
A Study on Computation Capability

of Biochemical Reactions

生化学反応による計算能力の研究

Fumiya Okubo

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy at Waseda University

November 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Waseda University Repository

https://core.ac.uk/display/286927316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Study on Computation Capability

of Biochemical Reactions

Fumiya Okubo

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy at Waseda University

November 2013

Abstract

The purpose of this dissertation is to explore the computation capability of bio-

chemical reactions. For this purpose, we investigate the computation model by

multiset rewriting and the one based on a structure of DNA molecules in terms of

formal language theory and computation theory. This thesis is organized by the

following three contents.

(i) We propose new computing models called reaction automata that feature lan-

guage acceptors with multiset rewriting as a computing mechanism. The notion

of reaction automata is based on the formal framework of reaction systems which

have been introduced by Ehrenfeucht and Rozenberg to investigate the interactive

behaviors of biochemical reactions. We show that reaction automata are compu-

tationally Turing universal. Further, some subclasses of reaction automata with

space complexity are investigated. Their language classes are compared to the

ones in the Chomsky hierarchy and the ones accepted by the variants of Turing

machines.

(ii) We introduce a new operation in formal language theory, called hairpin incom-

pletion, inspired by DNA hairpin structures which have numerous applications to

develop novel computing mechanisms in molecular computing. The hairpin in-

i

completion operation provides a formal language theoretic framework that mod-

els a bio-molecular technique nowadays known as Whiplash PCR. We show that

a family of languages closed under intersection with regular sets, concatenation

with regular sets, and finite union is closed under one-sided iterated hairpin in-

completion, and that a family of languages containing all linear languages and

closed under circular permutation, left derivative and substitution is also closed

under iterated hairpin incompletion.

(iii) Insertion and deletion operations have a rather old history in both formal

language theory. Recently, they have been drawing renewed attention in relation

to the theory of molecular computing. We shall provide the characterization of

context-free languages based on only insertion operations which are applied in

a context-free manner and have the small length of the inserted string involved.

Specifically, we show that each context-free language L can be represented in the

form L = h(L(γ) ∩ F+), where γ is an insertion system of weight (3, 0) (at most

three symbols are inserted in a context-free manner), h is a projection, and F+ is

a 2-star language. A similar characterization can be obtained for recursively enu-

merable languages, where insertion systems of weight (3, 3) and 2-star languages

are involved. All of these refine and improve the results by Păun et al.

ii

Acknowledgments
Foremost, I wish to express my heartfelt gratitude to my supervisor Professor

Takashi Yokomori. He gave me a valuable guidance and continued encourage-

ments through my scientific life in graduate course. All of the works in this thesis

as well as the others have been accomplished by his helpful advices, various sug-

gestions and discussions.

I also wish to gratefully thank to Professor Satoshi Kobayashi of University of

Electro-Communications, Professor Etsuro Moriya of Waseda University and Pro-

fessor Yasuhiro Suzuki of Nagoya University, who participated in the dissertation

committee. I have been blessed with the opportunity to collaborate with Professor

Kobayashi. The studies regarding “Reaction Automata” could not be achieved

without the fruitful discussions with him and his valuable comments. Professor

Moriya took an interest in my thesis and spared a great deal of his precious time.

He gave me valuable comments and encouragements. Professor Suzuki gave me

lots of interesting topics in the research field of natural computing. His wide

knowledge and novel ideas motivates me to research on this field.

I am also grateful to Dr. Kaoru Fujioka of Fukuoka Women’s University, who

gave me advices and encouragements about going to graduate school.

Finally, my special thanks go to my wife Yuri and my family Osamu, Yoshiko,

Miki, Miho for their physical and mental support and care, which kept my enthu-

siasm to the research.

iii

Contents

Abstract i

Acknowledgments iii

Contents iv

1 Introduction 1

1.1 Computational models of biochemical reactions 1

1.2 Classification of models of biochemical reactions 2

1.3 Organization of the dissertation 3

2 Preliminary 7

2.1 Formal language theory . 7

2.2 Multiset theory . 10

3 Reaction automata 12

3.1 Introduction . 12

3.2 Preliminaries . 14

3.2.1 Formal definition of reaction automata 14

3.2.2 Examples . 18

3.2.3 Restricted multistack machines 21

iv

3.2.4 Turing machines and variants 23

3.3 The computation power of reaction automata 24

3.3.1 The case of maximally parallel manner 24

3.3.2 The case of sequential manner 31

3.4 Space complexity issues . 37

3.4.1 Bounded reaction automata 37

3.4.2 The closure properties of LRAmp 38

3.4.3 The closure properties of LRAλmp 49

3.4.4 The hierarchy of language classes by reaction automata . . 59

3.5 Discussion . 65

4 Hairpin incompletion 68

4.1 Introduction . 69

4.2 Hairpin incompletion–A bounded variant of hairpin lengthening . 72

4.3 Main Results . 74

4.3.1 Non-iterated hairpin incompletion 74

4.3.2 Iterated one-sided hairpin incompletion 75

4.3.3 Iterated hairpin incompletion 82

4.4 Discussion . 88

5 Insertion systems 90

5.1 Introduction . 90

5.2 Preliminaries . 92

5.2.1 Insertion systems . 92

5.2.2 Strictly locally testable languages and star languages . . . 94

5.2.3 Labelled derivation trees of context-free grammars 95

v

5.3 Morphic characterizations of CF 98

5.4 A morphic characterization of RE 105

5.5 Discussion . 108

Bibliography 110

List of papers by Fumiya Okubo 116

vi

Chapter 1

Introduction

1.1 Computational models of biochemical reactions

In recent years, the study on computational models of biochemical reactions has

attracted much attention in the field of theoretical computer science. There are

two goals in exploring computational models of biochemical reactions. One is

to understand the way how biochemical reactions realize information processing.

“Chemical reactions” may be considered as information processing or computa-

tion which is performed by a transition of states in a solution. Regarding biochem-

ical reactions as the base of computing mechanism, it is possible to investigate

the properties of biochemical reactions from the point of view of computational

theory. The other is to develop a methodology for artificially synthesizing bio-

chemical reaction systems. In order to achieve a desired biochemical functioning,

a suitable model for such a system of biochemical reactions must be pursued.

Further, computer simulation may facilitate verification of the validity of the used

model.

1

1.2 Classification of models of biochemical reactions

In general, choosing an appropriate model is a critical factor to understand a nat-

ural phenomenon through investigation based on the model. Also, it is of great

importance to find the simplest among many models preserving the properties to

be examined. The methodologies for investigating models of biochemical reac-

tions are classified into three approaches as follows.

(1) Differential equation: When analyzing the process of chemical reactions, we

measure the concentration of each molecule in the solution. For the case in which

the number of molecules is enormous, it is approximated as a continuous quantity.

Hence, differential equations are readily applicable to describe the variation of the

concentration. The differential equation model for biochemical reactions has an

advantage in that the analytic problem of examining the behaviors of reactions can

be reduced to that of solving the corresponding differential equations.

(2) Multiset rewriting system: In the case where relatively small numbers of

molecules are involved in the reaction, it is appropriate to deal with the concentra-

tion of each molecule as a discrete quantity. In such a case, therefore, the notion

of a multiset is a suitable choice to represent the concentrations of molecules. A

multiset rewriting system is a discrete state transition system that models chemical

reactions in a natural way. For instance, vector addition systems and Petri nets,

well-studied in computer science, are categorized as multiset rewriting systems.

A model based on multiset rewriting system enables one to analyze the property

of a chemical reaction system in a constructive manner.

(3) Molecular computation: In contrast to the preceding two approaches where

each molecule is abstracted as a mere symbol, one can consider a formal model

2

which deals with structured molecules and utilizes the biochemical properties of

those structured molecules. A research area called“molecular computation”

aims at achieving the computation by making use of the biochemical properties of

well-designed structural molecules such as DNA polymers. The first achievement

was brought by the Adleman’s groundbreaking experiment in 1994. By encoding

a small instance of the Hamiltonian path problem (HPP), one of the NP-complete

problems, into the DNA strands, Adleman showed a novel method for solving

an HPP by biochemical techniques. In the experiment, in particular, the property

called“Watson-Crick complementarity”of DNA double strands plays a critical

role.

The present thesis is concerned with several research topics and will develop

formal models within these three approaches mentioned above.

1.3 Organization of the dissertation

The purpose of this dissertation is to explore the computation capability of bio-

chemical reactions. For this purpose, we consider the computation model by mul-

tiset rewriting in Chapter 3 and the one based on a structure of DNA in Chapter 4

and Chapter 5. We analyze them using formal language theory and computation

theory. This thesis is organized by the following chapters.

In Chapter 2, we prepare the basic notions and notations from formal language

theory and multiset theory.

In Chapter 3, we propose a novel computation model by multiset rewriting;

reaction automata. To construct a model for biochemical reactions, We refer re-

action systems which is a formal model introduced in [6] by Ehrenfeucht and

3

Rozenberg. Reaction systems, for investigating the functioning of the living cell,

are based on the idea that the functioning is decided by interactions between bio-

chemical reactions, where two basic components (reactants and inhibitors) play a

key role as a regulation mechanism in controlling interactions. Ehrenfeucht and

Rozenberg show, in [6], that reaction systems provide a formal framework suited

for investigating in an abstract level the way of emergence and evolution of bio-

chemical events and modules.

Inspired by the notion of reaction systems, reaction automata are introduced

as computing devices for accepting string languages. The notion of reaction au-

tomata is an extension of reaction systems in that reactions defined by triples con-

sisting of reactants, inhibitors, and products are employed in reaction automata,

however they deal with multisets for reactants and products (rather than usual sets

as reaction systems do). Another feature that distiguishes from reaction systems

is that a reaction automaton receives its input by feeding one symbol of an input

string at each step of computation. Thus, reaction automata are computing models

based on multiset rewriting that accept string languages.

The first result on reaction automata is that reaction automata are computation-

ally Turing universal, that is, a recursively enumerable language is accepted by a

reaction automaton. Space-bounded complexity classes of reaction automata have

been also introduced, and it is explored that a class of Turing machines having an

equivalent power of a class of reaction automata.

In Chapter 4, we introduce a new operation in formal language theory, called

hairpin incompletion, inspired by intra molecular phenomena in molecular biol-

ogy. DNA hairpin structures have numerous applications to develop novel com-

puting mechanisms in molecular computing.

4

A hairpin structure is well-known as one of the most popular secondary struc-

tures for a single stranded DNA (or RNA) molecule to form, with the help of

Watson-Crick complementarity and annealing, under a certain biochemical condi-

tion in a solution. The hairpin incompletion is related to the known investigations

on computation by a hairpin structure in the following points:

• the hairpin incompletion is a natural extension of the notion of bounded

hairpin completion introduced and studied in [15] which is a restricted vari-

ant of the hairpin completion with the property that the length of the prefix

(suffix) prolongation is constantly bounded.

• the hairpin incompletion is also regarded as a restricted variant of the notion

of hairpin lengthening recently introduced in [23] in which the prolongation

of a strand that allows to stop itself at any position in the process of com-

pleting a hairpin structure.

• the hairpin incompletion can provide a purely formal framework that mod-

els a bio-molecular technique called Whiplash PCR that has nowadays been

recognized as a promising experimental technique and has been proposed

in [13] by Hagiya et al.

We study the closure properties of language families under both the operation

and its iterated version. It is shown that any family of languages with certain clo-

sure properties is closed under the hairpin incompletion. We then consider the

case of applying the iterated hairpin incompletion operations, and show that every

abstract family of languages (AFL) is closed under the iterated one-sided hairpin

incompletion. This result is further extended to the general case of the iterated

5

hairpin incompletion, and it is shown that any family of languages including all

linear languages and with certain closure properties is also closed under the it-

erated hairpin incompletion, and as a corollary that the family of context-free

languages is closed under the iterated hairpin incompletion.

In Chapter 5, we consider insertion and deletion operations which have a

rather old history in both formal language theory, and computing models based

on insertion-deletion have been recently drawing renewed attention in relation to

the theory of molecular computing. From the viewpoint of biochemically im-

plementing those computing models, it is of crucial importance to investigate the

computing power of context-free operations of insertion-deletion, because of their

simplicity in comparison to the context-dependent counterparts.

In this chapter, we shall provide the following characterization of context-

free languages that are based on only insertion operations applied in a context-

free manner and as small as possible in the length of the inserted string involved.

Specifically, it is proved that for each λ-free context-free language L there exist a

projection h, a context-free insertion system γ, and a star language F+ such that

L = h(L(γ)∩F+), where γ only allows inserting at most three symbols in a context-

free manner, and the length of each string in F is no more than two. Further,

we shall show that a manner of construction used in the proof can be applied to

characterize recursively enumerable languages in a similar form of h(L(γ) ∩ F+),

for some insertion system γ and the same type of F. All of these refine and

improve the results for the language families in [33].

6

Chapter 2

Preliminary

2.1 Formal language theory

We assume that the reader is familiar with the basic notions of formal language

theory, for unexplained details refer to [37]. In particular, for the notions of ab-

stract family of languages, we refer to [40].

The set of natural numbers, {0, 1, 2, . . . } is denoted by N. For a set S , |S |

denotes the cardinality of S . The family of finite subsets of a set S is denoted by

P(S). The empty set is denoted by ∅.

An alphabet is a finite nonempty set of abstract symbols. For an alphabet V ,

V∗ is the set of all finite-length strings of symbols from V , where λ is the empty

string and |w| is the length of w ∈ V∗. For a symbol a in V we denote by |w|a the

number of occurences of a in w. Moreover, V+ is defined as V+ = V∗ − {λ}. For

k ≥ 0, we define V≥k = {w ∈ V∗ | |w| ≥ k}.

For a Chomsky grammar G = (N,T, S , P), the set of the labels of P is denoted

by Lab(P) = {r | r : A → α ∈ P}.

For an alphabet V , let V̄ = {ā | a ∈ V} (ā is barred copy of a.). V and V̄ are

considered to be disjoint. If V contains k symbols, then the Dyck language over

7

V and V̄ is the language generated by the context-free grammar G = ({S },V ∪

V̄ , S , P), where P = {S → S S , S → λ, S → aS ā | a ∈ V}. Let Dyck be the class of

Dyck languages.

We denote by RE, CS, CF , LIN REG and FIN the families of recursively

enumerable, context-sensitive, context-free, linear, regular and finite languages,

respectively.

The boolean operations (with languages) are denoted as usual: ∪ – union, ∩ –

intersection, ·̄ – complementation.

For k ≥ 0, let pre fk(w) and su fk(w) be the prefix and the suffix of w of length

k, respectively. For k ≥ 0, we define Pre f≤k(w) = {pre fi(w) | 0 ≤ i ≤ k} and

S u f≤k(w) = {su fi(w) | 0 ≤ i ≤ k}. For k ≥ 1, let In fk(w) be the set of infixes of w

of length k. If |w| ≤ k − 1, then pre fk(w), su fk(w) and In fk(w) are all undefined.

(Note that for w ∈ V+, pre fk(w) and su fk(w) are elements in In fk(w).) For k ≥ 0,

let pIn fk(w) be the set of proper infixes of w of length k, while if |w| = k or k + 1,

then pIn fk(w) = ∅.

The concatenation of L1, L2 is L1L2 = {xy | x ∈ L1, y ∈ L2}. By wL (Lw) we

simply denote {w}L (L{w}), i.e., the concatenation of w with a language L. The

left (right) quotient of a language L1 ⊆ V∗ with respect to L2 ⊆ V∗ is

L2\L1 = {w ∈ V∗ | there is x ∈ L2 such that xw ∈ L1}

(L1/L2 = {w ∈ V∗ | there is x ∈ L2 such that wx ∈ L1}).

The left (right) derivative of a language L with a word w is defined by w\L = {x ∈

V∗ |wx ∈ L} (L/w = {x ∈ V∗ | xw ∈ L}).

8

For a word w = a1a2 · · · an ∈ V∗, wR is the reversal of w, that is, (a1a2 · · · an)R =

an · · · a2a1. For x, y ∈ V∗ we define their shuffle by

shu f (x, y) = {x1y1 . . . xnyn | x = x1 . . . xn, y = y1 . . . yn, xi, yi ∈ V∗, 1 ≤ i ≤ n, n ≥ 1}.

The notion of shuffle is extended to languages L1, L2 as

S hu f (L1, L2) = {shu f (x, y) | x ∈ L1, y ∈ L2}.

We define further:

L0 = {λ},

Li+1 = LLi, i ≥ 0,

L∗ =
∞⋃

i=0

Li (the ∗ -Kleene closure),

L+ =
∞⋃

i=1

Li (the + -Kleene closure).

A morphism h : V∗ → U∗ such that h(a) ∈ U for all a ∈ V is called a coding,

and it is a weak coding if h(a) ∈ U ∪ {λ} for all a ∈ V . A weak coding is a

projection if h(a) ∈ {a, λ} for each a ∈ V . For a morphism h we define a mapping

h−1 by h−1(w) = {x ∈ V∗ | h(x) = w} and we call it an inverse morphism.

For families of languages L, L1 and L2, we introduce the following families

of languages:

WC(L) = {h(L) | h is a weak coding, L ∈ L}

PR(L) = {h(L) | h is a projection, L ∈ L}

H−1(L) = {h−1(L) | h is a morphism, L ∈ L}

L1 ∩ L2 = {L1 ∩ L2 | L1 ∈ L1, L2 ∈ L2}

9

A generalized sequential machine (gsm) is a system g = (K,V1,V2, s0, F, δ),

where K is a set of states, s0 ∈ K is an initial state, F ⊆ K is a set of final

states, V1,V2 are alphabets (the input and the output alphabet, respectively), and

δ : K × V1 → P(V∗
2 × K). If δ(s, a) ⊆ V+2 × K for all s ∈ K, a ∈ V1, then g is said

to be λ-free. For s, s′ ∈ K, a ∈ V1, y ∈ V∗
1 , x, z ∈ V∗

2 , we write (x, s, ay) (xz, s′, y)

if (z, s′) ∈ δ(s, a). Then, for w ∈ V∗
1 , we define

g(w) = {z ∈ V∗
2 | (λ, s0,w) ∗ (z, s, λ), s ∈ F}.

The mapping g is extended in the natural way to languages over V1.

A family of languages is nontrivial if it contains at least one language different

from ∅ and {λ}. A nontrivial family of languages is called a trio if it is closed

under λ-free morphisms, inverse morphisms, and with regular languages. A trio

closed under union is called a semi-AFL (AFL is an abbreviation of abstract family

of languages). A semi-AFL closed under concatenation and Kleene + is called

an AFL. A trio/semi-AFL/AFL is said to be full if it is closed under arbitrary

morphisms (and Kleene ∗ in the case of AFL’s).

2.2 Multiset theory

We use the basic notations regarding multisets that follow [35, 41]. A multiset

over an alphabet V is a mapping μ : V → N, where N is the set of non-negative

integers and for each a ∈ V , μ(a) represents the number of occurrences of a in the

multiset μ. The set of all multisets over V is denoted by V#, including the empty

multiset denoted by μλ, where μλ(a) = 0 for all a ∈ V . We often identify a multiset

μ with its string representation wμ = aμ(a1)

1
· · · aμ(an)

n or any permutation of wμ. A

usual set U ⊆ V is regarded as a multiset μU such that μU(a) = 1 if a is in U and

10

μU(a) = 0 otherwise. In particular, for each symbol a ∈ V , a multiset μ{a} is often

denoted by a itself.

For two multisets μ1, μ2 over V , we define one relation and three operations as

follows:

Inclusion : μ1 ⊆ μ2 iff μ1(a) ≤ μ2(a),

Sum : (μ1 + μ2)(a) = μ1(a) + μ2(a),

Intersection : (μ1 ∩ μ2)(a) = min{μ1(a), μ2(a)},

Difference : (μ1 − μ2)(a) = μ1(a) − μ2(a),

(for the case μ2 ⊆ μ1 only),

for each a ∈ V . The sum for a family of multisets M = {μi}i∈I is denoted by

∑
i∈I μi. For a multiset μ and n ∈ N, μn is defined by μn(a) = n · μ(a) for each

a ∈ V . The weight of a multiset μ is |μ| =
∑

a∈V μ(a).

11

Chapter 3

Reaction automata

3.1 Introduction

In recent years, a series of seminal papers [6, 7, 8] has been published in which

Ehrenfeucht and Rozenberg have introduced a formal model, called reaction sys-

tems, for investigating interactions between biochemical reactions, where two ba-

sic components (reactants and inhibitors) are employed as regulation mechanisms

for controlling biochemical functionalities. It has been shown that reaction sys-

tems provide a formal framework best suited for investigating in an abstract level

the way of emergence and evolution of biochemical functioning such as events

and modules. In the same framework, they also introduced the notion of time into

reaction systems and investigated notions such as reaction times, creation times of

compounds and so forth. Rather recent two papers [9, 10] continue the investiga-

tion of reaction systems, with the focuses on combinatorial properties of functions

defined by random reaction systems and on the dependency relation between the

power of defining functions and the amount of available resource.

In the theory of reaction systems, a (biochemical) reaction is formulated as a

triple a = (Ra, Ia, Pa), where Ra is the set of molecules called reactants, Ia is the

12

set of molecules called inhibitors, and Pa is the set of molecules called products.

Let T be a set of molecules, and the result of applying a reaction a to T , denoted

by resa(T), is given by Pa if a is enabled by T (i.e., if T completely includes

Ra and excludes Ia). Otherwise, the result is empty. Thus, resa(T) = Pa if a is

enabled on T , and resa(T) = ∅ otherwise. The result of applying a reaction a is

extended to the set of reactions A, denoted by resA(T), and an interactive process

consisting of a sequence of resA(T)’s is properly introduced and investigated.

In the last few decades, the notion of a multiset has frequently appeared and

been investigated in many different areas such as mathematics, computer science,

linguistics, and so forth. (See, e.g., [1] for the reference papers written from

the viewpoint of mathematics and computer science.) The notion of a multiset

has received more and more attention, particularly in the areas of biochemical

computing and molecular computing (e.g., [32, 41]).

Motivated by these two notions of a reaction system and a multiset, in this

chapter we will introduce computing devices called reaction automata and show

their computational power. There are two points to be remarked: On one hand,

the notion of reaction automata may be taken as a kind of an extension of re-

action systems in the sense that our reaction automata deal with multisets rather

than (usual) sets as reaction systems do, in the sequence of computational pro-

cess. On the other hand, however, reaction automata are introduced as computing

devices that accept the sets of string objects (i.e., languages over an alphabet).

This unique feature, i.e., a string accepting device based on multiset computing

in the biochemical reaction model can be realized by introducing a simple idea of

feeding an input to the device from the environment and by employing a special

encoding technique. In this sense, reaction automata may also be regarded as a

13

simplified variants of P automata introduced by Csuhaj-Varju and Vaszil in [5]

with no membrane structure.

This chapter is organized as follows. In Section 3.2, we formally describe

the notion of reaction automata (RAs) and the classes of languages accepted by

them together with four examples. In addition, Turing machines and their several

variants, e.g., restricted multistack machines, s(n)-restricted Turing machines, are

introduced. Then, in Section 3.3, we present the main results: reaction automata

are computationally universal in two ways for applying reactions, i.e., maximally

parallel manner and sequential manner with allowing λ-input. We also consider

some subclasses of reaction automata from a viewpoint of the complexity theory

in Section 3.4, and investigate those classes of languages in comparison to Chom-

sky hierarchy. Finally, concluding remarks as well as future research topics are

briefly discussed in Section 3.5.

3.2 Preliminaries

3.2.1 Formal definition of reaction automata

As is previously mentioned, a novel formal model called reaction systems has

been introduced in order to investigate the property of interactions between bio-

chemical reactions, where two basic components (reactants and inhibitors) are

employed as regulation mechanisms for controlling biochemical functionalities

([6, 7, 8]). Reaction systems provide a formal framework best suited for inves-

tigating the way of emergence and evolution of biochemical functioning on an

abstract level.

By recalling from [6] basic notions related to reactions systems, we first extend

14

them (defined on the sets) to the notions on the multisets. Then, we shall introduce

our notion of reaction automata which plays a central role in this chapter.

Definition 1. For a set S , a reaction in S is a 3-tuple a = (Ra, Ia, Pa) of finite

multisets, such that Ra, Pa ∈ S #, Ia ⊆ S and Ra ∩ Ia = ∅.

The multisets Ra and Pa are called the reactant of a and the product of a,

respectively, while the set Ia is called the inhibitor of a. These notations are

extended to a multiset of reactions as follows: For a set of reactions A and a

multiset α over A,

Rα =
∑
a∈A

Rα(a)
a , Iα =

⋃
a⊆α

Ia, Pα =
∑
a∈A

Pα(a)
a .

We consider two ways for applying reactions, i.e., sequential manner and max-

imally parallel manner.

Definition 2. Let A be a set of reactions in S and α ∈ A# be a multiset of reactions

over A. Then, for a finite multiset T ∈ S #, we say that

(1) α is enabled by T if Rα ⊆ T and Iα ∩ T = ∅,

(2) α is enabled by T in sequential manner if α is enabled by T with |α| = 1.

(3) α is enabled by T in maximally parallel manner if there is no β ∈ A# such that

α ⊂ β, and α and β are enabled by T .

(4) By Ensq
A (T) and Enmp

A (T), we denote the sets of all multisets of reactions α ∈ A#

which are enabled by T in sequential manner and in maximally parallel manner,

respectively.

(5) The results of A on T , denoted by ResX
A(T) with X ∈ {sq,mp}, is defined as

follows:

ResX
A(T) = {T − Rα + Pα |α ∈ EnX

A(T)},

15

We note that ResX
A(T) = {T } if EnX

A(T) = ∅. Thus, if no multiset of reactions

α ∈ A# is enabled by T , then T remains unchanged.

We are now in a position to introduce the notion of reaction automata.

Definition 3. A reaction automaton (RA) A is a 5-tuple A = (S ,Σ, A,D0, f),

where

• S is a finite set, called the background set of A,

• Σ(⊆ S) is called the input alphabet of A,

• A is a finite set of reactions in S ,

• D0 ∈ S # is an initial multiset,

• f ∈ S is a special symbol which indicates the final state.

Definition 4. Let A = (S ,Σ, A,D0, f) be an RA, w = a1 · · · an ∈ Σ∗ and X ∈

{sq,mp}. An interactive process in A with input w in X manner is an infinite

sequence π = D0, . . . ,Di, . . ., where{
Di+1 ∈ ResX

A(ai+1 + Di) (for 0 ≤ i ≤ n − 1), and

Di+1 ∈ ResX
A(Di) (for all i ≥ n).

In order to represent an interactive process π, we also use the “arrow notation”

for π : D0 →a1 D1 →a2 D2 →a3 · · · →an−1 Dn−1 →an Dn → Dn+1 → · · · . By

IPX(A,w) we denote the set of all interactive processes in A with input w in X

manner.

If it is allowed that ai = λ for some several 1 ≤ i ≤ n, for an input string

w = a1 · · · an, an interactive process is said to be with λ-input mode. By IPλX(A,w)

we denote the set of all interactive processes in A with λ-input mode in X manner

for the input w.

16

For an interactive process π in A with input w, if EnX
A(Dm) = ∅ for some

m ≥ |w|, then we have that ResX
A(Dm) = {Dm} and Dm = Dm+1 = · · · . In this case,

considering the smallest m, we say that π converges on Dm (at the m-th step). If

an interactive process π converges on Dm, then Dm is called the converging state

of π and each Di of π is omitted for i ≥ m + 1.

Definition 5. Let A = (S ,Σ, A,D0, f) be an RA and X = {sq,mp}. Then, the set

of accepting interactive processes is defined as follows:

AIPX(A,w) = {π ∈ IPX(A,w) | π converges on Dm at the m-th step for

some m ≥ |w| and f ⊆ Dm},

AIPλX(A,w) = {π ∈ IPλX(A,w) | π converges on Dm at the m-th step for

some m ≥ |w| and f ⊆ Dm}.

The language accepted by A is defined as follows:

LX(A) = {w ∈ Σ∗ | AIPX(A,w) � ∅},

LλX(A) = {w ∈ Σ∗ | AIPλX(A,w) � ∅}.

Definition 6. Let X = {sq,mp}. The class of languages accepted by RAs in X

manner is denoted by RAX. The class of languages accepted by RAs with λ-input

mode in X manner is denoted by RAλX.

17

3.2.2 Examples

Example 1. Let us consider a reaction automaton A = (S ,Σ, A,D0, f) defined as

follows:

S = {p0, p1, a, b, a′, f } with Σ = {a, b},

A = {a0, a1, a2, a3, a4}, where

a0 = (p0, aba′, f), a1 = (p0a, b, p0a′), a2 = (p0a′b, ∅, p1),

a3 = (p1a′b, a, p1), a4 = (p1, aba′, f),

D0 = p0.

Figure 3.1 illustrates the whole view of possible interactive processes in A with

inputs anbn for n ≥ 0. Let w = aaabbb ∈ Σ∗ be the input string and consider an

interactive process π in sequential manner such that

π : p0 →a p0a′ →a p0a′2 →a p0a′3 →b p1a′2 →b p1a′ →b p1 → f .

It can be easily seen that π ∈ IPsq(A,w) and w ∈ Lsq(A). We may see that

Lsq(A) = {anbn | n ≥ 0} which is a context-free language.

We note the following remark: this interactive process can be also performed

by A in maximally parallel manner, i.e. π ∈ IPmp(A,w). Moreover, it holds that

Lmp(A) = {anbn | n ≥ 0}.

Example 2. Let L1 = {anbncn | n ≥ 0} and consider an RA A1 = (S ,Σ, A,D0, f)

18

Figure 3.1: A graphic illustration of interactive processes for accepting strings in

the language L = {anbn | n ≥ 0} in terms of a reaction automaton A.

a
′2
d

d

a
′
d

. . .a
′n
d . . .b

′n
d

b
′2
d

b
′
d

a
′
b
′
d b

′
c
′
d c

′2
d

c
′n
d

c
′
d c

′
f

c
′2
f

c
′n
f

f

a

a

a

a

b

b b

b b

c

c c

c c

a1

a1

a1

a1

a2

a2 a2

a2 a2

a3

a3 a3

a3 a3

a4

a4

a4

a4

Figure 3.2: Reaction diagram of A1 which accepts L1 = {anbncn | n ≥ 0}.

defined as follows:

S = {a, b, c, d, a′, b′, c′, f } with Σ = {a, b, c},

A = {a1, a2, a3, a4}, where

a1 = (a, bb′, a′), a2 = (a′b, cc′, b′), a3 = (b′c, ∅, c′), a4 = (d, abca′b′, f),

D0 = d.

Then, it holds that L1 = Lmp(A1) = Lsq(A1) (see Figure 3.2).

Example 3. Let L2 = {ambmcndn |m, n ≥ 0} and consider an RAA2 = (S ,Σ, A,D0, f)

19

p0

f

p1

p3

a
′
p0

a
′
p1

c
′
p2

c
′
p3

. . .

. . .

. . .

. . .

a a a a

b
bbb

c
c

c c

d
ddd

a1 a1 a1 a1

a2

a3a3
a3

c

a4

a5

a6 a6
a6

a7

a8a8a8

a9

a10

a11

a
′m−1

p0

a
′m−1

p1

a
′m
p0

c
′n−1

p2

c
′n−1

p3

c
′n
p2

Figure 3.3: Reaction diagram of A2 which accepts L2 = {ambmcndn |m, n ≥ 0}.

defined as follows:

S = {a, b, c, d, a′, c′, p0, p1, p2, p3, f } with Σ = {a, b, c, d},

A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11}, where

a1 = (ap0, bc, a′p0), a2 = (a′bp0, c, p1), a3 = (a′bp1, c, p1), a4 = (cp0, d, c′p2),

a5 = (cp1, d, c′p2), a6 = (cp2, d, c′p2), a7 = (c′dp2, ∅, p3), a8 = (c′dp3, ∅, p3),

a9 = (p0, abcd, f), a10 = (p1, abcda′, f), a11 = (p3, abcda′c′, f),

D0 = p0.

Then, it holds that L2 = Lmp(A2) = Lsq(A2) (see Figure 3.3).

Example 4. Let A3 = (S ,Σ, A,D0, f) be an RA defined as follows:

S = {c, p0, p1, n1, c1, c2, d, e, f },with Σ = {c},

A = {a1, a2, a3, a4, a5, a6, a7, a8}, where

a1 = (p0, c, p1), a2 = (p1, e f , p1n1),

a3 = (c, p1, c1), a4 = (c2
1, p0c2e, c2), a5 = (c2

2, p0c1e, c1),

a6 = (c1d, p0c2, e), a7 = (c2d, p0c1, e), a8 = (e, p0cc1c2, f),

D0 = dp0.

20

dp0 dp0c1 . . . dp0c
8

1
dp1c

8

1

dp1n1c
4

2
dp1n

2

1
c
2

1
dp1n

3

1
c2 ep1n

4

1
fp1n

4

1

c c c

a3 a3 a3 a1

a2a
4

4

a2a
2

5
a2a4 a2a7 a8

Figure 3.4: Reaction diagram for accepting c8 in A3.

Then, it holds that Lmp(A3) = {c2n | n ≥ 0}. Figure 3.4 illustrates the interactive

process in A3 with the input c8.

3.2.3 Restricted multistack machines

A multistack machine is a deterministic pushdown automaton with several stacks

([14]). It is known that a two-stack machine is equivalent to a Turing machine

(TM) as a language accepting device.

A k-stack machine M = (Q,Σ,Γ, δ, p0,Z0, F) is defined as follows: Q is a set

of states, Σ is an input alphabet, Γ is a stack alphabet, Z0 = (Z01,Z02, . . . ,Z0k) is

the k-tuple of the initial stack symbols, p0 ∈ Q is the initial state, F is a set of

final states, δ is a transition function defined in the form: δ(p, a, X1, X2, . . . , Xk) =

(q, γ1, γ2, . . . , γk), where p, q ∈ Q, a ∈ Σ ∪ {λ}, Xi ∈ Γ, γi ∈ Γ∗ for each 1 ≤ i ≤ k.

This rule means that in state p, with Xi on the top of i-th stack, if the machine

reads a from the input, then go to state q, and replace the the top of each i-th stack

with γi for 1 ≤ i ≤ k. We assume that each rule has a unique label and all labels of

rules in δ is denoted by Lab(δ). Note that the k-stack machine can make a λ-move,

but there cannot be a choice of a λ-move or a non-λ-move due to the deterministic

property of the machine. The k-stack machine accepts a string by entering a final

state.

21

In this chapter, we consider a modification on a multistack (in fact, two-stack)

machine. Recall that in the simulation of a given Turing machine T M with an

input w = a1a2 · · · a� in terms of a multistack machine M, one can assume the

following (see [14]):

(i) At first, two-stack machine M is devoted to making the copy of w on stack-

2. This is illustrated in (a) and (b)-1 of Figure 3.5, for the case of k = 2. M

requires only non-λ-moves.

(ii) Once the whole input w is read-in by M, no more access to the input tape of

M is necessary. After having wR on stack-2, M moves over wR (from stack-

2) to produce w on stack-1, as shown in (b)-2. These moves only require

λ-moves and after this, each computation step of M with respect to w is

performed by a λ-move, without any access to w on the input tape.

(iii) Each stack has its own stack alphabet, each one being different from the

others, and a set of final states is a singleton. Once M enters the final state, it

immediately halts. Further, during a computation, each stack is not emptied.

Hence, without changing the computation power, we may restrict all computations

of a multistack machine that satisfies the conditions (i), (ii), (iii). We call this

modified multistack machine a restricted multistack machine.

In summary, a restricted k-stack machine Mr is composed by 2k + 5 elements

as follows:

Mr = (Q,Σ, Γ1,Γ2, . . . , Γk, δ, p0,Z01,Z02, . . . , Z0k, f),

where for each 1 ≤ i ≤ k, Z0i ∈ Γi is the initial symbol for the i-th stack used

only for the bottom, f ∈ Q is a final state, and its computation proceeds only

22

Figure 3.5: (a) Turing machine (TM); (b)Two-stack machine M simulating TM,

where $ is the end marker for the input.

in the above mentioned way (i), (ii), (iii). Especially, λ-moves are used after all

non-λ-moves in a computation of Mr.

Proposition 1. (Theorem 8.13 in [14]) Every recursively enumerable language is

accepted by a restricted two-stack machine.

3.2.4 Turing machines and variants

In [4], in order to look for a Turing machine corresponding to P automata, a variant

of a Turing machine restricted on the workspace, called a restricted s(n) space

bounded Turing machine, is introduced. Here, we consider the relaxation of that

restriction.

Definition 7. A one-way nondeterministic Turing machine is s(n)-restricted if for

every accepted input of length n, there is an accepting computation where the

number of cells on the worktape before reading the whole input is bounded by

s(d), where d is the number of input tape cells already read.

The difference between “s(n)-restricted” and “restricted s(n) space bounded

(in [4])” is that for the case “s(n)-restricted”, no restriction is imposed on the

23

workspace after reading the whole input. We say that a one-way nondeterministic

Turing machine M is LOG-restricted, LIN-restricted or NON-restricted if M is

logarithmic-restricted, linear function-restricted or not restricted.

Definition 8. L1(X,Y) denotes the class of languages accepted by X-restricted

Y-space-bounded one-way nondeterministic Turing machines, where X,Y ∈

{LOG, LIN,NON}.

Note that (i)L1(NON,Y) is the class of language accepted byY-space-bounded

(in usual sense in space complexity theory) one-way nondeterministic Turing ma-

chines, (ii) the class of language accepted by restricted X space bounded one-way

nondeterministic Turing machines (defined in [4]) is equivalent to L1(X,X).

Lastly, we introduce a notation about instantaneous descriptions (IDs) of of-

fline Turing machines. For an offline Turing machine M = (Q,Σ,Γ, δ, p0, F) and

an input string w, an ID can be expressed by (w1qw2, x1qx2), where q ∈ Q is the

current state, w1w2 ∈ Σ∗ is the input string, x1x2 ∈ Γ∗ is the content of the work-

tape of M, and the head of M points the first symbols of w2 and x2. By ID(M,w),

we denotes the set of all sequences of the IDs which express computations of M

with the input w.

3.3 The computation power of reaction automata

3.3.1 The case of maximally parallel manner

In this section, we shall show the equivalence of the accepting powers between

Turing machines and reaction automata in maximally parallel manner. Taking

Proposition 1 into consideration, it should be enough to prove the following theo-

rem.

24

Theorem 1. If a language L is accepted by a restricted two-stack machine, then

L is accepted by a reaction automaton in maximally parallel manner.

[Construction of an RA]

Let M = (Q,Σ,Γ1, Γ2, δ, p0, X0,Y0, f) be a restricted two-stack machine with Γ1 =

{X0, X1, . . . , Xn}, Γ2 = {Y0,Y1, . . . , Ym}, n,m ≥ 1, where Γ = Γ1 ∪ Γ2, X0 and Y0 are

the initial stack symbols for stack-1 and stack-2, repsectively, and we may assume

that Γ1 ∩ Γ2 = ∅.

We construct an RA AM = (S ,Σ, A,D0, f ′) as follows:

S = Q ∪ Q̂ ∪ Σ ∪ Γ ∪ Γ̂ ∪ Lab(δ) ∪ { f ′},

A = A0 ∪ Aa ∪ Âa ∪ Aλ ∪ Âλ ∪ AX ∪ ÂX ∪ AY ∪ ÂY ∪ Af ∪ Â f ,

D0 = p0X0Y0,

where the set of reactions A consists of the following 5 categories :

(1) A0 = {(p0aX0Y0, Lab(δ), q̂ · stm(x̂) · stm(ŷ) · r′)

| r : δ(p0, a, X0,Y0) = (q, x, y), r′ ∈ Lab(δ)},

(2) Aa = {(paXiY jr, Γ̂, q̂ · stm(x̂) · stm(ŷ) · r′)

| a ∈ Σ, r : δ(p, a, Xi,Yj) = (q, x, y), r′ ∈ Lab(δ)},

Âa = {(p̂aX̂iŶ jr,Γ, q · stm(x) · stm(y) · r′)

| a ∈ Σ, r : δ(p, a, Xi,Yj) = (q, x, y), r′ ∈ Lab(δ)},

(3) Aλ = {(pXiY jr,Σ ∪ Γ̂, q̂ · stm(x̂) · stm(ŷ) · r′)

| r : δ(p, λ, Xi,Yj) = (q, x, y), r′ ∈ Lab(δ)},

Âλ = {(p̂X̂iŶ jr,Σ ∪ Γ, q · stm(x) · stm(y) · r′)

| r : δ(p, λ, Xi,Yj) = (q, x, y), r′ ∈ Lab(δ)},

25

(4) AX = {(X2
k , Q̂ ∪ Γ̂ ∪ (Lab(δ) − {r}) ∪ { f ′}, X̂2|x|

k)

| 0 ≤ k ≤ n, r : δ(p, a, Xi,Yj) = (q, x, y)},

ÂX = {(X̂2
k ,Q ∪ Γ ∪ (Lab(δ) − {r}) ∪ { f ′}, X2|x|

k)

| 0 ≤ k ≤ n, r : δ(p, a, Xi,Yj) = (q, x, y)},

AY = {(Y2
k , Q̂ ∪ Γ̂ ∪ (Lab(δ) − {r}) ∪ { f ′}, Ŷ2|y|

k)

| 0 ≤ k ≤ m, r : δ(p, a, Xi,Yj) = (q, x, y)},

ÂY = {(Ŷ2
k ,Q ∪ Γ ∪ (Lab(δ) − {r}) ∪ { f ′},Y2|y|

k)

| 0 ≤ k ≤ m, r : δ(p, a, Xi,Yj) = (q, x, y)},

(5) Af = {(f , Γ̂, f ′)},

Â f = {(f̂ ,Γ, f ′)}.

Proof. We shall give an informal description on how to simulate M with an input

w = a1a2 · · · a� in terms of AM constructed above.

M starts its computation from the state p0 with X0 and Y0 on the top of stack-

1 and stack-2, respectively. This initial step is performed in AM by applying a

reaction in A0 to D0 = p0X0Y0 together with a1. In order to read the whole input

w into AM, applying reactions in (2) and (4) leads to an interactive process in

AM : D0 →a1 D1 →a2 D2 →a3 · · · →a� D�, where D� just corresponds to the

configuration of M depicted in (b)-1 of Figure 3.5. After this point, only reactions

from (3), (4) and (5) are available in AM, because M makes only λ-moves.

Suppose that for k ≥ 1, after making k-steps M is in the state p and has αk ∈ Γ∗1

and βk ∈ Γ∗2 on the stack-1 and the stack-2, respectively. Then, from the manner

of constructing A, it is seen that in the corresponding interactive process in AM,

26

we have :

{
Dk = p · stm(αk) · stm(βk) · r (if k is even)

Dk = p̂ · stm(α̂k) · stm(β̂k) · r (if k is odd)

for some r ∈ Lab(δ), where the rule labeled by r may be used at the (k + 1)-th

step. (Recall that stm(x) is a multiset, in a special 2-power form, representing a

string x.) Thus, the multisubset “stm(αk)stm(βk)” in Dk is denoted by the strings

in either Γ∗ or Γ̂∗ in an alternate fashion, depending upon the value k. Since there

is no essential difference between strings denoted by Γ∗ and its hat version, we

only argue about the case when k is even.

Suppose that M is in the state p and has α = Xi1 · · · XitX0 on the stack-1 and

β = Yj1 · · · YjsY0 on the stack-2, where the leftmost element is the top symbol of

the stack. Further, let r be the label of a transition δ(p, ak+1, Xi1,Yj1) = (q, x, y) (if

1 ≤ k ≤ l − 1) or δ(p, λ, Xi1, Yj1) = (q, x, y) (if l ≤ k) in M to be applied. Then, the

two stacks are updated as α′ = xXi2 · · · XitX0 and β′ = yYj2 · · · YjsY0. In order to

simulate this move of M, we need to prove that it is possible inAM, Dk →ak+1 Dk+1

(if 1 ≤ k ≤ l − 1) or Dk → Dk+1 (if l ≤ k), where

Dk = p · stm(Xi1Xi2 · · · XitX0) · stm(Yj1Yj2 · · · YjsY0)r

Dk+1 = q̂ · stm(x̂X̂i2 · · · X̂it X̂0) · stm(ŷŶ j2 · · · Ŷ jsŶ0)r′

for some r′ ∈ Lab(δ). Taking a close look at Dk, we have that

Dk = pXi1Yj1r · X2
i2X22

i3 · · · X
2t−1

it X2t

0 · Y2
j2Y22

j3 · · ·Y
2s−1

js Y2s

0 ,

from which it is easily seen that a multiset of reactions

z = rxi2 · · · x2t−2

it x2t−1

0 yj2 · · · y2s−2

js y2s−1

0

27

is in Enmp
AM

(ak+1 +Dk) (if 1 ≤ k ≤ l− 1) or in Enmp
AM

(Dk) (if l ≤ k), i.e., it is enabled

by ak+1+Dk (if 1 ≤ k ≤ l−1) or Dk (if l ≤ k) in maximally parallel manner, where

{
r = (pak+1Xi1Yj1r, Γ̂, q̂ · stm(x̂)stm(ŷ)r′) ∈ Aa (if 1 ≤ k ≤ l − 1)

r = (pXi1Yj1r,Σ ∪ Γ̂, q̂ · stm(x̂)stm(ŷ)r′) ∈ Aλ (if l ≤ k),

for some r′ ∈ Lab(δ),

xi = (X2
i , Q̂ ∪ Γ̂ ∪ Lab(δ) − {r} ∪ { f ′}, X̂2|x|

i) ∈ AX (for i = 0, i2, . . . , it),

y j = (Y2
j , Q̂ ∪ Γ̂ ∪ Lab(δ) − {r} ∪ { f ′}, Ŷ2|y|

j) ∈ AY (for j = 0, j2, . . . , js).

The result of the multiset of the reactions z is

q̂ · stm(x̂)stm(ŷ)r′ · X̂2|x|

i2 · · · X̂2t−2+|x|

it X̂2t−1+|x|

0 · Ŷ2|x|

j2 · · · Ŷ
2s−2+|x|

js Ŷ2s−1+|x|

0

= q̂ · stm(x̂X̂i2 · · · X̂it X̂0) · stm(ŷŶ j2 · · · Ŷ jsŶ0)r′

=Dk+1

Thus, in fact it holds that Dk →ak+1 Dk+1 (if 1 ≤ k ≤ l − 1) or Dk → Dk+1 (if l ≤ k)

in AM.

We note that there is a possibility that undesired reaction r′ can be enabled at

the (k + 1)th step, where r′ is of the form

{
r′ = (pak+1XiuY jvr, Γ̂, q̂′ · stm(x̂′)stm(ŷ′)r′) ∈ Aa (if 1 ≤ k ≤ l − 1)

r′ = (pXiuY jvr,Σ ∪ Γ̂, q̂′ · stm(x̂′)stm(ŷ′)r′) ∈ Aλ (if l ≤ k),

with u � 1 or v � 1, that is, the reactant of r′ contains a stack symbol which

is not the top of stack. If a multiset of reactions z′ = r′x′1 · · · x
′
t′y

′
1 · · · y

′
s′ with

x′1, . . . , x
′
t′ ∈ AX, y′1, . . . , y

′
s′ ∈ AY is used at the (k + 1)th step, then Dk+1 contains

both the symbols without hat (in Γ) and the symbols with hat (in Q̂ and Γ̂). This

is because in this case, Xi1 or Yj1 in Dk which is not consumed at the (k + 1)-th

step remains in Dk+1 (since the total numbers of Xi1 and Yj1 are odd, these objects

28

cannot be consumed out by the reactions from (4)). Hence, no reaction is enabled

at the (k + 2)-th step and f ′ is never derived after this wrong step.

From the arguments above, it holds that for an input w ∈ Σ∗, M enters the final

state f (and halts) if and only if there exists π : D0, . . . ,Di, . . . ∈ IPmp(AM,w)

such that Dk−1 contains f or f̂ , Dk contains f ′, and π converges on Dk, for some

k ≥ 1. Therefore, we have that L(M) = Lmp(AM) holds.

�

Corollary 1. Every recursively enumerable language is accepted by a reaction

automaton in maximally parallel manner.

Recall the way of constructing reactions A of AM in the proof of Theorem

1. The reactions in categories (1), (2), (3) would not satisfy the condition of

determinacy which is given immediately below. However, we can easily modify

AM to meet the condition.

Definition 9. Let AM = (S ,Σ, A,D0, f ′) be an RA. Then, AM is deterministic if

for a = (R, I, P), a′ = (R′, I′, P′) ∈ A, (R = R′) ∧ (I = I′) implies that a = a′.

Theorem 2. If a language L is accepted by a restricted two-stack machine, then L

is accepted by a deterministic reaction automaton in maximally parallel manner.

Proof. Let M = (Q,Σ,Γ1, Γ2, δ, p0, X0,Y0, f) be a restricted two-stack machine.

For the RA AM = (S ,Σ, A,D0, f ′) constructed for the proof of Theorem 1, we

consider A′
M = (S ∪ ˆLab(δ),Σ, A′,D0, f ′), where A′ consists of the following 5

29

categories :

(1) A0 = {(p0aX0Y0, Lab(δ) ∪ {r̂′}, q̂ · stm(x̂) · stm(ŷ) · r̂′)

| r : δ(p0, a, X0,Y0) = (q, x, y), r′ ∈ Lab(δ)},

(2) Aa = {(paXiY jr, Γ̂ ∪ {r̂′}, q̂ · stm(x̂) · stm(ŷ) · r̂′)

| a ∈ Σ, r : δ(p, a, Xi,Yj) = (q, x, y), r′ ∈ Lab(δ)},

Âa = {(p̂aX̂iŶ jr,Γ ∪ {r′}, q · stm(x) · stm(y) · r′)

| a ∈ Σ, r : δ(p, a, Xi,Yj) = (q, x, y), r′ ∈ Lab(δ)},

(3) Aλ = {(pXiY jr,Σ ∪ Γ̂ ∪ {r̂′}, q̂ · stm(x̂) · stm(ŷ) · r̂′)

| r : δ(p, λ, Xi,Yj) = (q, x, y), r′ ∈ Lab(δ)},

Âλ = {(p̂X̂iŶ jr,Σ ∪ Γ ∪ {r′}, q · stm(x) · stm(y) · r′)

| r : δ(p, λ, Xi,Yj) = (q, x, y), r′ ∈ Lab(δ)},

(4) AX = {(X2
k , Q̂ ∪ Γ̂ ∪ (ˆLab(δ) − {r̂}) ∪ { f ′}, X̂2|x|

k)

| 0 ≤ k ≤ n, r : δ(p, a, Xi,Yj) = (q, x, y)},

ÂX = {(X̂2
k ,Q ∪ Γ ∪ (Lab(δ) − {r}) ∪ { f ′}, X2|x|

k)

| 0 ≤ k ≤ n, r : δ(p, a, Xi,Yj) = (q, x, y)},

AY = {(Y2
k , Q̂ ∪ Γ̂ ∪ (ˆLab(δ) − {r̂}) ∪ { f ′}, Ŷ2|y|

k)

| 0 ≤ k ≤ m, r : δ(p, a, Xi, Yj) = (q, x, y)},

ÂY = {(Ŷ2
k ,Q ∪ Γ ∪ (Lab(δ) − {r}) ∪ { f ′}, Y2|y|

k)

| 0 ≤ k ≤ m, r : δ(p, a, Xi, Yj) = (q, x, y)},

(5) Af = {(f , Γ̂, f ′)},

Â f = {(f̂ , Γ, f ′)}.

The reactions in categories (1), (2), (3) in A′ meet the condition where A′
M is

30

deterministic, since the inhibitor of each reaction includes r′ or r̂′. We can easily

observe that the equation L(M) = Lmp(A′
M) is proved in the manner similar to the

proof of Theorem 1. �

Corollary 2. Every recursively enumerable language is accepted by a determin-

istic reaction automaton in maximally parallel manner.

3.3.2 The case of sequential manner

In this section, we shall show the equivalence of the accepting powers between

Turing machines and reaction automata in sequential manner with λ-input mode.

On the other hand, the equivalence may not hold for reaction automata in sequen-

tial manner with ordinary input mode.

Theorem 3. Every recursively enumerable language is accepted by a reaction

automaton with λ-input mode in sequential manner.

[Construction of an RA]

Let M = (Q,Σ,Γ1,Γ2, δ, p0, X0, Y0, f) be a two-stack machine with

Γ1 = {X0, X1, . . . , Xn}, Γ2 = {Y0,Y1, . . . , Ym}, n,m ≥ 1,

where Γ = Γ1 ∪Γ2, X0 and Y0 are the initial stack symbols for stack-1 and stack-2,

repsectively, and we may assume that Γ1 ∩ Γ2 = ∅.

We construct an RA AM = (S ,Σ, A,D0, f ′) as follows:

S = Q ∪ Q̂ ∪ Σ ∪ Γ ∪ Γ̂ ∪ Lab(δ) ∪ { f ′},

A = A0 ∪ Aa ∪ Âa ∪ Aλ ∪ Âλ ∪ AX ∪ ÂX ∪ AY ∪ ÂY ∪ Af ∪ Â f ,

D0 = p0X0Y0,

31

where the set of reactions A consists of the following 5 categories :

(1) A0 = {(p0aX0Y0, Lab(δ), q̂ · stm(x̂) · stm(ŷ) · r)

| r : δ(p0, a, X0, Y0) = (q, x, y)},

(2) Aa = {(paXiY jr′, Q̂ ∪ Γ̂, q̂ · stm(x̂) · stm(ŷ) · r)

| a ∈ Σ, r′ ∈ Lab(δ), r : δ(p, a, Xi,Yj) = (q, x, y)},

Âa = {(p̂aX̂iŶ jr′,Q ∪ Γ, q · stm(x) · stm(y) · r)

| a ∈ Σ, r′ ∈ Lab(δ), r : δ(p, a, Xi,Yj) = (q, x, y)},

(3) Aλ = {(pXiY jr′, Q̂ ∪ Σ ∪ Γ̂, q̂ · stm(x̂) · stm(ŷ) · r)

| r′ ∈ Lab(δ), r : δ(p, λ, Xi,Yj) = (q, x, y)},

Âλ = {(p̂X̂iŶ jr′,Q ∪ Σ ∪ Γ, q · stm(x) · stm(y) · r)

| r′ ∈ Lab(δ), r : δ(p, λ, Xi,Yj) = (q, x, y)},

(4) AX = {(X2
k ,Q ∪ Σ ∪ (Lab(δ) − {r}) ∪ { f ′}, X̂2|x|

k)

| 0 ≤ k ≤ n, r : δ(p, a, Xi,Yj) = (q, x, y)},

ÂX = {(X̂2
k , Q̂ ∪ Σ ∪ (Lab(δ) − {r}) ∪ { f ′}, X2|x|

k)

| 0 ≤ k ≤ n, r : δ(p, a, Xi,Yj) = (q, x, y)},

AY = {(Y2
k ,Q ∪ Σ ∪ (Lab(δ) − {r}) ∪ { f ′}, Ŷ2|y|

k)

| 0 ≤ k ≤ m, r : δ(p, a, Xi,Yj) = (q, x, y)},

ÂY = {(Ŷ2
k , Q̂ ∪ Σ ∪ (Lab(δ) − {r}) ∪ { f ′},Y2|y|

k)

| 0 ≤ k ≤ m, r : δ(p, a, Xi,Yj) = (q, x, y)},

(5) Af = {(f , Γ̂, f ′)}, Â f = {(f̂ ,Γ, f ′)}.

Proof. We shall give an informal description on how to simulate M with an input

w = a1a2 · · · a� in terms of AM constructed above in the sequential mode.

32

w1

w2

w1

w2

x

p+ r
′

y

X1

+stm(X1w1)

+stm(Y1w2)

Y1

q̂ + r

q̂ + r

+stm(x̂ŵ1)

+stm(ŷŵ2)

+stm(x̂) + stm(X1w1)−X1

+stm(ŷ) + stm(Y1w2)− Y1

state : p

state : q

rlabel :

�������	
������� ������	����
�����

Figure 3.6: Simulation of a 2-stack machine by a sequential RA.

Suppose that M is in the state p and has α = Xi1 · · · XitX0 on the stack-1 and

β = Yj1 · · · YjsY0 on the stack-2, where the leftmost element is the top symbol of

the stack. Further, let r be the label of a transition δ(p, ak, Xi1,Yj1) = (q, x, y) or

δ(p, λ, Xi1,Yj1) = (q, x, y) in M to be applied. Then, the two stacks are updated as

α′ = xXi2 · · · XitX0 and β′ = yYj2 · · · YjsY0. In order to simulate this move of M,

we assume that the multiset before inputting ak is

Dk−1 = p · stm(Xi1Xi2 · · · XitX0) · stm(Yj1Yj2 · · ·YjsY0) · r′,

for some r′ ∈ Lab(δ). Using the reaction in Aa or Aλ, it is possible in AM,

Dk−1 →ak Dk1
or Dk−1 → Dk1

, where

Dk1
= q̂ · stm(Xi1Xi2 · · · XitX0) · stm(Yj1Yj2 · · ·YjsY0) · r + stm(x̂) · stm(ŷ) − Xi1Yj1.

Then, we can see that reactions z = xi2 · · · x2t−2

it x2t−1

0 yj2 · · · y2s−2

js y2s−1

0 are enabled in

the next (1 + · · · + 2t−1) + (1 + · · · + 2s−1) steps, in no particular order, where

33

xi2, . . . , xit is in AX and yj2, . . . , yjs is in AY . The result of the reactions z, Dk, is

Dk = q̂ · stm(x̂)stm(ŷ) · r · X̂2|x|

i2 · · · X̂2t−2+|x|

it X̂2t−1+|x|

0 · Ŷ2|x|

j2 · · · Ŷ
2s−2+|x|

js Ŷ2s−1+|x|

0

= q̂ · stm(x̂X̂i2 · · · X̂it X̂0) · stm(ŷŶ j2 · · · Ŷ jsŶ0) · r.

Thus, it holds that Dk−1 →ak Dk1
→ · · · → Dk or Dk−1 → Dk1

→ · · · → Dk in

AM in the sequential mode. On the other hand, if the next symbol ak+1 is inputted

during these steps, AM immediately halts and f ′ is never derived.

We note that there is a possibility that undesired reaction a′ can be enabled by

Dk−1, where a′ is of the form

{
a′ = (pakXiuY jvr′, Q̂ ∪ Γ̂, q̂′ · stm(x̂′)stm(ŷ′) · r′′) ∈ Aa

a′ = (pXiuY jvr′, Q̂ ∪ Σ ∪ Γ̂, q̂′ · stm(x̂′)stm(ŷ′) · r′′) ∈ Aλ,

with u � 1 or v � 1, that is, the reactant of r′ contains a stack symbol which

is not the top of stack. If reactions z′ = x′1 · · · x
′
t′y

′
1 · · · y

′
s′ with x′1, . . . , x

′
t′ ∈ AX,

y′1, . . . , y
′
s′ ∈ AY are used in the next (t′ + s′) steps, then Dk1+t′+s′ contains both

the symbols without hat (in Γ) and the symbols with hat (in Q̂ and Γ̂). This is

because Xi1 or Yj1 in Dk−1 remains in Dk (since the total numbers of Xi1 and Yj1

are odd, these objects cannot be consumed out by the reactions from (4)). Hence,

no reaction is enabled by Dk1+t′+s′ and f ′ is never derived after this wrong step.

From the arguments above, it holds that for an input w ∈ Σ∗, M enters the

final state f (and halts) if and only if there exists π ∈ IPλsq(AM,w) such that Dk−1

contains f or f̂ , Dk contains f ′, and π converges on Dk, for some k ≥ 1. Therefore,

we have that L(M) = Lλsq(AM) holds. �

Corollary 3. RAλsq = RE.

Corollary 4. PR(RAsq) = RE.

34

Proof. When λ is inputted to an RA AM = (S ,Σ, A,D0, f) with λ-input mode,

we consider that A′
M = (S ∪ {c},Σ ∪ {c}, A,D0, f) and the special symbol c � S

is inputted instead of λ. From the proof of Theorem 3, it obviously holds that

w = a1a2 · · · al ∈ Lλsq(AM) if and only if w′ = ci0a1ci1a2ci2 · · · alcil ∈ Lsq(A′
M) for

some i0, i1, i2, . . . , il ≥ 0.

Using a projection h which removes c, it is obtained that Lλsq(AM) = h(Lsq(A′
M)).

Hence, it holds that RAλsq = RE ⊆ PR(RAsq). The other inclusion is straightfor-

ward. �

Corollary 5. RAsq ⊆ L1(LOG,NON).

Proof. Let A = (S ,Σ, A,D0, f) be an RA and π = D0,D1, . . . ∈ IPsq(A,w) for

the input w ∈ Σ∗ with |w| = n. By the same way of the proof of “only if” part of

Theorem 3, we construct MA.

Then, it holds that |Di| ≤ ci, where c = maxa∈A(|Pa−Ra|) and 1 ≤ i ≤ n. We can

easily confirm that the workspace of MA after reading i symbols of w is bounded

by log(ci). Hence,A can be simulated by MA with L(MA) ∈ L1(LOG,NON). �

Next, we consider a necessary condition for a language to be inL1(LOG,NON)

and in RAsq. Let Σ be an alphabet with |Σ| ≥ 2 and h : Σ∗ → Σ∗ be an injection.

Then, the following lemma follows.

Lemma 1. It holds that {wh(w) |w ∈ Σ∗} � L1(LOG,NON).

Proof. Assume that there is a log n-restricted 1-way TM M = (Q,Γ,Σ, q0, F, δ)

such that L(M) = {wh(w) |w ∈ Σ∗}. Let |Q| = m1, |Γ| = m2, |Σ| = m3 ≥ 2 and the

input string be wh(w) with |w| = n.

35

We define Clog n as the set of all possible IDs of M before reading w which is a

part of the input string. Then, it holds that

|Clog n| ≤
n∑

i=1

(m1 ·(i+1)·(log i+1)·(m2+1)log i) ≤ n·m1 ·(n+1)·(log n+1)·(m2+1)log n.

Since it holds that |Σn| = (m3)n, if n is sufficiently large, we obtain the inequality

|Clog n| < |Σn|.

For w ∈ Σ∗, let IDn(w) = {Cn ∈ Clog n | π = C0, . . . ,Cn, . . . ∈ ID(M,w)}, i.e.,

In(w) is the set of IDs which appear as the n-th elements of sequences in ID(M,w).

From the assumption that L(M) = {wh(w) |w ∈ Σ∗} and h is an injection, we

can show that for any two distinct strings w1,w2 ∈ Σn, IDn(w1) and IDn(w2) are

incomparable. This is because if IDn(w1) ⊆ IDn(w2), then the string w2h(w1)

is accepted by M, which means that h(w1) = h(w2) and contradicts that h is an

injection.

Since for any two distinct strings w1,w2 ∈ Σn, IDn(w1) and IDn(w2) are in-

comparable and IDn(w1), IDn(w2) ⊆ Clog n, it holds the following inequality (see

Figure 3.7):

|{IDn(w) |w ∈ Σn}| ≤ |Clog n| < |Σn|.

However, the inequality |{IDn(w) |w ∈ Σn}| < |Σn| contradicts that for any two

distinct strings w1,w2 ∈ Σn, it holds that IDn(w1) � IDn(w2). �

Corollary 6. It holds that {wh(w) |w ∈ Σ∗} � RAsq.

Corollary 7. There exists a recursively enumerable language which cannot be

accepted by any reaction automaton in sequential manner.

36

��

�� ��

��

Clogn

IDn(w1) IDn(w2)

IDn(w3)IDn(w4)

Figure 3.7: Proof sketch of Lemma 1.

3.4 Space complexity issues

We now consider space complexity issues of reaction automata. That is, we in-

troduce some subclasses of reaction automata and investigate the relationships

between classes of languages accepted by those subclasses of automata and lan-

guage classes in the Chomsky hierarchy.

3.4.1 Bounded reaction automata

Let A be an RA and f be a function defined on N. otivated by the notion of a

workspace for a phrase-structure grammar ([40]), we define: for w ∈ LX(A) with

n = |w|, and for π in AIPX(A,w),

WS (w, π) = max{|Di| | Di appears in π }.

Further, the workspace of A for w is defined as:

WS (w,A) = min{WS (w, π) | π ∈ AIPX(A,w) }.

Definition 10. Let s be a function defined on N and X = {sq,mp}.

(1) An RA A is s(n)-bounded if for any w ∈ LX(A) with n = |w|, WS (w,A) is

bounded by s(n).

37

(2) If a function s(n) is a constant k (linear, exponential), thenA is termed constant-

bounded (resp. linear-bounded, exponential-bounded).

(3) The class of languages accepted by constant-bounded RAs (linear-bounded,

polynomial-bounded, exponential-bounded RAs) in X manner is denoted byCRAX

(resp. LRAX, PRAX, ERAX).

(4) The class of languages accepted by constant-bounded RAs (linear-bounded,

polynomial-bounded, exponential-bounded RAs) with λ-input mode in X manner

is denoted by CRAλX (resp. LRAλX, PRAλX, ERAλX).

3.4.2 The closure properties of LRAmp

We investigate the closure properties of the class LRAmp under various language

operations. To this aim, it is convenient to prove the following that one may call

normal form lemma for a bounded class of RAs.

In what follows, we assume that (i) the symbols (such as S ,Σ′, S 1, S 2,Q,etc.)

used in the construction for the background set in the proof denote mutually dis-

joint sets, and (ii) the symbols (such as p0, p1, c, d, f ′,etc.) are newly introduced

in the proof. In addition, we consider RAs only in maximally parallel manner in

Section 3.4.2 and Section 3.4.3.

Definition 11. An s(n)-bounded RA A = (S ,Σ, A,D0, f) is said to be in normal

form if f appears only in a converging state of an interactive process.

Lemma 2. For an s(n)-bounded RA A = (S ,Σ, A,D0, f), there exists an s(n)-

bounded RA A′ = (S ′,Σ, A′,D′
0, f ′) such that Lmp(A) = Lmp(A′) and f ′ appears

only in a convergeing state of an interactive process.

Proof. For an LRA A = (S ,Σ, A,D0, f), construct an RA A′ = (S ′,Σ, A′,D′
0, f ′)

38

and a mapping h : S ′# → S ′# as follows:

S ′ = S ∪ Σ′ ∪ {p0, p1, c, d, f ′}, where Σ′ = {a′|a ∈ Σ},

A′ = {(h(R), h(I) ∪ f ′, h(P) + c) | (R, I, P) ∈ A}

∪ {(a, ∅, a′) | a ∈ Σ} ∪ {a1, a2, a3, a4}, where

a1 = (p0,Σ, p1), a2 = (c, ∅, λ), a3 = (f , cp0, f ′), a4 = (d, ∅, h(D0)),

D′
0 = dp0,

and

{
h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S ′ − Σ).

Let w ∈ Σ∗ with |w| = n. Then, there exists an interactive process π = D0, . . . ,Dm ∈

AIPmp(A,w) which converges on Dm if and only if there exists π′ = D′
0, . . . ,D

′
m+3 ∈

AIPmp(A′,w) which converges on D′
m+3 such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D′
1 = h(D0) + p0 + a′1,

D′
i+1 = h(Di) + p0 + c ji + a′i+1 (for 1 ≤ i ≤ n − 1, and some ji ≥ 1),

D′
i+1 = h(Di) + p1 + cki (for n ≤ i ≤ m, and some ki ≥ 1),

D′
m+2 = h(Dm) + p1,

D′
m+3 = h(Dm) − f + f ′p1.

Note that (i) ji ≤ |Di−1| ≤ s(n), ki ≤ |Di−1| ≤ s(n). (ii) there may be Di in π with

f ⊆ Di, 0 ≤ i ≤ m − 1, but f ′ cannot be derived from the corresponding state D′
i+1

in π′, since the blocking symbol c exists in D′
i+2. Moreover, the workspace of A′

is obviously s(n)-bounded. �

Theorem 4. LRAmp is closed under union, intersection, concatenation, deriva-

tive, λ-free morphisms, λ-free gsm-mappings and shuffle.

Proof. Let A1 = (S 1,Σ, A1,D
(1)

0
, f1) and A2 = (S 2,Σ, A2,D

(2)

0
, f2) be LRAs in

normal form with (S 1 − Σ) ∩ (S 2 − Σ) = ∅. Moreover, let Σ1 = {a(1) | a ∈ Σ},

39

Σ2 = {a(2) | a ∈ Σ}, h1 : S 1
→ S 1

and h2 : S 2
→ S 2

are defined as follows:{
hi(a) = a(i) (for a ∈ Σ),
hi(a) = a (for a ∈ S i − Σ),

for i ∈ {1, 2}. It is important in the proof of “union”, “intersection”, “concatena-

tion” and “shuffle” parts, that h1(S 1) and h2(S 2) are disjoint.

[union] We construct an RA A = (S ,Σ, A,D0, f) as follows:

S = S 1 ∪ S 2 ∪ Σ1 ∪ Σ2 ∪ {d, f },

A = {(hi(R), hi(I) ∪ { f }, hi(P)) | (R, I, P) ∈ Ai, i ∈ {1, 2}}

∪ {(a, ∅, a(1)a(2)) | a ∈ Σ}

∪ {(fi, ∅, f) | i ∈ {1, 2}}

∪ {(d, ∅, h1(D(1)

0
) + h2(D(2)

0
)},

D0 = d.

Let w = a1 · · · an and let m = min{m1,m2}, m1,m2 ≥ 0. Then, for i = 1 or

i = 2, there exists an interactive process πi = D(i)
0
, . . . ,D(i)

mi ∈ AIPmp(Ai,w) which

converges on D(i)
mi if and only if there exists π = D0, . . . ,Dm+2 ∈ AIPmp(A,w) such

that {
Dk+1 = h1(D(1)

k) + h2(D(2)

k) + a(1)

k+1
a(2)

k+1
(for 0 ≤ k ≤ n − 1),

Dk+1 = h1(D(1)

k) + h2(D(2)

k) (for n ≤ k ≤ m).

(Note that either D(1)
m or D(2)

m includes f1 and f2, respectively, if and only if Dm+2

includes f .)

Hence, it holds that Lmp(A) = Lmp(A1) ∪ Lmp(A2) and the workspace of A is

linear-bounded.

[intersection] In the LRA A constructed in the proof of “union” part, we

replace (i){(fi, ∅, f) | i ∈ {1, 2}} by {(f1 f2, ∅, f)}, (ii)m = min{m1,m2} by m′ =

max{m1,m2}. Then, it is easily seen that that Lmp(A) = Lmp(A1)∩ Lmp(A2) holds.

40

[concatenation] We construct an RA A = (S ,Σ, A,D0, f) as follows:

S = S 1 ∪ S 2 ∪ Σ1 ∪ Σ2 ∪ {p1, p2, d, f },

A = {(hi(R), hi(I) ∪ { f }, hi(P)) | (R, I, P) ∈ Ai, i ∈ {1, 2}}

∪ {(a, p2, a(1)) | a ∈ Σ} ∪ {(d, ∅, h1(D(1)

0
))}

∪ {(a, p1, a(2) | a ∈ Σ} ∪ {(p1a, ∅, p2a(2) + h2(D(2)

0
)) | a ∈ Σ}

∪ {(f1 f2, ∅, f)},

D0 = dp1.

Let w1,w2 ∈ Σ∗ with |w1| = n1, |w2| = n2 and w1w2 = a1 · · · an. Then, for i = 1 and

i = 2, there exists an interactive process πi = D(i)
0
, . . . ,D(i)

mi ∈ AIPmp(Ai,wi) which

converges on D(i)
mi if and only if there exists π = D0, . . . ,Dm1+m2+2 ∈ AIPmp(A,w1w2)

such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(i) Dk+1 = h1(D(1)

k) + p1 + a(1)

k+1
(for 0 ≤ k ≤ n1 − 1),

(ii) Dk+1 = h1(D(1)

k) + h2(D(2)

k−n1
) + p2 + a(2)

k+1
(for n1 ≤ k ≤ n − 1),

(iii) Dk+1 = h1(D(1)

k) + h2(D(2)

k−n1
) + p2 (for n ≤ k ≤ m1 + m2).

Note that for Dk in (i), a rule in {(a, p1, a(2)) | a ∈ Σ} and {(p1a, ∅, p2a(2)+h2(D(2)

0
)) | a ∈

Σ} is nondeterministically chosen to be applied in the next step. If a rule in

{(a, p1, a(2)) | a ∈ Σ} is chosen, Dk+1 is in (ii).

Hence, it holds that Lmp(A) = Lmp(A1) · Lmp(A2) and the workspace of A is

linear-bounded.

41

[shuffle] We construct an RA A = (S ,Σ, A,D0, f) as follows:

S = S 1 ∪ S 2 ∪ Σ1 ∪ Σ2 ∪ {d, f },

A = {(hi(R), hi(I) ∪ Σ j ∪ { f }, hi(P)) | (R, I, P) ∈ Ai, i, j ∈ {1, 2}, i � j}

∪ {(a, ∅, a(i)) | a ∈ Σ, i ∈ {1, 2}}

∪ {(d, ∅, h1(D(1)

0
) + h2(D(2)

0
))} ∪ {(f1 f2, ∅, f)},

D0 = d.

Let w1,w2 ∈ Σ∗ with |w1| = n1, |w2| = n2 and let w = a1 · · · an ∈ shu f (w1,w2).

Then, for i = 1 and i = 2, there exists an interactive process πi = D(i)
0
, . . . ,D(i)

mi ∈

AIPmp(Ai,wi) which converges on D(i)
mi if and only if there exists π = D0, . . .,

Dm1+m2+2 ∈ AIPmp(A,w) such that

{
Dk+1 = h1(D(1)

k′) + h2(D(2)

k−k′) + a(i)
k+1

(for 0 ≤ k ≤ n − 1),

Dk+1 = h1(D(1)

k−n2
) + h2(D(2)

(k−n1
) (for n ≤ k ≤ m),

where i = 1 or i = 2 and 0 ≤ k′ ≤ k. Note that i = 1 (i = 2) means that only π1

(resp. π2) advances to the next step and the value of k′ (resp. k − k′) is increased

by one.

Hence, it holds that Lmp(A) = S hu f (Lmp(A1), Lmp(A2)) and the workspace of

A is linear-bounded.

42

[right derivative] For an LRA A = (S ,Σ, A,D0, f) in normal form and x =

a1 · · · an ∈ Σ+, construct an RA A′ = (S ′,Σ, A′,D′
0, f ′) and a mapping h : S ′# →

S ′# as follows:

S ′ = S ∪ Σ′ ∪ Q ∪ { f ′}, where Σ′ = {a′|a ∈ Σ},Q = {qi | 0 ≤ i ≤ n},

A′ = {(h(R), h(I) ∪ { f ′}, h(P)) | (R, I, P) ∈ A}

∪ {(a, ∅, a′) | a ∈ Σ}

∪ {(qi,Σ, a′i+1qi+1) | 0 ≤ i ≤ n − 1}

∪ {(f qn,Σ, f ′)},

D′
0 = h(D0) + q0,

and

{
h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S ′ − Σ).

Let wx ∈ Σ∗ with w = b1 · · · bl, l ≥ 1. Then, there exists an interactive process

π = D0, . . . ,Dm ∈ AIPmp(A,wx) which converges on Dm if and only if there exists

π′ = D′
0, . . . ,D

′
m+2 ∈ AIPmp(A′,w) such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D′

k+1 = h(Dk) + q0b′k+1 (for 0 ≤ k ≤ l − 1),
D′

k+1 = h(Dk) + qk−l+1a′k−l+1 (for l ≤ k ≤ l + n − 1),
D′

k+1 = h(Dk) + qn (for l + n ≤ k ≤ m).

Hence, it holds that Lmp(A)/x = Lmp(A′) and the workspace of A′ is linear-

bounded.

[left derivative] Let A = (S ,Σ, A,D0, f) be an LRA in normal form and x =

a1 · · · an ∈ Σ+ and Σi = {a(i) | a ∈ Σ} for 1 ≤ i ≤ n, Q = {qi | 0 ≤ i ≤ n}. Construct

43

an RA A′ = (S ′,Σ, A′,D′
0, f) and a mapping hn : S ′# → S ′# as follows:

S ′ = S ∪ (
⋃

1≤i≤n

Σi) ∪ Q ∪ {d},

A′ = {(hn(R), hn(I), hn(P)) | (R, I, P) ∈ A}

∪ {(qi, ∅, a(n)

i+1
qi+1) | 0 ≤ i ≤ n − 1}

∪ {(a, ∅, a(1)) | a ∈ Σ},

∪ {(a(i), ∅, a(i+1)) | a ∈ Σ, 1 ≤ i ≤ n − 1, n ≥ 2},

∪ {(d, ∅, hn(D0))},

D′
0 = dq0,

and

{
hn(a) = a(n) (for a ∈ Σ),
hn(a) = a (for a ∈ S ′ − Σ).

Let xw ∈ Σ∗ with w = b1 · · · bl, l ≥ 1. Then, there exists an interactive process

π = D0, . . . ,Dm ∈ AIPmp(A, xw) which converges on Dm if and only if there exists

π′ = D′
0, . . . ,D

′
m+1 ∈ AIPmp(A′,w) such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D′

k+1 = hn(Dk) + qk+1a(n)

k+1
b(k)

1
b(k−1)

2
· · · b(1)

k (for 1 ≤ k ≤ n − 1 and n ≥ 2),

D′
k+1 = hn(Dk) + qnb(n)

k−n+1
b(n−1)

k−n · · · b(1)

k (for n ≤ k ≤ l + n − 1),
D′

k+1 = hn(Dk) + qn (for l + n ≤ k ≤ m).

Hence, it holds that x\Lmp(A) = Lmp(A′) and the workspace of A′ is linear-

bounded.

[λ-free gsm-mappings] For an LRA A = (S ,Σ, A,D0, f) in normal form and a

gsm-mapping g = (Q,Σ,Δ, δ, p0, F), construct an RA A′ = (S ′,Δ, A′,D′
0, f ′) and

44

a mapping h : S ′# → S ′# as follows:

S ′ = S ∪ Σ′ ∪ Δ ∪ Q ∪ {c, d, f ′}, where Σ′ = {a′ | a ∈ Σ},

A′ = {(h(R), h(I) ∪ {c, f ′}, h(P)) | (R, I, P) ∈ A}

∪ {(b, ∅, b2) | b ∈ Δ}

∪ {(pc + stm(x), ∅, qda) | (q, x) ∈ δ(p, a)}

∪ {(pd + stm(x), ∅, qda) | (q, x) ∈ δ(p, a), |x| = 1}

∪ {(f ′′ f ,Σ ∪ {c, d}, f ′) | f ′′ ∈ F}

∪ {(c, ∅, c)} ∪ {(d, ∅, c)} ∪ {(d,Σ, λ)},

D′
0 = h(D0) + cp0.

and {
h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S ′ − Σ).

Then, for an input w = a1 · · · an, there exists π : D0,D1, . . . ,Dm ∈ AIPmp(A,w)

which converges on Dm, and g(w) = b1 · · · bn′ , where (p1, b1 · · · bt) ∈ δ(p0, a1), if

and only if there exists the interactive process π′ in A′ such that

D′
0 →b1 h(D0) + cp0b2

1 →b2 · · ·

→bt−1 h(D0) + cp0 + stm(b1b2 · · · bt) − bt

→bt h(D0) + dp0a′1

→bt+1 h(D1) + cp1b2
t+1 →bt+2 · · ·

(or →bt+1 h(D1) + dp1a′2 →bt+2 · · · if (q, bt+1) ∈ δ(p1, a2))

→bn′ h(Dn−1) + d f ′′a′n

→ h(Dn) + f ′′

→ h(Dn) − f + f ′(= D′
q)

45

and D′
q is a converging state in A′. Hence, it holds that g(Lmp(A)) = Lmp(A′) and

the workspace of A′ is linear-bounded.

[λ-free morphisms] Since LRAmp is closed under λ-free gsm-mappings, it is

also closed under λ-free morphisms. �

In order to prove some of the negative closure properties of LRAmp, the fol-

lowing two lemmas are of crucially importance.

Lemma 3. For an alphabet Σ with |Σ| ≥ 2, let h : Σ∗ → Σ∗ be an injection

such that for any w ∈ Σ∗, |h(w)| is bounded by a polynomial of |w|. Then, there

is no polynomially-bounded reaction automaton which accepts the language L =

{wh(w) |w ∈ Σ∗}.

Proof. Assume that there is a PRA A = (S ,Σ, A,D0, f) such that Lmp(A) =

{wh(w) |w ∈ Σ∗}. Let |S | = m1, |Σ| = m2 ≥ 2 and the input string be wh(w)

with |w| = n.

Since |h(w)| is bounded by a polynomial of |w|, |wh(w)| is also bounded by a

polynomial of n. Hence, for each Di in an interactive process π ∈ IPmp(A,wh(w)),

it holds that |Di| ≤ p(n) for some polynomial p(n) from the definition of a PRA.

Let Dp(n) = {D ∈ S # | |D| ≤ p(n)}. Then, it holds that

|Dp(n)| =
p(n)∑
k=0

m1
Hk =

p(n)∑
k=0

(k + m1 − 1)!

k! · (m1 − 1)!
=

(p(n) + m1)!

p(n)! · m1!

=
(p(n) + m1)(p(n) + m1 − 1) · · · (p(n) + 1)

m1!
.

(m1
Hk denotes the number of repeated combinations of m1 things taken k at a time.)

Therefore, there is a polynomial p′(n) such that |Dp(n)| = p′(n). Since it holds that

|Σn| = (m2)n, if n is sufficiently large, we obtain the inequality |Dp(n)| < |Σn|.

46

For i ≥ 0 and w ∈ Σ∗, let Ii(w) = {Di ∈ Dp(n) | π = D0, . . . ,Di, . . . ∈

IPmp(A,w)} ⊆ Dp(n), i.e., Ii(w) is the set of multisets in Dp(n) which appear

as the i-th elements of interactive processes in IPmp(A,w). From the fact that

Lmp(A) = {wh(w) |w ∈ Σ∗} and h is an injection, we can show that for any

two distinct strings w1,w2 ∈ Σn, In(w1) and In(w2) are incomparable. This is

because if In(w1) ⊆ In(w2), the string w2h(w1) is accepted by A, which means that

h(w1) = h(w2) and contradicts that h is an injection.

Since for any two distinct strings w1,w2 ∈ Σn, In(w1) and In(w2) are incompa-

rable and In(w1), In(w2) ⊆ Dp(n), it holds that

|{In(w) |w ∈ Σn}| ≤ |Dp(n)| < |Σn|.

However, from the pigeonhole principle, the inequality |{In(w) |w ∈ Σn}| < |Σn|

contradicts that for any two distinct strings w1,w2 ∈ Σn, In(w1) � In(w2). �

Lemma 4. L1 = {w1w2 | w1,w2 ∈ {a, b}∗, w1 � w2} ∈ LRAmp.

Proof. Let L = {u1su2v1tv2 | u1, u2, v1, v2 ∈ {a, b}∗, |u1| = |v1|, |u2| = |v2|, s, t ∈

{a, b}, s � t} and A = (S ,Σ, A,D0, f) be an LRA defined as follows:

S = {a, b, a′, b′, c1, c2, p0, p1, p2, p3, f } with Σ = {a, b},

A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}, where

a1 = (p0a, ∅, p0c1), a2 = (p0b, ∅, p0c1), a3 = (p0a, ∅, p1a′), a4 = (p0b, ∅, p1b′),

a5 = (p1a, ∅, p1c2), a6 = (p1b, ∅, p1c2), a7 = (p1a, ∅, p2c2), a8 = (p1b, ∅, p2c2),

a9 = (p2ac1, ∅, p2), a10 = (p2bc1, ∅, p2), a11 = (p2a′b, c1, p3),

a12 = (p2b′a, c1, p3), a13 = (p3ac2, ∅, p3), a14 = (p3bc2, ∅, p3),

a15 = (p3, abc2, f),

D0 = p0.

47

Let w = u1su2v1tv2 ∈ L be an input string. The string w is accepted by A in the

following manner:

1. Applying a1 and a2, the length of u1 is counted by the number of c1.

2. Applying a3 or a4, s is rewritten by s′.

3. Applying a5, a6, a7 and a8, the length of u2 is counted by the number of c2.

If a7 or a8 is applied, then the interactive process enters the next step.

4. Applying a9 and a10, it is confirmed that u1 = v1 by consuming c1.

5. Applying a11 and a12, it is confirmed that s � t.

6. Applying a13 and a14, it is confirmed that u2 = v2 by consuming c2.

Therefore, it holds that L = Lmp(A). Note that L1 = L ∪ {w ∈ Σ∗ | |w| =

2n + 1, n ≥ 0}. Since LRAmp is closed under union and includes all regular

language, L1 is in LRAmp. �

Theorem 5. LRAmp is not closed under complementation, quotient by regular

languages, morphisms or gsm-mappings.

Proof. From Lemma 4, L1 = {w1w2 | w1,w2 ∈ {a, b}∗, w1 � w2} ∈ LRAmp, while

from Lemma ??, L̄1 = {w1w2 | w1,w2 ∈ {a, b}∗, w1 = w2} � LRAmp. Hence,

LRAmp is not closed under complementation. From Corollary 12, it obviously

follows thatLRAmp is not closed under quotient by regular languages, morphisms

or gsm-mappings. �

48

3.4.3 The closure properties of LRAλmp

As is seen in the previous section, it remains open whether or not the classLRAmp

is closed under several basic operations such as Kleene closures (+, ∗) or inverse

homomorphism.

In this section, we shall prove that if the λ-move is allowed in the phase of

input mode in the transition process of reactions, then the obtained class of lan-

guages accepted in that manner shows in turn positive closure properties under

those basic operations.

In what follows, we focus on dealing with LRAλmp and continue investigating

the closure properties of the class of languages. As a result, it is shown that the

class forms an AFL, i.e., an abstract family of languages.

Theorem 6. For any LRAA, there exists an LRAA′ such that Lmp(A) = Lλmp(A′).

Proof. Let Σ′ = {a′ | a ∈ Σ} be a new alphabet. For an LRA A = (S ,Σ, A,D0, f)

in normal form, construct an RA A′ = (S ′,Σ, A′,D′
0, f ′) and a mapping h : S ′# →

S ′# as follows:

S ′ = S ∪ Σ′ ∪ {p0, p1, d, f ′},

A′ = {h(R), h(I) ∪ { f ′}, h(P) | (R, I, P) ∈ A} ∪ {(a, p1, a′) | a ∈ Σ}

∪ {a1, a2, a3}, where

a1 = (d,Σ, h(D0)), a2 = (p0,Σ, p1), a3 = (f ,Σ, f ′),

D′
0 = dp0,

and

{
h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S ′ − Σ).

49

Note that once λ is inputted before an element a ∈ Σ in an interactive process, a

cannot be consumed since p1 will have to be introduced by a2 in the next step,

which implies that no λ-input is allowed before an element a ∈ Σ in a successful

interactive process in A′. �

Definition 12. An s(n)-bounded RA A = (S ,Σ, A,D0, f) is said to be in λ-normal

form if f appears only in a converging state of an interactive process in the λ-input

mode.

Lemma 5. For an s(n)-bounded RA A = (S ,Σ, A,D0, f), there exists an s(n)-

bounded RA A′ = (S ′,Σ, A′,D′
0, f ′) such that Lλmp(A) = Lλmp(A′) and f ′ appears

only in a converging state of an interactive process.

Proof. For an s(n)-bounded RA A = (S ,Σ, A,D0, f), construct an RA A′ =

(S ′,Σ, A′,D′
0, f ′) and a mapping h : S ′# → S ′# as follows:

S ′ = S ∪ Σ′ ∪ {p0, p1, c, d, f ′}, where Σ′ = {a′|a ∈ Σ},

A′ = {(h(R), h(I) ∪ f ′, h(P) + c) | (R, I, P) ∈ A}

∪ {(a, p1, a′) | a ∈ Σ} ∪ {a1, a2, a3, a4, a5}, where

a1 = (p0,Σ, p1), a2 = (c, ∅, λ), a3 = (f , {c, p0} ∪ Σ, f ′),

a4 = (d, ∅, h(D0)), a5 = (p0, ∅, p0),

D′
0 = dp0,

and

{
h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S ′ − Σ).

When λ is inputted in an interactive process, a1 exclusively or a5 has to be used in

the next step. Using a1 implies that the input of the string terminates, while using

50

a5 implies that the input of the string continues. The rest of the key issue is proved

in a similar manner to Lemma 2. �

Theorem 7. LRAλmp is closed under union, intersection, concatenation, Kleene

+, Kleene ∗, derivative, λ-free morphisms, inverse morphisms, λ-free gsm-mappings

and shuffle.

Proof. [union, concatenation and shuffle] Using the same construction as the proof

of Theorem 1, the claims are immediately proved.

[intersection] Let A1 = (S 1,Σ, A1,D
(1)

0
, f1) and A2 = (S 2,Σ, A2,D

(2)

0
, f2) be

LRAs in λ-normal form with (S 1 − Σ)∩ (S 2 − Σ) = ∅. Moreover, let Σi = {a(i) | a ∈

Σ}, Σ′i = {a(i)′ | a(i) ∈ Σi} be alphabets and hi : S i
→ S i

be a mapping defined as

follows:

{
hi(a) = a(i) (for a ∈ Σ),
hi(a) = a (for a ∈ S i − Σ),

for i ∈ {1, 2}.

Then, we construct an RA A = (S ,Σ, A,D0, f) as follows:

S = S 1 ∪ S 2 ∪ Σ1 ∪ Σ2 ∪ Σ′1 ∪ Σ′2 ∪ {d, f },

A = {(hi(R), hi(I) ∪ Σ ∪ Σ′j ∪ { f }, hi(P)) | (R, I, P) ∈ Ai, i ∈ {1, 2}}

∪ {(a,Σ′1 ∪ Σ′2, a(1)′a(2)′) | a ∈ Σ}

∪ {(a(i)′ ,Σ, a(i)) | a(i) ∈ Σi, i ∈ {1, 2}}

∪ {(a(i)′ ,Σ, a(i)′) | a(i) ∈ Σi, i ∈ {1, 2}}

∪ {(d, ∅, h1(D(1)

0
) + h2(D(1)

0
))} ∪ {(f1 f2,Σ ∪ Σ′1 ∪ Σ′2, f)},

D0 = d.

51

Let w = a1 · · · an ∈ Lλmp(A1) ∩ Lλmp(A2). Moreover, let D(1)
i →λ · · · →λ D(1)

j →am

D(1)

j+1
be a part of π1 ∈ IPλmp(A1,w) and D(2)

k →λ · · · →λ D(2)

l →am D(2)

l+1
be a part

of π2 ∈ IPλmp(A2,w) for 1 ≤ m ≤ n. We assume that j − i ≤ l − k. Then, they are

imitated in π ∈ IPλmp(A,w) as follows:

h1(D(1)
i) + h2(D(2)

k) →λ · · · →λ h1(D(1)
j) + h2(D(2)

k−i+ j)

→amh1(D(1)
j) + h2(D(2)

k−i+ j) + a(1)′

m a(2)
m

→λ h1(D(1)
j) + h2(D(2)

k−i+ j) + a(1)
m a(2)′

m

→λ h1(D(1)
j) + h2(D(2)

k−i+ j+1
) + a(1)

m a(2)′

m →λ · · ·

→λ h1(D(1)
j) + h2(D(2)

k) + a(1)
m a(2)

m

→λ h1(D(1)

j+1
) + h2(D(2)

k+1
).

The other direction of the proof is shown in the similar manner. Hence, it holds

that Lλmp(A) = Lλmp(A1) ∩ Lλmp(A2) and the workspace of A is linear-bounded.

[Kleene ∗] Let A = (S ,Σ, A,D0, f) be an LRA in λ-normal form and Σ′ =

{a′ | a ∈ Σ}. Construct an RA A′ = (S ′,Σ, A′,D′
0, f ′) and a mapping h : S ′# → S ′#

as follows:

S ′ = S ∪ Σ′ ∪ {p0, p1, d, e, f ′′, f ′},

A′ = {(h(R), h(I) ∪ { f ′, f ′′}, h(P)) | (R, I, P) ∈ A}

∪ {(h(R), h(I) ∪ Σ ∪ { f ′, f ′′}, h(P)) | (R, I, P) ∈ A, f ⊆ P}

∪ {(a, p1, a′) | a ∈ Σ}

∪ {(a, e, λ) | a ∈ (S ∪ Σ′) − Σ}

∪ {(d, ∅, h(D0) + e)} ∪ {(p0,Σ, p1)} ∪ {(p0, ∅, p0)}

∪ {(e f ,Σ, f ′′)} ∪ {(f ′′, {p1}, h(D0) + e)} ∪ {(f ′′,Σ ∪ {p0}, f ′)},

52

D′
0 = dp0,

and

{
h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S ′ − Σ).

Let w1,w2 ∈ Σ∗ with w1 = a(1)

1
· · · a(1)

n ,w2 = a(2)

1
· · · a(2)

m . Then, we can easily

see that there exist the interactive processes D0,D
(1)

1
, . . .D(1)

i ∈ AIPλmp(A,w1) and

D0,D
(2)

1
. . .D(2)

j ∈ AIPλmp(A,w2) which converge on D(1)
i and D(2)

j , respectively, if

and only if there exists the interactive process D′
0,D

′
1, . . .D

′
i+ j+4 ∈ AIPλmp(A′,w1w2)

such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D′
k+1 = h(D(1)

k) + ep0 (for 0 ≤ k ≤ i),
D′

i+2 = h(D(1)
i) − f + f ′′p0,

D′
i+3 = h(D0) + ep0,

D′
k+i+4 = h(D(2)

k) + ep0 (for 0 ≤ k ≤ j),
D′

i+ j+5
= h(D(2)

j) − f + f ′′p1,

D′
i+ j+6
= f p1

Hence, it holds that w1w2 ∈ Lλmp(A′). In a similar manner, we can prove that

w1 · · ·wl ∈ Lλmp(A′) for w1, . . . ,wl ∈ Lλmp(A) and l ≥ 0. Then, it holds that

Lλmp(A)∗ = Lλmp(A′) and the workspace of A′ is linear-bounded.

[Kleene +] For LRAs A and A′ in the proof of “Kleene ∗” part, it holds that

Lλmp(A)+ = Lλmp(A′)∩ Σ+. Since LRAλmp is closed under intersection with regular

languages, it is also closed under Kleene +.

[right derivative] For an LRA A = (S ,Σ, A,D0, f) in λ-normal form and x =

a1 · · · an ∈ Σ+, construct an RA A′ = (S ′,Σ, A′,D′
0, f ′) and a mapping h : S ′# →

S ′# as follows:

S ′ = S ∪ Σ′ ∪ Q ∪ { f ′}, where Σ′ = {a′|a ∈ Σ},Q = {qi | 0 ≤ i ≤ n},

53

A′ = {(h(R), h(I) ∪ { f ′}, h(P)) | (R, I, P) ∈ A}

∪ {(a,Q − {q0}, a′) | a ∈ Σ}

∪ {(qi,Σ, a′i+1qi+1) | 0 ≤ i ≤ n − 1}

∪ {(qi,Σ, qi) | 0 ≤ i ≤ n}

∪ {(f qn,Σ, f ′)},

D′
0 = h(D0) + q0,

and

{
h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S ′ − Σ).

Note that because of the inhibitor of a reaction in {(a,Q − {q0}, a′) | a ∈ Σ}, a

reaction in {(qi,Σ, a′i+1qi+1) | 0 ≤ i ≤ n − 1} must be used after feeding the input.

Hence, the rest of the proof is similar to the case for the ordinary input mode.

[left derivative] For an LRA A = (S ,Σ, A,D0, f) in λ-normal form and x =

a1 · · · an ∈ Σ+, construct an RA A′ = (S ′,Σ, A′,D′
0, f ′) and a mapping h : S ′# →

S ′# as follows:

S ′ = S ∪ Σ′ ∪ Q ∪ { f ′}, where Σ′ = {a′|a ∈ Σ},Q = {qi | 0 ≤ i ≤ n},

A′ = {(h(R), h(I) ∪ { f ′}, h(P)) | (R, I, P) ∈ A}

∪ {(a,Q − {qn}, a′) | a ∈ Σ}

∪ {(qi,Σ, a′i+1qi+1) | 0 ≤ i ≤ n − 1}

∪ {(qi,Σ, qi) | 0 ≤ i ≤ n}

∪ {(f qn,Σ, f ′)},

D′
0 = h(D0) + q0,

54

and

{
h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S ′ − Σ).

Note that because of the inhibitor of a reaction in {(a,Q − {qn}, a′) | a ∈ Σ}, each

reaction in {(qi,Σ, a′i+1qi+1) | 0 ≤ i ≤ n − 1} must be used before starting the input

except λ.

Let xw ∈ Σ∗ with w = b1 · · · bl. Then, there exists an interactive process

π = D0, . . . ,Dm ∈ AIPλmp(A, xw) which converges on Dm if and only if there

exists π′ = D′
0, . . . ,D

′
m+2 ∈ AIPλmp(A′,w) such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D′

i+1 = h(Di) + qk+1a′k+1 (for 0 ≤ k ≤ n − 1),
D′

i+1 = h(Di) + qnb′k−n+1 (for n ≤ k ≤ l + n − 1),
D′

i+1 = h(Di) + qn,

for some 0 ≤ i ≤ m. Hence, it holds that x\Lλmp(A) = Lλmp(A′) and the workspace

of A′ is linear-bounded.

[inverse morphisms] Let A = (S ,Δ, A,D0, f) be an LRA in normal form and

h : Σ∗ → Δ∗ be a morphism defined as h(a) = b(a,1) · · · b(a,l) ∈ Δ∗ or h(a) = λ, for

a ∈ Σ and |h(a)| = l. Moreover, let Δ′ = {b′ | b ∈ Δ} and Q = {q(a,i) | a ∈ Σ, |h(a)| ≥

2, 1 ≤ i ≤ |h(a)| − 1}. Construct an RA A′ = (S ′,Σ, A′,D′
0, f ′) and a mapping

g : S ′# → S ′# as follows:

S ′ = S ∪ Σ ∪ Δ′ ∪ Q ∪ {d, f ′},

A′ = {(g(R), g(I) ∪ {a ∈ Σ | |h(a)| = 0} ∪ { f ′}, g(P)) | (R, I, P) ∈ A}

∪ {(a, ∅, λ) | |h(a)| = 0, a ∈ Σ}

∪ {(a, ∅, b′(a,1)) | |h(a)| = 1, a ∈ Σ}

∪ {(a, ∅, q(a,1)b′(a,1)), (q(a,1),Σ, b′(a,2)) | |h(a)| = 2, a ∈ Σ}

55

∪ {(a, ∅, q(a,1)b′(a,1)), (q(a,i),Σ, q(a,i+1)b′(a,i+1)), (q(a,|h(a)|−1),Σ, b′(a,|h(a)|))

| |h(a)| ≥ 3, 1 ≤ i ≤ |h(a)| − 2, a ∈ Σ}

∪ {(q, ∅, q) | q ∈ Q}

∪ {(d, ∅, g(D0))} ∪ {(f ,Q ∪ Σ, f ′)},

D′
0 = d,

and

{
g(a) = a′ (for a ∈ Δ),
g(a) = a (for a ∈ S ′ − Δ).

Let w = b(a1,1) · · · b(a1,|h(a1)|) · · · b(an,1) · · · b(an,|h(an)|) ∈ Lλmp(A). Hence, a1 · · · an is

included in h−1(w). Moreover, let Di →b(am ,1) · · · →b(am ,|h(am)|) Dj be a part of π ∈

IPλmp(A,w). For |h(am)| ≥ 3, it is imitated in π′ ∈ IPλmp(A′,w) as follows:

g(Di−1)

→amg(Di)b′(am,1)q(am,1)

→λ g(Di+1)b′(am,2)q(am,2) →λ · · ·

(or →λ g(Di+1)q(am,1) →λ · · · , for a λ-input in A)

→λ g(Di−1)b′(am,h(am))

→λ g(Di).

The other direction of the proof is shown in the similar manner. Hence, it

holds that h−1(Lλmp(A)) = Lλmp(A′) and the workspace of A′ is linear-bounded.

[λ-free morprhisms] We first show that LRAλmp is closed under codings. For

an LRA A = (S ,Σ, A,D0, f) in λ-normal form and a coding h : Σ∗ → Δ∗, con-

56

struct an RA A′ = (S ′,Δ, A′,D′
0, f ′) and a mapping h : S ′# → S ′# as follows:

S ′ = S ∪ Σ′ ∪ Δ ∪ {d}, where Σ′ = {a′ | a ∈ Σ},

A′ = {(h(R), h(I), h(P)) | (R, I, P) ∈ A}

∪ {(h(a), ∅, a′) | a ∈ Σ}

∪ {(d, ∅, h(D0))},

D′
0 = d,

and {
h(a) = a′ (for a ∈ Σ),
h(a) = a (for a ∈ S ′ − Σ).

Then, it holds that h(Lλmp(A)) = Lλmp(A′) and the workspace of A′ is linear-

bounded.

In Theorem 3.7.1 of [12], it is shown that each family closed under inverse

morphisms, intersection with regular languages and codings is also closed under

λ-free morprhisms. Hence, LRAλmp is closed under λ-free morprhisms.

[λ-free gsm-mappings] Since every trio is closed under λ-free gsm-mappings

([40]), LRAλmp is closed under λ-free gsm-mappings. �

We shall show that LRAλmp shares common negative closure properties with

LRAmp. The manner of proving those results is almost parallel to that of proofs

for LRAmp presented in the previous section. In order to make this chapter self-

contained, below we give the proof of the following lemma that is a λ-version of

Lemma 2.

Lemma 6. For an alphabet Σ with |Σ| ≥ 2, let h : Σ∗ → Σ∗ be an injection such

that for any w ∈ Σ∗, |h(w)| is bounded by a polynomial of |w|. Then, there is no

PRA A such that Lλmp(A) = {wh(w) |w ∈ Σ∗}.

57

Proof. Assume that there is a PRA A = (S ,Σ, A,D0, f) such that Lλmp(A) =

{wh(w) |w ∈ Σ∗}. Let |S | = m1, |Σ| = m2 ≥ 2 and the input string be wh(w)

with |w| = n.

Since |h(w)| is bounded by a polynomial of |w|, |wh(w)| is also bounded by a

polynomial of n. Hence, for each Di in an interactive process π ∈ IPλmp(A,wh(w)),

it holds that |Di| ≤ p(n) for some polynomial p(n) from the definition of a PRA.

Let Dp(n) = {D ∈ S # | |D| ≤ p(n)}. Then, it holds that

|Dp(n)| =
p(n)∑
k=0

m1
Hk =

p(n)∑
k=0

(k + m1 − 1)!

k! · (m1 − 1)!
=

(p(n) + m1)!

p(n)! · m1!

=
(p(n) + m1)(p(n) + m1 − 1) · · · (p(n) + 1)

m1!
(∗)

where m1
Hk denotes the number of repeated combinations of m1 things taken k at

a time. Therefore, there is a polynomial p′(n) such that |Dp(n)| = p′(n). Since it

holds that |Σn| = (m2)n, if n is sufficiently large, we obtain the inequality |Dp(n)| <

|Σn|.

For w = a1 · · · an ∈ Σ∗, let I(w) = {D ∈ Dp(n) | π = D0 →a1 · · · →an D → · · · ∈

IPλmp(A,w)} ⊆ Dp(n), i.e., I(w) is the set of multisets in Dp(n) which appear imme-

diately after inputing w in IPλmp(A,w). From the fact that Lλmp(A) = {wh(w) |w ∈

Σ∗} and h is an injection, we can show that for any two distinct strings w1,w2 ∈ Σn,

I(w1) and I(w2) are incomparable. This is because if I(w1) ⊆ I(w2), then the string

w2h(w1) is in Lλmp(A), which means that h(w1) = h(w2) and contradicts that h is an

injection.

Since for any two distinct strings w1,w2 ∈ Σn, I(w1) and I(w2) are incompara-

ble and I(w1), I(w2) ⊆ Dp(n), it holds that

|{I(w) |w ∈ Σn}| ≤ |Dp(n)| < |Σn|.

58

However, from the pigeonhole principle, the inequality |{I(w) |w ∈ Σn}| < |Σn|

contradicts that for any two distinct strings w1,w2 ∈ Σn, I(w1) � I(w2). Hence,

there is no LRA A such that Lλmp(A) = {wh(w) |w ∈ Σ∗}. �

Theorem 8. LRAλmp is not closed under complementation, quotient by regular

languages, morphisms or gsm-mappings.

Corollary 8. LRAλmp is an AFL, but not a full AFL.

Remark: We note the class PRAλmp could be proved to be an AFL in the same

manner as LRAλmp.

3.4.4 The hierarchy of language classes by reaction automata

In this section, we develop further characterizations concerning the language classes

defined by bounded RAs in relation to the Chomsky hierarchy.

Theorem 9. For a language L, L is accepted by an s(n)-bounded RA in maximally

parallel manner if and only if L is accepted by a log s(n)-bounded one-way TM.

Proof. (“if” part) For simulating a log s(n)-bounded one-way TM M, we can use

the same way as the proof of Theorem 1. Hence, it is enough to consider the

workspace of an RA AM.

From the proof of Proposition 1 in [14], any f (n)-bounded 1-way Turing ma-

chine can be simulated by an f (n)-bounded two-stack machine. Assume that the

workspace of 1-way Turing machine M′ with L(M′) = L(M) is bounded by some

function log2 s(n). Then, the maximum number of the sum of the workspace of

stack-1 and stack-2 of M is also bounded log2 s(n). Hence, the workspace of AM

59

is at most 1 + 2 + · · · + 2log2 s(n)−1 + c = s(n) + c − 1 for some constant c, which is

bounded by s(n).

(“only if” part) Let S = {s1, . . . , sk} be an ordered alphabet andA = (S ,Σ, A,D0, f)

be an RA. Assume that for an input w = a1 · · · an ∈ Σ∗, the workspace of A

is bounded by the function s(n). Then, we shall construct the nondeterministic

(k + 2)-tape TM MA. MA imitates an interactive process π : D0, . . . ,Dn, . . . ∈

IPmp(A,w) in the following manner:

1. At first, Tape-1 has the input w ∈ Σ∗ and Tape-(i + 1) has the number of si

in D0 (for 1 ≤ i ≤ k) represented by the binary number. Tape-(k + 2) is used

to count the number of computation step of MA.

2. Let D be the current multiset in π. When MA reads the symbol si in the

input, add one to the Tape-(i + 1). Then, by checking all tapes except Tape-

1, compute an element of Resmp
A (si + D) in the nondeterministic way and

rewrite the contents in the tapes. After reading through the input w, MA

computes an element of Resmp
A (D) in the nondeterministic way and rewrite

the contents in the tapes.

3. After reading through the input w, if Resmp
A (D) = {D} and f ⊆ D, then MA

accepts w. In the case where (i) Resmp
A (D) = {D} and f � D, (ii) |D| exceeds

s(n) or (iii) the number of computation step exceeds c(s(n))k for k(= |S |)

and some constant c, MA rejects w.

Since we use the binary number for counting the number of symbols, the maxi-

mum length of each tape to memorize D is log2 s(n). In the case where MA never

stops with the input w, there exists a cycle of configurations in the computation of

60

MA. Since the number of all possible Ds during the computation is bounded by

c(s(n))k for k and some constant c (see the equation (∗) in the proof of Lemma 6),

the length of Tape-(k+ 2) to count the number of steps of computation is bounded

by log2 c+k log2 s(n). Therefore, it holds that L(MA) = Lmp(A) and the workspace

of MA is bounded by log2 s(n). �

The similar theorem for RAs in sequential manner is easily derived from The-

orem 3 and Theorem 9.

Theorem 10. For a language L, L is accepted by an s(n)-bounded RA with λ-input

mode in sequential manner if and only if L is accepted by a log s(n)-bounded one-

way TM.

Corollary 9. CS = ERAmp = ERAλsq.

Next, we consider a representation theorem for the classRE in terms ofLRAmp.

For the purpose, we use the following result in [34].

Theorem 11 (Theorem 3.12 in [34]). For any recursively enumerable language

L ⊆ Σ∗, context-sensitive language L′ such that w ∈ L if and only if c2
ic1w ∈ L′

(or wc1c2
i ∈ L′) for some i ≥ 0 and c1, c2 � Σ.

Lemma 7. For any context-sensitive language L ⊆ Σ∗, there exists an LRA A

such that w ∈ L if and only if c2n
w ∈ Lmp(A) (or wc2n ∈ Lmp(A)) with |w| = n and

c � Σ.

Proof. From Corollary 9, let A = (S ,Σ, A,D0, f) be an ERA which accepts L.

61

Then, construct an RA A′ = (S ′,Σ ∪ c, A′,D′
0, f ′) as follows:

S ′ = S ∪ {p0, p1, p2, p3, p4, n1, n2, c, c1, c2, d, e, f ′, f ′′},

A′ = {R, I ∪ {c, f ′}, P) | (R, I, P) ∈ A}

∪ {a′1, a′2, a3, a4, a5, a6, a7, a′8, a9, a10, a11, a12}, where

a′1 = (p0, c, p1 p2 p3n2), a′2 = (p1, e f f ′ f ′′, p1n1), a3 = (c, p1, c1),

a4 = (c2
1, p0c2e, c2), a5 = (c2

2, p0c1e, c1), a6 = (c1d, p0c2, e),

a7 = (c2d, p0c1, e), a′8 = (e, p0cc1c2, f ′′), a9 = (p2, cp4, p2n2)

a10 = (p3,Σ, p4), a11 = (n1n2, ∅, λ), a12 = (f f ′′, p3n1n2, f ′),

D′
0 = D0 + dp0.

We note that the reactions a′1-a′8 are almost the same as the ones of Example

4 and the total number of n1 appearing in a interactive process of IPmp(A′, c2n
w)

is n + 1 (see Example 4 and Figure 3.4). On the other hand, the total number of

n2 appearing in a interactive process of IPmp(A′, c2n
w) is |w| + 1, which is derived

by the reactions a′1, a9, a10. Using the reaction a11, it is confirmed that if c2n
w is

accepted by A′, then n + 1 = |w| + 1. Hence, it holds that w ∈ Lmp(A) if and only

if c2n
w ∈ Lmp(A′) with |w| = n.

Since the workspace of A for w is bounded by an exponential function with

respect to the length |w| = n, the workspace of A′ for c2n
w is bounded by a linear

function with respect to the length |c2n
w| = 2n + n.

For the case wc2n
, we can prove in a similar manner. �

Lemma 8. For any recursively enumerable language L ⊆ Σ∗, there exists an LRA

A such that w ∈ L if and only if c3
jc2

ic1w ∈ Lmp(A) (or wc1c2
ic3

j ∈ Lmp(A)) for

some i, j ≥ 0 and c1, c2, c3 � Σ.

62

Theorem 12. (i) For any recursively enumerable language L, there exists an LRA

A such that L = R\Lmp(A) (or Lmp(A)/R) for some regular language R.

(ii) For any recursively enumerable language L, there exists an LRA A such that

L = h(Lmp(A)) for some projection h.

There are many related works on language acceptors based on multiset rewrit-

ing, such as a variant of P systems, called P automata investigated in the literature

(e.g., [4],[35],[5]). A P automaton is a finite automata-like computing model in

which a configuration comprises a tuple of multisets each of which consists of

objects from each membrane region. On receiving an input (a multiset) from the

environment at each step of computation, it changes its configuration by making

region-wise applications of the equipped rules. An input sequence of multisets is

accepted if the transition halts in all regions after reading the whole input, and the

language accepted by a P automaton is defined as a mapping image of those ac-

cepted multiset sequences. In this sense, reaction automata may also be regarded

as a simplified variants of P automata with no membrane structure.

Let us denote the class of languages accepted by P automata with sequential

rule applications by PAsq. In [4], it is proved that L1(LOG, LOG) = PAsq.

Hence, the following corollary holds from Corollary 5.

Corollary 10. LRAsq ⊆ L1(LOG, LOG) = PAsq.

Then, we consider the relation between the language classes accepted by RAs

in maximally parallel manner and ones in sequential manner. For the sake of

comparing the classes of languages LRAmp and RAsq, remind Lemma 7.

Theorem 13. LRAmp, RAsq and CF are incomparable with one another.

63

Proof. (LRAmp−(RAsq∪CF) � ∅) From Lemma 7, it holds that L = {wwc22n |w ∈

Σ∗, |w| = n} ∈ LRAmp. Let h be an injection such that h(w) = wc22n
with |w| = n.

On the other hand, from Corollary 6 it is obviously holds that L � RAsq ∪ CF .

(RAsq − (LRAmp ∪ CF) � ∅) Let CM be the class of all commutative lan-

guages. Then, it holds that CM ⊂ RAsq because after counting the number of

each symbol appearing in the input, an RA can simulate a TM which accepts a

vector of natural numbers. On the other hand, CM and CS(⊃ LRAmp) is obvi-

ously incomparable. Hence, it holds that RAsq − (LRAmp ∪ CF) � ∅.

(CF − (LRAmp ∪ RAsq) � ∅) From Corollary 6 and Lemma 4, {wwR |w ∈

{a, b}∗} ∈ CF − (LRAmp ∪ RAsq). �

Corollary 11. It holds that LRAsq ⊂ RAsq and LRAsq ⊂ LRAmp.

Proof. From the definition, it is obviously holds that LRAsq ⊆ RAsq. For the

proof of LRAsq ⊆ LRAmp, let A = (S ,Σ, A,D0, f) be an LRA in sequential

manner. Construct an LRA A′ = (S ∪ {s},Σ, A′,D0 ∪ {s}, f) in maximally parallel

manner, where

A′ = {a′ = (R + s, I, P + s) | a = (R, I, P) ∈ A}.

Then, it holds that Lsq(A) = Lmp(A′) and LRAsq ⊆ LRAmp. Using Theorem 13,

it is shown that LRAsq ⊂ RAsq and LRAsq ⊂ LRAmp. �

Lastly, we consider the hierarchy of the language classes accepted by RAs in

maximally parallel manner.

Theorem 14. The following inclusions hold :

REG = CRAmp ⊂ LRAmp ⊆ PRAmp ⊂ ERAmp = CS ⊂ RAmp = RE.

64

Proof. From the definitions, the inclusion REG ⊆ CRAmp is straightforward.

Conversely, for a given k-bounded RA A = (S ,Σ, A,D0, f) and for w ∈ Lmp(A),

there exists a π in IPmp(A,w) such that for each Di appearing in π, we have |Di| ≤

k. Let Q = {D ∈ S # | |D| ≤ k} and F = {D | D ∈ Q, f ⊆ D,Resmp
A (D) = {D}},

and construct an NFA M = (Q,Σ, δ,D0, F), where δ is defined by δ(D, a) � D′ if

D →a D′ for a ∈ Σ ∪ {λ}. Then, it is seen that Lmp(A) = L(M), and CRAmp ⊆

REG, thus we obtain that REG = CRAmp. The other inclusions are all obvious

from the definitions. The language {anbn | n ≥ 0} proves the proper inclusion :

REG ⊂ LRAmp. A proper inclusion PRAmp ⊂ ERAmp is due to that {wwR | w ∈

{a, b}∗} ∈ ERAmp − PRAmp, which follows from Lemma 3. �

Note that we can prove REG = CRAsq in a similar way.

3.5 Discussion

Based on the formal framework presented in a series of papers [6, 7, 8, 9, 10],

we have introduced the notion of reaction automata and investigated the language

accepting powers of the automata. Roughly, a reaction automaton may be charac-

terized as a language accepting device based on the multiset rewriting.

We have investigated RAs with a focus on the two ways of rule applications,

maximally parallel manner and sequential manner. Considering some restrictions

on the workspace and λ-input mode, we have introduced the classes of languages

accepted by the variants of RAs, and investigated the computational powers and

the closure properties of them. In order to explore Turing machines (TMs) corre-

sponding to those classes of RAs, we have also introduced a new variant of TMs

with restricted workspace, called s(n)-restricted TMs.

65

Table 3.1: Closure properties of LRAmp and LRAλmp.

language operations LRAmp LRAλmp

union Y Y

intersection Y Y

complementation N N

concatenation Y Y

Kleene + ? Y

Kleene ∗ ? Y

(right & left) derivative Y Y

(right & left) quotient by regular languages N N

λ-free morphisms Y Y

morphisms N N

inverse morphisms ? Y

λ-free gsm-mappings Y Y

gsm-mappings N N

shuffle Y Y

Table 1 summarizes the results of closure properties of both LRAmp and

LRAλmp, while Figure 3.8 illustrates the relationship between language classes

defined by a various types of reaction automata and the Chomsky hierarchy.

Specifically, we have shown that in a computing schema with one-pot solu-

tion and a finite number of molecular species, reaction automata can perform the

Turing universal computation. The idea behind its computing principle is to sim-

ulate the behavior of two pushdown stacks in terms of multiset rewriting with the

help of an encoding technique, where the role of the inhibitors in each reaction is

effectively utilized.

There are several subjects remaining to be investigated. First, it is open whether

or not the following proper inclusion relations holds:

• LRAmp ⊂ LRAλmp,

66

RE = RAmp
= RA

λ

sq

RAsq

LRAsq

LRAmp

=PR(RAsq)=

CF

PR(LRAmp)

CS = ERAmp = ERA

λ

sq

REG = CRAmp = CRAsq

PRAmp
LRA

λ

mp

Figure 3.8: The diagram of the relation between the language classes regarding

RA. A proper inclusion relation is denoted by a solid line and an inclusion relation

is denoted by a broken line.

• LRAmp ⊂ PRAmp,

• LRAmp ⊂ L1(NON, LOG),

• RAsq ⊂ L1(LOG,NON),

• LRAsq ⊂ L1(LOG, LOG) = PAsq.

Secondly, to explore the computation powers of deterministic reaction automata

and time-bounded reaction automata is open and important issues. Lastly, from

the viewpoint of designing chemical reactions, it is useful to explore a methodol-

ogy for “chemical reaction programming” in terms of reaction automata. Further,

interesting is to evaluate/simulate a variety of chemical reactions in the real world

by the use of the framework of reaction automata.

67

Chapter 4

Hairpin incompletion

Hairpin completion and its variant called bounded hairpin completion are opera-

tions on formal languages, inspired by a hairpin formation in molecular biology.

Another variant called hairpin lengthening has been recently introduced, and the

related closure properties and algorithmic problems concerning several families

of languages have been studied.

In this chapter, we introduce a new operation of this kind, called hairpin in-

completion which is not only an extension of bounded hairpin completion, but also

a restricted (bounded) variant of hairpin lengthening. Further, the hairpin incom-

pletion operation provides a formal language theoretic framework that models a

bio-molecular technique nowadays known as Whiplash PCR. We study the closure

properties of language families under both the operation and its iterated version.

We show that a family of languages closed under intersection with regular

sets, concatenation with regular sets, and finite union is closed under one-sided

iterated hairpin incompletion, and that a family of languages containing all linear

languages and closed under circular permutation, left derivative and substitution

is also closed under iterated hairpin incompletion.

68

4.1 Introduction

In these years there has been introduced and much investigated an operation called

hairpin completion in formal language theory, inspired by intra molecular phe-

nomena in molecular biology. A hairpin structure is well-known as one of the

most popular secondary structures for a single stranded DNA (or RNA) molecule

to form, with the help of so-called Watson-Crick complementarity and annealing,

under a certain biochemical condition in a solution.

This chapter continues research directed by a series of works started in [3]

where the hairpin completion operation was introduced, followed by several other

related papers ([22, 24, 25]), where both the hairpin completion and its inverse

operation (the hairpin reduction) were investigated.

Inspired by threefold motivations, we will introduce the notion of hairpin in-

completion in this chapter. Firstly, the hairpin incompletion is a natural extension

of the notion of bounded hairpin completion introduced and studied in [15] which

is a restricted variant of the hairpin completion with the property that the length of

the prefix (suffix) prolongation is constantly bounded. Thus, the bounded hairpin

completion involves the lengthening of prefix (suffix) with a constant length of the

strand at the end, which implies that the resulting strand always bears a specific

property that its prefix and suffix always form complementary sub-strands of a

certain constant length. In contrast, our notion of hairpin incompletion can pro-

duce a resulting strand with more complexity, due to the nature of its prolongation,

which will be formally explained later.

Secondly, the hairpin incompletion is also regarded as a restricted variant of

the notion of hairpin lengthening recently introduced in [23] which is an extension

69

of the (original) notion of the hairpin completion. More specifically, the hairpin

lengthening concerns the prolongation of a strand that allows to stop itself at any

position in the process of completing a hairpin structure. From the practical and

molecular implementation point of view, here we are interested in the case where

the prolongation in the hairpin lengthening is bounded by a constant, which leads

to our notion of the hairpin incompletion. In this respect, one may take the hairpin

incompletion as the bounded variant of the hairpin lengthening.

Thirdly, the hairpin incompletion can provide a purely formal framework that

models a bio-molecular technique called Whiplash PCR that has nowadays been

recognized as a promising experimental technique and has been proposed in an

ingenious paper [13] by Hagiya et al. They developed an experimental technique

called polymerization stop and theoretically showed in terms of thermal cycling

how DNA molecules can solve the learning problem of μ-formulas (i.e., Boolean

formulas with each variable appearing only once) from given data. Suppose that a

DNA sequence is designed as given in (a) of Figure 1, where a sequence of transi-

tion (program) is delimited by a special sequence (called stopper sequence) and α

and its reversal complementarity ᾱR may hybridize, leading to a hairpin structure

(b). Then, the head ᾱR (current state) is extended by polymerization (with a primer

ᾱR and a template γ) up to γ̄R, where the stopper sequence is specifically designed

to act as the stopper. In this way, this cycle can execute one process of state tran-

sition and be repeatedly performed1. Following the work of [13], Sakamoto et al.

have shown how some NP-complete problems can be solved with Whiplash PCR

(or Whiplash machines) ([38]). Recently, Komiya et al. have demonstrated the

applicability of Whiplash PCR to the experimental validation of signal dependent

1Adleman has named this experimental technique whiplash PCR

70

Figure 4.1: (a)The structural design of Whiplash PCR molecule ; (b) hairpin for-

mation with stem part α ; (c) polymerization extension of γ ; (d) simulation of one

state transition.

operation ([19]).

The chapter is organized as follows. In Section 4.2, we define the central

notion of hairpin incompletion (as an extension of the bounded hairpin comple-

tion and also as a bounded variant of the hairpin lengthening). We first show in

Section 4.3 that any family of languages with certain closure properties is closed

under the hairpin incompletion. We then consider the case of applying the iter-

ated hairpin incompletion operations, and show that every AFL is closed under

the iterated one-sided hairpin incompletion. This result is further extended to the

general case of the iterated hairpin incompletion, and it is shown that any fam-

ily of languages including all linear languages and with certain closure properties

is also closed under the iterated hairpin incompletion, and as a corollary that the

family of context-free languages is closed under the iterated hairpin incompletion,

followed by a brief discussion with concluding remarks in Section 4.4.

71

4.2 Hairpin incompletion–A bounded variant of hair-
pin lengthening

For the original definitions of the (unbounded) k-hairpin completion, the reader

is referred to precedent papers (for example, [2, 3, 25]). A variant of the notion

called bounded k-hairpin completion and its modified operation were introduced

and investigated in [15] and [21], respectively, while a recent paper [23] intro-

duces and studies an extended version of the hairpin completion, called hairpin

lengthening.

In this chapter, we are interested in a new variant of both the bounded k-hairpin

completion and the hairpin lengthening which will be introduced as follows.

An involution over V is a bijection σ: V → V such that σ = σ−1. In particular,

an involution σ over V such that σ(a) � a for all a ∈ V is called Watson-Crick

involution. In this dissertation, we fix an involution · over V such that a = a for

a ∈ V and extend it to V∗ in the usual way. Note that for all x, y ∈ V∗, it holds that

(x)R = xR.

Let m, k ≥ 1. For any w ∈ V∗, we define the m-bounded k-hairpin incomple-

tion of w, denoted by HIm,k(w), as follows:

rHIm,k(w) = {wγR |w = δγαβαR, |α| = k, |γ| ≤ m, α, β, γ, δ ∈ V∗},

lHIm,k(w) = {γRw |w = αβαRγδ, |α| = k, |γ| ≤ m, α, β, γ, δ ∈ V∗},

HIm,k(w) = rHIm,k(w) ∪ lHIm,k(w).

where rHIm,k (or lHIm,k) is called m-bounded right (or left) k-hairpin incomple-

tion. Moreover, m-bounded right (or left) k-hairpin incompletion is also called

m-bounded one-sided k-hairpin incompletion. (See Figure 4.2, for pictorial illus-

72

tration of the operations rHIm,k and lHIm,k.) Thus, from a mathematical viewpoint,

we consider the hairpin incompletion operations whose prolongations take place

at both ends in a hypothetical (and ideal) molecular biological setting.

Note. For w ∈ V∗ not satisfying the condition to apply the m-bounded k-

hairpin incompletion, here we assume r HIm,k(w) = l HIm,k(w) = {w}.

The iterated version of the m-bounded right k-hairpin incompletion is defined

in a usual manner:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rHI0

m,k(w) = {w},
rHIn+1

m,k (w) = rHIm,k(rHIn
m,k(w)) for n ≥ 0,

rHI∗m,k(w) =
⋃

n≥0 rHIn
m,k(w).

The “left” counterpart of the iterated version of this operation is defined in an

obvious and similar manner and is denoted by lHI∗m,k(w).

Further, the iterated version of the m-bounded k-hairpin incompletion opera-

tion is defined in a similar manner as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
HI0

m,k(w) = {w},
HIn+1

m,k (w) = HIm,k(HIn
m,k(w)) for n ≥ 0,

HI∗m,k(w) =
⋃

n≥0 HIn
m,k(w).

Finally, the iterated version of the m-bounded (right or left) k-hairpin incompletion

operation is naturally extended to languages as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rHI∗m,k(L) =

⋃
w∈L rHI∗m,k(w),

lHI∗m,k(L) =
⋃

w∈L lHI∗m,k(w),

and HI∗m,k(L) =
⋃

w∈L HI∗m,k(w).

Note that the hairpin incompletion in this chapter is an extension of bounded

hairpin completion in the sense that HIm,k(w) is exactly the same as mHCk(w) in

[15] when the prefix (suffix) δ of w is empty. Further, the hairpin lengthening

HLk(w) in [23] corresponds to the union of all HIm,k(w), where m is arbitrary.

73

Figure 4.2: (a) m-bounded right k-hairpin incompletion operation ; (b) m-bounded

left k-hairpin incompletion operation, where |α| = k and |γ| ≤ m.

4.3 Main Results

4.3.1 Non-iterated hairpin incompletion

As is expected from the definitions, non-iterated hairpin incompletion operation

behaves as the bounded hairpin completion operation does.

Theorem 15. Let L be a class of languages and m, k ≥ 1. If L is closed under

gsm-mappings, L is also closed under m-bounded k-hairpin incompletion.

Proof. For any m, k ≥ 1, consider a generalized sequential machine (gsm) gm,k

which adds a suffix (or prefix) γR of length at most m to the input word w if w is

of the form δγαβαR (or αβαRγδ) with |α| = k, |γ| ≤ m. It is easily shown that this

gsm simulates m-bounded k-hairpin incompletion HIm,k(w). �

Since every trio is closed under gsm mapping ([?]), the following is straight-

forwardly obtained.

Corollary 12. Every trio is closed under m-bounded k-hairpin incompletion for

any m, k ≥ 1.

74

This result extends the corresponding one (i.e., Proposition 1 in [15]), while

it is in contrast to the result that neither the class of regular languages nor of the

context-free languages is closed under hairpin lengthening (see [23]).

4.3.2 Iterated one-sided hairpin incompletion

In this section, we consider the closure properties of iterated one-sided hairpin

incompletion. Especially, we show that every AFL is closed under this operation.

To this aim, we start by introducing some notions required in the proof of the main

result. A key idea of the proof is to construct a certain equivalence relation which

is right invariant and of finite index.

First, we consider the iterated m-bounded right k-hairpin incompletion opera-

tion: rHI∗m,k.

Definition 13. Given m, k ≥ 1 and a word w ∈ V≥2k, we define:

Cm,k(w) = {(xy, z) | xy ∈
⋃

0≤i≤m

In fi+k(w), |y| = k,

w = w1xyw2, z ∈ S u f≤k(w2) ∩ Pre f≤k(y
R)},

Dm,k(w) = (Cm,k(w),
⋃

0≤i≤m

{su fi+k−1(w)}).

We also define a binary relation ≡Dm,k as follows: For w1,w2 ∈ V≥2k,

w1 ≡Dm,k w2 iff Dm,k(w1) = Dm,k(w2).

Intuitively, a pair (xy, z) in Cm,k(w) implies that it is a candidate of (γα, αR)

where α and γ satisfy the conditions to apply m-bounded right k-hairpin incom-

pletion to w, producing a word in rHIi
m,k(w).

75

From the definition, it holds that (γα, αR) is in Cm,k(w) with |α| = k if and only

if wγR is in rHIm,k(w).

The binary relation ≡Dm,k is clearly an equivalence relation and of finite index,

that is, the number of equivalence classes |V≥2k/ ≡Dm,k | is finite. Moreover, the

following claim holds.

Claim 1. The equivalence relation ≡Dm,k is right invariant, that is, for w1,w2 ∈

V≥2k, w1 ≡Dm,k w2 implies that for any r ∈ V∗, w1r ≡Dm,k w2r.

Proof. We prove it by induction on the length of r. If |r| = 0, then the claim

trivially holds. Assume that w1 ≡Dm,k w2 implies that w1r ≡Dm,k w2r with |r| ≥ 0.

Then, it suffices to show that for any a ∈ V , Dm,k(w1ra) = Dm,k(w2ra).

We observe that Dm,k(w1ra) is constructed from only Dm,k(w1r) as follows:

⋃
0≤i≤m

{su fi+k−1(w1ra)}

={su fi+k−2(w1r) · a | 0 ≤ i ≤ m, i + k ≥ 2, |w1r| ≥ i + k − 2}

(∪{λ} if k = 1),

Cm,k(w1ra) ={(x, λ) | (x, λ) ∈ Cm,k(w1r)}

∪ {(su fi+k−1(w1r) · a, λ) | 0 ≤ i ≤ m, |w1r| ≥ i + k − 1}

∪ {(xy, za) | (xy, z) ∈ Cm,k(w1r), |y| = k, za ∈ Pre f≤k(y
R)}.

Note that if (xy, z) ∈ Cm,k(w1r), then w1r = w′
1xyw′′

1 z for some w′,w” ∈ V∗, so that

w1ra can be rewritten as w′
1xyw′′

1 za. Therefore, {(xy, za) | (xy, z) ∈ Cm,k(w1r), |y| =

k, za ∈ Pre f≤k(y
R)} is contained in Cm,k(w1ra).

76

From the induction hypothesis, since Dm,k(w1r) = Dm,k(w2r), we can construct

Dm,k(w2ra) from only Dm,k(w1r) in the same way. Thus, it holds that Dm,k(w1ra) =

Dm,k(w2ra). �

We first show that the language obtained by applying the iterated right hairpin

incompletion to a singleton is regular.

[Regular grammar Gw]

Let us consider the equivalence classes:

V≥2k/ ≡Dm,k= {[w1], [w2], . . . , [wt] |wi ∈ V≥2k, 1 ≤ i ≤ t},

where wi is the representative of [wi]. For w ∈ V≥2k, the regular grammar Gw =

(N,V, P, S) is constructed as follows:

N ={S } ∪ {Di | 1 ≤ i ≤ t},

P ={S → wDi |w ∈ V≥2k,w ≡Dm,k wi}

∪ {Di → rDj | (γα, αR) ∈ Cm,k(wi), |α| = k,

r = γR, wir ≡Dm,k w j, 1 ≤ i, j ≤ t }

∪ {Di → λ | 1 ≤ i ≤ t}.

We need the following two claims.

Claim 2. Let w be in V≥2k, and Di,Dj ∈ N. Then, for n ≥ 0, if a derivation of Gw

is of the form wDi ⇒n wrDj for some r ∈ V∗, then wr ≡Dm,k w j.

Proof. The proof is by induction on n. If n = 0, then i = j and from the manner of

constructing P, it holds w ≡Dm,k w j, thus, the claim holds. Assume that the claim

holds for n ≥ 0 and consider a derivation of the form wDi ⇒ wrDj ⇒n wrr′Dh

77

for some Dh ∈ N, r′ ∈ V∗. From the assumption and the form of P, it holds that

wr ≡Dm,k w j and wjr′ ≡Dm,k wh. By Claim 1, we obtain that wrr′ ≡Dm,k w jr′ ≡Dm,k

wh. �

Claim 3. For n ≥ 0 and r ∈ V∗, there exists a derivation of Gw of the form

S ⇒ wDi ⇒n wrDj ⇒ wr if and only if wr is in rHIn
m,k(w).

Proof. The proof is by induction on n. If n = 0, it obviously holds that S ⇒

wDi ⇒ w if and only if w is in rHI0
m,k(w). Assume that the claim holds for n and

consider the case for n + 1.

(If Part) Let wr′ ∈ rHIn+1
m,k (w). Then there exist r, γ ∈ V∗ such that wr′ =

wrγR ∈ rHIm,k(wr) with wr ∈ rHIn
m,k(w). From the definition of Cm,k, (γα, αR)

is in Cm,k(wr) with |α| = k. From the induction hypothesis and Claim 2, there

exists a derivation: S ⇒ wDi ⇒n wrDj with wr ≡Dm,k w j. Since (γα, αR) is in

Cm,k(wr) = Cm,k(wj), there exists the derivation S ⇒ wDi ⇒n wrDj ⇒ wrγRDh ⇒

wrγR
= wr′ for some Dh ∈ N.

(Only If Part) If there exists the derivation S ⇒ wDi ⇒n wrDj ⇒ wrγRDh

⇒ wrγR for some Dh ∈ N, it holds that wr ≡Dm,k w j from Claim 2. Moreover,

from the form of P, there exists (γα, αR) ∈ Cm,k(wj) = Cm,k(wr). Hence, wrγR

is in rHIm,k(wr). From the induction hypothesis, wr ∈ rHIn
m,k(w) so that wrγR ∈

rHIn+1
m,k (w). �

It follows from the claim that the language obtained by applying iterated right

hairpin incompletion to a singleton is regular.

Lemma 9. For any word w ∈ V∗ and m, k ≥ 1, the language rHI∗m,k(w) is regular.

78

Proof. In the case of w ∈ V∗ − V≥2k, from the definition, rHI∗m,k(w) = {w} is

regular. For w ∈ V≥2k it follows from Claim 3 that there exists a derivation of Gw

which derives a terminal string w′ if and only if w′ ∈ rHI∗m,k(w). Thus, we have

that L(Gw) = rHI∗m,k(w) which is regular. �

In order to show more general results, we need to prove the claims regarding

the language rHI∗m,k(w).

Claim 4. For w1,w2 ∈ V≥2k and n ≥ 0, if w1 ≡Dm,k w2 then there exists a finite

language F ⊆ V∗ such that rHIn
m,k(w1) = w1F and rHIn

m,k(w2) = w2F.

Proof. The proof is by induction on n. If n = 0, it obviously holds that rHI0
m,k(w1) =

w1F and rHI0
m,k(w2) = w2F, where F = {λ}. We assume that the claim holds for

up to n. Let rHIn
m,k(w1) = w1F and rHIn

m,k(w2) = w2F for some finite language

F. For any r ∈ F, it holds that w1r ≡Dm,k w2r from Claim 1. Hence, from the

induction hypothesis, there exists a finite language Fr such that

rHIm,k(w1r) = w1rFr and rHIm,k(w2r) = w2rFr.

Therefore, it holds that

rHIn+1
m,k (w1) = rHIm,k(w1F) =

⋃
r∈F

w1rFr = w1

⋃
r∈F

rFr = w1F′,

rHIn+1
m,k (w2) = rHIm,k(w2F) =

⋃
r∈F

w2rFr = w2

⋃
r∈F

rFr = w2F′,

where F′ =
⋃

r∈F rFr. �

Claim 5. For w1,w2 ∈ V≥2k, if w1 ≡Dm,k w2 then there exists a regular language

R ⊆ V∗ such that rHI∗m,k(w1) = w1R and rHI∗m,k(w2) = w2R.

79

Proof. From Claim 4, if w1 ≡Dm,k w2, then there exists a sequence of finite lan-

guages: F0, F1, F2, · · · , where Fn ⊆ V∗(n ≥ 0), with the property that for n ≥ 0,

rHIn
m,k(w1) = w1Fn and rHIn

m,k(w2) = w2Fn. Then it holds that

rHI∗m,k(w1) =
⋃
n≥0

rHIn
m,k(w1) =

⋃
n≥0

w1Fn = w1

⋃
n≥0

Fn,

rHI∗m,k(w2) =
⋃
n≥0

rHIn
m,k(w2) =

⋃
n≥0

w2Fn = w2

⋃
n≥0

Fn.

Let R =
⋃

n≥0 Fn. Then, we obtain rHI∗m,k(w1) = w1R and rHI∗m,k(w2) = w2R. Re-

call that w1R and w2R are regular from Lemma 9. The class of regular languages

is closed under left derivative, so that R is also regular. �

We are now in a position to show the main theorem of this section. It is shown

that iterated one-sided hairpin incompletion can be simulated by several basic

language operations, which leads to the following theorem.

Theorem 16. Let L be a class of languages and m, k ≥ 1. If L is closed under

intersection with regular languages, concatenation with regular languages and

finite union, then L is also closed under iterated m-bounded right (left) k-hairpin

incompletion.

Proof. Let L ∈ L be a language over V . We can write L = L1 ∪ L2 where

L1 = {w ∈ L | |w| ≥ 2k},

L2 = {w ∈ L | |w| < 2k}.

Note that rHI∗m,k(L) = rHI∗m,k(L1) ∪ rHI∗m,k(L2) = rHI∗m,k(L1) ∪ L2. Since the

number of the elements in L1/ ≡Dm,k is finite from the definition of ≡Dm,k , we can

set L1/ ≡Dm,k= {[w1], [w2], . . . , [ws] |wi ∈ L1 for 1 ≤ i ≤ s} for some s ≥ 0. From

80

the way of construction of Dm,k(wi), it holds that for 1 ≤ i ≤ s,

[wi] = L1 ∩ (
⋂

(xy,z)∈Cm,k(wi)

V∗xyV∗z) ∩ (
⋂

0≤ j≤m

V∗ · su f j+k−1(wi)),

For 1 ≤ i ≤ s, since all words in [wi] are equivalent, it follows from Claim 5 that

there exists a regular language Ri such that rHI∗m,k([wi]) = [wi]Ri. Moreover, it

holds that rHI∗m,k(L1) =
⋃

1≤i≤s[wi]Ri. Thus, rHI∗m,k(L) can be constructed from L

by intersection with regular languages, concatenation with regular languages and

finite union, which completes the proof. �

As a corollary, we immediately obtain the following.

Corollary 13. Every AFL is closed under iterated m-bounded right (left) k-hairpin

incompletion for any m, k ≥ 1.

It is known that there exists no universal regular grammar Gu(x) = (V,Σ, P, x)

with the property that for any regular grammar G, there exists a coding wG of G

such that L(G) = L(Gu(wG)) (see [?]). This can be strengthened in the form that

no morphism h can help to satisfy the equation L(G) = h(L(Gu(wG))).

In this context, the next lemma shows that the hairpin incompletion operation

can play the role of the universal-like grammar for all regular languages.

Lemma 10. A language L ⊆ V∗ is regular if and only if there exists a word w ∈

(V ′)∗ and a weak coding h : V ′ → V such that L = h(rHI∗1,1(w) ∩ (V ′ − {#})∗V ′′),

where # ∈ V ′ and V ′′ ⊆ V ′.

Proof. (If Part) This clearly holds, because the class of the regular languages is

closed under iterated right hairpin incompletion, intersection and weak codings.

(Only If Part) For a regular grammar G = (N,V, P, S), we construct V ′,V ′′,

w ∈ V and h : V ′ → V as follows:

81

• V ′ = {[a, X] | a ∈ V, X ∈ N ∪ {λ}} ∪ {[a, X] | a ∈ V, X ∈ N} ∪ {#, #},

• V ′′ = {[a, λ] | a ∈ V},

• w = (
∏

Xi→aX j∈P, b∈V

[a, Xj] [b, Xi]) · [λ, S],

• h(A) = a for A = [a, X] ∈ {[a, X] | a ∈ V, X ∈ N ∪ {λ}}, h(A) = λ otherwise.

Note that for any n ≥ 0 and w′ = δγαβαR ∈ rHIn
1,1(w)∩ (V ′ − {#})∗ with |α| = |γ| =

0, if wγR ∈ rHIn+1
1,1 (w) ∩ (V ′ − {#})∗, then γ is the symbol just right of #. Then,

from the way of construction of w, it holds that there exists a derivation of G,

S ⇒ a1X1 ⇒ a1a2X2 ⇒ · · · ⇒ a1a2 . . . an−1Xn−1 ⇒ a1a2 . . . an−1an,

if and only if

w′ = (
∏

Xi→aX j∈P, b∈V

[a, Xj] [b, Xi])[λ, S][a1, X1][a2, X2] . . . [an−1, Xn−1][an, λ]

is in rHIn
1,1(w) ∩ (V ′ − {#})∗, which can be shown by induction on n. By applying

h, we obtain L(G) = h(rHI∗1,1(w) ∩ (V ′ − {#})∗V ′′). �

We note that Theorem 3 in [23] proves the only if part of this lemma for the it-

erated (unbounded) hairpin lengthening. Thus, Lemma 10 complements the result

for the case of bounded hairpin lengthening.

4.3.3 Iterated hairpin incompletion

In this section, we consider the closure properties of iterated hairpin incompletion.

For the (unbounded) hairpin lengthening operation, the paper [23] has proved that

the family of context-free languages is closed under iterated hairpin lengthening

82

in Theorem 4. We will show that the result also holds for the case of iterated

bounded hairpin lengthening, in a more general setting of AFL-like formulation.

The proof is based on the similar idea to the previous section and Claims 1, 2,

3 are corresponding to Claims 6, 7, 8 (below), respectively.

In order to consider both-sided hairpin incompletion, we modify the equiva-

lence relation.

Definition 14. For m, k ≥ 1 and the word w ∈ V≥2k, C′
m,k(w), D′

m,k(w) and Em,k(w)

are defined by

C′
m,k(w) = {(z, yx) | yx ∈

⋃
0≤i≤m

In fi+k(w), |y| = k,

w = w1yxw2, z ∈ Pre f≤k(w1) ∩ S u f≤k(y
R)},

D′
m,k(w) = (C′

m,k(w),
⋃

0≤i≤m

{pre fi+k−1(w)}),

Em,k(w) =< Dm,k(w),D′
m,k(w) >,

where Dm,k(w) is the relation defined in Definition 13.

The binary relation ≡Em,k is defined as w1 ≡Em,k w2 if Em,k(w1) = Em,k(w2) for

w1,w2 ∈ V≥2k.

The binary relation ≡Em,k is clearly an equivalence relation and of finite index.

Note that Dm,k and D′
m,k are symmetrically defined.

We show that the equivalence relation ≡Em,k is right invariant and left invariant.

Claim 6. The equivalence relation ≡Em,k is right invariant and left invariant, that

is, for w1,w2 ∈ V≥2k, if w1 ≡Em,k w2 then for any r, l ∈ V∗, w1r ≡Em,k w2r and

lw1 ≡Em,k lw2 hold.

83

Proof. We firstly show that for r ∈ V∗, w1r ≡Em,k w2r. The proof is by induction

on the length of r. If |r| = 0, it clearly holds. We assume that the claim holds for

n, i.e., w1r ≡Em,k w2r with |r| = n. Let a be a symbol in V .

[Proof of Dm,k(w1ra) = Dm,k(w2ra)] It can be shown in the same way as Claim

1.

[Proof of D′
m,k(w1ra) = D′

m,k(w2ra)] We construct D′
m,k(w1ra) from only Em,k(w1r)

as follows:

⋃
0≤i≤m

{pre fi+k−1(w1ra)} ={pre fi+k−1(w1r) | 0 ≤ i ≤ m, |w1r| ≥ i + k − 1}

(∪ {w1ra} if |w1r| < m + k − 1),

C′
m,k(w1ra) =C′

m,k(w1r)

∪ {(λ, su fi+k−1(w1r) · a) | 0 ≤ i ≤ m, |w1r| ≥ i + k − 1}

∪ {(z, su fi+k−1(w1r) · a) | 0 ≤ i ≤ m, |w1r| ≥ |z| + i + k − 1,

z ∈ Pre f≤k(w1r) ∩ S u f≤k(su fi+k−1(w1r) · a
R
)}.

Note that for 0 ≤ i ≤ m, z ∈ Pre f≤k(w1r) ∩ S u f≤k(su fi+k−1(w1r) · a
R
) with |w1r| ≥

|z|+i+k−1 and some z′ ∈ V∗, w1ra can be represented as w1ra = z·z′·su fi+k−1(w1r)·

a. Hence, (z, su fi+k−1(w1r) · a) is in C′
m,k(w1ra).

Since Em,k(w1r) = Em,k(w2r), we can construct D′
m,k(w2ra) from only Em,k(w1r)

in the same way. Therefore, it holds that D′
m,k(w1ra) = D′

m,k(w2ra). From Dm,k(w1ra) =

Dm,k(w2ra) and D′
m,k(w1ra) = D′

m,k(w2ra), we eventually get w1ra ≡Em,k w2ra.

For the left invariance of ≡Em,k , we can proceed in the symmetrical manner. �

84

[Linear grammar GL]

For the proof of Theorem 17 (below) regarding m-bounded k-hairpin incomple-

tion, we need to construct a linear grammar. For L ⊆ V∗, let L/ ≡Em,k= {A1, A2, . . . , Au}

for some u ≥ 1 and V∗/ ≡Em,k= {[w1], [w2], . . . , [ws]} for some s ≥ 1, where wi is

the representative of [wi]. A linear grammar GL = (N,T, P, S) is constructed as

follows:

N ={S } ∪ {Ei | 0 ≤ i ≤ s},

T =V ∪ {ai | 0 ≤ i ≤ u} ∪ {$},

P ={S → Eia j |For any w ∈ Aj,w ≡Em,k wi}

∪ {Ei → rE j | (γα, αR) ∈ Cm,k(wi), |α| = k, r = γR,wir ≡Em,k w j}

∪ {Ei → E jl | (αR, αγ) ∈ C′
m,k(wi), |α| = k, l = γR, lwi ≡Em,k w j}

∪ {Ei → $ | 0 ≤ i ≤ s}.

We set RP = {r | Ei → rE j ∈ P} ∪ {λ} and LP = {l | Ei → E jl ∈ P} ∪ {λ}.

Claim 7. Let 0 ≤ p ≤ u and Ei, E j ∈ N. For n ≥ 0, if a derivation of GL

is of the form Eiap ⇒n r1 . . . rnE jln . . . l1ap, then for any w ∈ Ap, it holds that

ln . . . l1wr1 . . . rn ≡Em,k w j, where for each 1 ≤ h ≤ n, rh ∈ RP, lh ∈ LP, one of rh

and lh is λ and the other is not λ.

Proof. The proof is by induction on n. If n = 0, then i = j and from the manner

of constructing P, for any w ∈ Ap, it holds that w ≡Em,k w j, thus the claim holds.

Assume that the claim holds for n ≥ 0 and consider a derivation of the form

Eiap ⇒ r′E jap ⇒n r′r1 . . . rnEhln . . . l1ap

(Eiap ⇒ E jl′ap ⇒n r1 . . . rnEhln . . . l1l′ap)

85

for some Eh ∈ N, r′ ∈ RP (l′ ∈ LP). From the assumption and the form of P, for

any w ∈ Ap, it holds that wr′ ≡Em,k w j (l′w ≡Em,k w j) and ln . . . l1wjr1 . . . rn ≡Em,k wh.

By Claim 6, we obtain that

ln . . . l1wr′r1 . . . rn ≡Em,k ln . . . l1wjr1 . . . rn ≡Em,k wh

(ln . . . l1l′wr1 . . . rn ≡Em,k ln . . . l1wjr1 . . . rn ≡Em,k wh).

�

Claim 8. A word r1 . . . rn$ln . . . l1ai is generated by GL if and only if for any w ∈ Ai,

ln . . . l1wr1 . . . rn is in HIn
m,k(L), where for each 1 ≤ h ≤ n, rh ∈ RP, lh ∈ LP, one of

rh and lh is λ and the other is not λ.

Proof. The proof is by induction on n. If n = 0, it obviously holds that S ⇒

Eia j ⇒ $aj if and only if for any w ∈ Aj, w is in HI0
m,k(L). Assume that the claim

holds for n and consider the case for n + 1.

(If Part) Let ln+1ln . . . l1wr1 . . . rnrn+1 ∈ HIn+1
m,k (w), where for each 1 ≤ h ≤ n+1,

rh ∈ RP, lh ∈ LP, one of rh and lh is λ and the other is not λ. From the definition

of Cm,k and C′
m,k, either (rn+1

R · α, αR) is in Cm,k(ln . . . l1wr1 . . . rn) or (αR, α · ln+1

R
)

is in C′
m,k(ln . . . l1wr1 . . . rn) with |α| = k. From the induction hypothesis and Claim

7, there exists a derivation:

S ⇒ Eiap ⇒n r1 . . . rnE jln . . . l1ap

with ln . . . l1wr1 . . . rn ≡Em,k w j. Therefore, it holds that either (rn+1
R · α, αR) ∈

Cm,k(wj) or (αR, α · ln+1

R
) ∈ C′

m,k(wj), from which there exists the derivation either

S ⇒ Eiap ⇒n r1 . . . rnE jln . . . l1ap ⇒ r1 . . . rnrn+1Ehln . . . l1ap

⇒ r1 . . . rnrn+1$ln . . . l1ap

86

or

S ⇒ Eiap ⇒n r1 . . . rnE jln . . . l1ap ⇒ r1 . . . rnEhln+1ln . . . l1ap

⇒ r1 . . . rn$ln+1ln . . . l1ap

for some Eh ∈ N.

(Only If Part) Consider the case where there exists a derivation S ⇒ Eiap ⇒n

r1 . . . rnE jln . . . l1ap ⇒ r1 . . . rnrn+1Ehln . . . l1ap ⇒ r1 . . . rnrn+1$ln . . . l1ap for some

Eh ∈ N. Then, it holds that for any w ∈ Ap, ln . . . l1wr1 . . . rn ≡Em,k w j from

Claim 7. Moreover, from the way of construction of P, there exists (rn+1
R ·

α, αR) ∈ Cm,k(wj) = Cm,k(ln . . . l1wr1 . . . rn). Hence, ln . . . l1wr1 . . . rnrn+1 is in

HIm,k(ln . . . l1wr1 . . . rn). From the induction hypothesis, ln . . . l1wr1 . . . rn ∈ HIn
m,k(w)

so that ln . . . l1wr1 . . . rnrn+1 ∈ HIn+1
m,k (w).

For the other case, there exists a derivation S ⇒ Eiap ⇒n r1 . . . rnE jln . . . l1ap

⇒ r1 . . . rnEhln+1ln . . . l1ap ⇒ r1 . . . rn$ln+1ln . . . l1ap for some Eh ∈ N. Then we

can show in a similar way that for any w ∈ Ap, ln+1ln . . . l1wr1 . . . rn ∈ HIn+1
m,k (w).

�

In order to prove the next result, we need a language operation called circular

permutation cp which maps every word to the set of all its circular permutations

and every language to the set of all circular permutations of its words. The proof

is due to an idea similar to the one in [15].

Theorem 17. Let L be a class of languages which includes all linear languages

and let m, k ≥ 1. IfL is closed under circular permutation, left derivative and sub-

stitution, then L is also closed under iterated m-bounded k-hairpin incompletion.

87

Proof. Recall the construction of the linear grammar GL. Let L be in L and f be

a substitution over T defined by f (ai) = Ai for {ai | 0 ≤ i ≤ u} and f (a) = {a}

otherwise. From Claim 8, it holds that

LG = {r1 . . . rn$ln . . . l1ai | ai ∈ T, 1 ≤ j ≤ n, r j ∈ RP, l j ∈ LP,

for any w ∈ Ai, ln . . . l1wr1 . . . rn ∈ HI∗m,k(L)},

where LG = L(GL). Hence, it is easily seen that HI∗m,k(L) = f ($\cp(LG)). �

Since the family of context-free languages meets all of preconditions in The-

orem 17, the following corollary holds.

Corollary 14. The family of context-free languages is closed under iterated m-

bounded k-hairpin incompletion for any m, k ≥ 1.

4.4 Discussion

In many works on DNA-based computing and the related areas, DNA hairpin

structures have numerous applications to develop novel computing mechanisms

in molecular computing. Among others, these molecules of hairpin formation

called Whiplash PCR have been successfully employed as the basic feature of

new computational models to solve an instance of the 3-SAT problem ([39]), to

execute (and simulate) state transition systems ([38]), to explore the feasibility

of parallel computing for solving DHPP ([20]), and so forth. On the other hand,

different types of hairpin and hairpin-free languages are defined in [36] and more

recently in [16], where they are studied from a language theoretical point of view.

We have proposed a new variant of hairpin completion called hairpin incom-

pletion, and investigated its closure properties of the language families. The hair-

88

pin incompletion is in fact a bounded variant of the hairpin lengthening in [23]

where not only closure properties of language families but also the algorithmic

aspects of the hairpin lengthening operations are investigated. The hairpin incom-

pletion is also an extended version of the bounded hairpin completion recently

studied in [15] that has been more recently followed up by slightly modified op-

erations in [21] where two open problems from [15] have been solved.

We have shown that every AFL is closed under the iterated one-sided hairpin

incompletion, and therefore, the family of regular languages is closed under the

operation. Further, it has been shown that the family of context-free languages

is closed under the iterated hairpin incompletion. These complement some of

the corresponding results for (unbounded) hairpin lengthening operations in [23].

Moreover, since the hairpin incompletion nicely models a bio-molecular tech-

nique (Whiplash PCR), the obtained results in this chapter may provide new in-

sight into the computational analysis of the experimental technique.

It remains as an interesting open problem if the family of regular languages is

closed under iterated hairpin incompletion.

89

Chapter 5

Insertion systems

Insertion systems have a unique feature in that only string insertions are allowed,

which is in marked contrast to a variety of the conventional computing devices

based on string rewriting. This chapter will mainly focus on those systems whose

insertion operations are performed in a context-free fashion, called context-free

insertion systems, and obtain several characterizations of language families with

the help of other primitive languages (like star languages) as well as simple oper-

ations (like projections, weak-codings). For each k ≥ 1, a language L is a k-star

language if L = F+ for some finite set F with the length of each string in F is no

more than k. The results of this kind have already been presented in [33] by Păun

et al., while the purpose of this chapter is to prove enhanced versions of them.

5.1 Introduction

In the theory of computing, computation may be considered as regulated rewriting

of strings and there exist numerous works investigated in formal language theory

that were devoted to string rewriting systems. In contrast, there are several classes

of computing devices whose basic operations are based on adjoining and remov-

90

ing, such as the tree adjoining grammars (see, e.g., [37]), the contextual grammars

([31]) and the insertion-deletion systems ([17]). Among others, research on inser-

tion and deletion operations has a rather old history in both linguistics and formal

language theory, and computing models based on insertion-deletion have been

recently drawing renewed attention in relation to the theory of DNA computing.

Fortunately, most of those models are shown to be able to characterize the Tur-

ing computability (that is, recursively enumerable languages) in a general (unre-

stricted) framework of computing systems. From the viewpoint of biochemically

implementing those computing models, however, it is of crucial importance to

investigate the computing power of context-free operations of insertion-deletion,

because of their simplicity in comparison to the context-dependent counterparts.

In fact, recent contributions have been made to explore the computing capability

of context-free operations in which inserting and deleting strings are performed

independently of the context ([26], [42]).

On the other hand, there are a number of works which have been devoted to

characterization/representation theorems of context-free languages. Among oth-

ers, a well-known Chomsky and Schützenberger characterization (e.g., [37]) states

that each context-free language L can be expressed as h(D∩R) for some projection

h, a Dyck set D, and a regular set R. This insight has been recently reformulated

as L = h(L(γ) ∩ R′), by using a context-free insertion system γ (instead of a Dyck

set) and some simpler regular language R′ called “star language”, where a star

language is given in the form F∗, for some finite set F ([33]). The latter (of star

languages) is of interest and simple enough to employ as a member of components

to simulate a given computing mechanism based on the context-free rewriting. It

should be also noted that a star language is a natural extension of a “finitely gener-

91

ated free monoid”. Returning back to the computing power of insertion-deletion

systems, one question arises : how can we achieve a given rewriting mechanism in

terms of “context-free insertion” and “free generating monoid”, therefore, totally

within the framework of the context-freeness.

In this chapter we shall provide an answer to the above question, by showing

the following characterization of context-free languages that are based on only in-

sertion operations applied in a context-free manner and as small as possible in the

length of the inserted string involved. Specifically, it is proved that for each λ-free

context-free language L there exist a projection h, a context-free insertion system

γ, and a star language F+ such that L = h(L(γ) ∩ F+), where γ only allows insert-

ing at most three symbols in a context-free manner, and the length of each string

in F is no more than two. Further, we shall show that a manner of construction

used in the proof can be applied to characterize recursively enumerable languages

in a similar form of h(L(γ) ∩ F+), for some insertion system γ and the same type

of F. All of these refine and improve the results for the language families in [33].

5.2 Preliminaries

5.2.1 Insertion systems

Without loss of the essential properties, we may assume that all of the languages

dealt in this chapter are λ-free.

Definition 1. An insertion system is a triple γ = (V, A, P), where

• V is an alphabet,

• A is a finite set of strings over V called axioms,

92

• P is a finite set of triples of the form (u,w, v), for u,w, v ∈ V∗.

A derivation step of an insertion system γ = (V, A, P) is defined by the binary

relation ⇒γ on V∗ such that

α⇒γ β iff α = α1uvα2, β = α1uwvα2, for some (u,w, v) ∈ P, α1, α2 ∈ V∗.

When γ is clear from the context, we simply write α⇒ β.

The language generated by an insertion system γ = (V, A, P) is defined in the

usual manner as the set

L(γ) = {w ∈ V∗ | z ⇒∗ w, z ∈ A},

where ⇒∗ is the reflexive and transitive closure of ⇒.

An insertion system γ = (V, A, P) is said to be of weight (m, n) if

m = max{|w| |(u,w, v) ∈ P},

n = max{|u| |(u,w, v) ∈ P or (v,w, u) ∈ P}.

By INS n
m, we denote the family of languages generated by insertion systems

of weight (m′, n′) with m′ ≤ m, n′ ≤ n. When the parameter is not bounded, we

replace m or n with ∗.

As for the generating powers of insertion systems, we recall the following

results [34]:

• FIN ⊂ INS 0
∗ ⊂ INS 1

∗ ⊂ · · · ⊂ INS ∗
∗ ⊂ CS.

• REG is incomparable with all INS n
∗, for n ≥ 0, but REG ⊂ INS ∗

∗.

• CF is incomparable with all INS n
∗, for n ≥ 2, and INS ∗

∗.

93

• INS 1
∗ ⊆ CF .

• Each regular language is the coding of a language in INS 1
∗.

5.2.2 Strictly locally testable languages and star languages

We are going to define strictly locally testable languages and star languages.

For k ≥ 1, a language over V is strictly k-testable if there is a triple S k =

(A, B,C) with A, B,C ⊆ Vk such that for any w with |w| ≥ k, w ∈ L iff pre fk(w) ∈

A, su fk(w) ∈ B, pIn fk(w) ⊆ C.

A language L is strictly locally testable iff there exists k ≥ 1 such that L is

strictly k-testable. We denote the class of strictly k-testable languages by LOC(k).

In [28], the following theorem is proved.

Theorem 18 ([28]). LOC(1) ⊂ LOC(2) ⊂ · · · ⊂ LOC(k) ⊂ · · · ⊂ REG.

Next, we define a star language. A language L is a star language1 if L is of the

form F+, where F is a finite set of strings. Moreover, for k ≥ 1 if the maximum

length of the string in F is bounded by k, we call L a k-star language. We denote

the class of k-star languages by S T AR(k).

From the definition of k-star languages, a result analogous to Theorem 1 holds.

Theorem 19. S T AR(1) ⊂ S T AR(2) ⊂ · · · ⊂ S T AR(k) ⊂ · · · ⊂ REG.

Proof. It is clear from the definition that for k ≥ 1, S T AR(k) ⊆ S T AR(k + 1) and

S T AR(k) ⊂ REG. Then, consider L = {ak+1}+ which is in S T AR(k + 1). L is not

in S T AR(k), because L contains no strings whose length is less than or equal to k.

�

1In the original definition [33], L is a star language if L = F∗ for some finite set F.

94

5.2.3 Labelled derivation trees of context-free grammars

Derivations of a context-free grammar can be represented by trees, called deriva-

tion trees. We make a modification on a derivation tree by concatenating the label

of the applied context-free rule to each interior node. We call this modified deriva-

tion tree a labelled derivation tree (LDT, in short).

Definition 2. For a context-free grammar G = (N,T, S , P), a labelled derivation

tree of G is a tree which satisfies the following conditions:

1. The root is labelled by S or S r, where r ∈ Lab(P).

2. Each interior node is labelled by Ar, where A ∈ N and r ∈ Lab(P).

3. Each leaf is labelled by X, where X ∈ N ∪ T .

4. If a interior node labelled by Ar has children X′
1, X

′
2, . . . , X

′
k from left to right,

then there is a rule r : A → X1X2 . . . Xk ∈ P, where X′
i = Xi (if X′

i is a leaf

node) or X′
i = Xir′ for some r′ in Lab(P) (otherwise) with 1 ≤ i ≤ k.

For a context-free grammar G = (N,T, S , P), we denote the set of all LDTs of G

by LD(G). An LDT t ∈ LD(G) is called complete, if each leaf of t is labelled by

an element of T . The set of all complete LDTs (CLDTs, in short) of G is denoted

by CLD(G). For t ∈ LD(G), yield of t, denoted by yield(t), is defined as a label

sequence of the leaves of t, in order from left to right. The notion of yield is

extended to a set as yield(LD(G)) = {yield(t) | t ∈ LD(G)}.

Note that L(G), the context-free language generated by G, is nothing but

yield(CLD(G)).

95

We also consider a relaxation of Definition 2 and define a pseudo LDT (PLDT,

in short) as follows :

Definition 3. For a context-free grammar G = (N,T, S , P), a pseudo LDT of G is

the tree which satisfies the conditions (1), (2), (3) of Definition 2 and (4’).

(4’) If the interior node labelled by Ar has children X′
1, X

′
2, . . . , X

′
k from left to

right, then there is a rule r : B → X1X2 . . . Xk ∈ P, where X′
i = Xi (if X′

i is

a leaf node) or X′
i = Xir′ for some r′ in Lab(P) (otherwise) with 1 ≤ i ≤ k

(Thus, it is not necessarily the case that A = B.).

For a context-free grammar G = (N, T, S , P), we denote by PLD(G) the set of

all pseudo LDTs of G.

Finally, we introduce a preorder traverse sequence of a binary tree:

Definition 4. A preorder traverse sequence of a binary tree t is defined by the

following procedure:

Procedure preorder(t);

begin

set preorder(t) the label of the root of t;

if the root of t has a left subtree tL,

then substitute preorder(t) · preorder(tL) for preorder(t);

if the root of t has a right subtree tR,

then substitute preorder(t) · preorder(tR) for preorder(t);

end

96

��
��

��
��

��
��

�
�

��
��

��
��

�
�

�
�

��	
���

��
��

��
��

��
��

�
�

��
��

�
�

�
�

��	
����

Figure 5.1: Examples of CLDT and PLDT

The notion of a preorder traverse sequence is extended to a set of trees T in a

usual manner, that is, preorder(T) = {preorder(t) | t ∈ T }.

We consider a context-free grammar G = (N,T, S , P) in Chomsky normal

form, that is, with rules of the forms A → BC for A, B,C ∈ N, and A → a for A ∈

N, a ∈ T . Since an LDT of G is a binary tree, we can consider preorder(LD(G)).

Note that for a projection hG defined by hG(a) = a for a ∈ T , hG(a) = λ otherwise,

it holds that L(G) = hG(preorder(CLD(G))). This is easily seen from the fact

that a preorder traverse sequence of CLDT preserves the order of appearance of

terminal symbols in the yield of CLDT.

Example. For G = ({S , A}, {a, b}, S , {r1 : S → AS , r2 : S → b, r3 : A → a}), we

illustrate examples of CLDT t and PLDT t′ in Figure 5.1. Here, it holds that

• preorder(t) = S r1Ar3aS r1Ar3aS r2b,

• hG(preorder(t)) = aab,

• preorder(t′) = S r1Ar1Ar2bS S r2b.

97

5.3 Morphic characterizations of CF

In Theorem 5 of [33], it is proved that CF = PR(INS 0
3
∩ S T AR(4)). We now

improve this result by reducing S T AR(4) to S T AR(2).

Lemma 11. CF ⊆ PR(INS 0
3
∩ S T AR(2)).

Proof. We need two claims (Claim 1 and Claim 2) to derive the conclusion.

For a context-free grammar G = (N,T, S , P) in Chomsky normal form, we con-

struct the insertion system γ = (V, {S }, P′) of weight (3, 0), where

V = N ∪ T ∪ Lab(P),

P′ = {(λ, rBC, λ) | r : A → BC ∈ P} ∪ {(λ, ra, λ) | r : A → a ∈ P}.

Moreover, we construct the 2-star language F+, where F = {Ar | r : A → α ∈

P} ∪ T , and the projection h, where h(a) = a for a ∈ T , h(a) = λ otherwise.

Claim 9. It holds that preorder(CLD(G)) ⊆ L(γ) ∩ F+.

Proof of Claim 1. Let w0(= S) ⇒n−1 wn−1(= uAv) ⇒ wn(= uαv) in G, where

r : A → α is used in the last step. Moreover, for each i = 0, 1, . . . , n, we denote

by twi the LDT corresponding to the derivation from S up to wi.

First, by induction on n, we show that for all n ≥ 0, preorder(twn) is derived

by γ. If n = 0, preorder(tS) = S is obviously derived by γ. Suppose that the

claim holds for up to (n − 1). By the induction hypothesis, preorder(twn−1
) = xAy

is derived by γ. If r : A → α is applied to a leaf A in twn−1
, A is relabelled with Ar,

and Ar has children which are leaves composing α from left to right in twn . This

implies preorder(twn) = xArαy. Since γ has a rule (λ, rα, λ), preorder(twn) can be

derived by γ.

98

If twn is a CLDT of G, each interior node is of the form Ar, where r : A → α ∈

P, and each leaf is an element of T . This implies preorder(twn) ∈ F+ = {{Ar | A →

α ∈ P} ∪ T }+.

Thus, we obtain preorder(twn) ∈ L(γ) ∩ F+, where twn ∈ CLD(G). �

Before starting the proof of the next claim, we note two observations. A

derivation z0(= S) ⇒n−1 zn−1 ⇒ zn in γ is said to be successful, if zn ∈ L(γ) ∩ F+.

Observation 1. For a successful derivation in γ, any rule of the form (λ, rα, λ) in

P′ is only applicable to immediately after (right of) a nonterminal in a sentential

form.

This is easily seen as follows:

(1) Once rα is inserted immediately after r′ (in Lab(P)) in a sentential form, any

of the subsequent sentential form always contains a substring “r′r′′” (for some r′′

in Lab(P)).

(2) Once rα is inserted immediately after a (in T) in a sentential form, any of

the subsequent sentential form always contains a substring “ar′′” (for some r′′ in

Lab(P)).

(3) Once rα is inserted (appended) to the top of a sentential form, any of the

subsequent sentential form always starts with r′′ (for some r′′ in Lab(P)).

Thus, any of these three cases eventually contradicts the property (of being in

F+) of a successful derivation in γ.

Observation 2. For a successful derivation in γ, no rule of the form (λ, ra, λ) in

99

P′ is applicable to immediately before (left of) r′ (of Lab(P)) in a sentential form.

This is seen as follows: From the form of rules in P′, once ra is inserted

immediately before r′ (for some r′ in Lab(P)), any of the subsequent sentential

form always contains a substring “rar′′” (for some r′′ in Lab(P)), which eventually

contradicts the property of a successful derivation.

We are going to prove Claim 2.

Claim 10. It holds that L(γ) ∩ F+ ⊆ preorder(CLD(G)).

Proof of Claim 2. Let z0(= S) ⇒n−1 zn−1(= xAy) ⇒ zn(= xArαy) in γ, where

(λ, rα, λ) is used in the last step (From Observation 1, it is sufficient to consider

the case where the insertion rule is used immediately after a nonterminal.).

First, by induction on n, we show that for all n ≥ 0, zn is in preorder(PLD(G))

(Note that here we are dealing with pseudo LDTs.). If n = 0, S is obviously

in preorder(PLD(G)). Suppose that the claim holds for up to (n − 1). By the

induction hypothesis, there exists tn−1 ∈ PLD(G) such that zn−1 = preorder(tn−1)

(= xAy, where x, y ∈ V∗).

(Case 1.) zn−1 = xAy, zn = xArBCy with r : A′ → BC ∈ P, and this “A” is a

leaf in tn−1 (note that it is possible that A � A′). We construct tn ∈ PLD(G) from

tn−1 by relabelling a node “A” with “Ar” and adding the left and right children

of “Ar”, “B” and “C”, respectively. Here, “B” and “C” are leaves, so that zn =

preorder(tn) holds. (See Figure 2.)

(Case 2.) zn−1 = xAr′y′, zn = xArBCr′y′ with r : A′ → BC ∈ P, r′ ∈ Lab(P),

100

and for this “A” and “r′”, “Ar′” is an interior node in tn−1. We construct tn ∈

PLD(G) from tn−1 by the following steps. (1)Relabel “Ar′” with “Ar”. (2)Replace

the children of “Ar” with new left child “B” and new right child “Cr′”. (3)Add

the children of “Cr′”, so that its new children may be former children of “Ar′” in

tn−1. Here, zn = preorder(tn) holds.

(Case 3.) zn−1 = xAy, zn = xAray with r : A′ → a ∈ P, and this “A” is a leaf in

tn−1. We construct tn ∈ PLD(G) from tn−1 by relabelling a node “A” with “Ar” and

adding the child of “Ar”, “a”. Here, “a” is a leaf, so that zn = preorder(tn) holds.

(Case 4.) zn−1 = xAr′y′, zn = xArar′y′ with r : A′ → a ∈ P, r′ ∈ Lab(P),

and for this “A” and “r′”, “Ar′” is an interior node in tn−1. This is not the case to

examine because of Observation 2.

Figure 5.2: A pictorial transformation in Case 1, Case 2 and Case 3

In each case, it holds that zn = preorder(tn) for tn ∈ PLD(G), which completes

the induction.

Because zn is in F+, for each nonterminal A which appears in zn, A must be

followed by r with r : A → α ∈ P. This means that all leaves of tn are terminals

and tn ∈ CLD(G). Thus, we obtain zn ∈ preorder(CLD(G)), where zn ∈ L(γ) ∩

F+. �

Continuation of Proof for Lemma 1.

101

From Claims 1 and 2, it holds that preorder(CLD(G)) = L(γ) ∩ F+. Further, the

discussion in Section 2.3 reminds us that L(G) = h(preorder(CLD(G))), which

proves that L(G) = h(L(γ) ∩ F+). �

Next, we prove the inverse inclusion.

Lemma 12. PR(INS 0
3
∩ S T AR(2)) ⊆ CF .

Proof. It is known that CF includes INS 0
3

and CF is closed under intersection

with regular languages and arbitrary morphisms. Therefore, any language in

PR(INS 0
3
∩ S T AR(2)) is context-free. �

From Lemma 11 and Lemma 12, we obtain the main theorem.

Theorem 20. CF = PR(INS 0
3
∩ S T AR(2)).

The result above can be reinforced by showing that S T AR(2) is optimally

small within the families S T AR(k) (k = 1, 2 . . .) for the representation of Theorem

3.

Theorem 21. PR(INS 0
∗ ∩ S T AR(1)) ⊂ CF .

Proof. Note that INS 0
∗ ∩ S T AR(1) = INS 0

∗. Since CF includes INS 0
∗ and CF is

closed under arbitrary morphisms, we get PR(INS 0
∗ ∩ S T AR(1)) ⊆ CF .

We consider L = {anbn | n ≥ 1} ∈ CF and assume that for an insertion system

γ = (V, A, P) and a projection h, L = h(L(γ)). From the assumption, (λ, x1ax2, λ),

(λ, y1by2, λ) is in P with x1, x2, y1, y2 ∈ V∗ and neither a nor b is deleted by the

projection h. Because akbk is in L for k ≥ 1, there exists x = uv in L(γ) such

that h(x) = akbk for some u, v ∈ V∗, where h(u) = ak and h(v) = bk. Applying

(λ, y1by2, λ) to x can derive a string y = y1by2uv in L(γ), and h(y) = h(y1by2uv) =

102

h(y1)b h(y2)akbk must be in L, which is a contradiction. Thus, we have that L is

not in PR(INS 0
∗). �

Corollary 15. PR(INS 0
∗) ⊂ CF .

In [30], it is shown that context-free languages can be characterized using

strictly k-testable languages, that is, CF = PR(INS 0
3
∩ LOC(4)). This result

is improved in [11] by PR(INS 0
2
∩ LOC(3)). We improve the result in [30] by

PR(INS 0
3
∩LOC(2)) and show that LOC(1) is not sufficient to characterize context-

free languages.

Theorem 22. CF = PR(INS 0
3
∩ LOC(2)).

Proof. (Proof of ⊆) For a context-free grammar G = (N, T, S , P) in Chomsky

normal form, we construct the insertion system γ = (V, {S }, P′) of weight (3, 0) in

the same way as the one in the proof of Theorem 3.

Moreover, we construct the strictly 2-testable language R, where

A (= pre f2(R)) ={S r | r : S → α ∈ P},

B (= su f2(R)) ={ra | r : A → a ∈ P},

C (= pIn f2(R)) ={Ar | r : A → α ∈ P} ∪ {ra | r : A → a ∈ P}∪

{rB | r : A → BC ∈ P} ∪ {aA | A ∈ N, a ∈ T },

and the projection h, where h(a) = a for a ∈ T , h(a) = λ otherwise.

We note that it holds that R ⊂ F+, where F+ is defined in the proof of Lemma

1. Thus, it holds that h(L(γ) ∩ R) ⊆ h(L(γ) ∩ F+) = L(G). Similar to the proof of

Lemma 1, it can be shown that h(L(γ) ∩ R) ⊇ L(G). We have CF ⊆ PR(INS 0
3
∩

LOC(2)).

103

(Proof of ⊇) It is known that CF includes INS 0
3

and CF is closed under inter-

section with regular languages and arbitrary morphisms. Therefore, any language

in PR(INS 0
3
∩ LOC(2)) is context-free. �

Theorem 23. PR(INS 0
∗ ∩ LOC(1)) ⊂ CF .

Proof. Since CF includes INS 0
∗ and CF is closed under intersection with regular

languages and arbitrary morphisms, we get PR(INS 0
∗ ∩ LOC(1)) ⊆ CF .

We consider L = {anbn | n ≥ 1} ∈ CF . Assume that for an insertion system

γ = (V, A, P), a strictly 1-testable language R and a projection h, L = h(L(γ) ∩ R).

From the assumption, (λ, x1ax2, λ), (λ, y1by2, λ) is in P, where x1, x2, y1, y2 ∈

V∗ and pIn f1(R) contains the all letters composing x1ax2 and y1by2. Here, neither

a nor b is not deleted by the projection h. Because akbk is in L for k ≥ 1, there

exists x = uvw in L(γ) ∩ R such that h(x) = akbk for some u, v,w ∈ V∗, where

h(u) = ak−1, h(v) = a and h(w) = bk. Applying (λ, y1by2, λ) to x can derive a string

y = uy1by2vw in L(γ) ∩ R, and h(y) = h(uy1by2vw) = ak−1h(y1)b h(y2)abk must be

in L, which is a contradiction. Thus, L is not in PR(INS 0
∗ ∩ LOC(1)). �

In [27], it is proved that each recursively enumerable language can be rep-

resented by an insertion system, an inverse morphism and a projection, that is,

RE = PR(H−1(INS 7
4)). This result is improved in [18], [29], where it is proved

that RE = PR(H−1(INS 3
3
)). We show that CF can be characterized in a similar

way.

Theorem 24. CF = PR(H−1(INS 0
3
)).

Proof. (Proof of ⊆) For a context-free grammar G = (N, T, S , P) in Chomsky

normal form, we construct the insertion system γ = (V, {S }, P′) of weight (3, 0) in

the same way as the one in the proof of Theorem 3.

104

Then, we consider the new alphabet U = {Ar | r : A → α ∈ P} and construct

the morphism h : (U ∪ T)∗ → (N ∪ T ∪ Lab(P))∗ which is defined by h(Ar) = Ar

for Ar ∈ U, h(a) = a for a ∈ T , and the projection g : (U ∪ T)∗ → T ∗, where

g(a) = a for a ∈ T , g(a) = λ otherwise. Note that h−1 plays a similar role to F+

in the proof of Lemma 1, because undesired strings (not in F+) are filtered out by

h−1. The rest of the proof is almost similar to the proof of Lemma 1, so that we

omit it.

(Proof of ⊇) It is known that CF includes INS 0
3

and it is closed under inverse

morphisms and projections. Thus, any language in PR(H−1(INS 0
3
)) is context-

free.

�

As the class of context-free languages includes INS 1
3, it is easy to derive the

following corollary.

Corollary 16. CF = PR(H−1(INS 1
3)).

5.4 A morphic characterization of RE

We can easily characterize RE by using a star language instead of an inverse mor-

phism. The idea of the proof depends upon the similar results in [18, 27, 30].

Theorem 25. RE = PR(INS 3
3
∩ S T AR(2)).

Proof. For a phrase structure grammar G = (N,T, P, S) in Penttonen normal form,

construct the insertion system γ = (V, {S ccc}, P′) of weight (3, 3), where V =

N ∪ T ∪ {#, c}, and #, c are not in N ∪ T . The set of rules P′ is constructed as

follows:

105

1. For each rule A → a in P (a ∈ T ∪ {λ}), there are rules (A, #a, α1α2α3),

where α1 ∈ V − {#}, α2, α3 ∈ V and α2α3 � ##.

2. For each rule A → BC in P, there are rules (A, #BC, α1α2α3), where α1 ∈

V − {#}, α2, α3 ∈ V and α2α3 � ##.

3. For each rule AB → AC in P, there are rules (AB, #C, α1α2α3), where α1 ∈

V − {#}, α2, α3 ∈ V and α2α3 � ##.

4. For each X,Y ∈ N, there are rules (XY#, #X, α), where α ∈ N ∪ T ∪ {c}.

5. For each X,Y ∈ N, there are rules (X, #,Y##).

6. For each X,Y ∈ N, there are rules (#Y#,Y, #X).

We construct the 2-star language F+, where F = {A# | A ∈ N} ∪ T ∪ {c}, and the

projection h is defined as h(a) = a for a ∈ T , h(a) = λ otherwise.

Without loss of generality, we may assume that in every derivation in G, the

rules of the form A → α(corresponding to (1)) are applied only in the final steps.

The symbol # is said to be a marker. A nonterminal in N followed by # is said

to be marked.

By using the rules (1), (2), (3), we can simulate derivations of G. In a deriva-

tion of γ, a consumed nonterminal is marked by #, instead of being rewritten.

In the case where the rule (3) is used, pairs of unmarked nonterminals can be

separated by one or more marked nonterminals. By using the rules (4), (5), (6) in

this order, we can move an unmarked nonterminal across a marked nonterminal

as follows:

XY#Z
(4)
⇒ XY##XZ

(5)
⇒ X#Y##XZ

(6)
⇒ X#Y#Y#XZ.

106

Iterating the above derivation enables an unmarked nonterminal (X) to move

across more than one marked nonterminal.

(Proof sketch of L(G) ⊆ h(L(γ) ∩ F+))

We can easily verify if the rules of γ are used in a manner described above,

then γ correctly simulates all the derivations of G. During such a correct simula-

tion, the auxiliary substrings of the form A# are inserted into the sentential form.

In the string in L(γ)∩ F+, all the nonterminals are followed by #. This means that

all the nonterminals have been consumed. Finally, h removes all the symbols but

terminals in T . Hence, L(G) ⊆ h(L(γ) ∩ F+).

(Proof sketch of L(G) ⊇ h(L(γ) ∩ F+))

We need to show that γ can produce only the sentential forms which cor-

respond to derivations in G. For a sentential form w of γ, consider the rules

(4), (5), (6).

• For a substring of the form XY#Z of w, where X,Y,Z ∈ N, the rule (4) can

be applied only once to it, producing XY##XZ. Observe that the substring

cannot be produced by an application of any rule other than (4). Note

that (5) and (6) are applicable only if the substring ## appears in w.

• Following an application of rule (4), only (5) can be applied to the substring

XY##, producing X#Y##.

• Similarly, following an application of rule (5), only (6) can be applied to

X#Y##, producing X#Y#Y#.

107

Hence, after an application of rule (4), rules (5) and (6) must be applied in this

order to an adequate position of the sentential form for each. Unmarked nonter-

minals and their order in w are preserved by the rules (4), (5), (6).

Consequently, unmarked nonterminals in a sentential form of γ can only be

changed (and consumed) by the rules (1), (2), (3), and their applications can be

clearly simulated by G.

Moreover, taking the intersection of L(γ) with F+ filters only the sentential

forms whose nonterminals are all marked. Therefore, L(G) ⊇ h(L(γ) ∩ F+). �

5.5 Discussion

It is clear that star languages are conceptually simpler than strictly locally testable

languages, because a star language F+ is a finitely generated monoid obtained

from a generator set F by concatenating arbitrary number of elements of F in an

arbitrary order. In fact, one can show that a star language with some property

(called k-parsability, see [28]) is strictly locally testable. We note that the 2-star

languages used in the proofs in this chapter are 1-parsable and, therefore, strictly

locally testable.

We have shown that CF = PR(INS 0
3
∩ S T AR(2)); namely, a language L is in

CF iff L = h(L(γ) ∩ F+), where γ is a context-free insertion systems of weight

(3,0), F+ is a 2-star language, and h is a projection. A morphic characterization of

RE was also presented in the form RE = PR(INS 3
3
∩ S T AR(2)). (We remark that

a similar representation for REG could be obtained by particularizing the proof

construction used for the former result.)

In comparison to the well-known Chomsky-Schützenberger characterization

108

of context-free languages, our result benefits from a great simplicity by reducing

REG to S T AR(2), at the price of enhancing Dyck up to INS 0
3
. It may also be

interestingly compared to the result CF = PR(INS 0
2
∩ LOC(3)) in [11], where

another trade-off relation is found in the parameters on INS and LOC(S T AR),

while S T AR is conceptually much simpler than LOC.

Lastly, the following questions remain open :

• CF = PR(INS 0
2
∩ S T AR(k)), for some k ≥ 1 ?

• How large is the class PR(H−1(INS 2
3)) ?, while we only know that it must

be between CF and RE.

• RE = PR(INS 2
i ∩ S T AR(k)), for some i, k ≥ 1 ?

• RE = PR(INS j
2
∩ S T AR(k)), for some j, k ≥ 1 ?

109

Bibliography

[1] C. Calude, Gh. Păun, G. Rozenberg and A. Salomaa (Eds.), Multiset Pro-

cessing, LNCS 2235, Springer, 2001.

[2] J. Castellanos, V. Mitrana, Some remarks on hairpin and loop languages, in

Words, Semigroups, and Translations, World Scientific, Singapore, pp.47-

59, 2001.

[3] D. Cheptea, C. Martin-Vide, V. Mitrana, A new operation on words sug-

gested by DNA biochemistry: hairpin completion, in Proc. Transgressive

Computing, pp.216-228, 2006.

[4] E. Csuhaj-Varju, O.H.Ibarra, Gy. Vaszil, On the computational complexity

of P automata, Natural Computing vol.5, pp.109-126, 2006.

[5] E. Csuhaj-Varju, Gy. Vaszil, P automata or purely communicating accepting

P systems, LNCS 2597, Springer, pp.219-233, 2003.

[6] A. Ehrenfeucht, G. Rozenberg, Reaction systems, Fundamenta Informaticae

vol.75, pp.263-280, 2007.

[7] A. Ehrenfeucht, G. Rozenberg, Events and modules in reaction systems,

Theoretical Computer Science vol.376, pp.3-16, 2007.

110

[8] A. Ehrenfeucht, G. Rozenberg, Introducing time in reaction systems, Theo-

retical Computer Science vol.410, pp.310-322, 2009.

[9] A. Ehrenfeucht, M. Main, G. Rozenberg, Combinatorics of life and death

in reaction systems, Intern. J. of Foundations of Computer Science vol.21,

pp.345-356, 2010.

[10] A. Ehrenfeucht, M. Main, G. Rozenberg, Functions defined by reaction

systems, Intern. J. of Foundations of Computer Science vol.22, pp.167-178,

2011.

[11] K. Fujioka, Refinement of representation theorems for context-free lan-

guages, IEICE Transactions, E93-D(2):227–232, 2010.

[12] S. Ginsburg, Algebraic and automata-theoretic properties of formal lan-

guages, North-Holland, Amsterdam, 1975.

[13] M. Hagiya, M. Arita, D. Kiga, K. Sakamoto, S. Yokoyama, Towards parallel

evaluation and learning of Boolean μ-formulas with molecules, DNA Based

Computers III (Rubin, H. and Wood, D. eds.), DIMACS Series in Discrete

Mathematics, vol. 48, pp. 57-72, 2000.

[14] J.E. Hopcroft, T. Motwani, J.D. Ullman, Introduction to automata theory,

language and computation - 2nd ed, Addison-Wesley, 2003.

[15] M. Ito, P. Leupold, F. Manea, V. Mitrana, Bounded hairpin completion, In-

formation and Computation, vol.209, pp.471-485, 2011.

111

[16] L. Kari, S. Konstantinidis, P. Sosik, G. Thierrin, On hairpin-free words and

languages, in Proc. Developments in Language Theory 2005, LNCS 3572,

Springer, pp.296-307, 2005.

[17] L. Kari, Gh. Păun, G. Thierrin, S. Yu, At the crossroads of dna computing

and formal languages: Characterizing re using insertion-deletion systems,

In Proc. 3rd DIMACS Workshop on DNA Based Computing, pages 318–333,

1997.

[18] L. Kari and P. Sosı́k, On the weight of universal insertion grammars, Theor.

Comput. Sci., 396(1-3):264–270, 2008.

[19] K. Komiya, A. Rose, Experimental validation of signal dependent operation

in Whiplash PCR, DNA Computing. 14th International Workshop on DNA-

Based Computers (Goel, A. and Simmel, F.C., eds.), LNCS 5347, Springer,

pp.1-10, 2009.

[20] K. Komiya, K. Sakamoto, A. Kameda, M. Yamamoto, A. Ohuchi, D. Kiga,

S. Yokoyama, M. Hagiya, DNA polymerase programmed with a hairpin

DNA incorporates a multiple-instruction architecture into molecular com-

puting, Biosystems, vol. 83, pp. 18-25, 2006.

[21] S. Kopecki, On the iterated hairpin completion. In Y. Gao, H. Lu, S. Seki,

and S. Yu (editors), 14th Developments in Language Theory, LNCS 6224,

Springer, pp.438-439, 2010. Also, in http://arxiv.org/abs/1010.3640.

[22] F. Manea, C. Martı́n-Vide, V. Mitrana, On some algorithmic problems re-

garding the hairpin completion, Discr. Appl. Math., vol.157, pp.2143-2152,

2009.

112

[23] F. Manea, C. Martı́n-Vide, V. Mitrana, Hairpin Lengthening and Shortening

of Regular Languages, In H. Bordihn, M. Kutrib and B. Truthe, editors,

Languages Alive, volume 7300 of Lecture Notes in Computer Science, pages

145-159. Springer, 2012.

[24] F. Manea, V. Mitrana, Hairpin completion versus hairpin reduction, in Com-

putation in Europe CiE 2007, LNCS 4497, Springer, pp.532-541, 2007.

[25] F. Manea, V. Mitrana, T. Yokomori, Two complementary operations inspired

by the DNA hairpin formation: completion and reduction, Theor. Comput.

Sci., vol.410, pp.41-425, 2009.

[26] M. Margenstern, Gh. Păun, Y. Rogozhin, S. Verlan, Context-free insertion-

deletion systems, Theor. Comput. Sci., 330:339–348, 2005.

[27] C. Martı́n-Vide, Gh. Păun, A. Salomaa, Characterizations of recursively

enumerable languages by means of insertion grammars, Theor. Comput.

Sci., 205(1-2):195–205, 1998.

[28] R. McNaughton, S. Papert, Counter-free automata, M.I.T. Press Cambridge,

Mass., 1971.

[29] K. Onodera, A note on homomorphic representation of recursively enumer-

able languages with insertion grammars, IPSJ Journal, 44(5):1424–1427,

2003.

[30] K. Onodera, New morphic characterizations of languages in chomsky hi-

erarchy using insertion and locality, In A.H. Dediu, A.-M. Ionescu, and

113

C. Martı́n-Vide, editors, LATA, volume 5457 of Lecture Notes in Computer

Science, pages 648–659. Springer, 2009.

[31] Gh. Păun, Marcus Contextual Grammars, Kluwer, Dordrecht, Boston, 1998.

[32] Gh. Păun, Computing with membranes, Journal of Computer and System

Sciences vol.61, pp.108-143, 2000.

[33] Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori, Representations and character-

izations of languages in chomsky hierarchy by means of insertion-deletion

systems, Int. J. Found. Comput. Sci., 19(4):859–871, 2008.

[34] Gh. Păun, G. Rozenberg, A. Salomaa, DNA Computing: New Computing

Paradigms, Springer-Verlag Berlin, Inc., 1998.

[35] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Handbook of Membrane Com-

puting, Oxford University Press, 2010.

[36] G. Păun, G. Rozenberg, T. Yokomori, Hairpin languages, Intern. J. Found.

Comp. Sci., vol. 12, pp.837-847, 2001.

[37] G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, 3 vol-

umes, Springer-Verlag, Berlin, Heidelberg (1997).

[38] K. Sakamoto, D. Kiga, K. Komiya, H. Gouzu, S. Yokoyama, S. Ikeda, H.

Sugiyama, M. Hagiya, State transitions by molecules, BioSystems, vol.52,

no.1-3, pp.81-91, 1999.

[39] K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori,

M. Hagiya, Molecular computation by DNA hairpin formation, Science, vol.

288, pp.1223-1226, 2000.

114

[40] A. Salomaa, Formal Languages, Academic Press, New York, 1973.

[41] Y. Suzuki, Y. Fujiwara, J. Takabayashi, H. Tanaka, Artificial Life Applica-

tions of a Class of P Systems, in: Multiset Processing, C. Calude, Gh. Păun,

G. Rozenberg, A. Salomaa (Eds.), LNCS 2235, Springer, pp.299-346, 2001.

[42] S. Verlan, On minimal context-free insertion-deletion systems, Autom. Lang.

Combin., 12(1):317–328, 2007.

115

List of papers by Fumiya Okubo

Refereed papers:

1. F. Okubo, A note on the descriptional complexity of semi-conditional gram-

mars, Information Processing Letters, 110(1), pp.36-40, 2009.

2. F. Okubo, T. Yokomori, Morphic Characterizations of Language Families

in terms of Insertion Systems and Star Languages, International Journal of

Foundations of Computer Science, 22(1), pp.247-260, 2011.

(Contribution to Chapter 5)

3. F. Okubo, T. Yokomori, On the Hairpin Incompletion, Fundamenta Infor-

maticae, 110, pp.255-269, 2011.

(Contribution to Chapter 4)

4. F. Okubo, S. Kobayashi, T. Yokomori, Reaction Automata, Theoretical

Computer Science, 429, pp.247-257, 2012.

(Contribution to Chapter 3)

5. F. Okubo, S. Kobayashi, T. Yokomori, On the Properties of Language

Classes Defined by Bounded Reaction Automata, Theoretical Computer

Science, 454, pp.206-221, 2012.

(Contribution to Chapter 3)

116

6. F. Okubo, On the Computational Power of Reaction Automata Working in

Sequential Manner, Proceedings of 4th Workshop on Non-Classical Mod-

els for Automata and Applications, book@ocg.at series, Öesterreichische

Computer Gesellschaft, 290, pp.149-164, 2012.

(Contribution to Chapter 3)

7. F. Okubo, On language classes defined by reaction automata, Academic

Studies and Scientific Research, Faculty of Education and Integrated Arts

and Sciences, Waseda University, 61, pp.39-46, 2013.

(Contribution to Chapter 3)

8. F. Okubo, Reaction Automata Working in Sequential Manner, submitted.

(Contribution to Chapter 3)

Unrefereed papers:

1. F. Okubo, S. Kobayashi, T. Yokomori, Automata inspired by biochemical

reaction, RIMS Kōkyūroku, Kyoto University, 1779, pp.179-182, 2012.

(Contribution to Chapter 3)

117

