depends on “futari (two

people).”

The syntactic unit “futari” is incorrectly parsed to depend on “sannin.” The correct parse is

that it depends on “deta (something resulted).”

521

54jpn.

“Watashi-wa, suunen-mae itaria-de pasupooto-wo

I-topic several.years-ago Italy-postp passport-postp

nusum-are-ta koto-ga aru.”

steal-passive-past event-postp be.present

“I had my passport stolen while traveling in Italy several years ago.”

The syntactic unit “suunenmae (three years ago)” is incorrectly segmented into two

syntactic units “suunen” and the rest “mae” is adjoined to the next unit “itaria.”

The syntactic units “nusumareta (someone had something stolen),” “kotoga (event)” and “aru

(something has happened)” are incorrectly analyzed to form one syntactic unit.

The correct parse is that “suunenmae” depends on “nusumareta” with the type “advmod,”

“nusumareta” depends on “kotoga” with the type rcmod, and “kotoga” depends on “aru” with the

type “postp_ga.”

72jpn

“Wakai koro chuugoku-ni sun-da koto-ga arimasu-ga,

Young time China-postp live-past thing-postp be.polite.present-postp,

chuugokugo-wa sappari-desu.”

Chinese-topic not.at.all-polite.present

“I lived in China abour five years when I was young, but I cannot speak Chinese at all.”

The syntactic units “sunda,” “kotoga” and “arimasuga” are incorrectly parsed to be one

syntactic unit. The correct parse is that “sunda” depends on “kotoga” with the type “rcmod,”

“kotoga” on “arimasuga” with the type “postp_ga,” and “arimasuga” on “sapparidesu” with the

type “advcl_ga.”

522

77jpn.

“Tadachi-ni sono hito-da-to wakari-mashi-ta, terebi-de

Immediate-postp the person-be-postp notice-polite-past, TV-postp

nando-mo mite-i-mashita-kara.”

many.times-focus watch-perfect-polite-end

“I recognized him right away because I had seen him on TV quite a few times.”

The syntactic unit “wakarimashita” is incorrectly parsed to depend on “terebide” with an

incorrect type “rcmod.” The correct parse is that it is the root of the sentence.

The syntactic unit “miteimashitakara” is incorrectly parsed to be the root of the sentence.

The correct parse is that it depends on “wakarimashita” with the type “advcl_kara.”

81jpn.

“Toko-ni tsuku-ka tsuka-nai-ka-no uchi-ni

Bed-postp get.in-int get.in-neg-int-postp while-postp

neitte-shimai-mashi-ta.”

fall.asleep-perfect-polite-past

“My son had hardly lain down on the bed when he fell asleep.”

The syntactic units “tsukuka” and “tsukanaikano” are incorrectly segmented as follows:

“tsukukatsu” “kanai” and “kano.” The correct parse is that the unit “tsukuka” depends on

“tsukanaikano” with the type “advcl_ka,” and “tsukanaikano” depends on “uchi-ni” with the type

“advcl.”

85jpn.

“Rainen, chichi-wa kono kaisha-de kinzoku

Next.year, my.father-topic this company-postp keeping.on.working

523

sanjuunen-to iu-koto-ni nari-masu.”

thirty.years-postp say-thing-postp become-polite.present

“Next year, my father will have been working for this company for thirty years.”

The syntactic unit “kinzoku” is correctly parsed to depend on “sanjunen,” but with an

incorrect type “dep.” The correct type is “nn.”

The syntactic units “iukotoni” and “narimasu” are incorrectly parsed to be one syntactic

unit.

87jpn.

“Ohiru-wo tabe-ta-ra shibuya-e kaimono-ni iku-wayo, anata.”

Lunch-postp eat-past-infl Shibuya-postp shopping-postp go-end darling

“When we have had lunch, we’ll go shopping in Shibuya, darling.”

The syntactic unit “tabetara” is incorrectly parsed to depend on “anata.” The correct parse

is that it depends on “ikuwayo.”

The syntactic unit “kaimononi” is incorrectly parsed to depend on “anata.” The correct

parsed is that it depends on “ikuwayo.”

The syntactic unit “ikuwayo” is incorrectly parsed to depend on “anata.” The correct parse

is that this unit depends on the root of the sentence with the type “root.”

The syntactic unit “anata” is incorrectly parsed to depend on the root of the sentence. The

correct parse is that it depends on “ikuwayo” with the type “appos.”

89jpn.

“Neru-mae-ni doa-ni kagi-wo kake-nasait-te it-ta-desho.”

Sleep-before-postp door-postp key-postp lock-imp.polite-infl say-past-end

524

“Didn’t I tell you to lock the door before you go to bed?”

The syntactic unit “maeni,” “doani,” and “kagiwo” are incorrectly parsed to depend on

“ittadesho.” They must depend on “kakenasaitte,” which is an allophone of “kakenasaito.”

The syntactic unit “kakenasaitte” is incorrectly segmented in the parse output as follows:

“kakena” and “saitte.” The correct parse is that it depends on “ittadesho” with the type

“ccomp.”

97jpn.

“Watashi-ga hanako-san-nara, anna sakeguse-no warui

I-topic Hanako-Ms.-be.infl such drinking.behavior-postp bad

otoko-to kekkon-shi-nakatta-wa.”

man-postp marry-do-neg.past-end

“If I were Hanako, I would not have married such a terrible alcoholic.”

The syntactic unit “watakushiga” is incorrectly parsed to depend on “kekkon-shi-nakatta-wa.”

The correct parse is that it depends on “hanakosannara.”

112jpn.

“Kinou chichi-wa isha-kara, sake-to tabako-wo

Yesterday my.father-topic doctor-postp sake-postp tabacco-postp

yame-te-wa dou-ka-to iwa-re-mashi-ta.”

stop-infl-focus how-int-ccomp say-passive-polite-past

“Yesterday, the doctor recommended that my father give up smoking and drinking.”

The syntactic units “kinou,” “chichiwa,” and “ishakara” are incorrectly parsed to depend on

“yametewa;” the correct parse is that they depend on “iwaremashita.”

525

119jpn.

“Izen watashitachi-wa hataraku mise-ga onaji-de, yoku

Before we-topic work shop-postp same-postp, often

issho-ni koohii-wo non-da-monodesu.”

together-postp coffee-postp drink-past-end

“We used to work in the sampe shop and would often have coffee together.”

The syntactic unit “onajide” is incorrectly parsed to depend on “yoku.” The correct parse

is that it depends on “nonda.”

122jpn.

“Kyou bokura-wa toukou-shinakute-iin-da, saijitsu-dakara-ne.”

Today we-topic go.to.school-neg-good-be, holiday-postp-end

“We don’t have to go to school today because it’s a holiday.”

The syntactic units “kyou” and “bokurawa” are incorrectly parsed to depend on

“saijitsudakarane.” The correct parse is that they depend on “toukoushinakuteiinda.”

The syntactic unit “toukoushinakuteiinda” is incorrectly parsed to depend on

“saijitsudakarane” with the type “advmod.” The correct parse is that it is the root of the

sentence.

The syntactic unit “saijitsudakarane” is incorrectly parsed to be the root of the sentence.

The correct parse is that it depends on “toukoushinakuteiinda” with the type “advcl_kara.”

123jpn.

“Omaewa, yakan-ni sonna bussou-na tokoro-wo

You-topic during.the.night-postp such dangerous-postp place-postp

arukimawara-nai hou-ga ii.”

526

walk.around-neg side-postp good

“You had better not walk around in such a dangerous place at night.”

The syntactic unit “yakanni” is incorrectly parsed to depend on “ii.” The correct parse is

that it depends on “arukimawaranai.”

124jpn.

“Kooto-wa koko-ni oiteiku hou-ga ii, acchi-wa

Coat-topic here-postp leave side-postp good, there-topic

motto atsui-kara.”

more hot-postp

“You should leave your coat here as it is warmer there.”

The syntactic unit “kootowa” is incorrectly parsed to depend on “atsuikara.” The correct

parse is that it depends on “oiteiku.”

The syntactic unit “ii” is incorrectly parsed to depend on the unit “atsuikara” with an

incorrect type “advcl.” The correct parse is that it is the root of the sentence.

The syntactic unit “atsuikara” is incorrectly parsed to be the root of the sentence. The

correct parse is that it depends on the unit “ii” with the type “advcl_kara.”

129jpn.

“Ano onna-no hanashi-ga hontou-no hazu-ga nai, itsumo

That woman-postp story-postp true-postp case-postp neg, always

uso-bakari tsui-te-iru hito-dakara.”

lie-postp tell-progressive-present person-postp

“What she says can’t be true, because she’s always telling lies.”

The three syntactic units “hontouno,” “hazuga,” and “nai” are incorrectly parsed to be one

527

syntactic unit. The unit “hontouno” depends on “hazuga” with the type “postp_no,” “hazuga”

depends on “nai” with the type “postp_ga,” and “nai” is the root of the sentence. Because of

these corrections, the syntactic unit “hanashiga” must depend on “hontouno” with the type

“postp_ga.”

The syntactic unit “hitodakara” is incorrectly parsed to depend on “hontounohazuganai” with

the type “advcl.” The correct parse is that it depends on “nai” with the type “advcl_kara.”

135jpn.

“Watashi-ga rusu-no aida, wasure-zu mikka-goto-ni

I-postp away-postp during, forget-neg three.days-each-postp

kingyo-ni esa-wo yat-te choudai-ne.”

goldfish-postp feed-postp give-infl imp.polite-end

“Please remember to feed the goldfish every three days when I am away.”

The syntactic unit “aida” is incorrectly parsed to depend on “choudaine.” The correct parse

is that it depends on “yatte.”

The syntactic unit “wasurezu” is incorrectly parsed to depend on “choudaine” with an

incorrect type “dep.” The correct parse is that it depends on “yatte” with the type “advcl.”

The syntactic unit “mikkagotoni” is incorrectly parsed to depend on “choudaine.” The

correct parse is that it depends on “yatte.”

136jpn.

“Gaikoku-ryokou-no tabi-ni, wakai koro motto eigo-wo

Foreign.countries.trip-postp time-postp, young age more English-postp

benkyou-sure-ba yokat-ta-to koukai-suru.”

study-do-infl good-past-ccomp regret-do.present

528

“Every time I travel abroad, I regret not studying English harder when I was young.”

The syntactic unit “tabini” is incorrectly parsed to depend on “benkyousurebayokattato.”

The correct parse is that it depends on “koukaisuru.”

The two syntactic units “benkyousureba” and “yokattato” are incorrectly parsed to be one

syntactic unit.

139jpn.

“Anata-wa osara-wo arai-sae-sure-ba ii-noyo.”

You-topic dish-postp wash-only-do-infl good-end

“All you have to do is wash the dishes.”

The syntactic unit “araisaesurebaiinoyo” must be segmented into two syntactic units

“araisaesureba” and “iinoyo.” The unit “araisaesureba” depends on “iinoyo.”

145jpn.

“Watashi-wa sono bin-ni noriokure-nai-you-ni kuukou-e

I-topic the flight-postp miss-neg-so.that-postp airport-postp

isoi-da-nodesu-ga, ososugi-mashi-ta.”

hurry-past-end-postp, too.late-polite-past

“I hurried to the airport so as not to miss the flight, but it was too late.”

The syntactic unit “noriokurenaiyouni” is correctly parsed to depend on “isoidanodesuga,”

yet with an incorrect type “dep.” The correct parse is “advcl_youni.”

146jpn.

“Kaze-wo hika-nai-you-ni ki-wo tsuke-nasai, raishuu-wa

Cold-postp catch-neg-so.that-postp care-postp take-int.polite, next.week-topic

529

shuushoku-no mensetsu-nandakara.”

getting.job-postp interview-end

“Be careful not to catch a cold because you have a job interview next week.”

The syntactic unit “hikanaiyouni” is correctly parsed to depend on “tsukenasai,” but with an

incorrect type “ccomp.” The correct type is “advcl_youni.”

The syntactic unit “tsukenasai” is incorrectly parsed to depend on “mensetsunandakara” with

an incorrect type “dep.” The correct parse is that it is the root of the sentence.

The syntactic unit “mensetsunandakara” is incorrectly parsed to be the root of the sentence.

The correct parse is that it depends on “tsukenasai” with the type “advcl_kara.”

149jpn.

“Sono hito-ga watashi-no chichioya-demo okashiku-nai nenrei-to

The person-postp I-postp father-focus strange-neg age-ccomp

kii-te, watashi-wa shokku-deshi-ta.”

hear-infl, I-topic shock-polite-past.

“I was shocked to hear that he was old enough to be my father.”

The syntactic unit “hitoga” is incorrectly parsed to depend on “kiite.” The correct parse is

that it depends on “chichioyademo.”

154jpn.

“Kono purinta-wa, shuuri-shi-nakute-wa ike-mase-n.”

This printer-postp, fix-do-neg-postp do-polite-neg

“This printer needs repairing.”

The syntactic unit “shuurishinakutewaikemasen” in the parsed output must be segmented

into two syntactic units “shuurishnakutewa” and “ikemasen,” and the former depends on the

530

latter with the type “advcl_tewa.”

156jpn.

“Kono eiga-wa hontou-ni meisaku-dakara, nando-mo

This movie-postp real-postp masterpiece-postp, many.times-focus

miru kachi-ga aru-to omou.”

Watch value-postp be-ccomp think.present

“This film is a real masterpiece; I think it’s worth watching many times.”

The syntactic unit “eigawa” is incorrectly parsed to depend on “aruto.” The correct parse

is that it depends on “meisakudakara.”

The syntactic unit “meisakudakara” is correctly parsed to depend on “aruto,” but with an

incorrect type “advcl.” The correct type is “advcl_kara.”

161jpn.

“Shibaraku at-tei-nakat-ta-node, tounin-da-to

For.a.long.time meet-perfect-neg-past-postp, the.person-be-ccomp

wakara-nakat-ta.”

recognize-neg-past

“Not having seen him for a long time, I failed to recognize him.”

The syntactic unit “tounindato” is correctly parsed to depend on “wakaranakatta,” but with

an incorrect type “advcl.” The correct type is “ccomp.”

164jpn.

“Manin-deshi-ta-kara, watashi-wa eiga-wo

Every.seat.was.taken-polite-past-postp, I-topic movie-postp

531

tachimi-shimashi-ta.”

watch.while.standing-do-past

“I watched the movie standing because every seat was taken.”

The syntactic unit “tachimishimashita” is incorrectly parsed to be two syntactic units. This

syntactic unit is the dependency head of all the other syntactic units.

168jpn.

“Me-wo toji-nagara-de-wa, massugu aruku koto-wa

Eye-postp close-with-postp-topic straight walk thing-topic

deki-nai-to omou.”

able-neg-postp think.present

“I don’t think you can walk in a straight line with you eyes closed.”

The syntactic units “aruku,” “koto-wa” and “deki-nai-to” are incorrectly parsed to be one

syntactic unit. The correct parse is that the unit “aruku” depends on “koto-wa” with the type

“rcmod,” the unit “koto-wa” depends on “deki-nai-to” with the type “topic,” and the unit

“deki-nai-to” depends on “omou” with the type “ccomp.”

169jpn.

“Sakuya-wa hidoku atsukat-ta-node, eakon-wo tsuke-ta-mama

Last.night-topic terribly hot-past-postp, air.conditioner-postp turn.on-past-postp

nema-shi-ta.”

sleep-polite-past

“It was so hot last night that I slept with the air-conditioner on.”

The syntactic unit “tsuketamama” is correctly parsed to depend on “nemashita,” but with an

incorrect type “dep.” The correct type is “advcl_mama.”

532

173jpn.

“Amari chikayora-nai-de, watashi-no kaze-ga utsuru-wayo.”

Too come.close-neg-imp, I-postp cold-postp catch-end

“Don’t come too close, or you’ll catch my cold.”

The syntactic unit “chikayoranaide” is correctly parsed to depend on “utsuruwayo,” but with

an incorrect type “dep;” The correct type is “advcl.”

174jpn.

“Watashi-wa tsukarete-iru toki-wa dekakeru kini-wa

I-topic be.tired-present time-focus go.out feeling-focus

nare-nai.”

become-neg

“I can’t bring myself to go out when tired.”

The syntactic unit “watashiwa” is incorrectly parsed to depend on “dekakeru.” The correct

parse is that it depends on “narenai.”

178jpn.

“Watashi-wa ano hito-ga kimei-suru-no-wo miru-made,

I-topic that person-postp sign-do-that-postp see-postp,

hidarikiki-ni kizuka-nakat-ta.”

left.handed-postp realize-neg-past

“I hadn’t realized he was left-handed until I saw him sign his name.”

The syntactic unit “hitoga” is incorrectly parsed to depend on “mirumade.” The correct

parse is that it depends on “kimeisuru.”

533

179jpn.

“Yuubinkyoku-wa, kimi-ga tsuku-madeni-wa shimatte-iru-darou.”

Post.office-topic, you-postp arrive-postp-focus close-perfect-end

“The post office will have already closed by the time you get there”

The syntactic unit “yuubinkyokuwa” is incorrectly parsed to depend on “tsukumadeniha.”

The correct parse is that it depends on “shimatteirudarou.”

180jpn.

“Teokure-ni nara-nai uchi-ni, isha-ni mite-morau

Too.late-postp become-neg before-postp, doctor-postp see-receive.present

hou-ga ii.”

side-postp good

“You should see your doctor before it is too late.”

The syntactic units “teokureni” and “naranai” are incorrectly parsed to be one syntactic unit

“teokureninaranai.”

The syntactic unit “uchini” is incorrectly parsed to depend on “ii.” The correct parse is that

it depends on “mitemorau.”

181jpn.

“Ano ko-wa kesa mata chikoku-shi-mashi-ta.”

That child-topic this.morning again be.late-do-polite-past

“He was late again this morning.”

The syntactic unit in the parsed output “kesamata” must be segmented into two syntactic

units: “kesa” and “mata.” These units depend on “chikokushimashita” with the type “advmod.”

534

184jpn.

“Ano kata-wa uchi-ni ko-rareru toki-wa kanarazu,

That person-topic house-postp come-honorific time-focus every.time,

musume-no tame-ni omiyage-wo jisan-nasaimasu.”

daughter-postp sake-postp souvenir-postp bring-honorific

“Every time he visits us, he brings some present for our daughter.”

The syntactic unit “uchini” is incorrectly parsed to depend on “jisannasaimasu.” The

correct parse is such that it depends on “korareru.”

186jpn.

“Ima-wa kodomotachi-mo ookiku natta-kara, watashitachi-wa nandemo

Now-topic children-focus grown become-postp, we-topic anything

sukina koto-ga deki-ru.”

like thing-postp able-present

“Now that our children are grown up, we can do anything we like.”

The syntactic unit “sukinakotogadekiru” in the parsed output must be segmented into three

units: “sukina” “kotoga” and “dekiru.” The unit “sukina” depends on “kotoga” with the type

“amod;” the unit “kotoga” depends on “dekiru” with the type “postp;” the unit “dekiru” is the

root of the sentence.

189jpn.

“Kankyou-ni junnou-shi-nai kagiri, ikinobi-ru koto-ga

Environment-postp adjustment-do-neg unless, survive-present thing-postp

deki-ru doubutsu-wa i-nai.”

able-present animal-focus be-neg.

535

“No animal can survive unless it adjusts to its environment.”

The syntactic unit “ikinobirukotogadekiru” in the parse unit must be segmented into three

units: “ikinobiru,” “kotoga,” and “dekiru.” The unit “ikinobiru” depends on “kotoga” with the

type “rcmod;” the unit “kotoga” depends on “dekiru” with the type “postp;” the unit “dekiru” is

the root of the sentence.

194jpn.

“Uchi-ni-wa okane-ga nai-noda-kara, kuruma-wo kaikae-ru

Home-postp-topic money-postp neg-aux-postp, car-postp buy-present

koto-wa deki-nai.”

thing-postp able-neg

“Since we don’t have enough money, we can’t buy a new car.”

The syntactic unit “kaikaerukotowadekinai” in the parsed output must be segmented into

three syntactic units: “kaikaeru,” “kotowa,” and “dekinai.” The unit “kaikaeru” depends on

“kotoga” with the type “rcmod;” the unit “kotoga” depends on “dekinai” with the type “postp;”

the unit “dekinai” is the root of the sentence.

196jpn.

“Mazushii-to iu-dake-de hito-wo mikudasu koto-ga nai

Poor-ccomp say-focus-postp person-postp look.down.upon thing-postp neg

you-ni shi-nasai.”

so.that-postp do-imp.polite

“Don’t look down upon a person just because he or she is poor.”

The syntactic unit “mikudasukotoganaiyounishinasai” in the parsed output must be

segmented into five syntactic units: “mikudasu,” “kotoga,” “nai,” “youni,” and “shinasai.” The

unit “mikudasu” depends on “kotoga” with the type “rcmod;” the unit “kotoga” depends on “nai”

536

with the type “postp_ga;” the unit “nai” depends on “youni” with the type “rcmod;” the unit

“youni” depends on “shinasai” with the type “postp_ni.”

197jpn.

“Asa motto hayaku-kara benkyo-dekiru you-ni, goji-ni

Morning much earlier-postp study-able so.that-postp, five.o’clock-postp

mezamashi-wo setto-shi-mashi-ta.”

alarm-postp set-do-polite-past

“I set the alarm for five in the morning so that I could study earlier.”

The syntactic unit “hayakukarabenkyoudekiruyouni” in the parsed output must be

segmented into three syntactic units: “hayakukara,” “benkyoudekiru,” and “youni.” The unit

“hayakukara” depends on “benkyoudekiru” with the type “postp_kara;” the unit “benkyoudekiru”

depends on “youni” with the type “rcmod;” the unit “youni” depends on “settoshimashita” with

the type “postp_ni.”

198jpn.

“Nureru-to ikenai-kara reinkooto-wo ki-nasai.”

Get.wet-postp bad-postp raincoat-postp wear-imp

“Wear your raincoat so that you won’t get wet.”

The syntactic unit “nurerutoikenaikara” in the parsed output must be segmented into

“nureruto” and “ikenaikara.” The unit “nureroto” depends on “ikenaikara” with the type

“advcl.”

199jpn.

“Tochu-de onaka-ga suku-to ikenai-kara, kono

537

On.the.way-postp belly-postp empty-postp bad-postp, this

sandouicchi-wo motte-itte-kudasai.”

sandwiches-postp bring-go-imp.polite

“Take these sandwiches with you in case you get hungry on the way.”

The syntactic unit “sukutoikenaikara” in the parsed output must be segmented into two

syntactic units “sukuto” and “ikenaikara.”

200jpn.

“Tachigiki-sareru-to ikenai-kara, watashi-wa koe-wo

Overhear-passive-postp bad-postp, I-topic voice-postp

hikuku-shi-mashi-ta.”

lower-do-polite-past

“I lowered my voice for fear I might be overheard.”

The syntactic unit “tachigikisarerutoikenaikara” in the parsed output must be segmented into

two syntactic units “tachigikisareruto” and “ikenaikara.” The unit “tachigikisareruto” depends

on “ikenaikara” with the type “advcl.”

201jpn.

“Kono koohii-wa kosugi-te, shoujiki watashi-ni-wa nome-nai.”

This coffee-topic too.strong-postp, honestly I-postp-focus drink-neg

“This coffee is so strong that I really can’t drink it.”

The syntactic unit “shoujikiwatashiniwa” in the parsed output must be segmented into two

syntactic units “shoujiki” and “watashiniwa.” The unit “shoujiki” depends on “nomenai” with

the type “advmod.”

538

207jpn.

“Ano hito-no koto-wa, mukashi puro-no

That person-postp thing-topic, past professional-postp

kashu-datta koto-igai-wa nanimo shiri-mase-n.”

singer-past thing-else-focus nothing know-polite-neg

“I know nothing about him except that he used to be a professional singer.”

The syntactic unit “mukashi” is incorrectly parsed to depend on “shirimasen.” The correct

parse is that it depends on “kashudatta.”

209jpn.

“Kyujo-tai-ga buji seikan-suru mikomi-wa hotondo nakatta.”

Rescue-party-postp safe come.back-do hope-topic almost neg.past

“There was little hope that the rescue party would come back safe and sound.”

The syntactic unit “bujiseikansuru” in the parsed output must be segmented into two

syntactic units “buji” and “seikansuru.” The unit “buji” depends on “seikansuru” with the type

“advmod.”

212jpn.

“Ame-no naka-de mata-sare-tsudukeru koto-ga donna

Rain-postp in-postp wait-passive-keep thing-postp how

koto-ka, souzou-shite-mite-hoshii.”

thing-int imagine-do-try-want

“Imagine what it is like to be kept waiting in the rain.”

The syntactic unit “nakade” is incorrectly parsed to depend on “souzousitemitehoshii.”

The correct parse is that it depends on “matasaretsuzukeru.”

539

221jpn.

“Watashi-wa motto kaiteki-na ie-ni hikkoseru hi-ga

I-topic more comfortable-postp house-postp move day-postp

kure-ba ii-to omou.”

come-infl good-postp think

“I hope the day will come when we can move into a more comfortable house.”

The syntactic units “hik” and “koseru” in the parsed output must be one syntactic unit

“hikkoseru.”

The syntactic unit “ieni” in the parsed output incorrectly depends on “hik.” The correct

parse is that it depends on “hikkoseru” with the type “postp.”

The syntactic unit “kurebaiito” in the parsed output must be segmented into two syntactic

units: “kureba” and “iito.” The unit “kureba” depends on “iito” with the type “advcl.”

231jpn.

“Ano hito-wa, yara-nakute-wa ikenai koto-wo yara-zu-ni

That person-topic, do-neg-focus bad thing-postp do-neg-postp

iru koto-ga ooi.”

be.present thing-postp often

“He often leaves undone what he ought to do.”

The syntactic unit “yaranakutewaikenai” in the parsed output must be segmented into

“yaranakutewa” and “ikenai.” The unit “yaranakutewa” depends on “ikenai” with the type

“topic.”

The syntactic unit “yarazuni” is incorrectly parsed to depend on “ooi.” The correct parse is

that it depends on “iru” with the type “advcl_ni.”

540

245jpn.

“Hillary-wa shinki-saiyou-shita hoka-no dare-yori-mo

Hillary-topic newly-hire-past other-postp anyone-more-focus

seiryoku-teki-desu.”

energetic-suf-polite.present

“Hillary is more energetic than any other newly hired employee.”

The syntactic unit “shinkisaiyoushita” is incorrectly parsed to depend on “hokano.” The

correct parse is that it depends on “dareyorimo.”

253jpn.

“Fudan chichi-wa, hitsuyou-gaku-wo koeru o-kane-wo

Usually father-topic, need-amount-postp surpass prefix-money-postp

mochiaruki-mase-n.”

carry-polite-neg

“My father usually does not carry more money than he needs.”

The syntactic unit “fudanchichiwa” in the parsed output must be segmented into two

syntactic units “fudan” and “chichiwa.” Both units depend on “mochiarukimasen.” The type

of the former is “advmod,” and the type of the latter is “topic.”

254jpn.

“Watashi-wa, konnani oishii orenji-juusu-wo nonda

I-topic, such delicious orange-juice-postp drink.past

koto-ga ari-mase-n.”

thing-postp be-polite-neg

“This is the most delicious orange juice I have ever drunk.”

541

The syntactic unit “nondakotogaarimasen” in the parsed output must be segmented into

three syntactic units “nonda”, “kotoga”, and “arimasen.” The unit “nonda” depends on “kotoga”

with the type “rcmod;” the unit “kotoga” depends on “arimasen” with the type “postp_ga;” the

unit “arimasen” is the root of the sentence.

255jpn.

“Sore-wa watashitachi-ni-totte gojuu-nen-buri-no oo-jishin-deshi-ta.”

That-topic we-postp-postp 50-year-in-postp big-earthquake-polite-past

“That was the biggest earthquake we had had in the past fifty years.”

The syntactic unit “watashitachinitotte” is incorrectly segmented into two syntactic units

“watashitachini” and “totte.”

260jpn.

“Watashi-wa ano hito-ni hanashi-kake-mosi-nakat-ta-nodesu,

I-topic that person-postp speak-to-focus do-neg-past-polite,

mashiteya sono koto-wo hanashiau koto-ga nakat-ta-no-wa

even the thing-postp talk.over thing-postp neg-past-no-topic

mochiron-desu.”

matter.of.fact-polite.present

“I didn’t even speak to him, much less talk it over with him.”

The syntactic units “hanashikakemo” and “shinakattanodesu” are incorrectly parsed to be

one single syntactic unit, which is incorrectly parsed to depend on “mashiteya.” The correct

parse is that “hanashikakemo” depends on “shinakattanodesu” with the type “focus”, and

“shinakattanodesu” is the root of the sentence.

The syntactic units “hanashiau”, “kotoga” and “nakattanowa” are incorrectly parsed to be

542

one single syntactic unit. The unit “hanashiau” depends on “kotoga” with the type “rcmod”,

“kotoga” depends on “nakattanowa” with the type “postp_ga”, and “nakattanowa” depends on

“mochirondesu” with the type “topic.”

263jpn.

“Kanja-wa, kusuri-wo nonda kai-mo naku,

Patient-topic, medicine-postp take.past effect-focus neg,

sukoshimo yoku-nara-nakatta.”

at.all better-get-neg.past

“The patient was none the better for taking the medicine.”

The syntactic unit “kanjawa” is incorrectly parsed to depend on “naku.” The correct parse

is that it depends on “yokunaranakatta.”

265jpn.

“Tashikani ai-wa taisetsudearu-ga, o-kane-mo sore-ni

For.sure love-topic important-postp, prefix-money-focus it-postp

otora-zu taisetsudearu.”

less-neg important

“It is true that love is important, but still, money is no less important.”

The syntactic unit “otorazu” is correctly parsed to depend on “taisetsudearu”, but with an

incorrect type “dep.” The correct type is “advcl.”

270jpn.

“Sekai isshu-no funatabi-ni-wa, bakudaina o-kane-ga

World around-postp ship.travel-postp-topic, a.huge.sume prefix-money-postp

543

kakaru.”

cost.present

“It costs a huge sum of money to travel around the world by ship.”

The syntactic unit “sekai” is correctly parsed to depend on “isshuu”, but with an incorrect

type “dep.” The correct type is “nn.”

300jpn.

“watashi-ni-wa, sono otoko-ga doko-no dare-nanoka-mo sumai-ga

I-postp-topic, the person-postp where-postp who-int-focus house-postp

doko-nanoka-mo wakari-mase-n.”

where-int-focus know-polite-neg

“I don’t know who or what he is, or where he lives.”

The syntactic unit “dokonanokamowakarimasen” in the parsed output should be segmented

into two units “dokonanokamo” and “wakarimasen.” The unit “dokonanokamo” depends on

“wakarimasen” with the type “focus.”

304jpn.

“Nietagiru o-yu-wa nome-nai, sonna koto-wo

Boiling prefix-hot.water-topic drink-neg, such thing-postp

shi-tara yakedo-suru.”

do-conditional burn-do.present

“You cannot drink boiling water; if you do, you will burn yourself.”

The syntactic unit “oyuwa” is incorrectly parsed to depend on “yakedosuru.” The correct

parse is that it depends on “nomenai.”

The syntactic unit “nomenai” is incorrectly parsed to depend on “kotowo” with an incorrect

544

type “rcmod.” The correct parse is that it is a root of the sentence.

308jpn.

“Imoto-wa, saakasu-de miru-made zou-wo mi-ta

Younger.sister-topic, circus-postp see-postp elephant-postp see-past

koto-ga nakattanodesu.”

thing-postp neg.polite

“My sister had never seen an elephant until she saw one at the circus.”

The syntactic unit “mitakotoganakattanodesu” in the parsed output should be segmented into

two syntactic units “mita”, “kotoga” and “nakattanodesu.” The unit “mita” depends on “kotoga”

with the type “rcmod.” The unit “kotoga” depends on “nakattanodesu” with the type

“postp_ga.” The unit “nakattanodesu” is the root of the sentence.

312jpn.

“Watashi-ga oshie-te-iru seito-ni-wa, suugaku-ga suki-na

I-postp teach-progressive-present student-postp-topic, math-postp like

mono-mo ireba, soudenai mono-mo iru.”

one-focus be, not.so one-focus be.

“Some of my students like math, and others don’t”

The syntactic unit “soudenai” is correctly parsed to depend on “monomo”, but with an

incorrect type “dep.” The correct type is “rcmod.”

319jpn

“Watashi-ga kanyuu-shite-iru kurabu-no gen-kaiin-wa,

I-postp belong-do-present club-postp prefix-member-topic,

545

subete dansei-desu.”

all male-polite.present

“The present members of the club I belong to are all men.”

The syntactic unit “watashiga” is incorrectly parsed to depend on “danseidesu.” The

correct parse is that it depends on “kanyushiteiru.”

321jpn.

“Watashitachi-wa, seito-ga nan-nin-ka kure-ba ii-to

We-topic, student-postp some-people-int come-infl good

omot-ta-ga, jissaiwa hitori-mo ko-nakat-ta.”

think-past-postp, actually one-focus come-neg-past

“We had hoped some students would come, but actually, none did.”

The syntactic unit “watashiatchiwa” is incorrectly parsed to depend on “konakatta.” The

correct parse is that it depends on “omottaga.”

The syntactic unit “kurebaiito” in the parsed output must be segmented into “kureba” and

“iito.” The unit “kureba” depends on “iito” with the type “advcl.” The unit “iito” depends on

“omottaga” with the type “ccomp.”

323jpn

“Ano komedi-wa omosiroku-nai-dokoroka, sukoshimo okashiku-nai.”

That comedy-postp amusing-neg-postp, at.all funny-neg

“That comedy isn't amusing; in fact, it's anything but funny.”

The syntactic unit “omoshirokunaidokoroka” is correctly parsed to depend on “okashikunai”,

but with an incorrect type “dep.” The correct type is “advcl_dokoroka.”

546

337jpn

“Jikan-ga amari nakat-ta-node, watashi-wa choushoku-wo

Time-postp much neg-past-postp, I-topic breakfast-postp

tabe-nai-de ie-wo de-mashi-ta.”

eat-neg-postp house-postp leave-polite-past

“I left home without having breakfast because I didn't have much time.”

The syntactic unit “tabenaide” is correctly parsed to depend on “demashita”, but with an

incorrect type “dep.” The correct type is “advcl_de.”

339jpn

“Sukoshi netsu-ga aru koto-wo betsu-ni sure-ba,

A.little fever-postp be.present thing-postp except-postp do-infl,

Tarou-no byouki-wa taishita koto-wa na-sasou-desu.”

Tarou-postp illness-topic very thing-focus neg-seem-polite.present

“Except for a slight fever, Taro doesn't seem to be very ill.”

The syntactic unit “betsunisureba” in the parsed output should be segmented into two units

“betsuni” and “sureba.” The unit “betsuni” depends on “sureba” with the type “postp_ni,” and

the unit “sureba” depends on “nasasoudesu” with the type “advcl_ba.”

547

Appendix IV: The Ruby script for converting Stanford Parser output into Pajek .net files

#! ruby -Ks

triple = File.read("#{ARGV[0]}")

folder = "#{ARGV[0]}".gsub(/¥.txt/,"")

if !File.exist?(folder)

Dir.mkdir(folder)

end

id = 0

all = Array.new(0)

triple.split(/¥n¥n/).each{|i|

vertices = ""

arcs = "*Arcs¥n"

outgoing = Array.new(0)

incoming = Array.new(0)

num = Array.new(0)

snt_id = 1

i.to_s.split(/¥n/).each{|j|

if j.to_s.match(/^[A-Za-z]+(_[A-Za-z]+)*¥(.+-/)

j.to_s.match(/^(.+?)¥((.+?)-([0-9]+),¥s(.+?)-([0-9]+)¥)$/)

if $3!=nil && $5!=nil

outgoing.push("#{$2}-#{$3.to_i+1}")

incoming.push("#{$4}-#{$5.to_i+1}")

vertices << "#{$5.to_i+1}¥s¥"#{$4}¥"¥n"

arcs <<

"#{$3.to_i+1}¥s#{$5.to_i+1}¥s1¥sl¥s¥"#{$1}¥"¥n"

last = $5.to_i

548

num.push("#{$3}".to_i)

num.push("#{$5}".to_i)

end

end

}

(outgoing.uniq -

incoming.uniq).to_s.match(/^(.+?)-([0-9]+)/)

if (outgoing.uniq - incoming.uniq).to_s=="ROOT-1"

vertices = "*Vertices¥s#{num.max+1}¥n#{$2}¥s¥"#{$1}¥"¥n"

+ vertices if num.max!=nil&&vertices!=nil

all.push(vertices+arcs)

else

vertices = "*Vertices¥s#{num.max+1}¥n#{$2}¥s¥"#{$1}¥"¥n"

+ vertices if num.max!=nil&&vertices!=nil

all.push(vertices+arcs)

puts "#{i}¥n¥n"

puts id

end

id += 1

}

index = 0

all.each{|a|

File.open("#{folder}/#{index}.net", "w"){|file|

file.puts(a.to_s)

}

index += 1

}

549

Appendix V: The Ruby script for converting KNP output into Stanford-Parser-style

typed-dependency triples

#! ruby -Ks

sentences = File.read("#{ARGV[0]}").split(/EOS/)

results=""

sentences.each{|a|

i = -1

units = Array.new(0)

a.to_s.split(/¥n¥*/).each{|b|

lex = ""

cs = ""

b.to_s.split(/¥n/).each{|c|

if c.to_s.match(/^¥s/)

elsif c.to_s.match(/^¥+/)

if c.to_s.index("格解析結果")

c.to_s.match(/格解析結果:(.+)/)

$1.to_s.match(/(ガ.+)/)

$1.to_s.split(/;/).each{|d|

cs << "#{d.to_s}|" if d.to_s.index(" ガ

/")||d.to_s.index("ヲ/")||d.to_s.index("ニ/")

}

end

elsif c.to_s.match(/^#/)

else

c.to_s.match(/(.+?)¥s/)

lex << "#{$1.to_s}|" if $1!=nil

end

550

}

puts "#{lex}¥s#{cs}"

prt = ""

typ=""

b.to_s.match(/^¥s(.*?)[D|P|A|I]/)

h = $1.to_i+1

if h==0

typ="root"

else

b.to_s.match(/(.+?)¥n/)

if $1.to_s.index("¥s<用言")||$1.to_s.index("否定表現><用言

")||$1.to_s.index("可能表現><用言")

if $1.to_s.index("<連体節")

if $1.to_s.index("用言:動")

typ="rcmod"

elsif $1.to_s.index("用言:形")

typ="amod"

else

typ="dep"

end

elsif $1.to_s.index("<連用節")

if $1.to_s.index("動詞連用")

typ="advcl"

else

t = $1.to_s

t.match(/ID:(.+?)>/)

if $1.to_s.index("（も）")

typ="advcl_ba"

551

elsif $1.to_s.index("ば")

typ="advcl_ba"

elsif $1.to_s.index("て（用言）")

typ="advcl_te"

elsif $1.to_s.index("ては")

typ="advcl_tewa"

elsif $1.to_s.index("くても")

typ="advcl_kutemo"

elsif $1.to_s.index("くて")

typ="advcl_kute"

elsif $1.to_s.index("ても")

typ="advcl_temo"

elsif $1.to_s.index("けれども")

typ="advcl_keredomo"

elsif $1.to_s.index("～が")

typ="advcl_ga"

elsif $1.to_s.index("～と")

typ="advcl_to"

elsif $1.to_s.index("～ので")

typ="advcl_node"

elsif $1.to_s.index("～から")

typ="advcl_kara"

elsif $1.to_s.index("～たら")

typ="advcl_tara"

elsif $1.to_s.index("～て")

typ="advcl_te"

elsif $1.to_s.index("～ながら")

typ="advcl_nagara"

552

elsif $1.to_s.index("～のだから")

typ="advcl_nodakara"

elsif $1.to_s.index("～であって")

typ="advcl_deatte"

elsif $1.to_s.index("～で")

typ="advcl_de"

elsif $1.to_s.index("～より")

typ="advcl_yori"

elsif $1.to_s.index("～まで")

typ="advcl_made"

elsif $1.to_s.index("～く")

typ="advcl_ku"

elsif $1.to_s.index("～に")

typ="advcl_ni"

elsif $1.to_s.index("～または")

typ="advcl_matawa"

elsif $1.to_s.index("～こうが")

typ="advcl_kouga"

else

typ="dep"

end

end

else

if $1.to_s.index("ト格")

typ="ccomp"

elsif $1.to_s.index("係:複合辞連用")

typ="postp_nituite_niyotte"

elsif $1.to_s.index("係:連用")

553

typ="advmod"

elsif $1.to_s.index("係:連体")

typ="rcmod"

elsif $1.to_s.index("ガ格")

typ="postp_ga"

elsif $1.to_s.index("ヲ格")

typ="postp_wo"

elsif $1.to_s.index("ニ格")

typ="postp_ni"

elsif $1.to_s.index("ノ格")

typ="postp_no"

elsif $1.to_s.index("デ格")

typ="postp_de"

elsif $1.to_s.index("カラ格")

typ="postp_kara"

elsif $1.to_s.index("ヨリ格")

typ="postp_yori"

elsif $1.to_s.index("ト格")

typ="postp_to"

elsif $1.to_s.index("ヘ格")

typ="postp_he"

elsif $1.to_s.index("無格")

typ="advmod"

elsif $1.to_s.index("未格")

if b.to_s.index("は 助詞")

typ = "topic"

else

typ = "focus"

554

end

elsif $1.to_s.index("隣")

typ="dep"

elsif $1.to_s.index("連体:ヤ")

typ="conj"

elsif $1.to_s.index("同格連体")

typ="appos"

elsif $1.to_s.index("連体")

typ="advmod"

elsif $1.to_s.index("NONE")

typ="advmod"

else

typ="dep"

end

end

elsif $1.to_s.index("¥s<体言")||$1.to_s.index("否定表現><体

言")||$1.to_s.index("可能表現><体言")

if $1.to_s.index("<用言:判>")

if $1.to_s.index("ト格")

typ="ccomp"

elsif $1.to_s.index("連用")

typ="advcl"

elsif $1.to_s.index("連体")

typ="rcmod"

else

typ="focus"

end

elsif $1.to_s.index("<係:連用>")

555

typ="advmod"

else

if $1.to_s.index("ガ格")

typ="postp_ga"

elsif $1.to_s.index("ヲ格")

typ="postp_wo"

elsif $1.to_s.index("ニ格")

typ="postp_ni"

elsif $1.to_s.index("ノ格")

typ="postp_no"

elsif $1.to_s.index("デ格")

typ="postp_de"

elsif $1.to_s.index("カラ格")

typ="postp_kara"

elsif $1.to_s.index("ヨリ格")

typ="postp_yori"

elsif $1.to_s.index("ト格")

typ="postp_to"

elsif $1.to_s.index("ヘ格")

typ="postp_he"

elsif $1.to_s.index("無格")

typ="advmod"

elsif $1.to_s.index("未格")

if b.to_s.index("は 助詞")

typ = "topic"

else

typ = "focus"

end

556

elsif $1.to_s.index("隣")

typ="dep"

elsif $1.to_s.index("連体:ヤ")

typ="conj"

elsif $1.to_s.index("同格連体")

typ="appos"

elsif $1.to_s.index("連体")

typ="advmod"

else

typ="dep"

end

end

else

if $1.to_s.index("連体")

typ="det"

else

typ="advmod"

end

end

end

i+=1

units.push("#{typ}¥s#{h}¥s#{lex}-#{i}") if lex!=""

}

triple=""

units.each{|a|

puts a

h = ""

a.to_s.match(/(.+?)¥s(.+?)¥s(.+)/)

557

typ=$1.to_s

hnum=$2.to_s

tail=$3.to_s

if typ!="root"

units.each{|b|

b.to_s.match(/(.+?)¥s(.+?)¥s(.+)/)

h=$3.to_s

h.match(/-(.*)/)

if $1.to_s==hnum

results << "#{typ}(#{h},¥s#{tail})¥n"

end

}

else

results << "root(ROOT-0,¥s#{tail})¥n"

end

}

results << "¥n"

}

File.open("#{ARGV[1]}", "w"){|file|

file.puts("#{results}")

}

558

Appendix VI: The Ruby script for calculating the precision, recall, and f-score of each

dependency type

require "find"

before = Hash.new(0)

Find.find(File.expand_path("F:/data/Basic300_2012/NetKNPConjFixK

NP")){|path|

next unless File.file?(path)

path.to_s.match(/([0-9]+)eng¥.net/)

id = $1.to_s if $1!=nil

net = File.read(path)

before.store(id, net.split(/¥*Arcs/)[1])

}

after = Hash.new(0)

Find.find(File.expand_path("F:/data/Basic300_2012/Fixed")){|path

|

next unless File.file?(path)

path.to_s.match(/([0-9]+)eng¥.net/)

id = $1.to_s if $1!=nil

net = File.read(path)

after.store(id, net.split(/¥*Arcs/)[1])

}

wrongType = Hash.new(0)

failedType = Hash.new(0)

correctType = Hash.new(0)

559

list="id¥tbefore¥tafter¥n"

listc="id¥tbefore¥tafter¥n"

num=0.0

num2=0.0

before.each{|k1,v1|

if k1!=nil

tails1=Hash.new(0)

tails2=Hash.new(0)

v1.each{|a|

a.to_s.match(/^[0-9]+¥s([0-9]+)¥s/)

if $1!=nil

tails1.store($1.to_s, a.to_s)

end

}

after[k1].each{|b|

b.to_s.match(/^[0-9]+¥s([0-9]+)¥s/)

if $1!=nil

tails2.store($1.to_s, b.to_s)

num+=1

end

}

tails1.each{|k2,v2|

if !tails2.include?(k2)

list<<"#{k1}¥t#{v2.gsub(/¥n/,"")}¥tnone¥n"

elsif v2!=tails2[k2]

list<<"#{k1}¥t#{v2.gsub(/¥n/,"")}¥t#{tails2[k2].gsub(/¥n/,"")}¥n

"

560

else

listc<<"#{k1}¥t#{v2.gsub(/¥n/,"")}¥t#{tails2[k2].gsub(/¥n/,"")}¥

n"

end

}

tails2.each{|k3,v3|

if !tails1.include?(k3)

list<<"#{k1}¥tnone¥t#{tails2[k3].gsub(/¥n/,"")}¥n"

end

}

end

}

listNew=""

list.each{|a|

if a!=nil

listNew<<"#{a.to_s.gsub(/¥n/,"¥t")}"

a.to_s.match(/^[0-9]+¥t(.+)¥t(.+)/)

before = $1.to_s

after = $2.to_s

before.match(/^(.+)(".+")/)

bnum=$1

btyp=$2

after.match(/^(.+)(".+")/)

anum=$1

atyp=$2

561

puts atyp

if !wrongType.include?(btyp)

wrongType.store(btyp, 1)

else

i=wrongType[btyp]+1

wrongType.store(btyp,i)

end

if !failedType.include?(atyp)

failedType.store(atyp,1)

else

i=failedType[atyp]+1

failedType.store(atyp,i)

end

if btyp!=atyp

if bnum!=anum

listNew<<"wt,wr"

else

listNew<<"wt"

end

else

listNew<<"wr"

end

listNew<<"¥n"

end

}

File.open("F:/data/Basic300_2012/wrongRelType.txt", "w"){|file|

file.puts(listNew)

562

}

listc.each{|a|

if a!=nil

a.to_s.match(/(".+?")/)

if !correctType.include?($1)

correctType.store($1,1)

else

i=correctType[$1]+1

correctType.store($1,i)

end

end

}

precrec="type¥tcorrect¥tincorrect¥tfailed¥tP¥tR¥tF¥n"

correctType.each{|k,v|

precision=v.to_f/(v.to_f+wrongType[k].to_f)

recall=v.to_f/(v.to_f+failedType[k].to_f)

fscore=2*precision*recall/(precision+recall)

precrec<<"#{k}¥t#{v}¥t#{wrongType[k]}¥t#{failedType[k]}¥t#{preci

sion}¥t#{recall}¥t#{fscore}¥n" if k!=nil

}

failedType.each{|k,v|

if !correctType.include?(k)

precrec<<"#{k}¥t0¥t#{wrongType[k]}¥t#{failedType[k]}¥t0¥t0¥t0¥n"

end

}

563

File.open("F:/data/Basic300_2012/depTypePrecRecNew.txt",

"w"){|file|

file.puts(precrec)

}

564

Appendix VII: The Ruby script for calculating the degree centrality, the closeness

centrality, and the average dependency distance from the Pajek-style .net files of the

typed-dependency trees

require "find"

folder = "#{ARGV[0]}".gsub(/¥.stp/,"")

if !File.exist?(folder)

Dir.mkdir(folder)

end

class Array

#http://d.hatena.ne.jp/sesejun/20070502/p1

def sum_with_number

s = 0.0

n = 0

self.each do |v|

next if v.nil?

s += v.to_f

n += 1

end

[s, n]

end

def sum

s, n = self.sum_with_number

s

end

def avg

565

s, n = self.sum_with_number

s / n

end

alias mean avg

def var

c = 0

while self[c].nil?

c += 1

end

mean = self[c].to_f

sum = 0.0

n = 1

(c+1).upto(self.size-1) do |i|

next if self[i].nil?

sweep = n.to_f / (n + 1.0)

delta = self[i].to_f - mean

sum += delta * delta * sweep

mean += delta / (n + 1.0)

n += 1

end

sum / n.to_f

end

def stddev

Math.sqrt(self.var)

end

566

def corrcoef(y)

raise "Invalid Argument Array Size" unless self.size == y.size

sum_sq_x = 0.0

sum_sq_y = 0.0

sum_coproduct = 0.0

c = 0

while self[c].nil? || y[c].nil?

c += 1

end

mean_x = self[c].to_f

mean_y = y[c].to_f

n = 1

(c+1).upto(self.size-1) do |i|

next if self[i].nil? || y[i].nil?

sweep = n.to_f / (n + 1.0)

delta_x = self[i].to_f - mean_x

delta_y = y[i].to_f - mean_y

sum_sq_x += delta_x * delta_x * sweep

sum_sq_y += delta_y * delta_y * sweep

sum_coproduct += delta_x * delta_y * sweep

mean_x += delta_x / (n + 1.0)

mean_y += delta_y / (n + 1.0)

n += 1

end

pop_sd_x = Math.sqrt(sum_sq_x / n.to_f)

pop_sd_y = Math.sqrt(sum_sq_y / n.to_f)

cov_x_y = sum_coproduct / n.to_f

cov_x_y / (pop_sd_x * pop_sd_y)

567

end

end

class Degree

def initialize(net)

@net = net

@num = 0

end

def numget

i=0

@net.split(/¥*Arcs/)[0].split(/¥n/).each{|a|

i+=1

}

@num = i-1

return @num

end

def set

v = Hash.new(0)

@net.split(/¥*Arcs/)[1].split(/¥n/).each{|a|

a.to_s.match(/^([0-9]+)¥s([0-9]+)¥s/)

if $1!=nil

if v.include?($1.to_s)

i = v[$1.to_s]

v.store($1.to_s, i+1)

else

568

v.store($1.to_s, 1)

end

if v.include?($2.to_s)

i = v[$2.to_s]

v.store($2.to_s, i+1)

else

v.store($2.to_s, 1)

end

end

}

difSum=0.0

maxDegSum=0.0

maxDeg=v.max{|key,value|key[1]<=>value[1]}[1]

v.each{|key,value|

difSum+=maxDeg.to_f - value.to_f

}

return difSum / ((v.length-2)*(v.length-1)).to_f

end

end

class Closeness

def initialize(net)

@net = net

@num = 0

end

def set

@left = ""

569

@right = ""

@edges = @net.split(/¥*Arcs/)[1].split(/¥n/)

sum = 0.0

@edges.each{|a|

a.to_s.match(/^([0-9]+)¥s([0-9]+)¥s/)

@left = $1.to_s

@right = $2.to_s

i = 1

j = 1

begin

@edges.each{|b|

if b.to_s.match(/^[0-9]+¥s#{@left}¥s/)

b.to_s.match(/^([0-9]+)¥s#{@left}¥s/)

@left = $1.to_s

j += 1

else

next

end

}

i += 1

end while i < @edges.length + 1

sum += j

}

return @edges.length / sum

end

end

#the first argument：the path of the folder containing the parsed

570

output file named *.net

sntnum = 0

sntdg = 0.0

dccc = "¥tdc¥twc¥tcc¥twc¥n"

depDist="filename¥tedges¥taverage¥n"

eachDeptypeAll = "type¥toccurrence¥taverage¥tSD¥n"

all = Array.new(0)

id = 1

depType2 = Hash.new(0)

depType3 = Hash.new(0)

depTypeAll = Hash.new(0)

Find.find(File.expand_path("#{ARGV[0]}")){|path|

next unless File.file?(path)

d = Degree.new(File.read(path))

c = Closeness.new(File.read(path))

n = d.numget

i = d.set

j= c.set

dccc << "#{path.to_s}¥t#{i}¥t#{n}¥t#{j}¥t#{n}¥n"

edges = 0.0

sum = 0.0

File.read(path).split(/¥*Arcs/)[1].split(/¥n/).each{|a|

head = 0

tail = 0

a.to_s.match(/^([0-9]+)¥s([0-9]+)¥s1¥sl¥s¥"(.+)¥"/)

if $1!=nil&&$2!=nil&&$3!=nil

edges+=1

571

head=$1.to_f

tail=$2.to_f

type=$3.to_s

sum += (head-tail).abs

if j.to_f < 0.4

if !depType2.include?(type)

number = Array.new(0)

number.push((head - tail).abs)

depType2.store(type,number)

else

number = depType2[type].push((head - tail).abs)

depType2.store(type, number)

end

else

if !depType3.include?(type)

number = Array.new(0)

number.push((head - tail).abs)

depType3.store(type,number)

else

number = depType3[type].push((head - tail).abs)

depType3.store(type, number)

end

end

if !depTypeAll.include?(type)

number = Array.new(0)

number.push((head - tail).abs)

depTypeAll.store(type,number)

else

572

number = depTypeAll[type].push((head - tail).abs)

depTypeAll.store(type, number)

end

end

}

depDist << "#{path}¥t#{edges}¥t#{(sum / edges)}¥n"

}

#degree centralities and closeness centralities

File.open("#{folder}/DCCC.txt", "w"){|file|

file.puts("#{dccc}")

}

#average dependency distance

File.open("#{folder}/depDistance.txt", "w"){|file|

file.puts("#{depDist}")

}

depTypeAll.sort.each{|k, v|

eachDeptypeAll << "#{k}¥t#{v.length}¥t#{v.avg}¥t#{v.stddev}¥n"

}

File.open("#{folder}/depDistEachTypeAll.txt", "w"){|file|

file.puts("#{eachDeptypeAll}")

}

573

Appendix VIII: The degree centralities and closeness centralities in each section of MASC

500K

Blog section

Figure VIII.1. The distribution of sentences in the blog section (n=1524) in terms of their flatness

measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o
rd

co
u

n
ts

Flatness measures

sentences

574

Figure VIII.2. The distribution of sentences in the blog section (n=1524) in terms of their

embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o
rd

co
u

n
ts

embeddedness measures

sentences

575

Essay section

Figure VIII.3. The distribution of sentences in the essay section (n=1072) in terms of their

flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Flatness measures

sentences

576

Figure VIII.4. The distribution of sentences in the essay section (n=1072) in terms of their

embeddedness measures and word counts.

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o
rd

co
u

n
ts

Embeddedness measures

Sentence

577

Ficlets section

Figure VIII.5. The distribution of sentences in the Ficlet section (n=2645) in terms of their

flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o
rd

co
u

n
ts

Flatness measures

sentence

578

Figure VIII.6. The distribution of sentences in the Ficlet section (n=2645) in terms of their

embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o
rd

co
u

n
ts

Embeddedness measures

sentence

579

Fiction section

Figure VIII.7. The distribution of sentences in the Fiction section (n=2639) in terms of their

flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o
rd

co
u

n
ts

Flatness measures

sentences

580

Figure VIII.8. The distribution of sentences in the Fiction section (n=2639) in terms of their

embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Embeddedness measures

sentences

581

Government document section

Figure VIII.9. The distribution of sentences in the Government document section (n=1028) in

terms of their flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Flatness measures

sentences

582

Figure VIII.10. The distribution of sentences in the Government document section (n=1028) in

terms of their embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Embeddedness measures

sentences

583

Joke section

Figure VIII.11. The distribution of sentences in the Joke section (n=2254) in terms of their

flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Flatness measures

sentences

584

Figure VIII.12. The distribution of sentences in the Joke section (n=2254) in terms of their

embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Embeddedness measures

sentences

585

Journal section

Figure VIII. 13. The distribution of sentences in the Journal section (n=867) in terms of their

flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Flatness measures

sentences

586

Figure VIII.14. The distribution of sentences in the Journal section (n=867) in terms of their

embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Embeddedness measures

sentences

587

News section

Figure VIII.15. The distribution of sentences in the News section (n=1196) in terms of their

flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Flatness measure

sentences

588

Figure VIII.16. The distribution of sentences in the News section (n=1196) in terms of their

embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Embeddedness measures

系列1

589

Non-fiction section

Figure VIII.17. The distribution of sentences in the Non-Fiction section (n=1278) in terms of

their flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Flatness measure

sentences

590

Figure VIII.18. The distribution of sentences in the Non-Fiction section (n=1278) in terms of

their embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Embeddedness measures

sentences

591

Technical report section

Figure VIII.19. The distribution of sentences in the Technical report section (n=825) in terms of

their flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Flatness measures

sentences

592

Figure VIII.20. The distribution of sentences in the Technical report section (n=825) in terms of

their embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Embeddedness measures

sentences

593

Travel guide section

Figure VIII.21. The distribution of sentences in the Travel guide section (n=1196) in terms of

their flatness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Flatness measures

sentences

594

Figure VIII.22. The distribution of sentences in the Travel guide section (n=1196) in terms of

their embeddedness measures and word counts

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

W
o

rd
co

u
n

ts

Embeddedness measures

sentences

