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Chapter 1

Introduction

In this chapter,1 I first present a basic model which will be used throughout this dissertation.
This model is familiar in this field and is known to cause various theoretical problems.
I explicate what are the problems and make some survey on how these problems have
been delt with. In this process, I articulate the theme of this dissertation, giving an
explanation to each subject treated in each chapter. Finally I make a brief survey on
further developments of the theory of incomplete asset markets.

1This chapter is partly based on R.Nagata,Theory of Regular Economies, chap.11, World Scientific,
2004.
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1.1 Background of Incomplete Asset Markets

There are many kinds of uncertainty in our real economic world among which I consider
a specific one; that is, the uncertainty concerning future events. Since no one knows what
will happen in the future, this uncertainty is quite universal.

It may be safely said that a typical agent facing this uncertainty will try to prepare
somehow or other for the future. A rational agent would never ignore the future in the
present. This propensity to prepare for the future yields new goods called assets. Note that
the term ‘asset’ is a little different than the familiar one in our everyday life. Indeed, an
insurance that promises to deliver a certain amount of money contingent on some event in
the future is included in the assets and is referred to as a nominal asset. In this connection,
there exists another kind of asset called a real asset that promises to deliver a bundle of
goods contingent on some future event.

Let’s proceed to the model building, taking account of these new factors. The model I
work with throughout this dessertation is very simple but known as a basic model in this
field, main features of which are summarized as follows. First, the model is based on the
pure exchange economy. Second, it has only two periods, i.e. the present (t = 0) and the
future (t = 1). Third, all the relevant variables are confined to some finite dimensional
space.

Now let’s spell out the details of the model. An economic environment which may
happen in the future is called a state of nature. The conceivable set of states of nature
is assumed to be finite, numbered by s = 1, . . . , S. I call date t = 0, state s = 0 so that
there are S + 1 states in all including the present and the future. There are L goods and I
consumers that are common in each state. Each consumer i (i = 1, . . . , I) is characterized
by its consumption set Ci, initial endowments ωi and utility function ui for which the
following conditions are assumed. Since a rational consumer would take account of all
future possibilities, Ci can be properly assumed to be a subset of RL(S+1). Accordingly, ui

turns out to be a map of C i to R that is possibly interpreted as a von Neumann-Morgenstern
expected utility function given by

S∑
s=1

ρsU
i(xi

0,x
i
s)

in which xi
s is obviously a consumption vector at state s (s = 1, . . . , S) and ρs > 0 denotes

the subjective probability of state s and
∑S

s=1 ρs = 1. However, the argument below does
not depend on this particular type of function. Finally, ωi is obviously an element of
RL(S+1).

For simplicity of notation, I set ωi = (ωi
0, ω

i
1, . . . , ωi

S), ωi
1 = (ωi

1, . . . , ωi
S) and xi =

(xi
0,x

i
1, . . . , xi

S), xi
1 = (xi

1, . . . , xi
S).

Then I turn to the assets that are, as I have mentioned, separated into two groups: real
assets and nominal assets. A real asset is a contract that promises to deliver a bundle of
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goods at each state in the future. Let aj(s) be the bundle of goods (∈ RL) that a real
asset j delivers at state s (s = 1, . . . , S). Then the whole returns of j are represented by
a LS-vector (aj(1), . . . , aj(S)).

On the other hand, a nominal asset is a contract that promises to deliver an exogenously
given stream of units of account across the states at date 1. Thus, if I denote a given amount
of units of account a nominal asset j delivers at state s by aj(s), the whole returns of the
asset are expressed by a S-vector (aj(1), . . . , aj(S)).

Let’s first consider a real asset model, emphasizing its equilibrium. Suppose that there
exist J real assets. If one sees the returns vector (aj(1), . . . , aj(S)) of each asset j as a
column vector, then the real asset structure is obtained as follows.

Definition 1.1 The real asset structure of J real assets is a LS × J matrix given by

A =




a1(1) a2(1) . . . aJ(1)
a1(2) a2(2) . . . aJ(2)

...
...

. . .
...

a1(S) a2(S) . . . aJ(S)




In order to complete the model, prices should be considered. Note that there are spot
market prices at each state at date 1 as well as the present market prices. In addition,
the prices of the real assets should be taken into account. Needless to say, the asset
markets are only open at date 0 (the present) since there exist only two periods. Let
p0 be the price vector of goods at date 0 and ps be the (spot market) price vector of
goods at state s (s = 1, . . . , S) at date 1. The price vector of J assets is denoted by
q (= (q1, . . . , qJ)). I assume that all prices are strictly positive. Similarly to consumption
vectors, I set p = (p0,p1, . . . , pS) and p1 = (p1, . . . , pS) in the following.

Given a real asset structure A, one obtains the date 1 matrix of revenues brought in by
A which is called a dividend matrix.

Definition 1.2 A dividend matrix of a real asset structure A is the matrix given by

D(p1, A) =




p1 · a1(1) . . . p1 · aJ(1)
...

. . .
...

pS · a1(S) . . . pS · aJ(S)




Note that this matrix is obviously obtained by premultiplying A by the following S × LS
matrix P consisting of ps (s = 1, . . . , S).

P =




p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 . . . . . . pS
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where each ps (s = 1, . . . , S) is interpreted as a row vector. Thus, D can be seen as a
smooth map with p1 and A as its independent variables.

It follows from the above argument that the economy with assets is specified by the
three kinds of parameters; that is, each consumer’s utility function and initial endowments
plus an asset structure. Thus, a tuple (u, ω; A) is called an economy with real assets where
u = (u1, . . . , uI) and ω = (ω1, . . . , ωI).

Let’s consider the behavior of each consumer given an economy. Although a consumer
faces the uncertainty concerning future events, he/she is able to adjust his/her income
among the present and the future through the assets. Thus, he/she will seek to obtain
the optimal intertemporal consumption allocation by buying and selling those assets. The
demand vector of consumer i for J assets is called a portfolio of i and denoted by zi (=
(zi

1, . . . , zi
J)). Note that the positive (negative) element of the portfolio implies the demand

(supply) of the corresponding asset. For simplicity, I set z = (z1, . . . , zI) in the following.
Considering this course of the behavior of each consumer, the definition of equilibria of

an economy with real assets is straightforward. Before describing the definition, however,
a specific operation called the box product is needed to simplify a notation.

Let a and b be two n sets of k-vector; that is, a = (a1, . . . , an), b = (b1, . . . , bn) where
ai, bi ∈ Rn, i = 1, . . . , n. Then the box product a 2 b of a and b is defined as

a 2 b = (a1b1, . . . , anbn).

I am now in a position to state the definition of an equilibrium for an economy with
real assets.

Definition 1.3 For an economy with real assets (u, ω; A), an equilibrium is a pair of prices
and actions (p, q; x, z) satisfying that

(1) (xi,zi) is a solution for the following optimization problem (i = 1, . . . , I).

max
xi

ui(xi)

s .t . p0(x
i
0 − ωi

0) + q · zi ≤ 0

p1 2 (xi
1 − ωi

1) ≤ D(p1, A)zi.

(2)
∑I

i=1(x
i − ωi) = 0.

(3)
∑I

i=1 zi = 0.

Note in the above definition that (1) implies the subjective equilibrium for each consumer
and that (2), (3) are the market clearance conditions respectively for goods and assets.

Now that I have obtained a real asset model, I turn to a nominal asset model. It
is, however, easy to characterize the latter model because the only difference between a
real asset and a nominal asset is the asset structure. One may assume that there exist J
nominal assets in the economy. Since nominal assets promise returns denominated in the
unit of account, its asset structure is described as follows.
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Definition 1.4 The nominal asset structure of J nominal assets is a S × J matrix given
by

A =




a1(1) a2(1) . . . aJ(1)
a1(2) a2(2) . . . aJ(2)

...
...

. . .
...

a1(S) a2(S) . . . aJ(S)




It is worth noting that the nominal asset structure coincides with its dividend matrix
since a given returns of each nominal asset is independent of spot prices in the future.
Consequently, an equilibrium of an economy with nominal assets is defined as follows.

Definition 1.5 For an economy with nominal assets (u, ω; A), an equilibrium is a pair of
prices and actions (p, q; x, z) satisfying that

(1) (xi,zi) is a solution for the following optimization problem (i = 1, . . . , I).

max
xi

ui(xi)

s .t . p0(x
i
0 − ωi

0) + q · zi ≤ 0

p1 2 (xi
1 − ωi

1) ≤ Azi.

(2)
∑I

i=1(x
i − ωi) = 0.

(3)
∑I

i=1 zi = 0.

A comment on the treatment of the nominal assets seems to be in order. As is easily
seen from the foregoing arguments, the model is based on the so called Arrow-Debreu
competitive equilibrium model, so that money is left out of account in the model (or even
if money is introduced, it only performs a very restricted function, namely, to act as a unit
of account). Hence, what each nominal asset delivers at each state in the future should be
interpreted as a specified amount written on the credit side of an agent’s account which
is only available at a corresponding state. Since the nominal asset’s return is specified
independently of the spot prices, its purchasing power is inversely proportional to the price
level.

It is worth noting that the above definitions of an equilibrium do not necessarily make
sense. In order for these definitions to be acceptable, the possibility of the so called arbitrage
should be ruled out . First, consider this issue in a real asset model. In the following, I
postulate that the utility function of each consumer satisfies the monotonocity.

Since the income for consumer i obtained by trading the assets consists of −q ·zi for the
present and D(p1, A)zi for the states of the future, if there exists a portfolio zi satisfying
that

( −q
D(p1, A)

)
zi > 0
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then not only i but all consumers desire such a portfolio as much as possible, which prevents
the clearance in each asset market. Thus, in order for an equilibrium to exist, one needs
the condition that there exists no portfolio z such that

( −q
D(p1, A)

)
z > 0

To this condition the following proposition, called Stiemke’s theorem, is applicable.

Theorem 1.1 For each given n×m matrix A, either
(I) A · x ≤ 0 has a solution x ∈ Rm

or
(II) y · A = 0, y > 0 has a solution y ∈ Rn

but never both.

For proof of the theorem, see Mangasarian (1969,1994), chap.2. §4.
Thus, there must exist a S + 1-vector λ (= (λ0, λ1, . . . , λS)) > 0 such that

λ

( −q
D(p1, A)

)
= 0

It can be easily seen that the normalization of the vector λ is permissible, thus I set λ0 = 1
for the present and also set λ1 = (λ1, . . . , λS). Then I have that q = λ1D(p1, A) which is
written in component form as follows.

qj =
S∑

s=1

λsD
j
s(p1, A), j = 1, . . . , J

where Dj
s(p1, A) denotes the dividend brought by asset j at state s. Hence λ1 is a coefficient

vector that associates the revenue of each asset at each state with its present price; that is,
λ1 is interpreted as the vector of the discount rates. Accordingly, the absence of arbitrage
opportunities implies the existence of the vector of the discount rates common to all assets.
Such a vector is often called a present value vector. In addition, the presence of such a
present value vector is often called the no-arbitrage condition.

Under the no-arbitrage condition, for any portfolio satisfying the budget constraints for
consumer i, the following condition is immediately obtained.

S∑
s=0

λsps(x
i
s − ωi

s) = 0.

Set p∗s = λsps (s = 0, 1, . . . , S), which can be interpreted as the present value price vector
of spot prices at each state.
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Then, noting that the set { z ∈ RJ | p1 2 (x1 − ω1) = D(p1, A) · z} is equal to the
set { z ∈ RJ | p∗1 2 (x1 − ω1) = D(p∗1, A) · z} since D(p∗1, A) · z = λ1 2 D(p1, A) · z,
the optimization problem for i can be rewritten as follows.

max
xi

ui(xi)

s .t . p∗(xi − ωi) = 0

p∗1 2 (xi
1 − ωi

1) ∈ sp[D(p∗1, A)]

where sp[D(p∗1, A)] denotes the linear subspace of RS spanned by the column vectors of
D(p∗1, A).

It is worth noting that in the above formulation zi and q are excluded; that is, the
portfolio selecting behavior of i is put aside.

Moreover, it is possible to dispense with the market clearance condition of the assets.
Indeed, if the subjective equilibrium demand of each consumer for goods, i.e. the solution
for the above problem, satisfies the market clearance condition, then there always exists
an optimal portfolio allocation (z̄1, . . . , z̄I) such that

∑I
i=1 z̄i = 0. In fact, noting that for

the solution xi of the above problem there exists a portfolio zi (= (zi
1, . . . , zi

J)) such that
p∗s · (xi

s −ωi
s) =

∑J
j=1 Dj

s(p
∗
1, A)zi

j for all s, I may set z̄i
j = zi

j −
∑I

i=1 zi
j/I, j = 1, . . . , J to

obtain that

p∗s · (xi
s − ωi

s) =
J∑

j=1

Dj
s(p

∗
1, A)z̄i

j, i = 1, . . . I

I∑
i=1

z̄i
j = 0, j = 1, . . . , J.

Hence, under the no-arbitrage condition, a simplified definition of an equilibrium for
the economy with real assets is obtainable.

Definition 1.6 For an economy with real assets (u, ω; A), an equilibrium under the no-
arbitrage condition is a pair of prices and actions (p, x) satisfying that

(1) xi is a solution for the following optimization problem (i = 1, . . . , I).

max
xi

ui(xi)

s .t . p · (xi − ωi) = 0

p1 2 (xi
1 − ωi

1) ∈ sp[D(p1, A)].

(2)
∑I

i=1(x
i − ωi) = 0.

It is worth noing that the equilibrium price qj of asset j is equal to
∑S

s=1 Dj
s(p1, A), j =

1, . . . , J where p1 is the equilibrium prices of goods at date 1. This is because the prices
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for the goods in the above definition are interpreted as the present value prices. Since there
exists no equilibrium under the presence of arbitrage opportunities, I may confine myself
to the no-arbitrage equilibrium in the following.

As for the case of a nominal asset model, a similar discussion is applicable except for
one concideration. In a nominal asset model, even if the present value price vector of spot
prices is considered, it is not allowed to dispense with the vector of the discount rates in
rephrasing the budget constraints in date 1 for each agent. As can be easily checked, these
constraints are described as follows.

p∗1 2 (xi
1 − ωi

1) =




λ1a1(1) λ1a2(1) . . . λ1aJ(1)
λ2a1(2) λ2a2(2) . . . λ2aJ(2)

...
...

. . .
...

λSa1(S) λSa2(S) . . . λSaJ(S)


 zi.

Thus, the reduced form of conditions concerning an equilibrium with nominal assets is
derived as follows.

Definition 1.7 For an economy with nominal assets (u, ω; A), a pair of prices and actions
(p, x) is an equilibrium under the no-arbitrage condition if and only if there exists a strictly
positive S-vector (λ1, . . . , λS) such that the (p, x) satisfies that (1) xi is a solution for the
following optimization problem (i = 1, . . . , I).

max
xi

ui(xi)

s .t . p · (xi − ωi) = 0

p1 2 (xi
1 − ωi

1) ∈ sp[ΛA].

(2)
∑I

i=1(x
i − ωi) = 0

where Λ designates a diagonal matrix with (λ1, . . . , λS) as its diagonal.

In light of the above definitions of an equilibrium regarding an economy with assets (real
or nominal), it is easily seen that the term sp[D(p1, A)] (resp. sp[ΛA]) plays a crucial
role. Indeed, if sp[D(p1, A)](resp. sp[ΛA]) = RS, then the second budget constraint for
consumer i is always met and is dispensable. Hence, in this case, the equilibrium condition
turns out to be the one familiar in the standard Arrow-Debreu model without assets. This
observation leads to the following dichotomy.

Definition 1.8 If sp[D(p1, A)](resp. sp[ΛA]) = RS, then the real (resp. nominal) asset
markets are said to be complete. Otherwise, they are incomplete.

Since a complete asset model is not novel at all in that it can be reduced to the usual
Arrow-Debreu model, it is quite legitimate to concentrate on the case of incomplete markets.
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It is worth noting that if the number of assets (J) is strictly less than the number of states
(S), then the asset market is necessarily incomplete. Thus, it is very often postulated
in the literature concerning incomplete asset markets that J < S. In this dissertation,
I also assume mostly that J < S. Needless to say, however, the condition that J > S
does not always assure the completeness of the asset market. For the possibility of the
incompleteness in the case where J > S, see Magill and Shafer (1990).

1.2 Theory of General Equilibrium with Incomplete

Asset Markets (GEI)

Once one decides to focus on an economy with incomplete asset markets, he/she has to
prepare for various theoretical difficulties. These difficulties have proved to be so funda-
mental and serious as to necessitate a separete research field concerning this issue. This
requirement developed the so called theory of general equilibrium with incomplete asset
markets (GEI). The theory is characterized as follows. “The GEI model studies the char-
acter of economic activity when there may be more than one missing market, and more
than one budget constraint.”(Geanakoplos (1990), p.3). Note that the incomplete asset
market model provided in the previous section possesses these characters. The archetype
GEI model was initially formulated by Radner (1972), though he more emphasized on the
expectation for the future and the role of firms than the model described above. Thus, an
equilibrium previously defined is often called a Radner equilibrium (see, e.g., Mas-Colell,
Whinston and Green (1995),19 E). Although in the initial stage of the development of
GEI many practical problems were treated, such as finicing of firms, option pricing and
macroeconomics (see, e.g., Stiglitz (1974), Drèze (1974), Grossman and Hart (1979), Ross
(1976), Lucas (1978,1980), Prescott and Mehra (1980) etc.), arising theoretical difficulties
were left untouched. Then, what were the theoretical difficulties ?

Let’s consider the following numerical example due to Geanakoplos (1990).

example : There are two consumers (a, b), two goods (x, y), two states of nature (s = 1, 2)
at date 1 and two assets (j = 1, 2). At state 1 two goods are both tradable, but only
x is tradable at state 2 as well as at state 0 (the present). Let (x1, y1) denote the
quantity vector of the two goods at state 1 and x2 denote the one at state 2. The
prices for those goods are respectively designated by px1 , py1 and px2 . On the other
hand, let q1, q2 denote the prices respectively for assets 1 and 2. The asset structure
of these assets is given by




1 0
0 1
1 1
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where the 1st and the 2nd row respectively designate the quantity of goods x and y
delivered at state 1, while the 3rd row indicates the quantity of good x delivered at
state 2. Hence, the dividend matrix of these assets is as follows.

(
px1 py1

px2 px2

)

Utilities of consumers a and b are respectively given by the following utility functions.

ua = ln xa
1 + 2 ln ya

1 + ln xa
2

ub = ln xb
1 + ln yb

1 + 2 ln xb
2.

Note that neither consumer cares for x0. Endowments for them are as follows.

ωa = (x̄a
0, x̄

a
1, ȳ

a
1 , x̄

a
2)

= (0, 1, 1, 2)

ωb = (x̄b
0, x̄

b
1, ȳ

b
1, x̄

b
2)

= (0, 1, 2, 1).

In this framework, the behavior of each consumer is summarized as the following
optimization program. That is, for consumer a

max ln xa
1 + 2 ln ya

1 + ln xa
2

s .t . q1θ
a
1 + q2θ

a
2 = 0

px1(x
a
1 − 1) + py1(y

a
1 − 1) = px1θ

a
1 + py1θ

a
2

px2(x
a
2 − 2) = px2θ

a
1 + px2θ

a
2

where θa
j (j = 1, 2) denotes the quantity demanded by a for asset j whereas for b I

have that

max ln xb
1 + ln yb

1 + 2 ln xb
2

s .t . q1θ
b
1 + q2θ

b
2 = 0

px1(x
b
1 − 1) + py1(y

b
1 − 2) = px1θ

b
1 + py1θ

b
2

px2(x
b
2 − 1) = px2θ

b
1 + px2θ

b
2

where θb
j (j = 1, 2) is alike θa

j .

On the other hand, the market clearance conditions are as follows.

θa
j + θb

j = 0, j = 1, 2

xa
1 + xb

1 = 2

ya
1 + yb

1 = 3

xa
2 + xb

2 = 3.
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It can be easily obtained by computation that the solutions for py1 and q2 are both
1 but those for the other variables are all 0/0, which implies that this numerical
example is unsolvable, though the example possesses no abnormal features.

This example shows that there may exist no equilibrium in an economy with incomplete
asset markets. This difficulty was early noticed by Hart (1974,1975). In addition to the
existence puzzle, Hart also pointed out that an equilibrium of an incomplete asset market
model, if any, may not be Pareto optimal. He suggested this point by giving an example
where one equilibrium Pareto dominates another equilibrium (Hart (1975)). These negative
observations concerning such fundamental properties as the existence and the efficency of
an equilibrium threatened a logical basis for the theory.

In the special case of numeraire assets, it turned out that an existence theorem could
be derived by means of a standard fixed point technique (Geanakoplos and Polemarchakis
(1986), Chae (1988)), where a numeraire asset is an asset which promises to deliver a given
amount of the numeraire good alone in each state. For the general case, however, this
technique proved to be useless. It is the theory of regular economies that had a share
in the breakthrough of this deadlock (for the theory of regular economies, see Nagata
(2001b, 2004)). Once the method of this theory proved to be useful (Repullo (1986)), GEI
achieved a remarkable improvement in the pure theory. That is to say, for the case of real
assets, Duffie and Shafer (1985) solved the problem of the non-existence of equilibrium,
showing that GEI equilibrium generically exists in initial endowments and asset structures
(for their procedure, see Nagata (2001a)). Their result was, thereafter, refined through
elaborate mathematical techniques such as algebraic topology (Hussein, Lasry and Magill
(1990)) and vector bundle (Hirsh, Magill and Mas-Colell (1990)). In addition, another
way of proof through the investigation of pseudo-equilibria, which is a key concept for the
existence proof, has been recently developed (Chichilnisky and Heal (1996), Zhou (1997a,
b)). On the other hand, for the nominal asset case, after a suggestive prospect given by
Cass (1984), Werner (1985) proved the existence of equilibrium without recourse to the
method of regular economies. Then, the structure of the equilibrium set was studied at
length through the method of regular economies (Balasko and Cass (1989), Geanakoplos
and Mas-Colell (1989), Werner (1986,1990)).

In the process of the pure theoretic development of GEI, it turned out that there is a
crucial distinction concerning the structure of equilibria between a real asset model and a
nominal asset model. It is true that there always exists in both models a possibility of a
multiplicity of equilibria. But, in the case of real assets, a local uniqueness of an equilibrium
is generically guaranteed, which implies that one can have finite equilibria in some cases.
By contrast, in the case of nominal assets, equilibria, if any, could form a continuum,
resulting in a possibility of indeterminacy as Cass (1985) first exemplified. Indeed, it has
been generically shown that the degree of indeterminacy is S − 1 when the nominal asset
prices are taken to be endogenous variables (Geanakoplos and Mas-Colell(1989)), whereas
the degree amounts to be S − J if the asset prices are exogenously fixed (Balasko and
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Cass(1989)), where the degree indicates the maximum dimension of a manifold contained
in the set of equilibria.

The first two chapters (i.e., chap. 2 and 3) of this dissertation are concerned with this
characteristic of the equilibrium set. In chapter 2, I investigate from the generic viewpoit
the structure of the equilibrium set when there coexists real assets and nominal assets. As
was stated above, one type of asset yields a different structure of the equilibrium set from
the other type does, which naturally leads to the question: what happens to the equilib-
rium set with both types? Since only a very limited case has been discussed with regard
to this issue, I try to consider the problem within a general framework. As a result, it
is demonstrated that regardless of the presence of real assets there is generically still real
indeterminacy of equilibria whose degree is the same as without the real assets. Otherwise
stated, the indeterminacy caused by nominal assets is robust in that it is not alleviated
through introduction of real assets. Then, in chapter 3, I show that the indeterminacy
of equilibria with nominal assets is also robust with respect to agents’ preference. In the
literature on incomplete asset markets, a preference of an agent is mostly characterized
by some kind of convexity (e.g., quasi-concave utility function), which facilitates the suc-
cessive analytical arguments in that such a characterization possibly leads to a consistent
demand function. I try to free the preference from any convexity; namely I require a utility
function to be only monotone, which does not assure any well-defined demand function.
Then, I demonstrate that even in these circumstances the indeterminacy character of the
equilibrium set exactly carries over; that is, the degree of indeterminacy is preserved even
without any convexity of utility functions.

Another problem involved in the GEI is concerned with efficiency of equilibria. As I
have stated before, the equilibrium allocations with incomplete asset markets need not be
Pareto optimal, as Hart (1975) first suggested. This observation led to investigation of
a less demanding criterion concerning the welfare of those equilibria, resulting in a new
concept of optimality called the constrained optimality (or efficiency). This was initially
presented by Diamond (1967), then through the work of Stiglitz (1982), elaborated and
extended to the general model of the incomplete asset markets by Geanakoplos and Pole-
marchakis (1986). This specific notion of optimality is descrived as follows. That is to say,
a constrained Pareto optimal allocation (or constrained efficient allocation) is an allocation
which is Pareto dominant among feasible allocations under the condition that a fictional
planner can control the portfolio allocation among the agents, leaving the allocation of
goods to the price mechanism. However, even with this weak form of optimality, it has
been shown that except for special cases all equilibria with incomplete asset markets are
generically constrained suboptimal, which substantially means that they are typically not
constrained optimal (Geanakoplos and Polemarchakis (1986), Magill and Shafer (1991)).
This result offers some grounds for the intervention of the government in the private econ-
omy with incomplete asset markets in order to improve an allocation in terms of Pareto
efficiency. Thus, thereafter, some authors argued effectiveness of gevernment policies in
an economy with incomplete asset markets (Kajii (1994), Citanna, Kajii and Villanacci
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(1998), Villanacci et al. (2002)). In this connection, the possibility of welfare improvement
via financial innovation has been argued (Elul (1995, 1999), Cass and Citanna (1998)).
From the above arguments, one should conclude that incomplete market equilibria are
generally irrelevant to Pareto optimality, whether in a pure or constrained sense. Then, is
there any other optimality notion than Pareto efficiency that supports incomplete market
equilibria? To this inquiry, Grossman (1977) produced the notion called social Nash opti-
mality. Loosely speaking, an allocation x̄ is a social Nash optimum if it is impossible to
improve every consumer’s utility by reallocating only (x̄i

s)i at state s with (x̄i
k)i, k 6= s un-

changed, s = 0, 1, . . . , S. Grossman demonstrated that an incomplete market equilibrium
allocation is virtually equivalent to a social Nash optimal allocation.

As long as the efficiency problem with incomplete asset markets is concerned, it seems
that the constrained (in)efficiency has been a central issue. In contrast, (in)efficiency itself,
which is obviously more fundamental, has not been fully argued. Indeed, there exists
very few analytical literature dealing with this topic (e.g., Magill and Quinzii (1996a),
Villanacci et al. (2002)). The latter half of this dissertation (i.e., chap. 4 and 5) focuses on
this basic but uncultivated phase of incomplete asset markets. In view of the arguments
mentioned above, it may be hardly surprising that one can establish generic inefficiency
of an equilibrium with incomplete asset markets. My interest is not in this phenomenon
itself but in the reason why this occurs. In chapter 3, I demonstrate for both a real and a
nominal asset model that generic inefficiency of an equilibrium stems from the trade system
peculiar to incomplete asset markets, independent of a subjective optimization behavior of
each agent. Specifically, given an assumption of current monotonicity, it is shown on the
basis of a numerical conditions regarding agents, goods and assets that the basic structure
of incomplete asset markets, i.e., a multiplicity of missing markets and budget constraints,
gives rise to generic inefficiency of an equilibrium, no matter how an agent behaves, where
current monotonicity means monotonicity of a utility function only with respect to the
consumption at date 0. Thus, roughly speaking, in incomplete asset markets agents are
kept away from Pareto optimal allocations before they declare their demand, whether the
assets are real or nominal. Chapter 4 is a sophistication of chapter 3. It is worth noting
that the claim of chapter 3 is based on a specific topology for the function space, namely the
compact open topology, resulting in necessitating a fairly severe condition on the number
of agents, goods and assets. Thus, in chapter 4, I adopt the more appropriate topology
for the function space, namely the Whitney topology, and use an elaborate mathematical
technique similar to the one developed in chapter 2, succeeding in an improvement on the
numerical conditions. In fact, as long as a real asset case is concerned, it turns out that one
only need a very trivial condition on the numbers of agents, goods and assets to have the
same outcome. In addition, for a nominal asset case, it is shown that the result gained there
is independent of the asset pricing, that is, it holds whether the asset price is endogenous
or exogenous.

As can be easily seen from the above arguments, the theme of this dissertation is solely
concerned with fundamental aspects of incomplete asset markets. However, the analytical
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tools to be used are not fundamental. Thus, in the last chapter, I give a full explanation
of specific mathematical techniques originally developed for the purpose of facilitation of
analysis of this sort of issue.

Incidentally, I will try to make each chapter self-contained, thus one will see some
passages appear repeatedly from chapter 2 to chapter 5.

1.3 Developments of GEI

In the previous sections, I made arguments and surveys which are all concerned with the
basic model of GEI, namely, two-period pure exchange economy model. Though all the
discussions of this dissertation are solely based on this basic model, a brief survey on further
developments of GEI is in order.

It seems that there exist two marked features characterizing the basic model; namely,
the pure exchange and the finiteness of all the elements forming the framework of the basic
model. More specifically for the latter, the number of agents, goods, states of nature and
the periods is implied. From the viewpoint of generalization, it is desirable to weaken these
conditions. As a matter of fact, such generalizations have been consciously or unconsciously
practiced in the literature. It is, however, worth noting that any extension of the basic
model brings some structural complexities and technical difficulties to the madel. Let’s
first consider the departure from the pure exchange, i.e., the introduction of firms into the
basic model.

As has been described in the previous section, the present value vector, i.e., the vector
of discount rates, for the future revenues is not uniquely determined in an incomplete
market model (see the preceding passages of definition 1.6 and 1.7), which causes a serious
difficulty to the model particularly with multi-owner firms. First suppose that a firm is
owned by one proprietor. Then, under usual technical assumptions, the owner would be
able to choose an optimal production plan in accordance with his/her utility maximization.
This is equivalent to say that there exists a specific present value vector for the owner such
that the maximization of the value of a production plan evaluated by the present value
vector is consistent with the maximization of his/her utility maximization. Now think of a
multi-owner firm like a partnership or a corporation. In this case, a specific present value
vector for each owner is different with each other, which means that the optimal production
plan of the firm is different among the owners. In fact, Duffie and Shafer (1986b) have
shown in a simple numercal example with 2 agents, one good, 2 states and 1 firm that a
slight difference between the agents’ utility function hinders the occurrence of the optimal
production plan common to both of them, which can be attributed to the differnce of the
present value vector evaluated by each agent. Thus, this problem, namely, the production
indeterminacy in an incomplete market model with multi-owner firms, formed an issue
for many authors to deal with. As a result, various ways were proposed for unifying the
objective function of a firm by coordinating the different present value vectors among
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owners (Drèze (1974), Grossman and Hart (1979), Kreps (1979), Marimon (1987), Kelsey
and Milne (1996), Bonnisseau and Lachiri (2004) see also Harris and Raviv (1988)).

In addition to this conceptual problem, one has to be involved in fundamental theoretical
problems, namely, the existence and the efficiency of equilibrium of a production economy
with incomplete asset markets. In fact, Momi (2001) has given an example in which generic
existence of equilibrium no longer holds insofar as the Drèze criterion to determine a firm’s
objective function and short sales of the stocks are allowed, though this is not the case for
other cases (Magill and Quinzii (1988), Geanakoplos, Magill, Quinzii and Drèze (1990)).
Regarding the efficiency problem of equilibrium, it has been shown that the introduction of
production to an incomplete asset market model does not save the situation (Geanakoplos,
Magill, Quinzii and Drèze (1990)).

Finally for the production economy, one should refer to the financing of a firm, which
naturally leads to the investigation of the relevancy of the so called Modigliani-Miller
theorem in an incomplete asset market model. Regarding this issue, it has been shown
that the M-M theorem can fail to hold in some cases ( Stiglitz (1969,1974), Hellwig (1981),
DeMarzo (1988)).

Now let’s proceed to the other issue, namely, the finiteness of all the elements of the
basic model. In the literature concerning the general competitive equilibrium, we have had
a long history of the departure from the finiteness since the pioneering works of Aumann
(1964) and Bewley (1972). From the nature of the matter, the arguments during the history
have centered on the number of agents and goods, having yielded a variety of meaningful
results. Thus, it is easily seen that novel findings to be expected would be limited even
in the GEI model if one is only concerned with the number of agents and goods. In other
words, what one should do with the GEI model is to relax the numeral restriction on periods
and states of nature that are specific to GEI. In fact, most researches on the departure
from the finiteness have been concerned with the periods and/or the states of nature in the
development of GEI.

First, an extension of the periods will be refered to. If one speaks of incomplete markets
with more than two periods, one should notice that Radner (1972) has already considered
the issue in a form of a sequence of markets. However, it is Werner (1986,1990) who
first extended the standard two-period model described in the previous section to the
multi-period. The extention of periods makes the model complicated in that one needs to
incorporate retrading markets for long-lived assets. Werner has considered a three-period
model with nominal assets in which both short-lived (one-period) and long-lived (two-
period) assets exist, where the latter are supposed to be originally traded at date 0 and
then retrated at date 1. For T -period economies, see Florenzano and Gourdel (1994).

However, once one excludes the constraint of two periods, one easily proceeds over fi-
nite (multi-) periods to infinite periods, though one must cope with additional difficulties
in the latter case. The crucial difficulty among others consists in the nature of debt con-
straints. In the finite horizon case, the condition of no debt beyond the terminal date,
together with the budget constraint, puts limits on debt at earlier stage, while in the in-
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finite case this kind of constraint is not imposed. In addition, in incomplete markets the
current value of future endowments is not equal among traders because marginal rates
of substitution may not be equal among them, which implies that the so called solvency
requirement is no longer valid, preventing an equilibrium from existing. Thus, in the late
90’s many authors worked with this challenging issue of the infinite horizon incomplete
markets (Hernández and Santos (1993,1996), Magill and Quinzii (1994,1996b), Levine and
Zame (1996), see also Araujo,Monteiro and Páscoa (1996)). In this connection, one should
also notice researches in the OLG model with incomplete markets (Cass, Green and Spear
(1992), Gottardi (1996), see also Florenzano, Gourdel and Páscoa (2001)) and the recursive
equilibria with infinitely lived agents and incomplete markets (Duffie, Geanakoplos, Mas-
Colell and MacLennan (1994), Kehoe and Levine (2001), Kubler and Schmedders (2002,
2003), Krebs (2004)).

Finally, I proceed to the other element, namely states of nature. Since the basic model
has multiple (finite) states of nature in the future, numeral relaxation on this element nec-
essarily indicates the consideration of an infinite number of states. The more problematic
is the case of a continuum of states (i.e., uncountably many states), where one must suffer
the following difficulties which stem from the fact that a typical setting in this case is based
on some probability space. First, in order to prove an equilibrium, one is required to use
some elaborate mathematical technique which one would dispense with in the finite case.
Second, even if one can circumvent this technical matter, a resulting existence-proof is,
as all the known results have shown, likely to depend on a very strong assumption from
the economic viewpoint. Third, the structural property of equilibria is not necessarily de-
sirable; in fact Mas-Colell (1991,1992) has already shown that there exists an open set of
economies of incomplete real asset markets with a continuum of states such that the set of
equilibria for every member of the open set has at least the cardinality of the continuum,
which implies that the property of the finiteness of the equilibria is not generic for the case
in which there are uncountably many states of nature even if only real assets are considered.

As for the technical treatment concerning the existence-proof, one may mention Hellwig
(1996), Mas-Colell and Monteiro (1996) and Monteiro (1996) as representative approaches.
However, all of these approaches need a strong assumption that portfolio returns can be
covered by the initial endowments for almost all states and all admissible portfolios. This
assumption, moreover, has been shown to be crucial to those approaches (Mas-Colell and
Zame (1996)), which is, of course, controversial. In order to circumvent this trap, Araujo,
Monteiro and Páscoa (1998) make resort to a new concept of bankruptcy, which is a clever,
but, in a sense, ad hoc means. About the structural property of equilibria, it has been
shown that if one pays attention to a topological structure instead of a cardinal one, one can
gain promising consequences concerning local uniqueness of the equilibria (Dávila (1998),
Monteiro and Páscoa (2000)).

There are many other researches concerning the GEI model that have been achieved
from different angles than those provided above. It is impossible to survy all of them here
since those researches are enormous in quantity. I can only refer to a limited amount of
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them. In order to efficiently sum up those works, let me classify them into two groups;
namely, one is reconsideration of various classical issues concerning the usual Arrow-Debreu
model in the framework of GEI and the other is an application of the so-called new wave
of economic theory to the GEI model.

First group: ∗ An extension of a characterization of the excess demand functions ini-
tiated by Sonnenschein, Mantel and Debreu to incomplete markets has been performed
by Bottazzi and Hens (1996), Detemple and Gottardi (1998), Gottardi and Hens (1999),
Chiappori and Ekeland (1999) and Hens (2001). ∗ The problem of transaction costs has
been argued in the framework of incomplete markets by Préchac (1996), Arrow and Hahn
(1999). ∗ Computaion of equilibria a là Scarf has been investigated through various algo-
rithm in the GEI model (see Brown et.al.,(1996), DeMarzo and Eaves (1996), Schmedders
(1998, 1999), Kulber and Schmedders (2000) and Kulber (2001)). ∗ The fact that the issue
of uniqueness of an equilibrium has been extensively argued for a long time in the standard
general competitive equilibrium theory naturally led to an investigation of the same issue
in the framework of incomplete markets (Bettzüge (1998)). ∗ Non-Walrasian equilibrium,
opposed to Walrasian equilibrium, has been widely argued since the pioneering works by
Benassy (1975) and Drèze (1975). This issue also has been investigated in the framework
of incomplete markets (Nagata (1992), Herings and Polemerchakis (2002)). ∗ Money and
monetary equilibrium with incomplete markets have been discussed (Magill and Quizii
(1988, 1992, 1996a), Dubey and Geanakoplos (1992, 2003)).

Second group: In this group the works centered on (asymmetric) information and game
theory in incomplete markets are included. ∗ Rational expectations equilibrium initiated by
Radner (1979) has been extensively exploited by many authors (Polemarchakis and Siconolfi
(1993), Rahi (1995), Pietra and Siconolfi(1998), Stahn (2000), Citanna and Villanacci
(2000), Donati and Momi (2003). see also Pietra and Siconolfi(1996, 1997)). ∗ Recently,
attention has begun to focus on the application of game theoretic approaches to various
aspects of the GEI model (Giraud and Stahn (2003), Giraud and Weyers (2004), Kühn
(2004)).

Before closing this chapter, let me mention CAPM very briefly. CAPM is short for
the Capital Asset Pricing Model, thus it is related to the GEI model in the sense that it
concentrates on determination of asset prices. However, the basic concept for the CAPM
is the risk attitude of an agent, which is not fully considered in the GEI model. Moreover,
incomplete markets are not necessarily underlying the CAPM. Hence, instead of going far
into the literature of the CAPM with incomplete markets, I limit myself to refer to Duffie
(1992) and Magill and Quinzii (1996a, cap.3) as relevant references.

19



Chapter 2

Mixture of Real and Nominal Assets
and Indeterminacy of Equilibria

This chapter1 investigates the real indeterminacy of equilibria in an incomplete market
model in which there are two periods, with uncertainty in the second, and both real and
nominal assets exist. As is well known, the equilibria of a model with real assets behave
very differently from the equilibria of a model with nominal assets. Then, what happens if
real and nominal assets coexist ? This is the question I will try to answer in this chapter.
As a result, the robustness of real indeterminacy of equilibria is demonstrated within a
general framework. Specifically, it is shown that regardless of the presence of real assets
there is generically still real indeterminacy of equilibria whose dimension is the same as
without the real assets.

1This chapter is based on R.Nagata, “Real Indeterminacy of Equilibria with Real and Nominal Assets”,
Advances in Mathematical Economics, vol. 7 , 95-111, 2005.
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2.1 Introduction

It is well known that the consequences of a real asset model and a nominal asset model are
very different when markets are incomplete, where a real asset is a contract which promises
to deliver a bundle of goods at each state in the future, whereas a nominal asset promises
to deliver a given stream of units of account across the states. In a real asset model with
two periods the equilibrium set is shown to be generically finite (Duffie and Shafer (1985)),
whereas in a nominal asset model there generically exists real indeterminacy of equilibria
(Cass (1984, 1985), Werner (1985)). The real indeterminacy of equilibria indicates that the
set of equilibrium allocation of goods among the agents constitutes a continuum, which has
been shown to generically contain a definite dimensional smooth manifold. This observation
leads to measurement of the degree of indeterminacy by the dimension of the relevant
manifold. Then, it has been shown that the degree of indeterminacy is S − 1 when the
nominal asset prices are taken to be endogenous variables (Geanakoplos and Mas-Colell
(1989)), whereas the degree amounts to be S − J if the asset prices are exogenously fixed
(Balasko and Cass (1989)), where S indicates the number of states of nature in future and
J the number of nominal assets.

In reality it is very hard to imagine that there exists only one type of asset. There
are usually both nominal and real assets in actuality, which naturally leads us to the
investigation of incomplete markets with both assets. however, there is very little literature
considering this issue. Geanakoplos and Mas-Colell argue in the chapter cited above that
the dimension of real indeterminacy is robust to the addition of real assets to nominal
assets. But they have only considered a special kind of real assets, that is, real numeraire
assets which promise to pay only in commodity 1 (the numeraire) at each state. The reason
why they particularly chose real numeraire assets is that any nominal asset is transformed
into a real numeraire asset, which obviously makes the matter simple. Considering the
peculiarity of real numeraire assets, however, the introduction of those assets alone is far
from a satisfactory generalization. Indeed, they say in this respect, “I will not make here
an effort to get the best possible result” (ibid., p. 36). It is intuitively expected in general
that the larger is the proportion of real assets, the smaller is the indeterminacy associated
with nominal assets. Magill and Shafer say “ ... if the returns matrix consists of a mixture
of real and nominal assets ...the equilibrium set contains the image of ... an open set which
is typically of dimension less than S − 1” (Magill and Shafer (1991), p. 1572).

In this chapter I investigate the real indeterminacy of equilibria when there exist or-
dinary real assets as well as nominal assets. I generically analyze the properties of the
equilibrium set with both types of assets with respect to two classes of parameters: one
is the asset structures of both assets and the other is initial endowments among agents.
Asset prices are considered to be endogenous variables. It is shown within a very general
framework that real indeterminacy of equilibria occurs generically and its dimension is still
S − 1 as long as the numbers of states and agents are both larger than the total number
of both assets. This result does not depend on a component ratio of both assets. On
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the other hand, it turns out that once the total number of assets exceeds the number of
states, the equilibrium set generically fails to be a continuum, so that real indeterminacy
disappears. In section 2, I present a two-period model with two types of assets based on
a pure exchange economy which is shown to be transformed into a model having only a
particular kind of real assets. In section 3, first the existence of equilibria for the model is
established from the generic viewpoint, then it is shown under some usual and moderate
assumptions regarding a utility function and the numbers of states, assets and agents that
there is generically real indeterminacy of equilibria and the dimension of the indeterminacy
is S − 1 in incomplete markets, whereas in potentially complete markets the equilibrium
set generically amounts to be at most countable so that the real indeterminacy of equilibria
does not matter. Finally, in section 4, the relation between the result of this chapter and
other literature, especially that of Geanakoplos and Mas-Colell, is addressed.

2.2 The Model

I consider a pure exchange economy under uncertainty. To keep matters simple, the model
has only two periods (t = 0, 1) with uncertainty in the second. At date 1 one of S states
(s = 1, . . . , S) occurs. For simplicity I call date t = 0, state s = 0, so that in total
there are S + 1 states. The economy consists of I consumers (i = 1, . . . , I) and L goods
(l = 1, . . . , L).

In each state there are L goods, so that the basic real commodity space is RL(S+1).
Each consumer i (i = 1, . . . , I) has an initial endowment of goods ωi = (ωi

0, ω
i
1, . . . , ωi

S) ∈
R

L(S+1)
++ , where ωi

s ∈ RL
++ is the vector of goods in state s. The preference of agent i

is represented by a utility function ui : R
L(S+1)
+ → R defined over consumption bundles

xi = (xi
0, x

i
1, . . . , xi

S) in the consumption set X i = R
L(S+1)
+ (i = 1, . . . , I). I make a usual

assumption on each agent’s utility function.

Assumption 2.1 Each utility function ui (i = 1, . . . , I) satisfies the following conditions:

1. ui ∈ C
(
R

L(S+1)
+ ,R

)
, ui ∈ C∞(

R
L(S+1)
++ ,R

)
.

2. Dui
x ∈ R

L(S+1)
++ for each x ∈ R

L(S+1)
++ .

3. for each x ∈ R
L(S+1)
++ , vtD2ui

xv < 0 for all v 6= 0 such that Dui
xv = 0, where

the superscript ‘t’ indicates the transpose.

4. if U i(x̄) = {x ∈ R
L(S+1)
+ | ui(x) ≥ ui(x̄), then U i(x̄) ⊂ R

L(S+1)
++ } for each

x̄ ∈ R
L(S+1)
++ .

I investigate the case where real and nominal assets coexist. A real asset is a contract
which promises to deliver a bundle of the L goods in each state s at date 1. On the other
hand, a nominal asset promises to pay an exogenously given amount of units of account in
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each state at date 1. I assume that there are J real assets (j = 1, . . . , J) and K nominal
assets (k = 1, . . . , K) in the economy. Our main interest is in the case of incomplete asset
markets, so that J + K < S. A real asset j is clearly characterized by commodity vector
configuration Aj = (aj

1, . . . , aj
S) ∈ RLS at date 1, where aj

s (= (aj
s1, . . . , aj

sL)) is a vector
of the L goods delivered in state s (s = 1, . . . , S). If I see Aj (j = 1, . . . , J) as a column
vector and put them altogether, I obtain a LS × J matrix A as follows:

A = [A1, . . . , AJ ] =




a1
11 . . . aJ

11
...

. . .
...

a1
SL . . . aJ

SL




which is called the real asset structure. The nominal asset structure is, however, represented
by the following S ×K matrix B:

B = [B1, . . . , BK ] =




b1
1 . . . bK

1
...

. . .
...

b1
S . . . bK

S




where Bk(= (bk
1, . . . , bk

S)) is a vector of returns denominated in the unit of account in each
state that a nominal asset k promises to pay (k = 1, . . . , K).

Let p = (p0,p1, . . . , pS) ∈ R
L(S+1)
++ be an array of vectors of spot prices in each state,

q = (q1, . . . , qJ) ∈ RJ
++ be the vector of real asset prices, and r = (r1, . . . , rK) ∈ RK

++

be the vector of nominal asset prices. Then the optimization problem an agent i faces is
expressed as follows (i = 1, . . . , I):

max ui(xi)

s .t . p0xi
0 − p0ωi

0 = −qyi − rzi

psxi
s − psωi

s = (psa1
s,p

sa2
s, . . . , psaJ

s )yi + (b1
s, b

2
s, . . . , bK

s )zi, s = 1, . . . , S

where yi ∈ RJ (resp. zi ∈ RK) is a vector of quantities purchased of real assets (resp.
nominal assets). Let E((ui, ωi)i, A, B) denote the resulting economy in which each agent i
has a utility function-endowment pair (ui, ωi)(i = 1, . . . , I) and there coexist real and
nominal asset structures A, B.

Definition 2.1 An equilibrium for the economy E((ui, ωi)i, A, B) is a pair ((xi,yi,zi)i,
(p, q, r)) such that

(i) (xi, yi,zi) is a solution of the optimization problem provided above with (p, q, r),
i = 1, . . . , I

(ii)
∑I

i=1(x
i − ωi) = 0
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(iii)
∑I

i=1 yi = 0

(iv)
∑I

i=1 zi = 0

In order to consider non-arbitrage, I specify the matrix of returns of real assets at date
1 which is given by

V (p1) =




p1 . . . 0
...

. . .
...

0 . . . pS







a1
1 . . . aJ

1
...

. . .
...

a1
S . . . aJ

S


 =




p1a1
1 . . . p1aJ

1
...

. . .
...

pSa1
S . . . pSaJ

S




Then the budget set of agent i is described as follows, i = 1, . . . , I:

{xi ∈ R
L(S+1)
+ | p0(xi

0 − ωi
0) = −qyi − rzi, p12(xi

1 − ωi
1) = V (p1)yi + Bzi} · · · (∗)

where p1 = (p1, . . . , pS), xi
1 = (xi

1, . . . , xi
S), ωi

1 = (ωi
1, . . . , ωi

S) and 2 denotes box

product.　To ensure the absence of arbitrage opportunities it is required that there exists
no (yi,zi) such that

( −q −r
V (p1) B

)(
yi

zi

)
> 0

where (yi, zi) is, of course, interpreted as a column vector. It follows from Stiemke’s lemma
(see Mangasarian (1969, 1994)) that there must exist an α ∈ RS+1

++ such that

α

( −q −r
V (p1) B

)
= 0.

where α is interpreted as a vector of present value coefficients, thus αsp
s, s = 0, 1, . . . , S

can be viewed as present value prices. I shall show that these present value prices give rise
to the new set of budget constraints without q, r,yi,zi, which is equivalent to (∗). Let p∗

denote an array of vectors (α0p
0, α1p

1, . . . , αSpS). Then it is easy to see that the budget
equations of (∗) lead to

p∗(xi − ωi) = 0,

which forms a part of the new set of constraints. In order to obtain the rest of them, I
need to consider the transformation of nominal assets into real assets.

It is known that if there are only nominal assets in the economy, then a nominal asset
equilibrium can be viewed as an equilibrium in which all assets are real numeraire assets
(Geanakoplos and Mas-Colell (1989)). That is to say, ((xi,zi)i, (p, r)) is an equilibrium
with the nominal asset structure B if and only if there exists a strictly positive diagonal
matrix Λ such that ((xi,zi)i, (p, r)) is an equilibrium with the real numeraire asset structure
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ΛB, where a real numeraire asset is a contract which pays only a certain units of good 1
(the numeraire) in each state, so that a real numeraire asset structure is a S ×K returns
matrix with only good 1 if there exist K real numeraire assets in the economy.

To embed a real numeraire asset into the general real asset space, consider a LS × S
matrix Ω given by




1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
0 1 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
...

...
...

...
0 0 . . . 1
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




which I call a real asset operator. For any matrix C with S rows, let C∗ denote the product
ΩC. Then it can be shown that the system of mixed assets (A, B) is equivalent to a system
of real assets (A, (ΛB)∗), where Λ is any strictly positive S × S diagonal matrix.

Proposition 2.1 (xi,yi,zi)i is an equilibrium allocation for the economy E((ui, ωi)i, A,B)
if and only if there exists a strictly positive diagonal matrix Λ such that (xi, yi, zi)i is an
equilibrium allocation for the economy E((ui, ωi)i, A, (ΛB)∗), where (A, (ΛB)∗) is inter-
preted as a real asset structure.

Proof: First note that if both of A and (ΛB)∗ are a real asset structure, budget equations
of each agent i (i = 1, . . . , I) amount to the following;

p0(xi
0 − ωi

0) = −qyi − rzi

p12(xi
1 − ωi

1) =




p1 . . . 0
...

. . .
...

0 . . . pS


 Ayi +




p1 . . . 0
...

. . .
...

0 . . . pS


 (ΛB)∗zi.

→ : Let ps = (ps
1, . . . , ps

L) (s = 1, . . . , S) be an equilibrium price system in each state.
Then I can choose (1/ps

1) as each diagonal element of Λ (s = 1, . . . , S).
← : Given a (ΛB)∗, the budget equation in each state at date 1 is degree 0 homogeneous
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with respect to the spot prices. Thus I may convert ps into ps′ = ps/(λsp
s
1), s = 1, . . . , S,

where λs (> 0) is a diagonal element of Λ (s = 1, . . . , S), obtaining the budget equations
at date 1 for the economy with mixed asset structures (A, B).

Consequently, for any strictly positive diagonal matrix Λ, an equilibrium for the econ-
omy E((ui, ωi)i, A, (ΛB)∗), if any, constitutes an equilibrium for the economy E((ui, ωi)i,
A,B). Otherwise stated, the set of equilibria for the mixed assets economy is parameterized
by Λ.

Now that the mixed asset structure substantially turns into a real asset structure, all
budget equations at date 1 are homogeneous functions of the spot prices. Hence, by the
non-arbitrage condition I can transform the date 1 budget equations to the following:

p∗12(xi
1 − ωi

1) ∈ 〈(P ∗
1A, P ∗

1(ΛB)∗)〉

where p∗1 is a configuration of present value vectors of date 1 prices (i.e. p∗1 = (p∗1, . . . , p∗S)

= (α1p
1, . . . , αSpS)) and P ∗

1 is a S × LS matrix given by

P ∗
1 =




p∗1 . . . 0
...

. . .
...

0 . . . p∗S




and 〈M〉 is the subspace spanned by the columns of a matrix M .
It is known that according to the non-arbitrage condition, the definition of an equilib-

rium is simplified in the case of real assets, that is, it reduces to the one without portfolios
and asset prices (see eg. Magill and Shafer (1991)). In the case of real asset structure
(A, (ΛB)∗), such simplification leads to the following definition for a non-arbitrage equi-
librium.

Definition 2.2 A non-arbitrage equilibrium for the economy E((ui, ωi)i, A, (ΛB)∗) is a
pair ((xi)i, p

∗) such that

(i) xi = argmax{ui(xi) | xi ∈ D(p∗, ωi; A, (ΛB)∗)} i = 1, . . . , I

(ii)
∑I

i=1(x
i − ωi) = 0

(iii) p∗ ∈ SL(S+1)−1
++

where D(p∗, ωi; A, (ΛB)∗) designates the following budget constraint set for consumer i

{xi ∈ R
L(S+1)
+ | p∗(xi − ωi) = 0, p∗12(xi

1 − ωi
1) ∈ 〈(P ∗

1A, P ∗
1(ΛB)∗)〉}

and SL(S+1)−1
++ is the L(S + 1)− 1 dimensional strictly positive unit sphere.
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The reason why p∗ is confined in SL(S+1)−1
++ is, of course, because of the degree 0 homo-

geneity of the demand function of each agent in this case.
In the sequel, I use p (resp. p1, P1) for p∗ (resp. p∗1, P ∗

1) for simplicity of notation.

Let the set of non-arbitrage equilibria for a given economy be E((ui, ωi)i, A, (ΛB)∗).
As long as I consider the real indeterminacy of equilibria for the mixed asset economy
E((ui, ωi)i, A, B) on the basis of non-arbitrage, I should work with the following set:

Γ =
⋃

Λ∈N

E((ui, ωi)i, A, (ΛB)∗)

where N is the set of all strictly positive S × S diagonal matrices (note that, as I have
remarked above, the set of equilibria for the mixed assets economy is parameterized by Λ).

2.3 Main Results

I first establish the generic existence of equilibria for the economy with a specific real asset
structure defined by the following:




a1
1(1) . . . aJ

1 (1) b1
1 . . . bK

1

a1
2(1) . . . aJ

2 (1) 0 . . . 0
...

. . .
...

...
. . .

...
a1

L(1) . . . aJ
L(1) 0 . . . 0

a1
1(2) . . . aJ

1 (2) b1
2 . . . bK

2
...

. . .
...

...
. . .

...
a1

L(2) . . . aJ
L(2) 0 . . . 0

...
...

...
...

...
...

a1
1(S) . . . aJ

1 (S) b1
S . . . bK

S
...

. . .
...

...
. . .

...
a1

L(S) . . . aJ
L(S) 0 . . . 0




I may identify the set of those real assets with RLSJ+SK . Let (a, b) be an element of
RLSJ+SK , i.e. a ∈ RLSJ and b ∈ RSK .

Proposition 2.2 Under assumption 2.1, E((ui, ωi)i, a, b∗) 6= ∅ for almost all (ω, a, b) ∈
R

L(S+1)I
++ ×RLSJ+SK.

Proof: By following almost the same procedure as that of Duffie and Shafer (1985)]
(Proposition 1, Proposition 2,Theorem 1 and Theorem 2), I am able to obtain the result.
The only point left to be checked is as follows.

27



Consider the map Kδ : R
L(S+1)I
++ ×Wδ ×RLSJ+SK → R(S−(J+K))(J+K) defined by

Kδ(p, L, a, b) = (I, φδ(L))Pδ(P1(a, b))

where (Wδ, φδ) is a chart of the Grassmanian manifold GJ+K,S, I is a (S − (J + K)) ×
(S − (J + K)) unit matrix and Pδ is the S × S permutation matrix corresponding to δ,
which is a permutation of {1, . . . , S}. Note that the map is defined chart by chart. In order
to establish the existence of equilibria, I have only to check that the derivative of Kδ with
respect to (a, b) (denoted by Da,bKδ(p, L, a, b)) is of full rank.

For simplicity, let δ be the identity permutation. Then the submatrix of Da,bKδ(p, L, a, b)
corresponding to (a1

1(s), a
2
1(s), . . . , aJ

1 (s), b1
s, b

2
s, . . . , bk

s) s = 1, . . . , S−(J+K) is represented
as follows:




PJ(1) O O O O O O O
O PK(1) O O O O O O
...

...
. . .

...
...

...
...

...
O O O PJ(s) O O O O
O O O O PK(s) O O O
...

...
...

...
...

. . .
...

...
O O O O O O PJ(S − (J + K)) O

O O O O O
. . . O PK(S − (J + K))




where PJ(s) (resp. PK(s)) denotes a J × J (resp. K ×K) diagonal matrix with ps
1 as its

diagonal (s = 1, . . . , S− (J + K)). Thus the above square matrix is obviously nonsingular,
which implies that rankDa,bKδ = (S − (J + K))(J + K). 　

Let the generic set of (ω, a, b) in the above proposition be Θ.
It is worth noting that under assumption 1 the set of equilibrium ((x̄i)i, p̄) for any

(ω, a, b) ∈ Θ is finite and each ((x̄i)i, p̄) is locally differentiable in (ω, a, b). It also holds
that rank(P̄1(a, b∗)) = J +K at each equilibrium ((x̄i)i, p̄) for any (ω, a, b) ∈ Θ (see Duffie
and Shafer (1985)).

Let (ȳi, z̄i) be agent i’s equilibrium portfolio for (ω, a, b) ∈ Θ, i = 1, . . . , I. 　
I make an assumption on the number of the agents and assets.

Assumption 2.2 I > J + K.

Proposition 2.3 Under the assumptions, rank((ȳi, z̄i)I
i ) = J+K for almost all (ω, a, b) ∈

R
L(S+1)I
++ ×RLSJ+SK.

Proof: Note that I may normalize spot prices, restricting them to SL(S+1)−1
++ . Consider

the map g : SL(S+1)−1
++ × RLSJ+SK → RS(J+K) given by g(p, a, b) = (P1a, P1b∗). It is
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easily shown by calculation that g is a submersion. Since the whole set of full rank matrix
constitutes an open and dense set in the RS(J+K), the inverse image of the set by g is also
open and dense in the domain. Let the inverse image be ∆. Notice that ∆ is a L(S+1)−1+

LSJ +SK-dimensional manifold in SL(S+1)−1
++ ×RLSJ+SK. For simplicity, denote the initial

endowment space R
L(S+1)I
++ by Π. I consider an individual demand function xi defined on

∆ × Π. It is easily shown that xi is smooth on ∆ × Π. Hence, a smooth aggregate excess
demand function can be obtained, which is admittedly truncated to a L(S + 1) − 1-vector
valued function by Walras’ law. Let the truncated function be F (p, a, b, ω). It is readily
checked that the derivative DωF is full rank, so F is a submersion. Then I consider each
agent’s portfolio (yi,zi) that is uniquely determined on ∆×Π. Note that (yi,zi) is smooth
by a smoothness of xi. Let h be a nonzero linear combination of J + K agents’ portfolios,
that is

h(p, a, b, ω, α) =
J+K+1∑

i=2

αi(y
i(p, a, b, ω),zi(p, a, b, ω))

where α = (α2, . . . , αJ+K+1) is an element of the J +K−1-dimensional unit sphere SJ+K−1

(for the reason why I start from agent 2, see Duffie and Shafer (1985)). Now consider the
product map H : ∆× Π× SJ+K−1 → RL(S+1)−1 ×RJ+K defined by

H(p, a, b, ω, α) = (F (p, a, b, ω), g(p, a, b, ω, α)).

Since asset demands of the agents can be freely varied without affecting the demands for
goods, I may presume through an appropriate alteration of their initial endowments that H
is a submersion and has 0 as a regular value. Thus the set

M = {(p, a, b, ω, α) ∈ ∆× Π× SJ+K−1 | H(p, a, b, ω, α) = 0}
is a manifold. On this manifold M I consider a projection π(p, a, b, ω, α) = (ω, a, b). Since
π is proper by the boundary condition of each agent’s utility function, the set of regular
values forms an open and dense set (denoted by T ) in Π×RLSJ+SK (note that ∆ is open

and dense in SL(S+1)−1
++ × RLSJ+SK). Defining Θ∗ = T ∩ Θ, then it is easily seen that

for any element (ω, a, b) in Θ∗, E((ui, ωi), a, b∗) 6= ∅ but π−1(ω, a, b) is empty since the
number of equations exceeds the number of unknowns. Noting that Θ∗ is open and dense
in Π×RLSJ+SK, this implies that for almost all (ω, a, b), rank((ȳi, z̄i)I

i ) = J + K.

In the following the generic set of (ω, a, b) specified from the above proposition is denoted
by Θ∗ as is designated in the proof.

Now I turn to the central issue. It is clear that the structure of Γ depends on the
property of the matrix (A, (ΛB)∗). Admittedly, for almost all (ω, A,B), E((ui, ωi)i, A,
B∗) exists and is finite by proposition 2.2, but it is not enough to determine the structure
of Γ .
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In order to investigate the structure of Γ, I consider a particular set of A and B. Let
A be the set of LS × J matrix of full rank and B be also the set of S ×K matrix of full
rank. A is considered to be a topological subspace of RLSJ . For a matrix A ∈ RLSJ , let
A−1 be a (L− 1)S × J matrix which is constructed by excluding every (s− 1)L + 1-th row
from A (s = 1, . . . , S). Consider the set Ā defined by

Ā = {A ∈ A | A−1 has rank J}.

Lemma 2.1 Ā is an open and dense set of RLSJ .

Proof: Noting that generally the set of n ×m matrix of full rank is open and dense in
Rnm, A is open and dense in RLSJ . Consider the map π : RLSJ → R(L−1)SJ given by

π(A) = A−1.

Let A−1 be the set of (L−1)S×J matrix of rankJ in R(L−1)SJ . Since A−1 is obviously
open and dense in R(L−1)SJ and π is a projection, π−1(A−1) is open and dense in RLSJ .
Hence Ā is an open and dense set of RLSJ since Ā = π−1(A−1) ∩ A.

I now consider the product set Ā×B which is obviously open and dense in RLSJ×RSK .
As for this set, I easily obtain the following result.

Lemma 2.2 For any (A,B) ∈ Ā×B, rank(A, B∗) = J + K and (A, ΛB) is included in
Ā × B for any Λ ∈ N .

Proof: Since B∗
−1 = 0 (zero matrix) by the property of Ω, rank(A, B∗) = rankA +

rankB∗ = J + K. It is easily seen from the properties concerning Ω and Λ that if B is
included in B, then both B∗ and (ΛB)∗ has rank K for any Λ ∈ N . Thus (A, ΛB) ∈ Ā×B
for any Λ ∈ N .

Let the intersection of R
L(S+1)I
++ × Ā × B and Θ∗ be Υ, that is, Υ = (R

L(S+1)I
++ × Ā ×

B) ∩ Θ∗. I concentrate on this set in the following. Note that Υ is open and dense in

R
L(S+1)I
++ ×RLSJ ×RSK .
In what follows I identify N with RS

++ and let Nε(e) be an ε open neighborhood of the
S-dimensional unit vector e (= (1, . . . , 1)). I will consider an element of Nε(e) to be a
S × S diagonal matrix with the diagonal consisting of its components.

Proposition 2.4 For any (ω,A, B) ∈ Υ there exists an ε (> 0) such that
E((ui, ωi)i, A, (ΛB)∗) 6= ∅ for all Λ ∈ Nε(e).

Proof: Since Υ is open, there exists an ε (> 0) such that (ω, A, ΛB) ∈ Υ for all Λ ∈
Nε(e), which indicates that E((ui, ωi)i, A, (ΛB)∗) 6= ∅.
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Since rank(P̄1(a, b∗)) = J +K at each equilibrium ((x̄i)i, p̄) for any (ω, a, b) ∈ Θ, I may
presume rank(P1(A, (ΛB)∗)) = J + K for any Λ in the proposition, where P1 is derived
from an equilibrium price system of E((ui, ωi)i, A, (ΛB)∗). Then I obtain a proposition
regarding how an equilibrium allocation of commodities depends on Λ.

Lemma 2.3 For any given (ω, A, B) ∈ Υ and Λ, Λ′ ∈ Nε(e) where ε is chosen in such
a way as in proposition 2.4, let ((xi)i, p) and ((xi′)i, p

′) be equilibria for, respectively,
E((ui, ωi)i, A, (ΛB)∗) and E((ui, ωi)i, A, (Λ′B)∗). Then, under assumptions 2.1 and 2.2,
if 〈(A, (ΛB)∗)〉 6= 〈(A, (Λ′B)∗)〉, xi 6= xi′ for some i.

Proof: Suppose that xi = xi′ for all i, then I must have p = p′ because of assumption 2.1
for each agent’s utility function (especially, convexity and no corner solutions). Let (yi,zi)i

and (yi′,zi′)i be respectively corresponding equilibrium allocations of the portfolios. Thus,
by the property of each agent’s budget set (see definition 2.2), (P1(A, (ΛB)∗))(yi,zi) =
(P1(A, (Λ′B)∗))(yi′,zi′) ∈ 〈P1(A, (ΛB)∗)〉 ∩ 〈P1(A, (Λ′B)∗)〉, i = 1, . . . , I.
Suppose 〈(A, (ΛB)∗)〉 6= 〈(A, (Λ′B)∗)〉. Since 〈(A, (ΛB)∗)〉 = 〈A〉 + 〈(ΛB)∗〉 where +
denotes a direct sum of vector spaces, 〈(A, (ΛB)∗)〉 6= 〈(A, (Λ′B)∗)〉 implies 〈(ΛB)∗〉 6=
〈(Λ′B)∗〉. It follows that 〈P1(ΛB)∗〉 6= 〈P1(Λ′B)∗〉. Then I obtain 〈P1(A, (ΛB)∗)〉 6=
〈P1(A, (Λ′B)∗)〉 since rankP1(A, (ΛB)∗) = rankP1(A, (Λ′B)∗) = J + K. This yields
that dim〈P1(A, (ΛB)∗)〉 ∩ 〈P1(A, (Λ′B)∗)〉 < J + K. Considering all the agents, I have
(P1(A, (ΛB)∗))(yi,zi) (and (P1(A, (Λ′B)∗))(yi′,zi′)) ⊂ (〈P1(A, (ΛB)∗)〉∩〈P1(A, (Λ′B)∗)〉)
for all i, which is a contradiction since through proposition 2.3, dim〈(y1,z1), . . . , (yI , zI)〉 =
dim〈(y1′,z1′), . . . , (yI′,zI′)〉 = J + K where all (yi,zi)s and (yi′,zi′)s are interpreted as
column vectors.

Definition 2.3 A matrix is in general position if every submatrix of it has full rank.

Lemma 2.4 Let (A,B) be an element of Ā×B. In addition, let B be in general position
and Λ, Λ′ be in N . If Λ 6= αΛ′ for any α (> 0), then 〈(A, (ΛB)∗)〉 6= 〈(A, (Λ′B)∗)〉.

Proof: By lemma 2.2, 〈(A,B∗)〉 = 〈A〉+ 〈B∗〉 and 〈(A, (ΛB)∗)〉 = 〈A〉+ 〈(ΛB)∗〉 where
+ denotes a direct sum of vector spaces. Thus, 〈(A, (ΛB)∗)〉 6= 〈(A, (Λ′B)∗)〉〈(A, (ΛB)∗)〉 6=
〈(A, (Λ′B)∗)〉 if and only if 〈A〉+〈(ΛB)∗〉 6= 〈A〉+〈(Λ′B)∗〉, which is equivalent to 〈(ΛB)∗〉 6=
〈(Λ′B)∗〉. Note that through the property of the real asset operator Ω, 〈C〉 = 〈D〉 for any
two matrices C and D both with S rows. Therefore 〈(ΛB)∗〉 6= 〈(Λ′B)∗〉 if and only if
〈(ΛB)〉 6= 〈(Λ′B)〉. Then, the claim follows from lemma 4 of Geanakoplos and Mas-Colell
(1989).

By way of these lemmas, I obtain the following result.

Theorem 2.1 Under assumptions 2.1 and 2.2, for almost all (ω, A,B) there are S − 1
dimensions of real indeterminacy of equilibria.
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Proof: The set of B in general position constitutes an open and dense set in RSK. Thus
the intersection of this set and B is also open and dense in RSK. Let the intersection be B̄.
Pick any (ω,A, B) ∈ Υ where B ∈ B̄ and take Nε(e) in such a way as in proposition 2.4.
Let the intersection of Nε(e) and the S − 1-dimensional strictly positive sphere through e
be N∗. Then any different pair of Λ in N∗ yields different equilibrium allocations of goods
among the agents by lemmas 2.3 and 2.4. Since for any Λ in N∗ equilibrium allocations
of goods are finite and each allocation is locally differentiable in Λ, S − 1-dimensional real
indeterminacy occurs in Γ.

So far I have concentrated solely on the case of incomplete asset markets; that is, I
presume that J + K < S.

Thus, I consider, finally, the case of potentially complete markets where S ≤ J +
K. I shall show that in this case the generic property of real indeterminacy of equilibria
disappears and the set of equilibrium allocation of goods is generically at most countable.

Definition 2.4 Let the number of real assets be H. A real asset structure A ∈ RLSH is
regular if for each state s, a row as can be selected from the L×H matrix As = (A1

s, . . . , AH
s )

such that the collection (as)
S
s is linearly independent (Magill and Shafer (1990, 1991)).

It is worth noting that if the asset structure is regular, the equilibrium allocations of
the asset market coincide with those of the contingent markets, so that I have generically
a finite set of equilibrium allocations (see Magill and Shafer (1990, 1991)).

Lemma 2.5 If S ≤ J + K, for each (A,B) ∈ Ā × B the asset structure (A, (ΛB)∗) is
regular for any Λ ∈ N .

Proof: I consider Ωt(A, (ΛB)∗) where the superscript ‘t’ indicates the transpose. Then
I have Ωt(A, (ΛB)∗) = Ωt(A, ΩΛB) = (ΩtA, ΛB), which is a S × (J + K) matrix obtained
by picking up each (s− 1)L + 1-th row (s = 1, . . . , S) from (A, (ΛB)∗). Since it is easy to
see that (Ωt)−1{0} + (A, (ΛB)∗)(RJ+K) = RLS where (Ωt) and (A, (ΛB)∗) are considered
to be linear transformations, rank Ωt(A, (ΛB)∗) = rank (Ωt) = S. Thus, all the rows
of (ΩtA, ΛB) are linearly independent, which implies that (A, (ΛB)∗) is regular for any
Λ ∈ N .

Theorem 2.2 If S ≤ J + K, for each (A,B) ∈ Ā × B there exists a dense set W ⊂
R

L(S+1)I
++ such that for any ω ∈ W , the equilibrium allocation set {(xi)i} of Γ is at most

countable, where Γ denotes the union
⋃

Λ∈N E((ui, ωi)i, A, (ΛB)∗).

Proof: Fix any given (A,B) ∈ Ā × B. Since (A, (ΛB)∗) is regular for any Λ ∈ N ,

there exists an open and dense set W (Λ) in R
L(S+1)I
++ such that for any ω ∈ W (Λ) the

set of equilibrium allocations (denoted by XΛ(ω)) is finite (see the note provided just be-
fore lemma 2.5). Moreover, by an invariance property of financial structure (see Magill
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and Shafer (1991), Theorem 6) there exists an open neighborhood of Λ (denoted by N(Λ))
such that for any Λ′ ∈ N(Λ), XΛ′(ω) = XΛ(ω) for all ω ∈ W (Λ). Since N = RS

++, the
open covering {N(Λ)}Λ∈N of N has a countable open subcovering {N(Λi)}i=1,2,.... Let W
denote

⋂
i W (Λi). Then XΛi

(ω) is obviously finite for any ω ∈ W . The set of equilib-
rium allocations of Γ (=

⋃
Λ∈N E((ui, ωi)i, A, (ΛB)∗)) for any given ω ∈ W is nothing but⋃

Λ∈N XΛ(ω), which is equal to
⋃

i XΛi
(ω). Thus the set is at most countable. Finally, the

density of W is derived from the fact that N (= RS
++) is a Baire space.　

Note that the only assumption I need in theorem 2.2 is assumption 2.1 for a utility
function.

2.4 Concluding Remarks

This chapter has analyzed the real indeterminacy of equilibria when the economy has both
real and nominal assets. In contrast to Geanakoplos and Mas-Colell’s work, I have delt with
ordinary real assets in the model. In incomplete markets it has been shown that as long as
the number of agents is larger than the total number of assets, there is real indeterminacy
with the degree of S− 1 generically in asset structures and initial endowments. This result
is independent of the distribution of both assets. Hence, from the generic viewpoint it
is irrelevant to conjecture that the larger the proportion of real assets, the smaller the
indeterminacy. Otherwise stated, it is not typical that the dimension of the equilibrium
set is less than S − 1 when the asset structure consists of a mixture of real and nominal
assets. Indeed, such a case is generically negligible.

I also addressed the problem of indeterminacy in potentially complete markets with
both types of assets. In this case, contrary to incomplete markets, it has been proved that
the number of equilibria is generically at most countable, so that real indeterminacy does
not make sense. This result also does not depend on the proportional distribution of those
two assets. Moreover, it also holds even if the number of agents is smaller than the total
number of assets.

Finally, a comparison of the result obtained here with that of Geanakoplos and Mas-
Colell is in order. As I have stated, their argument is based on real numeraire assets which
promise to pay only in commodity 1 (the numeraire) at each state. The reason why they
particularly chose real numeraire assets is that any nominal asset is transformed into a
real numeraire asset, which obviously makes the matter simple. Their result is as follows.
Suppose that B ≤ 2, S > 2(A + B) and H > A + B, where A is the number of real
numeraire assets, B the number of nominal assets and H the number of agents. Then
for a generic choice of real numeraire and nominal assets, there is a generic set of initial
endowments such that each of the corresponding economies has S − 1 dimensions of real
indeterminacy. In contrast, theorem 1 provided here does not require that S > 2(A + B)
but only S > J +K (S > A+B in their notation). The difference stems from the fact that

33



the real assets they consider are quite different from those I considered here. Let us show
how different they are. As I have noted, they only considered the real numeraire assets .
In contrast, I have first taken account of all real assets and then shown that I may confine
myself to a particular set of them denoted by Ā, which is open and dense in the space of all
real asset structures. However, there is a remarkable relation between Ā and the set of real
numeraire asset structures. Since any real numeraire asset structure is transformed into a
LS×J matrix with all elements zero except each nL+1-th row (n = 0, 1, . . . , S−1), the set
of those structures is included in the complement of Ā relative to the space of all real asset
structures. Thus, the real assets they considered are outside of those I considered here,
which causes the difference concerning the required conditions alluded to above. However,
it is worth noting that real numeraire asset structures are in the set of Lebesgue measure
0 of the space of all real asset structures. Otherwise stated, I have considered almost all
structures, while they have only considered a very limited, almost negligible, part of them.
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Chapter 3

Non-convexity and Indeterminacy
of Equilibria with Nominal Assets

In this chapter1, I investigates the real indeterminacy of equilibria in an incomplete market
model from a different viewpoint than that of the previous chapter. In chapter 2, I exam-
ined how real indeterminacy of equilibria with nominal assets is affected by introduction
of real assets, ending up with the establishment of the robustness of the indeterminacy. In
this chapter, I consider how real indeterminacy of equilibria with nominal assets depends
on choice of a utility function. Specifically, I inquire how the ‘degree’ of real indeterminacy
with nominal assets varies through generalization of a utility function, where the general-
ization particularly indicates a freedom from convexity. As a result, the robustness of the
indeterminacy is shown to be still persistent.

1This chapter is based on R.Nagata, “The degree of indeterminacy of equilibria with incomplete mar-
kets”, Journal of Mathematical Economics, 29, 109-123, 1998.
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3.1 Introduction

When the number of nominal assets that pay some fixed amounts in units of accounts
as returns is lower than the number of states of nature, then it has been shown that
competitive equilibria (financial equilibria) are not locally unique and generically contain a
smooth manifold whose dimensional magnitude depends on whether the prices of nominal
assets are endogenous or exogenous (Balasko and Cass (1989), Geanakoplos and Mas-Colell
(1989), Werner (1986,1990)).

In earlier works, initial endowments of agents are taken as a parameter in considering
the generic property of financial equilibria. I shall add utility functions of agents to a list of
parameters. Then, what kind of utility functions should be considered? In the literature,
financial equilibria have been characterized by excess demand functions, which crucially
depend on some convexity of utility functions. Then, what if utility functions possess no
convexity? This is the motivation of this chapter.

Acceptable utility functions in this chapter are assumed to be smooth, strictly mono-
tone and satisfy some other technical conditions, but no convexity is required of them.
It is true that even in these circumstances with incomplete markets the excess demand
function itself is viable in the spirit of Sonnenscein, Debreu and Mantel (see Bottazzi and
Hens (1996), Detemple and Gottardi (1998)), but it would be hopeless to obtain such an
excess demand function as can characterize the set of financial equilibria which is tractable
from the differential viewpoint. Thus, instead of relying on the excess demand function, I
shall directly use utility functions and work with the first-order conditions to grasp those
equilibria. This idea is attributed to Smale (1974). According to this approach, however,
a resulting equilibrium set becomes an extended one which contains the intrinsic finan-
cial equilibria. Since the extended equilibria would constitute a very huge set, it may
be expected that the degree of their indeterminacy would increase proportionally. But I
demonstrate in the text that this is not the case from a generic viewpoint. Specifically,
given the prices of nominal assets, it is proved that the extended financial equilibrium set is
generically a manifold with the same dimension as the one that Balasko and Cass obtained
generically for the equilibrium set in endowments on the basis of an economy with given
nominal asset prices and strictly quasi-concave utility functions . They proved that the di-
mension is equal to the difference between the number of states and the number of assets,
called deficiency in financial asset markets; otherwise stated, the degree of indeterminacy
in this case is typically equal to the degree of incompleteness of the markets. It follows from
the result of this chapter that as far as the extended equilibrium set is concerned, this fact
generically carries over even when preferences are not required to be convex, which implies
that the degree of indeterminacy of intrinsic financial equilibria without any convexity of
utility functions is also at most the deficiency in financial asset markets. I also investigate
how the extended set is related to a choice of parameter values and prove that generically
in utility functions any extended financial equilibrium is locally continuous with respect to
initial endowments.
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This chapter is organized as follows. Section 2 describes the basic model. The main
feature of the model is that the returns and the prices of nominal assets are exogenously
fixed. In the model, each agent’s utility function is taken to be a parameter, as alluded
to above, and the functional space is accommodated so as to facilitate the analysis of
genericity. Then, the extended financial equilibria are defined by using utility functions,
not using demand functions. Section 3 is devoted to an analysis of the extended financial
equilibrium set. There I present main results on genericity of the degree of indeterminacy
for both the extended equilibrium set and the intrinsic equilibrium set. The dependence
of the extended equilibrium set on an economic parameter is also investigated and some
continuity relation is derived. Concluding remarks are stated in section 4.

3.2 The model

I consider a pure exchange economy expanding over two periods (t = 0, 1) with uncertainty
over the state of nature in the second period. As I have done in the previous chapter, I
assume that there are I agents (i = 1, . . . , I) and L goods (l = 1, . . . , L), all of which
have spot markets at date 0 and in any S states (s = 1, . . . , S) at date 1. I consider date
t = 0 to be s = 0 so that there exists S + 1 states. There are K types of financial assets
(k = 1, . . . , K) that are traded at date 0. I only consider nominal assets in this chapter,
thus each asset pays a fixed amount in units of account in each state at date 1. Hence, the
asset structure is represented by the following S ×K matrix B:

B = [B1, . . . , BK ] =




b1
1 . . . bK

1
...

. . .
...

b1
S . . . bK

S




where Bk(= (bk
1, . . . , bk

S)) is a vector of returns denominated in the unit of account in each
state that a nominal asset k promises to pay (k = 1, . . . , K). Since I am concerned with
incomplete asset markets, I am allowed to assume that K < S in the following. Spot prices
of goods and assets are denoted by vectors p = (p0,p1, . . . , pS) ∈ R

L(S+1)
++ (with ps =

(ps
1, . . . , ps

L)) and r = (r1, . . . , rK) ∈ Rn
++, respectively. I make the following assumptions

on the assets.

Assumption 3.1 rank B = K (No redundancy).

Assumption 3.2 r is a non-arbitrage price vector for B (Non-arbitrage).

I take any B and r fulfilling assumptions 3.1 and 3.2 and fix them. Thus, the prices
of the assets are considered to be exogenous. The consumption vector of each agent i
will be denoted by xi = (xi

0,x
i
1, . . . , xi

S). Note that xi is taken as a vector in RL(S+1).
Its preference is described by a utility function ui defined on consumption vectors. An
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allocation of consumption vectors of all agents will be presented by an LI(S + 1)-vector
x = (x1, . . . , xI) and an array of utility functions by u = (u1, . . . , uI). The portfolio of
agent i will be denoted by zi = (zi

1, . . . , zi
K), where zi

k > 0(< 0) implies the purchase (sale)
of asset k by agent i. A portfolio allocation is presented by z = (z1, . . . , zI). Each agent
i also has an initial endowment vector ωi = (ωi

0, . . . , ωi
S) an allocation of which will be

denoted by ω = (ω1, . . . , ωI), which is also taken as an LI(S + 1)-vector.
A state of economy is characterized by a tuple (x, p, z), while an economy itself is

parameterized by (ω, u). Some assumptions are put on these parameters.

Assumption 3.3 ω ∈ R
LI(S+1)
++ .

Assumption 3.4 Each utility function ui (i = 1, . . . , I) satisfies the following condi-
tions:

1. ui ∈ C
(
R

L(S+1)
+ ,R

)
, ui ∈ Cr

(
R

L(S+1)
++ ,R

)
for large enough r.

2. Dui
x ∈ R

L(S+1)
++ for each x ∈ R

L(S+1)
++ .

3. first r derivatives of ui are all bounded (Cr-boundedness).

4. ui has non-singular Hessian.

Note that no convexity is contained in the above conditions concerning ui. The fourth
condition of assumption 3.4 is included just for simplicity of arguments and can be relaxed
(see the proof of Lemma 3.1).

Let the set of utility functions fulfilling above conditions be U . Then, one parameter
space composed of each agent’s utility function should be the I-product of U , which will
be denoted by U . The other parameter space composed of each agent’s endowments, i.e.,
R

LI(S+1)
++ is denoted by Ω. The product of these two parameter spaces, i.e., U ×Ω is called

the economy space, while the product of the admissible sets of x, p and z is called the
state space. Thus, the state space is nothing but R

LI(S+1)
++ ×R

L(S+1)
++ ×RIK , which will be

denoted by X × P × Z for simplicity of notation.
It is worth noting that the set of Cr-bounded functions forms a Banach space with

a canonical norm (see Abraham and Robbin (1967), p.24). Since the set of functions
satisfying all conditions in the assumption is obviously open in the Banach space, U is a
Banach manifold. Consequently, U is also a Banach manifold.

Now, the formalization of a financial equilibrium is in order. Given an economy (ui, ωi)i,
which will be simly denoted by (u, ω) in the following, each agent i faces the following
optimization problem (i = 1, . . . , I) for its own.

max ui(xi)

s .t . p0xi
0 − p0ωi

0 = −rzi

psxi
s − psωi

s = (b1
s, b

2
s, . . . , bk

s)z
i, s = 1, . . . , S
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In order for the solutions of these problems to form a financial equilibrium, they have
to satisfy the followng market-clearing conditions.

I∑
i=1

xi
s =

I∑
i=1

ωi
s, s = 0, 1, . . . , S

I∑
s=1

zi = 0.

Thus, an intrinsic financial equilibrium for a given economy (u, ω) is formally defined to
be a tuple (x, p, z) satisfying both the optimization problem for all i and market-clearing
conditions. Next step is to analytically characterize an equilibrium. It is worth noting here
that demand, i.e., the solution of each agent’s optimization problem, might not even be a
well-defined function with respect to p since no convexity is required for a utility function.
Thus, one is not allowed to turn the market-clearing condition into a usual equation system
on equilibrium prices by way of demand functions. In these circumstances, one might as
well use calculus to derive the analytical representation of an equilibrium. It is, however,
readily seen that the resulting one, if any, would be too involved to work with. So I give
up the exact characterization of an equilibrium, considering instead a broader notion of an
equilibrium. To this end, I will use the necessary conditions for the solution of the above
optimization problem. Since the constraint functions of the problem are all linear with
respect to (xi,zi), the well-defined first-order necessary conditions can be obtained for the
solution as follows.

ui
0l − λp0

l = 0, l = 1, . . . , L

ui
sl − µsp

s
l = 0, l = 1, . . . , L, s = . . . , S

−λrk +
S∑

s=1

µsb
k
s = 0, k = 1, . . . , K

p0xi
0 − p0ωi

0 = −rzi

psxi
s − psωi

s = (b1
s, b

2
s, . . . , bk

s)z
i, s = 1, . . . , S

where ui
sl is short for ∂ui

∂xi
sl
(xi), (s = 0, . . . , S, l = 1, . . . , L) and λ, µs (s = 1, . . . , S) are

Lagrange multipliers.
Using these conditions, I have an extension of an intrinsic equilibrium.

Definition 3.1 (extended financial equilibrium) An extended financial equilibrium for a
given economy (u, ω) is a tuple (x, p, z) satisfying both the first-order necessary conditions
for all i and the market-clearing conditions.
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The set of extended financial equilibria for (u, ω) will be denoted by FEex(u, ω), which
obviously contains all intrinsic financial equilibria.I investigate some properties of FEex(u, ω)
in what follows. To this end, I first exclude Lagrange multipliers from the necessary con-
ditions to obtain

ui
sl

ps
l

− ui
s1

ps
1

= 0, s = 0, . . . , S, l = 1, . . . , L

S∑
s=1

(
ui

s1

ps
1

)bk
s − (

ui
01

p0
1

)rk = 0, k = 1, . . . , K,

p0xi
0 − p0ωi

0 = −rzi

psxi
s − psωi

s = (b1
s, b

2
s, . . . , bk

s)z
i, s = 1, . . . , S.

The resulting equation system consisting of the above conditions for all i and the market-
clearing conditions is linearly homogeneous in (p, z). Thus, I normalize the variables by
taking the first good at date 0 to be the numeraire, i.e., I put p0

1 = 1 . The normalized

variables
ps

l

p0
1
, z

p0
1

will be denoted by p̄s
l , z̄, respectively in the following. This normalization

requires transformation of the state space X × P × Z into X × P̄ × Z̄ where P̄ = {p ∈
R L(S + 1)++ | p0

1 = 1}, which is equivalent to R
L(S+1)−1
++ and Z̄ is substantially nothing

but RIK . In accordance with this normalization, FEex(u, ω) should also be interpreted to
be defined on the altered state space.

In order to facilitate a genericity analysis on the property of FEex(u, ω), I decompose
the equation system provided above into two parts. One consists of the following equations
for all i.

ui
sl

ps
l

− ui
s1

ps
1

= 0, s = 0, . . . , S, l = 1, . . . , L

S∑
s=1

(
ui

s1

ps
1

)bk
s − (

ui
01

p0
1

)rk = 0, k = 1, . . . , K.

Note that the set of (x, p̄) satisfying these equations only depends on u, thus I denote
the set by Γ(u) in the following.

The other is, of course, composed of the rest.

p0xi
0 − p0ωi

0 = −rzi, i = 1, . . . , I,

psxi
s − psωi

s = (b1
s, b

2
s, . . . , bk

s)z
i, i = 1, . . . , I, s = 1, . . . , S,

I∑
i=1

xi
s =

I∑
i=1

ωi
s, s = 0, 1, . . . , S

I∑
s=1

zi = 0.
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Then the set of (x, p̄, z̄) satisfying these equations is, in turn, solely dependent on ω,
thus it will be denoted by Θ(ω). It is obvious that FEex(u, ω) = (Γ(u)× Z̄)∩Θ(ω). I first
investigate properties of these two sets generically in u and ω respectively, then proceed to
their intersection, i.e., FEex(u, ω).

3.3 The structure and generic properties of FEex(u, ω)

First of all, I investigate the generic properties of Γ(u). Let Y denote RI(L−1)(S+1)×RIK.
I consider the map σ : U → Cr(X × P̄ , Y ) given by

σ(u)(x1, . . . , xI ,p0, . . . , pS) =


 (

ui
sl

ps
l
− ui

s1

ps
1
)i=1,... ,I, s=0,... ,S, l=2,... ,L

(
∑S

s=1(
ui

s1

ps
1
)bk

s − ui
01rk)i=1,... ,I, k=1,... ,K




where the degree of differentiability r is assumed to be large enough. For simplicity, σ(u)
will be denoted by σu in the following. For this map the evaluation map ev σ : U×(X×P̄ ) →
Y is defined as follows (for the evaluation map, see Abraham and Robbin (1967), Chap. 2).

ev σ(u, (x, p̄)) = σu(x, p̄).

For this evaluation map I have

Lemma 3.1 0 is a regular value of ev σ.

Proof: Let the set of Cr-bounded functions in Cr(R
L(S+1)
++ ,R) be F . Then note that ΠIF

is the tangent space of U at each u of U . First, consider the derivative of ev σ at (u, (x, p̄)).
By the construction of σu, I obtain

D ev σ(u, (x, p̄))(v, (y, w)) = D1ev σ(u, (x, p̄))v + D2ev σ(u, (x, p̄))(y, w)

= σv(x, p̄) + D(x,p̄)σu(y, w)

where v is an element of ΠIF and (y, w) is an element of R(IL(S+1) × Tp̄P̄ which is the
tangent space of X × P̄ at (x, p̄). Note that an element of Tp̄P̄ is represented by a vector
of the form (0, a2, . . . , aL(S+1)). In order to prove the claim of the lemma, I need to show
that D ev σ(u′, (x′, p̄′)) is surjective at an arbitrary point (u′, (x′, p̄′)) ∈ ev σ−1(0). To this
end, I shall demonstrate that for any element (α, β) of RI(L−1)(S+1) × RIK which is the
tangent space of Y at 0 ∈ Y , there exists v ∈ ΠIF and (y, w) ∈ R(IL(S+1) × Tp̄P̄ such that
σv(x

′, p̄′) + D(x′,p̄′)σu′(y, w) = (α, β). In the following, α is written in component form as
(αi

sl)i=1,... ,I,s=0,... ,S,l=2,... ,L and β as (βi
k)i=1,... ,I,k=1,... ,K.

Step 1. First consider (y, w). It is shown through calculation that the matrix represen-
taion of D(x,p̄)σu amounts to be the following (I(L−1)(S+1)+IK)×((IL(S+1)+L(S+1))

41



matrix.




A1 . . . 0 . . .
...

. . .
... . . .

0 . . . AI . . .
[B,−rt]Gp̄[U

0, . . . , US]1 . . . 0 . . .
...

. . .
... . . .

0 . . . [B,−rt]Gp̄[U
0, . . . , US]I . . .




where Ai is a (L− 1)(S + 1)× L(S + 1) matrix (i = 1, . . . , I) whose form is

Ai = (
ui′

s1,01

p̄s
1

− ui′
s1,01

p̄s
1

, . . . ,
ui′

sl,0L

p̄s
l

− ui′
s1,0L

p̄s
1

, . . . ,
ui′

sl,S1

p̄s
l

− ui′
s1,S1

p̄s
1

,

. . . ,
ui′

sl,SL

p̄s
l

− ui′
s1,SL

p̄s
1

)s=0,... ,S,l=2,... ,L,

and Gp̄ is a diagonal matrix of the form




1
p̄1
1

0 . . . 0 0

0 1
p̄2
1

. . . 0 0
...

...
. . .

...
...

0 0 . . . 1
p̄S
1

0

0 0 . . . 0 1




and finally U s (s = 0, . . . , S) of [U0, . . . , US]i is a (S + 1)× L whose form is as follows.




ui′
11,s1 . . . ui′

11,sL
...

...
...

ui′
S1,s1 . . . ui′

S1,sL

ui′
01,s1 . . . ui′

01,sL




Through assumption 3.1 and condition (4) of U , each K × L(S + 1) submatrix
[B,−rt]Gp̄[U

0, . . . , US]i has a maximal rank K. It is worth noting that the latter condition
is only a sufficient condition for [U0, . . . , US]i to have maximal rank, thus it is unnecessarily
tight as such. Take w = 0, then there exists an appropriate ỹ = (ỹ1, . . . , ỹI) with ỹi ∈
RL(S+1) (i = 1, . . . , I) such that

([B,−rt]Gp̄[U
0, . . . , US]1(ỹ

1)t, . . . , [B,−rt]Gp̄[U
0, . . . , US]I(ỹ

I)t) = β.

Then, (ỹ, 0) is the desired tangent vector.
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Step 2. The task here is to choose such a v as can make σv(x
′, p̄′) equal to the defficiency

α − (A1(ỹ
1)t, . . . , AI(ỹ

I)t). To this end, pick up and fix any Cr function f : R+ → R
satisfying (i) Dfx 6= 0, ∀x ∈ R+, and (ii) Cr-boundedness. Then, define a Cr function

vi : R
L(S+1)
++ → R (i = 1, . . . , I) given by

vi(xi) = ui′(xi) + µi
02f(xi

02) + µi
03f(xi

03) + . . . + µi
0Lf(xi

0L) + µi
12f(xi

12) + . . .

+ µi
1Lf(xi

1L) + . . . + µi
S2f(xi

S2) + . . . + µi
SLf(xi

SL)

where µi
sl = p̄s

l (α
i
sl −

∑S
j=0

∑L
h=1(

ui′
sl,jh

p̄s
l
− ui′

sl,jh

p̄s
1

))/Dfx(x
i
sl), s = 0, . . . , S, l = 2, . . . , L with

p̄0
1 = 1. Note that vi is an element of F since it is obviously Cr-bounded (i = 1, . . . , I).

The desired v is formed of these vis because σv(x
′, p̄′) is expressed by the following matrix.


 (

ui′
sl

p̄s
l
− ui′

s1

p̄s
1

+ Dfx(x
′
sl)

µi
sl

p̄s
l
)i=1,... ,I, s=0,... ,S, l=2,... ,L

(
∑S

s=1(
ui′

s1

p̄s
1
)bk

s − ui′
01rk)i=1,... ,I, k=1,... ,K




which is equal to
(

(Dfx(x
′
sl)

µi
sl

p̄s
l
)i=1,... ,I, s=0,... ,S, l=2,... ,L

0

)

Thus, σv(x
′, p̄′) + D(x′,p̄′)σu′(ỹ, 0) = (α, β).

This lemma leads to the following proposition.

Proposition 3.1 There exists an open and dense set Û of U such that for any u ∈ Û ,
Γ(u) constitutes an (L + I)(S + 1)− IK − 1 dimensional submanifold of X × P̄ .

Proof: By the Transversality Theorem (see Abraham and Robbin (1967), pp.46-48) there
is an open and dense set Û of U such that for any u ∈ Û , 0 is a regular value of σu.
Therefore, by the Preimage Theorem (see Guillemin and Pollack (1974), p.21) σ−1

u (0) is a
submanifold of X × P̄ , the dimension of which amounts to be (L + I)(S + 1)− IK − 1 (=
dim (X × P̄ )− dim Y ). It is obvious that σ−1

u (0) is equal to Γ(u).

Next, consider the generic property of Θ(ω). First note that the equations generating
Θ(ω) include redundant equations. Though there are many ways of excluding them, the
way taken here is to omit the market-clearing conditions for the first good at every state.
For a given ω ∈ Ω, I define a map φω : X × P̄ × Z̄ → R(I+L−1)(S+1)+K given by

φω(x, p̄, x̄) =




(p̄0ωi
0 − p̄0xi

0 − rz̄i)i=1,... ,I

(p̄sωi
s − p̄sxi

s + (b1
s, b

2
s, . . . , bk

s)z̄
i)i=1,... ,I, s=1,... ,S

(
∑I

i=1 xi
sl −

∑I
i=1 ωi

sl)l=2,... ,L, s=0,1,... ,S∑I
s=1 z̄i
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Lemma 3.2 For any ω ∈ Ω, φω is a submersion.

Proof: Direct calculation reveals that for any given ω ∈ Ω, the derivative of φω at any
(x, p̄, z̄), when represented by a matrix, has partially those I(S + 1) + (L− 1)(S + 1) + K
columns that lead to the following square matrix that has no operating part on Tp̄P̄ .




H0 H1 . . . HS 0 J
0 0 . . . 0 M 0

N 0
. . . 0 0 0

0 N . . . 0 0 0
...

...
. . .

...
...

...
0 . . . . . . N 0 0
0 0 0 0 0 E




where submatrices Hs, J,M, N and E are as follows. Hs is a (S + 1)× L matrix in which
the s-th row is (−p̄s

1, . . . ,−p̄s
L) and all other entries are 0 (s = 0, 1, . . . , S). Then,

J =




−r1 . . . −rK

b1
1 . . . bK

1
...

. . .
...

b1
S . . . bK

S


 .

M is a diagonal matrix of order (I−1)(S+1) whose diagonal elements are (−1,−p̄1
1, . . . ,−p̄S

1 ,
− 1,−p̄1

1, . . . ,−p̄S
1 , . . . , . . . ,−1,−p̄1

1, . . . ,−p̄S
1 ). N is a (L− 1)×L matrix of the following

form.

N =




0 1 . . . 0
...

...
. . .

...
0 0 . . . 1




Finally E is the identity matrix of order K. Thus, it is easily seen that the above square
matrix is non-singular. On the other hand, obviously TxR

IL(S+1)
++ = RIL(S+1) and Tz̄Z̄ =

RIK. So the derivative of φω at (x, p̄, z̄) is surjective. Since (x, p̄, z̄) is taken arbitrarily,
the claim follows.

From this lemma, I obtain the following proposition.

Proposition 3.2 For any ω ∈ Ω, Θ(ω) constitutes a (IL + I − 1)(S + 1) + IK − K
dimensional submanifold of X × P̄ × Z̄.

Proof: Since 0 is a regular value of φω by the above lemma, the claim is immediately
followed by the Preimage Theorem.
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It is worth noting that for any ω ∈ Ω, φ−1
ω (0) 6= ∅ since for any p̄ ∈ P̄ , φω(ω, p̄, 0) = 0.

Now that I have had generic properties of Γ(u) and Θ(ω), I proceed to the investigation
of FEex(u, ω). Since FEex(u, ω) = (Γ(u)× Z̄)∩Θ(ω), the structure of FEex(u, ω) depends
on how Θ(ω) and Γ(u) × Z̄ intersect each other. To examine the way of the intersection,
take any u among Û and fix it. Considering proposition 3.1, Γ(u)× Z̄ for u is obviously a
submanifold of X × P̄ × Z̄ with dimension (I + L)(S + 1)− 1. Then, it matters how Θ(ω)
intersects with Γ(u)× Z̄. I consider the problem from the viewpoint of the genericity in ω.

Proposition 3.3 Given u ∈ Û , Θ(ω) for almost all ω of Ω intersects transversally with
Γ(u)× Z̄, where ‘almost all’ means all except for a closed set of measure 0.

Proof: For any ω ∈ Ω, define a map F : Θ(ω) × R
IL(S+1)
++ → X × P̄ × Z̄ given by

F ((x, p̄, z̄), ε) = (x + ε, p̄, z̄).

Step 1. Consider a composite map F̃ ≡ Π ◦ F : Θ(ω) ×R
IL(S+1)
++ → X × P̄ consisting

of a projection map Π : X × P̄ × Z̄ → X × P̄ and F . I show that F̃ is a submersion. It
is easily checked by calculation that the matrix representation of the derivative of F̃ at any

((x, p̄, z̄), ε) ∈ Θ(ω)×R
IL(S+1)
++ is as follows.

(
E∗ 0(IL(S + 1)× L(S + 1)) 0(IL(S + 1)× IK) E∗

0(L(S + 1)× IL(S + 1)) E† 0(L(S + 1)× IK) 0(L(S + 1)× IL(S + 1))

)

where E∗ is the identity matrix of order IL(S + 1) and E† is also the identity matrix of
order L(S + 1) while 0(·)s are all zero matrix with the corresponding size (·). I have to
show that the image of (T(x,p̄,z̄)Θω)×RIL(S+1) by the above matrix as a linear transformation

coincides with RIL(S+1) × Tp̄P̄ , which is the tangent space of X × P̄ at (x + ε, p̄). It is
obvious from the construction of the matrix that the image covers RIL(S+1), thus it only
remains to see that Tp̄P̄ is also covered. To this end, consider the construction of T(x,p̄,z̄)Θω.
It is easily seen that on the one hand T(x,p̄,z̄)Θω ⊂ TxX×Tp̄P̄ ×Tz̄Z̄, but on the other hand
T(x,p̄,z̄)Θω = Ker Dφω,(x,p̄,z̄) where Ker indicates the kernel. Recall that Dφω,(x,p̄,z̄) contains
a non-singular matrix presented in the proof of lemma 3.2 which has no operating part on
Tp̄P̄ . Thus, T(x,p̄,z̄)Θω includes Tp̄P̄ . Since tha operating part of DF̃((x,p̄,z̄),ε) on Tp̄P̄ is the
identity map by the construction of the above matrix, the image covers Tp̄P̄ .

Step 2. Through the Transversality Theorem (Guillemin and Pollack (1974), p.68) for
almost all ε, F̃ε : Θ(ω) → X× P̄ given by F̃ε(x, p̄, z̄) = F̃ ((x, p̄, z̄), ε) is transversal to Γ(u).
Therefore, Fε : Θ(ω) → X× P̄ × Z̄ defined by Fε(x, p̄, z̄) = F ((x, p̄, z̄), ε) is also transversal
to Γ(ω)× Z̄ for almost all ε. Since Θ(ω)(= φ−1

ω (0)) consists of those (x, p̄, z̄) ∈ X × P̄ × Z̄
that satisfy




(p̄0ωi
0 − p̄0xi

0 = rz̄i)i=1,... ,I

(p̄sωi
s − p̄sxi

s = −(b1
s, b

2
s, . . . , bk

s)z̄
i)i=1,... ,I, s=1,... ,S

(
∑I

i=1 xi
sl =

∑I
i=1 ωi

sl)l=2,... ,L, s=0,1,... ,S∑I
s=1 z̄i = 0


 ,
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it is readly seen that Fε(Θ(ω)) = Θ(ω+ε). By lemma 3.2, Θ(ω+ε) constitutes a manifold.
Thus, it is transversal to Γ(ω) × Z̄ for almost all ε. Since ω is arbitrarily chosen among
Ω, the claim follows.

I am now in a position to state the main results.

Theorem 3.1 Generically in endowments and utility functions, the set of extended equi-
libria constitutes a S −K dimensional manifold.

Proof: The intersection of two transversal submanifolds is itself a manifold, and the
codimension of the intersection is the sum of the codimensions of the two submanifolds (see
Guillemin and Pollack (1974), p.30, theorem). Thus, by proposition 3.3, for any u of Û
and almost all ω of Ω, FEex(u, ω) constitutes a submanifold in X × P̄ × Z̄ the dimension
of which is equal to dim (X × P̄ × Z̄)− (dim (Γ(u)× Z̄) + dim Θ(ω)) = S −K.

Note that S −K is known as the deficiency in the financial market (Balasko and Cass
(1989), Cass (1992)).

Considering the characteristics of the notion of equilibrium under investigation, some
implications are given by the above theorem. First, note that the equilibrium under con-
sideration consists of three factors, namely, an allocation of consumption vector (x), a
price vector (p̄) and a portfolio allocation (z̄), so that the real phase of the equilibrium is
clarified by focusing only on the first factor. The set of equilibrium allocations of goods
is, hence, represented by the image of the projection of the equilibrium set on X. The
theorem implies that the dimension of the image is at most S −K. Otherwise stated, real
indeterminacy of extended financial equilibria cannot be above the deficiency in the finan-
cial market. The same is true for price indeterminacy of equilibria for the same reason.
Secondly, note that there is no requirement of convexity in a utility function and that I
only consider the necessary ccondition for utility maximization. It is, therefore, intuitively
expected that among others the set of equilibrium allocations of goods would be increased
to a great extent. However, it is shown by the theorem that the dimension of the set has
the maximum S −K.

Now, let me turn to another issue, namely, the correspondence between economic pa-
rameters and equilibrium. I consider FEex(u, ω) to be a correspondence, i.e., (u, ω) →
FEex(u, ω), and invesitgate its structure. To this end, take any u among U and fix it. I
only consider the relation between ω and equilibrium. Let Ω(u) denote the set of ω ∈ Ω
such that Γ(u) × Z̄ and Θ(ω) are transversal. Note that Ω(u) is open and dense in Ω.
Then, a particular relation is obtainable between ω ∈ Ω(u) and an element of FEex(u, ω).

Theorem 3.2 Given any u of U , then, for any ω′ of Ω(u) and any (x′, p̄′, z̄′) of FEex(u, ω′)
there exists some neighborhoods N(ω′) of ω′, N(x′, p̄′, z̄′) of (x′, p̄′, z̄′) and a Cr map
η : N(ω′) → N(x′, p̄′, z̄′) such that η(ω) is an element of FEex(u, ω) for all ω ∈ N(ω′)
and η(ω′) = (x′, p̄′, z̄′).
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Proof: Let V denote R(I+L−1)(S+1)+K in what follows. Consider a Cr map ξ : Ω(u) ×
(X × P̄ × Z̄) → Y × V given by ξ(ω, (x, p̄, z̄)) = (σu(x, p̄), φω(x, p̄, z̄)). First note that the
component (x′, p̄′, z̄′) of any (ω′, (x′, p̄′, z̄′)) satisfying ξ(ω, (x, p̄, z̄)) = 0 is an element of
FEex(u, ω′). Then, a Cr map ξ(ω′, ·) : X × P̄ × Z̄ → Y × V is submersive at (x′, p̄′, z̄′), so
that by the Local Submersion Theorem (Guillemin and Pollack (1974), p.20) there exist local
coordinates around (x′, p̄′, z̄′) and 0 (∈ Y ×V ) such that ξ(ω′, (a1, . . . , aT )) = (a1, . . . , aH),
where T = dim(X × P̄ × Z̄) = (IL + L)(S + 1) + IK − 1 and H = dim(Y × V ) =
(IL + L − 1)(S + 1) + IK + K. Since the preimage of 0 by ξ(ω′, ·) is nothing but
FEex(u, ω′), FEex(u, ω′) is locally represented around (x′, p̄′, z̄′) by the set of those points
that have coordinates (0, . . . , 0, aH+1, . . . , aT ) (note that T − H = S − K). Thus, I re-
strict ξ(ω′, ·) on the complement space of FEex(u, ω′) near (x′, p̄′, z̄′) to obtain the identity
map. Then, consider the same restriction of ξ(·, ·) with respect to the second argument
(x, p̄, z̄) near (ω′, (x′, p̄′, z̄′)). It is easily seen that for the restricted ξ, D2ξ(ω

′, (x′, p̄′, z̄′)),
i.e., the partial derivative in the second argument at (ω′, (x′, p̄′, z̄′)), is an isomorphism.
Hence, through the Implicit Function Theorem there exist (i) an open neighborhood of
ω′, (ii) a relatively open neighborhood of (x′, p̄′, z̄′) in X × P̄ × Z̄ that does not intersect
FEex(u, ω′) except for (x′, p̄′, z̄′), and (iii) a unique Cr map η such that η(ω′) = (x′, p̄′, z̄′)
and ξ(ω, η(ω)) = 0. It is obvious by the definition that FEex(u, ω) includes η(ω).

The theorem says that for almost all u, everywhere on the set of ω that makes FEex(u, ω)
a S −K dimensional manifold, any equilibrium point (x, p̄, z̄) of FEex(u, ω) is continuous
in ω. Roughly speaking, every point included in the extended financial equilibrium set is
continuous in initial endowments.

3.4 Concluding remarks

In this chapter, I examined some generic properties of a financial equilibrium set in utility
functions as well as initial endowments. The basic result established is that the extended
financial equilibrium set generically consitutes a manifold with the dimension less than the
deficiency in the financial market and that every point of the set is continuous in initial
endowments.

Balasko and Cass (1989) investigated the generic properties of the set of financial equi-
librium price vectors and allocations for a given asset price vector and a given return
matrix, which is the same framework as adopted in this chapter. They were able to sort
out intrinsic financial equilibria to consider because they assumed that every utility func-
tion satisfies strict quasi-concavity. The main result they obtained was as follows. That is,
generically in endownents the set of financial equilibrium allocations contains a manifold
with the dimension equal to the deficiency in the financial market. Comparing their result
with the one obtained here, a suggestive fact is drawn out. Namely, even if an agent’s util-
ity function is not strictly quasi-concave, for almost all cases real indeterminacy of financial
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equilibria is not above the deficiency. Note that the set of financial equilibria would be
intuitively expected to grow considerably without strict quasi-concavity on a utility func-
tion. However, as long as one keeps a generic viewpoint, such a dimensional expansion has
been shown not to take place.

In order to establish the results of this chapter, I rely on some assumptions concerning a
utility function. Though almost all assumptions are harmless, it seems that Cr boundedness
needs to be commented on. This condition is only a technical qualification to facilitate the
analysis and not crucial for the results obtained. Indeed, suppose not Cr bounded. Then,
only if a consumption vector has an ifinite norm, the corresponding utility could be infinite
since Cr-differntiability and strict monotonicity are assumed on a utility function. But,
except for an insignificant case of infinity of ω (initial endowments), an allocation including
an element of an infinite norm cannot be an equilibrium, thus a non-Cr-bounded utility
function can be replaced by some Cr-bounded function without any change in the set of
equilibria.

I have only argued the case of fixed asset prices. But the approach provided here has
such a wide validity that it can be successfully applied to the case of variable asset prices,
though I omit the analysis for the latter case.

In the previous chapter, I established the robustness of indeterminacy caused by nominal
assets for introduction of real assets. In this chapter, I also verified the robustness of
indeterminacy caused by nominal assets for choice of a utility function.
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Chapter 4

Inefficiency of Equilibria with
Incomplete Markets I

In contrast to the arguments in the previous chapters, I will discuss in the subsequent
chapters another very important issue concerning incomplete markets: that is, efficiency
of equilibria. As is well known, equilibria with incomplete markets are generically Pareto
inefficient. The arguments here focus on the cause of Pareto inefficiency of equilibria with
incomplete markets, showing that Pareto inefficiency of equilibria occurs in incomplete
markets in a very different way than in other market failures. That is to say, I reveal in
this chapter1 the leading role of a budget constraint in the occurrence of Pareto inefficiency.
Specifically, on the basis of the classical two-period one-good pure exchange model I prove
that so long as a budget constraint is met for all agents, equilibria with incomplete markets
are generically Pareto inefficient in initial endowments and utility functions regardless of
the optimization behavior of each agent. All I require of utility functions is a very weak
hypothesis called current monotonicity. A simple unified method is presented which is
applicable to both a real asset case and a nominal asset case.

1This chapter is based on R.Nagata, “Inefficiency of equilibria with incomplete markets”, Journal of
Mathematical Economics, 41, 887-897, 2005.
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4.1 Introduction

It is well known that with incomplete asset markets, the equilibrium allocations need not
be Pareto optimal, as Hart (1975) first suggested. Since Hart’s work, many efforts have
been made to investigate if a competitive outcome with incomplete markets is constrained
optimal in some sense. The idea of constrained optimality itself has been formally shaped
through the works of Diamond (1967), Stiglitz (1982) and Geanakoplos and Polemarchakis
(1986) into the following notion. An allocation with incomplete asset markets is constrained
optimal (or constrained Pareto optimal) if and only if it is not Pareto dominated by any
other allocations that can be obtained by a social planner who can control only existing
asset markets. With respect to this notion, however, it has been shown that except for a
restricted case (i.e. the one-good two-period case) competitive equilibria with incomplete
asset markets are generically constrained suboptimal, which substantially means that they
are typically not constrained optimal (see esp. Geanakoplos and Polemarchakis (1986)).
The generic constrained suboptimality has subsequently been investigated in variously
elaborated contexts in the literature (see Geanakoplos, Magill, Quinzii and Drèze (1990),
Werner (1991), Kajii (1994), Elul (1995, 1999), Cass and Citanna (1998) and Citanna,
Kajii and Villanacci (1998)).

In contrast to many works concerning a modified optimality concept of equilibria with
incomplete markets, there is only a small amount of literature that deals with Pareto inef-
ficiency of equilibria with incomplete markets itself (Magill and Quinzii (1996a), Villanacci
et al. (2002)). To this more fundamental issue, this literature has shown that such alloca-
tions are generically Pareto inefficient with respect to the agents’ initial endowments with
the assumption of concavity of utility functions of agents.

In this chapter, I consider the latter problem from a different viewpoint. The concern
I have here is what determines Pareto inefficiency of equilibria with incomplete markets.
With respect to this issue, I show that Pareto inefficiency of equilibria occurs in incomplete
markets in a very different way than in other market failures. Indeed, it is shown in the case
of incomplete markets that such inefficiency is not dependent on the optimization behavior
of agents. More specifically, such inefficiency happens to those equilibria not because an
objective equilibrium (market clearance) is accompanied by a specific subjective equilibrium
(optimization) of each agent but because it is accompanied by a budget constraint of each
agent. Alternatively put, so long as a budget constraint is met for all agents, those equilibria
are generically inefficient regardless of each agent’s optimization behavior based on its own
consumption. Thus it may be safely said, though in a generic sense, that once the agents
participate in incomplete markets, they are kept away from Pareto optimal allocations
before they declare their demand.

In order to prove the claim effectively, I must bear some aspects in mind. One is to adopt
less specified utility functions for agents. To this end, I consider a very weak monotonicity
called current monotonicity as an assumption. This only requires monotonicity of utility
with respect to consumption at present. I do not set other assumptions, particularly any
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concavity, on utility functions as other authors do. The type of assets should also be
concerned. As is well known, assets are conceptually classified into two groups, that is,
real assets and nominal assets. A real asset promises to deliver a bundle of goods at each
state in the future, whereas a nominal asset promises to deliver a given stream of units
of account across the states. It is noteworthy about these two kinds of assets that the
structure of the set of equilibrium allocations is very different between them. It is shown,
though on the basis of the concavity assumption, that in a real asset model the equilibrium
set is generically finite (Duffie and Shafer (1985)) whereas in a nominal asset model there
generically exists real indeterminacy of equilibria (Cass (1984, 1985), Werner (1985)). The
real indeterminacy of equilibria indicates that the set of equilibrium allocations constitutes
a continuum. Moreover, it has been shown that the continuum set generically contains a
definite dimensional manifold and that the dimension of the manifold is S − 1 or S − J
according as to whether the nominal asset prices are taken to be endogenous or exogenous
(Geanakoplos and Mas-Colell (1989) and Balasko and Cass (1989)), where S indicates the
number of states of nature in the future and J indicates the number of assets. In addition,
I have shown in the previous chapter that those properties of equilibria in a nominal asset
model carry over even when a utility function has nonconvexity. In view of these results, it
is naturally inferred that the consequence to be obtained depends on which type the assets
under consideration are; thus I have to deal with both cases.

I am going to present a simple unified approach applicable to both a real and a nominal
asset model, investigating the viability of efficiency of equilibria with incomplete markets
from a generic viewpoint with regard to both utility functions and initial endowments.
To make matters simple, the argument is based on the classical two-period one-good pure
exchange model which is described in section 2. In this section, as has been noted, I have
specified current monotone utility functions and topologized their space by the compact
open topology. In addition, in order to unify the real and nominal asset cases, I have
considered a specific price matrix through which I have defined an asset market equilibrium.
In section 3, after characterizing the Pareto efficient allocations based on current monotone
utility functions, I have introduced a specific optimum called a budget optimum, which
is the key concept of the following argument. It has been shown by means of a finite
dimensional parameterization of utility functions that the set of budget optima is generically
empty with regard to initial endowments and utility functions, which implies the generic
nonexistence of asset equilibria with Pareto efficiency. This consequence also proves the
leading role of a budget constraint in the occurrence of Pareto inefficiency of asset equilibria.
Finally, in section 4, I address some implications derived from the results obtained here.

4.2 The Model

The model to be considered here is the simplest two-period one-good pure exchange econ-
omy under uncertainty. The reason why I won’t consider multi-goods is that Pareto ineffi-
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ciency has been generically shown to prevail among equilibria even in a one-good economy
with incomplete markets (Magill and Quinzii (1996a)). The first and second periods are
each specified by t = 0 and 1 and one of S states of nature (s = 1, . . . , S) occurs at
date 1. For simplicity, I call date t = 0, state s = 0, so that in total there are S + 1
states. The economy consists of I consumers (i = 1, . . . , I) and a single consumption
good. Thus, the commodity space for each consumer is RS+1. The characteristics of each
agent i consist of three ingredients, that is, a consumption set X i, a utility function ui

and a initial endowment ωi. I make assumptions on those ingredients as follows. For each
i, (i = 1, . . . , I),

Assumption 4.1 X i is RS+1
++ .

Assumption 4.2 ui satisfies

1. ui ∈ Cr
(
RS+1

++ ,R
)

(r ≥ 2).

2. current monotonicity: Dui
x0

(x) ∈ R++ for each x ∈ RS+1
++

Assumption 4.3 ωi ∈ RS+1
++ .

Note that monotonicity with respect to the good at date 0 is the only requirement for a
utility function except for the differentiability. For simplicity, I denote Dui

x0
(x) by Dui

0(x)
and let u ≡ (u1, . . . , uI) and ω ≡ (ω1, . . . , ωI) in the following.

First, I consider the efficiency of allocations. Given u and ω, a Pareto optimal allocation
is defined as follows.

Definition 4.1 An allocation x = (x̄1, . . . , x̄I) ∈ R
(S+1)I
++ is a Pareto optimum if

(i)
∑I

i=1 x̄i =
∑I

i=1 ωi

(ii) there does not exist x = (x1, . . . , xI) ∈ R
(S+1)I
++ such that

∑I
i=1 xi =

∑I
i=1 ωi and

ui(xi) ≥ ui(x̄i), i = 1, . . . , I with a strict inequality for at least one i.

Then I work on modeling the market economy with assets. Let ps be a spot price of the
good in state s (s = 0, 1, . . . , S). There are J real assets (j = 1, . . . , J) in the economy.
Since I am interested in the case of incomplete asset markets, I may assume that J < S.
Each asset j can be purchased for the price qj at date 0. For simplicity of notation, I set
p1 = (p1, . . . , pS) in the following. As is well known, the assets are conceptually classified
into two groups, that is, real assets and nominal assets. A real asset promises to deliver a
bundle of goods at each state in the future, whereas a nominal asset promises to deliver a
given stream of units of account across the states. It is noteworthy about these two kinds of
assets that the structure of the set of equilibrium allocations is very different among them.
In a real asset model, the equilibrium set is shown to be generically finite (Duffie and Shafer
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(1985)), whereas in a nominal asset model there generically exists real indeterminacy of
equilibria (Cass (1984, 1985), Werner (1985)). I deal with both models, so that if I denote
a return of asset j across the states at date 1 by vj = (vj

1, . . . , vj
S), then each vj

s indicates
a certain amount of good in a real asset model, while it indicates a given units of accounts
in a nominal asset model. In the following, I see each vj (j = 1, . . . , J) as a column vector
and combine them to form an S × J matrix of returns V = [v1, . . . , vJ ]. Let E(u, ω; V )
denote the economy composed of u, ω and V . I investigate inefficiency of equilibria with
incomplete markets from a generic viewpoint with respect to u and ω. Thus the asset
structure V is fixed on which I may assume that rank V = J without loss of generality.

Given the asset structure V , each agent has a chance to purchase some amounts of J
assets and adjust its income stream so that it can optimize its intertemporal consumptions.
Let zi = (zi

1, . . . , zi
J) ∈ RJ denote the number of units of the J assets purchased by agent

i. zi is called a portfolio of agent i. In order to unify the real and nominal cases, I consider
the following matrix P ∈ R(S+1)×(S+1) for given commodity prices p1 ∈ RS

++ at date 1.

P =




1 0 . . . 0
0 1

p1
. . . 0

...
...

. . .
...

0 0 . . . 1
pS




Then, given asset prices q, agent i faces the following optimization problem.

max
xi,zi

ui(xi)

s .t . xi − ωi = PWzi, zi ∈ RJ

where

W =




−q1 . . . −qJ

v1
1 . . . vJ

1
...

...
...

v1
S . . . vJ

S




and if there is no further constraint on p1, assets are nominal, but if there is the further
constraint p1 = (1, . . . , 1) ∈ RS, then assets are real. Note that there is only one good in
the economy, so that the good at date 0 is interpreted as the numeraire.

Now, focusing on the asset demand, I define the equilibrium for the economy E(u, ω; V )
(see Magill and Quinzii (1996a), Chap. 2, §11).

Definition 4.2 An asset market equilibrium ((zi)i, p1, q) for E(u, ω; V ) with p1 ∈ RS
++

is such that

(i) zi solves maxz ui(ωi + PWz), i = 1, . . . , I.
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(ii)
∑I

i=1 zi = 0

It is worth noting in this equilibrium that the assumption of current monotonicity of utility
functions not only covers a large variety of optimization behaviors but also leads to a strict
budget constraint among agents, resulting in xi = ωi + PWzi, i = 1, . . . , I.

Since u and ω are only parameters that specify the economy, I consider the space that
consists of admissible u and ω. Let U be the set of functions satisfying assumption 4.2 and
let U be I-product of U , that is, ΠIU . Then the space of admissible u and ω is U×R

(S+1)I
++ ,

which is called the space of economies. To R
(S+1)I
++ a standard Euclidean topology is given,

whereas Cr
(
RS+1

++ ,R
)

is endowed with the compact open Cr topology (r ≥ 2), which
confers the induced topology on U .

4.3 Main Results

I demonstrate that the asset equilibria are generically inefficient regardless of each agent’s
optimization behavior based on its own consumption. The key for our claim is a budget
constraint for each agent. I will aim at showing how inconsistent a Pareto efficient allocation
is with budget constraints for all agents. First, I characterize Pareto efficient allocations
on the basis of our utility functions.

Proposition 4.1 Given u and ω fulfilling assumption 4.2 and 4.3 and let an allocation
x̄ = (x̄1, . . . , x̄I) ∈ R

(S+1)I
++ be Pareto optimal. Then the following equation holds.

Du1
1(x̄1)/Du1

0(x̄
1) = · · · = DuI

1(x̄I)/DuI
0(x̄

I)

where Dui
1(x̄i) ≡ (Dui

1(x̄
i), . . . , Dui

S(x̄i)).

Proof: First note that the condition makes sense since Dui
0(x̄

i) > 0 according to assump-
tion 2 (i = 1, . . . , I). I denote Dui

s(x̄
i) by λi

s for simplicity of notation in the follow-

ing (i = 1, . . . , I, s = 0, . . . , S). Suppose that some agents h, k have λh
s

λh
0

> λn
s

λn
0

in some state

s. I need to classify two cases since no sign condition is set on any λi
s but λi

0. (1) λh
s > 0.

Let ∆ ∈ RS+1 be the direction (−λh
s

λh
0
, 0, . . . , 0, (1 + ε), 0, . . . , 0) where (1 + ε) is in the

s + 1− th place and ε > 0. Then the directional derivative of uh at x̄h in the direction of
∆ is −λh

s + (1 + ε)λh
s = ελh

s , which is strictly positive. On the other hand, the directional

derivative of un at x̄n in the direction of −∆ is λh
s

λh
0
λn

0 − (1 + ε)λn
s which is also strictly

positive if ε(> 0) is small enough. Thus, by definition of derivative as a limit, transferring
a small enough fraction of ∆ increases the welfare of both agents (h, k) without any change
for all others, which is a contradiction. (2) λh

s ≤ 0. In this case, obviously λn
s < 0. Let

∆ ∈ RS+1 be the direction (λn
s

λn
0
, 0, . . . , 0, 1, 0, . . . , 0) where 1 is in the s+1−th place. Then,

the directional derivative of un at x̄n in the direction of ∆ is λn
s − λn

s = 0. however, the
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directional derivative of uh at x̄h in the direction of −∆ is −λn
s

λn
0
λh

0 + λh
s > −λh

s

λh
0
λh

0 + λh
s = 0.

Thus, according to the same argument as in (1), I have the situation that agent h becomes
better off without any change for all others, which is also a contradiction.

In the following, I investigate the generic analysis with respect to initial endowments
and utility functions for the agents, the latter among which causes an analytical complexity
since the space U is itself infinite dimensional. In order to cope with this problem, I adopt
a simplification method called the perturbation technique to look at a finite dimensional
subset of U (for the perturbation technique, see Cass and Citanna (1998), Citanna, A., A.
Kajii and A. Villanacci (1998)).

Fix an arbitrary u ∈ U and consider the following function parameterized by µi ∈ RS.

ui(xi; µi) = ui(xi) + µi · xi
1.

Since ui(xi; 0) = ui(xi), I choose an open neighborhood of zero in RS, say a unit open
ball B. Noting that Dui

0(x
i; µi) = Dui

0(x
i), ui(xi; µi) is an element of U for any µi ∈ B

according to assumption 4.2. Thus, if I denote (ui(xi; µi))I
i=1 by u(x; µ), u(x; µ) is an

element of U for any (µi)i ∈ ΠIB. Let B ≡ ΠIB. Then, regarding u(x; µ) defined on

R
(S+1)I
++ ×B, it is easily seen that if µn is a sequence of vectors in B such that limn→∞ µn =

µ̄ ∈ B, limn→∞ ui(·; µi
n) = ui(·; µ̄i

n) in the compact open topology (i = 1, . . . , I). Thus, B
can be seen as a finite dimensional submanifold of U .

It follows from the construction that for each i

Dui
1(xi; µi)

Dui
0(x

i; µi)
=

Dui
1(xi) + µi

Dui
0(x

i)
.

Now I consider the following situation. That is, all agents are supposed to participate in
the incomplete markets to trade, though the only thing required of them is to strictly fulfill
their budget constraints. I inquire whether a feasible allocation under this condition will
be Pareto efficient or not. To this end, let me call a Pareto optimal allocation under this
condition a budget optimal allocation (or a budget optimum for short), which is formally
defined as follows.

Definition 4.3 A budget optimum ((zi)i,p1, q) for E(u, ω; V ) with p1 ∈ RS
++ is such

that

(i) ωi + PWzi ∈ RS+1
++ , i = 1, . . . , I

(ii) (ωi + PWzi)i constitutes a Pareto optimum

(iii)
∑I

i=1 zi = 0
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Note that ωi + PWzi in (i) of the definition forms a permissible demand vector xi for
each i by virtue of current monotonicity of utility functions, which immediately implies the
fulfilment of a budget constraint for each agent. In addition, (iii) of the definition assures
the feasibility for a Pareto optimum.

It is obvious that in order for an asset market equilibrium to be a Pareto optimum, it
must be also a budget optimum. On the other hand, compatibility of a Pareto efficient
allocation with budget constraints for all agents is dependent upon whether the set of
budget optima is empty or not. To this question, I obtain a decisive result as follows.

Theorem 4.1 Under assumptions 4.1∼ 4.3, if I(S−J) > S with real assets and I(S−
J) > 2S with nominal assets, then generically in ω and u, there exists no budget optimum,
thus every asset market equilibrium is Pareto inefficient.

Proof: It is easily seen that for an arbitrary economy E(u, ω; V ) a tuple ((zi)i, p1, q) is

a budget optimum if and only if there exists (xi)i ∈ R
(S+1)I
++ such that

Dui

1
(xi)

Dui
0(xi)

− DuI

1
(xI)

DuI
0(xI)

= 0 i = 1, . . . , I − 1
∑I

i=1 zi = 0

xi − (ωi + PWzi) = 0 i = 1, . . . , I.

Regarding this u of the economy, I construct the open set B ⊂ RSI according to the method
explained above. Then, I may locally confine utility functions to this finite dimensional
subset by means of the parameterization of those functions. Thus, locally I am allowed to
be only concerned with u(x; µ), µ ∈ B as conceivable utility functions.

In view of this parameterization, I can naturally consider the map F : R
(S+1)I
++ ×RJI ×

RS
++ ×RJ ×R

(S+1)I
++ × B → RS(I−1) ×RJ ×R(S+1)I given by

F ((xi,zi)i, p1, q; ω, µ) =




(
Dui

1
(xi;µi)

Dui
0(xi);µi −

DuI

1
(xI ;µI)

DuI
0(xI ;µI)∑I

i=1 zi

(xi − (ωi + PWzi))I
i=1




I shall show that F is transversal to zero. For simplicity of notation, put fi((x
i)i, µ) ≡

Dui

1
(xi;µi)

Dui
0(xi);µi −

DuI

1
(xI ;µI)

DuI
0(xI ;µI)

, i = 1, . . . , I − 1, z ≡ ∑I
i=1 zi and gi((x

i,zi)i, p1, q, ω) ≡
xi − (ωi + PWzi), i = 1, . . . , I. Noting that

fi((x
i)i, µ) =

Dui
1(xi)

Dui
0(x

i)
− DuI

1(xI)

DuI
0(x

I)
+

1

Dui
0(x

i)
µi − 1

DuI
0(x

I)
µI
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the computation of the derivative at any ((x̄i, z̄i)i, p̄1, q̄; ω̄, µ̄) ∈ F−1(0) is described as
follows.




x1 · · · xI z1 · · · zI p1 q ω1 · · · ωI µ1 · · · µI−1 µI

f1 ∗ 0 ∗ 0 0 0 0 0 0 0 0 a1I
S 0 0 ∗

... 0 ∗ ∗ 0 0 0 0 0 0 0 0 0
. . . 0 ∗

fI−1 0 ∗ ∗ 0 0 0 0 0 0 0 0 0 0 aI−1I
S ∗

z 0 0 0 IJ · · · IJ 0 0 0 0 0 0 0 0 0
g1 IS+1 0 0 ∗ 0 0 ∗ ∗ −IS+1 0 0 0 0 0 0
... 0

. . . 0 0
. . . 0 ∗ ∗ 0

. . . 0 0 0 0 0
gI 0 0 IS+1 0 0 ∗ ∗ ∗ 0 0 −IS+1 0 0 0 0




where In designates the identity matrix of order n and ai = 1

Dui
0(x̄i

)
(> 0), i = 1, . . . , I − 1.

By picking out the submatrix corresponding to zI , ω, µ1, . . . , µI−1 from the above one,
I obtain the following square matrix of order S(I − 1) + J + (S + 1)I.




zI ω1 · · · ωI µ1 · · · µI−1

f1 0 0 0 0 a1I
S 0 0

... 0 0 0 0 0
. . . 0

fI−1 0 0 0 0 0 0 aI−1I
S

z IJ 0 0 0 0 0 0
g1 0 −IS+1 0 0 0 0 0
... 0 0

. . . 0 0 0 0
gI † 0 0 −IS+1 0 0 0




where † denotes the following matrix.



q̄1 · · · q̄J

−v1
1 · · · −vJ

1
...

...
...

−v1
S · · · −vJ

S


 .

Thus, it is easily seen that the submatrix is non-singular, which implies that F is transversal
to zero. Besides, the natural projection ((xi, zi)i, p1, q; ω, µ) 7→ (ω, µ) is obviously proper.

Thus, through the transversality theorem, generically in (ω, µ) ∈ R
(S+1)I
++ ×B, F (·, ·, ·; ω, µ) :

R
(S+1)I
++ ×RJI×RS

++×RJ → RS(I−1)×RJ×R(S+1)I is also transversal to zero. Hence, the
preimage of zero through the latter map, which includes the set of budget optima, constitutes
a differentiable manifold whose dimension, denoted by d, is as follows. If assets are real,
d = (S + 1)I + JI + 0 + J − (J + S(I − 1) + (S + 1)I) = I(J − S) + S, while if assets are
nominal, then d = (S + 1)I + JI + S + J − (J + S(I − 1) + (S + 1)I) = I(J − S) + 2S.
however, according to the hypotheses, either proves to be negative, which implies that there
is no budget optimum in each case. Since u is arbitrarily chosen, this completes the proof.
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It follows from this theorem that so long as each agent keeps its budget constraint, a
resulting asset market equilibrium is generically Pareto inefficient regardless of the agent’s
optimization behavior.

4.4 Concluding Remarks

Some implications are obtainable from the previous arguments. As I have shown above,
so long as each agent trades on incomplete asset markets keeping its budget constraints,
Pareto optimal allocations are hardly attainable whether it is engaged in the individual
optimization or not. This consequence implies that I can dispense with any concavity
assumption on a utility function for each agent. If a concavity assumption is required for a
utility function at all, it will be mainly because some significant demand function is obtained
by the assumption. Thus I can say through the above claim that the agents are kept away
from Pareto optimal allocations before they declare their demand. Otherwise stated, in
order to obtain generic inefficiency of equilibrium allocations with incomplete markets, I
do not even need any demand behavior of an agent. Incidentally, if I additionally require
the subjective equilibrium on the basis of concave utility functions, then a resulting asset
market equilibrium is generically Pareto inefficient under a weaker condition concerning
the number of agents, assets and states of nature.

Another suggestive remark can be made about the likelihood of inefficiency of equilib-
rium allocations. When J = S, then the incomplete markets model turns into a complete
markets model, so that every equilibrium allocation is Pareto optimal by the first funda-
mental theorem of welfare economics. Therefore, even if the asset markets are incomplete,
the likelihood of inefficiency of equilibrium allocations is intuitively expected to be depen-
dent on how much J differs from S. It is thereby conjectured that equilibrium allocations
with incomplete markets are more likely to be Pareto optimal when J is close to S than
when J is far below S. But it is revealed from the above argument that such an intuition
is wrong. As long as I > S in the real asset case and I > 2S in the nominal asset case,
resulting equilibrium allocations are generically inefficient regardless of the difference be-
tween S and J . This consequence reinforces one of Lipsey and Lancaster’s points, that
once a distortion takes place, amplifying it does not necessarily exacerbate the situation in
a Pareto sense (Lipsey and Lancaster (1956)).

The third and last remark is concerned with a nominal asset model. It has been
shown, though on the basis of concave utility functions, that in a nominal asset model
the structure of the set of equilibrium allocations is different between endogenous asset
prices and exogenous asset prices. That is to say, generically the set consists partly of
an S − 1 dimensional manifold in the former case (Geanakoplos and Mas-Colell (1989)),
whereas it partly constitutes an S − J dimensional manifold in the latter case (Balasko
and Cass (1989)). Moreover, those properties of equilibria have been shown to carry over
even when one does not require any concavity but only monotonicity of utility functions
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(see chapter 3 of this dissertation). Considering these facts, it may be conjectured that
the consequence obtained here depends on whether the asset prices are endogenous or
exogenous. The difference does not alter the intrinsic claim described above but slightly
change a condition concerning the number of agents, assets and states of nature in the
theorem. Actually, it is easily verified that the map F considered in the proof of the
theorem is transversal to zero whether the asset prices are endogenous or exogenous. I
have considered them to be endogenous in the text, whereas if they are exogenous, then
the hypothesis in the theorem should be altered to (S − J)(I − 1) > S.
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Chapter 5

Inefficiency of Equilibria with
Incomplete Markets II

This chapter is devoted to the mathematical erabolation of the arguments in the previous
chapter, which is motivated by the improvement of the treatment for function spaces.
It also turns out that this sophistication improves the result of the previous chapter in
some respects, e.g., the condition concerning the number of agents, goods and states of
nature, which is necessary for the desired outcome. Specifically, I replace the compact
open topology with the Whitney topology, which is more appropriate for the space of utility
functions. However, such a refinement necessitates abandonment of the foregoing approach
since the Whitney topology does not permit the use of the perturbation technique. Thus, I
develop a very different way of proving the generic inefficiency of equilibria. That is to say,
in order to reach the goal, I make use of the geometrical relation of two specific sets: one
is the set dependent on initial endowments which contains all Pareto efficient allocations,
and the other is the set dependent on utility functions which contains all equilibrium
allocations. Then, possibility of efficiency of financial equilibria depends on whether these
two sets intersect or not. I shall show that through two kinds of transversality theorem
their intersection is generically empty, which implies the desired result, i.e., the generic
inefficiency of equilibria. In the process of the argument, another mathematical tool, i.e.,
fiber bundle, is effectively used particularly for a nominal asset case.
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5.1 Introduction

In the previous chapter, I demonstrated the generic inefficiency of equilibria with incomplete
markets by checking compatibility of Pareto efficiency with budget constraints. Here in this
chapter, I approach the same issue, i.e., Pareto inefficiency of equilibria with incomplete
markets, from a different angle, which is caused by a mathematical refinement of the
treatment for function spaces. Specifically, I consider the Whitney topology for the space
of utility functions, though I endowed the space with the compact open topology in the
previous chapter. It is true that the compact open topology has nice features: for instance it
has a complete metric and a countable base, moreover, it allows the perturbation technique
described in the previous chapter so that one has only to look at a finite dimensional subset
of the space. But, noting that the domain (RS+1

++ ) of a utility function is not compact, that
topology is not adequate since it does not control the behavior of a function “at infinity”
very well. In other words, the generic outcome in chapter 4 only holds under the condition
that nothing but a local behavior of a function is covered. On the contrary, if one wishes
to cover a global behavior of a function for the genericity analysis, one cannot but resort to
the Whitney topology. Thus, I consider here the Whitney topology for the space of utility
functions.

However, the cost of substituting the Whitney topology for the compact open topology
is not small. Above all, I have to abondan the finite dimensional transformation through
the perturbation technique, which implies that the approach previously provided is not
valid any more. Therefore, in this chapter, I adopt another method which is similar in
spirit to the one described in chapter 3. The basic idea is as follows. First, separate
two types of parameters: namely, utility functions (u) and initial endowments (ω). Then,
it turns out that on the one hand there exists an appropriate set (A(u)) of allocations
which depends only on utility functions and includes all Pareto efficient allocations, on
the other hand there exists an appropriate set (F (ω)) of allocations which depends only
on initial endowments and includes all financial equilibrium allocations. It follows from
this formalization that I have only to check the intersection of these two sets in order to
examine possibility of efficient financial equilibrium with incomplete markets.

There are some merits in using this formula. First, this formula is independent on
choice of a utility function. Indeed, I still consider a utility function free from convexity.
Second, following this procedure, I can make use of the Thom transversality theorem which
makes it possible to perform the genercity analysis for the the space of utility functions with
the Whitney topology. Third, this formula admits both real and nominal assets, though
the latter assets need an extra mathematical treatment through a fiber bundle. Lastly,
what may be the most important in economical sense, I can improve the result previously
obtained in some respects by means of this formula. In particular, it is shown through this
formula that the condition to assure the generic inefficiency of equilibria is relaxed.

In section 2, I describe the model to be considered, which is substantially the same as
the one in the previous chapter. Namely, I have chosen the one-good two-period model,
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based on a pure excange economy, where only monotonicity is assumed on each agent’s
utility function. In section 3, after presenting a specific method for examining inefficiency
of equilibria with incomplete markets, I apply it to both a real asset model and a nominal
asset model. The analytical key in the method consists in using two kinds of transversality
theorem, the Thom transversality theorem and the standard transversality theorem, alter-
nately to attain generic impossibility of efficient equilibrium allocations with incomplete
markets. As a result, for both real asset and nominal asset models, I show that equilibrium
allocations with incomplete markets are generically inefficient with regard to utility func-
tions and intial endowments for agents. Finally, in section 4, I address some economical
implications derived from the arguments provided here.

5.2 The Model

The model to be considered here is substantially the same as the one in the previous
chapter: namely, the simplest one-good two-period exchange economy under uncertainty.
The first and second period are each specified by t = 0 and 1 and one of S states of
nature (s = 1, . . . , S) occurs at date 1. For simplicity, I call date t = 0, state s = 0, so
that in total there are S + 1 states. The economy consists of I consumers (i = 1, . . . , I)
and a single consumption good. Thus, the commodity space for each consumer is RS+1.
The characteristics of each agent i consist of three ingredients, that is, its consumption
set X i, its utility function ui and its initial endowment ωi. I make assumptions on those
ingredients as follows. For each i, (i = 1, . . . , I),

Assumption 5.1 X i is RS+1
++ .

Assumption 5.2 ui satisfies

1. ui ∈ C∞(
RS+1

++ ,R
)
.

2. Dui(x) ∈ RS+1
++ for each x ∈ RS+1

++ .

Assumption 5.3 ωi ∈ RS+1
++ .

As in the previous chapter, I take both utility functions and initial endowments among
agents as the parameters characterizing an economy. Note that monotonicity is required
of a utility function, though current monotonicity is the only requirement in the previous
chapter. Just as previously, let u = (u1, . . . , uI) and ω = (ω1, . . . , ωI) in the following.

First consider efficiency of allocations. Given u and ω, a Pareto optimal allocation is
defined as follows.

Definition 5.1 An allocation x = (x̄1, . . . , x̄I) ∈ R
(S+1)I
++ is a Pareto optimum if

(i)
∑I

i=1 x̄i =
∑I

i=1 ωi
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(ii) there does not exist x = (x1, . . . , xI) ∈ R
(S+1)I
++ such that

∑I
i=1 xi =

∑I
i=1 ωi and

ui(xi) ≥ ui(x̄i), i = 1, . . . , I with a strict inequality for at least one i.

Let ps be a spot price of the good in state s (s = 0, 1, . . . , S) as before. I follow the
assumption on the number of assets of the former arguments; namely, there are J assets
(j = 1, . . . , J) in the economy. I may assume that J < S because of my interest in
incomplete markets. Let qj be the price of asset j at date 0 as before. I make the following
assumptions on the asset prices and spot prices of the good.

Assumption 5.4 p ∈ RS+1
++ , q ∈ RJ

++

where p = (p0, p1, . . . , pS) and q = (q1, . . . , qJ).

For simplicity of notation, I set p1 = (p1, . . . , pS) as before.
As I have stated before, the assets are conceptually classified into two groups, that is,

real assets and nominal assets. A real asset promises to deliver a bundle of goods at each
state in the future, whereas a nominal asset promises to deliver a given stream of units of
account across the states. Regarding returns of these assets, I will use the same notaion
as before; namely, let vj = (vj

1, . . . , vj
S) be a return vector of asset j, j = 1, . . . , J , where

vj
s is interpreted as a certain amount of good in a real asset model while it is regarded as

a given units of accounts in a nominal asset model. In addition, just as before, I see each
vj (j = 1, . . . , J) as a column vector and combine them to form S × J matrix of returns
V = [v1, . . . , vJ ]. Let E(u, ω; V ) denote the economy composed of u, ω and V . The object
of this chapter is the same as the one in chapter 4. That is to say, I investigate inefficiency
of equilibria with incomplete markets from a generic viewpoint with respect to u and ω.
Thus the asset structure V is fixed on which I may assume that rank V = J without loss
of generality.

Given the asset structure V , each agent has a chance to purchase some amounts of J
assets and adjust its income stream so that it can optimize its intertemporal consumptions.
Let zi = (zi

1, . . . , zi
J) ∈ RJ be a portfolio of agent i. Then the problem the agent has to

solve in a nominal asset case is as follows.

max
xi,zi

ui(xi)

s .t . xi
0 = ωi

0 − q · zi, zi ∈ RJ . . . . . . (∗)

psxi
s =

J∑
j=1

vj
sz

i
j + psωi

s, s = 1, . . . , S.

Note that the good at date 0 is interpreted as a numeraire. If I put ps = 1, s = 1, . . . , S in
the above, then I have the problem of a real asset case because a real asset j, j = 1, . . . , J
provides a nominal return of psvj

s at each state s, s = 1, . . . , S per one unit. In this sense,
I can consider a real asset model to be a special case of a nominal asset model, so that I
shall confine ourselves to a nominal asset case for the time being.

Now I define the equilibrium for the economy E(u, ω; V ) which is the same as before.
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Definition 5.2 An asset market equilibrium for E(u, ω; V ) is a tuple ((xi,zi)i,p1, q)
such that

(i) (xi,zi) is a solution of the problem (∗), i = 1, . . . , I

(ii)
∑I

i=1 xi =
∑I

i=1 ωi

(iii)
∑I

i=1 zi = 0

I follow the same notation for the space of economies. Namely, let U be the set of
functions satisfying assumption 5.2 and let U be I-product of U , that is, U I . Then the space
of admissible u and ω is U×R

(S+1)I
++ , which is the space of economies. To R

(S+1)I
++ a standard

Euclidean topology is given, whereas C∞(
RS+1

++ ,R
)

is endowed with the Whitney C∞

topology. Then, it can be shown that U has a specific property as a subset of C∞(
RS+1

++ ,R
)
.

Proposition 5.1 U is an open subset of C∞(
RS+1

++ , R
)

in the Whitney C∞ topology.

Proof: Let J1
(
RS+1

++ ,R
)

be the 1-jet space generated by C∞(
RS+1

++ ,R
)

(for the r-jet space

see chapter 6). Consider the set W defined by {(a, b, c1, . . . , cS+1) ∈ J1
(
RS+1

++ ,R
) | ci >

0, i = 1, . . . , S + 1}. Then obviously U = {f ∈ C∞(
RS+1

++ ,R
) | J1f(RS+1

++ ) ⊂ W}. Noting

that J1
(
RS+1

++ ,R
)

is substantially equal to RS+1
++ ×R×RS+1 , it is obvious that W is open

in J1
(
RS+1

++ , R
)
, which implies that U is an open subset of C∞(

RS+1
++ ,R

)
(Golubitsky and

Guillemin (1973), p.42).

Thus, U is an open subset of a product topological space C∞(
RS+1

++ ,R
)I

.
Before starting the investigation, I should give a brief explanation as to how our argu-

ments will proceed in the following. I consider two specific sets of allocations for any given
economy. One is the set that contains all efficient allocations. The other one is the set that
includes all incomplete market equilibrium allocations. Thus, the intersection of these sets,
if any, could contain any allocation that is an efficient equilibrium with incomplete markets.
In other words, if there exists an incomplete market equilibrium that is also efficient, these
two sets must intersect. First I am going to investigate from the generic viewpoint how
these two sets behave with respect to the economic parameters. Then I shall consider the
possibility of their intersection from the viewpoint of transversality.

5.3 Main results

5.3.1 Generic property of A(u)

First, I characterize the set that contains all efficient allocations. In order to obtain mean-
ingful conditions, I add a harmless assumption regarding utility functions, which is only
needed for the technical purpose.
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Assumption 5.5 there exists an i ∈ {1, . . . , I} such that at every (x1, . . . , xI) sat-
isfying uj(xj) = aj (∀j 6= i),

∑I
i=1 xi =

∑I
i=1 ωi for any aj(j 6= i) ∈ R, the set

{(y1, . . . , yI) ∈ R(S+1)I | Dui ·yi > 0, Duj ·yj = 0 (∀j 6= i),
∑I

i=1 yi = 0} is empty.

Then I obtain the first order necessary conditions of Pareto optimal allocations.

Proposition 5.2 Given u and ω fulfilling assumption 5.2, 5.3 and 5.5 and let an allo-
cation x̄ = (x̄1, . . . , x̄I) ∈ R

(S+1)I
++ be Pareto optimal. Then the following equation holds.

Du1(x̄1)/
S+1∑
i=0

Du1
i (x̄

1) = . . . = DuI(x̄I)/
S+1∑
i=0

DuI
i (x̄

I)

Proof: A Pareto optimal allocation can be characterized as a solution of the next maxi-
mization problem,

max
xi

ui(xi)

s .t . uj(xj) ≥ ūj ∀j 6= i
I∑

i=1

xi =
I∑

i=1

ωi

where i is the index specified in assumption 5.5. Since the inequality conditions for all
uj can be replaced by the equality conditions by virtue of assumption 5.2, assumption 5.5
ensures the existence of the Lagrange multipliers (Sakawa (1986)). Thus the consequence
is readily deduced by eliminating the Lagrange multipliers in the Kuhn-Tucker conditions

For any economy E(u, ω; V ), I particularly specify the set of allocations that only satisfy
the equation in the proposition. Because no feasibility is required for the set, the set does
not coincide with the set of Pareto optimal allocations but contains all efficient allocations.
It is also worth noting that the set in question is only dependent on u, thus I denote it by
A(u) in what follows.

Then it is shown through a modified Thom transversality theorem that A(u) possesses
a specific structure generically in u, which is as follows.

Proposition 5.3 There exists a dense subset U∗ of U such that for any u in U∗, A(u)

constitutes a S+I dimensional submanifold in R
(S+1)I
++ .

Proof: I give the sketch of the entire proof. For details see the mathematical appendix
(chapter 6).

(1) For any u = (u1, . . . , uI) ∈ U , define j1
I u : R

(S+1)I
++ → J1(RS+1

++ ,R)I by

j1
I u(x1, . . . , xI) = (j1u1(x1), . . . , j1uI(xI))
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where j1ui is the 1-jet extension of ui. Then, through a variation of the Thom transversality
theorem, I have that for any submanifold Q ⊂ J1(RS+1

++ , R)I

T = {u ∈ U | j1
I u is transversal to Q}

is dense in U in the Whitney C∞ topology.

(2) Consider the map Φ : J1
+

(
RS+1

++ ,R
)I → (RS+1

++ ×R×∆S
+)I given by

Φ(y1, . . . , yI) = (φ(y1), . . . , φ(yI))

where J1
+(RS+1

++ ,R) is substantially equal to RS+1
++ ×R×RS+1

++ (while J1
( RS+1

++ ,R) is equiva-

lent to RS+1
++ ×R×RS+1), ∆S

+ indicates a strictly positive S-simplex and φ : J1
+

(
RS+1

++ ,R
) →

RS+1
++ ×R×∆S

+ is given by

φ(a, b, c1, . . . , cS+1) = (a, b, c1/

S+1∑
i=1

ci, . . . , cS+1/

S+1∑
i=1

ci).

Then, it is shown that for any submanifold W of (RS+1
++ ×R×∆S

+)I

T = {u ∈ U | Φ ◦ j1
I u is transversal to W}

is dense in U in the Whitney C∞ topology.
(3) Let W be the set { (ai, bi, ci)i ∈ (RS+1

++ × R × ∆S
+)I | c = c = . . . = cI}. It is

obvious that W is a (S +1)I +I +S dimensional submanifold of (RS+1
++ ×R×∆S

+)I . There
exists a dense subset U∗ of U such that for any u in U∗, Φ ◦ j1

I u is transversal to W .

Thus for those u, Φ ◦ j1
I u

−1(W ) constitutes a S + I dimensional submanifold of R
(S+1)I
++ .

Since Φ ◦ j1
I u

−1(W ) = A(u), the proof is completed.

5.3.2 Fibration of F λ(ω)

Secondly, I specify the set that contains all equilibrium allocations with incomplete markets.
To this end, I consider a particular feasibility for any economy.

Definition 5.3 For any given strictly positive S-vector λ (= (λ1, . . . , λS)), an allocation
x = (x1, . . . , xI) ∈ R(S+1)I is pseudo-λ-feasible if

(i)
∑I

i=1 xi =
∑I

i=1 ωi

(ii) xi
1 ∈ 〈ΛV 〉+ ωi

1, i = 1, . . . , I

where Λ is a S × S diagonal matrix with λ for its diagonal and 〈ΛV 〉 indicates a vector
subspace spanned by the columns of a S × J matrix ΛV .
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For any given economy E(u, ω; V ), the set of pseudo-λ-feasible allocations is only de-
pendent on ω, thus I denote it by Fλ(ω). Then, Fλ(ω) has significant characteristics as
follows.

Proposition 5.4 Fλ(ω) constitutes a (J +1)(I−1) dimensional submanifold of R(S+1)I

for any λ ∈ RS
++ and ω ∈ R

(S+1)I
++ .

Proof: First I consider the following set.

Z = {(z1, . . . , zI) ∈ R(J+1)I | z1 + · · ·+ zI = 0}.

It is easily verified that Z is a (J + 1)(I − 1) dimensional linear submanifold of R(J+1)I .
Now I extend matrices Λ, V as follows.

Λ̂ =




1 0 · · · 0
0 λ1 · · · 0
...

...
. . .

...
0 · · · · · · λS




and

V̂ =




1 0 · · · 0
v1

1 · · · · · · vJ
1

...
...

...
...

v1
S · · · · · · vJ

S




By using these extended matrices, I define the map F : Z → R(S+1)I given by

F (z1, . . . , zI) = (Λ̂V̂ zi + ωi)i.

Then it readily follows from the construction of F that F (Z) = Fλ(ω). Since F is an affine
map and Λ̂V̂ is of full rank, dim F (Z) = dim Z, which completes the proof.

It is easily seen from the proof that Fλ(ω) is virtually a (J +1)(I−1) dimensional affine

subspace of R(S+1)I , so that if I particularly take Fe(ω) where e =

S︷ ︸︸ ︷
(1, . . . , 1), i.e. e is the

sum vector of order S, then Fe(ω) is diffeomorphic to Fλ(ω) for any λ ∈ ∆S−1
++ .

The second feature of Fλ(ω) is as follows.

Proposition 5.5 For any equilibrium ((x̄i, z̄i)i, p̄1, q̄) for E(u, ω; V ), there exists a vec-
tor λ̄ of ∆S−1

++ such that the equilibrium allocation (x̄i)i is pseudo-λ̄-feasible where ∆S−1
++

designates the strictly positive S − 1 dimensional simplex in RS.
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Proof: It is sufficient to show that (x̄i)i satisfies that
∑I

i=1 x̄i =
∑I

i=1 ωi and x̄i
1 ∈

〈Λ̄V 〉+ωi
1, i = 1, . . . , I. Set c =

∑S
s=1 1/p̄s, z̃i = z̄i/c, i = 1, . . . , I, p̃1 =

(
1/p̄1, . . . , 1/p̄S

)

and q̃ = cq̄. Then it is easily seen that ((x̄i, z̃i)i, p̃1, q̃) is also an equilibrium for the econ-
omy. Now I set λ̄ = c

(
1/p̄1, . . . , 1/p̄S

)
which is obviously an element of ∆S−1

++ . Consider-

ing the property of the new equilibrium, the following equations hold.
∑I

i=1 x̄i =
∑I

i=1 ωi,
x̄i
1 = Λ̄V · z̃i + ωi

1, i = 1, . . . , I.

In view of the above proposition, it is obvious that all the equilibrium allocations for
E(u, ω; V ) are included in the union of Fλ(ω) over λ ∈ ∆S−1

++ (i.e.
⋃

λ∈∆S−1
++

Fλ(ω)). However,

it should be noted that in spite of the property of each Fλ(ω) (see proposition 5) the union⋃
λ∈∆S−1

++
Fλ(ω) itself is not necessarily a manifold.

Here, invoke the notion of fibre bundles. As I have shown, Fe(ω) is diffeomorphic to
Fλ(ω) for any λ ∈ ∆S−1

++ . Thus, there exists a smooth map G : Fe(ω) ×∆S−1
++ → R(S+1)I

such that G( ·, λ) : Fe(ω) → R(S+1)I is an into-diffeomorphism and G(Fe(ω), λ) = Fλ(ω)
for any λ in ∆S−1

++ . Now Let F (ω) be the disjoint union of Fλ(ω), λ ∈ ∆S−1
++ . Then, by

using the idea of fibration, I can make it a manifold.

Proposition 5.6 For any ω in R
(S+1)I
++ , F (ω) constitutes a (J + 1)(I − 1) + S − 1

dimensional manifold.

Proof: I am going to give a smooth manifold structure as well as a topological structure to
F (ω) in such a way that it becomes a total space with ∆S−1

++ as a base space. Let π : F (ω) →
∆S−1

++ be a projection defined by π(x∗) = λ where x∗ = ((x, λ) | x ∈ Fλ(ω), λ ∈ ∆S−1
++ ). Let

{(Uα, ϕα)}α∈A be the atlas of ∆S−1
++ . Consider π−1(Uα) for any chart ϕα : Uα → RS−1 and

define the map ϕ̃α : π−1(Uα) → R(J+1)(I−1) ×RS−1 by

ϕ̃α(x∗) = (φβ ◦G−1(x, λ), ϕα(λ))

where φβ is an appropriate chart φβ : Wβ → R(J+1)(I−1) of the atlas (Wβ, φβ)β∈B for the

manifold Fe(ω). Let a subset Z of Fω be called an open set if for any α, ϕ̃α(Z ∩ π−1(Uα))
is open in R(J+1)I−(S+1)×RS−1. Then it is easily seen that those sets constitutes a system
of open sets, which gives a topological structure to Fω.

Next, consider the property of the collcetion (π−1(Uα, ϕ̃α))α∈A. Suppose that for α, α′ ∈
A, π−1(Uα) ∩ π−1(Uα′) 6= ∅. Then for any point (a, b) of ϕ̃α(π−1(Uα) ∩ π−1(Uα′)) I have

ϕ̃α′ ◦ ϕ̃−1
α (a, b) = ϕ̃α′((G(φ−1

β (a), λ)) = (φβ ◦G−1(G(φ−1
β (a), λ), λ), ϕα′(ϕ

−1
α (b)))

= (a, ϕα′ ◦ ϕ−1
α (b))

where λ = ϕ−1
α (b). Thus, ϕ̃α′ ◦ ϕ̃−1

α : ϕ̃α(π−1(Uα) ∩ π−1(Uα′)) → ϕ̃α′(π
−1(Uα) ∩ π−1(Uα′))

is a diffeomorphism. Since it is obvious that π−1(Uα)α∈A covers F (ω), which implies that
F (ω) is regarded as a smooth manifold whose dimension is (J + 1)(I − 1) + (S − 1).
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5.3.3 Generic infefficiency of financial equilibria

As I have seen, an equilibrium allocation for an economy E(u, ω; V ) with incomplete mar-
kets, if any, must be in the intersection of A(u) and F (ω). In order to see how these two
sets intersect, I investigate transversality between A(u) and F (ω).

I fix an A(u) for any given u of U∗ and consider the inclusion map ι : A(u) → R(S+1)I .
Then the image of ι, i.e. A(u), can be interpreted as a (S + I) dimensional submanifold
of R(S+1)I . I am going to check if F (ω) is transversal to A(u) generically in ω. To

this end, I first pick an arbitrary ω out of R
(S+1)I
++ and fix it. Then define the map ψ :

F (ω)×N+
1 (ω) → R(S+1)I by ψ(x∗, y) = x + y where N+

1 (ω) = {y ∈ R
(S+1)I
++ | ‖y−ω‖ < 1}

and x∗ = {(x, λ) | x ∈ Fλ(ω), λ ∈ ∆S−1
++ }. Then I have

Proposition 5.7 ψ is a smooth submersion.

Proof: It suffices for us to check the claim locally. Let (π−1(Uα, ϕ̃α) × (N+
1 (ω), i)) be a

chart including any given point (x∗, y) of F (ω) × N+
1 (ω) where i is the identity map. Let

ϕ̃α(x∗) = (a, b) where obviously a ∈ R(J+1)(I−1) and b ∈ RS−1. Then I have the following
local parameterization of ψ at (x∗, y).

G(φ−1
β (a), ϕ−1

α (b)) + y,

which is obviously differentiable at (a, b, y) since G is a smooth map, thus ψ is also differ-
entiable at (x∗, y). In addition, it is obvious from the form of the local parameterization
that ψ is a submersion.

Then I can obtain some useful propsitions concerning ψ.

Proposition 5.8 For almost all y ∈ N+
1 (ω), ψ(·, y) : F (ω) → R(S+1)I is transversal to

A(u).

Proof: ψ : F (ω)×N+
1 (ω) → R(S+1)I is transversal to A(u) since it is shown in the above

proposition to be a submersion. Thus, by applying the Transversality Theorem (Guillemin
and Pollack (1974), p.68) to ψ, I obtain the desired result.

Proposition 5.9 For each y ∈ N+
1 (ω), ψ(F (ω), y) =

⋃
λ∈∆S−1

++
Fλ(ω + y).

Proof: Since F (ω) is the disjoint union of Fλ(ω), λ ∈ ∆S−1
++ , obtaining its image by

ψ( ·, y) requires us to consider all the Fλ(ω) with regard to λ ∈ ∆S−1
++ . Recall that Fλ(ω)

is the set of x (= (x1, . . . , xI) ∈ R(S+1)I) which satisfies (1)
∑I

i=1 xi =
∑I

i=1 ωi and
(2) xi

1 ∈ 〈ΛV 〉 + ωi
1, i = 1, . . . , I. Thus, for any λ ∈ ∆S−1

++ and y ∈ N+
1 (ω) the set

{(x+y) ∈ R(S+1)I | x ∈ Fλ(ω)} is obviously equal to the set {x ∈ R(S+1)I | x ∈ Fλ(ω+y)}.
Since ψ( ·, y) substantially transforms any x into x + y, the claim immediately follows.
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In order to obtain the final outcome, I need the following assumption regarding the
numbers of agents, assets and states.

Assumption 5.6 I > 2 and S > I−1
I−2

J + 1

Now I am in a position to state our main claim.

Theorem 5.1 Under assumptions 5.1～5.6, for almost all u and ω, each equilibrium
allocation of the economy E(u, ω; V ) is Pareto inefficient.

Proof: Let u and ω be respectively arbitrary elements of U∗ and R
(S+1)I
++ . Let y be an

element of N+
1 (ω) such that ψ(·, y) is transversal to A(u). Note that from proposition 5.8

such a y is an element of a dense set of N+
1 (ω). Now suppose that ψ(F (ω), y)∩A(u) 6= ∅.

Then for any x ∈ ψ(F (ω), y) ∩ A(u), I have

dψz∗(Tz∗(F (ω)) + Tx(A(u)) = R(S+1)I

where T designates a tangent space and z∗ is an element of ψ−1(·, y)(x).
However, by propositions 5.3 and 5.6 and assumption 5.6, I have the following inequal-

ity.

dimR(S+1)I − (dimTz∗(F (ω)) + dimTx(A(u)))

= (S + 1)I − ((J + 1)(I − 1) + S − I + S + 1)

= S(I − 2)− J(I − 1)− (I − 2)

> 0,

which is a contradiction to the previous equation. Thus ψ(F (ω), y) ∩ A(u) = ∅, which im-
plies that

⋃
λ∈∆S−1

++
Fλ(ω + y)∩A(u) = ∅ by proposition 5.9. Noting that

⋃
λ∈∆S−1

++
Fλ(ω + y)

includes the whole set of equilibrium allocations for E(u, ω + y; V ) and that an equilibrium
allocation cannot be Pareto efficient unless it belongs to A(u), it turns out that any equi-
librium allocation for E(u, ω + y; V ) is Pareto inefficient. Since ω is arbitrarily taken from

R
(S+1)I
++ and u and y are respectively arbitrary elements of the dense sets, the claim follows.

Finally, I refer to the real asset case. As I have already seen in section 2, a real asset
model can be considered to be a special case of a nominal asset model. That is to say, if I
put ps = 1, s = 1, . . . , S in the equations system in (∗), I obtain the optimization problem
for each agent in a real asset model, which implies that if λs = 1, s = 1, . . . , S, then
Fλ(ω) includes all equilibria for an economy E(u, ω; V ) with real assets. Thus, in the real
asset case, I have only to consider one particular set Fe(ω) instead of

⋃
λ∈∆S−1

++
Fλ(ω), where

e denotes the sum vector of order S, i.e. e =

S︷ ︸︸ ︷
(1, . . . , 1). This fact facilitates the analysis,

resulting in the similar result to the above one with much weaker conditions regarding the
number of agents, assets and states.
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Theorem 5.2 If I ≥ 2, S > J +1 and the rest of the assumptions are unchanged, then for
almost all u and ω, each equilibrium allocation of the economy E(u, ω; V ) with real assets
is Pareto inefficient.

Proof: I am allowed to follow the procedure described in the proof of the foregoing theorem.
That is, fix an A(u) for any given u of U∗ and consider the inclusion map ι : A(u) →
R(S+1)I . Then the image of ι, i.e. A(u), can be interpreted as a (S + I) dimensional
submanifold of R(S+1)I . I am going to check if Fe(ω) is transversal to A(u) generically in

ω. To this end, I first pick an arbitrary ω out of R
(S+1)I
++ and fix it. Then define the map

ψ : Fe(ω)×N+
1 (ω) → R(S+1)I by ψ(x, y) = x+ y where N+

1 (ω) = {y ∈ R
(S+1)I
++ | ‖y−ω‖ <

1}. As for this map, I can obtain through the transversality theorem that for almost all
y ∈ N+

1 (ω), ψ(·, y) : Fe(ω) → R(S+1)I is transversal to A(u). In addition, it can be easily
verified that for each y ∈ N+

1 (ω), ψ(Fe(ω), y) = Fe(ω + y).
Thus, let y be an element of N+

1 (ω) such that ψ(·, y) is transversal to A(u). Suppose that
Fe(ω+y)∩A(u) 6= ∅ . Since ψ(·, y) is transversal to A(u), I have that TzFe(ω)+TxA(u) =
R(S+1)I at any x ∈ Fe(ω + y) ∩A(u), where z = ψ(·, y)−1(x). But considering proposition
5.3, proposition 5.4 and the hypothesis on the number of agents, assets and states, I have

dimFe(ω) + dimA(u) = (J + 1)(I − 1) + S + I

< S(I − 1) + S + I

= (S + 1)I

= dimR(S+1)I ,

which is a contradiction. Thus Fe(ω + y) ∩ A(u) = ∅, that is to say, there exist no
Pareto optimal allocations fulfilling pseudo-e-feasibility. Since each equilibrium allocation of
E(u, ω; V ) is obviously pseudo-e-feasible, it is Pareto inefficient. Noting that ω is arbitrarily

taken from R
(S+1)I
++ and that u and y are respectively arbitrary elements of the dense sets,

the claim follows.

5.4 Concluding Remarks

Some implications are obtainable from the arguments provided above. First, recall the
proofs of the theorems. Then I find that generic inefficiency of equilibrium allocations
is caused by the fact that for almost all u and ω, A(u) is disjoint with Fe(ω) (resp.⋃

λ∈∆S−1
++

Fλ(ω)) which contains the set of equilibrium allocations in a real (resp. nominal)

asset model. Considering the definion of pseudo-λ-feasibility, I immediately have that
Fe(ω) (resp.

⋃
λ∈∆S−1

++
Fλ(ω)) is derived from allocations that satisfy every agent’s budget

constraints of date 1, which are realized only by trade on asset markets. Noting that Fe(ω)
(resp.

⋃
λ∈∆S−1

++
Fλ(ω)) is independent of the optimization behavior of each agent, it may

safely be said that as long as each agent trades on incomplete asset markets, Pareto optimal
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allocations are hardly attainable whether he is engaged in the individual optimization or
not . This is just what I obtained in the previous chapter. To sum up, I have demonstrated
in a different way incompatibility of Pareto efficiency with budget constraints for equilibria
with incomplete markets.

Regarding the likelihood of inefficiency of equilibrium allocations, I also have the same
conclution as before. That is to say, the intuition that equilibrium allocations with incom-
plete markets are more likely to be Pareto optimal when J is close to S than when J is far
below S proves to be wrong according to the arguments provided here. It is because as long
as J < S (resp. J < S +1 and I > J), the transversality of ψ(·, y) to A(u) prevents Fe(ω)
(resp.

⋃
λ∈∆S−1

++
Fλ(ω)) from intersecting A(u), which necessarily yields that equilibrium

allocations are inefficient.
Compared to the result in the previous chapter, the ones obtained here have an advan-

tage in specifying the condition for the numbers of agents, assets and states. Namely, for
the real asset case, the previous result requires that I(S−J) > S for the generic inefficiency
of equilibria, while here substantially S > J + 1 is the only requirement, which is almost
necessarily satisfied as long as incomplete markets are concerned. For the nominal asset
case, admitterly, I cannot tell which condition is more plausible, but it is worth noting that
according to the previous result I have to accept different conditions among endogenous
asset prices and exogenous asset prices (see the concluding remarks of chapter 4), while the
condition here is common to both cases. This is because the pseudo-feasible set which is
combined with A(u) to prove the impossibility of Pareto efficiency includes any equilibrium
allocation regardless of whether it is based on endogenous asset prices or exogenous asset
prices. Indeed, the pseudo-feasible set is derived from all agents’ budget constraints of
each state at date 1 which are specified independently of asset prices (see definition 5.3).
Obviously, the asset prices are only relevant to every agent’s budget constraint at date 0 .
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Chapter 6

Mathematical Appendix

This chapter illustrates specific mathematical techniques that have facilitated the argu-
ments in the text.1 They consists of two parts: one is the intersection-based approach
to genericity analysis for the equilibrium set, and the other is a variation of the Thom
transversality theorem.

1This chapter is based on R. Nagata,Theory of Regular Economies, World Scientific, 2004 and R. Na-
gata,“An Intersection-based Approach to Genericity Analysis for the Equilibrium Set, with an Application
to the Lindahl Equilibrium”, The Japanese Economic Review , vol 51, no.3, 431-447, 2000.
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6.1 Intersection-based approach to genericity analysis

The analysis of this dissertation is directed toward researching specific properties of the
equilibrium set from the generic viewpoint in some economic parameters which are of
different nature. What is the very suitable for this sort of issue is the intersection-based
approach to genericity analysis I developed. Indeed, the arguments in chapter 3 and chapter
5 are basically owing to this approach. The basic idea of this approach is simple, which
gives the approach itself a wide applicability. Thus, I first describe the basic idea in an
abstract form, then I pick up the most standard Walrasian equilibria as a concrete example,
applying this approach to the equilibria to generically investigate some of their properties.
I believe that such an illustration articulates the idea of the approach.

6.1.1 Basic idea

Consider an abstract economy. There exists two types of notions concerning an economy.
One is the collection (say, e) of parameters which specify the framework of an economy,
the other is the collection (say, x) of endogenous variables which describe the state of an
economy. Usually, one can restrict admissible e’s to a certain set E, which is called the
parameter space (or the economy space), while x is restricted to a certain set X called the
state space. Given e of E, one is normally concerned with a particular state of the economy
corresponding to e, which is denoted by x∗(e). In most cases x∗(e) is interpreted as an
equilibrium. One aims at investigating some properties of x∗(e). If x∗(e) is considered as
an equilibrium, existence, local uniqueness, stability etc. are included in such properties.
In general, x∗(e) is not uniquely determined, which implies that one has to consider the set
X∗(e) = (x∗(e)1, x∗(e)2, . . . ). If the set X∗(e) possesses a certain property for almost all e of
E, then the property is called generic. (An inquiry into generic properties of equilibria with
incomplete markets is just what this dissertation is concerned with.) A standard method of
investigating generic properties in economic literature is as follows. First, characterize the
set (e,X∗(e)) in E×X. Secondly restrict a projection pi : E×X → E giben by pi(e, x) = e
to the set. Then apply Sard’s theorem to the restricted projection, gainning some generic
properties of X∗(e) (for details, see Nagata 2001b). This method, however, needs more
technical process when e includes different type of parameters. The intersection-based
approach has the advantage of systematically treating such a complexity. The basic idea
of this approach is as follows.

Suppose that there exist two sets E1, E2 such that E = E1 × E2 (thus, for all e ∈
E, e = (e1, e2), e1 ∈ E1, e2 ∈ E2) and that X∗(e) = X1(e1) ∩X2(e2) for all e of E where
X i(ei) is the set of states corresponding to ei, i = 1, 2. Needless to say, e1 and e2 indicate
the collections of different types of parameters. In these circumstances, generic properties
of X∗(e) is explored through two specific procedures: namely, first investigating how the
structure of X i(ei) responds to ei, i = 1, 2, second ascertaining how X1(e1) and X2(e2)
intersect each other. It is worth noting that one can cover the case in which X1(e1) and
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X2(e2) do not intersect, which implies that X∗(e) = ∅. Indeed, essentially speaking, the
arguments of chapter 5 in this dissertation centers on the possibility of X∗(e) = ∅.

The success of this method rests on the three points: (1) one can find appropriate
classes E1, E2, (2) one can analytically specify the correspondence of X i(ei) to ei, and
(3) one can simply analyze the way of intersection of X1(e1) and X2(e2) in response to
e1 and e2. In order to see that these matters are not as tough as they look, I pick up
the standard Warlasian equilibrium and show how smoothly the method is applied to the
genericity analysis for the equilibrium.

6.1.2 The Walrasian model

There exist L goods (l = 1, . . . , L), I consumers (i = 1, . . . , I) and no producers, which
implies that I consider a pure exchange economy. Each agent is characterized by its con-
sumption set X i, its utility function ui defined over the consumption set, and its initial
endowment vector ωi (i = 1, . . . , I). The consumption vector for agent i is denoted by
xi. Each good has its own competitive market, where a certain price is realised by the
auctioneer. A price system is denoted by p(= (p1, . . . , pL)).

Under these circumstances, each agent’s decision-making problem is summarized by

max
xi

ui(xi)

s .t . p · xi ≤ p · ωi.

The solution of the above problem is called a subjective equilibrium for agent i. In order
to have a Walrasian equilibrium, these subjective equilibria among agents are required to
fulfill the so-called market equilibrium, that is

I∑
i=1

xi =
I∑

i=1

ωi.

In view of its framework, the state of a Walrasian equilibrium is naturally described by
(p,x1, . . . , xI) satisfying both the subjective equilibrium and the market equilibrium. It
is worth noting that these states of equilibrium depend on a distribution of ui and ωi.
Thus (ui, ωi)i is called economic parameters. In the following, (ui,ωi)i is denoted by e and
called just an economy, whereas (p,x1, . . . , xI) is denoted by s and called just a state for
simplicity. Then, a Warlasian equilibrium is formally given as follows.

Definition 6.1 A state s = (p,x1, . . . , xI) under an economy e, is a Walrasian equi-
librium if and only if

(i) xi is a subjective equilibrium for i, i = 1, . . . , I

(ii)
∑I

i=1 xi =
∑I

i=1 ωi
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The set of Walrasian equilibria under an economy e is denoted by E(e).
According to the arguments of the forgoing subsection, I have to characterize every

variable and function so as to obtain the parameter space and the state space. First,
I specify the parameters which consist of utility functions and initial endowmets among
agents.

Assumption 6.1 ui satisfies

1. ui ∈ C∞(
RL

++,R
)
.

2. Dui(x) ∈ RL
++ for each x ∈ RL

++

Assumption 6.2 ωi ∈ RL
++

In order to constrain a utility function as loosely as possible, I only require differentia-
bility and monotonicity of the function. Obviously, ui and ωi are of different nature, which
correspond to e1 and e2 in the above explanation. Thus, let the set of a utility function
satisfying assumption 1 be U and the set of an admissible ωi be Ω (obviously, Ω = RS+1

++ ).
Then, the economy space (denoted by E) is expressed by U × W , where U = ΠIU and
W = ΠIΩ. Next, I refer to a state s = (p,x1, . . . , xI).

Assumption 6.3 p ∈ RL
++

Assumption 6.4 xi ∈ RL
++, i = 1, . . . , I

Noting the budget constraint of each agent, an admissible price vector can be nor-
malized and confined to the L − 1 dimensional strictly positive unit simplex, denoted by
P . Thus, the state space (denoted by S) is P × RLI++. For simplicity of notation, set
u = (u1, . . . , uI), ω = (ω1, . . . , ωI) and x = (x1, . . . , xI). Thus, e = (u, ω) and s = (p, x).

In order to perform the genericity analysis, I have to specify a topology for relevant
spaces. I may endow W and S with the usual Euclidean topology. On the other hand, two
different types of topologies can be used for the function space, U : namely, the compact
open topology and the Whitney topology. The former topology is much more tractable
than the latter one. It is, however, worth noting that the latter topology is more suitable for
U than the former one because of the non-compactness of the domain of a utility function.
I choose to use here the more tractable one, i.e., the compact open topology, since the
subject of this section is to explain the basic procedure of the approach. To the case in
which U is endowed with the Whitney topology the next section is devoted. Thus, I first set
the compact open C∞ topology on U , then endow U with the deduced product topology.
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6.1.3 Specification of the approach

I consider the equilibrium set in relation to e = (u, ω). For this purpose, first of all I have
to characterize the equilibrium set so as to facilitate further analysis. It is, however, worth
noting that a utility function is too loosely constrained to give rise to the full specification
of the set in the analytical sense. Therefore, I consider in S such a subset as includes the
intrinsic equilibrium set and coincides with it if a certain convexity condition (i.e., strict
quasi-concavity) is added to a utility function. To this end, take the first-order necessary
conditions for the solution of each agent’s optimization problem. Noting the linearity of the
constraint function of the problem, I can obtain well-defined equations as the condition,
which are as follows.

Dui
x = | Dui

x |p
p · xi = p · ωi, i = 1, . . . , I

where | Dui
x | = ∑L

l=1 ∂ui/∂xl. For simplicity, I denote the set of above conditions by (C).
Then I have an extended version of an equilibrium.

Definition 6.2 A state s = (p,x1, . . . , xI) under an econmy e, is an extended Wal-
rasian equilibrium if and only if

(i) xi satisfies (C), i = 1, . . . , I

(ii)
∑I

i=1 xi =
∑I

i=1 ωi

The set of extended Walrasian equilibria under an economy e is denoted by Eex(e). In
the following, I focus on Eex(e) because it turns out that Eex(e) gives rich information
about E(e).

Next step is to find specific subsets S1(u) and S2(ω) in S such that Eex(e) = S1(u) ∩
S2(ω) for any e = (u, ω). First, consider S1(u). To this end, it is convenient to construct
the following map ψ : P ×RLI

++ → ΠIH parameterized by u.

ψu(p, x) = (Dui
x − | Dui

x |p)I
i=1

where H = {z ∈ RL | ∑L
l=1 zl = 0}, which is an (L − 1)-dimensional linear subspace

(submanifold) of RL. Then, the zeros (ψ−1
u (0)) of the map form the set of the state that

satisfies the differential condition of (C) for every agent. This set ψ−1
u (0) corresponds to

S1(u). On the other hand, S2(ω) can be constructed through the following map φω :
P ×RLI

++ → RI−1 ×RL parameterized by ω.

φω(p, x) =
(
(p · xi − p · ωi)I−1

i=1 ,

I∑
i=1

xi −
I∑

i=1

ωi
)
.
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The zeros (φ−1
ω (0)) of the map consist of the states satisfying both the budget constraints

of each agent and the market clearance. It is worth noting that the budget constraint of
I-th agent is excluded among the value of the map φω, which is due to the fact that the
constraint is automatically satisfied in φ−1

ω (0). Like ψ−1
u (0), φ−1

ω (0) corresponds to S2(ω).
Indeed, it is easily seen that Eex(e) = ψ−1

u (0) ∩ φ−1
ω (0).

Thus, there remain two problems to be solved: (1) how does the structure of ψ−1
u (0)

(resp. φ−1
ω (0)) respond to u (resp. ω)? (2) how do these sets intersect each other? I can

consider these problems from the viewpoint of genericity in (u, ω).

6.1.4 Genericity analysis in (u, ω)

As for problem (1), I can obtain the following answers. First, a decisive outcome can be
derived on φ−1

ω (0).

Proposition 6.1 For all ω ∈ RLI
++, φ−1

ω (0) constitutes a (L−1)I-dimensional submanifold
in P ×RLI

++.

Proof: I shall show that φω is a submersion for any ω ∈ RLI
++. By computaion, the

derivative Dφω,(p,x) : T(p,x)(P × RLI
++) → RI−1 × RL proves to have the following sub-

square matrix of degree (I − 1) + L at any point (p, x) ∈ P ×RLI
++.

(
A 0
B I

)

where A is a diagonal matrix of order I − 1 with (−p1, . . . ,−p1) as its diagonal, I is the
identity matrix of order L, 0 is a zero matrix and B is a L× (I−1) matrix of the following
form.




1 . . . 1
0 . . . 0
... . . .

...
0 . . . 0




Thus,the above submatrix is obviously non-singular and T(p,x)(P×RLI
++) has a vector whose

subvector corresponding to this submatrix takes any real elements, so that Dφω,(p,x) is
surjective.

On the other hand, the corresponding property of ψ−1
u (0) turns out to be generic in u.

Proposition 6.2 There exists an open and dense set Ũ in U such that for every u ∈
Ũ , ψ−1

u (0) constitures a LI-dimensional submanifold in P ×RLI
++.
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Proof: I shall show that the set of u such that 0 is a regular value of ψu is qualified as Ũ .
Since 0 is a regular value of ψu, it is easily seen that ψ−1

u (0) constitures a LI-dimensional
submanifold. Thus, there remain openness and density of the set in question to be shown.
For simplicity, denote the set by Ũ in the following. First, demonstrate its openness in
U . For any u ∈ U , the derivative of ψu at any point (p, x) ∈ ψ−1

u (0) is represented by the
following LI × L(I + 1) matrix.




A1 [u1] 0 . . . 0
A2 0 [u2] . . . 0
...

...
...

. . .
...

AI 0 0 . . . [uI ]




where Ai is a diagonal matrix of order L with (−∑L
l=1 ∂ui/∂xl, . . . ,−∑L

l=1 ∂ui/∂xl) as
its diagonal and [ui] is a square matrix of order L whose (n,m) element is ∂ui/∂xn∂xm −
pn

∑L
h=1 ∂ui/∂xh∂xm, i = 1, . . . , I, n,m = 1, . . . , L. Fix any u of Ũ . Obviously, the above

matrix is surjective from H ×RLI onto ΠIH for the u. Let v be any point in a sufficiently
small neibourhood of the u. Then, by the property of the compact open topology, v gives
rise to the derivative matrix whose elements are sufficiently close to those of u at each
point (p, x) ∈ ψ−1

v (0), which in turn is sufficiently close to each point of ψ−1
u (0). Hence,

the matrix is also surjective, which implies that v ∈ Ũ . Since u is taken arbitrarily chosen,
the openness of Ũ is followed.

The remaining task is to show that Ũ is dense in U . It is worth noting that the function
space with the compact open C∞ topology is a Banach space if the domain of a function
is compact (Hirsch (1976), p. 35). Thus I consider a monotone sequence of compact sets
Ck (⊂ Ck+1) in RL

++ such that RL
++ = ∪∞k=1Ck. Then Uk ≡ {u|Ck

| u ∈ U} is a Banach
space, accordingly, ΠIUk can be seen as a Banach manifold. Let uk denote (u1, . . . , uI), ui ∈
Uk, i = 1, . . . , I. I will show that the set of uk for which ψuk : P × ΠIInt(Ck) → ΠIH
given by ψuk(p, x) = (Dui

x − | Dui
x |p)I

i=1 takes 0 as a regular value is open and dense
in ΠIUk, where Int(·) indicates the interior. Openness is obtained in the same manner as
the one provided above. To prove the density, it suffices to show that 0 is a regular value
of the map ev : ΠIUk × P × ΠIInt(Ck) → ΠIH given by ev(u, p, x) = ψuk

(p, x) since ev
is thought of as an evaluation map in this case (see Abrahame and Robbin (1967),p. 48).
To this end, I show that ev is a submersion. The derivative of ev at any point (uk,p, x) is
represented as follows (see Abrahame and Robbin (1967),p. 25).

Dev(uk,(p,x))(v, (p′, x′) = D1ev(uk,(p,x))(v) + D2ev(uk,(p,x))(p
′, x′)

where v = (v1, . . . , vI), vi ∈ C∞(Ck,R), i = 1, . . . , I and p′ ∈ H, x′ ∈ RLI . For a
fixed uk, ev is equal to ψuk

(p, x). Thus, D2ev(uk,(p,x)) is expressed by the matrix which

appears in the proof of the openness of Ũ . However, for a fixed (p, x), ev is the map
uk → (Dui

x−| Dui
x |p)I

i=1, which is linear. Now define vi(x) =
∑L

l=1 ai
lxl, i = 1, . . . , I for

79



any given point (ai
1, . . . , ai

L)I
i=1 ∈ ΠIH. Then, (Dvi

x−| Dvi
x |p)I

i=1 = (ai
1, . . . , ai

L)I
i=1 since

| Dvi
x |p = (

∑L
l=1 ai

l)p = 0, i = 1, . . . , I. Thus, Dev(uk,(p,x))(v, 0, 0) = (ai
1, . . . , ai

L)I
i=1,

which implies that ev is a submersion, which proves the density of the relevant set of uk.
Then, noting that ∪∞k=1Ck = ∪∞k=1Int(Ck) = RL

++, the density of Ũ immediately follows.

In order to treat problem (2), one lemma is needed. Fix any u ∈ Ũ , and consider a map
Fω : φ−1

ω (0)×RLI
++ → P ×RLI

++ for any ω ∈ RLI
++ as follows.

Fω((p, x), ε) = (p,x1 + ε1, . . . , xI + εI)

where ε = (ε1, . . . , εI), εi ∈ RL
++, i = 1, . . . , I. Then, I have

Lemma 6.1 For all ω ∈ RLI
++, Fω is transversal to ψ−1

u (0).

Proof: I prove this lemma by showing that Fω is a submersion (note that a submersion is
transversal to any submanifold in the range space). Noting that T(p,x)φ

−1
ω (0) is the kernel

of the derivative Dφω,(p,x), it follows from computaion that T(p,x)φ
−1
ω (0)×RLI

++ contains a
vector of the following form.

(a1, . . . , aL, (1/p1)
L∑

l=1

al(ω
1
l − x1

l ), 0, . . . , 0, (1/p1)
L∑

l=1

al(ω
2
l − x2

l ), 0, . . . , 0,

(1/p1)
L∑

l=1

al(ω
I−1
l − xI−1

l ), 0, . . . , 0,−(1/p1)
I∑

i=1

L∑

l=1

al(ω
i
l − xi

l), 0, . . . , 0,

b1
1, . . . , b1

L, b2
1, . . . , b2

L, . . . , bI
1, . . . , bI

L)

where a1, . . . , aL are real numbers satisfying
∑L

l=1 al = 0 and bi
l is any real number, i =

1, . . . , I, l = 1, . . . , L. Hence, applying DFω,((p,x),ε) to the vector leads to

(a1, . . . , aL, (1/p1)
L∑

l=1

al(ω
1
l − x1

l ) + b1
1, b

1
2, . . . , b1

L, (1/p1)
L∑

l=1

al(ω
2
l − x2

l ) + b2
1,

b2
2, . . . , b2

L, . . . , (1/p1)
L∑

l=1

al(ω
I−1
l − xI−1

l ) + bI−1
1 , bI−1

2 , . . . , bI−1
L ,

−(1/p1)
I∑

i=1

L∑

l=1

al(ω
i
l − xi

l) + bI
1, b

I
2, . . . , bI

L) (6.1)

On the other hand, any vector contained in TFω((p,x),ε)(P ×RLI
++) is as follows.

(α1, . . . , αL, β1
1 , . . . , β1

L, β2
1 , . . . , β2

L, . . . , βI
1 , . . . , βI

L) (6.2)
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where αl s are real numbers satisfying
∑L

l=1 αl = 0 and βi
l is any real number, i = 1, . . . , I,

L = 1, . . . , L. Thus, taking the al and bl such that al = αl, l = 1, . . . , L, bi
l = βi

l , l =
2, . . . , L and

bi
1 = βi

1 − (1/p1)
L∑

l=1

al(ω
i
l − xi

l), i = 1, . . . , I − 1,

bI
1 = βI

1 + (1/p1)
I∑

i=1

L∑

l=1

al(ω
i
l − xi

l),

then, (6.1) is equal to (6.2), which implies that DFω,((p,x),ε) is surjective.

From the above lemma, I can obtain the following result for problem (2).

Proposition 6.3 For all u of Ũ and almost all ω of RLI
++, ψ−1

u (0) and φ−1
ω (0) are transver-

sal in P ×RLI
++.

Proof: Since Fω is transversal to ψ−1
u (0) for all ω ∈ RLI

++, the transversality theorem
(Guillemin and Pollack (1974), p.68) ensures that for almost all ε, Fω(·, ε) : φ−1

ω (0) →
P × RLI

++ is transversal to ψ−1
u (0) for all ω. Consequently, for almost all ε, the image

of Fω(·, ε) transversally intersects ψ−1
u (0) since the image constitutes a submanifold by the

construction of Fω. However, that image is represented as follows.

Fω(φ−1
ω (0), ε) = {(p′, x′ ∈ P ×RLI

++ | p′ = p,xi′ = x + εi, i = 1, . . . , I, (p, x) ∈ φ−1
ω (0)}

= {(p′, x′ ∈ P ×RLI
++ | (p′ · ωi = p′ · (x′ − εi))I−1

i=1 ,

I∑
i=1

(xi′ − εi) =
I∑

i=1

ωi}

= φ−1
ω+ε(0).

Since ω is arbitrary and ε covers almost all strictly positive LI-vectors, the claim follows.

The above propositions lead to significant claims about properties of E(e).

Theorem 6.1 There exists an open and dense set Ẽ in E such that the set of Walrasian
equilibria is locally unique for every e ∈ Ẽ.

Proof: Through the propositions, for all u of Ũ and almost all ω of RLI
++, ψ−1

u (0)∩φ−1
ω (0)

is 0 dimensional submanifold, which implies that Eex(e) is locally unique for almost all e.
Since E(e) ⊂ Eex(e), the claim immediately follows.

Theorem 6.2 A Walrasian equilibrium is locally continuous in e in Ẽ.
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Proof: Consider the product map φω × ψu : E × P × RLI
++ → RI−1 × RL × ΠIH and

restrict it on Ẽ×P ×RLI
++. It follows from the above propositions that the derivative of the

restricted map with respect to (p, x) is non-singular at any (e, p, x) ∈ Ẽ × Eex(e). By the
implicit function theorem, there exists a neighbourhood N×M(⊂ Ẽ×P ×RLI

++) of (e,p, x)
and a unique continuous function f : N → M such that φω × ψu|Ẽ×P×RLI

++

(e′, f(e′)) =

φω × ψu|Ẽ×P×RLI

++

(e, f(e)) = 0 for e′ ∈ N . Since f(e′) ∈ Eex(e
′) for e′ ∈ N by the

construction of φω and ψu, a Walrasian equilibrium is locally continuous in e of Ẽ.

Further generic properties are obtainable if some other constraints are added to a utility
function. Through those constraints, existence, finiteness etc., prove to be qualified as a
generic property. For details, see Nagata (2000, 2001b, 2004).

6.2 Variation of the Thom transversality theorem

As I have stated, the Whitney topology for the function space, which is more appropriate
in the economic model adopted here than the compact open topology, is not tractable.
Indeed, a space with the Whitney topology is not metrizable and does not have a countable
base at any point unless the domain of a function is compact. Here I develop a method
which successfully deals with the relevant economical question in the basis of the whitney
topology. The key consists in making use of the Thom transversality theorem, which,
however, needs mathematical preliminaries to understand. Thus, after giving necessary
mathematical notions, I present the theorem and its application to the economical problem
under consideration. In the process of proof of some claims, one partly needs to rely on
the relation between the compact open topology and the Whitney topology which I cannot
afford to comment on; for details, see Nagata (2004b), chap. 6, §1 and chap. 8, §1.

6.2.1 Jet Spaces

The goal in this subsection is to introduce some topologies into a function space. For the
sake of simplicity, a function to be considered here is limited to a smooth map from Rm

to Rn. Thus, I solely deal with the space C∞(Rm,Rn). However, the argument provided
below is easily extended to the case of a differentiable map between two manifolds.

An efficient way to introduce some topology into C∞(Rm,Rn) is to make use of an
equivalence class called a jet in C∞(Rm,Rn). As I shall see, it turns out that the space
derived by classifying C∞(Rm, Rn) through jets, which is called the jet space, has a very
simple structure but provides necessary informations to topologize C∞(Rm, Rn).

A jet is defined by the following equivalence relation. Let f , g be two maps in
C∞(Rm,Rn) and x̄ be a point of Rm. If f(x̄) = g(x̄) and all the partial derivatives
at x̄ up to r-th order are equal between f and g, then I write it as f ∼r g at x̄. It is
easily seen that this relation is an equivalence relation. An equivalence class represented
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by f ∈ C∞(Rm,Rn) according to this relation is called the r-jet of f at x̄, which is denoted
by jrf(x̄). In particular, the whole set of the equivalence classes for all the maps carrying
0 to 0 is written by Jr(m,n).

To begin with, let’s consider the structure of Jr(m,n). It is obvious that Jr(m,n) =
Jr(m, 1)× . . .× Jr(m, 1), which is the n-product of Jr(m, 1); thus I have only to think of
Jr(m, 1). Pick an element out of Jr(m, 1) and denote it by jrf(0). Then, consider Taylor’s
series about 0 generated by f : Rm → R, i.e.

f(x) =
∑

0≤‖α‖≤r

xα

α!

∂‖α‖f
∂xα

(0) + R(x)

where α = (α1, . . . , αm), αi : integer, i = 1, . . . ,m and ‖α‖ = α1 + . . . + αm. Thus,
f ∼r g at 0 if and only if their Taylor’s series up to r-th order are equal with each other.
Accordingly, jrf(0) itself can be represented by the coefficients of Taylor polynomial up to
r-th order as follows.

1

α!

∂‖α‖f
∂xα

(0), 1 ≤ ‖α‖ ≤ r.

Conversely, an allocation of coefficients for the polynomial of degree r in m variables without
a constant term determines a jet. It is easily seen that there is one to one correspondence
between those allocations and Jr(m, 1). Since such an allocation always consists of m+rCr−
1 real numbers, Jr(m, 1) can be seen as equipotent to RH where H =m+r Cr−1. Therefore,
Jr(m,n) is equipotent to RnH , which implies that I can identify Jr(m,n) with RnH .

Now pick any point (x, y) ∈ Rm × Rn. Let Jr(Rm,Rn)(x,y) be the set of equivalent
classes, which is derived by the relation “∼r at x ”, for the maps carrying x to y in which
x is called a source and y called a target.

Definition 6.3 The disjoint union
⋃

(x,y)∈Rm×Rn Jr(Rm, Rn)(x,y) is called the r-jet space

on Rm ×Rn and is denoted by Jr(Rm, Rn).

Proposition 6.4 Jr(Rm,Rn) is equipotent to Rm ×Rn × Jr(m,n).

Proof: For any (x̄, ȳ) ∈ Rm × Rn, consider the following coordinate transformations
ϕx̄ : Rm → Rm, υȳ : Rn → Rn given by

ϕx̄(x) = (x1 + x̄1, . . . , xm + x̄m)

υȳ(y) = (y1 − ȳ1, . . . , yn − ȳn).

Then, the map Ψ : Jr(Rm,Rn) → Rm ×Rn × Jr(m,n) defined by

Ψ(jrf(x̄)) = (x̄, ȳ = f(x̄), jr(υȳ ◦ f ◦ ϕx̄)(0))

is easily proved to be a bijection.
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Through this proposition, I can identify the r-jet space Jr(Rm, Rn) with Rm ×Rn ×
RnH . Furthermore, by considering a projection π : Jr(Rm,Rn) → Rm × Rn defined by
π(jrf(x)) = (x, f(x)), a triple (Jr(Rm,Rn), π, Rm ×Rn) turns out to be a vector bundle
with fibre Jr(m,n), so that Jr(Rm,Rn) is often called the r-jet bundle (for vector bundles,
see Golubitsky and Guillemin (1973), chap.1 §5).

Definition 6.4 For any map f ∈ C∞(Rm,Rn), the map jrf : Rm → Jr(Rm,Rn) which
carries x ∈ Rm to jrf(x) (the r-jet of f at x) is called the r-jet extension of f .

Noting the above proposition, the r-jet extension of f can be represented in component
form as follows. That is, for f = (f1, . . . , fn) ∈ C∞(Rm,Rn) I have

jrf : Rm → Rm ×Rn × Jr(m,n)

jrf(x) = (x, f(x), (
∂‖α‖fi

∂xα
(x))1≤‖α‖≤r,1≤i≤n).

Through this observation, I immediately obtain the following claim.

Proposition 6.5 The r-jet extension of f ∈ C∞(Rm,Rn) is itself C∞ class.

Proof: Since f ∈ C∞(Rm,Rn), (∂‖α‖fi

∂xα (x))1≤‖α‖≤r,1≤i≤n are all C∞ class.

Note that if r is 0 then the image j0f(Rm) of the 0-jet extension of f is the graph of f
since j0f(x) = (x, f(x)).

6.2.2 Whitney Topology

Since I may presume that the r-jet space Jr(Rm, Rn) is nothing but Rm ×Rn ×RnH , it
allows a metric derived from the Euclidean norm. I denote the metric given to Jr(Rm, Rn)
by d(·, ·).

The basic idea provided below to topologize C∞(Rm,Rn), roughly speaking, consists
in determining how close f is to g by evaluating the distance of their r-jets on Rm. To be
precise, let f be an arbitrary map in C∞(Rm,Rn) and δ be a continuous map from Rm to
R+. Then consider the following set.

Bδ(f) = {g ∈ C∞(Rm, Rn) | d(jr(x), jrg(x)) < δ(x), ∀x ∈ Rm}

I can construct a topology with the family of the sets Bδ(f) parameterized by δ as a
fundamental system of neighborhoods at f .

Definition 6.5 The topology with Bδ(f) as a neighborhood basis at each f is called the
Whitney Cr topology for C∞(Rm, Rn).
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Thus, according to this topology, a map g is in a neighborhood of a map f if and only
if all of the first r partial derivatives of g are δ-close to f over the whole domain (Rm). In
other words, this topology does control the behavior of a map “at infinity”. Therefore this
is often called the strong topology C∞(Rm, Rn).

It is also possible to construct the Whitney Cr topology through a basis. That is, for
an open subset U of Jr(Rm,Rn) (= Rm ×Rn ×RnH) consider the following set M(U).

M(U) = {f ∈ C∞(Rm,Rn) | jrf(Rm) ⊆ U}.

Note that M(U) ∩M(V ) = M(U ∩ V ).
Then the family of sets {M(U)}U form a basis for a topology which is equivalent to the

Whitney Cr topology defined above (for proof of the equivalence of those topologies, see
Golubitsky and Guillemin (1973), p.43).

Let W r be the family of all open subsets of C∞(Rm,Rn) in the Whitney Cr topology.
Then it is easily shown that W r ⊂ W l whenever r ≤ l. Thus, I can construct another
topology on C∞(Rm,Rn) with W =

⋃∞
r=0 W r as a basis, which is called the Whitney C∞

topology. If a subset of C∞(Rm,Rn) is open for the Whitney Cr topology, then obviously
so is it for the Whitney C∞ topology.

From the viewpoint of applicability, the Whitney Cr (or C∞) topology is not necessarily
tractable since it is not metrizable and in fact does not satisfy the first axiom of countability.
It is too strong for those properties. However, it does have one nice feature.

Definition 6.6 A topological space X is a Baire space if the intersection of each countable
family of open dense sets in X is dense.

In general, the countable intersection of open dense sets is called a residual set. Thus, I
can say that a Baire space is a topological space in which every residual set is dense.

Proposition 6.6 The function space C∞(Rm,Rn) is a Baire space in the Whitney Cr(and
C∞) topology.

For proof of this proposition, e.g. see Hirsch (1976), Chap.2, §4.
Given the Whitney Cr (C∞) topology, I can determine the continuity of various maps

between two function spaces. In particular, I give the two propositions for further argument.
To this end, let C∞(Rm,Rn)s be the s-product of C∞(Rm, Rn).

Proposition 6.7 Let θ : C∞(Rm, Rn)s → C∞(Rms,Rns) be the map given by

θ(f1, . . . , fs) = (f1 × . . .× fs).

Then θ is continuous in the Whitney Cr (C∞) topology where (f1× . . .× fs)(x1, . . . , xs) =
(f1(x1), . . . , fs(xs)).
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For proof of this proposition, see Golubitsky and Guillemin (1974), pp.49-50.
For the other proposition, recall the r-jet extension of f ∈ C∞(Rm, Rn), which can be

seen as the map from Rm to Rm × Rn × Jr(m,n). Thus, I newly consider the function
space C∞(Rm,Rm ×Rn × Jr(m,n)). Then I have

Proposition 6.8 Let jr be the map from C∞(Rm,Rn) to C∞(Rm,Rm ×Rn × Jr(m,n))
given by jr(f) = jrf . Then jr is continuous in the Whitney Cr (C∞) topology.

For proof of this proposition, see Golubitsky and Guillemin (1974), pp.46-48.

6.2.3 Thom Transversality Theorem and its variation

In this subsection, I state the Thom transversality theorem and its variation. I begin with
the following lemma.

Lemma 6.2 Let F : P ×M → N be a smooth family of maps and Q be a submanifold in
N . If F is transversal to Q, then the set

{p ∈ P | Fp : M → N is transversal to Q}
is equal to the set

{p ∈ P | p is a regular value of π|F−1(Q)}
where π|F−1(Q) is a restriction of the projection π : P ×M → P to F−1(Q).

Proof: Since F is transversal to Q, for any (p, x) ∈ F−1(Q) I have

DF(p,x)(T(p,x)(P × x)) + DF(p,x)(T(p,x)(p×M)) + TF (p,x)Q

= TF (p,x)N (6.3)

DF(p,x)(T(p,x)(F
−1(Q))) = TF (p,x)Q (6.4)

Set P1 = {p ∈ P | Fp : M → N is transversal to Q} and P2 = {p ∈ P | p is a regular value
of π|F−1(Q)}.

Suppose that p ∈ P1, then for any x ∈ F−1
p (Q) I have

DFp,x(TxM) + TFp(x)Q = TFp(x)N.

Since DFp,x(TxM) = DF(p,x)(T(p,x)(p×M)), (6.3) and (6.4) yield that

DF(p,x)(T(p,x)(P × x)) ⊂ DF(p,x)(T(p,x)(p×M)) + DF(p,x)(T(p,x)(F
−1(Q))),

hence

T(p,x)(P × x) ⊂ T(p,x)(p×M) + T(p,x)(F
−1(Q)). (6.5)
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Then, consider the derivative Dπ(p,x) : T(p,x)(P ×M) → TpP of the projection π : P ×M →
P at any (p, x) ∈ P ×M . It is obvious that

Dπ(p,x)(T(p,x)(p×M) + T(p,x)(F
−1(Q))) = Dπ(p,x)(T(p,x)(F

−1(Q)))

and

Dπ(p,x)(T(p,x)(P × x)) = TpP.

Therefore, applying dπ(p,x) to both sides of (6.5), I have

TpP ⊂ Dπ(p,x)(T(p,x)(F
−1(Q))),

which means that the derivative of the restriction π|F−1(y) at (p, x) is surjective; that is,
p is a regular value of π|F−1(Q). Since I can inversely follow this reasoning, the lemma is
proved.

This lemma leads to the following important lemma.

Lemma 6.3 Let M, N and P be manifolds and Q ⊂ N be a submanifold of N . Let G be
a topological space and j be a map from G to C∞(M,N). Suppose that for each g ∈ G
there exists p0 ∈ P and a continuous map ϕ : P → G such that ϕ(p0) = g and a map
Φ : P ×M → N defined by Φ(p, x) = j(ϕ(p))(x) is smooth and transversal to Q. Then the
set

{g ∈ G | j(g) is transversal to Q}
is dense in G.

Proof: Set Z = { g ∈ G | j(g) is transversal to Q}. Fix any g ∈ G. Noting that the
map Φ : P ×M → N corresponding to g is actually a smooth family of maps, it follows
from the above lemma that the set

{p ∈ P | j(ϕ(p)) is transversal to Q}
is equal to the set

{p ∈ P | p is a regular value of π|Φ−1(Q)}
where π|Φ−1(Q) is a restriction of the projection π : P ×M → P to Φ−1(Q).

Then consider any open neighborhood U(g) of g in G. Since ϕ is continuous, ϕ−1(U(g))
is an open neighborhood of p0 in P . Since the set of regular values of π|Φ−1(Q) is, by Sard’s
theorem, dense in P , there exists some regular value p of π|Φ−1(Q) in ϕ−1(U(g)). For such
a p, through the above observation, j(ϕ(p)) is transversal to Q. Thus, ϕ(p) ∈ U(g) ∩ Z,
which implies that Z is dense in G since g is arbitrarily chosen.
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This lemma has very rich applicability, thus called the fundamental lemma. In fact, if
G is equal to P and ϕ is the identity map, then this lemma yields the usual transversality
theorem (Guillemin and Pollack (1974), p. 68). Furthermore, it is worth noting that the
G in the lemma is only required to be a topological space. Thus I am allowed to choose
a function space with Whitney topology as such. The Thom transversality theorem is
induced according to this way of thinking.

Before stating the theorem, I need to review jet spaces. For simplicity, I consider the
function space C∞(Rm,Rn). Then the r-jet space on Rm ×Rn denoted by Jr(Rm, Rn)
is defined as the disjoint union

⋃
(x,y)∈Rm×Rn Jr(Rm,Rn)(x,y) where an equivalent class

Jr(Rm,Rn)(x,y) consists of all the maps in C∞(Rm, Rn) which carry x to y and have the
same partial derivatives at x up to r-th order. Recall that Jr(Rm,Rn) is identified with
Rm ×Rn × Jr(m,n) where Jr(m,n) is substantially equal to Rq where q = k(m+rCr − 1).
Thus Jr(Rm,Rn) itself is considered to be a manifold.

In this connection, there is another important concept; that is, the r-jet extension jr,
which associates each map f ∈ C∞(Rm, Rn) with the map jrf : Rm → Jr(Rm,Rn) that
carries x ∈ Rm to jrf(x) (the r-jet of f at x). I should point out that the above arguments
hold for the case in which Rm and Rn are respectively replaced by M (m-dimensional
manifold) and N (n-dimensional manifold).

Now I am in a position to state the Thom transversality theorem. Since the full proof
is tedious, I only give a sketch of it.

Theorem 6.3 Let M , N be manifolds and Q be a submanifold of the r-jet space Jr(M,N).
Then the set

{f ∈ C∞(M, N) | jrf : M → Jr(M, N) (the r − jet extension of f)

is transversal to Q}

is dense in C∞(M, N) in the Whitney C∞ topology.

Proof: Here is a sketch of the proof. I may concentrate on the case in which M = Rm

and N = Rn. The point of proof consists in the use of the fundamental lemma along with
the Baire property of C∞(Rm, Rn) in the Whitney C∞ topology.

To begin with, set Z = {f ∈ C∞(Rm,Rn) | jrf is transversal to Q}.
(1) First observe that there exists a countable compact covering {Kj} of Q; that is,

Q = ∪∞j=1Kj where Kj is compact in Jr(Rm,Rn) for each j. This is because Jr(Rm, Rn)
is, after all, considered to be a finite dimensional Euclidean space.

(2) Set Zj = {f ∈ C∞(Rm,Rn) | jrf is transversal to Q on Kj} where ‘jrf is
transversal to Q on Kj’ means that

Djrfx(R
m) + Tjrf(x)Q = Tjrf(x)(J

r(Rm,Rn))

for all x for which jrf(x) ∈ Q. Note that Z =
⋂∞

j=1 Zj

88



(3) I show that Zj is open and dense in C∞(Rm, Rn) in the Whitney C∞ topology for
all j. First, to show the openness of Zj, consider the set Z̃j defined as follows.

{g ∈ C∞(Rm, Jr(Rm,Rn)) | g is transversal to Q on Kj}.

In general, I have that for any two manifolds X,Y and a submanifold W ⊂ Y , if W is
closed in Y , then the set

{f ∈ C∞(X, Y ) | f is transversal to W}

is open in C∞(X,Y ) in the Whitney C∞ topology (see Golubitsky and Guillemin (1973),
Cap II, proposition 4.5).

Since Kj is closed and contained in Q, this claim can be easily applied to show that
Z̃j is open. Obviously Zj = (jr)−1(Z̃j), which implies that Zj is open since the map
jr : C∞(Rm,Rn) → C∞(Rm, Jr(Rm,Rn)) is continuous in the Whitney C∞ topology.

(4) Secondly I show the density of Zj. To this end, first consider the projection π :
Jr(Rm,Rn) → Rm and take π(Kj) which is obviously compact in Rm. Then there exists
a smooth map ρj : Rm → R such that ρj(x) = 1 for all x in a neighborhood of π(Kj)
and that ρj(x) = 0 for all x outside a compact subset including π(Kj). Define the map
ϕj : P (m, k; r) → C∞(Rm,Rn) as follows.

ϕj(p)(x) = ρj(x)p(x) + f(x).

Then it is easily seen that ϕj is continuous in the Whitney C∞ topology. Thus, the funda-
mental lemma is readily adapted to show that Zj is dense in C∞(Rm, Rn) in the Whitney
C∞ topology.

(5) Since C∞(Rm,Rn) is a Baire space in the Whitney C∞ topology, I obtain that
Z (=

⋂∞
j=1 Zj) is dense in C∞(Rm,Rn) in the Whitney C∞ topology.

A remark from the viewpoint of application is in order. As is shown through the above
arguments, the Thom transversality theorem is basically a special case of the fundamental
lemma, which is, however, just the reason that the theorem is important for our practical
purposes. To be precise, the theorem is useful for the relevant economical analysis not
only because it is concerned with a family of maps accompanying a function space as its
parametric space, but also because the family of maps in the theorem involves the derivatives
of a parametric function. The meaning of this statement will be seen later.

For the sake of the economical application, however, I need to partly modify this the-
orem. This is because I am required to consider multiple parameters at a time when
considering the trade among many agents.

Now, let C∞(
M, N

)k
be k-product of C∞(

M, N
)

and Jr
(
M, N

)k
be k-product of r-

jet space Jr
(
M, N

)
where M and N are differential manifolds. k-product function of
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f1× . . .× fk ∈ C∞(
M, N

)k
and its r-jet extension jr

k(f1× . . .× fk) are defined respectively
as follows. That is, f1 × . . .× fk : Mk → Nk is given by

f1 × . . .× fk(x1, . . . , xk) = (f1(x1), . . . , fk(xk))

and jr
k(f1 × . . .× fk) : Mn → Jr

(
M, N

)k
is given by

jr
k(f1 × . . .× fk)(x1, . . . , xk) = (jrf1(x1), . . . , jrfk(xk)).

Then I have a product functional version of the original Thom Transversality Theorem.

Theorem 6.4 Let Q be a submanifold of Jr
(
M, N

)k
. Then

T =
{

f1 × . . .× fk ∈ C∞(
M,N

)k | jr
k(f1 × . . .× fk) is transversal to Q

}

is a residual subset of C∞(
M, N

)k
in the Whitney C∞ product topology. So T is dense in

C∞(
M,N

)k
.

Proof: It is sufficient to prove the theorem when M = Rm and N = Rn. Consider the set
of a polynominal function from Rm to Rn the order of which is less than r. Let the set be
P (m,n; r). It is easily shown that P (m,n; r) constitutes a manifold of dimension m(m+rCr).
Put V = Mk, W = Jr(M, N)k, F = C∞(M,K)k and j = jr

k in the fundamental lemma.
Consider n-product of P (m,n; r) (denoted by P (m,n; r)k) and a continuous mapping ϕ :
P (m,n; r)k → C∞(M,N)k defined by

ϕ(e)(x) =
(
e1(x1) + f1(x1), e2(x2) + f2(x2), . . . , ek(xk) + fk(xk)

)

for any f = (f1, . . . , fk) of C∞(M, N)k where e = (e1, . . . , ek) ∈ P (m,n; r)k and x =
(x1, . . . , xk) ∈ Mk.

Then the map Φ : P (m,n; r)k ×Mk → Jr(M, N)k defined by

Φ(e, x) = j(ϕ(e))(x) =
(
jr(e1 + f1)(x1), j

r(e2 + f2)(x2), . . . , jr(ek + fk)(xk)
)

is obviously a submersion, so transversal to any submanifold of Jr(M, N)k. Thus, we may
apply the fundamental lemma and obtain the desired consequence.

6.2.4 Application to economic analysis

Here I present a method of genericity analysis to economic issues in the basis of the Whitney
topology. However, one should particularly notice that the method is not independent of
the intersection-based approach provided above but complementary to it. Though this
method is applicable to various situations, I take as an illustration the same problem as
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in the previous section for the sake of consistency and simplicity of the argument. It is,
however, worth noting that the analysis of chapter 6 of this dissertaion substantially follows
the same procedure as the one described here.

Thus, the problem is to investigate generic properties of Eex(e) (the set of extended
Walrasian equilibria). This time, however, I have to work with the utility function space
endowed with the Whitney topology, which requires some modification in the analysis.
Among the two maps, ψu and φω which are used to characterize Eex(e), I modify ψu as
follows, leaving φω as it is. For the sake of simplicity, I denote ΠIP by P I etc.

ψ̃u : P ×RLI
++ → P I+1

ψ̃u(p, x) = (Du1
x/|Du1

x|, . . . , DuI
x/|DuI

x|, p)

where | · | indicates the sum of the elements and one should recall that P is the L − 1
dimensional strictly positive unit simplex. Let D be the diagonal set of P I+1, i.e., D ≡
{(a1, . . . , aI+1) ∈ P I+1 | a1 = . . . = aI+1}. Then, obviously ψ−1

u (0) = ψ̃−1
u (D). Thus, in

order to obtain a generic consequence similar to the one in the previous section, I have only
to show that there exists a dense set in U such that for any u in the set, ψ̃u is transversal
to D. Indeed, if ψ̃u is transversal to D, ψ̃−1

u (D) constitutes a LI dimensional submanifold
(Guillemin and Pollack (1974), p. 60, Theorem). It is worth noting that I may truncate ψ̃u

to this end. That is, it is easily shown that if the map ϕu : RLI
++ → P I given by

ϕu(x
1, . . . , xI) = (Du1

x/|Du1
x|, . . . , DuI

x/|DuI
x|)

is transversal to D̃, then ψ̃u is transversal to D, where D̃ is the diagonal set of P I . Thus,
I may concentrate on ϕu instead of ψ̃u.

It is worth noting that ϕu only involves first order derivatives of ui. Thus, I properly
consider the 1-jet space J1

(
RL

++,R
)
, which is naturally identified with RL

++ × R × RL.

Let J1
+

(
RL

++,R
)

denote RL
++ × R × RL

++ which is obviously an open submanifold of

J1
(
RL

++,R
)
. Then I define the map φ : J1

+

(
RL

++, R
) → RL

++ ×R× P by

φ(a, b, c1, . . . , cL) = (a, b, c1/

L∑

l=1

ci, . . . , cL/

L∑

l=1

ci).

Furthermore, I consider the I-product function of φ (denoted by Φ : J1
+

(
RL

++,R
)I →

(RL
++ ×R× P )I) given by

Φ(y1, . . . , yI) = (φ(y1), . . . , φ(yI)).

Then, it is easily seen that the set {u ∈ U | ϕu is transversal to D̃} is equal to the set
{u ∈ U | Φ ◦ j1

I u is transversal to W}, where W = {(ai, bi, ci)i ∈ (RL
++ ×R× P )I | c1 =

c2 = . . . = cI}. Thus, in order to reach the goal, I have only to show that the latter set is
dense in U . To this end, I prepare two lemmas.
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Lemma 6.4 Let X, Y and Z be smooth manifolds with W a submanifold of Z and f :
X → Y be a smooth mapping. Assume that there exists a submersion g : Y → Z and f is
transversal to g−1(W ). Then g ◦ f is transversal to W .

Proof: When g is a submersion, g is transversal to W and g−1(W ) constitutes a subman-
ifold of Y . So I obtain that (i) dgy(TyY ) + Tg(y)W = Tg(y)Z and (ii) dgy

(
Tyg

−1(W )
)

=
Tg(y)W . Now assume further that f is transversal to g−1(W ), then for every x ∈ (g ◦
f)−1(W ) I have

Dfx(TxX) + Tf(x)g
−1(W ) = Tf(x)Y.

Applying dgf(x) to both sides of the above equation, I obtain

Dgf(x) ◦ dfx(TxX) + Tg◦f(x)W = Dgf(x)(Tf(x)Y ). (by (ii))

Thus I have

Dgf(x) ◦Dfx(TxX) + Tg◦f(x)W = Dgf(x)(Tf(x)Y ) + Tg◦f(x)W

= Tg◦f(x)Z, (by (i))

which implies that g ◦ f is transversal to W .

Lemma 6.5 A smooth map f : RLI
++ → P I defined by

f(x1, . . . , xI) = (x1/|x1|, . . . , xI/|xI |)
is a submersion.

Proof: Considering the structure of f , it is sufficient to show that a map h : RL
++ → P

defined by h(x) = x/|x| is a submersion. To this end, I show that at any x(∈ RL
++), Dhx :

RL → RL−1 is surjective. It is easily seen that i-th colum vector of Dhx is

(
x1

(
∑L

l=1 xl)2
, . . . ,

xi−1

(
∑L

l=1 xl)2
,

∑L
j 6=i xj

(
∑L

l=1 xl)2
,

xi+1

(
∑L

l=1 xl)2
, . . . ,

xL

(
∑L

l=1 xl)2

)t

where t designates the transpose. Thus I see that first L − 1 column vectors of Dhx are
linearly independent. Indeed, set

L−1∑

l=1

λi

(
x1

(
∑L

l=1 xl)2
, . . . ,

xi−1

(
∑L

l=1 xl)2
,

∑L
j 6=i xj

(
∑L

l=1 xl)2
,

xi+1

(
∑L

l=1 xl)2
, . . . ,

xL

(
∑L

l=1 xl)2

)t

= 0

where each λi is a scalar (i = 1, . . . , L− 1). Then its L-th equation yields
∑L−1

l=1 λl = 0,

which in turn makes each k-th equation turn into λk/(
∑L

i=l xl) = 0 (k = 1, . . . , L − 1).
It follows that λ1 = λ2 = . . . = λL−1 = 0. So Dhx is surjective.
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In light of these lemmas and the fact that W is actually a submanifold of (RL
++×R×P )I ,

I obtain the desired result through the following proposition.

Proposition 6.9 Let V be a submanifold of (RL
++ ×R× P )I . Then

T =
{

u ∈ U |Φ ◦ j1
I u is transversal to V

}

is dense in U .

Proof: Note that when u is an element of U , then the range of j1
I u is not J1

(
RS+1

++ ,R
)I

but J1
+

(
RS+1

++ ,R
)I

. Take R
(S+1)I
++ , J1

+

(
RS+1

++ ,R
)I

and (RS+1
++ ×R× P )I for X,Y and Z in

lemma 6.4. Then if I show that Φ is a submersion, the proof is completed by lemma 6.4
and theorem 6.2. But by the structure of Φ, to show its submersiveness I have only to show
that the map ζ : RLI++ → P I defined by

ζ(c1, c2, . . . , cI) =

(
c1

∑L
l=1 c1

l

,
c2

∑L
l=1 c2

l

, . . . ,
cI

∑L
l=1 cI

l

)

is a submersion. By applying lemma 6.5, I have that this map is indeed a submersion.
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