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Abstract 

An Energy Management System (EMS) is required to control the flow of power and match 

generation with the load within a microgrid during grid-connected and islanded modes of 

operation. In grid-connected mode, a microgrid draws/supplies power from/to the main 

grid, depending on the generation and load requirements, and with suitable market policies 

to maximize the efficiency/cost etc. Likewise, it can separate itself from the main grid 

whenever a drastic power quality event (such as a fault occurs in the main grid) and 

continues to supply power to critical loads. An optimization algorithm is needed to 

minimise the cost of the energy drawn from the grid, generated within the grid and 

consumed by the loads. In this thesis, two optimization techniques namely Particle Swarm 

Optimization (PSO) and Differential Evolution (DE) are used to optimize an EMS for a 

generic MG comprised of Combined Heat and Power (CHP) plant, Diesel generator, 

Natural gas-fired generator, Photovoltaic (PV) generator and Wind generator.  The EMS is 

tested for both grid-connected and islanded modes of operation to demonstrate the 

effectiveness of the optimization algorithms. In grid connected mode, the comparison of 

the most optimal utilization of grid during on- and off-peak hours and achieve the lowest 

operational cost. Likewise, for islanded mode of operation the comparison between the 

utilization of the three generators to match the load demand and achieve the lowest 

operational cost.  
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1.0 Introduction 

Traditionally, power systems have been structured as one-way power flow systems 

with centralized generation sources, radial long-distance transmission systems, distribution 

systems and power demand [1]. Fossil fuels-based generation sources have been deployed 

widely. However, Government policies, technological advancement, economic and 

environmental incentives, are changing the features of the system while the presence of 

distributed energy resources (DERs) is on the increase. Power outages during extreme 

weather conditions have also exposed the vulnerability of a centralized power system and 

highlighted the benefits of DERs. Many key industrial players have developed energy 

saving strategies and are investing in renewable energy infrastructure. Federal and 

provincial authorities in Canada have introduced programs and plans to reduce greenhouse 

gas emissions and encourage investment in renewable energy. Particularly, the provincial 

government of Ontario introduced a carbon levy or tax as part of its climate action plan for 

2006 to 2012. Ontario later joined the Western Climate Initiative and introduced a carbon 

cap and trade system as the centerpiece of the province’s climate action plan for 2013 to 

2020 to further reduce its greenhouse gas emissions [2].  

Nowadays, the distribution system is evolving into a more complex and interacting 

set of systems at multiple levels by means of the development of new technologies, along 

with innovations in business models and policies. In this way, the whole system tends to 

be a conglomerate of smarter grids that interconnect hardware, software and 

communication technologies [3].   

Accordingly, distributed solutions are becoming an integral part of the electricity 

system, providing improvements in energy efficiency, generation, and demand-side 

flexibility, as well as integrating diverse distributed energy resources such as Renewable 

Energy Systems (RES), Energy Storage Systems (ESS), Electric vehicles (EVs), smart 

devices and appliances, among others [4].  
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Figure 1.0: Smart Grid 

In this context, distributed autonomous systems known as MGs have appeared as a 

natural component of the smart grid in order to provide it with controllability and 

management to local power areas and enhance the power system with resiliency properties 

[5].  As well, provide major incentive to move towards a carbon-free energy future. 

MGs encompass both heat and electric loads and are tailored towards the integration 

of distributed energy resources (DERs), such as generators, Renewable energy sources 

(RESs), Energy storage systems (ESSs) and a cluster of critical and non-critical loads. They 

provide stability to the main grid and offer optimal integration of these sub-systems into 

the distribution system [6]. Based on the standard IEEE 1547.4, a distributed islanded 

resources system (considered as MG) fulfills four conditions: (i) integrate Distributed 

Energy Resources (DERs) and loads, (ii) have the capability of being disconnected (in 

parallel) from the area Electric Power System (EPS), (iii) contain the local EPS and (iv) be 

intentionally planned [7]. Therefore, an MG can operate in an interconnected mode linked 

to the main grid at the Point of Common Coupling (PCC) or in islanded (autonomous) 

mode when it is disconnected from the main grid [8].  In grid-connected mode, a MG 

draws/supplies power from/to the main grid, depending on the generation and load 

requirements, and respecting certain suitable market policies to maximize the 
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efficiency/cost etc. Likewise, it can separate itself from the main grid whenever a fault 

occurs in the main grid and continues to supply power to connected critical loads. 

Furthermore, to ensure that the MG operates in an economical and reliable manner, it is 

equipped with a supervisory control and data acquisition (SCADA) system. The control 

system is responsible for scheduling and controlling of all DERs to warrant the stability, 

reliability and economical operation of the MG. 

1.1 Evolution of Microgrids  

The idea of MG and its technology has evolved over the years to fully realize its 

benefits of providing optimal integration of RESs, energy cost saving, improvement in 

reliability and resiliency to the grid. Similarly, MG applications have advanced to 

becoming a large industrial and commercial system with critical need for reliable energy 

source. Researchers in the early days of MGs viewed it as the epitome of the move towards 

a distributed power system, where DERs will coordinate to serve the needs of local 

distribution networks and provide services to the main grid [9-13]. Since then, the term has 

changed its meaning within the power system community, where some researchers 

consider it one of the major building blocks of the smart grid [9]. Nevertheless, MG 

functionalities are embodiment of that of the smart grid concept, which states to the 

integrated array of technologies, devices and systems that provide and utilize digital 

information, communications and controls to optimize the efficient, reliable, safe and 

secure delivery of electricity [14].  The modern concept of an EMS is discussed in [15]. It 

presents the newly developed EMS strategy for a rapidly growing power grid in China. The 

new system is designed to improve the traditional EMS that was not able to meet the 

requirements of the new system. The major areas of concerns before developing this system 

were on security and stability; effective accommodation of large-scale RESs, an ability to 

handle major natural disasters, and cyber and terror attacks.  

1.2 Protection and Control of Microgrids 

As mentioned, in recent decades, more attention has been given to the MG framework 

from the aspects of the market, control, management, reliability, etc. due to the active role 

of both the energy producers and consumers. A MG, which is a product of smart grid, 

provides us with more flexibility and reliability for control and protection of a power 
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system. Constant interaction between private commercial generators and controllable 

consumers is an inseparable part of smart grids that makes the power system more and 

more complex to handle. Thus, it is evident that conventional protection and control 

systems will not effectively work in a MG because they cannot satisfy all the control and 

protection requirements of such a dynamic and variable grid. The importance of the 

inescapable integration of RESs, communication devices and the physical energy network 

(i.e. the power system) needs to be considered as a way to reach an advanced and developed 

management system for grid-connected/Islanded MGs.  

1.2.1 Protection of Microgrid 

MG protection poses some serious challenges in the area of the power system 

protection due to the two-way flow of power and information in the system. One of the 

major areas of concern in MG protection is the effect of islanding on the system. Islanding 

occurs in the system when the MG that includes distribution generation, energy storage and 

local loads, is separated from the power grid due a fault at the grid side.  

In islanded mode, the DGs supply the power to the local loads only while 

maintaining the voltage and frequency (V/F mode) within acceptable operating limits. 

Seamless transition between grid connected and islanded modes of operation is challenging 

at best and can result in power quality problems, and islanding protection issues. Many 

islanding detection methods have been proposed in the literature and they have been 

divided into passive or active methods [16-18]. The passive method includes under/over 

voltage (UOV) and under/over frequency (UOF) relays. The rate of change of frequency 

(ROCOF) relay is generally accepted as the standard method for islanding protection 

schemes [19]. The most recognized active methods utilise the Reactive Export Error 

Detector (REED) [20].  

1.2.2 Control of Microgrid  

A crucial unit that controls the operation of the MG is the MG Management System 

(MGMS) that operates the system autonomously, connecting it to the utility grid 

appropriately for the bi-directional exchange of power and providing support to 

components within the MG. It enables the interplay of components and different controllers 

to operate the EMS in a controlled manner. This approach will allow customization of the 
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system to enhance optimization to improve the overall efficiency without sacrificing the 

plug-and-play functionality. MGMS is broken down into three different subsystems i.e. 

Primary, Secondary and Tertiary Control layers that manage the entire MG operation 

(Figure 1.2).  

 

Figure 1.2: Microgrid Management System (MGMS) [21] 
 

The MGMS controls the DGs to maintain the balance between generation and load 

demand during islanded mode, grid-connected mode or the transition period between the 

two modes. The three control layers are described next. 

Primary Control Layer  

This is the base layer that has the fastest response time (typically, in the region of 

milliseconds to minutes), and is also known as the local or internal controller. This control 

is based exclusively on local measurements and requires no communications. The function 

of this control includes islanding detection, converter output control, frequency regulation, 

voltage regulation and power-sharing control. In the MG, the voltage source inverters 

(VSIs) are the common interface between the DERs and the MG. VSIs controller requires 

a specially designed control to simulate the inertia characteristic of synchronous generators 

and provide appropriate frequency regulation. The VSI has two stages of control: inverter 



6 
 

output control and power-sharing control. The inverter typically consists of an outer control 

loop for voltage control and an inner loop for current regulation. The power sharing control 

is used for the sharing of the active and reactive power in the system.  

Secondary Control Layer 

This is the central layer (Figure 1.2) and is responsible for the reliable and 

economical operation of the MG. Its main function includes an Energy Management 

System (EMS) and automatic generation control. The secondary control also helps reset 

the frequency and voltage deviations of the droop-controlled VSIs and generators, then 

assigns to them new optimal long-term set points calculated from the MG EMS.  The EMS 

minimizes the MG’s operation cost and maximizes its reliability in grid-connected or 

islanded modes of operation. The objective of the EMS consists of finding the optimal Unit 

Commitment (UC) and Economical Dispatch (ED) of the available DER units, to achieve 

load and power balance in the system. The cost function is designed in terms of economic 

tolls such as fuel cost, power bill, maintenance cost, shutdown and start-up cost, emissions, 

and social welfare and battery degradation cost and cost of loss load. The reliability indices 

are formulated as constraints such as load forecast, forecasted power availability RES, the 

generation and demand balance, energy storage capacity limits and power limits for all 

controllable generations. The EMS resolves a multi objective optimization problem with 

complex constraints and falls under mixed-integer linear/non-linear programing. The 

output of the optimizer is the schedule energy import/export and DGs power output. The 

EMS system is illustrated in Figure 1.2.   

Tertiary Control Layer 

This is the highest control layer and provides intelligence for the whole system. It 

is responsible for buying and selling of energy between consumers and transmission 

system, as well as providing active and reactive power support for the whole distribution 

system. Tertiary control layer is not a part of MGMS as it is recognized as a subsystem of 

the utility Distribution System Operator (DSO). Nevertheless, due to the increase of MGs 

in the distribution system, the tertiary control layer is evolving into a concept called Virtual 

Power Plant (VPP). The objective of a VPP is to coordinate the operation of multiple MGs 

interacting with one another within the system and communicate needs and requirements 
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from the main grid. The VPP can provide transmission system primary frequency support, 

reactive power support and energy market participation. The control layer response time is 

typically of the order of several minutes to hours. It provides signals to secondary controls 

at MGs, and other sub-systems that form the full grid. 

 
Figure 1.3: Response time of various layers in MGMS [21] 

Figure 1.3 shows the time-scales of the three MGMS control layers where the lower 

(Primary) layer controls devices with fastest response times, and whereas higher 

(Secondary and Tertiary) layers controls tend to have slower response times.  

 

1.3 Literature Review 

This thesis focuses on the secondary control of a MG where it looks at designing 

an optimized EMS for a generic MG to reduce operation cost. Hence, the literature review 

mainly relates to work done in that area.  

Many researchers have used different approaches to achieve optimal and efficient 

operation of MGs. This section presents a literature review on some of the popular methods 

used by researchers to solve the EMS application.  

1.3.1 Linear and Non-linear Programming  

An optimal EMS using mix-integer linear programing (MILP) of residential MG is 

presented in [22] to help minimize the operation cost. The objective cost function was 
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derived from: Grid tariffs, EV battery maintenance cost, adjustable load shedding cost and 

EV range anxiety cost. The author conducted three case studies using different types of 

loads, namely: critical, adjustable, and shift able loads. Similarly, in [23] an optimal EMS 

using MILP to minimize the operational cost of a MG in grid connected mode of operation. 

The objective function is formulated by using operational and maintenance (O&M) costs, 

start-up and shutdown cost, energy trading cost, and load shedding cost. The system was 

to determine the optimal cost of operation while efficiently trading power from the grid.  

In [24] the authors proposed MILP optimization model for a MG EMS to maximize daily 

revenue with main grid peak-shaving application by introducing demand responsive loads. 

For this system, the load demand used will always be more than generation for each time 

interval. First, the EMS was tested using one-bus MG model. Afterwards, the EMS was 

analyzed with an IEEE 14-bus MG system.  

The authors in [25] presented an EMS of an islanded MG with demand response 

(DR) using mix-integer nonlinear programing (MINLP) to minimize the operation cost of 

the generators. Furthermore, droop controlled active and reactive power dispatch of AC 

side CGs, and operation of water desalination units are also included as a constraint in the 

proposed model. A centralized EMS of a grid connected MG using sequential quadratic 

programing method is proposed in [26]. The system is designed to optimize production of 

the local DGs and power exchanges with the main distribution grid. A min-max objective 

function used, where the author aims to minimize the operation cost and maximize the 

profits considering energy transactions with the main grid. Likewise, in [27] the author 

introduces an EMS of a grid-connected MG based on MINLP. In which the system is 

constrained by an operation window of transformer nominal operation and voltage security. 

The model helps minimizes MG operational cost using modified gradient descent solution 

method. The forward backward sweep algorithm determines power flow solution of MG. 

Three scenarios are considered in the objective function with respect to customer benefits, 

network losses, and load levelling. 

1.3.2 Dynamic Programming and Rule-based  

Another solution of MG EMS is presented in [28]. In which the author used 

approximate dynamic programming (ADP) for a grid connected system and compared to 
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myopic optimization and dynamic programming methods. The objective function (cost) 

was calculated using receptive field weight regression and lookup table. The EMS was 

tested under various external constraints (wind speed, load demand, and ambient 

temperature). Overall the proposed system had a higher operation cost but lower 

computational time.  

1.3.3 Meta-Heuristic Algorithm 

 Various authors have used Meta-Heuristic Approaches to solve the MG EMS. In 

[29] the authors proposed a genetic algorithm (GA) and rule-based approach to solve an 

economic load dispatch and battery degradation cost-based multi-objective EMS for a 

remote MG. The proposed system was used for both day-head and real time operation to 

examine the operation of all diesel generators, better supply and load shedding to match 

the load demand. In [30] the author used and other meta-heuristic algorithm called PSO to 

design an optimal EMS for grid-connected MG that considers uncertainties of RESs, load 

demand, and electricity price. The results achieved from the PSO algorithm is shown to be 

better in comparison with GA, combinatorial PSO, fuzzy self-adaptive PSO, and adaptive 

modified PSO. Likewise, in [31] the author proposed an EMS for a grid connected MG 

using differential evaluation (DE) algorithm. In which the system was design to minimize 

the operation cost and the emission of MG. Cost function is derived from bidding cost of 

DERs, DR incentives, and energy trading cost with main grid. The result obtained from 

system were compared to PSO based results, which showed DE algorithm performed better 

than the PSO based EMS with lower operation cost and faster convergence speed.  Another 

EMS designed using meta-heuristic algorithm is proposed in [32], the researchers designed 

an EMS for grid connected MG. the objective of the EMS to determine the energy 

scheduling of the MG while minimizing the operation cost. The economic objectives are 

profit on selling energy to load-end and main grid, energy-purchasing cost with main grid, 

and battery ageing cost. The proposed approach is more efficient than rule-based method 

in achieving best economic operation of MG. In [33], an ant colony optimization-based 

multi-layer EMS model for an islanded MG is proposed to minimize its operational cost. 

The objective function is comprised of bidding cost of RERs, DGs and battery, penalty cost 

on load shedding, and DR incentives in both day-ahead scheduling and five minutes’ 

interval real-time scheduling layers. Three case studies were used to analyze the system: 
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operation, sudden high requirement of load demand, and plug and play ability. The 

proposed approach reduces operational cost of MG by almost 20% and 5% more than the 

modified conventional EMS and PSO-based EMS, respectively. 

1.3.4 Artificial Intelligent  
 

In [34] the authors presented a fuzzy-based MG EMS. The algorithm utilized two 

GAs to optimize its day-ahead MG scheduling and built a fuzzy expert system to control 

the power output of the storage system. The first GA determined MG energy scheduling 

and fuzzy rules, while the second GA tuned fuzzy membership functions. Ref. [35] 

proposed an intelligent adaptive dynamic EMS for a grid-connected MG. It maximized the 

utilization of RERs and minimized carbon emissions to achieve a reliable and self-

sustainable system. It also improved battery lifetime. The proposed EMS was modeled 

using evolutionary adaptive dynamic programming and reinforcement learning concepts 

and solved by use of two NNs. An active NN is used to solve the proposed EMS strategy, 

while a critical NN checks its performance with respect to optimality. The new defined 

performance index evaluates the performance of dynamic EMS in terms of battery lifetime, 

utilization of renewable energy, and minimum curtailment of controllable load. The 

performance of the proposed approach is better as compared to decision tree approach-

based dynamic EMS. 

1.3.5 Multi-Agents Systems (MAS)  

In [36] the author introduced a decentralized EMS for a grid connected MG using MAS. 

The objective function is derived using all the consumers, storage units, generation units, 

and grid cost. The algorithm was able to find the optimal way to reduce the power balance 

and improve customer satisfaction. Furthermore, in [37], multi-objective hierarchical 

MAS-based EMS for a grid-connected MG system is presented to minimize its operational 

cost, emission cost, and line losses. The MAS is split into three levels: upper, middle and 

lower level. The upper level is designed to work as an EMS for the MG to minimize the 

operation cost. The middle level is designed to operate the local controls is an optimal 

manner. Lastly, the lower level is designed to control f/V and PQ-based control strategies 

for unit agents to manage real-time operation of DERs. 
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1.4 Motivation 
As the transformation towards a low carbon and more decentralised energy grid 

continues, the flexibility requirements for the electrical grid system are increasing. MGs 

are now seen as a key enabler in the transition towards a smarter, cleaner energy system. 

The control of the MG system is a really important aspect to help improve reliability and 

efficient operation of the system. Hence, EMS becomes a crucial part of the MG system 

and great area for research.  

The motivation of this work is to develop EMS for generic MG model for both the 

grid connected and islanded modes of operation. The objective of the EMS consists of 

finding the optimal Unit Commitment (UC) and Economical Dispatch (ED) of the available 

DER units, to achieve load and power balance in the system, while minimizing the 

operation cost.  

1. The objective function for the system is derived using the variable cost function for 

each DG in the MG model. These cost functions are described later in the thesis in 

Chapter 4. 

2. To optimize the EMS system, two different optimization algorithms are used and 

compared. The algorithms used are Particle Swarm Optimization (PSO) and 

Differential evolution (DE); they both belong to the stochastic, population-based 

algorithms. Recently, both PSO and DE have emerged as a promising algorithm in 

solving various optimization problems in the field of science and engineering. The 

algorithms are tested for both grid connected and Islanded mode operation. 

 

1.5  Problem Statement  

Currently, a new challenge is growing in the energy power systems field, which is 

the increase of distributed generation in from of renewable energy sources (RESs). One of 

the main drawbacks is the intermittency in power generation from these sources. Therefore, 

for a better use of the variable power production from renewable energy, these systems are 

integrated with energy storage (for off-grid applications) and the utility grid [38]. 

The storage systems associated with photovoltaic and wind energy are a promising 

solution for future MGs, in maximizing consumption, reducing the operation costs, power-
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smoothing and peak-shaving. The system could be viable in areas with high solar/wind 

penetration level and high retail electricity prices or areas where there is no access to the 

power grid [39]. 

The power variations in PV generation emerge when instantaneous passage of 

clouds covers the solar arrays. The PV output is difficult to predict, due to the PV 

performance being reliant on cloud shadowing, solar irradiance, temperature, wind etc. 

[40]. Unlike solar power, where the power is generated only during the daylight hours, 

wind turbines can produce power also during the night. Therefore, in some regions or 

during some periods of the year, the peak output from wind could be in the night when the 

demand is low [41]. 

Therefore, with increasing adoption of renewable energy sources by individual 

home owners and commercial business owners in the form of isolated MG system. The 

produced energy is usually injected into the utility grid without considering demand. Most 

renewable energy sources, e.g. solar and wind, are not controllable sources. A MG with 

renewable energy sources, provides a degree of control to maximize the benefit of 

electricity consumer by lowering the overall cost of energy. A simple optimization-based 

energy management system is proposed in this thesis for finding the optimal way to 

dispatch the available DERs to achieve lowest operational cost by complying to system 

constraints. This is achieved by taking advantage of time-of-use pricing and non-linear cost 

function of the various generation in the system. 

 

1.6  Thesis Overview and Organization 

The focus of this work is to evaluate the performance of optimized EMS for a MG in 

grid connected and islanded modes of operation, to reduce the operational cost for a day-

ahead predicted operation.   

This thesis is arranged as follows: the breakdown of the MG EMS is presented in 

Chapter 2. This chapter explains the two different types of EMS that are used in literature 

and real-world systems. The concepts introduced in chapter 2 are essential to the analysis 

and optimization performed in the thesis.  
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Chapter 3 presents the model of the MG used for the EMS along with power limits for the 

DGs, forecasted power with RESs and the grid tariffs used for the system. 

In Chapter 4, the two optimization techniques used for the EMS are presented in detail. 

The complete design and configuration of both PSO and DE is explained in detail. These 

algorithms are coded and simulated in MATLAB. The flow diagram of the EMS is 

presented and explained.  

In Chapter 5, begins by presenting the simulation and analysis of applying the two 

optimization techniques to the EMS. The simulation results for both PSO and DE are 

shown separately and also compared for both the grid connected and islanded modes of 

operation.  

In Chapter 6, concludes the thesis with summary of the contributions and suggestions for 

future research.   
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2.0 Microgrid Energy Management Systems 

This chapter focuses on the secondary level which is responsible to operate and 

coordinate a variety of DGs, energy storage and loads in order to provide high-quality, 

reliable, sustainable and environmentally friendly energy in a cost-effective way. This is 

done through the MG EMS. The International Electrotechnical Commission in the standard 

IEC 61970, defines an EMS as “a computer system comprising a software platform 

providing basic support services and a set of applications providing the functionality 

needed for the effective operation of electrical generation and transmission facilities so as 

to assure adequate security of energy supply at minimum cost” [44]. Hence, the MG EMS 

is a product of these features. It is usually equipped with decision-making algorithms, load 

and power forecasting, Human Machine interfaces (HMI) and supervisory control and data 

acquisition (SCADA) system. These functions help the EMS in optimizing MG operation, 

while satisfying the technical constraints.  

MG EMS can be sub-divided into two types, namely, centralized and decentralized:  

 In a Centralized system, a control center receives all measured values from all 

the DGs in the MG and outputs the operating points of each DG based on the 

objectives and constraints, which can be minimizing system operation and 

maintenance costs, environmental impact, maximizing system efficiency.  

 In a Decentralized system, a communication bus is used to exchange data 

among DGs’ controllers. In this energy management system, each local control 

system knows the operation point of other converters. This information is used 

to determine the DGs’ operating points according to different optimization 

objectives.   

This section will be going more in-depth about the two different control methods, 

also the advantages and disadvantages of both.  

2.1 Centralized Energy Management  

In the centralized EMS system, data information and collection are usually required 

from the Tertiary control and Primary control layers such as operating cost, weather 

forecast, load demand, voltage and current readings from each component etc. Based on 
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the gathered information, an appropriate unit commitment and economical dispatch 

optimization algorithm is executed to achieve efficient, economical operation, and 

maintain power quality as well as match generation with load demand. The MG relies on 

the Secondary Layer, where a Master Controller with a high computing performance and a 

dedicated communication network is utilized for the operation. Usually the Master 

Controller supports EMS and SCADA functions with an HMI which allows the System 

Operator to control and monitor the MG. A centralized configuration is shown in Figure 4.   
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Figure 2.1: Centralized EMS Configuration 

 

In Figure 2.1, the centralized configuration requires a two-way communication 

channel between the Primary Control (local controllers) and Secondary Control (EMS) for 

the exchange of information. This configuration is called a Star connection topology and a 

master/slave technique is established. The communication channels can be either wired or 

wireless depending on its requirements. Some of the available technologies are based on 

power line carriers, telephone lines or a wireless medium.  

In centralized EMS, operation is in real-time where the Secondary controller 

frequently observes the entire system and samples the critical generation/demand 

information from each component. This frequent communication may cause a 

computational burden; therefore, a high-performance computing unit is required where the 
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EMS can execute accurate decisions by processing the data read through the 

communication channel. Moreover, a high bandwidth communication is required to meet 

the growing demands of EMSs.  

Centralized EMS is a comparatively straightforward implementation but can also 

endanger the overall performance as any single point failure or any fault at a unit can cause 

the entire system to breakdown. Therefore, it is considered to have a low expandability and 

flexibility. Considering its structure and functionality, the following options can be more 

desirable for the MG cases [45] 

 A small scale MG, with low communication and computational cost where 

centralized information can be processed 

 Unity between the components is required which can operate the MG with a 

common goal for generation/demand balances 

 Must operate with a high security that keeps the data information secure. 

The EMS optimizes the MGs power flow distribution, resulting in maximizing the 

DG’s production depending on the various parameters, constraints, variables and market 

prices provided as an input to the EMS controller. Some commonly used data, provided as 

input information to the controller to process and provide the reference values to the 

Primary Control layer, include:  

 Forecasting of the grid electricity prices 

 Status of interconnection of utility grid 

 Reliability and security constraints of the MG  

 Operational limits of DG to be discharged 

 State of Charge (SOC) of the Battery Energy Storage System (BESS) 

 Load day-ahead forecast values 

 RESs generation forecasted power output 

Centralized EMS enables all the relevant information to be gathered at a single point 

for the controller to perform its function. The following steps are involved in a centralized 

framework for the EMS to perform its tasks [21].  
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1. Performing a RESs generation and load day-ahead forecast 

2. Performing a day-ahead energy scheduling calculation by collecting information 

from all the components  

3. Executing an optimization algorithm to calculate the optimal day-ahead schedules 

4. Assigning optimal day-ahead schedules to the corresponding components 

5. Acquiring real-time system information, as there might be unexpected events or 

forecast errors 

6. Generating short-term forecasts during the operation 

7. Re-executing the optimization algorithm and rescheduling the dispatch of RESs (15 

min) 

8. Finally, sending the EMS the most updated and optimal set points to the Primary 

Control 

When the EMS order is executed, a set of information is dispatched to the local 

controllers at the Primary Control level to operate the DG’s in a cost-effective manner and 

simultaneously maximize the reliability of the MG. The set of information dispatched are 

[46]: 

 Set points for DG’s to dispatch the production of power 

 Set points for Local loads to be shed or to be served 

 Market prices to serve as the input for EMS 

2.2 Decentralized Energy Management  

In the Decentralized EMS scheme (Figure 2.2), local controllers are interfaced with 

each DG unit to communicate amongst each other through a communication channel within 

the MG. Each unit is controlled by its local controller where data for each of the DG 

controllers is exchanged. Local controllers communicate with each other to request/offer a 

service, exchange information, communicate expectations and share knowledge, which is 

relevant to the MG operation. These controllers have advanced algorithms to make their 

own decisions or to process information and execute commands from the upper level.  
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Figure 2.2: Decentralized EMS Configuration 

In Figure 2.2, the decentralized configuration illustrates a two-way communication 

channel between the local controllers for the exchange of information. This configuration 

is called a peer-to-peer (P2P) communication topology and is established within the 

Primary Control layer. The EMS is implemented locally in each of its Local controllers 

connected to either DGs or the loads within the MG to allow the interaction of each unit to 

enable a decision-making process to optimally solve the energy management problem 

while providing flexibility within the MG to provide autonomy for all DG’s and loads.  

In a decentralized EMS operation, the need for Secondary Control layer is 

eliminated as the collaboration at the Primary Control layer between the local controllers 

which work jointly to achieve local goals to meet generation and demand of the entire MG. 

This can reduce the computational burden to some degree, as the customers no longer need 

to report their current or historical generation and demand data to EMS at the Secondary 

Control layer. Processing of information such as weather forecast, operating cost, load 

demand etc. can be optimized by the local controllers, which reduces the use of hierarchical 

levels in the MG.  
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Implementation of EMS in a Decentralized control architecture can increase the overall 

complexity of the entire MG. When looking at other perspectives, this configuration in 

terms of its flexible operation and avoidance of a single point failure can still maintain the 

normal operation of EMS. Another advantage is that it can allow interaction of various 

other DG units, like a plug-and-play functionality, without the need to make continuous 

changes to the local controller settings. Considering its structure and functionality, the 

following options can be more desirable for the MG cases [45]: 

 Large scale MGs, or the consumption, storage and generation are widely isolated 

which can make data acquisition costly or difficult when using centralized EMS 

 Requirement of local decision making, when the resources are owned by multiple 

owners 

 Adding or removing of DG  

When modeling the MG using the decentralized approach, the concept of Multi-Agent 

System (MAS) has been primarily addressed in the literature. MAS has evolved from a 

classical distribution control system which is specially designed for automated control 

systems with capabilities to control large and complex entities or groups of entities by 

dedicated controllers. Distributed control and MAS have a similar structure but what 

distinguishes them is the level of intelligence that the agents are embedded with. The MAS 

relies on a framework to achieve multiple local and global objectives autonomously, where 

two or more agents or intelligent agents are provided with local information. The 

characteristics of the local information, responsibilities and functionalities assigned to each 

agent and information shared by the agents between each other, plays a vital role in the 

overall performance of the system for the enhanced robustness, reliability and flexibility 

of MG. An intelligent agent is distinguished from a hardware or a software automated 

system and can be described as an agent which possess the characteristics such as [43]:  

 Reactivity: ability to show reaction and reach to the changes in the environment in 

a timely manner 

 Pro-activeness: seeking initiatives to achieve goals 

 Social-ability: interaction with other agents through a communication channel 
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These characteristics in local controllers work towards improving the performance of 

the system and not have the main objective to maximize the revenue of the corresponding 

unit. This means that the intelligent agents can interact with other intelligent agents to react 

to environmental changes and establish a goal-oriented behaviour.  

Overall operation of MAS is to control objectives, such as: economy, reliability, 

energy market participation and MG operation. Although this is an overall global goal for 

the MG to operate in a reliable manner, in MAS only local goals are defined and not global 

goals. When intelligent agents cooperate among themselves and work towards local goals, 

the targeted global goal may be achieved with local goals responding to sub-parts of the 

global goal. The design of MAS algorithms is a complex process that requires a great deal 

of expertise to decompose global goal task by modeling the agent’s interactions and 

classifying agents. Intelligent agents working together to achieve various local goals is a 

multi-objective problem, where the complexity of the MAS algorithm is structured in a 

rigorous manner for the agents to communicate autonomously.  

2.3 Comparison between Centralized and Decentralized EMS 
 

Table 2.1: Comparison of Centralized and Decentralized 

Controls Advantages Disadvantages  

Centralized   Simple to implement  

 Easy to maintain 

 Relatively low cost 

 Widely used and 

operated. 

 Wide control over the 

entire system 

 Computational burden. 

 Requires high-bandwidth links. 

 Single point of failure 

 Not easy to expand. 

 Weak plug-and-play 

functionality. 

Decentralized   Easier plug-and-play 

(easy to expand) 

 Low computational cost 

 Avoid single point of 

failure 

 Suitable for large-scale 

complex, heterogeneous 

systems.  

 Need synchronization 

 May be time-consuming for 

local agents to reach consensus 

 Convergence rates may be 

affected by the communication 

network topology 

 Upgrading cost on the existing 

control and communication 

facility 

 Needs new communication 

structure. 
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In conclusion, with regard to the architecture of the energy management system 

(EMS), two main approaches have been proposed to date in the technical literature: 

Centralized and Distributed EMS. The CEMS architecture consists of a central controller 

provided with the relevant information of every distributed energy resource within the MG 

and the MG itself (e.g., cost functions, technical characteristics/limitations, network 

parameters and mode of operation), as well as the information from forecasting systems 

(e.g., local load, wind speed, solar radiation) in order to determine an appropriate UC and 

dispatch of the resources according to the selected objective. On the other hand, DEMS 

provides a market environment through the use of Multi-Agent Systems (MAS) where each 

MG agent sends buying and/or selling bids to a Distributed System Operator (DSO) 

according to their particular needs and cost structures; the DSO then performs a binding 

process to determine the operation of the MG for the next period. In this case, a separated 

UC process must be realized to determine the agents that will operate in each particular 

period. Also, the table above shows the advantages and disadvantages of both 

configurations of an EMS. As can be seen, the centralized EMS is easy to implement and 

is widely used and operated for standalone MG system. Therefore, the EMS implemented 

in this thesis is be based on the Centralized EMS configuration.    
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3.0 Mathematical Modeling of the System 

A MG includes distributed energy resource (DER) (photovoltaics, small wind 

turbines, fuel cells, internal combustion engines, micro turbines, etc.), distributed energy 

storage devices (flywheels, superconductor inductors, batteries, etc.), and loads. DERs can 

be divided into two main groups: (i) DER directed-coupled conventional rotating machines 

(e.g., an induction generator driven by a fixed-speed wind turbine), and (ii) DER grid 

coupled with the inverter (e.g. Photovoltaic, fuel cells, etc.). Distributed energy storage 

devices can be charged with the power excess and discharged to cover the power deficit. 

Thus, they help to enhance the reliability of MG as well as making it efficient and 

economical. Furthermore, energy storage (e.g. Batteries, Flywheels, etc.) is known for its 

fast response devices. Therefore, they also provide means to damp out transient instabilities 

and participate to control the voltage and the frequency of the MG. 

3.1 Generic Microgrid 

The MG of interest for this part of the thesis correspond to an integrated system 

near a community which is locally operated, and where the system is connected to main 

grid with the ability to buy/sell power and increase reliability.  Thus, the schematic diagram 

of the MG model used for the EMS is shown in Figure 3.1. A typical MG model is used 

which includes different DGs, such as: Combined Heat and Power (CHP) plant, Diesel 

generator, Natural gas-fired generator, Photovoltaic (PV) generator and Wind generator. 

The DGs are connected and integrated at the point of common coupling (PCC) to provided 

power to a cluster of loads. The rated power for DGs are shown in Table 3.1. The MG is 

capable to operate in two different modes: 
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Figure 3.1: Overall system  

 

 Grid-connected mode where the MG is able to buy power from the grid if demand 

exceeds available power or sell power back to the grid if production exceeds demand. 

The load demand in this mode is 4.35 MW. 

 Islanded mode where it supplies power to only the critical loads. The load demand in 

this mode is 2.50 MW. 

Table 3.1: Rating of all the DGs in the system 

Distribution Generations Minimum 

Power (MW) 

Maximum 

Power (MW) 

Combined Heat and power  0.2 1.5 

Diesel Generation 0.1 1.0 

Natural Gas Generation 0.1 1.0 

Solar Farm 0.0 0.5 

Wind Farm 0.0 0.5 

Grid -1.0 1.0 
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3.2 Mathematical model of system 

The optimization model for the MG requires the objective function formulation 

subjected to the constraints. The objective function in this optimization model is the total 

operating and maintenance cost of the power consumed by the load of the MG. The cost 

function of the various generation units of the MG are modeled next  

3.2.1 Generators Cost Functions 

The generator cost is typically represented by four curves: fuel cost, heat rate, 

input/output (I/O) and incremental cost. Generator curves are generally represented as 

cubic or quadratic functions and piecewise linear functions. The fuel cost function for the 

CHP, diesel generator and natural gas generator are typically approximated by a quadratic 

function, as stated in Equation (3.1): 

𝐹𝑗(𝑃𝑗(𝑡)) =  𝛼𝑗 + 𝛽𝑗𝑃𝑗(𝑡) + 𝛾𝑗𝑃𝑗
2(𝑡)                                                         (3.1) 

Where j= generating source; P = power output of a source j; F = operation cost of 

source j in $/hr; α, β, γ are the cost coefficients in $/hr (shown in Table 3.2) [28]. The fuel 

cost curve allows us to look at a wide range of economic dispatch practice such as total 

operating cost of a system, incremental cost and minute by minute loading of a generator. 

The fuel cost function becomes more nonlinear when the actual generator response is 

considered. Quadratic and naturally, cubic cost functions more accurately model the actual 

response of conventional thermal generators where fuel is oil, coal and gas, but also diesel 

generators, gas micro turbines, biomass power plants, fuel cells, etc. [5]. Energy sources 

such as solar, wind and hydro are not included because the fuel that drives its power 

generation is free. 

Table 3.2: Cost figures for various generators 

 CHP Diesel Generator Natural Gas 

α ($/hr) 15.30 14.88 9.00 

β ($/hr) 0.210 0.300 0.306 

γ ($/hr) 0.000240 0.000435 0.000315 
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3.2.2 Solar Generation Cost function 

PV systems are one of the fastest growing renewable energy sources. Although both 

are based on non-dispatch able energy sources, the PV panels usually have a more easily 

predicted power production. Different levels of penetration, real solar radiation profiles 

and PV panel characteristics should be considered. The solar generation cost function is 

given by: 

𝐹(𝑃𝑠) = 𝑎𝐼𝑃𝑃𝑠 + 𝐺𝑒𝑃𝑠                                                                                  (3.2)            

  𝑎 =
𝑟

[1−(1+𝑟)−𝑁]
                                                                                           (3.3) 

 

𝑤ℎ𝑒𝑟𝑒: 

F operation cost of source 

Ps Solar generation (kW) 

a Annuitization coefficient (dimensionless) 

r Interest rate  

N Investment lifetime (taken as N = 20 years) 

IP Investment costs, per unit installed power ($/kW) 

GE Operation and Maintenance (O & M) costs, per 

unit generated energy ($/kW) 

 

Equations (3.2) & (3.3) are used to calculate the total generating cost of the solar 

energy considering the depreciation of all the equipment for generation. In this system, the 

values for the investment costs per unit of installed power (IP) and O & M costs per unit of 

generated energy (GE) are assumed to be equal to $4000 and 1.6 cents per kW respectively. 

Therefore, the final cost function can be derived, represented in Equation (3.4) [29]. 

𝐹(𝑃𝑠) = 505.016 𝑃𝑠(𝑡)                                                                              (3.4) 

Figure 3.2 depicts the forecasted power for the solar farm for this study over an 

aggregated 24-hour period. This data is not based on any one particular season or 

geographical area; however, it is a typical curve, and is used here for discussion purposes. 
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The seasonality over the year of particular geographical regions can also be accommodated, 

if desired. 

 
Figure3.2: Forecasted Power for Solar Farm [27] 

 

3.2.3 Wind Generation Cost function 

A wide range of levels of penetration of wind power can be observed in existing MGs; 

however, only wind turbines with a significant share of the MG peak load are relevant for 

the operation of the EMS. Different levels of penetration, wind speed profiles and wind 

turbine characteristics should be considered. 

The cost function for wind generation is derived from Equations (3.3) & (3.5), and is 

similar to solar generation. However, the investment costs per unit installed power (IP) and 

O & M costs per unit generated energy (GE) are assumed to be equal to $2000 and 1.6 cents 

per kW. Therefore, the final cost function can be derived, and is represented in Equation 

(3.5) [29]. 

𝐹(𝑃𝑤) = 185.616𝑃𝑤 (𝑡)                                                                            (3.5) 

Figure 3.4 depicts the forecasted aggregated power for the wind farm for this study 

over a 24-hr period. Again, this data is not based on any particular season or geographical 

area; however, it is typical, and it is just assumed here for test purposes. 
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Figure 3.4: Forecasted Power for Wind Farm [27] 

3.2.4 Grid 

As seen in the Figure 3.1 the MG is connected to a distribution grid, which is 

considered as an infinite bus. In grid connected mode, the MG has ability to purchase power 

from the grid if the demand is more than the generation. It also has the ability transfer 

power back or sell back to grid if the generation is more than the demand at time interval 

(t). Therefore, tariffs have to be put in place for the system to operate by. The grid tariffs 

are designed based on peak and off-peak demand hours. When the system in operating on-

peak hours the purchasing price is high and selling price is low. Then when the system is 

operating in off-peak hours the purchasing price in low and selling price is high. The grid 

tariffs used for this system are shown in the table below.  

Table 3.3: Electricity Tariff Periods 

Time of Use 
(Hours) 

Off-Peak 

00:00–05:00 

On-Peak 

05:00–10:00 

Off-Peak 

10:00–17:00 

On-Peak 

17:00–21:00 

Off-Peak 

21:00–23:59 

Purchasing 

price ($/MWh) 
87.5 180 132 180 87 

Selling price 

($/MWh) 
43.5 90 66 90 43.5 

 

Figure 3.5 depicts the forecasted aggregated load demand for this study over a 24-

hr period. The graph in red represents the load profile of the system in grid-connected 
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mode, where it has two major peaks. First, the morning peak from 05:00 to 10:00 hrs. and 

a late evening peak between 17:00–21:00 hrs. The graph in blue represents the load profile 

during Islanding mode. As can be observed, the total demand is much lower than what it 

was during grid-connected mode. That is due to the fact during the islanding mode the 

system only supply’s power to the critical loads. Again, this data is not based on any one 

particular season or geographical area; however, it is typical, and it is assumed here for test 

and demonstration purposes. 

 

 
Figure 3.5: Load demand 

 

3.3 Objective Function 

The objective function for this EMS to minimize the total operation cost for the 

day. The cost function is calculated by the summation of all the cost function of DGs, and 

the grid. The cost function for grid-connected mode is a little different from the islanded-

mode, due to the fact during islanded-mode, the grid is not available. The formulation of 

the cost function for both in grid-connected and islanding modes is presented below.  
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3.3.1 For Grid Connected mode 

The object function for the EMS in grid-connected mode is formulated as:  

𝑀𝑖𝑛 ∑ 𝐹 (𝑃𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(𝑡)) =  𝑀𝑖𝑛 ∑[𝐹𝑗(𝑃𝑗)(𝑡) +  𝐹(𝑃𝑤(𝑡)) + 𝐹(𝑃𝑆(𝑡)) +

 𝐹(𝑃𝑏(𝑡)) +  𝐹(𝑃𝑔𝑟𝑖𝑑((𝑡))]                                                                         (3.6) 

In grid-connected mode, the MG has an ability to buy/sell power from the grid. 

That depending on the total power available from the DGs and ESS at each time interval 

(t). Thus, ∑ 𝐹 (𝑃𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(𝑡)) is the total cost of power for the day. 

 

3.3.2 For Islanded mode 

The objective function for EMS in Islanded mode is formulated as:  

𝑀𝑖𝑛 ∑ 𝐹 (𝑃𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(𝑡)) =  𝑀𝑖𝑛 ∑[𝐹𝑗((𝑃𝑗)(𝑡)) +  𝐹(𝑃𝑤(𝑡)) + 𝐹(𝑃𝑆(𝑡)) +

 𝐹(𝑃𝑏(𝑡))]                                                                                                   (3.7) 

In Islanded mode, since the MG is disconnected from the main grid, the total load 

has to be satisfied by the remaining DGs and ESS.  Thus, ∑ 𝐹 (𝑃𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ(𝑡)) is the total 

of the all the DGs and ESS for a 24-hour day period.   

3.4 Constraints Functions 

In real life, the optimal EMS for MG is affected by a number of constraints. The 

constraints functions are used to help keep the system within set limits and helps guide the 

system to achieve the desired results. This section presents constraints related to the 

objectives discussed earlier.  

3.4.1 Grid connected mode 

As mentioned before, in grid-connected mode, the MG is able to buy/sell power 

from/to the main grid depending on the load demand. Hence, to decide how much power 

is bought from or sold to the grid, the following equation is applied.  

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) =  ∑ 𝑃𝑗(𝑡) + 𝑃𝑤(𝑡) + 𝑃𝑆(𝑡) + 𝑃𝑏(𝑡)                                 (3.8) 

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑡) ≠  𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑡)                                                                      (3.9) 
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If Equation (3.8) is true, then  

𝑃𝑔𝑟𝑖𝑑(𝑡) = 𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 (𝑡) − 𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑡)                                                   (3.10)   

𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑡) =  𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑡) + 𝑃𝑔𝑟𝑖𝑑(𝑡)                                                   (3.11) 

Therefore, if Pgrid is positive, then MG is purchasing power from the grid and if 

Pgrid is negative then microgrid is selling power to the grid. 

3.4.2 Islanded Mode 

Since, in islanded mode, the MG is disconnected from the main grid, there cannot 

be any buying/selling of power. Therefore, the power generated must always be equal to 

the demand.   

 𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) =  ∑ 𝑃𝑗(𝑡) + 𝑃𝑤(𝑡) + 𝑃𝑆(𝑡) + 𝑃𝑏(𝑡)                               (3.12)  

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑(𝑡) =  𝑃𝐷𝑒𝑚𝑎𝑛𝑑(𝑡)                                                                     (3.13) 

Thus, Equation (3.13) must always be true.  

3.4.3 Power generation limits.  

Power generation capacity limits. The power generated by each unit should be 

within its lower limit and upper limit, so that each generator has a power rating as shown 

in Table 3.1.  

 𝑃𝑗
𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑗(𝑡) ≤ 𝑃𝑗

𝑚𝑎𝑥(𝑡)                                                                     (3.14) 
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4.0 Details of PSO and DE Algorithms 

Various optimization techniques have been used by researchers to tackle the problem 

of energy management in MGs. Section 1.3 presents a review for all the different types of 

optimization algorithms used to solve the problem of EMS. The preceding section 

discusses the two optimization techniques used for the EMS system in this thesis. 

Particle swarm optimization (PSO) and Deferential Evolution (DE) are two of the most 

popular optimization algorithms developed. Since their development, many variants have 

also been developed for solving practical issues related to optimization. Recently, both 

PSO and DE have emerged as promising algorithms in solving various optimization 

problems in the field of science and engineering. As mentioned in the literature review, 

both algorithms have been used to solve the EMS. In this section, an overview of the two 

P-metaheuristics algorithms, namely PSO and DE, is given. 

 

4.1 Particle Swarm Optimization (PSO) 

PSO belongs to the swarm intelligence family of stochastic, population-based 

algorithms, first proposed by Kennedy and Eberhard in 1995. In swarm intelligence, 

intelligent behaviour is shown by some agents like birds, ants or fish. Without 

collaboration, this level of intelligence is absolutely unattainable for a stand-alone member 

of the swarm; but, with collaboration amongst the particles of the swarm, it can be possible. 

The technique is based on particle movements in the search space; each particle flies around 

in the search space with an adaptable velocity that is dynamically adapted according to its 

own flying experience and to the flying experience of other particles. It takes the 

advantages of its peers as each particle tries to improve itself by imitating traits from their 

successful peers. Furthermore, each particle is capable of remembering the best position in 

the search space ever visited by itself. Main characteristics of the PSO algorithm are the 

ability to escape from local optimum, fast convergence and easy implementation [47].  

4.1.1 Algorithm 

PSO algorithm works by simultaneously maintaining several candidate solutions in the 

search space. During each iteration of the algorithm, each member of the population is 

evaluated by the objective function being optimized, determining the fitness of that 



32 
 

solution. Each candidate solution can be thought of as a particle “flying” through the fitness 

landscape finding the maximum or minimum of the objective function. Initially, the PSO 

algorithm chooses candidate solutions randomly within the search space [48].  

Figure 4.0 depicts an example PSO algorithm with four particles in search space trying 

to find the global maxima. The x-axis represents all possible solutions in the search space. 

The sinusoidal curve is the objective function. Since, the PSO algorithm has no knowledge 

of the behaviour of the objective function, thus, the algorithm simply uses the objective 

function to evaluate its candidate solutions and operates upon the resultant fitness values. 

 

 
Figure 4.0: Initial PSO State [49] 

 

Each particle maintains its position, composed of the candidate solution and its 

evaluated fitness, and its velocity. Additionally, it remembers the best fitness value it has 

achieved thus far during the operation of the algorithm, referred to as the individual best 

fitness, and the candidate solution that achieved this fitness, referred to as the individual 

best position or individual best candidate solution. Finally, the PSO algorithm maintains 

the best fitness value achieved among all particles in the swarm, called the global best 

fitness, and the candidate solution that achieved this fitness, called the global best position 

or global best candidate solution [49].  
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4.1.1.1 Updating the velocity 

Using the personal best (𝑝𝑖) and global best (𝑝𝑔) of each particle, the particle velocity 

is updated according to equation (4.1), 

𝑣𝑖(𝑡) = [𝑤 ∗ 𝑣𝑖(𝑡 − 1)] + [𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖 − 𝑥𝑖(𝑡 − 1))] + [𝑐2 ∗ 𝑟2(𝑝𝑔 −

𝑥𝑖(𝑡 − 1))]                                                                                                 (4.1) 

The first term i.e. [𝑤 ∗ 𝑣𝑖(𝑡 − 1)], acts as the particle’s memory, causing it to explore 

the search space at a similar velocity as before. The inertia weight coefficient w controls 

the influence of the previous velocity on the movement of the particle.  

The second term i.e. [𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖 − 𝑥𝑖(𝑡 − 1))], called the cognitive component, acts 

as the particle’s memory, causing it to tend to return to the regions of the search space in 

which it has experienced high individual fitness. The cognitive coefficient c1 is usually 

close to 2 and affects the size of the step the particle takes toward its individual best 

candidate solution𝑝𝑖. 

 Then, the third term i.e.  [𝑐2 ∗ 𝑟2 ∗ (𝑝𝑔 − 𝑥𝑖(𝑡 − 1))], called the social component, 

causes the particle to move to the best region the swarm has found so far. The social 

coefficient c2 is typically close to 2 and represents the size of the step that the particle takes 

toward the global best candidate solution 𝑝𝑔 the swarm has found up until that point. 

 The random values r1 in the cognitive component and r2 in the social component cause 

these components to have a stochastic influence on the velocity update. This stochastic 

nature causes each particle to move in a semi-random manner heavily influenced in the 

directions of the individual best solution of the particle and global best solution of the 

swarm. 

The Figure 4.1 depicts the movement of a single particle. For particle 𝑖, the position of 

the particle is denoted by the vector  𝑥𝑖(𝑡 − 1). In addition to the position, there is a velocity 

for each particle which is denoted by 𝑣𝑖(𝑡). The dimensions of 𝑥 and 𝑣 are the same. The 

velocity describes the movement of particle 𝑖, in the sense of direction. Particles interact 

and learn from each other and obey some simple rules to find the solution. In addition to 

the position and velocity, every particle has a memory of its own best position so far, which 
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is denoted by personal best (𝑝𝑖) and a common best experience among the members of 

swarm, which is denoted by global best (𝑝𝑔). At each iteration, position and velocity of 

each particle are updated, using the equations mentioned above [48]. 

 

Figure 4.1: PSO system 

 

4.1.1.2 Updating the position  

Based on the updated velocity, each particle will change its position in the search space 

according to equation (11). The term 𝑥𝑖(𝑡 − 1) represents the location of the particle in the 

pervious iteration   

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) + 𝑣𝑖(𝑡)                                                                           (4.2) 

4.1.1.3 Updating the best-found particle so far, local and global 

Then, the fitness of each particle is evaluated. If the fitness is less than its personal best 

(for a minimization problem), then each particle updates it’s personal best solution 

according to equation (4.2). However, if the fitness is less than its global best, then the best 

global solution of the swarm is updated accordingly, as shown in equation (4.1c). The 

whole process is defined in Algorithm 1.  

𝑖𝑓    𝑓(𝑥𝑖) <  𝑝𝑏𝑒𝑠𝑡𝑖
, 𝑡ℎ𝑒𝑛 𝑝𝑖 =  𝑥𝑖                                                                (4.3) 

𝑖𝑓    𝑓(𝑥𝑖) <  𝑔𝑏𝑒𝑠𝑡𝑖
, 𝑡ℎ𝑒𝑛 𝑔𝑖 =  𝑥𝑖                                                               (4.4) 
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4.1.2 PSO flow diagram  

 

Initialization of PSO Parameters, 

random initialization population

Evaluate the Fitness Function for each particle for local 

and global best solution

Update the velocity of each 

particle

Update the Position of each 

particle

Is the stopping 

criteria satisfied

Stop

YES

Time iteration

t = t + 1 

NO

 
Figure 4.3: PSO Flow Diagram 
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4.1.3 PSO Pseudo Code  

 

Algorithm 1: Particle Swarm Optimization  

1: Start Procedure 

Inputs: 

            c1: Cognitive coefficient 

            c2: Social coefficient 

            NP: Population size  

            w: inertia weight  

2. Initialize whole swarm using Randomly uniformly distributed and evaluate fitness 

3. While (ite ≤ itemax) 

4.        Evaluate each particle f(xi)  

5.      For (i=1, i ≤ NP, i++ ) Do 

6.              //Update particle velocity:  

7.           𝑣𝑖(𝑡) = 𝑤 ∗ 𝑣𝑖(𝑡 − 1) + 𝑐1 ∗ 𝑟1 ∗ (𝑝𝑖 − 𝑥𝑖(𝑡 − 1)) + 𝑐2 ∗ 𝑟2 ∗   (𝑝𝑔 − 𝑥𝑖(𝑡 − 1)) 

8.               //Move to new position: 

9.                      𝑋𝑖(𝑡) = 𝑋𝑖(𝑡 − 1) + 𝑣𝑖(𝑡) 

10.             If (f(xi) ≤ f(Pbesti)) then Pbesti = xi 

11.            If (f(xi) ≤ f(gbesti)) then gbesti = xi 

12.            Update (xi, vi);   

13.     End For 

14. End While  

15.            Output: Best Solution 

16. End Procedure 
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4.2 Differential Evolution (DE) 

Differential Evolution (DE) is a stochastic, population-based optimization algorithm 

which was introduced in 1996. DE has emerged as one of the techniques most favored by 

engineers for solving continuous optimization problems. DE has several attractive features. 

Besides being an exceptionally simple evolutionary strategy, it is significantly faster and 

robust for solving numerical optimization problems and is more likely to find the function’s 

true global optimum. Also, it is worth mentioning that DE has a compact structure with a 

small computer code and has fewer control parameters in comparison to other evolutionary 

algorithms. Originally, Price and Storn proposed a single strategy for DE, which they later 

extended to ten different strategies [3]. 

4.2.1 Algorithm  

The DE algorithm is divided into 4 different modes of operation, as shown in Figure 

4.4. The algorithm starts from the initialization stage, where an initial population is 

generated. Second, the algorithm applies mutation to the initial population. Third, a 

crossover is performed and lastly, a selection is made to generate a population.  The system 

is repeated from mutation again until the termination condition is met. 

Mutation CrossoverInitialization Selection

 
Figure 4.4: DE Algorithm 

 

4.2.1.1 Initialization   

 Initially, in DE, the initial population size (NP) a D-dimensional parameter vector 

generates a uniformly distributed random variable, where each decision variable 𝑥𝑗 is 

defined to be within its upper and lower limits [𝑙𝑗 , 𝑢𝑗]. Therefore, the candidate solution 𝑥𝑖𝑗 

is initialized, as follows [19]:  

𝑥𝑖𝑗 =  𝑙𝑗 + 𝑟𝑎𝑛𝑑𝑗[0,1] ∗ (𝑢𝑗 − 𝑙𝑗), 𝑖 ∈ [1, 𝑛𝑝], 𝑗 ∈ [1, 𝐷]                        (4.5) 



38 
 

Where 𝑟𝑎𝑛𝑑𝑗 is a uniformly distributed random variable in the range [0, 1]. After the 

initialization of population, the following operators are applied next: mutation, crossover, 

and selection. These are explained next in the following subsections [47].  

4.2.1.2 Mutation 

Once initialized, DE mutates and recombines the population to produce a population 

of NP trial vectors. In particular, differential mutation adds a scaled, randomly sampled, 

vector difference to a third vector. Equation (4.6) shows how to combine three different, 

randomly chosen vectors to create a mutant vector, 𝑉𝑖𝐺: 

𝑉𝑖𝐺 = 𝑋𝑏𝑒𝑠𝑡𝑖𝐺 + 𝐹 ∗ (𝑋𝑟1
𝑖𝐺 − 𝑋2𝑖𝐺)                                                          (4.6) 

The indices 𝑟1
𝑖 and, 𝑟2

𝑖 are randomly chosen from the range [1, NP]. The parameter F 

represents the mutation scaling factor (F ∈ [0,1]) which controls the amplification of the 

difference vectors to avoid stagnation of the search process. 𝑋𝑏𝑒𝑠𝑡 is the best individual 

vector with the best fitness in the population at generation G. The whole process is defined 

in Algorithm 2 [50].  

4.2.1.3 Crossover 

To complement the differential mutation search strategy, DE also employs uniform 

crossover. Sometimes referred to as discrete recombination, (dual) crossover builds trial 

vectors out of parameter values that have been copied from two different vectors. 

𝑈𝑖, 𝑗(𝑡 + 1) =  {
𝑉𝑖𝑗(𝑡 + 1)

𝑋𝑖𝑗(𝑡)
 𝒊𝒇 (𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑟 )

𝑒𝑙𝑠𝑒
                                          (4.7) 

The crossover probability, Cr ∈ [0,1], is a user-defined or a random value that controls 

the fraction of parameter values that are copied from the mutant. To determine which 

source contributes a given parameter, uniform crossover compares Cr to the output of a 

uniform random number generator, rand (0,1). If the random number is less than or equal 

to Cr, the trial parameter is inherited from the mutant, Vij. Otherwise, the parameter is 

copied from the vector, Xij. In addition, the trial parameter with randomly chosen index, 

rand, is taken from the mutant to ensure that the trial vector does not duplicate Xij [51].  
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4.2.1.4 Selection 

Based on a greedy selection scheme, the offspring (which is the vector generated after 

crossover), would replace the target vector 𝑋𝑖 if its fitness value is better or equal to the 

target vector to be a member of the population in the next generation.  

𝑋𝑖(𝑡 + 1) =  {
𝑈𝑖(𝑡 + 1)

𝑋𝑖(𝑡)
 𝒊𝒇 (𝐹(𝑈𝑖(𝑡+1)) ≤ 𝐹(𝑋𝑖(𝑡)) )

𝑒𝑙𝑠𝑒
                                   (4.8) 

Where F() is the objectives function to be minimized. Therefore, based on the greedy 

selection scheme, if the objective function value (fitness) of the trial vector [𝑈𝑖(𝑡 + 1)] 

created after crossover is lower than that of the target vector, then 𝑈𝑖(𝑡 + 1) will be the 

individual going into the next generation. Likewise, if 𝑋𝑖(𝑡)has a lower fitness value, 

then 𝑈𝑖(𝑡 + 1), 𝑋𝑖(𝑡) will remain and moved into the next generation [47].  
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4.2.2 DE Flow diagram  
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Figure 4.5: DE Flow Diagram 

 

 

 

 

 

 



41 
 

4.2.3 DE Pseudo Code  

 

Algorithm 2: Differential Evaluation Algorithm,  DE/best/1 scheme 

1: Start Procedure 

              Inputs: 

            F: Mutation Factor 

            Cr: Crossover rate 

            NP: Population size  

            D: Problem dimension  

2. Initialize population using Randomly uniformly distributed and evaluate 

fitness 

3. While (NFC ≤ NFCmax) 

4.      For (i=1, i ≤ NP, i++ ) Do 

5.              //Mutation: 

6.               Select the best particle (Xbest) 

7.               Select the parent  

8.                         𝑉𝑖𝐺 = 𝑋𝑏𝑒𝑠𝑡𝐺 + 𝐹 ∗ (𝑋𝑟1
𝑖𝐺 − 𝑋2𝑖𝐺) 

9.           For j=1 to D    // Crossover  

10.            if (rand(0,1) ≤ Cr ) Then 

11.                 Ui,j(t+1) = Vij(t+1) 

12.            else 

13.                 Ui,j(t+1) = Xij(t)  

14.            End if 

15.        End For 

16.           // Selection  

17.            Evaluate Ui,(t+1) 

18.    End For 

19. End While 

20.     Output: Best Solution 

21. End Procedure 

 

 

 

 

 

 



42 
 

4.3 Parameters Selection 
There are two different approaches for parameter value selection: off-line 

parameter initialization and online parameter tuning. In off-line parameter initialization, 

the values of different parameters are fixed before the execution of the algorithm. These 

values are usually decided upon through empirical study. In online parameter tuning, 

function is built-in to change the parameters while the algorithm is being executed. Online 

approach can be classified into two main groups, dynamic and adaptive. In a dynamic 

parameter updating approach, the change of the parameter value is performed without 

considering the search progress. The adaptive approach changes the values according to 

the search progress [52]. 

Hence, for this thesis, the parameters for both algorithms were decided using the 

off-line parameter initialization where the parameters were adjusted one by one until 

optimal results were achieved.  

4.3.1 PSO parameters  

The parameters fir PSO algorithm were manually tuned one by one as mentioned 

above. This helped achieve close to best setting possible for this application. But to achieve 

the most optimal parameters for PSO algorithm this application all the possible setting has 

to be run and compared as shown in the Table 4.1. Due lack of computational power 

available all the possible could evaluated.   

Table 4.1: All the possibilities 

Parameters  Range  Step-size  Possibilities  

Cognitive coefficient c1  0 to 2.6  0.1  27  

Social coefficient c2  0 to 2.6  0.1  27  

Pop.  Initialization  UniR, LHS, 

CLHS  

-  3  

Population Size (NP)  5, 10, 50, 100  -  4  

Inertia Coefficient (w)  0 to 1  0.1  11  

Total Number of Combinations   96,228  

 

Hence, the parameters used for the PSO algorithm are shown in Table 4.2 below. 

These parameters are chosen on the basis of previous work done by different researchers 

and some testing done offline [47].  
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Table 4.2: Parameters used for PSO algorithm 

PSO Parameters Values 

w w (1 -alpha) 

alpha 0.05 

c1 2.2 

c2 2.2 

r1, r2  random 

Population Size 500 

 

4.3.2 DE Parameters 

The parameters for DE algorithm were manually tuned one by one as mentioned 

above. This helped achieve close to best setting possible for this application. But to achieve 

the most optimal parameters for DE algorithm this application all the possible setting have 

to be run and compared As shown in the Table 4.3. Due to lack of computational power 

available all the possible could not be evaluated.  

Table 4.3: All the possibilities 

Parameters  Range  Step-size  Possibilities  

Crossover rate (Cr)  0 to 1  0.05  21  

Mutation Factor (F)  0 to 1  0.05  21  

Pop. Initialization  UniR, LHS, CLHS  -  3  

Population Size (NP)  5, 10, 50, 100  -  4  

Mutation Schemes 

(DE/x/y/z)  

DE/rand/1,  

DE/best/1,   

DE/rand-to-best/1  

-  3  

Total Number of Combinations   15,876  

 

Hence, the parameters used for the DE algorithm are shown in Table 4.4 below. These 

parameters are chosen on the basis of previous work done by different researchers [47].  

Table 4.4: Parameters used for DE algorithm 

DE Parameters Values 

F 0.8 

CR 0.5 

Population Size 500 
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4.4 EMS system flow diagram 
The layout of the EMS is presented below. The flow chart in Figure 15 illustrates 

the main procedure of the system. The various steps in the procedure are discussed next. 

4.1 Flow Diagram  

 

Input Data

(Load Demand, Solar and Wind 

Forecasted power and DGs limits)

Decision Making Algorithm 

(PSO/DE)

Parameters Initialization

(control and Population Size) 

Evaluate initial 

fitness 

Main Loop 

for 

Optimization

Ite = itemax

Output

(Power reference for each DGs)

YES

NO

EMS 

Optimization 

Process

 

Figure 4.4: PSO Algorithm Flow chart 

 



45 
 

Step 1 (Input data):   Forecasted Data such as load demand, Power available from 

Wind and Solar, and Power limits for generators are inputted in the system. 

 

Step 2 (Decision making algorithm): Since in this work we are using two different 

optimization algorithms, therefore, before we start, we have to select which algorithm 

to apply.  

 

Step 3 (Parameters Initialization): Both PSO and DE have optimization parameters 

that need to be set before starting the optimization process. For PSO, parameters that 

need to be set are (c1, c2, w and population size). And for DE, parameters that need to 

be set are (F, CR, and population size). This help with the initial population generation. 

 

Step 4 (Optimization Process): PSO/DE algorithm is applied to find the optimum way 

to dispatch all available DGs to satisfy the load demand, while minimizing the 

operating cost for the MG.   

 

Step 5 (Output): The termination condition is checked, and if it is satisfied, the system 

would output the power reference signal for each DG at each time interval. If the 

termination condition is not satisfied, the system would go back to Step 3 

 

 

 

 

 

 

 

 



46 
 

5.0 Results & Discussion  

In this section, the results of both PSO and DE based EMS are presented and analyzed. 

The optimal dispatch of the DGs and main grid is investigated for a 24-hour operation 

period. Two different case studies of MG system are presented:  

 First case study: The optimization model of EMS is analyzed for a grid connected 

MG. The load demand used for this case study is presented in Figure 3.1 in red. In this 

case study, the main area of focus is the ability of the algorithms (PSO and DE) to 

economically optimize the purchasing/ selling power from/to the grid to reduce the MG 

operation cost. 

 Second case study: This presents the optimization model of EMS for MG in islanded 

mode suppling only to critical loads. The load demand used for this case study is 

presented in Figure 3.1 in blue. In this case study, the main area of focus is the ability 

of the algorithms to utilize the ramping feature of the three generators (CHP, Diesel 

generator and Natural gas) and optimize them for an economically and stable operation 

of the MG. 

5.1 Grid Connected Mode 

 In this case study, the optimization of the EMS for the installed capacity of the 

CHP, Diesel generator, Natural gas generator, Wind, Solar and main grid is investigated 

for a 24-hour operation period. The optimized EMS model considers the load demand, 

main grid tariff, and available power from wind and PV. Additionally, all generators are 

assumed to be in operating mode and the algorithm aimed to find the minimum operating 

cost while satisfying load demand.  All the results achieved from both PSO and DE for this 

case study are presented below.  

 

5.1.1 PSO Based EMS (Grid Connected)  

Performance Based on different Population Size 

Before the optimal result can be analyzed from PSO algorithm, the ideal population 

size has to determine by the test shown in Figure 5.1. The figure below depicts the 

performance of PSO algorithm with different population sizes (NP = 50, 100, 300, 500). 
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To achieve accurate results for comparison, the system was averaged over 100 iterations. 

As can be observed, different population sizes have a clear impact on the performance of 

the algorithm. Each population size produced a different convergence point with a different 

number of runs required. From this result, it was determined that the algorithm performed 

best for the highest population size of 500.  The breakdown of the results is presented in 

Table 7, which shows the convergence point in terms of number of Runs and the most 

optimal cost achieved.   

 
Figure 5.1: PSO performance with Different Population Size (Grid Connected) 

 

 
Table 5.1: Optimal Operation Cost with different Population Size (PSO) 

Population 

Size (NP) 

Convergence Point 

(Runs) 

Best Operation 

Cost ($/day) 

50 486 2491.610 

100 451 2490.900 

300 362 2486.526 

500 352 2486.103 
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Best Solution by PSO (Grid Connected) 

 Figure 5.2, depicts the best output achieved from the PSO EMS for grid-connected mode. 

The algorithm was able to find the optimal solution to dispatch all available DGs to satisfy 

the given load demand for the 24 hours time period. It can be observed that the system is 

able to buy and sell power from the grid during off-peak and peak hours (Red line). 

Likewise, it can be seen in the output three generators are being operated at full capacity at 

almost all time because for the system is more cost effective if the system buys and sells 

power rather than ramping the generators up and down to match the demand at each time 

interval.  The optimal cost of operation during the 24-hour period achieved by the PSO 

algorithm is $2486.103.  

 

 
Figure 5.2: PSO based EMS output for Grid connected mode (Case study 1, CHP (Gen1), Diesel generator 

(Gen2) and Natural gas generator (Gen3)) 
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Table 5.2: EMS output for PSO Grid connected mode breakdown (Case study 1, CHP (Gen1), Diesel 

generator (Gen2) and Natural gas generator (Gen3)) 

Time Gen 1 Gen2 Gen 3 Solar Wind Grid Sum Demand 

1 1.500 1.000 1.000 0.000 0.000 -0.200 3.300 3.300 

2 1.500 1.000 1.00 0.000 0.000 -0.200 3.300 3.300 

3 1.500 1.000 1.000 0.000 0.004 -0.304 3.200 3.200 

4 1.500 1.000 1.000 0.000 0.009 -0.359 3.150 3.150 

5 1.500 1.000 1.000 0.000 0.011 0.114 3.625 3.625 

6 1.500 1.000 1.000 0.000 0.056 0.644 4.200 4.200 

7 1.500 1.000 1.000 0.013 0.094 0.743 4.350 4.350 

8 1.500 1.000 1.000 0.033 0.0151 0.651 4.200 4.200 

9 1.500 1.000 1.000 0.053 0.219 0.328 4.100 4.100 

10 1.500 1.000 1.000 0.070 0.286 -0.206 3.650 3.650 

11 1.500 1.000 1.000 0.077 0.339 -0.616 3.300 3.300 

12 1.425 1.000 0.929 0.083 0.362 -1.000 2.800 2.800 

13 1.368 1.000 0.999 0.082 0.375 -1.000 2.824 2.824 

14 1.500 0.999 0.970 0.080 0.400 -1.000 2.949 2.949 

15 1.500 1.000 1.000 0.073 0.350 -0.623 3.300 3.300 

16 1.500 1.000 1.000 0.059 0.267 -0.326 3.500 3.500 

17 1.500 1.000 1.000 0.040 0.099 0.161 3.800 3.800 

18 1.500 1.000 1.000 0.016 0.030 0.754 4.300 4.300 

19 1.500 1.000 1.000 0.020 0.000 0.880 4.400 4.400 

20 1.500 1.000 1.000 0.000 0.000 0.800 4.300 4.300 

21 1.500 1.000 1.000 0.000 0.000 0.640 4.140 4.140 

22 1.500 1.000 1.000 0.000 0.000 -1.000 2.500 2.500 

23 1.500 1.000 1.000 0.000 0.000 -0.175 3.325 3.325 

24 1.500 1.000 1.000 0.000 0.000 -0.550 2.950 2.950 

Total 35.79337 23.99993 23.8997 0.699 2.9161 - 84.54 84.54 

 

The results obtained by the algorithm in Figure 5.2 are presented in Table 5.2. The 

table shows the optimal way to dispatch the DGs based on the availability of the units to 

match the load demand in Figure 3.1 by the PSO algorithm for individual time intervals. 

With a closer look, it can be seen that the output of the algorithm is accurate for all time 

intervals. The dispatch power matches the load demand, which is acceptable for the 

selected system. Therefore, the system is able to find an optimal solution for the scenario 

presented with a minimal cost.    
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Table 5.3: Operation Cost breakdown for each time interval (PSO) 

Time (h) Cost ($) Time (h) Cost ($) 

1 55.202 13 132.34 

2 55.202 14 120.29 

3 27.507 15 107.25 

4 73.486 16 99.625 

5 84.457 17 91.315 

6 122.69 18 142.88 

7 126.45 19 233.20 

8 117.15 20 109.70 

9 155.40 21 95.782 

10 137.59 22 44.202 

11 108.02 23 65.214 

12 145.73 24 34.027 

 

Table 5.3 shows the breakdown of the operating cost of the MG per hour for the results 

shown in Figure 5.2 and Table 5.2. It can be observed from the table that the operation cost 

during off-peak hours (when demand is lower than generation) is noticeably lower than the 

operating during peak hours (5-9 & 17-21). This is due to fact that MG is able to the cost 

of operation when the generation is higher than load demand by selling power back to the 

main grid. Likewise, when generation is lower than demand, it has to pay extra by buying 

excess power from the main grid. This shows that the algorithm is capable of making 

decisions for when to buy/sell power to/from main grid and this is very beneficial for the 

overall system. 

5.1.2 DE Based EMS (Grid Connected) 

Performance Based on different Population Size 

Before the optimal result can be analyzed from DE algorithm, the optimal 

population size has to determine by the test shown in Figure 5.3. The figure depicts the 

performance of DE algorithm with different population size (NP = 50, 100, 300, 500). To 

achieve accurate results for comparison the system was averaged over 100 iterations. As 

can be observed, the starting point for each graph is different; this is due to the fact that the 

system is using uniform random population initialization. Likewise, different population 

size has a major impact on the performance of the DE algorithm. Each population size 

produced a different convergence point for the algorithm or for this system different 
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optimal operation cost. From this result, is was determined that the algorithm performed 

best for the highest population size of 500.  The breakdown of the results is presented in 

Table 5.4, which it shows the convergence point in number of Runs and the optimal cost 

achieved.   

 

 
Figure 5.3: DE performance with Population Size for Grid Connected Mode 

 

Table 1.4:Optimal Operation Cost with different Population Size (DE) 

Population 

Size (NP) 

Convergence Point 

(Runs) 

Best Operation 

Cost ($/day) 

50 No Convergence 2628.900 

100 No Convergence 2593.510 

300 475 2569.800 

500 450 2566.100 
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Best Solution by DE (Grid Connected) 

Figure 5.4, depicts the best output achieved from the DE EMS for grid-connected 

mode. The algorithm was able to find the optimal solution to dispatch DGs to satisfy the 

given load demand for the time period. It can be observed that the system is able to buy 

and sell power from the grid during off-peak and peak hours. Similarly, to PSO output in 

Figure 5.2 the DE output has all three generators operating at full capacity at almost all 

time because for the system is more cost effective if the system buys and sells power rather 

than ramping the generators up and down to match the demand at each time interval.  The 

total cost of operation during the 24-hour period achieved is $2540.14.  

 

 
Figure 5.4: EMS output for DE Grid connected mode (Case study 1, CHP (Gen1), Diesel generator (Gen2) 

and Natural gas generator (Gen3)) 
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Table 5.5: EMS output for DE Grid connected mode breakdown (Case study 1, CHP (Gen1), Diesel 

generator (Gen2) and Natural gas generator (Gen3)) 

Time Gen 1 Gen2 Gen 3 Solar Wind Grid Sum Demand 

1 1.500 1.000 1.000 0.000 0.000 -0.200 3.300 3.300 

2 1.500 0.896 0.996 0.000 0.000 -0.092 3.300 3.300 

3 1.500 1.000 1.000 0.000 0.004 -0.304 3.200 3.200 

4 1.425 1.000 1.000 0.000 0.009 -0.284 3.150 3.150 

5 1.488 0.999 1.000 0.000 0.011 0.125 3.625 3.625 

6 1.483 1.000 1.000 0.000 0.056 0.660 4.200 4.200 

7 1.500 0.998 0.995 0.013 0.094 0.749 4.350 4.350 

8 1.494 1.000 0.998 0.033 0.015 0.658 4.200 4.200 

9 1.500 1.000 0.999 0.053 0.219 0.328 4.100 4.100 

10 1.500 0.994 0.995 0.070 0.286 -0.195 3.650 3.650 

11 1.475 1.000 1.000 0.077 0.339 -0.591 3.300 3.300 

12 1.413 1.000 0.879 0.083 0.362 -0.938 2.800 2.800 

13 1.483 0.878 0.999 0.082 0.375 -0.993 2.824 2.824 

14 1.406 1.000 0.958 0.080 0.400 -0.895 2.949 2.949 

15 1.500 0.989 1.000 0.073 0.350 -0.612 3.300 3.300 

16 1.490 1.000 0.997 0.059 0.267 -0.313 3.500 3.500 

17 1.393 1.000 0.999 0.040 0.099 0.267 3.800 3.800 

18 1.500 1.000 1.000 0.016 0.030 0.754 4.300 4.300 

19 1.500 1.000 1.000 0.020 0.000 0.880 4.400 4.400 

20 1.500 1.000 0.991 0.000 0.000 0.808 4.300 4.300 

21 1.500 1.000 0.995 0.000 0.000 0.644 4.140 4.140 

22 1.400 0. 0.969 0.000 0.000 -0.900 2.500 2.500 

23 1.470 1.000 1.000 0.000 0.000 -0.145 3.325 3.325 

24 1.500 1.000 1.000 0.000 0.000 -0.550 2.950 2.950 

Total 35.52448 23.75624 23.77731 0.699 2.9161  84.54 84.54 

 

The results obtained by the algorithm in Figure 5.4 are presented in Table 5.5. The 

table shows the optimal way to dispatch the DGs based on the availability of the unit to 

match the load demand in Figure 3.1 by the DE algorithm for individual time intervals. 

With a closer look, it can be seen that the output of the algorithm is accurate for all time 

intervals. The dispatch power matches the load demand, which is acceptable for the 

selected system. Therefore, the system is able to find an optimal solution for the scenario 

presented with a minimal cost.    
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Table 5.6: Operation Cost breakdown for each time interval (DE) 

Time (h) Cost ($) Time (h) Cost ($) 

1 57.202 13 132.62 

2 59.831 14 124.80 

3 33.500 15 107.72 

4 76.728 16 100.14 

5 90.486 17 100.55 

6 124.15 18 142.88 

7 127.03 19 233.20 

8 119.74 20 110.45 

9 157.40 21 96.187 

10 138.03 22 50.050 

11 109.08 23 66.483 

12 148.40 24 34.027 

 

Table 5.6 shows the breakdown of the operating cost of the MG per hour. It can be 

observed from the table that the operation cost during off-peak hours (when demand is 

lower than generation) is noticeably lower than the operating during peak hours (5-9 & 17-

21). This is due to fact that MG is able to save money when the generation is higher than 

load demand by selling power back to the main grid. Likewise, when generation is lower 

than demand, it has to pay extra by buying excess power from the main grid. This shows 

that the algorithm is capable of making decisions for when to buy/sell power to/from main 

grid and this is very beneficial for the overall system. 

5.1.3 Comparison between PSO & DE (Grid connected mode) 

Performance  

Figure 5.5, shows the comparison between the best performance system of PSO and 

DE. As it can be observed both systems start from the same initialization point even though 

both systems used uniform random initialization technique. But the DE has a slow start as 

where PSO drop moves towards the convergence point faster. This shows that PSO is able 

explore the search space faster and towards the optimal solution faster than the DE 

algorithm. Therefore, it is clear from the result shown below, that the PSO algorithm was 

able to converge faster and find the most optimal solution for the application.  
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Figure 5.5: Comparison of PSO and DE best performance 

 

 
Table 5.7: Optimal Cost for PSO and DE (NP = 500) 

Algorithm Convergence Point 

(Runs) 

Best Operation Cost 

($/day) 

PSO 352 2486.103 

DE 450 2540.100 

 

Operational Cost ($/hr) 

Figure 5.6 depicts the comparsion between the most optimal operation cost ($/hr) 

achieved by PSO and DE. As can be observed for most part of the 24 hour period the PSO 

and DE output the same or very similar results for the operational cost with an approximate 

offset of -5 $/hr. But for a some time interval the PSO algorithm is able to produce a lot 

lower operational cost than the DE algorithm. For example at time (T =17) the PSO 

produced a hourly operational cost of $91.315/hr and the DE produced $100.553/hr, is a 

difference of approximatly 10$. Then the second major difference is hourly operational 

cost is at (T = 22), where the difference between the PSO and DE algroithm of 

approximatly 6 $.  
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Figure 5.6: Operation Cost Comparison for Grid connected system (PSO & DE) 

 

Therefore, based on this result PSO algroithm performed better than DE by producing 

lower full day operational cost of $2484.10 compare to $2540.65 The result shown in 

Figure 5.6 above it is further broken down in Table 5.8.  

Table 5.8: Operation Cost Comparison for Grid connected system (PSO Vs DE) 

Time 

(h) 

Cost ($) 

(PSO) 

Cost ($) 

(DE) 

Time 

(h) 

Cost ($) 

(PSO) 

Cost ($) 

(DE) 

1 55.20229 57.202 13 132.3468 132.62 

2 55.20229 59.831 14 120.2908 124.80 

3 27.50076 33.500 15 107.2536 107.72 

4 73.48633 76.728 16 99.62671 100.14 

5 84.45707 90.486 17 91.31591 100.55 

6 122.6948 124.15 18 142.889 142.88 

7 126.4564 127.03 19 233.2026 233.20 

8 117.1529 119.74 20 109.7023 110.45 

9 155.404 157.40 21 95.7823 96.187 

10 137.5986 138.03 22 44.20229 50.050 

11 108.0263 109.08 23 65.21479 66.483 

12 145.7343 148.40 24 34.02729 34.027 
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Utilization of Grid  

The main objective of the Grid connected EMS is to opimize the utilization of the 

Grid to help minimize the operational cost. Therefore, the the comparison between the grid 

utlizational of both algorithm is made in the Figure 5.7.  As it can be observed in the figure 

below that PSO and DE grid power output fairly similar for alomost all time intervals, 

excluding few time slots. At time equal 3 hours, the PSO grid power is optiomzed to be –

0.31 MW and for  DE grid power is optimized to be -0.22 MW. At time equal 22 hours, 

the PSO grid power is optiomzed to be -1.000 MW and for  DE grid power is optimized to 

be -0.9 MW. This shows that at  time interval 22 the PSO EMS id selling power to main 

grid and the DE EMS is buying power from the main grid, therefore this descision reduced 

the operating cost at this time interval from $55.42 to $44.20 which a difference of $11.21. 

 

 
Figure 5.75: EMS Grid output Comparison (PSO& DE)  
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Table 5.8: Grid output Comparison PSO Vs DE 

Time 

(h) 

Grid 

Power 

(PSO) 

Grid 

Power 

(DE) 

Time 

(h) 

Grid 

Power 

(PSO) 

Grid 

Power 

(DE) 

1 -0.200 -0.179 13 -1.000 -0.999 

2 -0.200 -0.194 14 -1.000 -0.954 

3 -0.304 -0.229 15 -0.623 -0.621 

4 -0.359 -0.341 16 -0.326 -0.250 

5 0.114 0.180 17 0.161 0.170 

6 0.644 0.668 18 0.754 0.777 

7 0.743 0.779 19 0.880 0.882 

8 0.651 0.706 20 0.800 0.812 

9 0.328 0.360 21 0.640 0.662 

10 -0.206 -0.182 22 -1.000 -0.900 

11 -0.616 -0.588 23 -0.175 -0.154 

12 -1.000 -0.947 24 -0.550 -0.534 

 

5.2 Islanded Mode 

Similar to the pervious case study, the optimized EMS is implemented to solve the 

energy consumption problem for a MG for 24-hour operation period. Except, in this case, 

the MG is disconnected from the main grid and is running in islanded condition. The load 

demand used for this case is presented in Figure 3.5. In this study, the system does not have 

the option to buy/sell power, therefore the algorithm will have to decide the optimal way 

to dispatch the three available generators. Since it is assumed that the PV and Wind 

generators will run on full available power for each time interval. 

 

7.2.1 PSO 

Performance based on different Population Size 

Figure 5.8, depicts the performance of PSO algorithm with different population size 

(NP = 50, 100, 300, 500) in islanded mode. Similar to grid connected system to achieve 

accurate results for comparison, the system was averaged over 100 iterations. As can be 

observed, different population size has a small impact on the performance of the PSO 

algorithm in islanded mode of operation. Each population size made the system 
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convergence at a different optimal solution. From this result, it was determined the 

algorithm performed best for the highest population size of 500. The high population size 

made the system converge faster compared to the other population size and it also produced 

the most optimal solution for the system. The breakdown of the result is presented in Table 

5.9, which shows the convergence point in number of Runs and the optimal cost achieved 

for system.   

 

 
Figure 6: PSO performance with Population Size (Islanded mode) 

 

Table 2: PSO performance with Population Size (Islanded mode) 

Population Size 

(NP) 

Convergence Point 

(Runs) 

Best Operation Cost 

($/day) 

50 350 2225.652 

100 329 2224.563 

300 195 2224.336 

500 192 2224.226 
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Best Solution (PSO Islanded Mode) 

Figure 5.9 depicts the best output achieved from the PSO based EMS for islanded 

mode of operation. The algorithm was able to find the optimal solution to dispatch every 

generator to satisfy the given load demand for each time interval. As can be observed, 

power from the three generators CHP (Gen1), Diesel generator (Gen2) and Natural gas 

generator (Gen3) are being rapidly ramped up/ down for each time interval to help satisfy 

the load demand. This ramping in the generator powers has to be controlled by adding a 

ramp rate constraint in the algorithm, but for the present study the ramp rate has been 

ignored due to the use of a one-hour time step. The total operation cost achieved during the 

24-hour period for case is $2224.226. 

 

 

 
Figure 5.9: PSO based EMS output for Islanded mode (Case study 1, CHP (Gen1), Diesel generator 

(Gen2) and Natural gas generator (Gen3)) 
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Table 5.10: EMS output for PSO Islanded mode breakdown (Case study 1, CHP (Gen1), Diesel generator 

(Gen2) and Natural gas generator (Gen3)) 

Time Gen 1 Gen2 Gen 3 Solar Wind Sum Demand 

1 1.387 0.851 0.061 0.000 0.000 2.300 2.300 

2 1.500 0.444 0.355 0.000 0.000 2.300 2.300 

3 1.498 0.546 0.151 0.000 0.004 2.200 2.200 

4 1.500 0.100 0.240 0.000 0.009 1.850 1.850 

5 1.176 0.801 0.035 0.000 0.011 2.025 2.025 

6 1.500 0.122 0.521 0.000 0.056 2.200 2.200 

7 1.499 0.685 0.057 0.013 0.094 2.350 2.350 

8 1.345 0.999 0.005 0.033 0.015 2.400 2.400 

9 1.500 0.779 0.048 0.053 0.219 2.600 2.600 

10 1.500 0.100 0.694 0.070 0.286 2.650 2.650 

11 1.498 0.546 0.038 0.077 0.339 2.500 2.500 

12 1.500 0.153 0.001 0.083 0.362 2.100 2.100 

13 0.763 1.000 0.004 0.082 0.375 2.225 2.225 

14 1.497 0.212 0.060 0.080 0.400 2.250 2.250 

15 0.974 1.000 0.002 0.073 0.350 2.400 2.400 

16 1.500 0.391 0.082 0.059 0.267 2.300 2.300 

17 1.130 0.997 0.033 0.040 0.099 2.300 2.300 

18 1.500 0.557 0.346 0.016 0.030 2.450 2.450 

19 1.500 0.803 7.66E-02 0.020 0.000 2.400 2.400 

20 1.149 1.000 0.002 0.000 0.000 2.150 2.150 

21 1.497 0.493 0.148 0.000 0.000 2.140 2.140 

22 0.697 0.998 0.004 0.000 0.000 1.700 1.700 

23 1.499 0.206 0.118 0.000 0.000 1.825 1.825 

24 1.152 0.659 0.038 0.000 0.000 1.850 1.850 

Total 32.26983 14.4514 3.128672 0.699 2.9161 54.74 53.477 

 

The results obtained by the algorithm in Figure 5.9 are presented in Table 5.10. The 

table shows the optimal way to dispatch the DGs based on the availability of the unit to 

match the load demand in Figure 3.1 by the PSO algorithm for individual time intervals. 

With a closer look, it can be seen that the output of the algorithm is accurate for all time 

intervals. The dispatch power matches the load demand, which is acceptable for the 

selected system. Therefore, the system is able to find an optimal solution for the scenario 

presented with a minimal cost.    
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Table 5.11: Operation Cost breakdown for each time interval (PSO islanded mode) 

Time 

(h) 

Cost ($) 

(PSO) 

Time 

(h) 

Cost ($) 

(PSO) 

1 63.5384 13 188.7163 

2 63.53771 14 175.3562 

3 40.33024 15 163.2768 

4 88.60498 16 133.8951 

5 74.09269 17 113.3472 

6 66.25696 18 76.90222 

7 61.43464 19 76.95668 

8 60.08828 20 74.46201 

9 126.5115 21 39.69226 

10 146.1939 22 39.69276 

11 134.3949 23 87.16381 

12 63.5384 24 72.32373 

 

Table 5.11, shows the breakdown of the operating cost of the MG in islanded mode 

for each time interval. For this case study, the load demand did not have peak and off-peak 

hours because during islanded mode the system only provides power to the critical loads. 

From the data provided, it can be observed that from periods 10 to 17 hrs, the cost is 

noticeably greater than at other periods. This is due to the fact the load demand is near 

maximum critical load of 2.5 MW and all DGs, PV and Wind are in operation at the same 

time near their peak capacities. 
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5.2.2 DE 

Population Size 

Figure 5.10, depicts the performance of DE algorithm with different population size 

(NP = 50, 100, 300, 500) in islanded mode. To achieve accurate results for comparison the 

system was averaged over 100 iterations. As it can be observed different population size 

has a small impact on the performance of the DE algorithm. Each population size made the 

system convergence at a different optimal operation cost shown in Table 19. From this 

result it was determined the algorithm performed best for the highest population size of 

500. The high population size helped the algorithm converge faster and output the most 

optimal solution for the system. The breakdown of the results is presented in Table 5.12, 

which shows the convergence point in number of Runs and the optimal cost achieved.   

 

 
Figure 5.10: DE performance with Population Size (Islanded Mode) 
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Table 5.12: DE performance with Population Size for Islanded mode 

Population Size 

(NP) 

Convergence Point 

(Runs) 

Best Operation 

Cost ($/day) 

50 315 2225.101 

100 321 2224.987 

300 322 2224.652 

500 258 2224.593 

 

Best Solution (DE Islanded Mode) 

Figure 5.11 depicts the best output achieved from the DE based EMS for islanded 

mode of operation. The algorithm was able to find the optimal solution to dispatch every 

generator to satisfy the given load demand for each time interval. As it can be observed, 

power from the three generators CHP (Gen1), Diesel generator (Gen2) and Natural gas 

generator (Gen3) are being rapidly ramped up/ down for each time interval to help satisfy 

the load demand. This ramping in the generator powers has to be controlled by adding a 

ramp rate constraint in the algorithm, but for the present study the ramp rate has been 

ignored due to the use of a one-hour time step. The total operation cost achieved during the 

24-hour period for case is $2224.593. 

 
Figure 5.11: DE based EMS output for Islanded mode (Case study 1, CHP (Gen1), Diesel generator 

(Gen2) and Natural gas generator (Gen3)) 
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Table 5.13: EMS output for DE Islanded mode breakdown (Case study 1, CHP (Gen1), Diesel generator 

(Gen2) and Natural gas generator (Gen3)) 

Time Gen 1 Gen2 Gen 3 Solar Wind Sum Demand 

1 1.500 0.109 0.690 0.000 0.000 2.300 2.300 

2 1.500 0.100 0.700 0.000 0.000 2.300 2.300 

3 1.203 0.279 0.713 0.000 0.004 2.200 2.200 

4 1.415 0.401 0.023 0.000 0.009 1.850 1.850 

5 1.500 0.100 0.414 0.000 0.011 2.025 2.025 

6 1.500 0.100 0.544 0.000 0.056 2.200 2.200 

7 1.179 0.445 0.618 0.013 0.094 2.350 2.350 

8 1.279 1.000 0.072 0.033 0.015 2.400 2.400 

9 1.500 0.260 0.567 0.053 0.219 2.600 2.600 

10 1.427 0.333 0.533 0.070 0.286 2.650 2.650 

11 1.393 0.396 0.294 0.077 0.339 2.500 2.500 

12 0.782 0.854 0.018 0.083 0.362 2.100 2.100 

13 1.500 0.100 0.168 0.082 0.375 2.225 2.225 

14 1.279 0.237 0.252 0.080 0.400 2.250 2.250 

15 1.500 0.100 0.377 0.073 0.350 2.400 2.400 

16 1.500 0.433 0.040 0.059 0.267 2.300 2.300 

17 1.220 0.223 0.717 0.040 0.099 2.300 2.300 

18 1.494 0.383 0.525 0.016 0.030 2.450 2.450 

19 1.500 0.152 7.28E-01 0.020 0.000 2.400 2.400 

20 1.500 0.100 0.550 0.000 0.000 2.150 2.150 

21 1.472 0.100 0.567 0.000 0.000 2.140 2.140 

22 1.500 0.100 0.100 0.000 0.000 1.700 1.700 

23 1.500 0.100 0.225 0.000 0.000 1.825 1.825 

24 0.337 0.640 0.872 0.000 0.000 1.850 1.850 

Total 32.48491 7.053462 10.31153 0.699 2.9161 54.74 54.74 

 

The results obtained by the algorithm in Figure 5.11 are presented in Table 5.13. 

The table shows the optimal way to dispatch the DGs based on the availability of the unit 

to match the load demand in Figure 3.1 by the DE algorithm for individual time intervals. 

With a closer look, it can be seen that the output of the algorithm is accurate for all time 

intervals. The dispatch power matches the load demand, which is acceptable for the 

selected system. Therefore, the system is able to find an optimal solution for the scenario 

presented with a minimal cost.    
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Table 5.14: Operation Cost breakdown for each time interval (DE islanded mode) 

Time 

(h) 

Cost ($) 

(DE) 

Time 

(h) 

Cost ($) 

(DE) 

1 63.55372 13 175.3708 

2 63.54986 14 163.2964 

3 40.34741 15 133.9153 

4 88.62072 16 113.3669 

5 74.10577 17 76.91885 

6 66.27602 18 76.96894 

7 61.44523 19 74.47484 

8 60.10193 20 39.71133 

9 126.5223 21 39.70307 

10 146.2068 22 87.18027 

11 134.4097 23 72.33552 

12 188.7384 24 57.47315 

 

Table 5.14 shows the breakdown of the operating cost of the MG in islanded mode 

for each time interval. For this case study, the load demand did not have peak and off-peak 

hours because during islanded mode the system only provides power to the critical loads. 

From the data provided, it can be observed that from periods 10 to 17 hrs, the cost is 

noticeably greater than at other periods. This is due to the fact the load demand is near 

maximum critical load of 2.5 MW and all DGs, PV and Wind are in operation at the same 

time near their peak capacities. 

5.2.3 Comparison (PSO & DE Islanded mode) 

Performance of PSO and DE 

Figure 5.12, shows the comparison between the best performance of both PSO and 

DE EMS for islanded mode of operation. As it can be observed both systems start from a 

different initialization point because of uniform random initialization technique used for 

initialization of population. Hence, the DE algorithm initialized far away from the solution 

and was not able to catch up with the PSO algorithm. Where as, the PSO initial start point 

was fairly close to the optimal solution and was able to drop move towards the convergence 

point faster. Therefore, it is clear from the result shown below, that the PSO algorithm was 

able to converge faster and find the most optimal solution (Operation Cost) for the 

application. The results are further explained in Table 5.15.   
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Figure 5.12: Comparison of PSO and DE best performance (Islanded Mode) 

 

Table 5.15: Optimal Cost for PSO and DE for Islanded Mode (NP = 500) 

Algorithm Convergence Point 

(Runs) 

Best Operation Cost 

($/day) 

PSO 192 2224.226 

DE 258 2224.593 
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Operational Cost ($/hr) 

Figure 5.13 depicts the comparsion between the most optimal operation cost ($/hr) 

achieved by PSO and DE for the solution shown in Figure 24 & 26. As it can be observed 

for the 24 hour period the PSO and DE output the same or very similar results for the 

operational cost with an approximate offset of -1 $/hr. This results shows that both 

algorithms are able to find a similar convergence point and are performing very well. To 

show the similarity in the results, the output is shown in a Table 5.16. 

 
Figure 5.13: Operation Cost Comparison for Islanded mode (DE&PSO) 
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Table 5.16: Operation Cost Comparison for Islanded mode (DE&PSO) 

 Time 

(h) 

Cost ($) 

(PSO) 

Cost ($) 

(DE) 

Time 

(h) 

Cost ($) 

(PSO) 

Cost ($) 

(DE) 

1 63.5384 63.55372 13 175.3562 175.3708 

2 63.53771 63.54986 14 163.2768 163.2964 

3 40.33024 40.34741 15 133.8951 133.9153 

4 88.60498 88.62072 16 113.3472 113.3669 

5 74.09269 74.10577 17 76.90222 76.91885 

6 66.25696 66.27602 18 76.95668 76.96894 

7 61.43464 61.44523 19 74.46201 74.47484 

8 60.08828 60.10193 20 39.69226 39.71133 

9 126.5115 126.5223 21 39.69276 39.70307 

10 146.1939 146.2068 22 87.16381 87.18027 

11 134.3949 134.4097 23 72.32373 72.33552 

12 188.7163 188.7384 24 57.45677 57.47315 
 

The table shows the output comparsion between the optimal operation cost ($/hr) 

achieved by PSO and DE in the figure above. As mentioned the both algorithm are 

performing very similar to each other with a offset of ±1 $/hr. Therefore, for islanded mode 

both algorithms perfored equally well, but in comparison the PSO algorithm performed 

slightly better than DE algorithm. 
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Utilization of Generator 

The main objective of the islaned mode  EMS is to opimize the operation of  three 

different generators to help minimize the operational cost and match the load deamd. 

Therefore, the the comparison between the utlizational of the generators of both algorithm 

is made in the following sections. 

Generator 1: Combine Heat and Power (CHP) 

As it can be observed in Figure 5.14, that PSO and DE generator 1 (CHP) power 

output are very different from each other at almost each time interval. The PSO have 

optimizded the CHP to operate by ramping up and down for alomost every time interval to 

to help satisfy the load demand at  optimal operating cost. Where as, the DE algorithm has 

optimized the operation of the CHP system differently. The CHP has been optimized to 

operate close to full capacity for almost every time interval (between 1.5 to 12 MW) with 

minimal ramping, except at T= 12 and T= 24 where the  genertor in being down to 0.78 

MW amd 0.33 MW to help minimize the operational cost and match the load demand. 

Further breakdown the of results are presented in Table 24. 

 
Figure 5.14: CHP Output Power Comparison for Islanded mode (PSO & DE) 
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Table 5.17: Generator 1 Cost Comparison for Islanded mode (DE&PSO) 

Time (h) Power 

(MW) 

(PSO) 

Power 

(MW) 

(DE) 

Time 

(h) 

Power 

(MW) 

(PSO) 

Power 

(MW) 

(DE) 

1 1.387 1.500 13 0.763 1.500 

2 1.500 1.500 14 1.497 1.279 

3 1.498 1.203 15 0.974 1.500 

4 1.500 1.415 16 1.500 1.500 

5 1.176 1.500 17 1.130 1.220 

6 1.500 1.500 18 1.500 1.494 

7 1.499 1.179 19 1.500 1.500 

8 1.345 1.279 20 1.149 1.500 

9 1.500 1.500 21 1.497 1.472 

10 1.500 1.427 22 0.697 1.500 

11 1.498 1.393 23 1.499 1.500 

12 1.500 0.782 24 1.152 0.337 

 

 

Generator 2: Diesel generator 

The Figure 5.15 depicts the output power of the Diesel generator during the 

Islanding condition for both PSO and DE. As it can be observed both PSO and DE 

optimized the DG  very differently from each other at almost each time interval. The PSO 

have optimizded the diesel generator to operate at a very high ramping rate, the generator 

is being ramped up or down for every time interval. This is due the fact that system is being 

optimized with any ramping constraint, which are neglected because of one hour time 

intervals. However, the DE algorithm has optimized the operation of the diesel generator a 

little differently, where for the most part the  genertor in being opreated at powers below 

0.5MW. But at time 6 , 12 and 24 the power of the generator exceeds 0.5 MW of power 

(1MW, 0.9MW and 0.6 MW). Further breakdown the of results are presented in Table 5.18. 
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Figure 5.15: Diesel Generator Output Power Comparison for Islanded mode (PSO & DE) 

 

 

Table 5.18: Generator 2 Cost Comparison for Islanded mode (DE&PSO) 

 Time 

(h) 

Power 

(MW) 

(PSO) 

Power 

(MW) 

(DE) 

Time 

(h) 

Power 

(MW) 

(PSO) 

Power 

(MW) 

(DE) 

1 0.851 0.109 13 1.000 0.100 

2 0.444 0.100 14 0.212 0.237 

3 0.546 0.279 15 1.000 0.100 

4 0.100 0.401 16 0.391 0.433 

5 0.801 0.100 17 0.997 0.223 

6 0.122 0.100 18 0.557 0.383 

7 0.685 0.445 19 0.803 0.152 

8 0.999 1.000 20 1.000 0.100 

9 0.779 0.260 21 0.493 0.100 

10 0.100 0.333 22 0.998 0.100 

11 0.546 0.396 23 0.206 0.100 

12 0.153 0.854 24 0.659 0.640 
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Generator 3: Natural Gas generator 

As it can be observed in the figure below that PSO and DE Natural Gas generator 

power output are different from each other at almost each time interval. The PSO have 

optimizded the Natural gas generator to operate at a very high ramping rate, the generator 

is being ramped up or down for every time interval. This is due the fact that system is being 

optimized with any ramping constraint, which are neglected because of one hour time 

intervals. But, the DE algorithm has optimized the generator very differently. DE algorithm 

used the Natural gas generator in a form of a back up power supply. It operated the 

generator at the minimum power level for mijority of the 24 hours time period, but at some 

time interval such as 6 and 10 the generator is ramped up to 0.5 MW and 0.7 MW to help 

match the load demand. Further breakdown the of results are presented in Table 5.19. 

 
Figure 5.16: Natural Gas Generator Output Power Comparison for Islanded mode (PSO & DE) 
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Table 5.19: Generator 3 Cost Comparison for Islanded mode (DE&PSO) 

 Time 

(h) 

Power 

(MW) 

(PSO) 

Power 

(MW) 

(DE) 

Time 

(h) 

Power 

(MW) 

(PSO) 

Power 

(MW) 

(DE) 

1 0.061 0.690 13 0.004 0.168 

2 0.355 0.700 14 0.060 0.252 

3 0.151 0.713 15 0.002 0.377 

4 0.240 0.023 16 0.082 0.040 

5 0.035 0.414 17 0.033 0.717 

6 0.521 0.544 18 0.346 0.525 

7 0.057 0.618 19 0.076 0.727 

8 0.005 0.072 20 0.001 0.550 

9 0.048 0.567 21 0.148 0.567 

10 0.694 0.533 22 0.004 0.100 

11 0.038 0.294 23 0.118 0.225 

12 0.001 0.018 24 0.038 0.872 
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6.0 Conclusion and Future work 

6.1 Conclusion  

 The area of EMS in the last decade has generated tremendous research interest in 

its MG applications. An EMS is required to control the flow of power and match generation 

with the load within a MG during grid-connected and islanded modes of operation. An 

optimization algorithm is needed to minimise the cost of the energy drawn from the grid, 

generated within the grid and consumed by the loads. In this thesis, two optimization 

techniques - namely PSO and DE - are used to optimize an EMS for a generic MG for both 

grid-connected and islanded modes of operation to demonstrate the effectiveness of the 

optimization algorithms. The results show that PSO algorithm operated the MG in the most 

optimal way compared to DE, while minimizing the operational cost in either grid-

connected and islanded modes of operation. In grid connected mode, the PSO based EMS 

was able to find the most optimal solution to dispatch all available DGs and buy/sell power 

to/from main grid while minimizing operation cost as shown in Table 13. Similarly, in 

Islanded mode, the PSO based EMS was able to utilize three independent generators by 

ramping up or down to satisfy the load demand, while minimizing operation cost for MG 

and shown illustrated in Table 22.   

 The major contributions of this thesis are as follows: 

 Development of an EMS for a MG comprised of Combined Heat and Power (CHP) 

plant, Diesel generator, Natural gas-fired generator, Photovoltaic (PV) generator 

and Wind generator, for both the grid connected and islanded modes of operation 

in MATLAB (coding). 

 Development of the objective function for the system using the variable cost 

function for each DG in the MG model. These cost functions are described in 

Chapter 4. 

 Implementation of EMS using two different optimization algorithms: Particle 

Swarm Optimization (PSO) and Differential evolution (DE). Both belong to the 

stochastic, population-based algorithms.  
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The optimization of the system was done with two different algorithms, namely 

PSO and DE. The algorithms were investigated and the performance was tested under both 

modes of operations for the MG, i.e. grid connected and islanded mode. Results for grid 

connected mode show that the PSO algorithm is able to utilize the selling and buying power 

to and from the main grid better than the DE algorithm, to help reduce the total operation 

cost while satisfying the day ahead load demand. The optimal operation cost output by PSO 

was $2486.10 and optimal cost outputted by DE was $2564.14. The cost difference 

between the two algorithms is $78.03. Based on this result, it can be concluded that for grid 

connected mode, PSO-based EMS performed better than DE-based EMS.  

Unlike the grid-connected mode results achieved for islanded mode show that PSO 

performed slightly better than the DE algorithm. PSO algorithm is able to utilize the three 

generators independently by ramping up or down to satisfy the load demand, while 

minimizing operation cost a touch better than the DE algorithm. As shown in Tables 5.17, 

5.18 and 5.19, both algorithms optimized the three generators differently but achieved a 

very similar operation cost. The PSO was $2224.226 and optimal cost outputted by DE 

was $2224.593. The cost difference between the two algorithms is only $0.367. Based on 

this result, it can be concluded that for islanded mode, PS based EMS performed equally 

well as the DE system. 

6.2 Future work 

The following topics emanating from this research are considered for future work: 

Efficient EMS design: 

In this thesis the study was conducted for 24-hrs time period with one-hour 

intervals. Due to the large interval size, some constraints (such as, ramping of the 

generators and startup/shutdown cost of generators) are neglected. This was due to the lack 

of access to suitable computational resources. Therefore, for future work this can be 

extended to propose a MG EMS model with a smaller time interval (i.e. every 15 min).  

This will help to bring this study to be a more realistic implementation of an EMS, with 

that many more constraints being added to the model i.e.: ramping cost for all the 

generators to help control the rapid ramping of the generators in islanded mode of operation 

and to smooth out the operation.  
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Power Forecasting 

The power variations in solar and wind turbine generation emerge when clouds cover 

the solar arrays and wind speeds change abruptly. The PV and wind power output is 

difficult to predict, due to the performance being reliant on cloud shadowing, solar 

irradiance, temperature, wind etc. Design of better Power forecasting algorithms for both 

Wind and Solar, for a better understanding of the uncertainty of power is required. This 

will help build a stronger algorithm with is adaptable to dynamic changes experienced in 

the real world.  

Energy Storage System  

Energy storage is normally used in the system to provide stability for the system. For 

instance, energy storage within a power system can help optimize generation, transmission, 

and distribution, from integration of renewable energy generation to demand response 

programs improving distribution losses and performance of the system. In recent years, the 

use of renewable sources such as wind power into the power system network has been 

increasing. Therefore, power systems have faced serious concerns over their operation in 

terms of reliability. Integrating energy storage system devices into the power system is one 

of the solutions being proposed to overcome this concern in power systems. The profit 

margins of wind farm owners could also be increased by using these storage devices in the 

future.  

ESS present possibilities for the distribution system to have better performance in case 

of failure or outage in the system. In previous chapters, the necessity to have an ESS in 

today’s MGs and the optimal allocation of the battery have not been studied. The optimal 

sizing and placement of the battery in the system have been defined as another challenge 

in this area. In the case of a failure in a distribution system, i.e. when the system is 

temporarily being disconnected from the main grid, considering the location of the failure 

the whole system may be shut down. The distribution system normally has a radial 

architecture. So, based on the location of the battery, the loss of load could be controlled. 

To obtain an economical ESS, a battery sizing strategy has to be developed focusing on 

decreasing the peak load in the power distribution system. 
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Appendix (a) 

PSO based EMS (Matlab Code) 
%% parameters setting 

 Answer=zeros(24,6); 

 nvar=6; % number of variable 

 

 % Load Demand 

data1=[3.3 

3.3 

3.2 

3.15 

3.625 

4.2 

4.35 

4.1991 

4.1 

3.65 

3.3 

2.799 

2.824 

2.949 

3.3 

3.5 

3.8 

4.3 

4.4 

4.3 

4.14 

2.5 

3.325 

2.95 

]; 

  

   

lb=[0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0.004 -1 

   0.2 0.1 0.1 0 0.009 -1 

   0.2 0.1 0.1 0 0.011 -1  

   0.2 0.1 0.1 0 0.056 -1 

   0.2 0.1 0.1 0.013 0.094 -1  

   0.2 0.1 0.1 0.033 0.0151 -1 

   0.2 0.1 0.1 0.053 0.219 -1 

   0.2 0.1 0.1 0.07 0.286 -1 

   0.2 0.1 0.1 0.077 0.339 -1  

   0.2 0.1 0.1 0.083 0.362 -1 

   0.2 0.1 0.1 0.082 0.375 -1 

   0.2 0.1 0.1 0.08 0.4 -1 

   0.2 0.1 0.1 0.073 00.35 -1  

   0.2 0.1 0.1 0.059 0.267 -1 

   0.2 0.1 0.1 0.04 0.099 -1 

   0.2 0.1 0.1 0.016 0.03 -1 

   0.2 0.1 0.1 0.02 0 -1 
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   0.2 0.1 0.1  0 0 -1 

   0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0 -1]; % lower bound 

  

ub=[1.5 1 1 0 0 1    

    1.5 1 1 0 0 1    

    1.5 1 1 0 0.004 1    

    1.5 1 1 0 0.009 1   

    1.5 1 1 0 0.011 1   

    1.5 1 1 0 0.056 1   

    1.5 1 1 0.013 0.094 1    

    1.5 1 1 0.033 0.0151 1  

    1.5 1 1 0.053 0.219 1 

    1.5 1 1 0.07 0.286 1 

    1.5 1 1 0.077 0.339 1  

    1.5 1 1 0.083 0.362 1     

    1.5 1 1 0.082 0.375 1 

    1.5 1 1 0.08 0.4 1 

    1.5 1 1 0.073 0.35 1  

    1.5 1 1 0.059 0.267 1  

    1.5 1 1 0.04 0.099 1 

    1.5 1 1 0.016 0.03 1  

    1.5 1 1 0.02 0 1   

    1.5 1 1 0 0 1   

    1.5 1 1 0 0 1   

    1.5 1 1 0 0 1  

    1.5 1 1 0 0 1  

    1.5 1 1 0 0 1];%upper bound 

  

  

NP=500;              % number particle 

T=500;                  % max of iteration\ 

run = 100; 

  

W=1; 

C1=2.2; 

C2=2.2; 

  

alpha=0.01; 

  

%%% initialization 

tic 

empty.pos=[]; 

empty.cost=[]; 

empty.velocity=[]; 

  

% load('result.mat'); 

particle=repmat(empty,NP,1); 

% load('result_main2','gparticle') 

% results; 

  

best=zeros(T,run); 

AVR=zeros(T,run); 
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for runs =1:run 

for i=1:NP 

%   particle(i).pos= lb+rand(24,nvar).*(ub-lb); 

  particle(i).pos=(((ub)/NP)*i )+ rand(24,nvar).*((ub)/NP); 

% particle(i).pos=gparticle.pos; 

[particle(i).cost,particle(i).pos]=fitness_24_4(particle(i).pos,lb,ub,data1); 

particle(i).velocity=0; 

end 

  

bparticle=particle; 

  

[value,index]=min([particle.cost]); 

  

gparticle=particle(index); 

  

% main loop 

for t=1:T 

      for i=1:NP 

                  particle(i).velocity=W*particle(i).velocity... 

                              +C1*rand(24,nvar).*(bparticle(i).pos-particle(i).pos)... 

                              +C2*rand(24,nvar).*(gparticle.pos-particle(i).pos); 

           

         particle(i).pos=particle(i).pos+particle(i).velocity; 

          

         particle(i).pos=min(particle(i).pos,ub); 

         particle(i).pos=max(particle(i).pos,lb); 

           

          

         [particle(i).cost,particle(i).pos]=fitness_24_4(particle(i).pos,lb,ub,data1); 

                   

         if particle(i).cost<bparticle(i).cost 

             bparticle(i)=particle(i); 

              

             if bparticle(i).cost<gparticle.cost 

                 gparticle=bparticle(i); 

             end   

         end 

                  

      end 

      

          

 W=W*(1-alpha); 

  

 best(t, runs)=gparticle.cost; 

 AVR(t, runs)=mean([particle.cost]); 

  

  disp([ ' t = ' num2str(t)   ' BEST = '  num2str(best(t))]); 

%   disp([ ' t = ' num2str(t)   ' AVR = '  num2str(best(t))]); 

  

  

  

end 

Answer_Full_system=gparticle.pos; 

Answer_cost_Full_system(1, runs)=gparticle.cost;  
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for i = 1:24 

       a(i)= sum(15.30 + 0.00024.*Answer_Full_system(i,1).^2+0.21.*Answer_Full_system(i,1)+ 14.88 

+0.000435.*Answer_Full_system(i,2).^2+0.3.*Answer_Full_system(i,2)+ 9 

+0.000315.*Answer_Full_system(i,3).^2+0.306.*Answer_Full_system(i,3)); 

      

       c(i)=  (545.016.*(Answer_Full_system(i,4))); 

       d(i)= (155.616.* Answer_Full_system(i,5)); 

        

    if i~=0&& i < 8 

       if Answer_Full_system(i,6)> 0 

          F(i,1) = 133.5*(Answer_Full_system(i,6)); 

       elseif Answer_Full_system(i,6)< 0  

          F(i,1) = 66.6*(Answer_Full_system(i,6)); 

       end 

    end 

     

    if i~=7 && i < 12 

    if Answer_Full_system(i,6)> 0 

        F(i) = 180*(Answer_Full_system(i,6)); 

    elseif Answer_Full_system(i,6)< 0  

        F(i) = 90*(Answer_Full_system(i,6)); 

    end 

    end 

  

  if i~=11 && i < 18 

    if Answer_Full_system(i,6)> 0 

        F(i) = 132*(Answer_Full_system(i,6)); 

    elseif Answer_Full_system(i,6)< 0  

        F(i) = 66*(Answer_Full_system(i,6)); 

    end 

  end 

  

   if i~=17 && i < 20 

    if Answer_Full_system(i,6)> 0 

        F(i) = 180*(Answer_Full_system(i,6)); 

    elseif Answer_Full_system(i,6)< 0  

        F(i) = 90*(Answer_Full_system(i,6)); 

    end 

   end 

  

   if i~=19 && i <= 24 

    if Answer_Full_system(i,6)> 0 

        F(i) = 87*(Answer_Full_system(i,6)); 

    elseif Answer_Full_system(i,6)< 0  

        F(i) = 43.5*(Answer_Full_system(i,6)); 

    end 

   end 

        

       total_new_Full_system(i,runs)= a(i) + c(i)+ d(i)+F(i,1); 

end 

end 

% results 

disp('====================================================') 

% disp([' BEST    =  '  num2str(gparticle.pos)]) 
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disp([' BEST fitness    = '   num2str(gparticle.cost)]) 

disp(['  Time           =  '  num2str(toc)]) 

  

  

figure(1) 

plot(best,'r','LineWidth',2) 

hold on 

% plot(AVR(1:t),'b','LineWidth',2) 

  

xlabel('Runs') 

ylabel(' fitness ') 

  

legend('BEST') 

  

title (' PSO ') 

  

for i = 1:24 

A_PSO_FULL(i,1) = sum(total_new_Full_system(i,:))/run; 

end 

  

figure(2) 

plot(A_PSO_FULL) 

hold on 

xlabel('Time (h)') 

ylabel(' Cost ($) ') 

  

legend('COST') 

  

title (' PSO ') 

  

for j = 1:T 

BEST_PSO_FULL(j,1) = sum(best(j,:))/run; 

end 

 figure(3) 

plot(BEST_PSO_FULL) 

hold on 

  

xlabel('Runs') 

ylabel(' fitness ') 

  

legend('AVR') 

 title (' PSO ') 

  

figure(4) 

plot(Answer_Full_system,'LineWidth',2); 

  

xlabel('Time (h)') 

ylabel(' Power (MW) ') 

title (' PSO ') 
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Appendix (b) 

DE based EMS (Matlab Code) 
%% parameters setting 

  

Answer=zeros(24,6); 

  

nvar=6; % number of variable 

  

% load and lambda 

data1=[3.3 

3.3 

3.2 

3.15 

3.625 

4.2 

4.35 

4.1991 

4.1 

3.65 

3.3 

2.799 

2.824 

2.949 

3.3 

3.5 

3.8 

4.3 

4.4 

4.3 

4.14 

2.5 

3.325 

2.95]; 

  

lb=[0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0.004 -1 

   0.2 0.1 0.1 0 0.009 -1 

   0.2 0.1 0.1 0 0.011 -1  

   0.2 0.1 0.1 0 0.056 -1 

   0.2 0.1 0.1 0.013 0.094 -1  

   0.2 0.1 0.1 0.033 0.0151 -1 

   0.2 0.1 0.1 0.053 0.219 -1 

   0.2 0.1 0.1 0.07 0.286 -1 

   0.2 0.1 0.1 0.077 0.339 -1  

   0.2 0.1 0.1 0.083 0.362 -1 

   0.2 0.1 0.1 0.082 0.375 -1 

   0.2 0.1 0.1 0.08 0.4 -1 

   0.2 0.1 0.1 0.073 00.35 -1  

   0.2 0.1 0.1 0.059 0.267 -1 

   0.2 0.1 0.1 0.04 0.099 -1 

   0.2 0.1 0.1 0.016 0.03 -1 

   0.2 0.1 0.1 0.02 0 -1 
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   0.2 0.1 0.1  0 0 -1 

   0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0 -1 

   0.2 0.1 0.1 0 0 -1]; % lower bound 

  

ub=[1.5 1 1 0 0 1    

    1.5 1 1 0 0 1    

    1.5 1 1 0 0.004 1    

    1.5 1 1 0 0.009 1   

    1.5 1 1 0 0.011 1   

    1.5 1 1 0 0.056 1   

    1.5 1 1 0.013 0.094 1    

    1.5 1 1 0.033 0.0151 1  

    1.5 1 1 0.053 0.219 1 

    1.5 1 1 0.07 0.286 1 

    1.5 1 1 0.077 0.339 1  

    1.5 1 1 0.083 0.362 1     

    1.5 1 1 0.082 0.375 1 

    1.5 1 1 0.08 0.4 1 

    1.5 1 1 0.073 0.35 1  

    1.5 1 1 0.059 0.267 1  

    1.5 1 1 0.04 0.099 1 

    1.5 1 1 0.016 0.03 1  

    1.5 1 1 0.02 0 1   

    1.5 1 1 0 0 1   

    1.5 1 1 0 0 1   

    1.5 1 1 0 0 1  

    1.5 1 1 0 0 1  

    1.5 1 1 0 0 1];%upper bound 

  

  

NP=500;              % number particle 

T=500;                  % max of iteration 

run=100; 

  

F=0.8; 

CR = 0.5; 

  

  

%%% initialization 

tic 

empty.pos=[]; 

empty.cost=[]; 

empty.pcost=[]; 

empty.ccost=[]; 

empty.NEWcost=[]; 

empty.mutationcost=[]; 

empty.mutation=[]; 

empty.m=[]; 

empty.crossover=[]; 

  

% load('result.mat'); 

particle=repmat(empty,NP,1); 

% load('result_main2','gparticle') 

% results; 
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best=zeros(T,run); 

AVR=zeros(T,run); 

  

  

for runs = 1:run 

     

for i=1:NP 

%  particle(i).pos= lb + rand(24,nvar).*(ub+lb); 

 particle(i).pos=(((ub)/NP)*i)+ rand(24,nvar).*((ub)/NP); 

% particle(i).pos=gparticle.pos; 

[particle(i).cost,particle(i).pos]=fitness_24_4(particle(i).pos,lb,ub,data1); 

% particle(i).velocity=0; 

end 

  

% bparticle=particle; 

%  

% [value,index]=min([particle.cost]); 

%  

% gparticle=particle(index); 

  

% main loop 

  

  

for t=1:T 

     

%     for i=1:NP 

%     [particle(i).cost,particle(i).pos]=fitness_24_4(particle(i).pos,lb,ub,data1); 

%     end 

  

     for i=1:NP 

          

       Parent = particle(i).pos; 

          

         xr= [1:NP]; 

             

            [A B]= find(xr==i);   %% locate when xr = i 

                        

            xr(B)= [];            %% delete it                       

           

            z= randperm((NP-1),(NP-1));  

            a= particle(xr(z(1))).pos; 

            b= particle(xr(z(2))).pos; 

            c= particle(xr(z(3))).pos; 

  

            % Mutation 

%  

%             particle(i).mutation =  

            AC= a + F*(c - b);% apply mutation eq 

             

            particle(i).mutation = AC; 

      

           particle(i).mutation=min(particle(i).mutation,ub); 

           particle(i).mutation=max(particle(i).mutation,lb); 

          

         [particle(i).mutationcost,particle(i).mutation]=fitness_24_4(particle(i).mutation,lb,ub,data1); 
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%            A = []; 

%            B = []; 

            

            

            %% Apply Crossover  

         LOL = rand; 

                if (LOL < CR) 

                     

                       particle(i).crossover = particle(i).mutation; 

                    

                else 

                    particle(i).crossover =  Parent; 

                end 

         

%             

         [particle(i).ccost,particle(i).pos]=fitness_24_4(particle(i).pos,lb,ub,data1); 

         [particle(i).pcost,particle(i).crossover]=fitness_24_4(particle(i).crossover,lb,ub,data1); 

          

%          particle(i).mutation = []; 

          

          if (particle(i).pcost < particle(i).ccost) 

                particle(i).m = particle(i).crossover; 

                particle(i).NEWcost=particle(i).pcost; 

            else 

                particle(i).m =  Parent; 

                particle(i).NEWcost=particle(i).ccost; 

          end 

           

  

     end 

      

 for i=1:NP 

particle(i).pos = particle(i).m ; 

 end 

  

bparticle=particle; 

  

[value,index]=min([particle.NEWcost]); 

  

gparticle=particle(index);   

          

  

best(t,runs)=gparticle.NEWcost; 

AVR(t,runs)=mean([particle.NEWcost]); 

  

  disp([ ' t = ' num2str(t)   ' BEST = '  num2str(best(t,runs))]); 

%   disp([ ' t = ' num2str(t)   ' AVR = '  num2str(best(t))]); 

%   

  

  

end 

  

Answer_Full_system=gparticle.pos; 

Answer_cost_Full_system(i,runs)=gparticle.cost;  

%  
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%  

for i = 1:24 

       a(i)= sum(15.30 + 0.00024.*Answer_Full_system(i,1).^2+0.21.*Answer_Full_system(i,1)+ 14.88 

+0.000435.*Answer_Full_system(i,2).^2+0.3.*Answer_Full_system(i,2)+ 9 

+0.000315.*Answer_Full_system(i,3).^2+0.306.*Answer_Full_system(i,3)); 

%        b(i)= (119.*abs(Answer_Full_system(i,4))); 

       c(i)=  (545.016.*(Answer_Full_system(i,4))); 

       d(i)= (155.616.* Answer_Full_system(i,5)); 

        

    if i~=0&& i < 8 

       if Answer_Full_system(i,6)> 0 

          Fa(i,1) = 133.5*(Answer_Full_system(i,6)); 

       elseif Answer_Full_system(i,6)< 0  

          Fa(i,1) = 66.6*(Answer_Full_system(i,6)); 

       end 

    end 

     

    if i~=7 && i < 12 

    if Answer_Full_system(i,6)> 0 

        Fa(i) = 180*(Answer_Full_system(i,6)); 

    elseif Answer_Full_system(i,6)< 0  

        Fa(i) = 90*(Answer_Full_system(i,6)); 

    end 

    end 

  

  if i~=11 && i < 18 

    if Answer_Full_system(i,6)> 0 

        Fa(i) = 132*(Answer_Full_system(i,6)); 

    elseif Answer_Full_system(i,6)< 0  

        Fa(i) = 66*(Answer_Full_system(i,6)); 

    end 

  end 

  

   if i~=17 && i < 20 

    if Answer_Full_system(i,6)> 0 

        Fa(i) = 180*(Answer_Full_system(i,6)); 

    elseif Answer_Full_system(i,6)< 0  

        Fa(i) = 90*(Answer_Full_system(i,6)); 

    end 

   end 

  

   if i~=19 && i <= 24 

    if Answer_Full_system(i,6)> 0 

        Fa(i) = 87*(Answer_Full_system(i,6)); 

    elseif Answer_Full_system(i,6)< 0  

        Fa(i) = 43.5*(Answer_Full_system(i,6)); 

    end 

   end 

        

%        total_Full_system(i,1)= a(i) + b(i)+ c(i)+ d(i)+Fa(i,1); 

       total_new_Full_system(i,runs)= a(i) + c(i)+ d(i)+Fa(i,1); 

end 

end 

% results 

disp('====================================================') 
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% disp([' BEST solution   =  '  num2str(gparticle.pos)]) 

disp([' BEST fitness    = '   num2str(gparticle.cost)]) 

disp(['  Time           =  '  num2str(toc)]) 

  

  

figure(1) 

plot(best,'r','LineWidth',2) 

hold on 

% plot(AVR(1:t),'b','LineWidth',2) 

  

xlabel('t') 

ylabel(' fitness ') 

  

legend('BEST','MEAN') 

  

title (' DE ') 

  

for i = 1:24 

A_DE_FULL(i,1) = sum(total_new_Full_system(i,:))/run; 

end 

  

figure(2) 

plot(A_DE_FULL) 

hold on 

  

for j = 1:T 

BEST_DE_FULL(j,1) = sum(best(j,:))/run; 

end 

  

figure(3) 

plot(BEST_DE_FULL) 

hold on 

  

figure(4) 

plot(Answer_Full_system,'LineWidth',2); 

  

xlabel('Time (h)') 

ylabel(' Power (MW) ') 

title (' DE ') 

 

 

 

 

 

 


