
Global-Local Word Embedding for Text Classification

by

Mehran Kamkarhaghighi

A Thesis Submitted to the
School of Graduate and Postdoctoral Studies in Partial

Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Electrical and Computer Engineering

Department of Electrical, Computer and Software Engineering

Faculty of Engineering and Applied Science

University of Ontario Institute of Technology

Oshawa, Ontario, Canada
April 2019

© Mehran Kamkarhaghighi, 2019

I

THESIS EXAMINATION INFORMATION
Submitted by: Mehran Kamkarhaghighi

Doctor of Philosophy in Electrical and Computer Engineering

Thesis title: Global-Local Word Embedding for Text Classification

An oral defense of this thesis took place on March 27, 2019 in front of the following
examining committee:

Examining Committee:

Chair of Examining Committee

Dr. Walid Morsi Ibrahim

Research Supervisor

Dr. Masoud Makrehchi

Examining Committee Member

Dr. Shahryar Rahnamayan

Examining Committee Member

Dr. Qusay H. Mahmoud

University Examiner

Dr. Jeremy S. Bradbury

External Examiner

Dr. Chen (Cherie) Ding, Ryerson University

The above committee determined that the thesis is acceptable in form and content and that
a satisfactory knowledge of the field covered by the thesis was demonstrated by the
candidate during an oral examination. A signed copy of the Certificate of Approval is
available from the School of Graduate and Postdoctoral Studies.

II

Abstract

Only humans can understand and comprehend the actual meaning that underlies natural

written language, whereas machines can form semantic relationships only after humans

have provided the parameters that are necessary to model the meaning. To enable computer

models to access the underlying meaning in written language, accurate and sufficient

document representation is crucial. Recent word embedding approaches have drawn much

attention to text mining research. One of the main benefits of such approaches is the use of

global corpuses with the generation of pre-trained word vectors. Although very effective,

these approaches have their disadvantages, namely sole reliance on pre-trained word

vectors that may neglect the local context and increase word ambiguity. In this thesis, four

new document representation approaches are introduced to mitigate the risk of word

ambiguity and inject a local context into globally pre-trained word vectors. The proposed

approaches, which are frameworks for document representation while using word

embedding learning features for the task of text classification, are: Content Tree Word

Embedding; Composed Maximum Spanning Content Tree; Embedding-based Word

Clustering; and Autoencoder-based Word Embedding.

The results show improvement in the F_score accuracy measure for a document

classification task applied to IMDB Movie Reviews, Hate Speech Identification, 20

Newsgroups, Reuters-21578, and AG News as benchmark datasets in comparison to using

three deep learning-based word embedding approaches, namely GloVe, Word2Vec, and

fastText, as well as two other document representations: LSA and Random word

embedding.

Keywords: Document Representation; Word Embedding; Text Classification; Deep
Learning; Neural Networks

III

AUTHOR’S DECLARATION

I hereby declare that this thesis consists of original work of which I have authored. This is

a true copy of the thesis, including any required final revisions, as accepted by my

examiners.

I authorize the University of Ontario Institute of Technology to lend this thesis to other

institutions or individuals for the purpose of scholarly research. I further authorize the

University of Ontario Institute of Technology to reproduce this thesis by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research. I understand that my thesis will be made electronically

available to the public.

Mehran Kamkarhaghighi

IV

Dedicated to my wife, without whose support and encouragement
none of this would have been possible.

V

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor, Dr. Masoud Makrehchi,

for offering me the opportunity to work with him and for continuously supporting my Ph.D.

studies and related research, as well as for his patience, motivation, and sharing of his

immense knowledge. I could not imagine having a better advisor and mentor for my

doctoral studies.

In addition to my advisor, I would like to thank the rest of my thesis committee, Dr.

Shahryar Rahnamayan, Dr. Qusay H. Mahmoud, and Dr. Jeremy S. Bradbury, for not only

their insightful comments and encouragement, but also for all the hard questions that

encouraged me to widen my research from various perspectives.

My sincere thanks also go to my friends in SciLab, Dr. Somayyeh (Bahar) Aghababaei,

Mahboubeh (Tara) Ahmadalinezhad, Fateme Azimlou, Iuliia Chepurna, Dr. Eren Gultepe,

Neil Seward, and Afsaneh Towhidi, without whose precious support it would not have been

possible to conduct this research.

I would also like to extend my thanks to my dear friends, Dr. Roozbeh Jalali and Dr. Reza

Mohammad Alizadeh, for their encouragement and support throughout my research.

I also wish to express my appreciation to Mrs. Catherine Lee, for editing and proofreading

this thesis.

Finally, I would like to express my greatest gratitude to my family: my dearest wife,

Solmaz, and my father and my mother for their unconditional support during this period of

my life.

VI

STATEMENT OF CONTRIBUTIONS

I hereby certify that I am the sole author of this thesis and I have used standard

referencing practices to acknowledge ideas, research techniques, or other materials that

belong to others. Furthermore, I hereby certify that I am the sole source of the creative

works and/or inventive knowledge described in this thesis.

In all cases, I (Mehran Kamkarhaghighi) was the main investigator for each of the co-

authored studies.

Part of the work described in Chapter 2 as the literature review was previously published

as:

M. Kamkarhaghighi, E. Gultepe, and M. Makrehchi, "Deep Learning for Document

Representation," in Handbook of Deep Learning Applications: Springer, 2019, pp. 101-

110.

The other part of the work described in Chapter 3 as the CTWE approach has been

published as:

M. Kamkarhaghighi and M. Makrehchi, "Content tree word embedding for document

representation," Expert Systems with Applications, vol. 90, pp. 241-249, 2017.

VII

Table of Contents
ABSTRACT .. II
ACKNOWLEDGEMENTS .. V
LIST OF TABLES ... X
LIST OF FIGURES .. XII
LIST OF ABBREVIATIONS AND SYMBOLS .. XIII
CHAPTER 1. INTRODUCTION .. 1

1.1 Overview .. 1
1.2 Problem Statement .. 3
1.3 Research Questions ... 5
1.4 Research Objectives ... 5
1.5 Research Contribution .. 6
1.6 Thesis Outline ... 6

CHAPTER 2. LITERATURE REVIEW .. 7
2.1 Introduction .. 7
2.2 Traditional Document Representations Methods ... 7
2.3 Word2Vec ... 10
2.4 GloVe .. 11
2.5 fastText ... 12
2.6 LSA ... 13
2.7 Doc2Vec ... 14
2.8 Other Word Embedding Approaches ... 16
2.9 Taxonomy Induction ... 19
2.10 Summary ... 24

CHAPTER 3. PROPOSED DOCUMENT REPRESENTATION APPROACHES 25
3.1 Introduction .. 25
3.2 Content Tree Word Embedding .. 25

3.2.1 Document Content Tree ... 25
3.2.2 Content Tree Word Embedding Document Representation .. 27

3.3 Composed Maximum Spanning Content Tree ... 30
3.3.1 Maximum Spanning Content Tree Document Representation .. 30
3.3.2 Composed Maximum Spanning Content Tree Document Representation 32

3.4 Embedding-based Word Clustering Document Representation ... 34
3.5 Autoencoder-based Word Embedding .. 36

3.5.1 Autoencoder ... 36
3.5.2 Autoencoder-based Word Embedding Document Representation 37

3.6 Comparison with Similar Studies ... 39
3.7 Summary ... 40

CHAPTER 4. EXPERIMENTAL EVALUATION SETUP ... 42
4.1 Introduction .. 42
4.2 Datasets ... 42

4.2.1 IMDB Movie Review .. 42
4.2.2 Hate Speech Identification ... 43
4.2.3 20 Newsgroups .. 43
4.2.4 Reuters ... 43
4.2.5 AG News .. 44

4.3 Classification .. 44
4.3.1 Logistic Regression .. 45

VIII

4.3.2 Support Vector Machine .. 45
4.3.3 Naïve Bayes ... 45
4.3.4 Decision Tree ... 46
4.3.5 Random Forest ... 46
4.3.6 k-Nearest Neighbor .. 47
4.3.7 Deep Neural Networks ... 47
4.3.8 Convolutional Neural Networks .. 48
4.3.9 Recurrent Neural Networks ... 50
4.3.10 Hybrid Approaches ... 50

4.4 Evaluation Metrics .. 52
4.5 Experimental Setup ... 53
4.6 Summary ... 54

CHAPTER 5. EXPERIMENTAL RESULTS AND DISCUSSIONS ... 55
5.1 Introduction .. 55
5.2 The Effect of Document Representation on Traditional Classification Approaches 55
5.3 The Effect of Word Embedding on Deep Learning-based Approaches 58
5.4 The Effect of CTWE on Word Embeddings .. 60

5.4.1 The Effect of CTWE on Word2Vec .. 60
5.4.2 The Effect of CTWE on GloVe ... 61
5.4.3 The Effect of CTWE on fastText ... 62
5.4.4 The Effect of CTWE on LSA .. 63
5.4.5 The Effect of CTWE on Random Word Embedding ... 64

5.5 The Effect of CMSCT on Word Embeddings .. 65
5.5.1 The Effect of CMSCT on Word2Vec .. 65
5.5.2 The Effect of CMSCT on GloVe ... 67
5.5.3 The Effect of CMSCT on fastText .. 68
5.5.4 The Effect of CMSCT on LSA .. 69
5.5.5 The Effect of CMSCT on Random Word Embedding .. 70

5.6 CMSCT vs. MSCT ... 71
5.7 The Effect of AbWE on Word Embeddings ... 72

5.7.1 The Effect of AbWE on Word2Vec .. 72
5.7.2 The Effect of AbWE on GloVe ... 72
5.7.3 The Effect of AbWE on fastText ... 73
5.7.4 The Effect of AbWE on LSA .. 74
5.7.5 The Effect of AbWE on Random Word Embedding ... 75

5.8 The Effect of EbWC on Word Embeddings ... 76
5.8.1 The Effect of EbWC on Word2Vec ... 76
5.8.2 The Effect of EbWC on GloVe .. 77
5.8.3 The Effect of EbWC on fastText ... 78
5.8.4 The Effect of EbWC on LSA ... 79
5.8.5 The Effect of EbWC on Random Word Embedding ... 80

5.9 Comparison: The Presented Document Representation Approaches over Logistic Regression
Efficiency 81

5.10 Comparison: The Presented Document Representation Approaches over Support Vector
Machine Efficiency .. 83

5.11 Comparison: The Presented Document Representation Approaches over Naïve Bayes
Efficiency 85

5.12 Comparison: The Presented Document Representation Approaches over Decision Tree
Efficiency 86

5.13 Comparison: The Presented Document Representation Approaches over Random Forest
Efficiency 88

5.14 Comparison: The Presented Document Representation Approaches over k-Nearest Neighbor
Efficiency 90

5.15 Comparison: The Presented Document Representation Approaches over 1D-CNN Efficiency
 92

IX

5.16 Comparison: The Presented Document Representation Approaches over LSTM Efficiency 94
5.17 Comparison: The Presented Document Representation Approaches over Deep CNN-LSTM

Tree Efficiency .. 96
5.18 Comparison: The Presented Document Representation Approaches over AdvCNN Tree

Efficiency 99
5.19 Comparison: The Presented Document Representation Approaches over Boosted CNN

Efficiency 100
5.20 Comparison between All the Represented Approaches among the Different Document

Representations .. 103
5.21 The Total Effect of the Proposed Approaches Over Word Embeddings 104
5.22 Comparison with the State-Of-the-Art Results .. 105
5.23 Summary ... 106

CHAPTER 6. CONCLUSION AND FUTURE WORKS ... 108
6.1 Summary and Conclusion ... 108
6.2 Future Works .. 113

X

List of Tables

CHAPTER 4

TABLE 4.1. DATASET STATISTICS ... 42

CHAPTER 5

TABLE 5.1.THE EFFECT OF DOCUMENT REPRESENTATION ON TRADITIONAL

CLASSIFICATION APPROACHES ... 57

TABLE 5.2. THE EFFECT OF WORD EMBEDDING ON DEEP LEARNING-BASED APPROACHES 59

TABLE 5.3. THE EFFECT OF CTWE ON WORD2VEC ... 61

TABLE 5.4. THE EFFECT OF CTWE ON GLOVE ... 62

TABLE 5.5. THE EFFECT OF CTWE ON FASTTEXT .. 63

TABLE 5.6. THE EFFECT OF CTWE ON LSA ... 64

TABLE 5.7. THE EFFECT OF CTWE ON RANDOM WORD EMBEDDING 65

TABLE 5.8. THE EFFECT OF CMSCT ON WORD2VEC ... 66

TABLE 5.9. THE EFFECT OF CMSCT ON GLOVE ... 67

TABLE 5.10. THE EFFECT OF CMSCT ON FASTTEXT .. 68

TABLE 5.11. THE EFFECT OF CMSCT ON LSA ... 70

TABLE 5.12. THE EFFECT OF CMSCT ON RANDOM WORD EMBEDDING 70

TABLE 5.13. COMPARISON OF CMSCT VS. MSCT ... 71

TABLE 5.14. THE EFFECT OF ABWE ON WORD2VEC ... 72

TABLE 5.15. THE EFFECT OF ABWE ON GLOVE ... 73

TABLE 5.16. THE EFFECT OF ABWE ON FASTTEXT ... 74

TABLE 5.17. THE EFFECT OF ABWE ON LSA ... 75

TABLE 5.18. THE EFFECT OF ABWE ON RANDOM WORD EMBEDDING 76

TABLE 5.19. THE EFFECT OF EBWC ON WORD2VEC .. 77

TABLE 5.20. THE EFFECT OF EBWC ON GLOVE ... 78

TABLE 5.21. THE EFFECT OF EBWC ON FASTTEXT ... 79

TABLE 5.22. THE EFFECT OF EBWC ON LSA .. 80

TABLE 5.23. THE EFFECT OF EBWC ON RANDOM WORD EMBEDDING 81

TABLE 5.24. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER LOGISTIC REGRESSION EFFICIENCY ... 82

XI

TABLE 5.25. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER SUPPORT VECTOR MACHINE EFFICIENCY .. 84

TABLE 5.26. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER NAÏVE BAYES EFFICIENCY .. 86

TABLE 5.27. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER DECISION TREE EFFICIENCY .. 88

TABLE 5.28. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER RANDOM FOREST EFFICIENCY ... 90

TABLE 5.29. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER K-NEAREST NEIGHBOR EFFICIENCY .. 92

TABLE 5.30. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER CNN EFFICIENCY .. 94

TABLE 5.31. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER LSTM EFFICIENCY .. 96

TABLE 5.32. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER DEEP CNN STM TREE EFFICIENCY ... 98

TABLE 5.33. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER ADVCNN TREE EFFICIENCY ... 100

TABLE 5.34. COMPARISON: THE PRESENTED DOCUMENT REPRESENTATION APPROACHES

OVER BOOSTED CNN EFFICIENCY .. 102

XII

List of Figures

CHAPTER 1

FIGURE 1.1. THE FOUR PROPOSED APPROACHES VS. OTHER DOCUMENT REPRESENTATION

APPROACHES ... 5

CHAPTER 2

FIGURE 2.1. THE WORD2VEC ARCHITECTURES ... 10

FIGURE 2.2. DOC2VEC PV-DM MODEL ... 15

FIGURE 2.3. DOC2VEC PV-DBOW MODEL .. 16

CHAPTER 3

FIGURE 3.1. CONTENT TREE INDUCTION EARLY PROCESS .. 26

FIGURE 3.2. CONTENT TREE SAMPLE GENERATED FROM AN IMDB MOVIE REVIEW WITH

THE WORD2VEC MODEL .. 27

FIGURE 3.3. BLOCK DIAGRAM OF THE CTWE APPROACH .. 30

FIGURE 3.4. BLOCK DIAGRAM OF THE MSCT APPROACH ... 31

FIGURE 3.5. BLOCK DIAGRAM OF THE CMSCT APPROACH .. 34

FIGURE 3.6. BLOCK DIAGRAM OF THE EBWC APPROACH .. 35

FIGURE 3.7. AUTOENCODER BLOCK DIAGRAM ... 37

FIGURE 3.8. BLOCK DIAGRAM OF THE ABWE .. 38

CHAPTER 5

FIGURE 5.1. HEATMAP CHART COMPARING PRESENTED APPROACHES 104

FIGURE 5.2. HEATMAP CHART COMPARING THE EFFECT OF PROPOSED APPROACHES OVER

WORD EMBEDDINGS ... 105

XIII

LIST OF ABBREVIATIONS AND SYMBOLS

1D-CNN One Dimensional Convolutional Neural Network

20 NG 20 Newsgroups

AbWE Autoencoder-based Word Embedding

𝑏 Scalar Bias

BERT Bidirectional Encoder Representations from Transformers
C Cluster

CMSCT Composed Maximum Spanning Content Tree

CNN Convolutional Neural Network
𝑐𝑜𝑣 Covariance

CTWE Content Tree Word Embedding

d Elements in Word Vector

DAN Deep Averaging Network

DNN Deep Neural Network

DT Decision Tree

e Number of Edges

EbWC Embedding-based Word Clustering

ELMo Embeddings from Language Models

ESA Explicit Semantic Analysis

EULA End User License Agreement

FN False Negative

FP False Positive

GloVe Global Vector

GNB Gaussian Naïve Bayes

GRU Gated Recurrent Unit

HSI Hate Speech Identification

ICA Independent Component Analysis

IMDB Internet Movie Database

k-NN k-Nearest Neighbor

LDA Latent Dirichlet Allocation

LR Logistic Regression

XIV

LSA Latent Semantic Analysis

LSI Latent Semantic Indexing

LSTM Long Short-Term Memory

m The Vocabulary Size of Each Document

M Term Document Matrix

MLP Multilayer Perceptron

MSCT Maximum Spanning Content Tree

MST Maximum Spanning Tree

n The Depth of the Word in the Content Tree

N Number of Words

NB Naïve Bayes

NLP Natural Language Processing

O Algorithm Complexity (worst-case scenario)

PCA Principal Component Analysis

PV-DBOW Distributed Bag of Words Version of Paragraph Vector

PV-DM Distribution Memory Model of Paragraph Vectors

RBF Radial Basis Function

ReLU Rectified Linear Unit

RF Random Forest

RNN Recurrent Neural Networks

ROC Receiver-Operating Characteristic

S Diagonal Matrix

SGD Stochastic Gradient Descent

SVD Singular Value Decomposition

SVM Support Vector Machine

TF-IDF Term Frequency - Inverse Document Frequency

TN True Negative

TP True Positive

U Orthogonal Matrix

USE Universal Sentence Encoder
𝑣 Elements in EbWC Word Vector

𝑉ec Vector Representation

XV

𝑉& Orthogonal Matrix

W Word

X Word Co-Occurrence Matrix

σ Standard Deviation

δ Decay Factor

η Comparison Function

1

Chapter 1. Introduction

1.1 Overview

Text mining is now broadly applied to a wide range of applications, including information

retrieval, security, social media, and marketing. In this domain, the performance and

computational cost of tasks such as classification, clustering, content analysis, and machine

translation are completely dependent on document representation [1]. The bag-of-words

approach is one of the first and most popular document representation models in the field

of natural language processing (NLP). In this approach, each document is represented as a

bag-of-words [2]. While this approach is fast and simple, and has a low-computational cost,

it disregards grammar and even word order. It also suffers from the “Curse of

Dimensionality” in that a short sentence for presentation needs a very high dimensional

feature vector, which is also sparse. In this situation, classifiers lose their power of

discrimination. This is the point where feature selection and feature transformation tools,

such as Principal Component Analysis (PCA) [3], Latent Dirichlet Allocation (LDA) [4],

Independent Component Analysis [5], Latent Semantic Indexing [6], and Document

Frequency [7], come into account. An alternative to the bag-of-words is the word

embedding approach, in which words or phrases are mapped to the low-dimensional vectors

of a continuous space. Word2Vec [8], Global Vectors (GloVe) [9], and fastText [10] are

three successful deep learning-based word embedding models. In order to accurately work,

these models should be trained with vast corpuses. In summary, these models can present

an acceptable vector for each word in training data.

Calculating the average and the summation of word vectors are the two common

approaches that are used to represent a document, but these approaches do not consider the

context of the document. For example, the word vector for “jaguar” as a car is equal to its

word vector as an animal. The Doc2Vec model [11] presents a vector for each document

or paragraph that is trained according to local data. The Doc2Vec model does not use

background knowledge but it can involve the context of the document. The drawback of

this model is the high computational cost of creating a model each time, while Word2Vec,

2

GloVe, and fastText create the respective models according to the training corpus one time

only. Another problem that the Word2Vec, GloVe, and fastText models cannot overcome

is that of ignoring the relationship between terms that do not literally co-occur. In order to

solve these problems, the use of ontology-based vectors is suggested [12]. Taxonomy is the

backbone of ontology, and using ontology can solve the problem of data sparseness by

replacing words with concepts [13]. The main objective of this thesis is to present low cost

and accurate document representations that simultaneously use background knowledge and

local data.

A named standard method for information retrieval (IR) tasks is Term Frequency - Inverse

Document Frequency (TF-IDF), which is a basic method based on word count. A

combination of this method and a classifier such as the Support Vector Machine (SVM)

can serve as the state-of-the-art for text classification tasks [14, 15].

Similar to the bag-of-words, the TF-IDF is a high-dimensional text representation method

where all the vector elements are independent whereas, in reality, the words occur in a

highly correlated way. A low-dimensional representation approach is Latent Semantic

Analysis (LSA) [16], which is based on the singular value decomposition (SVD) method.

Due to the variance of phrases and sentences, document representation is a more

challenging problem regarding word representation.

Calculating the unweighted average of embeddings of all the words that occur in a text [17]

is the most popular but not the best representation of a document from pre-trained word

embedding. As an example, the representation document vector for the sentence “I like

Apple computers” and “I prefer a green apple” are close to each other in the vector space.

In this study, four novel methods are described in Chapter 3: Content Tree Word

Embedding (CTWE); Composed Maximum Spanning Content Tree (CMSCT);

Embedding-based Word Clustering (EbWC); and Autoencoder-based Word Embedding

(AbWE). These approaches create a document representation for each word in the training

vocabulary based on the Word2Vec, GloVe, fastText, LSA, and Random word embedding

models, then use the average of the updated word vectors for document representation.

The first approach, CTWE, employs a semi-taxonomy structure named content tree, and

subsequently updates the word embedding vectors.

3

The second approach, MSCT, is proposed in order to select the root based on the node

degree and then generate the maximum spanning tree. CMSCT, another version of this

approach, which does not require a high amount of memory to generate the fully connected

graph of all the words in the training vocabulary, is defined. This approach generates a

small-size spanning tree for each document and then generates a training data spanning tree

by combining them. In the last step, the word vectors are updated based on their location

in the maximum spanning tree.

The third approach, EbWC, uses the clustering method for extracting the conceptual

structure of the context. Each element of the new word embedding is the distance from the

centroid of each word group cluster.

The final method, AbWE, uses autoencoder for dimensionality and noise reduction in the

context. The main idea is to train an autoencoder to capture the training data concepts and

then update the word vectors by encoding them.

1.2 Problem Statement

Text mining tasks that are based on a bag-of-words representation cannot guarantee

satisfactory results [18]. By using the bag-of-words approach, the word order and grammar

in the context are lost. The high dimension of the feature vector in the bag-of-words

approach can also cause high computational complexity. In general, the use of words as the

only feature involves various limitations such as:

Synonymy, when different words and phrases indicate the same concept. As an example,

the words “manufacture” and “make” refer to the concept of production [19].

Polysemy, when a word has several meanings; for example, the word “apple” as a company

or as a fruit [19]. In some cases, the words cannot be used independently. As an example,

the phrase “passed away” refers to death, but either word on its own is not enough [19].

Some documents do not contain indicator terms. An example of this is the phrase “an armed

man took the money”, referring to robbery. However, none of the words are good indicator

terms [19].

4

Using word-level embeddings such as the Word2Vec or GloVe suffers from the out-of-

vocabulary issue. In this case, the model ignores the words that do not appear in their

training data. From another perspective, in order to work accurately, the Word2Vec, GloVe,

and fastText models should be trained with vast corpuses. These models are able to suggest

an acceptable vector for each word in the training corpus. Calculating the average and the

summation of word vectors in a document are the two proposed approaches, both based on

Word2Vec, GloVe, and fastText. These approaches use vectors that are calculated

according to global knowledge rather than by considering the context of the document. As

an example, the word vector for “blackberry” as a fruit is equal to its word vector as a

company.

The Doc2Vec model presents a vector for each document or paragraph that is trained from

local data. This approach does not use background knowledge but involves the context. A

drawback of the Doc2Vec model is the high computational cost of model creation for each

document, compared to Word2Vec, GloVe, and fastText, which create a onetime only

model.

The main objective of this research is to provide document representations of the

simultaneous use of global knowledge (pre-trained features) and local context for text

classification, which is one of the most popular tasks in the domain of text mining. In

addition, no dramatic improvement is expected since the focus of this research is to present

new word embeddings that simultaneously employ global knowledge and local context.

The presented approaches, which are described in Chapter 3, are: Content Tree Word

Embedding (CTWE)[20]; Composed Maximum Spanning Content Tree (CMSCT);

Embedding-based Word Clustering (EbWC); and Autoencoder-based Word Embedding

(AbWE).

These approaches create a document representation for each word in the training

vocabulary based on the Word2Vec, GloVe, fastText, LSA, and Random word embedding

models. For document representation, the average of the updated word vectors is calculated.

Figure 1.1 presents the criteria considered in this thesis and compares CTWE, AbWE,

CMSCT, and EbWC to other document representation approaches.

5

Figure 1.1. The four proposed approaches vs. other document representation approaches

1.3 Research Questions

• To what extent is the effect of the local context in the task of text classification?

• How can the local context be embedded into word embedding to improve the task

of classification?

1.4 Research Objectives

Two main objectives are defined for this thesis:

• To provide document representation approaches that simultaneously use global

knowledge (pre-trained features) and the local context.

• To evaluate the effectiveness of simultaneously using the local context and global

knowledge in word embedding for the task of text classification.

Doc2Vec

Locally Trained Approaches Pre-trained Approaches

Lo
ca

l C
on

te
xt

 E
m

be
dd

in
g

St
ro

ng
W

ea
k

CTWE

EbWC

AbWE

CMSCT

fastText Vector
Averaging GloVe Vector

Averaging
Word2Vec Vector

Averaging

LSA

6

1.5 Research Contribution

This thesis provides four different approaches to improving three word embedding-based

word representations, namely: Word2Vec, GloVe, and fastText. The aim of this research is

to provide approaches that can present enhanced document representation by employing

information in the local context, as well as establishing the benefits of using pre-trained

global models.

In summary, the main contributions of this thesis are:

• A study of word embedding, and document representation methods is provided

in Chapter 2.

• In Chapter 3, the following four novel approaches are provided to generate new

document representations that use global knowledge as well as the local context:

o Content Tree Word Embedding

o Composed Maximum Spanning Content Tree

o Embedding-based Word Clustering

o Autoencoder-based Word Embedding

• A description of how the four novel approaches are implemented and generate

new word embeddings is provided in Chapter 4. The new word embeddings are

evaluated, and the results are analysed and discussed in Chapter 5.

1.6 Thesis Outline

This thesis consists of six chapters. Following the introduction, which contains an

overview, Chapter 1 presents the problem statement, research challenges, objectives and

contribution of this work. A review of relevant literature is provided in Chapter 2. The

proposed document representation methods are introduced in Chapter 3, while Chapter 4

describes the methodology. Experimental results are discussed in Chapter 5. Chapter 6

concludes the study by summarizing the main findings and suggesting future areas of

exploration.

7

Chapter 2. Literature Review

2.1 Introduction

In this chapter, a comprehensive literature review of the related research in the domain of

word embedding and document representation is presented. The document representation

methods used before word embedding are categorized as traditional document

representation methods. The Word2Vec, GloVe, fastText, LSA and Doc2Vec approaches

are presented in detail. Other combination methods are later described, following which

taxonomy induction approaches are reviewed.

2.2 Traditional Document Representations Methods

Using the words in a document is the most instinctive approach for document

representation. Since 1954, different document representations have been introduced, the

earliest of which is bag-of-words by Harris [2]. In this model, the document is presented as

a fixed length vector where the length is the number of unique selected terms in the

document repository. Stop word filtering, stemming, and lemmatization are optional

filtering methods that can be used to improve the quality of representation. Using single

words as features suffers from the "Curse of Dimensionality" in that a very high

dimensional feature vector is needed to represent a short sentence. Losing the semantic

meaning of the text and phrases is another limitation of the bag-of-words approach.

The n-gram document representation uses a continuous sequence of n words, which are

chunks of words used as features to represent a document. Each element of the document

representation vector is a set of two or more neighboring words in a document repository.

Another similar approach is using a fixed chunk of letters where unique chunks of letters

represent elements in the feature vector for each document. This approach has applications

in language identification and spelling error detection. For documents with references, such

as scholarly documents or web-pages with hyperlinks, another method can be used to

represent the document, as references are related to the contents of the document. The

8

weight of the references can be modified based on frequency of use and location in the

document. In this approach, each reference is one dimension of the feature vector, which

has a much lower dimensionality in comparison to the bag-of-words and n-grams

approaches. [21]

Explicit Semantic Analysis (ESA) is a mixed approach based on the contents and references

in a document. In ESA, the similarity of documents is calculated based on their reference

sets. In the feature vector, each element is weighted in relation to specific documents within

the reference sets[22].

The similarity measure based on the compression approach [23] is also used for computing

representation of documents. This method is based on the hypothesis that the similarity of

two files can be estimated by comparing the compressed size of the concatenated version

of the two files and the summation of the compressed size of each file. The elements of the

representation vector are the similarity between documents in the repository.

In a study by Maas et al. [24], a word representation was introduced to capture the semantic

and sentiment meaning of words. The model created vectors by an unsupervised

probabilistic-based approach. Words that come together in most documents have similar

representation. In the next phase, by using a supervised learning-based method, the

sentiment of words comes into account and the model is trained.

Yang et al. [25] extracted key terms from training documents based on the Gini Index,

Information Gain, Mutual Information, Odds Ratio, Ambiguity Measure, and the

Darmstadt Indexing Approach association factor. Extracted key terms were used for the

document representation, which is known as KT-Of-Doc. In the proposed approach, each

document is shown by the terms that appear in the document to enhance the effect of words

and non-key terms that do not appear in the document to weaken the effect of the non-key

terms. In another study by Yang et al. [26], the attention network of a document was created

by detecting the more and less important parts of the content. The extracted network was

used for the document representation. The proposed model had two levels: word level,

which detects important words, and sentence level, which detects and relates important

sentences. The introduced representation was used for text classification tasks.

9

Wei et al. [1] tried to solve the problem of meaningless latent representation of documents.

Discriminative neighbors were defined and an autoencoder trained by minimizing the

Bernoulli Cross-Entropy Error. This autoencoder was used to create a new document

representation method.

In a study by Lao and Jagadeesh [27], legal questions were classified into 16 legal areas.

The bag-of-words, bag-of-bigrams, TF-IDF technique, and average Word2Vec vectors of

questions were used as features and compared to five different classifiers for this

classification task. The Linear SVM classifier gained the best results in comparison to the

other four models: Logistic Regression (LR), Multi nominal Naïve Bayes (NB), SVM with

stochastic gradient descendent (SGD), and one-layer neural network.

In a study by Kim et al.[28], three approaches for document representation were introduced,

based on the Word2Vec vector of content words. The first approach was average pooling,

the second was class-specific Gaussian Mixture distribution and the third was Semantic

Space Allocation, which uses global Gaussian Mixture Model components. Average

Pooling had the best result in comparison to the other two methods and outperformed the

traditional LDA method when applied to a Chinese article classification task. Bernotas et

al. [12] used a tagging-based document representation method and improved a clustering

task by using ontology. Based on the results, tagging-based representation had a negative

impact on small scale documents, but if the document was large scale, the results were

better than the word-based document representation.

Lu et al. [29] created a cluster's universe and, by segmenting documents into topics and

assigning topics to the clusters, a relationship was made between each document and the

clusters. The documents were assigned as members of the strongest relative cluster and

associated with the second most strongly related cluster.

In a study by Socher et al. [30], a Neural Tensor Network was used to extract the

relationship between entities in a knowledge base. The vector representation of words was

used to calculate the average of the word vectors in an entity. The learning relation classifier

and the entity representation were joined. This approach is used for knowledge-based

completion tasks, which are useful in query expansion, question answering, and

information retrieval.

10

2.3 Word2Vec

Word co-occurrence is at the heart of several machine learning algorithms, including the

recently introduced Word2Vec by Mikolov et al. [8]. Word2Vec is a two-layer neural

network-based approach that learns embedding for words. Negative sampling has been

used in the softmax step of the output layer. The objective function maximizes the log

probability of a context word (𝒘𝑶), given its input words (𝒘𝑰). By using negative sampling,

the objective function is to maximize the dot product of 𝒘𝑰 and randomly selected negative

words, while minimizing the dot product of 𝒘𝑰 and 𝒘𝑶. The output is a vocabulary of words

from the original document and one n-dimensional fixed-size vector representation. Co-

occurring words in the training corpus are located adjacent to each other in a vector space.

Figure 2.1 [8]illustrates how Word2Vec creates word vector representation by use of two

architectures: Continuous Bag of Words (CBOW) and Skip-gram. The CBOW architecture

model, which can predict a word according to the surrounding context words, works faster

than Skip-gram, which predicts the surrounding words by a center word, in a fixed-length

window. For infrequent words, the Skip-gram architecture works better.

Figure 2.1. The Word2Vec architectures

Continuous Bag-of-Words Skip-gram

Surrounding words

Current Word Current Word

Surrounding words

000010…000
010000…000

000000…010
001000…000

000000…001…

000010…000
010000…000

000000…010
001000…000

000000…001 …

11

Word2Vec generates vector representation only for words while, for document

representation, a representation for the entire document is needed. Averaging or summation

of all the word vectors of a given document can be a naive solution for creating document

representation.

During the training phase, words that appear in similar contexts are grouped together in the

same direction by this unsupervised learning algorithm.

In [31], it was highlighted that not only the direction but also the length of word vectors

carries important information. The length of a vector merely reflects the frequency with

which a word appears in the corpus and the similarity of the contexts in which the word

appears. Accordingly, a word that is consistently used in a similar context will be

represented by a longer vector than a word of the same frequency that is used in different

contexts.

2.4 GloVe

Pennington et al. [9] introduced an unsupervised word embedding model, known as GloVe,

for word representation.

GloVe tries to encode meaning as vector offsets in an embedding space. This model

captures the frequency of word co-occurrences within a specific window in a large text

corpus to generate linear dimensions of meaning and uses global matrix factorization and

local context window methods. The model also offers a local cost function and includes a

weighting function that is used to balance rare co-occurrences. Optimization methods are

used to minimize the cost function.

Based on the hypothesis that similar words have similar distributions, it is expected that

generally trained word vectors can be used to measure semantic similarity. Similar to

Word2Vec, averaging the vectors of words in a document is an option for generating a

fixed length vector for document representation.

In order to achieve GloVe word embedding, word co-occurrence information should first

be collected as a word co-occurrence matrix (X). In this matrix, the value of

12

the	𝑋-. illustrates the number of times that word i was in the context (fixed window size)

of the word j in the training data. The decay factor shown in Equation 2.1 is applied to

reduce the weight of distant words:
𝑫𝒆𝒄𝒂𝒚 = 𝟏 𝒐𝒇𝒇𝒔𝒆𝒕⁄ Equation 2.1

In the next step, a soft constraint for each word pair is assigned by Equation 2.2:

𝑽𝒆𝒄𝒊𝑻	𝑽𝒆𝒄𝒋 + 𝒃𝒊+𝒃𝒋 = 𝐥𝐨𝐠𝑿𝒊𝒋 Equation 2.2

where 𝑉- represents the vector for the main word, 𝑉. is the vector representation for the

context word, and 𝑏- and 𝑏.	are scalar biases for the main and context words.

The cost function is defined in Equation 2.3:

𝑱 =FF𝒇(𝑿𝒊𝒋)
𝑱I𝟏𝒊I𝟏

(𝑽𝒆𝒄𝒊𝑻	𝑽𝒆𝒄𝒋 + 𝒃𝒊+𝒃𝒋 − 𝐥𝐨𝐠𝑿𝒊𝒋)𝟐
Equation 2.3

In order to avoid learning only the form of extremely common word pairs, a weighting

function 𝑓 (Equation 2.4) is used:

𝒇M𝑿𝒊𝒋N =	O
(
𝑿𝒊𝒋
𝒙𝒎𝒂𝒙

)𝒂										𝒊𝒇	𝑿𝒊𝒋 < 	𝒙𝒎𝒂𝒙	

𝟏									𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

Equation 2.4

The GloVe approach is different from Word2Vec. While Word2Vec is a "predictive"

model, GloVe can be called a "count-based" model. A count-based model generates word

vectors by applying dimensionality reduction methods over the co-occurrence matrix,

while predictive models try to develop their capability to predict loss.

2.5 fastText

fastText, an extension of Word2Vec, was proposed in 2016 by Bojanowski et al. [10] from

Facebook AI Research. While fastText learns the word representations, it considers the

structure of the words, an approach that is useful for languages where words are

morphologically similar. When it wants to represent rarely occurring words, this method is

an advance on others. This feature allows the algorithm to identify prefixes, suffixes, stems,

13

and other phonological, morphological and syntactic structures in a manner that does not

rely on words being used in a similar context, thus represented in similar vector space.

The fastText approach uses the n-grams of words to train a neural network. As an example,

the tri-grams for the word “hello” is hel, ell, and llo. The word embedding vector

for “hello” will be the sum of all these n-grams. A word embedding for all the n-grams,

given the training dataset, is generated. By having the word embedding of the n-grams, rare

words can also be represented, since they may contain some of the n-grams.

In theory, fastText embeddings should work more accurately on syntactic analogies since

they are mostly morphology-based. In a manner similar to Word2Vec, fastText learns word

embeddings with the difference that it enriches word vectors with sub word information by

using character n-grams of variable length.

It is expected that fastText will outperform Word2Vec and GloVe when the size of the

dataset is small. FastText word embedding is based on continuous Skip-gram architecture,

using n-gram at character level. A hashing function, called Fowler-Noll-Vo, is used to map

n-grams to integers. This hashing function bonds the memory requirement of the model,

which uses SGD in the negative log likelihood of solving the optimization problem.

In fastText architecture when there is a large number of classes, the hierarchical softmax

[32] is used to calculate probability distribution over predefined classes. The use of linear

classifiers is computationally expensive in this situation.

For word representation, a hashed version of n-gram, called the hashing trick, has been

used[33]. The average of the word vectors is used as the document representation and then

fed into a linear classifier, similar to the CBOW model [8].

2.6 LSA

Latent Semantic Analysis [16], or latent semantic indexing, is a document analyzing

method to identify the concepts and underlying meaning of documents.

In the first step, the term document matrix (𝑀 = 𝑛 ∗ 𝑚 where m, the size of the row, is the

number of terms and n, the column, is the number of documents while 𝑀[𝑖, 𝑗] illustrates

the frequency of the term 𝑖, in the document 𝑗) is constructed. The SVD method is then

14

applied to the matrix 𝑀 to decompose it into three matrices, according to Equation 2.5. The

S is the diagonal matrix while the U, 𝑉&are the orthogonal matrices. Based on Equation

2.6, the k largest singular values of the three matrices will be used as the reduced dimension

version of the 𝑀, which is the 𝑀^:

𝑀 = 𝑈 ∗ 𝑆 ∗ 𝑉& Equation 2.5

𝑀^ = 𝑈^ ∗ 𝑆^ ∗ 𝑉a Equation 2.6

 Based on the research conducted by Naili et al. [34], the local and global weighting

functions and settings have an important impact on the output of the SVD model which, in

their case, was the topic segmentation task.

2.7 Doc2Vec

Le and Mikolov [11] presented Doc2Vec, also known as Paragraph2Vec. An extension of

Word2Vec, the Doc2Vec model represents a document, sentence, and paragraph by a fixed-

length vector. This unsupervised learning model can represent a document in two forms:

Paragraph Vector with Distributed Memory (PV-DM), a complex model with more

parameters that can achieve better results in comparison to the Distributed Bag of Words

(PV-DBOW), which is simple and does not consider word order. The PV-DM approach

considers the order of words in a paragraph and generates a vector that carries the

information where other models, such as vector averaging or clustering, loses them.

PV-DBOW works in a largely similar way as Skip-gram with the difference that the input

is a unique vector that represents the document and the order of words is ignored. PV-DM

works in the same way as CBOW. The additional vectors used by PV-DM are a

concatenation of document vectors and several target words. The objective is to use the

concatenated document and word vectors to predict a context word.

The objective of a subsequent study by Hong [35] was to better the performance of

Paragraph2Vec by use of two approaches: the addition of both a hidden layer and a tensor

layer to the paragraph vector, such that it can interact with word vectors, both complexly

and non-linearly.

15

The Doc2Vec model can acknowledge the context of a document but cannot benefit the

background knowledge. However, the high computational cost of creating a model each

time is a distinct weakness of this approach. In comparison, Word2Vec and GloVe allow

pre-trained models to be used multiple times by fine-tuning the input feature vectors to a

specific task.

Doc2Vec uses the Word2Vec model and adds another vector (Paragraph ID), as shown in

Figure 2.2 [11]:

Figure 2.2. Doc2Vec PV-DM Model

The architecture of the PV-DM is similar to the CBOW model, with a new feature vector

for the document. During the training phase, the document vector is also trained and can

then represent the concept of the document.

Similar to Word2Vec, the other architecture, PV-DBOW, is inspired by Skip-gram, as

illustrated in Figure 2.3[11].

The second architecture needs less memory and is faster than the PV-DM since it is does

not save word vectors.

Le and Mikolov [11] recommended use of a combination of both architectures, although

PV-DM is the superior method in most cases.

10101010101 11101110101 10111010111 11111010101

Word 1 Word 2 Word n…

…

Paragraph ID

10101010010…1001010101101Average / Concatenate

11101110101

Word n+1

Paragraph Matrix

16

Figure 2.3. Doc2Vec PV-DBOW Model

2.8 Other Word Embedding Approaches

In 2015, Hong et al. [36] used the deep learning and Latent Dirichlet Allocation (LDA)

approaches to detect anomaly sentences in End User License Agreement (EULA) legal

texts. In the first step, topics were extracted by LDA from a EULA corpus; the words in

the topics were then removed from the testing text. The Word2Vec vector of all the

remaining words was calculated and a Word2Vec vector for each sentence was created. In

the next step, agglomerative clustering (which is more successful in comparison to the K-

mean clustering method) and the local outlier factor were used to detect abnormal sentences

in the EULA text.

A 2015 study by Tai et al. [37] introduced a new representation for sentences that is a

combination of Long Short-Term Memory (LSTM) and tree-structured network topologies.

This model is known as Tree-Structured LSTM. Three classes of models represented the

meaning: bag-of-words, sequence, and tree-structured models. In the bag-of-words model

the model is independent from the sequence and cannot support all NLP tasks. Sequence

models construct the token's sequence sensitive representation of sentences. Tree-

structured models create each phrase or sentence from sub-phrases based on the given

syntactic structure. This study proposes generating an alternative representation based on

concepts in a document and then aggregating the results with the original word vectors.

10101010101

11101110101 10111010111 11111010101

Word 1 Word 2 Word n…

…

Paragraph ID

10101010010…1001010101101

11101110101

Word n+1

Paragraph Matrix

17

Recently, Cer et al. [38] developed a transfer learning-based approach, called USE

(Universal Sentence Encoder), for encoding text into embedding vectors. The presented

encoder employs two encoding models: DAN (Deep Averaging Network), introduced for

the first time by Iyyer et al. [39] in 2015, and Transformer-based sentence encoding by

Vaswani et al. [40], introduced in 2017. Both models convert an English string into fixed

dimensional embedding representation. To produce the embedding in DAN encoding, the

embedding of the word and bi-grams are averaged together and passed through a

feedforward deep neural network. This model targets efficient inference. The transformer-

based sentence encoding uses an encoder sub-graph to compute context aware embedding

for each word in the text and calculates an element-wise sum at each word position to

produce an embedding vector for the entire document.

Zhu and Hu [41] presented a variation of doc2vec (the Distributed Bag of Words model),

which is known as context aware document embedding. In their approach, each word

occurrence is weighted based on its contribution in the context. This weighting allows

document embedding to capture sub-topic level keywords to facilitate the learning process.

Their computation and memory cost depend on the size of the text.

Mirowsky et al. [42], developed a non-linear multi-layer algorithm based on autoencoder

architecture for text classification, information retrieval and topic modeling. This algorithm

generates a compact document representation.

Ranzato and Szummer [43] provided an autoencoder-based document representation built

on a semi-supervised approach. The authors mentioned that learning deep architecture

works more efficiently with compact document representations. More compact

representation needs less storage space and is computationally more efficient for indexing

lookup procedures.

More recently, deeper neural architectures have been developed to generate these

embeddings and to perform text classification tasks. Some of these architectures involve

sequential information of text, such as LSTMs [44]. Le and Mikolov [11] developed a

method to generate embeddings that outperform the traditional bag-of words [2] approach.

Extracting the list of nearest neighbors of a specific word or calculating the similarity

distance between selected terms are examples of intrinsic evaluation methods. Previous

18

studies show that different types of information can be encoded by different layers of

LSTM [45, 46].

Levy et al. [47]showed that, when the hyperparameters of an algorithm are tuned, the results

of all traditional and deep learning-based approaches are comparable. They claimed that

the performance of word embedding and classification results are more dependent on

hyperparameter optimization than the total approach. They compared four different word

representations: Word2Vec’s Skip-gram with negative sampling architecture; GloVe;

SVD; and explicit representation, which is a Positive Pointwise Mutual Information (PPMI)

matrix [48]. Based on their conclusions, for different tasks, different types of word

embedding with different hyperparameter values could achieve the best results. As an

example, in different experiments, Skip-gram outperformed GloVe, while the study by

Pennington et al. [9] showed that completely opposite or deep learning-based word

embeddings did not always outperform traditional count-based distributional methods.

In a comparative study by Altszyler et al. [49] between the LSA and Word2Vec, the results

showed that, in cases with a low number of documents and low frequency of target words,

the LSA works more accurately than Word2Vec.

In 2018, Peters et al. [50], introduced ELMo, a semi-supervised embedding from Language

Models. By using bi-LSTM architecture, this deep contextualized word representation can

capture complex characteristics of word use as well as characteristics of word use and

variety across linguistic contexts. The ELMo model uses a concatenation of the vectors that

are generated by the left-to-right LSTM and the right-to-left LSTM. These two vectors are

independently trained. The authors showed that lower level LSTM architectures can

compute syntax-based aspects of a word, while high level LSTM can capture context-

dependent information of word meaning.

In 2018, Devlin et al. [51], from the Google AI lab, introduced a new word embedding

named Bidirectional Encoder Representations from Transformers (BERT). Unlike ELMo,

this architecture trains the vectors on the left and right contexts in all layers, so that one

additional output layer can then tune the output. This architecture can be used for pre-

training tasks as well as fine-tuning procedures. The authors claimed to have advanced

19

state-of-the-art results for 11 NLP tasks, namely: question answering, Named-entity

recognition, and next sentence prediction.

2.9 Taxonomy Induction

Taxonomy plays an important role in information systems, ontology learning, and the

semantic web. Taxonomy is the backbone of ontology; using ontology can solve the

problem of data sparseness by replacing words with concepts [13]. Ontology-based vector

approach is suggested for using background knowledge and solving the problem of the high

computational cost inherent in creating a model and ignoring the term relationship between

terms that do not literally co-occur. [12].

The CTWE approach, which is described in 3.2.2, is inspired by creating a taxonomy of

words for each document. While taxonomy is the backbone of ontology, using ontology

can solve the problem of data sparseness by replacing words with concepts [13]. Significant

research efforts have been made with respect to using different document representation

models. In the introduction to a book edited by Buitelaar et al. [52], the focus was on

ontology learning and describing a six layer model. The base layer of the model was

comprised of terms. Term extraction was introduced as the first step of ontology learning.

Acquisition of semantic terms in a language or between languages was described as the

second layer of the model, which uses clustering-based techniques and the Latent Semantic

Indexing (LSI) algorithm. The concepts layer formed the third layer, which was defined as

the intentional definition of concepts, a set of instances, and a set of linguistic realizations.

Taxonomy was placed as the fourth layer in the proposed model. The three paradigms of

lexico-syntactic patterns, term clustering, and document-based notation of term

subsumption are used to induce taxonomies. Extracting non-hierarchical relations was the

fifth layer of the model, which focused on discovering new relations between known

concepts. The sixth and highest layer was rule extraction, defined as: deriving lexical

entailment rule extraction.

In another study, Nazar et al. [53], the authors mentioned two main automatic taxonomy

strategies: the first group of strategies is lexico-syntactic, which is based on finding patterns

in texts such as "is a", "consists of", and "belongs to". The second group is composed of

20

quantitative strategies, which assume that hyponyms of a term occur in a context window,

based on redundancy in texts because of the definition or characterizing statements. A

strategy from the quantitative group is presented based on the asymmetry and transitivity

of hypernym relations. A limited set of terms was assumed as seeds that are related to a

specific domain; after searching these terms on the Internet, the co-occurrence of terms was

calculated. The terms were arranged in the taxonomy, based on the asymmetric nature of

the syntagmatic association of terms. Lu et al. [29] created a cluster's universe and, by

segmenting documents into topics and assigning the topics into clusters, a relationship was

made between each document and the clusters. The documents were assigned as members

of the strongest relative cluster and associated with the second most strongly related cluster.

In another study by Ben et al. [54] in 2016, "Is a" taxonomy was extracted from a Wikipedia

categories graph. Two algorithms were used: an algorithm to split a "Direct Acyclic Graph"

into sub graphs, and a second algorithm to merge the sub graphs. This approach uses the

semantic similarity measure between terms and compares the results with WordNet.

Additional research studies that focused on cold start taxonomy induction were also

conducted. In this context, the cold start procedure involves an automotive process of

taxonomy induction that is purpose-built. In a very early study in 1992, Hearst [55]

presented a new approach to finding relationships between words in a text corpus by finding

patterns. The approach was based on bootstrapping to automatically finding patterns. In

order to extract the taxonomy from an unstructured data extracted from the web, Sánchez

and Moreno [56] presented a combination of three approaches: the Hearst, the noun phrase,

and the web search methods. The authors mentioned that taxonomy construction is the first

step in structuring domain knowledge as well as the web in comparison to other data

sources such as dictionaries, databases, and news reports, which are unstructured,

untrustworthy, noisy, and ambiguous. However, data from the web is vast in size and

heterogeneous, as well as a real distribution of human knowledge. The authors tried to

maximize the performance by a bootstrapping approach. In the first phase, the patterns were

extracted by the Hearst approach and enriched by the noun verb approach. In the next phase,

the most suitable candidates were selected and applied to web scale statistics by using a

search engine. Human experts were also involved in the evaluation of the extracted

taxonomy.

21

Alvarado and Arevalo [57] presented a text clustering-based approach for ontology

learning. In the proposed approach, a verb-norm table was created and mutual information

calculated for each pair of verbs and norms. In the next step, by using the Minipar parser,

the dependency between the nouns was determined by using Clustering by Committee

algorithms, and the inferred topic and hyponyms were identified. The Hearst approach,

contextual information extraction, and web querying approaches were used to create a

taxonomy for each topic. In a similar study by Woon and Madnick [58], a new measurable

distance was introduced based on term co-occurrence, which can be used for taxonomy

construction. The main characteristic of the research was the use of academic literature as

the knowledge base and the use of Google scholar for obtaining the query. In the presented

approach, the Kolmogorov complexity was used to calculate the distance between two

terms. In a study by Meijer et al. [59], an automatic taxonomy construction framework was

presented for extracting a taxonomy from a corpus in four steps: term extraction; filtering

of relevant terms; the disambiguating phase; and finally, determining of hierarchical

relations.

In 2007, Makrehchi and Kamel [60] used "Google distance" to find the relationship

between terms to make a taxonomy. To create the term dependency and adjacency matrix,

the normalized Google distance was calculated based on page count in the searched results

of a term in the Google search engine. In 2006, Heymann and Garcia-Molina [61] converted

two corpuses of tags into a hierarchical taxonomy of tags. For each new tag, similarity with

the other tags was calculated and added under the most similar, if the cosine similarity was

greater than the threshold. Otherwise, the new tag went under the taxonomy's root. This

algorithm was applied to the Delicious and SiteUlike corpuses.

Bast et al. [62] used the PCA method to find types of relationships between terms. The

types of relationships in the study were: unrelated; symmetrically related; asymmetrically

related (when the first term is more specific than the second); and finally, asymmetrically

related in the other direction. A term-term similarity matrix was created, and similarity of

terms was calculated based on a co-occurrence matrix. In the next step, each term was

ranked according to the optimal dimensions that were needed to best describe the similarity.

The rank has been used to find the relationship between terms and to show which term

covers another term. To justify the model, a normalized document-term matrix was created

22

and the similarity between the terms was calculated. The authors mentioned that evaluation,

whether automatic or manual, is difficult.

Yang and Callan [63] introduced five features for automatic taxonomy induction: (1),

Contextual information: Global context Kullback–Leibler divergence (KL-Divergence),

and Local context KL-Divergence; (2), Co-occurrence: Using Google search results for

documents and sentences; (3), Syntactic dependency, such as the minipar syntactic

distance, the modifier and the overlap for objects, subjects, and verbs; (4), Lexical syntactic

patterns: Hyponym, sibling, and part of patterns; (5), Miscellanies: Word length difference,

and definition overlap. Wikipedia and Google corpora have been used for training the

model. The F_score was calculated for different types of relations. In another work by Yang

and Callan [64], a new matrix between two terms, known as "the ontology metric", was

calculated, providing a score to show the semantic distance of terms in a taxonomy. The

terms were incrementally clustered, based on this new metric, using a clustering-based

method with features described in [63]. The proposed approach tried to minimize changes

in the taxonomy structure while inserting a new term.

Navigli et al. [13] extracted terms with a tool known as a "term extractor", and hyponym

terms were then extracted by a World Class Lattices classifier. In the subsequent step,

domains were filtered based on weights, and taxonomy induction was performed by using

topological graph properties, which were produced in the previous steps. False roots, leaves

and waiting edges were eliminated based on graph connectivity and path length. Finally,

the results were compared with WordNet and two other studies.

In another effort to conduct automatic taxonomy extraction, Liu et al. [65] presented an

approach to derive the taxonomy from a set of keywords by the Bayesian approach while

efficiently using the knowledgebase of a search engine. The authors mentioned that manual

taxonomy extraction is costly and very subjective. Finding a valid and accurate corpus for

specific domains is not easy; some domains are fast changing while the data is also sparse.

In a study into taxonomy extraction, Wu et al. [66] tried to discover frequent sequential

patterns in a text. The output of the model, which was named the pattern taxonomy model,

can demonstrate extracted sequential pattern relationships.

23

Garcia et al. [67] presented an approach for automatic taxonomy extraction from the

Wikipedia categories structure. This approach, which is language independent, used

syntactic, structural, and content based features for taxonomy extraction. In a study by

Nguyen et al. [68], Wiktionary was used as the knowledgebase and the Hidden Markov

Support Vector Machines approach was used for solving the problem of word ambiguity in

the English, Vietnamese, and Korean languages. In another study, Saleem and Bellahsene

[69] presented a tree mining-based approach for extracting mini taxonomies from existing

ontologies, XML schemas, and Folksonomies with tree-based data structures. Makrehchi

[70, 71] identified the dependency of terms calculated according to the inclusion index with

a taxonomy extracted from a term to term matrix. By using the extracted taxonomy, sets of

queries were generated and the ranking score of each generated query was calculated for

each document. These calculated ranking scores were used as new feature vectors for

clustering documents based on query. The results showed an improvement in comparison

to the traditional bag-of-words method.

In a study by Socher et al. [30], the Neural Tensor Network was used to extract the

relationship between entities in a knowledgebase. The vector representation of words was

used to calculate the average of the word vectors in an entity. The learning relation classifier

and the entity representation were joined. This approach is used for a knowledgebase

completion task, which is useful in query expansion, question answering, and information

retrieval tasks.

In 2018, Lai et al. [72] presented a combined approach that employed the pre-trained GloVe

word embedding model and statistical information from an Is-A taxonomy for the task of

semantic differentiation. The extracted features consisted of word frequency, co-

occurrence word frequency and other statistical data from the Is-A taxonomy and word

vectors, cosine distance, and L1 norm of vector difference from the GloVe pre-trained

model that is passed through an SVM classifier.

24

2.10 Summary

In this section, various document representation and word embedding approaches are

explored and reviewed. The primary approaches, namely bag-of-words and n-gram, suffer

from the curse of dimensionality and are limited to the local context, while the word

embedding-based approaches, which benefit from global knowledge, demand high

computational power to be able to train over vast corpuses. Deep learning-based approaches

benefit from global knowledge by adding an embedding layer to their complex architecture

but, in terms of computational power, the cost of generating the model is high. In the

following chapter, four novel approaches, which are able to inject a local context into

globally pre-trained word vectors, are presented.

25

Chapter 3. Proposed Document Representation

Approaches

3.1 Introduction

This chapter illustrates the four novel approaches to representing a document in a way

that uses pre-trained word vectors as well as the document context. The document content

tree, which is the foundation of the CTWE approach, is described and the CTWE is then

presented. The MSCT and CMSCT are later introduced, followed by a full explanation of

the EbWC and AbWC details and algorithms.

3.2 Content Tree Word Embedding

3.2.1 Document Content Tree

A document content tree is based on a semi-taxonomy representation of a document that

shows the dependency between the terms in the document. In this proposal, in order to

measure the dependency of terms, a correlation metric is used to evaluate the relationship

between the deep learning-based generated vectors of the terms used in the document.

Equation 3.1 illustrates the formula used to calculate the correlation between two 1-D

arrays, X and Y:

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)
𝜎𝑋.

𝜎𝑌

Equation 3.1

where cov is the covariance, σX is the standard deviation of X, and σY is the standard

deviation of Y.

Figure 3.1 illustrates the process of adding a new word to the content tree in the early steps.

The content tree induction algorithm assumes the first word (Word A) in the vocabulary of

the content as the root and the second word (Word B) as its child. The correlation of the

third word’s vector (Word C) with the two previously added words in the content tree will

be measured, as shown in Figure 3.1 (a), and added as the child of the word with maximum

26

correlation, which might be the root, as shown in Figure 3.1 (b), or the second word, as

shown in Figure 3.1 (c). This process continues recursively for all new words in the content

in order to find their location in the content tree.

Figure 3.1. Content Tree Induction Early Process

Algorithm 3.1 shows the process of the content tree creation while Figure 3.2 shows an

example of a generated Document Content Tree for a sample movie review.

 Algorithm 3.1: Generating Document Content Tree

 Input: Dataset
Output: Content Tree, Content Tree-based updated Word Vectors.

Split Training and Testing Data.
For each word in the Training Data:

If it exists in the model:
For each word in the Content Tree:

Calculate the correlation between the word vectors.
Parent ¬ Word with Maximum Correlation
Add the word to the Content Tree as the child of the parent.

Return Content Tree-based updated Word Vectors.

For the computational cost, the worst-case scenario is when all the words in the content

text are unique. In this situation, Algorithm 3.1 follows 𝑂(𝑛2) complexity to estimate the

correlation between the word vectors of each word in the content text with all the words in

the updated constructed content tree, where n is the length of the content text.

Word A
(Root)

Word BWord C

Word A
(Root)

Word BWord C

Word A
(Root)

Word B

Word C

(a) (b) (c)

27

Figure 3.2. Content Tree Sample generated from an IMDB Movie Review with the Word2Vec Model

3.2.2 Content Tree Word Embedding Document Representation

In order to define the baseline, the average for the vector of words is calculated from the

two deep learning-based models. The first model was trained by the Google News corpus,

which generated a 300-dimensional vector for each word. The second model was trained

by a corpus from open repository web crawl data, which also generated a 300-dimensional

vector for each word. Furthermore, the Word2Vec model was trained and used for the

classification task on the introduced dataset as another deep learning-based document

representation method. The main idea of the presented approach is to create a content tree

Film

Thriller

Dvd

Glossy

Release

See

Hear

Give

Hope

Chance

Sincerely

Much

People

28

for training data. To create the content tree and find the parent-child relationship between

words, the maximum correlation between the new word and all the other words in the

content tree is calculated and used as the criteria. The new word will be the child of the

word between the existing words (visited words) with the maximum correlation to the

word’s vector. For example, if the union of words: (“story”, “apartment”, “book”) is

assumed as the visited nodes in the content tree, the new correlation between the vector of

the new word “chapter” should be calculated with all the words. The word with the

maximum correlation will be the parent of the new word, which in this example is “book”.

The key idea of the approach is to update the word vector of the new word by calculating

the weighted average of the word’s vector and its parent’s word vector. The new vector

will be used to calculate the average of the word vectors in reviews for training and in

testing phases of the study. This approach, illustrated in Equation 3.2, will consider the

influence of the parent’s word vector on the new word vector:

𝑽𝒆𝒄𝑼𝒑𝒅𝒂𝒕𝒆 =
(𝟏p𝜹).𝑽𝒆𝒄𝑷𝒂𝒓𝒆𝒏𝒕t	𝜹.𝑽𝒆𝒄𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍

𝟏p𝜹t𝜹I𝟏
 Equation 3.2

where VecUpdate is the new generated vector, VecParent is the parent of the word in the

context tree, VecOriginal is the word vector learned from the global training data, and δ is

the decay factor to reduce the effect of the original word vector and increase the power of

the parent’s word vector. The effect of the decay factor has been investigated in [20].The

following formula (Equation 3.3) shows the general form of a word vector calculation

based on its location in the content tree:
𝑽𝒆𝒄𝒏(𝑵𝒆𝒘) = (𝟏 − 𝜹). 𝑽𝒆𝒄𝒏p𝟏 + 𝜹. 𝑽𝒆𝒄𝒏 = (𝟏 − 𝜹). [(𝟏 − 𝜹). 𝑽𝒆𝒄𝒏p𝟐 + 𝜹. 𝑽𝒆𝒄𝒏p𝟏] + 𝜹. 𝑽𝒆𝒄𝒏	

= (𝟏 − 𝜹)𝟐. 𝑽𝑵p𝟐 + (𝟏 − 𝜹). 𝜹. 𝑽𝑵p𝟏 + 𝜹. 𝑽𝑵	

= (𝟏 − 𝜹)𝟐. [(𝟏 − 𝜹). 𝑽𝑵p𝟑 + 𝜹. 𝑽𝑵p𝟐] + (𝟏 − 𝜹). 𝜹. 𝑽𝑵p𝟏 + 𝜹. 𝑽𝑵	

= (𝟏 − 𝜹)𝟑. 𝑽𝑵p𝟑 + (𝟏 − 𝜹)𝟐. 𝜹. 𝑽𝑵p𝟐 + (𝟏 − 𝜹). 𝜹. 𝑽𝑵p𝟏 + 𝜹. 𝑽𝑵	

																																																																		
.
.
.
	

= (𝟏 − 𝜹)𝒏. 𝑽𝒆𝒄𝑹𝒐𝒐𝒕 + ⋯+ (𝟏 − 𝜹)𝒏p𝒎. 𝜹. 𝑽𝒆𝒄𝒏 + ⋯+ (𝟏 − 𝜹). 𝜹. 𝑽𝒆𝒄𝒏p𝟏 + 𝜹. 𝑽𝒆𝒄𝒏

Equation 3.3

where n is the depth of the word in the content tree, Vecn is the original word embedding

and Vecn(New) is its updated word vector.

29

As shown in Equation 3.4, for each review, VecAverage is the average vector of all words

that is calculated and used as a feature vector for training a linear SVM classifier. The same

feature vector is generated for each review in the test data.

𝑽𝒆𝒄𝑨𝒗𝒆𝒓𝒂𝒈𝒆 =
∑ 𝑽𝒆𝒄𝑈𝑝𝑑𝑎𝑡𝑒(𝒊)	
𝑵
𝒊I𝟏

𝑵 Equation 3.4

where N is the number of words of each review and VUpdate is the content tree-based

generated vector. Algorithm 3.2 is used for the content tree-based word vector modification

and to calculate the average of the modified words for each document in the datasets. The

calculated average word vector is used as a feature vector in the task of classification.

 Algorithm 3.2: Generating CTWE

 Input: Dataset
Output: CTWE-based Average Word Vectors.

Split Training and Testing Data.
For each word in the Training Data:

If it exists in the model:
For each word in the Content Tree:

Calculate the correlation between the word vectors.
Parent ¬ Word with Maximum Correlation
𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒	¬	

(1 − 𝛿). 𝑉𝑒𝑐𝑃𝑎𝑟𝑒𝑛𝑡 + 	𝛿. 𝑉𝑒𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	

Add the word to the Content Tree as the child of the parent.

Vec������� =
∑ 𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒(𝑖)	
�
-I�

𝑁

Return CTWE-based Average Word Vectors

Since Algorithm 3.2 employs Algorithm 3.1 to create the content tree, this algorithm

follows Algorithm 3.1 complexity order, which is 𝑂(𝑛2).

In the case of scalability for the presented approach, because creating a content tree is an

exponential algorithm, a solution to reduce the size of the training data is presented. A part

of the training data is randomly selected as “seed data” and used to train the content tree.

The size of the seed data is reduced to 10% of the original training data.

30

Figure 3.3 shows a block diagram of the updated word embedding process for a

classification task.

Figure 3.3. Block Diagram of the CTWE Approach

3.3 Composed Maximum Spanning Content Tree

3.3.1 Maximum Spanning Content Tree Document Representation

The maximum spanning tree (MST) is a tree with a minimum number of links and the

highest possible weights that span all of one node. Kruskal’s algorithm [73], which is used

to calculate this tree, is applied in order to identify a graph's minimum spanning tree. It

first sorts the edges in order of increasing cost and then adds edges to generate a fully

connected graph by bridging the separate components. Negativizing the weights of each

node allows the algorithm to compute the maximum weight spanning tree.

In the maximum spanning content tree (MSCT) approach, the same algorithm is used to

generate the content tree. To select the root word, the fully connected graph of all the words

Training
Data

(Text)
Seed Data

Content Tree

Updated Word Embedding'sCreating Content Tree
CTWE
Word

Vectors

Training
Data

(Text)
Seed Data

Content Tree

Updated Word Embedding'sCreating Content Tree
CTWE
Word

Vectors

31

in the training data should first be generated. In this weighted graph, the weight between

every two nodes is the cosine similarity of their word vectors. The summation of weights

for each node should then be calculated and the node with the highest weight summation

is selected as the root node. The Kruskal algorithm will be applied over the graph and the

MSCT will be generated for the words in the training data. In the subsequent step, the word

vectors will be updated based on the parent-child relationship in the MSCT, similar to the

CTWE approach. Algorithm 3.3 and Figure 3.4 illustrate the MSCT approach.

Figure 3.4. Block Diagram of the MSCT Approach

 Algorithm 3.3: Generating MSCT

 Input: Dataset
Output: MSCT-based Average Word Vectors.

Split Training and Testing Data.
For each word in the Training Data:

If it exists in the model:
Calculate the cosine similarity with all other word vectors as an
Edge.
Add the Edge to the fully connected graph: G.

For each node in G:
𝑊𝑒𝑖𝑔ℎ𝑡���� =F 𝑊𝑒𝑖𝑔ℎ𝑡����

�����

Root ¬ Max (𝑊𝑒𝑖𝑔ℎ𝑡����)
𝐺���& ¬ Kruskal (G, Root)

For each node in 𝐺���&:

𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒	¬	
(1 − 𝛿). 𝑉𝑒𝑐𝑃𝑎𝑟𝑒𝑛𝑡 + 	𝛿. 𝑉𝑒𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	

Vec������� =
∑ 𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒(𝑖)	
�
-I�

𝑁

Return MSCT-based Average Word Vectors

Algorithm 3.3 follows 𝑂(𝑛2) complexity in order to calculate the cosine similarity

between all the nodes in the fully connected graph, where n is the size of the vocabulary in

the training data. The Kruskal algorithm follows 𝑂(𝑒	 log 𝑒), where e is the number of

Train
Vocabulary

Fully Connected Graph Maximum Spanning Tree

MSCT
Word Vectors

Updated Word Vectors
(0.124,0.4213,…,0.147)

Word Vectors
(0.323,0.4343,…,0.545)

Kruskul Algorithma

32

edges (Here e=N) in the graph.[74]

3.3.1.1 The memory challenge of the MSCT

The phase of generating the fully connected graph in the MSCT follows the 𝑂(𝑛2) (n is

the number of words). This present work implements an experiment that involves

Word2Vec word embedding over the IMDB movie review dataset. During the

implementation phase, for the total of 114,583 unique terms in the training data, at least

1TB memory (RAM) was needed. The only available resource at the time of the experiment

was the Graham distributed system [75] in Compute Canada, which is the largest and by

far the most powerful cluster among the current SHARCNET fleet of supercomputers. Due

to the long processing time and queue to access the resources, another version of the

MSCT, called the Composed Maximum Spanning Content Tree (CMSCT) document

representation, is proposed.

3.3.2 Composed Maximum Spanning Content Tree Document

Representation

In this approach, similar to the MSCT approach, a graph is generated but not the fully

connected graph of the training data. The fully connected graph is generated for the first

document in the training data and the MST is then extracted from it. A similar MST should

also be extracted for the second document. These two graphs are then composed together.

The composition in this context results in a union of the nodes and edges. For the remainder

of the documents in the training data, the MST will be generated and composed to the

current content tree. At the end of this process, the Kruskal algorithm will again be applied

in order to remove the cycles and generate a new tree. This sequential algorithm does not

suffer from the need to have an inordinately large memory. In the next step, the word

vectors will be updated based on the parent-child relationship in the CMSCT, similar to the

CTWE and MSCT approaches. Error! Reference source not found. and Algorithm 3.4

show the process of the CMSCT approach.

The evaluation result of the CMSCT in comparison to the MSCT approach is shown in

Table 5.13. In terms of complexity, Algorithm 3.4 follows 𝑂(𝑚2) to create a fully

33

connected graph where m is the vocabulary size of each document, (m<<N) and follows

the 𝑂(𝑒	 log 𝑒) to create the maximum spanning tree for each document and again for the

composed graph of all documents in the training data.

 Algorithm 3.4: Generating CMSCT

 Input: Dataset
Output: CMSCT-based Average Word Vectors.

Split Training and Testing Data.
For each document in the Training Data:

For each word in the Training Data:
If it exists in the model:

Calculate the cosine similarity with all other word
vectors as an Edge.
Add the Edge to the Document’s fully connected
graph:𝐺���� �¡a.

For each node in 𝐺���� �¡a:
𝑊𝑒𝑖𝑔ℎ𝑡���� =F 𝑊𝑒𝑖𝑔ℎ𝑡����

�����

𝑅𝑜𝑜𝑡���� �¡a¬ Max (𝑊𝑒𝑖𝑔ℎ𝑡����)
𝑀𝑆𝐶𝑇���� �¡a ¬ Kruskal (𝐺���� �¡a, 𝑅𝑜𝑜𝑡���� �¡a)

For each document in the Training Data:

𝐺���&=Composed (𝐺���&, 𝑀𝑆𝐶𝑇���� �¡a)

For each node in 𝐺���&:
𝑊𝑒𝑖𝑔ℎ𝑡���� =F 𝑊𝑒𝑖𝑔ℎ𝑡����

�����

𝑅𝑜𝑜𝑡���& ¬ Max (𝑊𝑒𝑖𝑔ℎ𝑡����)
𝐺����& ¬ Kruskal (𝐺���&, Root)

For each word in CMSCT:

𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒	¬	
(1 − 𝛿). 𝑉𝑒𝑐𝑃𝑎𝑟𝑒𝑛𝑡 + 	𝛿. 𝑉𝑒𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	

Vec������� =
∑ 𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒(𝑖)	
�
-I�

𝑁

Return CMSCT-based Average Word Vectors

34

Figure 3.5. Block Diagram of the CMSCT Approach

3.4 Embedding-based Word Clustering Document

Representation

The presented approach, Embedding-based Word Clustering (EbWC), consists of two

phases: word clustering and word vector generation.

In the task of text clustering, the target class is not being predicted, but trying to group

similar words based on different similarity measures. Groups should not ultimately be

similar to each other.

In the presented approach, all the words contained in the training data are first arranged

into a specified number of clusters based on their word vector from the Word2Vec, GloVe,

fastText, LSA, or Random word embedding approaches. The clustering algorithm uses K-

means or hierarchical clustering by which, for this study, both clustering methods build the

same clusters. In the second step, the bag-of-clusters method is used for mapping each

document to a vector. The distance of the word’s vector to the centroid of each cluster is

an element of the new representation vector. In this study, in order to be able to compare

this approach with other presented word embeddings, the number of clusters in the K-

means algorithm, which is the number of dimensions in the representation vector, is set to

300. Figure 3.6 illustrates the process of cluster vector creation in the EbWC approach.

Train
Documents

Documents’ MST

Maximum Spanning Tree

CMSCT
Word Vectors

Updated Word Vectors
(0.124,0.4213,…,0.147)

Word Vectors
(0.323,0.4343,…,0.545) Composition

35

Figure 3.6. Block Diagram of the EbWC Approach

In this approach, each word (𝒘𝒊) is presented with a vector of distances to the clusters’

centroids, as shown in Equation 3.5:

𝑽𝒆𝒄𝒘 = M𝒅𝟏, 𝒅𝟐,…	, 𝒅𝒎N	, 𝐂𝐥𝐮𝐬𝐭𝐞𝐫𝐬 = M𝑪𝟏, 𝑪𝟐,…	, 𝑪𝒏N	

𝑽𝒆𝒄𝑬𝒃𝑾𝑪𝒊 = M𝒗𝟏, 𝒗𝟐,…	, 𝒗𝒏N	

𝒗𝒋 = 𝐂𝐨𝐬𝐢𝐧𝐞(𝑾𝒊, 𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅M𝑪𝐣N)

Equation 3.5

where W is a word and 𝒅𝟏	to	𝒅𝒎 are elements in its word vector, 𝑉𝑒𝑐𝑤. 𝑪 represents a

cluster’s centroid, while i is the number of words, and n is the number of final word vector

dimensions (the number of clusters extracted from the training data). The 𝒗𝒋 is the cosine

distance of the word 𝑾𝒊 and centroid of the 𝑪𝐣. Algorithm 3.5 shows the process of creating

EbWC representation vectors.

Algorithm 3.5 follows 𝑂(𝑛2) , according to the k-means algorithm [76] used for the

clustering phase while creating new word vectors by calculating the distance from each

cluster’s centroid follows 𝑂(𝑛).

Word Vector Clusters

Word Vectors
(0.323,0.4343,…,0.545)

Train
Vocabulary

Centroids

1
2
.
.
.
300

Train / Test
Vocabulary

EbWC vector
Generator

EbWC
Word

Vectors

Updated Word Vectors
(0.124,0.4213,…,0.147)

36

 Algorithm 3.5: Generating EbWC

 Input: Dataset
Output: EbWC-based Average Word Vectors.

Split Training and Testing Data.
Cluster the words in the Training Data based on their word vectors.
For each word in the Training Data:

If it exists in the model:
For each cluster in clusters:
𝑣. = cosine_distance(𝑉𝑒𝑐-, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑M𝐶¹N)

𝑉𝑒𝑐�º»�	¬	(𝑣
�, 𝑣¼, …	, 𝑣¡)

Vec���� �¡a =
∑ 𝑉𝑒𝑐𝐸𝑏𝑊𝐶

𝑖 	¾
¿ÀÁ

�
 (N is the number of words in the Document)

Return EbWC-based Average Word Vectors

3.5 Autoencoder-based Word Embedding

3.5.1 Autoencoder

An autoencoder is a type of neural network that tries to reconstruct inputs to outputs. This

architecture uses non-linear encoder and decoder modules to provide a latent representation

based on training data, which is known as “encoding the input”. Deep multi-layer neural

networks are used in the architecture of autoencoders.

Several studies have been conducted into model word counts by different types of

autoencoders, namely: Softmax decoder [77], Poisson decoder [78], and binary stochastic

hidden units.

Similar to the PCA and other dimensionality reduction methods, autoencoders compress the

input into a latent-space representation and reconstruct the output from this representation.

For this purpose, autoencoders use the transformation. Unlike the PCA which uses linear

transformation, autoencoders use non-linear transformation.

Autoencoder architecture consists of two parts: the encoder and decoder. The encoder

compresses the data in the input to a latent-space representation (h=f(x)) while the decoder

reconstructs the original input from that latent-space representation (r=g(h)).

37

Figure 3.7. Autoencoder Block Diagram

Figure 3.7 demonstrates a two-layer vanilla autoencoder with one hidden layer. The

popular types of autoencoders are: convolutional autoencoder; variational autoencoder;

denoising autoencoder; and sparse autoencoder. For this study, an autoencoder that uses a

single fully-connected neural layer as the encoder and decoder is implemented. An

embedding layer with a size of 300 is used to generate new word vectors the size of 300.

3.5.2 Autoencoder-based Word Embedding Document

Representation

The main objective of Autoencoder-based Word Embedding (AbWE) is to train the

autoencoder neural network with the training data and then update (encode) the word

vectors with this autoencoder. The new word representation should carry the hidden

information from the training data context. Figure 3.8 illustrates the generation process of

the autoencoder-based word vector representation and Algorithm 3.6 describes the

intention:

0101010101010
0100101101011
1010010101010

.

.

.
1001010010100

0101010111010
0101111101011
1011110101010

.

.

.
1001010111101

Encoder Decoder

010110
010001
101000

.

.

.
100110

Original
Document-Term Matrix

Reconstructed
Document-Term Matrix

Lower Dimensional
Latent Representation

38

Figure 3.8. Block Diagram of the AbWE

The complexity of Algorithm 3.6 depends on the training phase that trains the autoencoder

by the word vectors of the training dataset. This algorithm follows 𝑂(𝑛), as each word

vector passes through the network once during each training iteration.

 Algorithm 3.6: Generating AbWE

 Input: Dataset
Output: AbWE-based Average Word Vectors.

Split Training and Testing Data.
For each word in the Training Data:

If it exists in the model:

𝐴𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ���Ä = 𝑡𝑟𝑎𝑖𝑛_𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝐼𝑛𝑝𝑢𝑡:𝑊𝑖, 𝑂𝑢𝑡𝑝𝑢𝑡:𝑊𝑖)

For each word in the Training and Testing Data:

𝑉𝑒𝑐�ºÇ�
- = 𝐴𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ���Ä(𝑊𝑖)

Vec���� �¡a =
∑ 𝑉𝑒𝑐𝐴𝑏𝑊𝐸

𝑖 	¾
¿ÀÁ

�
 (N is the number of words in the Document)

Return AbWE-based Average Word Vectors

Trained Autoencoder

Word Vectors
(0.323,0.4343,…,0.545)

Updated Word Vectors
(0.124,0.4213,…,0.147)

Train /Test
Vocabulary

Updated
Train /Test
Vocabulary

Autoencoder

Word Vectors
(0.323,0.4343,…,0.545)

Train
Vocabulary

Step 1: Training the Autoencoder

Step 2: Updating the Word Vectors

Word Vectors
(0.323,0.4343,…,0.545)

39

3.6 Comparison with Similar Studies

The current study can be differentiated from other similar investigations due to the subject

and method.

In comparison to the original versions of the Word2Vec, GloVe, and fastText, which

generate word vectors in an unsupervised manner and independent from the local context,

as well as to the LSA which is completely based on the local context, the presented

approaches use local context information as well as global information.

Maas et al. [24] introduced a word representation to capture the semantic and sentiment

meaning of words. Their approach used supervised and unsupervised learning that fit the

representation into the task, not the context.

A similar study was conducted by Hong [35], who tried to improve the performance of

Paragraph2Vec by adding a hidden layer and a tensor layer. This study was also different

from the present work in that it fit into the task, similar to the Paragraph2Vec approach.

Kim et al. [28] introduced three approaches for document representation, based on the

Word2Vec vector of content words. These approaches did not change the word level vector

but calculated the document vector in a novel approach.

Bernotas et al. [12] used a tagging-based document representation method by using

ontology, which was conducted at the document representation level and for a clustering

task.

The study of Lu et al. [29] was similar to the EbWC approach. Here, they created a cluster's

universe and, by segmenting documents into topics and assigning topics to the clusters, a

relationship was made between each document and the clusters. Their approach did not

change the word representation based on the context.

The study of Socher et al. [30] employed the Neural Tensor Network to extract the

relationship between entities in a knowledge base. The vector representation of words was

used to calculate the average of the word vectors in an entity, which made this study

different from the presented approaches in the current study. Tai et al. [37] introduced a

40

new representation for sentences that is a combination of LSTM and tree-structured

network topologies. The authors first generated an alternative representation based on

concepts in a document and then aggregated the results with the original word vectors. This

model is also used for document representation.

In comparison with the presented approaches, the USE [38] is a transfer learning-based

approach that encodes text into embedding vectors. It computes context aware embedding

for each word in the text and calculates an element-wise sum at each word position to

produce an embedding vector for the whole document. This representation should be

calculated for each sentence and is not a one-time process.

The document representation by [41] uses weighted word occurrence based on its

contribution in the context and captures sub-topic level keywords to facilitate the learning

process. The computation and memory cost depend on the size of the text and is another

variation of the Doc2Vec approach.

The approaches by [42] and [43] employed autoencoders similar to the AbWE approach.

However, as well as not presenting a new word vector for each word in the context, these

approaches worked at the document embedding level.

In comparison, ELMo [50] and BERT [51], presented LSTM based architectures that

achieved state-of-the-art results in some NLP tasks, and could represent new word

embeddings. Their main focus in the model is more on the architecture than the context

aware word representation.

3.7 Summary

The first approach, CTWE, employs a semi-taxonomy structure, known as a content tree,

and subsequently updates the word embedding vectors. The second approach, MSCT, is

proposed in order to first select the root based on the node degree, then generate the

maximum spanning tree. Another version of this approach, called the CMSCT, which does

not require a high amount of memory to generate the fully connected graph of all the words

in the training vocabulary, is defined. This approach first generates a small spanning tree

for each document, then generates the training data spanning tree by combining them. In

the final step, the word vectors are updated based on their location in the maximum

41

spanning tree. The third approach, EbWC, uses the clustering method for extracting the

conceptual structure of the context. Each element of the new word embedding is the

distance from the centroid of each word group cluster. The fourth method, AbWE, uses an

autoencoder for dimensionality and noise reduction in the context. The main idea here is to

train the autoencoder to capture the training data concepts, then update the word vectors by

encoding them.

42

Chapter 4. Experimental Evaluation Setup

4.1 Introduction

To study the effectiveness of the methods presented in Chapter 3, the design and conduct

of experiments on datasets and classifiers with different characteristics is needed.

In Chapter 4, the experimental setup of the research is described. The five selected datasets

are first introduced and the rationale behind this selection is described. The 11 classifiers

used in this study are described and the evaluation metrics are then initiated. The

experimental setup is described as Algorithm 4.1.

4.2 Datasets

The following five datasets, which are some of the most well-known in the domain of text

mining and text classification, have been used as the benchmark in this study. For covering

the aspect of classification type, two binary datasets and three categorical datasets are

selected. Different observation sizes, unique words count, and class distributions were

collected as datasets to evaluate the proposed approaches in different situations. Table 4.1

shows the statistics pertaining to the datasets.
Table 4.1. Dataset Statistics

Dataset # of
classes

Training Observations Testing Observations # Unique Words in
Training

Unique Words
in Testing

IMDB 2 25,000 25,000 114,583 99,805
HSI 2 7,254 7,255 20,553 19,126
20 Newsgroups 20 11,347 7,550 261,846 189,503
Reuters-21578 74 7,769 3,019 49,240 29,397
AG News 4 120,000 7,600 182,591 38,767

4.2.1 IMDB Movie Review

The Internet Movie Database (IMDB) Movie Review [79] is a sentiment (binary)

classification dataset, consisting of 25,000 training and 25,000 testing records. The

information is collected from movie reviews from the website www.imdb.com. The state-

of-the-art result that is found for this dataset represents an ensemble approach based on

43

naïve base SVM and recurrent neural networks (RNNs), presented by Mesnil et al. [80],

which is 92.57 in terms of accuracy.

4.2.2 Hate Speech Identification

The hate speech identification (HSI) dataset [81] contains 14,509 tweets with three classes.

In their study, Almeida et al. [82] achieved a result of 96% F_score with a k-NN classifier

for this dataset.

For this present study, the dataset is modified and converted to a binary classification task.

The positive class is when a tweet contains hate or offensive speech and the negative class

is when the tweet was not offensive.

4.2.3 20 Newsgroups

The 20 Newsgroups (20 NG) collection [83] is one of the popular datasets in text clustering

and text classification. The dataset includes 18,897 posts on 20 topics, split into training

and testing. The training and testing data are divided according to a specific date. Each

newsgroup corresponds to a specific topic.

Lai et al. [84] employed a recurrent convolutional neural network architecture and reported

state-of-the-art results for this dataset as 96.49 in terms of the F_score macro.

4.2.4 Reuters

The Reuters-21578 benchmark corpus [85] includes 10,788 news documents from the

newswire service of the Reuters financial newswire service. The training data is a collection

of 7,769 documents while the testing data contains 3,019 documents.

Nam et al. in [86] achieved the highest reported F_score for this dataset with 87.89%. A

cross-entropy algorithm with TF-IDF document representation was used as the solution.

44

4.2.5 AG News

The AG news topic classification dataset [87] contains four classes with 30,000 training

samples and 1,900 testing samples for each class, a total of 120,000 training and 7,600

testing records.

This dataset is collected by the ComeToMyHead academic search engine from more than

2,000 news sources during a period of almost one year. For this dataset, Conneau et al.

[88], who designed a deep learning-based architecture called the Very Deep Convolutional

Network, reported a state-of-the-art identified result of 7.64 in terms of error rate.

4.3 Classification

The machine learning approaches in the domain of text mining can be differentiated as

supervised, unsupervised and semi-supervised learning algorithms [89, 90].

In supervised learning, the model is trained by a set of labeled input features. The set of

labels are typically fixed. In the task of regression, the labels can be a continuous value

vector. In supervised learning, the aim is to find the best parameters for prediction based

on a loss function.

In unsupervised learning such as PCA and clustering methods, the data is not labeled, and

the objective is to find hidden patterns.

Semi-supervised learning refers to methods that fall between supervised and unsupervised

learning. This approach typically uses a combination of a small amount of labeled data and

a large amount of unlabeled data. These methods are not as expensive as supervised

learning methods that need a labeling process. Moreover, the results are usually more

accurate than the unsupervised methods.

In this research, the supervised learning method is used by employing 11 classifiers, which

are introduced in Sections 4.3.1 to 4.3.10.

45

4.3.1 Logistic Regression

Logistic regression (LR) is a classification technique in machine learning that originates

from the field of statistics. It is a common method for binary classification problems, as a

result of its low computational cost. The goal of LR is similar to linear regression, namely

to find the weight of each input (coefficient). The difference is in the transformation

function, called the logistic function [91]. This logistic function transforms the values to a

range between 0 and 1, from which can be predicted the class based on the rules or

probabilities. LR works better by removing the correlated attributes or those that are not

related to the output.

4.3.2 Support Vector Machine

One of the most famous algorithms in machine learning is SVM, which is based on the

functionality of the hyperplane, which is a line that is supposed to split the variable space

based on each class of the input. The SVM calculates the coefficients for the hyperplane to

most effectively split the classes.

The margin is the distance between the hyperplane and the closest bordering point of the

data. An optimized hyperplane can distinguish the classes with the maximum size of

margin. The points that are used to define (support) the hyperplane are classed as the

support vectors. Discriminant hyperplanes are used for generalization capabilities during

classification [92, 93].

Linear SVMs use linear decision boundaries. Non-linear classifiers, which are more

complex, use the “Kernel Trick” by indirectly mapping the data to another higher

dimensional space. The generalization power of SVMs prevents overfitting into the data,

[94] and also strengthens them to face the Curse of Dimensionality [92, 93]

4.3.3 Naïve Bayes

The Naïve Bayes (NB) classifier is a powerful and simple solution for predictive modeling.

The pre-assumption is the independency of each input variable. As this assumption is not

realistic, the classifier is referred to as naïve. However, it is an effective solution for

46

complex problems. The probability for each class and the conditional probability given to

each value are calculated to create a probability model. For new data, the model uses the

Bayes theorem for prediction.

This present study employs the Gaussian Naïve Bayes (GNB) classifier, which is a type of

NB that can be used when its distribution of data follows the Gaussian (normal)

distribution. For real-valued data, it is common to assume a Gaussian distribution (bell

curve), so that the GNB can accurately estimate these probabilities[95].

4.3.4 Decision Tree

Tree representation is used by a decision tree (DT) to generate a predictive model by

learning the decision rules. The middle nodes of the tree represent the conjunctions of the

features while the leaves are the class labels.

One of the specific features of DT is the understanding level of the DT algorithm, which is

easy for humans to understand, compared with other classification algorithms. In text

classification, the document will start from the root and go through the query structure to

reach a certain leaf that shows a certain class [96]. The classification logic can be explained

to humans by simple mathematical algorithms. This is useful when we know the presence

of the relevant features is a nature of the problem [14]. For tasks with a limited number of

features, DT can be a good candidate due to its understandability, simplicity, and

performance. A drawback of DT is the tendency to overfit the training data [97].

4.3.5 Random Forest

The Random Forest (RF) approach uses multiple DT structures that are generated by

random sampling with replacement. This supervised learning classifier works according to

the bagging or bootstrap ensemble machine learning algorithms. DTs can be classification

or regression trees; RF can handle both classification and regression problems.

Bootstraps are used to estimate a quantity from a data sample, similar to calculating the

mean of multiple samples and then calculating the average of all the mean values to

determine a fine estimation of the true mean value.

47

The bagging approach is similar. For each sample of the training data, a model is

constructed, and each model predicts for a new observation. All the predictions are

averaged in order to estimate the final output [98].

Based on the sample training data, each model is accurate but different. A combination of

predictions can lead to a prediction with higher quality in comparison with each individual

model.

4.3.6 k-Nearest Neighbor

The k-Nearest Neighbor (k-NN) algorithm [99] is an instant-based learning algorithm that

is widely used in text classification tasks. In the case of text classification, the k-NN can

classify each object based on the closest document in the multi-dimensional feature space

according to the training dataset. Based on the training data, the feature space is divided

into partitions and each observation is assigned to one partition (class) based on the k

nearest neighbor. For the regression problem, this algorithm uses the mean output variable.

While this method needs to search the entire feature space for the most similar instances,

it uses all the features for computing the distance. Hence, it is computationally intensive

and requires significantly large memory according to the size of the training data. Also,

noise or unrelated data can reduce the accuracy of the k-NN.

The training phase consists of storing the features and categorizing them in accordance

with the training data. In the classification phase, the algorithm needs to calculate the

distance from the new observation's vector to all the instances in the training data in order

to predict the class (the call that contains most of the neighbors). Finding similar neighbors

is critical for the k-NN, which needs a proper similarity (distance) measure. The type of

calculated distance impacts the k-NN efficiency. The Euclidean distance is the typical

distance measure that is used with the k-NN [99]

4.3.7 Deep Neural Networks

Linear classifiers are limited when a few samples are available in a large output space

because they cannot share parameters between features and classes. Factorizing to low rank

metrics [8, 100] or using multilayer neural networks [101] are common solutions.

48

The majority of deep learning methods are formed in accordance with the neural network

learning algorithms. Noteworthy research studies have been conducted on machine

learning through deep neural networks. Imitating the brain's process is the significant

feature of neural networks, which is applicable for image, text, and other signal processing

problems. The data goes through layers, from an input layer to the final layer, in order to

produce the output. Hidden layers are known as the layers between the input layer and the

output layer. The network with several hidden layers is known as the deep neural network

(consequently the term “deep learning”). The activations are distributed over classes in the

final layer.

The parameters are calculated by the maximum likelihood method with SGD based on the

dataset. SGD uses a small subset of data for each gradient update. Binary cross-entropy

loss is used for binary classification and categorical cross-entropy for multi-class tasks.

The convolutional neural networks (CNNs) and the RNNs are the most popular

architectures.

4.3.8 Convolutional Neural Networks

The convolution function is defined as a sliding window that is applied to a matrix. In the

field of image processing, where the matrix represents the image and each element

corresponds to one pixel, this sliding window is named as the filter, kernel, or feature

detector. The filter multiplies over the matrix elements and calculates the total. This process

is conducted for the entire matrix. In this case, finding the difference between a pixel and

its neighbors can detect the edges.

CNNS are composed of several convolution layers with non-linear activations applied to

the output, namely tanh or rectified linear unit (ReLU). The convolution layer is used to

compute the output. Each region of the input is connected to an output neuron. Different

filters are applied over each layer and the results are combined. The filters' coefficients are

calculated during the training phase according to the training dataset. The network captures

different aspects of the features on each layer. As an example in the field of image

processing, the architecture learns the edges from the raw data in the first CNN layer, and

49

use the edges to detect shapes in another layer. The pattern is repeated to the final layer,

which can use the high-level captured features [102].

The vanilla architecture of a CNN for supervised prediction is made by a convolution layer,

pooling layer, and an optional fully connected layer. More than 10 convolutional and

pooling layers are regularly needed in practice to achieve acceptable results. CNNs, which

need a considerably extensive amount of labeled data for training, achieve success mostly

in the field of image processing (computer vision)[103].

CNN architecture is a feed-forward neural network. The generated features are convolved

together in each layer since classification is applied. In image processing, the features are

extracted from small 2d regions. For text documents, a one-dimensional region is used

[104]. Each sentence can be presented by a sequence of the k-dimensional vectors of its

words. The convolution of the words, selected by a fixed-sized window with a filter, can

produce feature mapping. Feature mapping is provided by applying the filter to all the

documents in the training dataset. The max-over-pooling technique is applied to the

extracted features to obtain the maximum value for the filter. To obtain the output class,

the softmax layer is applied as the last step in the CNNs. The input matrix is convolved

with a set of kernels and the biases are added to generate a new feature map. A non-linear

transformer is then applied, and this process is repeated for each convolutional layer.

In the majority of NLP tasks, the inputs are sentences of documents or their represented

version with a matrix. The column (or sometimes the row) corresponds to a token, which

can be a character, a word or a sequence of characters or words. Each row (or column) is a

vector to represent the token. These vectors can be pre-trained word embeddings such as

Word2Vec, GloVe, fastText, or even the one-hot vector to index the word into a

vocabulary. For a 15-word sentence that uses a 300-dimensional word embedding, a 15 by

300 (15x300) matrix is used as the input. This matrix can be comparable with an image. In

NLP, the filters regularly slide over full rows (words), unlike images which use local

regions. For this reason, the width of the filters should be the same as the width of the

matrix, but the height of the filter can vary. Typically, the size of a window is two to five

words. A definition of the higher level is not as clear as the field of computer vision but

can be interpreted as the concepts or meanings. Convolutional filters can effectively learn

50

representation of the token (usually the words), with no need to learn the entire vocabulary.

This present study uses a total 128 filters with size 5 and max pooling of 5 and 35 as the

vanilla simple CNN, known as One Dimensional CNN (1D-CNN).

4.3.9 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) were developed for discrete sequence analysis. The

model learns the class distribution for a sequence of inputs, rather than a single input [105].

At any one time, the output of non-linear mapping is a hidden state (latent) that is

maintained by an RNN. This can be useful in applications, such as machine translation

where the input is the sentence of the source, and target languages as well as a previous

state. Weight matrices are shared over time. In the case of classification, the fully connected

and softmax layers are needed to map the sequence to a class. For the training phase, RNNs

suffer from the problems that should be dealt with by other deep learning approaches, as

the gradient needs to be backpropagated through time [106]. The LSTM [107] is one of the

developed popular specialized memory unit architectures of the RNN. The Gated Recurrent

Unit (GRU) [108] is another architecture that is commonly used.

The RNNs have achieved success in processing streams of data [109]. One network is

applied over all elements in a sequence while each output depends on the previous. To

solve the gradient problem, the original RNNs only considered limited previous steps. The

LSTM and GRU architectures address this problem by modeling hidden states with cells

to determine what to consider, based on input value, as well as previous and current states.

This can capture long-term dependencies that are essential for NLP tasks [110, 111].

4.3.10 Hybrid Approaches

4.3.10.1 Deep CNN-LSTM

A sequential combination of CNN and LSTM layers, followed by a dense layer, can define

a Deep CNN-LSTM architecture. CNN models extract the features while LSTM models

can interpret the features across time steps. The fully-connected layer generates the final

output from a concatenation of the CNN and LSTM branches. The network uses 16 and

51

128 batches for training [112]. The first layer of the network, the embedding layer, converts

the sequence of word indices and embeds each word into a fixed-size vector. This layer is

a matrix of weights that are trained according to the training data. The multiplication of

this matrix and the word index generates the word vector. Each branch, which accepts the

output of the embedding layer as the input, has a one-dimensional convolution layer.

Applying multiple filters with different sizes generates multiple outputs. These outputs

understand a word when it appears with other words. A ReLU activation is applied to

introduce the non-linear output of the CNN layer by replacing a negative result with zero.

After the ReLU is activated, a one-dimensional max pooling is applied to convert the kernel

size input to a single output, which is the maximum perceived number. Using max pooling

will reduce overfitting with down sampling. To prevent overfitting, the dropout layer is

applied by randomly replacing a part of the input to zero. This will help the generalization

of the network. The next layer is the batch normalization, which normalizes the distribution

of the result in each branch. This will facilitate convergence by reducing the internal

covariate shift. The LSTM, as the last layer in each branch, is used according to the nature

of the sequential data and will allow the previous input to impact the new input. The outputs

of the branches are concatenated and generate an array. A fully-connected array will

convert this array to a final output. The sigmoid activation function will adopt the output

to a range between 0 and 1. A binary cross entropy loss function and an optimizer will

compile the network.

4.3.10.2 AdvCNN

AdvCNN [113] is a parallel CNN based deep network with varying filter widths, able to

achieve a state-of-the-art performance on sentiment analysis and question classification.

The basic idea is to use a CNN where different convolutions are used to produce different

n-gram-like filters to determine the sentiment of a given text. For each convolution, 128

filters are used. The words are embedded in the first layer and convolutions with different

filter sizes are applied over the vectors to generate feature maps of different lengths. A max

pooling layer is applied over each feature map to generate a univariate feature vector. The

concatenation of the feature vectors will pass to a softmax layer for classification. The

original architecture is designed for the task of binary classification.

52

4.3.10.3 Boosted CNN

In a study by Gultepe et al. [104], a modified version of the AdvCNN architecture with n-

gram filter sizes = (1,2,3,4) is presented. Each n-gram filter size pertains to a separate and

parallel convolutional layer in the model. The core of the Boosted CNN is a 1D-CNN

model [110]. These layers are finally concatenated with each other in a max-over-time

pooling layer, prior to the softmax classification layer. The following are the parameters

used for the network of the presented architecture:

For each n-gram, the number of filters is set to 128, which is a popular size in convolutional

network models [114]. The size of the embedding dimension is set to 300 according to the

size of the used word embeddings, such as the Word2Vector [8]. An 𝐿¼ parameter weight

decay of 10𝑒pÊ [115, 116] is used in the convolutional layers to apply regularization over

the weights. The ReLU activation function was used, according to its acceptable

performance in other studies [117].

4.4 Evaluation Metrics

Measuring text classification performance is an important issue in the field of text mining.

Experimental methods are more common than analytical evaluation methods.

In a 2018 survey study by Schnabel et al. [118], the evaluation methods for unsupervised

word embeddings were divided into two major categories: intrinsic and extrinsic

evaluations. In an intrinsic evaluation, the syntactic or semantic relationship between words

is directly evaluated while, in the extrinsic method, word embedding is used as the input

feature for another specific task.

Similar to evaluation methods in other fields of data mining, in text mining, the terms true

positive (TP), true negative (TN), false positive (FP), and false negative (FN) are used to

compare the classifier’s predicted results with the expected results.

Here, precision and recall are defined in [119] as follows:

53

Precision =
&Ë

&ËtÌË
 Equation 4.1

Recall=
&Ë

&ËtÌ�
 Equation 4.2

Accuracy is then defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 Equation 4.3

The F_score measure combines the precision and recall by calculating the harmonic mean.

The balanced F-score formula [120, 121] is shown in Equation 4.4:

𝐹_����� = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Equation 4.4

The F_score macro individually calculates the metrics for each label and then calculates

the unweighted mean. This does not take label imbalance into account. The F_score micro

is calculated based on the total of true positives, false negatives and false positives.

There is a statement that suggests calculating the F_score micro for a class imbalance

problem but, in this research, the F_score macro is selected to evaluate each approach and

compare the results. The F_score macro is preferred over micro as it gives equal importance

to each class whereas, similar to the accuracy metric, the F_score micro gives equal

importance to each sample and is influenced by the number of samples in a class. For this

reason, the F_score macro is consistently used in this research to evaluate each approach

and compare the results.

4.5 Experimental Setup

To study the effect of the proposed document representations, the following set of

experiments are designed. For each one of the five datasets, the four proposed approaches

are implemented and word vectors for the dataset’s vocabulary are generated based on five

baseline word embeddings: Word2Vec, GloVe, fastText, LSA, and Random word

54

embedding. The new word vectors are employed by the 11 introduced classifiers for

application to the pre-defined task of the dataset. For the traditional classifiers, the average

of the new word vectors is used as the document representation and, for the deep learning-

based approaches, the new generated word vectors are used as the embedding layer.

Algorithm 4.1 shows the steps involved in the study.

This research involved conducting a total of 1,111 experiments in order to evaluate the

effect of the four proposed approaches:

 Algorithm 4.1: Experimental Setup

 Input: Datasets (IMDB Movie Reviews, Hate Speech Identification, 20
Newsgroups, Reuters-21578, and AG News)
Output: Evaluation results in terms of the F1_score Macro

For each dataset:

Split Training and Testing Data.
For each baseline word embedding:

For each proposed approach:
Generate new word embedding (Thesis contribution)
For each classifier:

If Traditional Classifier:

𝑉������� =
∑ 𝑉𝑈𝑝𝑑𝑎𝑡𝑒(𝑖)	
�
-I�

𝑁
If deep learning-based Classifier:

Embedding Layer ¬	𝑉𝑈𝑝𝑑𝑎𝑡𝑒
Return F1_score for the test datasets

5 datasets x 5 baseline word embeddings x 4 proposed approaches x 11 classifiers = 1,100

experiments plus 11 experiments that evaluated the word embedding generated by applying

MSCT over the Word2Vec word embedding.

4.6 Summary

In this chapter, the experimental setup to evaluate the four novel document representation

approaches is explained. Statistics for the five datasets that are used in this study are

described. The theory behind the traditional and deep learning-based classifiers is specified

and the evaluation metrics that are used are explained.

55

Chapter 5. Experimental Results and Discussions

5.1 Introduction

The results of the experiments that are conducted in Chapter 4 are presented and described

in this chapter. The effect of the baseline document representations on traditional and deep

learning-based classifiers is first evaluated and described. The four novel approaches,

namely CTWE, CMSCT, EbWC, and AbWE are then applied to five baseline word

embeddings for each dataset and new word embeddings are generated. By using these

newly generated word embeddings as the new word vectors, the performance of the

classifiers is compared with the corresponding baseline word embedding. Also, the word

embedding that is generated by the MSCT approach for the IMDB movie review on

Word2Vec word embedding is compared with the word embedding that is generated by the

CMSCT approach. For each classifier, the variance of the word embedding is studied and

the results, together with a discussion, are reported in the following subsections. By the

end of this chapter, the total effect of the proposed approaches on the studied word

embeddings, and a comparison between all the represented approaches among the different

document representations, are considered and visualized as two heatmap charts.

5.2 The Effect of Document Representation on Traditional

Classification Approaches

Table 5.1 shows the evaluation results for different combinations of six traditional

classifiers that use different document representation methods. The bag of words, the bi-

gram, and the LSA are the representatives of traditional word embeddings, while

Word2Vec, GloVe, and fastText are the deep learning-based representations.

For the task of sentiment analysis in the IMDB Movie Review dataset, the best result,

which is 0.8860 in terms of F_score macro, is achieved by a combination of LSA document

representation and the SVM classifier.

56

An evaluation of classifiers shows that the LR could achieve the best result when using

five out of six document representations, although it should be made clear that the main

purpose of this experiment is to evaluate the document representations, not the classifiers.

Using the bi-gram enabled the LR and GNB classifiers to achieve their best results, while

using the LSA produced the best results for the SVM and DT. Glove and fastText did not

achieve any best result with these classification approaches.

For the task of sentiment analysis in the HSI dataset, employing the bi-gram approach

showed the best results in four out of six classifiers. The highest F_score belongs to the

LR, which uses bi-gram for document representation. The LSA, Word2Vec, and GloVe

failed to achieve an improvement in any classifier.

For the task of document classification in the 20 NG dataset, using the LSA approach for

the document representation helped four out of six classifiers to gain their best results. In

addition, the best results were achieved by the SVM classifier when using the LSA

document representation. The bag-of-words helped the LR and GNB to achieve their best

results, while all three deep learning-based word embeddings could not produce any best

result.

For the task of document representation in the Reuters dataset, the bi-gram achieved the

best results when half of the classifiers used it as the document representation method. In

this dataset, by using the bag-of-words document representation, the SVM classifier

achieved the best result.

For the AG News dataset, the bi-gram document representation was able to achieve the

best result in five out of six datasets. The best result was achieved by LR while using bi-

gram as the document representation method. The second highest F_score was achieved

by k-NN when using the fastText document representation.

In conclusion, it can be inferred that the bi-gram and LSA document representation

approaches can work more effectively with traditional classifiers. Taking the average of

the word vectors failed to achieve the best results in the majority of experiments.

57

Table 5.1.The Effect of Document Representation on Traditional Classification Approaches

 LR SVM GNB DT RF KNN

IMDB

bag-of-words 0.8668 0.8405 0.5819 0.7238 0.7820 0.6070

bi-gram 0.8749 0.8563 0.7453 0.7262 0.7816 0.5737

Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495

GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397

fastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460

LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780

HSI

bag-of-words 0.8574 0.8410 0.6522 0.8249 0.8469 0.7757

bi-gram 0.8605 0.8532 0.6560 0.8353 0.8456 0.7814

Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261

GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534

fastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576

LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483

20 NG

bag-of-words 0.7781 0.7449 0.7119 0.5454 0.6339 0.3016

bi-gram 0.7719 0.7445 0.7084 0.5493 0.6503 0.3059

Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983

GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334

fastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502

LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861

Reuters

bag-of-words 0.5719 0.6082 0.2454 0.3607 0.2884 0.3100

bi-gram 0.5762 0.5992 0.2986 0.3656 0.3262 0.2809

Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650

GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419

fastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710

LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777

AG News

bag-of-words 0.9059 0.8964 0.8609 0.8208 0.8639 0.5361

bi-gram 0.9087 0.8985 0.8653 0.8209 0.8668 0.5666

Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020

GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044

fastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068

LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995

58

5.3 The Effect of Word Embedding on Deep Learning-based

Approaches

Table 5.2 illustrates the effect of using variant word embeddings for the embedding layer

of the deep learning-based approaches that are investigated in this thesis.

LSA word embedding is used to compare the results of pre-trained word embedding

approaches that carry global knowledge with the locally trained word embedding that

carries context knowledge. Comparing the results of different word embeddings with the

results of Random word embedding can show to what extent locally or globally trained

word embeddings can help the classifier to perform more effectively.

For the task of sentiment analysis in the IMDB Movie Review dataset, the best result is

achieved by the Boosted CNN architecture that uses fastText word embedding for its

embedding layer. Two deep CNN architectures, AdvCNN and Boosted CNN, produced

their best result with fastText word embedding. Such a similarity in results could be

expected due to the similarity between the architectures. The 1D-CNN produced its best

result when using the Word2Vec for the embedding layer. The other results are not

significantly different, with the exception of Random word embedding, which means that

using the trained word embedding can outperform the result of this architecture for

approximately 3%. Using GloVe word embedding achieves the best result for the LSTM

architecture, while Word2Vec produced the weakest results, even lower than using the

Random word embedding.

For the task of HSI, the GloVe word embedding performed better than other word

embeddings in three out of five architectures: Deep CNN-LSTM, AdvCNN, and Boosted

CNN. The random architecture realized the best result in two architectures, 1D-CNN and

LSTM. As this pattern is never repeated, it can be assumed that this result is not persistent.

The best result in this dataset belongs to the Boosted CNN architecture that used GloVe

document representation.

59

In the 20 NG dataset, for the task of document classification, the GloVe and the LSA word

embedding each attained the best results for two architectures, while fastText performed

better than others only in the 1D-CNN. In this dataset, GloVe performed more effectively

with architectures that used the LSTM approach. Again, in this dataset, there was 10% up

to 42% difference between Random word embedding and the trained word embedding

model. Using the Boosted CNN with the LSA document representation created the best

result in this task.

Table 5.2. The Effect of Word Embedding on Deep Learning-based Approaches

 1D-CNN LSTM Deep CNN-LSTM AdvCNN BOOSTED
CNN

IM
D

B

Word2Vec 0.8892 0.8295 0.8454 0.8983 0.8997

GloVe 0.8815 0.8637 0.8432 0.8923 0.8979

fastText 0.8881 0.8582 0.8474 0.9051 0.9058

LSA 0.8854 0.8512 0.8378 0.8879 0.8980

Random 0.8578 0.8550 0.8457 0.8521 0.8622

H
SI

Word2Vec 0.7467 0.7657 0.6505 0.7873 0.7936

GloVe 0.7511 0.7804 0.6664 0.7913 0.7966

fastText 0.7366 0.7755 0.6508 0.7896 0.7928

LSA 0.7236 0.7473 0.6077 0.7666 0.7792

Random 0.7658 0.7827 0.6319 0.7866 0.7883

20
 N

G

Word2Vec 0.7707 0.7871 0.7804 0.8005 0.7794

GloVe 0.7808 0.8183 0.8099 0.8151 0.8049

fastText 0.8019 0.7825 0.7923 0.8174 0.8080

LSA 0.7963 0.7130 0.7798 0.8352 0.8309

Random 0.6943 0.3942 0.4786 0.5232 0.7141

R
eu

te
rs

Word2Vec 0.5536 0.4882 0.2785 0.6008 0.5756

GloVe 0.5439 0.5137 0.3867 0.5707 0.5482

fastText 0.5260 0.4337 0.3446 0.6432 0.5575

LSA 0.4707 0.2083 0.2372 0.5976 0.5268

Random 0.4404 0.0908 0.0809 0.4091 0.4762

A
G

 N
ew

s

Word2Vec 0.9212 0.9125 0.8979 0.9181 0.9185

GloVe 0.9237 0.9138 0.9062 0.9243 0.9139

fastText 0.9248 0.9107 0.9034 0.9226 0.9199

LSA 0.9183 0.9081 0.8990 0.9121 0.9189

Random 0.9151 0.9055 0.9003 0.8924 0.9085

60

In the Reuters dataset, GloVe achieved the best results for the LSTM and Deep CNN-

LSTM approaches. In contrast to the three previous approaches explained above, the

AdvCNN and Boosted CNN produced their best results with different word embeddings.

The highest F-score was gained by AdvCNN architecture by using fastText word

embedding. The Glove word embedding attained the best result in the two LSTM-based

architectures, similar to the 20 NG dataset.

Finally, in the document classification task for the AG News dataset, the fastText word

embedding with the 1D-CNN architecture outperformed the other approaches. The GloVe

word embedding performed better than other word embeddings in three out of five

architectures.

In conclusion, in most of the experiments, neither the Random nor LSA word embedding

could achieve the best result while the pre-trained word embeddings performed better with

the deep learning-based architectures.

5.4 The Effect of CTWE on Word Embeddings

5.4.1 The Effect of CTWE on Word2Vec

Table 5.3 shows the effect of the CTWE approach when applied to Word2Vec word

embedding and employed by different classifiers. In the task of sentiment analysis in the

IMDB Movie Review dataset, the CTWE-based word embedding outperformed the

original Word2Vec representation for 7 out of 11 classifiers. The highest improvement is

observed in the GNB classifier from 0.3416 to 0.7601 in terms of the F_score macro. All

of the traditional classifiers showed improvement with CTWE while only the LSTM

architecture improved in the deep learning-based approaches. The highest result was

achieved by the regular Word2Vec when used with the Boosted CNN architecture.

In the task of HSI, the CTWE approach was more effective than the regular Word2Vec in

3 out of 11 classifiers. Similar to the IMDB Movie Review dataset, the Boosted CNN

achieved the best result when used with the original Word2Vec document representation.

61

In the task of document classification in the 20 NG dataset, the CTWE-based document

representation improved the results in five of the classifiers. Also, the best result was

achieved by the AdvCNN when used in the CTWE-based Word2Vec representation. The

results improved in three out of 11 classifiers when the CTWE was applied to Word2Vec

in the Reuters dataset while the best result was achieved by the AdvCNN, which used the

original Word2Vec. In the AG News dataset, the best result was produced by the Boosted

CNN when the CTEW was used as word representation. In total, six out of 11 classifiers

performed better when the CTWE was applied to Word2Vec. The RF classifier showed

improvement in all datasets when the CTWE modified the Word2Vec word representation.

Table 5.3. The Effect of CTWE on Word2Vec

 LR SVM GNB DT RF KNN 1D-
CNN LSTM Deep CNN-

LSTM AdvCNN BOOSTED
CNN

IM
D

B
 Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495 0.8892 0.8295 0.8454 0.8983 0.8997

CTWE 0.8585 0.8576 0.7601 0.6729 0.7289 0.7642 0.8525 0.8439 0.8403 0.8895 0.8980

H
SI

 Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261 0.7467 0.7657 0.6505 0.7873 0.7936

CTWE 0.6442 0.6844 0.7021 0.5411 0.5982 0.6236 0.7386 0.7354 0.6400 0.7675 0.7725

20
 N

G
 Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983 0.7707 0.7871 0.7804 0.8005 0.7794

CTWE 0.5740 0.6568 0.5439 0.3060 0.4264 0.5909 0.7538 0.7268 0.7663 0.8007 0.7870

R
eu

te
rs

Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650 0.5536 0.4882 0.2785 0.6008 0.5756

CTWE 0.0739 0.3102 0.4035 0.2145 0.2494 0.3659 0.5205 0.2821 0.2483 0.5755 0.5508

A
G

 N
ew

s

Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020 0.9212 0.9125 0.8979 0.9181 0.9185

CTWE 0.8859 0.8920 0.8451 0.7394 0.8387 0.9017 0.9199 0.9096 0.9007 0.9142 0.9189

5.4.2 The Effect of CTWE on GloVe

The CTWE approach was applied to GloVe word embedding, the results for which are

presented in Table 5.4. In the task of sentiment analysis for the IMDB Movie Review

dataset, the CTWE improved all the traditional classifier results as well as the 1D-CNN

architecture. The maximum improvement from 0.4268 to 0.7398 in terms of F_score macro

is observed in the GNB classifier. The best result was achieved by the Boosted CNN when

the original GloVe was used for the word embedding layer. In the HSI dataset, the CTWE

approach improved the results of six out of 11 classifiers while the best result was gained

by the GNB classifier with the original GloVe. The Deep CNN-LSTM is the only deep

learning architecture to be improved by CTWE. Modifying GloVe with CTWE in the

62

results of the 20 NG dataset may have led to an improvement in five classifiers, namely

DT, RF, 1D-CNN, AdvCNN and Boosted CNN, with the best result coming from AdvCNN

when the CTWE modified the GloVe word embedding. Similar to the 20 NG dataset, the

best result in the Reuters dataset was achieved by AdvCNN when CTWE was applied to

GloVe, although the CTWE improved the results of only three classifiers. In the AG News

dataset, seven out of 11 classifiers were improved by CTWE, with the best result belonging

to the 1D-CNN when using CTWE for its embedding layer.

Table 5.4. The Effect of CTWE on GloVe

 LR SVM GNB DT RF KNN 1D-
CNN LSTM Deep CNN-

LSTM AdvCNN BOOSTED
CNN

IM
D

B
 GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397 0.8815 0.8637 0.8432 0.8923 0.8979

CTWE 0.8557 0.8561 0.7398 0.6947 0.7463 0.7591 0.8849 0.8466 0.8429 0.8909 0.8970

H
SI

 GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534 0.7511 0.7804 0.6664 0.7913 0.7966

CTWE 0.8223 0.8186 0.8238 0.6799 0.7749 0.7536 0.7486 0.7730 0.6805 0.7766 0.7840

20
 N

G
 GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334 0.7808 0.8183 0.8099 0.8151 0.8049

CTWE 0.6617 0.7157 0.5940 0.3777 0.5028 0.6259 0.8030 0.7962 0.7801 0.8204 0.8057

R
eu

te
rs

GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419 0.5439 0.5137 0.3867 0.5707 0.5482

CTWE 0.1490 0.4122 0.4122 0.1651 0.2353 0.3326 0.4810 0.3846 0.2875 0.5799 0.5742

A
G

 N
ew

s

GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044 0.9237 0.9138 0.9062 0.9243 0.9139

CTWE 0.8924 0.8930 0.8556 0.7592 0.8527 0.9062 0.9265 0.9143 0.9051 0.9219 0.9177

5.4.3 The Effect of CTWE on fastText

The performance of almost all the traditional classifiers improved when the CTWE

modified the original fastText word embedding in the IMDB Movie Review dataset.

However, in this task, none of the deep learning-based architectures showed improvement

with the CTWE approach. The greatest improvement occurred in the GNB classifier for

0.3576 improvement in terms of the F_score macro. The Boosted CNN architecture with

the original fastText achieved the best accuracy in terms of the F_score macro.

None of the deep learning-based approaches showed improvement when the CTWE was

applied to the fastText word embedding in the HSI dataset, while four out of the six

traditional classifiers were improved in the evaluation. In contrast, the best result was

achieved by the SVM classifier with CTWE and fastText word embedding.

63

Table 5.5. The Effect of CTWE on fastText

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 FastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460 0.8881 0.8582 0.8474 0.9051 0.9058

CTWE 0.8648 0.8654 0.7349 0.6899 0.7419 0.7656 0.8399 0.8377 0.8416 0.8956 0.9010

H
SI

 FastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576 0.7366 0.7755 0.6508 0.7896 0.7928

CTWE 0.8237 0.8374 0.8201 0.7254 0.7853 0.7676 0.7279 0.7571 0.6252 0.7750 0.7822

20
 N

G
 FastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502 0.8019 0.7825 0.7923 0.8174 0.8080

CTWE 0.6606 0.7152 0.5988 0.3605 0.4846 0.6471 0.7878 0.7661 0.7752 0.8250 0.8063

R
eu

te
rs

 FastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710 0.5260 0.4337 0.3446 0.6432 0.5575

CTWE 0.0983 0.3632 0.4148 0.1503 0.2095 0.3612 0.5308 0.3803 0.2436 0.6135 0.5526

A
G

 N
ew

s FastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068 0.9248 0.9107 0.9034 0.9226 0.9199

CTWE 0.8895 0.8932 0.8470 0.7427 0.8472 0.9071 0.9221 0.9084 0.8990 0.9180 0.9221

In the 20 NG dataset, the fastText-based CTWE word embedding produced the best result

when used in the embedding layer of the AdvCNN architecture. Only three out of 11

classifiers improved by applying CTWE over fastText word embedding. In the Reuters

dataset, only the GNB classifier showed improvement in terms of the F_score macro when

the CTWE modified the fastText word embedding. In this dataset, applying the CTWE

caused a drop in the rest of the classifiers. In the AG News dataset, the SVM, GNB, DT,

RF and k-NN classifiers improved by applying CTWE over the fastText word embedding.

The best result was achieved by the 1D-CNN architecture, which used the original fastText

in the embedding layer. Table 5.5 shows the above results in more detail.

5.4.4 The Effect of CTWE on LSA

The effect of CTWE on LSA word representation is demonstrated in Table 5.6. In the task

of sentiment analysis for the IMDB Movie Review dataset, in comparison to using the

original LSA word embedding, three out of the six traditional classifiers improved when

CTWE was applied to the LSA word embedding, while only one of the deep learning-based

approaches showed improvement. In the HSI dataset, the results of none of the traditional

classifiers improved when CTWE was applied to the LSA and only the LSTM and CNN

LSTM approaches showed better results in terms of the F_score macro.

64

Table 5.6. The Effect of CTWE on LSA

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN
IM

D
B

 LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780 0.8854 0.8512 0.8378 0.8879 0.8980

CTWE 0.8261 0.8709 0.1532 0.7820 0.7067 0.6791 0.8695 0.8422 0.8441 0.8827 0.8898

H
SI

 LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483 0.7236 0.7473 0.6077 0.7666 0.7792

CTWE 0.1440 0.6549 0.4068 0.6763 0.6478 0.5418 0.7046 0.7519 0.6348 0.7543 0.7611

20
 N

G
 LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861 0.7963 0.7130 0.7798 0.8352 0.8309

CTWE 0.6862 0.7722 0.4986 0.5846 0.6474 0.6910 0.7932 0.7008 0.7671 0.8048 0.8033

R
eu

te
rs

 LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777 0.4707 0.2083 0.2372 0.5976 0.5268

CTWE 0.0238 0.2595 0.4268 0.2420 0.2879 0.3833 0.4760 0.2194 0.1841 0.5378 0.5450

A
G

 N
ew

s LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995 0.9183 0.9081 0.8990 0.9121 0.9189

CTWE 0.8753 0.8884 0.8332 0.8126 0.8699 0.9028 0.9194 0.9077 0.8965 0.9113 0.9127

In another experiment, none of the deep learning-based approaches improved by applying

the CTWE over the 20 NG dataset and comparing the result with the original LSA word

representation while three traditional classifiers, DT, RF, and k-NN, showed a slight

improvement in the evaluation results.

In the Reuters dataset, five out of 11 classifiers showed an improvement in their F_score

macro evaluation results. The best result was achieved by the AdvCNN classifier when the

original LSA was used as the embedding layer.

5.4.5 The Effect of CTWE on Random Word Embedding

In the AG Newsgroup dataset, applying CTWE to the LSA caused the best result when the

1D-CNN was used as the classifier. Two traditional and two deep learning-based classifiers

showed improvement in their evaluation results.

In Random word embedding, a random vector is assigned to a word. Applying the CTWE

to random word vectors injects the local context information into the new word

representation. Table 5.7 shows that, in all datasets, applying CTWE to the Random word

embedding improved the results in most of the classifiers. In the IMDB Movie Review

dataset, eight out of 11 classifiers showed improvement. The best result was achieved by

the Boosted CNN when the CTWE was applied to its word embedding.

65

In the HSI dataset, five of the classifiers produced better results while 10 out of 11

classifiers showed improvement in the 20 NG dataset. The best result was achieved by the

Boosted CNN, which used the CTWE approach. In the Reuters dataset, all the deep

learning-based approaches were improved when CTWE was applied to the Random word

embedding, although the results are not state-of-the-art. However, the best result in this

setup is achieved by the Boosted CNN, which used the CTWE. In the AG News dataset,

all of the classifiers showed an improvement, with the exception of the Boosted CNN. The

best result belongs to the AdvCNN classifier when using the CTWE approach. THE DT,

RF, and Deep CNN-LSTM showed improvement in all datasets when the CTWE was

applied to the Random word embedding.

Table 5.7. The Effect of CTWE on Random Word Embedding

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 Random 0.7363 0.7359 0.6525 0.5502 0.5360 0.5836 0.8578 0.8550 0.8457 0.8521 0.8622

CTWE 0.7364 0.7399 0.6477 0.5560 0.5399 0.5758 0.8650 0.8546 0.8462 0.8673 0.8776

H
SI

 Random 0.6871 0.6823 0.4143 0.4058 0.3595 0.6003 0.7658 0.7827 0.6319 0.7866 0.7883

CTWE 0.6006 0.6900 0.4050 0.4133 0.3780 0.6061 0.7467 0.7562 0.6419 0.7701 0.7663

20
 N

G
 Random 0.4596 0.4513 0.2211 0.0910 0.1151 0.3142 0.6943 0.3942 0.4786 0.5232 0.7141

CTWE 0.3898 0.4556 0.2277 0.1044 0.1232 0.3297 0.7492 0.5870 0.7034 0.7376 0.7505

R
eu

te
rs

 Random 0.2275 0.5008 0.3122 0.0703 0.1073 0.3227 0.4404 0.0908 0.0809 0.4091 0.4762

CTWE 0.0434 0.2672 0.3053 0.0790 0.1088 0.3292 0.4632 0.1537 0.1029 0.4256 0.5117

A
G

 N
ew

s Random 0.6726 0.3984 0.6119 0.3688 0.4277 0.7853 0.9151 0.9055 0.9003 0.8924 0.9085

CTWE 0.6775 0.6767 0.6117 0.3716 0.4567 0.8155 0.9136 0.9068 0.9042 0.9177 0.8897

5.5 The Effect of CMSCT on Word Embeddings

5.5.1 The Effect of CMSCT on Word2Vec

Table 5.8 shows the effect of the CMSCT approach when applied to the Word2Vec word

embedding. In the IMDB Movie Review dataset, four out of the six traditional classifiers

showed improvement when the CMSCT was applied to the regular Word2Vec word

embedding and used as the word representation. Only the LSTM architecture showed a

66

0.2220 improvement in terms of the F_score macro. The best result was achieved by the

Boosted CNN architecture when using the original Word2Vec, followed by the same

architecture when the CMSCT was applied to Word2Vec. For the task of classification in

the HSI dataset, the 1D-CNN and LSTM showed an improvement out of the deep learning-

based approaches. The SVM, DR, and RF also improved when CMSCT was applied to

Word2Vec and the average of the word vectors was used for the purpose of document

representation. Similar to the IMDB Movie Review movie dataset, the Boosted CNN

achieved the best result with an F_score of 0.8997. In the 20 NG dataset, the best result

was achieved by the AdvCNN classifier when the CTWE modified the Word2Vec and was

used as the embedding layer of the architecture. The DT, RF, LSTM, and AdvCNN were

the classifiers that showed an improvement in the F_score macro when the CMSCT was

applied to their original word embedding. In the Reuters dataset, only the DEEP CNN-

LSTM approach was improved by the CMSCT. The AdvCNN performed better than the

other classifiers in this dataset. The 1D-CNN produced the best result in the AG News

dataset when using the CMSCT modified Word2Vec approach. The second highest result

was achieved by the AdvCNN, again when the CMSCT was applied to Word2Vec and

used as the embedding layer. In this experiment, the DT and RF improved together in four

out of five datasets, which makes sense as the RF consists of several DTs.

Table 5.8. The Effect of CMSCT on Word2Vec

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495 0.8892 0.8295 0.8454 0.8983 0.8997

CMSCT 0.8543 0.8541 0.7416 0.6731 0.7257 0.7557 0.8850 0.8517 0.8447 0.8966 0.8988

H
SI

 Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261 0.7467 0.7657 0.6505 0.7873 0.7936

CMSCT 0.6634 0.6581 0.6546 0.5628 0.5955 0.6130 0.7485 0.7474 0.6491 0.7758 0.7771

20
 N

G
 Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983 0.7707 0.7871 0.7804 0.8005 0.7794

CMSCT 0.6317 0.6745 0.5278 0.3309 0.4243 0.5784 0.7525 0.7878 0.7633 0.8010 0.7779

R
eu

te
rs

 Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650 0.5536 0.4882 0.2785 0.6008 0.5756

CMSCT 0.1999 0.4367 0.3894 0.1655 0.2231 0.3553 0.5008 0.4572 0.3076 0.5996 0.5346

A
G

 N
ew

s Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020 0.9212 0.9125 0.8979 0.9181 0.9185

CMSCT 0.8889 0.8893 0.8348 0.7509 0.8401 0.9008 0.9251 0.9118 0.9016 0.9208 0.9145

67

5.5.2 The Effect of CMSCT on GloVe

Table 5.9 illustrates the result of experiments when the CMSCT was applied to the GloVe

word embedding. All the traditional classifiers showed an improvement when the CMSCT

was applied to the GloVe word representation in the IMDB Movie Review dataset. Only

the Deep CNN-LSTM architecture from the deep learning-based classifiers showed a slight

improvement (+0.0065) in terms of the F_score macro. For the task of HSI, only the DT

and RF showed an improvement while the evaluation results of the deep learning-based

classifiers showed a drop after applying CMSCT to GloVe in comparison with using the

original GloVe as the embedding layer. The exact same pattern happened for the 20 NG

dataset, when the DT and RF were the only improved classifiers out of all 11 approaches.

In the Reuters dataset, the DT, 1D-CNN, and the AdvCNN classifiers were enhanced by

applying the GloVe-based CMSCT word representation. Also, the best result in the Reuters

dataset was attained by the AdvCNN when using the GloVe-based CMSCT word

embedding. For the AG News dataset, almost all of the classifiers, with the exception of

the k-NN and LR, showed an increase in terms of F_score macro when the CMSCT was

applied to the GloVe word embedding. The AdvCNN was recognized as the best classifier

when the GloVe-based CMSCT word embedding was used.

Overall, it may be said that the DT was always enhanced when the CMSCT modified

version of the GloVe word embedding was used.
Table 5.9. The Effect of CMSCT on GloVe

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397 0.8815 0.8637 0.8432 0.8923 0.8979

CMSCT 0.8542 0.8548 0.7227 0.6872 0.7458 0.7603 0.8400 0.8608 0.8497 0.8816 0.8971

H
SI

 GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534 0.7511 0.7804 0.6664 0.7913 0.7966

CMSCT 0.8060 0.7799 0.7906 0.7186 0.7656 0.7518 0.7448 0.7793 0.6460 0.7887 0.7887

20
 N

G
 GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334 0.7808 0.8183 0.8099 0.8151 0.8049

CMSCT 0.7048 0.7231 0.5835 0.3998 0.4953 0.6105 0.7791 0.8160 0.8010 0.8066 0.7921

R
eu

te
rs

 GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419 0.5439 0.5137 0.3867 0.5707 0.5482

CMSCT 0.2995 0.5241 0.3818 0.1891 0.2374 0.3335 0.5566 0.5088 0.3332 0.5755 0.5333

A
G

 N
ew

s GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044 0.9237 0.9138 0.9062 0.9243 0.9139

CMSCT 0.8923 0.8931 0.8544 0.7798 0.8645 0.9006 0.9251 0.9167 0.9073 0.9248 0.9200

68

5.5.3 The Effect of CMSCT on fastText

The results of applying CMSCT to the fastText word embedding is illustrated in Table

5.10. In the IMDB Movie Review dataset, all the traditional classifiers, with the exception

of the LR, showed improvement, with the most significant change occurring in the GNB

when its F_score macro improved from 0.3593 to 0.7155. None of the deep learning-based

approaches were enhanced with the fastText-based CMSCT word representation while the

best result was achieved by the Boosted CNN classifiers with the original and modified

word embedding.

In the HSI dataset, two classifiers from the traditional classifiers (DT and RF) and two

classifiers from the deep learning-based architectures (1D-CNN and Deep CNN-LSTM)

showed an improvement when the CMSCT was applied to the original fastText word

embedding.

In the task of document classification in the 20 NG dataset, six out of 11 of the examined

classifiers improved with the CMSCT approach, with the best result achieved by the LSTM

when using fastText-based CMSCT word embedding. In the Reuters dataset, the CMSCT

approach had no significant effect over the performance of the classifiers. Only the RF and

1D-CNN improved in this experiment.
Table 5.10. The Effect of CMSCT on fastText

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep

CNN-
LSTM

AdvCNN BOOSTED
CNN

IM
D

B
 FastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460 0.8881 0.8582 0.8474 0.9051 0.9058

CMSCT 0.8592 0.8603 0.7155 0.6888 0.7369 0.7541 0.8870 0.8434 0.8463 0.9019 0.9053

H
SI

 FastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576 0.7366 0.7755 0.6508 0.7896 0.7928

CMSCT 0.8031 0.7929 0.7957 0.7371 0.7842 0.7412 0.7720 0.7643 0.6563 0.7824 0.7876

20
 N

G
 FastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502 0.8019 0.7825 0.7923 0.8174 0.8080

CMSCT 0.7056 0.7305 0.5841 0.3893 0.5045 0.6255 0.7818 0.8214 0.7935 0.8199 0.7992

R
eu

te
rs

 FastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710 0.5260 0.4337 0.3446 0.6432 0.5575

CMSCT 0.2571 0.4787 0.3912 0.1481 0.2315 0.3420 0.5521 0.3981 0.3264 0.6059 0.5575

A
G

 N
ew

s FastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068 0.9248 0.9107 0.9034 0.9226 0.9199

CMSCT 0.8930 0.8926 0.8415 0.7688 0.8549 0.9053 0.9233 0.9185 0.9039 0.9229 0.9226

Using fastText-based word embedding together with the AdvCNN classifier produced the

best result in the AG News dataset, although the improvement was only slight in

69

comparison to the original fastText. Three out of six traditional classifiers and three out of

five deep learning-based classifiers showed an improvement when using the CMSCT

version of fastText.

The RF was the only classifier that always improved when the CMSCT approach was

applied to its fastText word embedding. The DT achieved similar results, with the

exception of the Reuters dataset. The Boosted CNN and LR never improved when the

CMSCT was applied to their word embedding.

5.5.4 The Effect of CMSCT on LSA

Table 5.11 shows the effect of applying CMSCT to an LSA word representation. GNB,

RF, and Deep CNN-LSTM are the classifiers that showed an enhancement when CMSCT

was applied to the LSA word representation in the IMDB Movie Review dataset. The best

result was achieved by the Boosted CNN when using the LSA word representation.

In the HSI dataset, out of the 11 classifiers, the Deep CNN-LSTM is the only classifier

whose results were improved by applying the CMSCT to the LSA word representation.

Similar to the IMDB Movie Review dataset, the Boosted CNN architecture achieved the

best F_score macro. In the 20 NG dataset, three out of five deep learning-based classifiers

showed an improvement when the Boosted CMSCT word representation was used as the

embedding layer. The RF is the only traditional classifier to show an improvement when

using this modified word embedding. In the Reuters dataset, using the CMSCT approach

enhanced six out of 11 classifiers: the GNB, RF, and k-NN from the traditional classifiers

and 1D-CNN, LSTM, and Boosted CNN from the deep learning-based architectures.

In the AG News dataset, the RF, k-NN, 1D-CNN, and AdvCNN were improved by the

CMSCT, while the Boosted CNN with the original LSA embedding layer produced the

best result.

70

Table 5.11. The Effect of CMSCT on LSA

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep

CNN-
LSTM

AdvCN
N

BOOS
TED
CNN

IM
D

B
 LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780 0.8854 0.8512 0.8378 0.8879 0.8980

CMSCT 0.8540 0.8775 0.1845 0.7637 0.7061 0.6675 0.8822 0.8269 0.8441 0.8822 0.8945

H
SI

 LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483 0.7236 0.7473 0.6077 0.7666 0.7792

CMSCT 0.5727 0.7186 0.4062 0.6423 0.6368 0.3906 0.7293 0.7370 0.6164 0.7662 0.7769

20
 N

G
 LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861 0.7963 0.7130 0.7798 0.8352 0.8309

CMSCT 0.7639 0.7925 0.4968 0.5751 0.6536 0.6881 0.8019 0.7203 0.7870 0.8287 0.8196

R
eu

te
rs

 LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777 0.4707 0.2083 0.2372 0.5976 0.5268

CMSCT 0.1384 0.3852 0.4462 0.2338 0.2946 0.4060 0.5118 0.2633 0.2050 0.5817 0.5457

A
G

 N
ew

s LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995 0.9183 0.9081 0.8990 0.9121 0.9189

CMSCT 0.8826 0.8883 0.8230 0.7987 0.8658 0.9021 0.9219 0.9066 0.8978 0.9124 0.9167

5.5.5 The Effect of CMSCT on Random Word Embedding

Table 5.12 illustrates the evaluation result of the CMSCT approach when applied to the

Random word embedding. In the IMDB Movie Review dataset, the best result was

achieved by the Boosted CNN architecture, which used the Random word embedding-

based CMSCT as the embedding layer. The DT, k-NN, and 1D-CNN are the other

classifiers that were improved by using the random-based CMSCT word representation. In

the HSI dataset, four out of 11 classifiers improved, of which three (GNB, DR, and RF)

were from the traditional classifiers. The Deep CNN-LSTM architecture was the only

architecture to show an improvement in terms of F_score macro.

Table 5.12. The Effect of CMSCT on Random Word Embedding

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep

CNN-
LSTM

AdvCNN BOOSTED
CNN

IM
D

B
 Random 0.7363 0.7359 0.6525 0.5502 0.5360 0.5836 0.8578 0.8550 0.8457 0.8521 0.8622

CMSCT 0.7336 0.7343 0.6162 0.5542 0.5357 0.5958 0.8605 0.8413 0.8175 0.7513 0.8679

H
SI

 Random 0.6871 0.6823 0.4143 0.4058 0.3595 0.6003 0.7658 0.7827 0.6319 0.7866 0.7883

CMSCT 0.6476 0.6554 0.4188 0.4271 0.4025 0.5813 0.7567 0.7610 0.6704 0.7775 0.7505

20
 N

G
 Random 0.4596 0.4513 0.2211 0.0910 0.1151 0.3142 0.6943 0.3942 0.4786 0.5232 0.7141

CMSCT 0.4495 0.4628 0.2016 0.0959 0.1137 0.3464 0.6117 0.3594 0.4318 0.3879 0.7011

R
eu

te
rs

 Random 0.2275 0.5008 0.3122 0.0703 0.1073 0.3227 0.4404 0.0908 0.0809 0.4091 0.4762

CMSCT 0.1416 0.4504 0.2269 0.0747 0.1151 0.3237 0.4489 0.0543 0.0682 0.2923 0.4346

A
G

 N
ew

s Random 0.6726 0.3984 0.6119 0.3688 0.4277 0.7853 0.9151 0.9055 0.9003 0.8924 0.9085

CMSCT 0.6993 0.6985 0.5938 0.3812 0.4763 0.8315 0.9162 0.9075 0.8986 0.8982 0.9007

71

In the 20 NG dataset, none of the deep learning-based classifiers showed enhancement,

while 50% of the traditional classifiers improved by using the random-based CMSCT. In

the Reuters dataset, 1D-CNN was the only enhanced deep learning architecture. Three

traditional classifiers, DT, RF, and k-NN, showed improved evaluation results. In the AG

News dataset, five out of six traditional classifiers, and three out of five deep learning

architectures, were enhanced by using the random-based CMSCT approach. The 1D-CNN,

which used the random-based CMSCT word embedding, achieved the best results out of

all the classifiers in this dataset.

The DT is the only classifier in all the datasets that always improved when the CMSCT

was applied to its word embedding.

5.6 CMSCT vs. MSCT

Table 5.13 shows a comparison between the CMSCT and MSCT approaches in the IMDB

Movie Review dataset. For the traditional classifiers, the MSCT and CMSCT were always

higher than the baseline and, in the LSTM approach, the MSCT worked better than the

other approaches. For the LR, DT and RF, the CMSCT worked even better than the MSCT,

and needed much lower memory during the graph generation process. The MSCT worked

better than the CMSCT with the SVM, GNB, k-NN, and LSTM classifiers. For the deep

learning-based classifiers, the MSCT worked better with almost all of the approaches, with

the exception of the 1D-CNN, for which the CMSCT achieved better results.

Table 5.13. Comparison of CMSCT vs. MSCT

Classifier
Baseline

F_score macro
CMSCT

F_score macro
MSCT

F_score macro
LR 0.8577 0.8580 0.8549

SVM 0.8451 0.8411 0.8557

GNB 0.3415 0.7045 0.7438

DT 0.6588 0.7078 0.6715

RF 0.7186 0.7530 0.7266

k-NN 0.7495 0.7441 0.7539

1D-CNN 0.8891 0.8646 0.8402

LSTM 0.8295 0.8352 0.8423

CNN+LSTM 0.8454 0.8057 0.8251

AdvCNN 0.8982 0.8706 0.8943
Boosted CNN 0.8996 0.8775 0.8978

72

5.7 The Effect of AbWE on Word Embeddings

5.7.1 The Effect of AbWE on Word2Vec

The results of applying the introduced AbWE to the Word2Vec are illustrated in Table

5.14. In the IMDB Movie Review dataset, the majority of the traditional classifiers, with

the exception of the LR, showed an improvement in terms of F_score when the introduced

AbWE was trained by the training data and then applied to the word vectors. The highest

improvement occurred for the GNB classifier, where the F_score macro increased from

0.3416 to 0.7336. The Boosted CNN, the only deep learning-based approach to be

enhanced, achieved the best result in the evaluation. Applying the AbWE to the Word2Vec

word representation in the HSI dataset and AG News failed to register a significant result.

Only the LSTM architecture improved in the HSI dataset, and the Deep CNN-LSTM

architecture in the AG News dataset showed improvement. In the 20 NG dataset, three

traditional classifiers, DT, RF, and k-NN, were slightly improved. In the Reuters dataset,

the RF and k-NN were the only enhanced classifiers.

Table 5.14. The Effect of AbWE on Word2Vec

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED CNN

IM
D

B
 Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495 0.8892 0.8295 0.8454 0.8982 0.8996

AbWE 0.8575 0.8584 0.7336 0.6719 0.7276 0.7779 0.8416 0.8185 0.8390 0.8611 0.9052

H
SI

 Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261 0.7467 0.7657 0.6505 0.7872 0.7935

AbWE 0.5412 0.6285 0.6234 0.5084 0.5666 0.5567 0.7462 0.7676 0.6245 0.7593 0.7740

20
 N

G
 Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983 0.7707 0.7871 0.7804 0.8004 0.7794

AbWE 0.6563 0.6787 0.5219 0.3076 0.4076 0.5997 0.7360 0.7620 0.7246 0.7884 0.7972

R
eu

te
rs

 Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650 0.5536 0.4882 0.2785 0.6008 0.5755

AbWE 0.2536 0.4999 0.3467 0.1806 0.2679 0.3705 0.4349 0.2962 0.1817 0.5395 0.5525

A
G

 N
ew

s Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020 0.9212 0.9125 0.8979 0.9181 0.9184

AbWE 0.7992 0.8244 0.7293 0.6725 0.7710 0.7918 0.9202 0.9080 0.8990 0.9122 0.9163

5.7.2 The Effect of AbWE on GloVe

Table 5.15 shows the results of the evaluation for when the AbWE was applied to the

GloVe word representation. In the IMDB Movie Review dataset, four out of the six

73

traditional classifiers were enhanced in terms of F_score macro when the AbWE modified

the GloVe word representation. None of the deep learning-based classifiers improved in

this experiment. However, using the original GloVe as their embedding layer, they

performed much better than the modified version. The best result was achieved by the

Boosted CNN when it used the GloVe word embedding.

In the HSI dataset, the SVM was the only classifier to achieve a positive impact from the

AbWE approach. Similar to the HSI dataset, in the AG News dataset, only the SVM

classifier showed a better accuracy in terms of F_score. The 1D-CNN and the Boosted

CNN architectures improved in the 20 NG dataset when the AbWE modified the original

GloVe word embedding, while none of the traditional classifiers were enhanced in this

experiment. In the Reuters dataset, the LR and DT from the traditional classifiers with

AdvCNN and Boosted CNN from the deep learning-based classifiers improved by applying

the AbWE to the GloVe word embedding. The best result was achieved by the Boosted

CNN architecture and GloVe-based word embedding.

Table 5.15. The Effect of AbWE on GloVe

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397 0.8815 0.8637 0.8432 0.8923 0.8979

AbWE 0.8533 0.8533 0.7345 0.6913 0.7468 0.7658 0.8655 0.8395 0.8482 0.8809 0.8729

H
SI

 GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534 0.7511 0.7804 0.6664 0.7913 0.7966

AbWE 0.7859 0.8213 0.7740 0.6656 0.7235 0.7203 0.7349 0.7643 0.6145 0.7791 0.7848

20

N
ew

sg
ro

up
 GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334 0.7808 0.8183 0.8099 0.8151 0.8049

AbWE 0.7191 0.7195 0.5842 0.3744 0.4715 0.6321 0.7926 0.8162 0.7750 0.8150 0.8096

R
eu

te
rs

 GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419 0.5439 0.5137 0.3867 0.5707 0.5482

AbWE 0.3821 0.5596 0.3863 0.1974 0.2223 0.3407 0.5284 0.4452 0.2398 0.5772 0.5825

A
G

 N
ew

s GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044 0.9237 0.9138 0.9062 0.9243 0.9139

AbWE 0.8525 0.8649 0.8046 0.7257 0.8213 0.8459 0.9196 0.9110 0.8956 0.9175 0.9027

5.7.3 The Effect of AbWE on fastText

Table 5.16 presents the evaluation results for when AbWE is applied to the fastText word

embedding. Four traditional classifiers, namely SVM, GNB, RF, and k-NN, showed an

improvement when the AbWE modified the fastText word representation in the IMDB

74

Movie Review dataset, while none of the deep learning-based architectures showed

improvement. None of the classifiers were enhanced when the AbWE was applied to

fastText in the HSI movie dataset, while the best result in the AG News dataset was

achieved by the fastText-based AbWE word embedding when used by the Boosted CNN

architecture. However, it should be noted that Boosted CNN was the only classifier to be

enhanced in the AG News dataset.

In the 20 NG dataset, the Boosted CNN deep learning architecture, together with the DT

and RF traditional classifiers, are the three classifiers to be enhanced by the AbWE

approach. The 1D-Classifier in the Reuters dataset was the only enhanced classifier when

the AbWE was applied to the fastText word embedding.

Table 5.16. The Effect of AbWE on fastText

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 FastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460 0.8881 0.8582 0.8474 0.9051 0.9058

AbWE 0.8654 0.8671 0.7300 0.6843 0.7428 0.7682 0.8448 0.8178 0.8464 0.7575 0.8726

H
SI

 FastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576 0.7366 0.7755 0.6508 0.7896 0.7928

AbWE 0.7293 0.8056 0.7765 0.6464 0.7121 0.6713 0.7327 0.7534 0.6502 0.7711 0.7749

20
 N

G
 FastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502 0.8019 0.7825 0.7923 0.8174 0.8080

AbWE 0.7127 0.7218 0.5907 0.3560 0.4720 0.6460 0.7936 0.8020 0.7835 0.8039 0.8172

R
eu

te
rs

 FastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710 0.5260 0.4337 0.3446 0.6432 0.5575

AbWE 0.3067 0.5314 0.3691 0.1309 0.2166 0.3615 0.5487 0.3713 0.1430 0.5840 0.5435

A
G

 N
ew

s FastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068 0.9248 0.9107 0.9034 0.9226 0.9199

AbWE 0.8070 0.8312 0.7128 0.6417 0.7445 0.8069 0.9201 0.9091 0.9013 0.9183 0.9209

5.7.4 The Effect of AbWE on LSA

Table 5.17 shows the evaluation results for the investigated classifiers when AbWE was

applied to the LSA word representation. In the IMDB Movie Review dataset, the Deep

CNN-LSTM is the only deep learning classifier to be improved by the AbWE that modified

the LSA. Three out of the six traditional classifiers, namely GNB, RF, and k-NN, were

enhanced by this new version of LSA. In the HSI dataset, the k-NN was the only improved

classifier, while two deep learning-based architectures, 1D-CNN and Deep CNN-LSTM,

achieved better results when using the modified version of LSA word embedding. In the

75

20 NG dataset, the k-NN was the only improved classifier out of all the traditional and deep

learning-based classifiers, while the best result in this dataset was achieved by the AdvCNN

using the original LSA word embedding. In the Reuters dataset, none of the deep learning-

based architectures were enhanced while three out of the six traditional classifiers (DT, RF,

and k-NN) showed improvement as a result of applying the AbWE to the LSA word

representation. None of the classifiers showed improved results in the AG dataset.

Moreover, in this dataset, using the AbWE was not effective in comparison to using the

original LSA word vectors. The k-NN was enhanced in five out of the six datasets.

Table 5.17. The Effect of AbWE on LSA

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780 0.8854 0.8512 0.8378 0.8879 0.8980

AbWE 0.8719 0.8841 0.1834 0.7617 0.6937 0.6806 0.8247 0.8130 0.8504 0.7838 0.8269

H
SI

 LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483 0.7236 0.7473 0.6077 0.7666 0.7792

AbWE 0.2917 0.4396 0.4067 0.4764 0.4321 0.5648 0.7283 0.7464 0.6341 0.7614 0.7603

20
 N

G
 LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861 0.7963 0.7130 0.7798 0.8352 0.8309

AbWE 0.7747 0.8036 0.4222 0.5547 0.6242 0.6906 0.7052 0.5758 0.5843 0.7589 0.7742

R
eu

te
rs

 LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777 0.4707 0.2083 0.2372 0.5976 0.5268

AbWE 0.1539 0.4198 0.3841 0.2550 0.3000 0.3838 0.4362 0.1840 0.1029 0.3851 0.4826

A
G

 N
ew

s LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995 0.9183 0.9081 0.8990 0.9121 0.9189

AbWE 0.8055 0.8121 0.6741 0.7510 0.8118 0.8475 0.9186 0.9069 0.8959 0.9077 0.9101

5.7.5 The Effect of AbWE on Random Word Embedding

The effect of applying the AbWE approach to Random Word Embedding is shown in Table

5.18. The DT and Deep CNN-LSTM are the two classifiers that showed an improvement

when the random-based AbWE approach was used for word representation. In the HSI

dataset, the GNB, DT, and RF showed enhancement, while the Deep CNN-LSTM was the

only deep learning-based architecture to show an increase in terms of F_score macro when

using the random-based AbWE word vectors as the embedding layer. The k-NN is the only

improved approach in the 20 NG dataset, while the k-NN, 1D-CNN, and the LSTM

architecture showed an enhancement in the Reuters dataset. The LR, 1D-CNN, and

76

AdvCNN showed improvement in the AG News dataset when the AbWE approach was

applied to the Random word embedding. The 1D-CNN with the random-based AbWE

word embedding layer produced the best result out of all the deep learning-based and

traditional classifiers.

Table 5.18. The Effect of AbWE on Random Word Embedding

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 Random 0.7363 0.7359 0.6525 0.5502 0.5360 0.5836 0.8578 0.8550 0.8457 0.8521 0.8622

AbWE 0.7344 0.7237 0.6258 0.5516 0.5252 0.5587 0.5166 0.8416 0.8603 0.7372 0.8002

H
SI

 Random 0.6871 0.6823 0.4143 0.4058 0.3595 0.6003 0.7658 0.7827 0.6319 0.7866 0.7883

AbWE 0.4798 0.5956 0.4258 0.4230 0.3629 0.3932 0.7476 0.7469 0.6516 0.7650 0.7710

20
 N

G
 Random 0.4596 0.4513 0.2211 0.0910 0.1151 0.3142 0.6943 0.3942 0.4786 0.5232 0.7141

AbWE 0.4537 0.4460 0.2078 0.0903 0.1070 0.3265 0.6705 0.3835 0.4173 0.1439 0.7023

R
eu

te
rs

 Random 0.2275 0.5008 0.3122 0.0703 0.1073 0.3227 0.4404 0.0908 0.0809 0.4091 0.4762

AbWE 0.2304 0.4963 0.2941 0.0699 0.0988 0.3328 0.4810 0.4256 0.0725 0.3875 0.4711

A
G

 N
ew

s Random 0.6726 0.3984 0.6119 0.3688 0.4277 0.7853 0.9151 0.9055 0.9003 0.8924 0.9085

AbWE 0.5134 0.5561 0.4256 0.3595 0.4135 0.4660 0.9196 0.9040 0.8968 0.9144 0.9052

5.8 The Effect of EbWC on Word Embeddings

5.8.1 The Effect of EbWC on Word2Vec

Table 5.19 illustrates the result of applying the EbWC approach to the Word2Vec in

different classifiers and datasets.

In the IMDB Movie Review dataset, four out of the six traditional classifiers (LR, GNB,

DT, and RF) showed enhancement when the EbWC was applied to the Word2Vec word

vectors while the LSTM was the only improved deep learning-based classifier. The greatest

increase in terms of F_score macro, from 0.3416 to 0.7045, was observed in the GNB

classifier. In the HSI dataset, the SVM and RF as traditional classifiers, plus 1D-CNN and

LSTM from the deep learning-based classifiers, showed an increase in terms of F_score

macro. In the 20 NG dataset, the DT, RF, and Boosted CNN showed enhancement by

employing the EbWC-modified Word2Vec while the best result was achieved by the

AdvCNN when the original Word2Vec was used. In the Reuters dataset, only the DT and

77

RF showed improved results by using the EbWC. In the AG News dataset, the SVM, DT,

RF, 1D-CNN, and AdvCNN showed improvement. Furthermore, the best evaluation result

in this dataset was generated by the 1D-CNN when the EbWC modified the Word2Vec

word representation. The RF is the only classifier to improve in all the datasets as a result

of employing the EbWC approach.

Table 5.19. The Effect of EbWC on Word2Vec

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495 0.8892 0.8295 0.8454 0.8983 0.8997

EbWC 0.8580 0.8411 0.7045 0.7078 0.7530 0.7442 0.8647 0.8352 0.8058 0.8707 0.8776

H
SI

 Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261 0.7467 0.7657 0.6505 0.7873 0.7936

EbWC 0.6363 0.6709 0.6058 0.5002 0.5971 0.5998 0.7625 0.7744 0.6423 0.7740 0.7718

20
 N

G
 Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983 0.7707 0.7871 0.7804 0.8005 0.7794

EbWC 0.5333 0.6083 0.3900 0.3963 0.4538 0.4516 0.7421 0.7847 0.7414 0.8000 0.7927

R
eu

te
rs

 Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650 0.5536 0.4882 0.2785 0.6008 0.5756

EbWC 0.0965 0.3024 0.2173 0.2334 0.2482 0.2848 0.4747 0.3491 0.1902 0.5077 0.5595

A
G

 N
ew

s Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020 0.9212 0.9125 0.8979 0.9181 0.9185

EbWC 0.8787 0.8845 0.8066 0.7915 0.8597 0.8798 0.9252 0.9111 0.8990 0.9186 0.9167

5.8.2 The Effect of EbWC on GloVe

Table 5.20 shows the evaluation results of the investigated classifiers when the EbWC was

applied to the GloVe word representation. In the IMDB Movie Review dataset, almost all

the traditional classifiers, with the exception of the k-NN, showed enhancement in terms

of F_score macro while none of the deep learning-based investigated solutions saw

improvement when the EbWC was applied to the GloVe word embedding. In the HSI

dataset, the SVM was the only improved classifier; the remainder showed no increase in

terms of F_score macro during the evaluation. Similar to the HSI dataset, the DT was the

only enhanced classifier out of all the traditional and deep learning-based approaches. In

the Reuters dataset, all the classifiers showed a drop in the evaluation while the EbWC

approach failed to work in any of the classifiers. Similar to the 20 NG dataset, the DT is

the only enhanced classifier in the AG News dataset. None of the deep learning-based

78

investigated architectures showed an increase in terms of F_score macro when the EbWC

approach was applied to the GloVe word embedding.

Table 5.20. The Effect of EbWC on GloVe

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397 0.8815 0.8637 0.8432 0.8923 0.8979

EbWC 0.8554 0.8450 0.6212 0.7160 0.7458 0.7277 0.8399 0.8380 0.8139 0.8698 0.8664

H
SI

 GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534 0.7511 0.7804 0.6664 0.7913 0.7966

EbWC 0.7911 0.8191 0.6864 0.7102 0.7479 0.7368 0.7471 0.7688 0.6617 0.7749 0.7792

20
 N

G
 GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334 0.7808 0.8183 0.8099 0.8151 0.8049

EbWC 0.5565 0.6422 0.2715 0.4014 0.4425 0.4133 0.7777 0.7962 0.7194 0.8035 0.7963

R
eu

te
rs

 GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419 0.5439 0.5137 0.3867 0.5707 0.5482

EbWC 0.0738 0.2391 0.0743 0.1596 0.1794 0.1796 0.4596 0.2876 0.1708 0.4642 0.4615

A
G

 N
ew

s GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044 0.9237 0.9138 0.9062 0.9243 0.9139

EbWC 0.8794 0.8869 0.7310 0.7905 0.8468 0.8572 0.9221 0.9131 0.9010 0.9198 0.9121

5.8.3 The Effect of EbWC on fastText

Table 5.21 shows the effect of EbWC on the fastText word representation method. In the

IMDB Movie Review dataset, all of the traditional classifiers, as well as the LSTM

classifier, were enhanced in terms of F_score macro. The highest increase belonged to the

GNB, with an F_score that improved from 0.3593 to 0.6913. The best result in this dataset

was achieved by the Boosted CNN, which used the original fastText word embedding. In

the HSI dataset, none of the deep learning-based classifiers improved in the evaluation.

The SVM, DT, and RF were the traditional classifiers that showed an increase in terms of

F_score macro. The SVM, which used the modified (by EbWC) fastText word vectors,

produced the best result in this dataset. In the 20 NG and the Reuters datasets, the DT is

the only classifier to be positively affected by the EbWC approach. In both datasets, the

AdvCNN classifier with the original fastText embedding layer achieved the best results. In

the AG News dataset, SVM, DT, RF, and LSTM were the enhanced classifiers. The DT

was the only classifier to improve in all datasets when the EbWC was applied to the

fastText word representation.

79

Table 5.21. The Effect of EbWC on fastText

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN
IM

D
B

 FastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460 0.8881 0.8582 0.8474 0.9051 0.9058

EbWC 0.8683 0.8527 0.6913 0.7326 0.7646 0.7548 0.8633 0.8637 0.8366 0.8742 0.8762

H
SI

 FastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576 0.7366 0.7755 0.6508 0.7896 0.7928

EbWC 0.8079 0.8368 0.6614 0.7354 0.7759 0.7541 0.7338 0.7568 0.6382 0.7743 0.7795

20
 N

G
 FastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502 0.8019 0.7825 0.7923 0.8174 0.8080

EbWC 0.5380 0.6450 0.3346 0.4153 0.4682 0.4501 0.7571 0.7644 0.7375 0.7710 0.7877

R
eu

te
rs

 FastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710 0.5260 0.4337 0.3446 0.6432 0.5575

EbWC 0.0710 0.2528 0.1408 0.1950 0.2109 0.2329 0.4600 0.1800 0.1349 0.4528 0.5140

A
G

 N
ew

s FastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068 0.9248 0.9107 0.9034 0.9226 0.9199

EbWC 0.8782 0.8891 0.7709 0.7956 0.8568 0.8704 0.9245 0.9114 0.9012 0.9205 0.9112

5.8.4 The Effect of EbWC on LSA

Table 5.22 shows the evaluation result of the investigated classifiers when the EbWC

modified the LSA word representation. In the IMDB Movie Review dataset, none of the

deep learning-based classifiers showed improvement in evaluation, while the GNB, DT,

RF, and k-NN were all improved by the EbWC. In the HSI dataset, three out of five

classifiers (1D-CNN, LSTM, and Deep CNN-LSTM) were enhanced by the EbWC

approach. The GNB and k-NN were the two improved traditional classifiers.

In the 20 NG dataset, four out of the six traditional classifiers (GNB, DT, RF, and k-NN)

and three out of the five deep learning-based classifiers (LSTM, Deep CNN-LSTM, and

AdvCNN) were enhanced when the EbWC was applied to the LSA word representation.

The highest F_score macro in this dataset was achieved by the AdvCNN when the LSA-

based EbWC embedding layer was used.

In the Reuters dataset, the DT, k-NN, LSTM, and Boosted CNN classifiers showed increase

in terms of F_score macro.

SVM, GNB, DT, and k-NN, as the traditional classifiers, as well as 1D-CNN, AdvCNN,

and Boosted CNN, achieved a higher F_score macro when the EbWC modified the fastText

word representation in the AG News dataset. The highest evaluation result (0.9207 in terms

80

of F_score macro) belonged to the Boosted CNN architecture when the modified LSA (by

EbWC) word embedding layer was used.

Table 5.22. The Effect of EbWC on LSA

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN

IM
D

B
 LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780 0.8854 0.8512 0.8378 0.8879 0.8980

EbWC 0.8672 0.8828 0.6584 0.7976 0.8180 0.7401 0.8399 0.8431 0.8318 0.8642 0.8592

H
SI

 LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483 0.7236 0.7473 0.6077 0.7666 0.7792

EbWC 0.6480 0.7228 0.4515 0.6706 0.6527 0.5610 0.7244 0.7579 0.6199 0.7664 0.7714

20
 N

G
 LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861 0.7963 0.7130 0.7798 0.8352 0.8309

EbWC 0.7713 0.8001 0.5877 0.6553 0.7085 0.7163 0.7678 0.8120 0.7916 0.8385 0.8313

R
eu

te
rs

 LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777 0.4707 0.2083 0.2372 0.5976 0.5268

EbWC 0.2011 0.4074 0.3460 0.2858 0.2751 0.4089 0.4550 0.4749 0.2003 0.5567 0.5327

A
G

 N
ew

s LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995 0.9183 0.9081 0.8990 0.9121 0.9189

EbWC 0.8869 0.8923 0.8620 0.8114 0.8598 0.9021 0.9190 0.9072 0.8954 0.9195 0.9207

5.8.5 The Effect of EbWC on Random Word Embedding

Table 5.23 illustrates the evaluation results for the investigated classifiers when the EbWC

was applied to the Random word embedding. In the IMDB Movie Review dataset, as well

as the 20 NG and Reuters datasets, none of the classifiers showed improvement in

evaluation when the EbWC was applied to the Random Embedding. In the HSI dataset, out

of all the traditional and deep learning-based architectures, the AdvCNN was the only

classifier to be improved by the EbWC in comparison with using Random word

embedding. It should be noted that the achieved result is the highest F_score macro in the

HSI dataset. In the AG News dataset, the SVM classifier is a traditional classifier while the

LSTM and the AdvCNN are the only enhanced classifiers when the EbWC was applied to

the Random word embedding.

81

Table 5.23. The Effect of EbWC on Random Word Embedding

LR SVM GNB DT RF KNN 1D-

CNN
LSTM Deep CNN-

LSTM
AdvCNN BOOSTED

CNN
IM

D
B

 Random 0.7363 0.7359 0.6525 0.5502 0.5360 0.5836 0.8578 0.8550 0.8457 0.8521 0.8622

EbWC 0.6434 0.0045 0.2537 0.5434 0.5066 0.5194 0.6667 0.7986 0.8385 0.3333 0.8322

H
SI

 Random 0.6871 0.6823 0.4143 0.4058 0.3595 0.6003 0.7658 0.7827 0.6319 0.7866 0.7883

EbWC 0.0609 0.0588 0.3591 0.3678 0.3372 0.4292 0.7210 0.7714 0.6280 0.7903 0.7741

20
 N

G
 Random 0.4596 0.4513 0.2211 0.0910 0.1151 0.3142 0.6943 0.3942 0.4786 0.5232 0.7141

EbWC 0.0269 0.0128 0.0367 0.0799 0.0865 0.1251 0.5791 0.3116 0.4200 0.0163 0.6337

R
eu

te
rs

 Random 0.2275 0.5008 0.3122 0.0703 0.1073 0.3227 0.4404 0.0908 0.0809 0.4091 0.4762

EbWC 0.0079 0.0079 0.0016 0.0495 0.0556 0.1271 0.4244 0.0485 0.0398 0.0339 0.3182

A
G

 N
ew

s Random 0.6726 0.3984 0.6119 0.3688 0.4277 0.7853 0.9151 0.9055 0.9003 0.8924 0.9085

EbWC 0.4882 0.5752 0.2169 0.3292 0.3794 0.5706 0.9018 0.9069 0.8991 0.8977 0.8897

5.9 Comparison: The Presented Document Representation

Approaches over Logistic Regression Efficiency

Table 5.24 compares the presented approaches in different datasets when the LR is used as

the classification solution.

In the IMDB Movie Review dataset, the CTWE was able to achieve the best result in

comparison to the other three approaches when it was applied to the Word2Vec, GloVe,

and Random word embedding. The EbWC more effectively improved Word2Vec, GloVe

and fastText compared to other approaches, but no approach was able to improve the LSA

word representation. The best result with the LR classifier was achieved by the original

LSA in the IMDB Movie Review dataset.

In the HSI dataset, only the CTWE was able to improve the GloVe word representation

while none of the other approaches could improve the baseline results with the LR

classifier. The best result was achieved by the fastText word representation in this dataset.

None of the presented solutions was able to improve the baseline result when the LR was

used as the classifier in the 20 NG dataset.

The AbWE approach was the only solution in the Reuters dataset that was able to improve

the evaluation result for two of the word representations, namely GloVe and Random word

82

embedding. In the Reuters dataset, the best F_score macro was achieved by the GloVe

word representation that was modified by the AbWE approach.

Table 5.24. Comparison: The presented document representation approaches over Logistic Regression

Efficiency

 Baseline CTWE CMSCT AbWE EbWC
IM

D
B

Word2Vec 0.8577 0.8585 0.8543 0.8575 0.8580

GloVe 0.8536 0.8557 0.8542 0.8533 0.8554

fastText 0.8660 0.8648 0.8592 0.8654 0.8683

LSA 0.8743 0.8261 0.8540 0.8719 0.8672

Random 0.7363 0.7364 0.7336 0.7344 0.6434

H
SI

Word2Vec 0.6796 0.6442 0.6634 0.5412 0.6363

GloVe 0.8214 0.8223 0.8060 0.7859 0.7911

fastText 0.8287 0.8237 0.8031 0.7293 0.8079

LSA 0.6706 0.1440 0.5727 0.2917 0.6480

Random 0.6871 0.6006 0.6476 0.4798 0.0609

20
 N

G

Word2Vec 0.6596 0.5740 0.6317 0.6563 0.5333

GloVe 0.7205 0.6617 0.7048 0.7191 0.5565

fastText 0.7199 0.6606 0.7056 0.7127 0.5380

LSA 0.7781 0.6862 0.7639 0.7747 0.7713

Random 0.4596 0.3898 0.4495 0.4537 0.0269

R
eu

te
rs

Word2Vec 0.2601 0.0739 0.1999 0.2536 0.0965

GloVe 0.3815 0.1490 0.2995 0.3821 0.0738

fastText 0.3096 0.0983 0.2571 0.3067 0.0710

LSA 0.1574 0.0238 0.1384 0.1539 0.2011

Random 0.2275 0.0434 0.1416 0.2304 0.0079

A
G

 N
ew

s

Word2Vec 0.8905 0.8859 0.8889 0.7992 0.8787

GloVe 0.8935 0.8924 0.8923 0.8525 0.8794

fastText 0.8930 0.8895 0.8930 0.8070 0.8782

LSA 0.8893 0.8753 0.8826 0.8055 0.8869

Random 0.6726 0.6775 0.6993 0.5134 0.4882

The CMSCT enhanced the results of using fastText and Random Word representation in

the AG News dataset. Meanwhile, CTWE had a positive effect on the Random word

embedding.

83

In general, when the LR was used as the classifier in the selected datasets, all the presented

approaches were able to enhance at least one word representation.

5.10 Comparison: The Presented Document Representation

Approaches over Support Vector Machine Efficiency

Table 5.25 illustrates the evaluation results of using the SVM as the classifier in the five

investigated datasets. The same as the LR results in the IMDB Movie Review dataset, none

of the classifiers improved the results that were achieved by the original LSA word

representation. The CTWE was able to improve the Word2Vec, GloVe, fastText and

Random word embedding. Using the AbWE improved the Word2Vec, GloVe and fastText

in this dataset. For the IMDB Movie Review dataset, neither the CMSCT nor EbWC

achieved the highest F_score macro in any of the investigated word representations. In

contrast, the AbWE enhanced Word2Vec, GloVe, and fastText while EbWC was effective

on the F_score macro of both Glove and FastText.

In the HSI dataset, the Word2Vec, GloVe and fastText, as well as the Random word

embedding, were enhanced by the CTWE approach. The GloVe word representation was

improved by using the AbWE solution while the CMSCT was only effective on the

Word2Vec word representation. The EbWC improved the baseline result of the Word2Vec,

GloVe, and fastText word embedding methods. The highest F_score macro in this dataset

was gained when the fastText word embedding was modified by the CTWE approach.

The CMSCT and CTWE are the only solutions that are positively effective in the 20 NG

dataset. These approaches improved the Random word embedding. CMSCT was also

effective on the fastText.

In the Reuters dataset, applying the four presented approaches resulted in no improvement

when the SVM was used as the classifier. In contrast to the evaluation results in the Reuters

dataset, all of the word embeddings in the AG News are enhanced when the four presented

solutions are applied to the five word representations. The CTWE and CMSCT improved

the Word2Vec, GloVe, fastText and Random word embedding. Using the AbWE produced

84

improved results for GloVe and Random word embedding, while using the EbWC

enhanced all five investigated word representations.
Table 5.25. Comparison: The presented document representation approaches over Support Vector Machine

Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.8452 0.8576 0.8541 0.8584 0.8411

GloVe 0.8363 0.8561 0.8548 0.8533 0.8450

fastText 0.8443 0.8654 0.8603 0.8671 0.8527

LSA 0.8860 0.8709 0.8775 0.8841 0.8828

Random 0.7359 0.7399 0.7343 0.7237 0.0045

H
SI

Word2Vec 0.6528 0.6844 0.6581 0.6285 0.6709

GloVe 0.7985 0.8186 0.7799 0.8213 0.8191

fastText 0.8136 0.8374 0.7929 0.8056 0.8368

LSA 0.7377 0.6549 0.7186 0.4396 0.7228

Random 0.6823 0.6900 0.6554 0.5956 0.0588

20
 N

G

Word2Vec 0.6849 0.6568 0.6745 0.6787 0.6083

GloVe 0.7236 0.7157 0.7231 0.7195 0.6422

fastText 0.7247 0.7152 0.7305 0.7218 0.6450

LSA 0.8058 0.7722 0.7925 0.8036 0.8001

Random 0.4513 0.4556 0.4628 0.4460 0.0128

R
eu

te
rs

Word2Vec 0.5003 0.3102 0.4367 0.4999 0.3024

GloVe 0.5762 0.4122 0.5241 0.5596 0.2391

fastText 0.5483 0.3632 0.4787 0.5314 0.2528

LSA 0.4208 0.2595 0.3852 0.4198 0.4074

Random 0.5008 0.2672 0.4504 0.4963 0.0079

A
G

 N
ew

s

Word2Vec 0.8838 0.8920 0.8893 0.8244 0.8845

GloVe 0.8423 0.8930 0.8931 0.8649 0.8869

fastText 0.8676 0.8932 0.8926 0.8312 0.8891

LSA 0.8913 0.8884 0.8883 0.8121 0.8923

Random 0.3984 0.6767 0.6985 0.5561 0.5752

85

5.11 Comparison: The Presented Document Representation

Approaches over Naïve Bayes Efficiency

Table 5.26 shows the results of experiments on the five studied datasets, when using the

NB classifier, and the four presented approaches applied to the Word2Vec, GloVe,

fastText, LSA, and Random word embedding methods. In the IMDB Movie Review

dataset, all of the word representations, with the exception of the Random word embedding,

are enhanced by applying the CTWE, CMSCT, AbWE, and EbWC approaches. For the

NB classifier, the highest result in this dataset is achieved by the Word2Vec when enhanced

by the CTWE approach.

In the HSI dataset, CTWE improved the Word2Vec, while the CMSCT and AbWE

approaches were only able to improve the results of the Random word embedding

approach.

In the 20 NG dataset, the Word2Vec and Random word embedding showed an increase in

terms of F_score macro when the CTWE was applied. The LSA word representation was

improved by the EbWC approach.

The CTWE was positively effective on the GloVe, fastText, and LSA word embeddings

while LSA, the remaining word embedding, was enhanced by the CMSCT approach.

The GloVe word embedding in the AG News dataset was improved by the CTWE and

CMSCT approaches. Word2Vec and fastText were enhanced only by CTWE while the

LSA word embedding was improved by the EbWC approach.

86

Table 5.26. Comparison: The presented document representation approaches over Naïve Bayes Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.3416 0.7601 0.7416 0.7336 0.7045

GloVe 0.4268 0.7398 0.7227 0.7345 0.6212

fastText 0.3593 0.7349 0.7155 0.7300 0.6913

LSA 0.1456 0.1532 0.1845 0.1834 0.6584

Random 0.6525 0.6477 0.6162 0.6258 0.2537

H
SI

Word2Vec 0.6944 0.7021 0.6546 0.6234 0.6058

GloVe 0.8255 0.8238 0.7906 0.7740 0.6864

fastText 0.8260 0.8201 0.7957 0.7765 0.6614

LSA 0.4086 0.4068 0.4062 0.4067 0.4515

Random 0.4143 0.4050 0.4188 0.4258 0.3591

20
 N

G

Word2Vec 0.5438 0.5439 0.5278 0.5219 0.3900

GloVe 0.5992 0.5940 0.5835 0.5842 0.2715

fastText 0.6031 0.5988 0.5841 0.5907 0.3346

LSA 0.5104 0.4986 0.4968 0.4222 0.5877

Random 0.2211 0.2277 0.2016 0.2078 0.0367

R
eu

te
rs

Word2Vec 0.4141 0.4035 0.3894 0.3467 0.2173

GloVe 0.4095 0.4122 0.3818 0.3863 0.0743

fastText 0.4071 0.4148 0.3912 0.3691 0.1408

LSA 0.4212 0.4268 0.4462 0.3841 0.3460

Random 0.3122 0.3053 0.2269 0.2941 0.0016

A
G

 N
ew

s

Word2Vec 0.8369 0.8451 0.8348 0.7293 0.8066

GloVe 0.8517 0.8556 0.8544 0.8046 0.7310

fastText 0.8463 0.8470 0.8415 0.7128 0.7709

LSA 0.8334 0.8332 0.8230 0.6741 0.8620

Random 0.6119 0.6117 0.5938 0.4256 0.2169

5.12 Comparison: The Presented Document Representation

Approaches over Decision Tree Efficiency

Table 5.27 compares the evaluation results of the presented approaches when the DT is

used as the classifier. The CTWE, CMSCT, and AbWE approaches enhanced the four

investigated word embeddings in the IMDB Movie Review dataset: Word2Vec, GloVe,

fastText, and the Random word embedding. The EbWC was the only approach that not

87

only improved Word2Vec, GloVe, and fastText, but also improved the LSA word

embedding and produced the highest F_score macro in this dataset.

In the HSI dataset, LSA was the only word representation that failed to be improved by

any of the approaches. The Word2Vec was enhanced only by the CMSCT, while the GloVe

and fastText were improved by the CTWE, the CMSCT, and the EbWC approaches. The

Random word embedding was positively impacted by the CTWE, CMSCT, and AbWE

approaches.

In the 20 NG dataset, the CTWE approach improved all the investigated word

embeddings. The CMSCT improved the results of all the word embeddings with the

exception of the LSA approach. Applying the AbWE approach had a positive effect on the

Word2Vec and fastText. The EbWC approach improved all the investigated word

embeddings, with the exception of the Random word embedding.

In the Reuters dataset, all the word embeddings were improved by at least one of the

presented approaches. Word2Vec was enhanced by both the CTWE and EbWC. The GloVe

was improved by the CMSCT and the AbWE. The fastText was enhanced by the EbWC

while the LSA was improved by the AbWE and the EbWC. The Random word embedding

was improved by both the CTWE and CMSCT approaches.

In the AG News dataset, the CTWE improved all the word embedding results and also

achieved the highest F_score in this dataset when improved by the LSA word embedding.

The CMSCT enhanced all the word embedding methods with the exception of the LSA

while the AbWE had no effect on any of the word representations. The EbWC increased

the F_score macro of all the word embeddings, with the exception of the Random word

embedding.

88

Table 5.27. Comparison: The presented document representation approaches over Decision Tree Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.6589 0.6729 0.6731 0.6719 0.7078

GloVe 0.6787 0.6947 0.6872 0.6913 0.7160

fastText 0.6725 0.6899 0.6888 0.6843 0.7326

LSA 0.7837 0.7820 0.7637 0.7617 0.7976

Random 0.5502 0.5560 0.5542 0.5516 0.5434

H
SI

Word2Vec 0.5498 0.5411 0.5628 0.5084 0.5002

GloVe 0.6692 0.6799 0.7186 0.6656 0.7102

fastText 0.7080 0.7254 0.7371 0.6464 0.7354

LSA 0.6919 0.6763 0.6423 0.4764 0.6706

Random 0.4058 0.4133 0.4271 0.4230 0.3678

20
 N

G

Word2Vec 0.3030 0.3060 0.3309 0.3076 0.3963

GloVe 0.3755 0.3777 0.3998 0.3744 0.4014

fastText 0.3506 0.3605 0.3893 0.3560 0.4153

LSA 0.5806 0.5846 0.5751 0.5547 0.6553

Random 0.0910 0.1044 0.0959 0.0903 0.0799

R
eu

te
rs

Word2Vec 0.1854 0.2145 0.1655 0.1806 0.2334

GloVe 0.1757 0.1651 0.1891 0.1974 0.1596

fastText 0.1614 0.1503 0.1481 0.1309 0.1950

LSA 0.2480 0.2420 0.2338 0.2550 0.2858

Random 0.0703 0.0790 0.0747 0.0699 0.0495

A
G

 N
ew

s

Word2Vec 0.7231 0.7394 0.7509 0.6725 0.7915

GloVe 0.7585 0.7592 0.7798 0.7257 0.7905

fastText 0.7376 0.7427 0.7688 0.6417 0.7956

LSA 0.8063 0.8126 0.7987 0.7510 0.8114

Random 0.3688 0.3716 0.3812 0.3595 0.3292

5.13 Comparison: The Presented Document Representation

Approaches over Random Forest Efficiency

Table 5.28 illustrates the evaluation results of different word embeddings when the RF

classifier is used.

In the IMDB Movie Review dataset, all the word embedding methods, with the exception

of the Random word embedding, were improved by applying any one of the presented

89

approaches. The CTWE was the only approach that was able to improve the F_score macro

of the Random word embedding. The highest F_score macro was achieved by fastText

when the EbWC modified the word representations.

In the HSI dataset, both the CTWE and CMSCT improved the Word2Vec, GloVe, fastText,

and Random word embedding methods. The original LSA approach was not improved in

this dataset. The AbWE approach was only effective on the Random word embedding

while the EbWC improved the results of the Word2Vec and fastText methods.

In the 20 NG dataset, the CTWE improved all the studied word representations. The

Random word embedding was the only word representation method that was not improved

by the CMSCT in this dataset. The AbWE had a positive effect on the Word2Vec and

fastText approaches while the EbWC improved the results of the Word2Vec and the LSA

approaches, with the most recent being the highest F_score macro to be achieved in this

dataset.

In the Reuters dataset, none of the approaches improved the GloVe word embedding while

the Word2Vec was improved by the CTWE, AbWE, and EbWC approaches. CMSCT was

the only approach to improve the fastText word embedding while the LSA approach was

positively affected by the CMSCT and AbWE approaches. The Random word embedding

was improved by applying the CTWE and CMSCT approaches to this dataset.

In the AG News dataset, the CMSCT approach improved all the investigated word

embedding methods. In contrast, the AbWE had no positive effect. The CTWE improved

all the word embeddings with the exception of the GloVe. The EbWC was effective on

both the Word2Vec and fastText word representations in this dataset.

90

Table 5.28. Comparison: The presented document representation approaches over Random Forest Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.7187 0.7289 0.7257 0.7276 0.7530

GloVe 0.7326 0.7463 0.7458 0.7468 0.7458

fastText 0.7296 0.7419 0.7369 0.7428 0.7646

LSA 0.6897 0.7067 0.7061 0.6937 0.8180

Random 0.5360 0.5399 0.5357 0.5252 0.5066

H
SI

Word2Vec 0.5943 0.5982 0.5955 0.5666 0.5971

GloVe 0.7502 0.7749 0.7656 0.7235 0.7479

fastText 0.7711 0.7853 0.7842 0.7121 0.7759

LSA 0.6624 0.6478 0.6368 0.4321 0.6527

Random 0.3595 0.3780 0.4025 0.3629 0.3372

20
 N

G

Word2Vec 0.4050 0.4264 0.4243 0.4076 0.4538

GloVe 0.4887 0.5028 0.4953 0.4715 0.4425

fastText 0.4682 0.4846 0.5045 0.4720 0.4682

LSA 0.6472 0.6474 0.6536 0.6242 0.7085

Random 0.1151 0.1232 0.1137 0.1070 0.0865

R
eu

te
rs

Word2Vec 0.2235 0.2494 0.2231 0.2679 0.2482

GloVe 0.2423 0.2353 0.2374 0.2223 0.1794

fastText 0.2296 0.2095 0.2315 0.2166 0.2109

LSA 0.2928 0.2879 0.2946 0.3000 0.2751

Random 0.1073 0.1088 0.1151 0.0988 0.0556

A
G

 N
ew

s

Word2Vec 0.8333 0.8387 0.8401 0.7710 0.8597

GloVe 0.8549 0.8527 0.8645 0.8213 0.8468

fastText 0.8440 0.8472 0.8549 0.7445 0.8568

LSA 0.8657 0.8699 0.8658 0.8118 0.8598

Random 0.4277 0.4567 0.4763 0.4135 0.3794

5.14 Comparison: The Presented Document Representation

Approaches over k-Nearest Neighbor Efficiency

Table 5.29 shows the evaluation results for when the k-NN classifier is used. In the IMDB

Movie Review dataset, with the exception of the Random word embedding, the CTWE and

the AbWE improved the results of all word embeddings. The CMSCT was positively

effective on the Word2Vec, GloVe, fastText, and Random word embedding. The EbWC

91

enhanced both fastText and LSA. With fastText, the AbWE achieved the highest F_score

macro in the IMDB Movie Review dataset.

In the HSI dataset, none of the approaches improved the Word2Vec. In contrast, the LSA

was improved by both the AbWE and EbWC approaches. The CMSCT failed to improve

any of the investigated word embeddings, while the CTWE enhanced the results for the

GloVe, fastText, and Random word embedding.

In the 20 NG dataset, the CTWE and CMSCT approaches were able to improve the results

of the LSA and Random word embedding. The AbWE improved the Word2Vec as well as

the LSA and Random word embedding while the EbWC had a positive effective only on

the LSA Word Embedding.

Experiments for the Reuters dataset show that the Word2Vec, LSA, and Random word

embedding were improved by both the CTWE and AbWE approaches. Similar to the 20

NG dataset, the GloVe and the fastText word embeddings consistently failed to be

enhanced by the approaches. The CMSCT was effective over the LSA and Random word

embedding while the EbWC was only able to improve the LSA word representation.

In the AG News dataset, similar to the HSI dataset, the Word2Vec did not improve while

the CTWE improved all the other word representation methods. The CMSCT enhanced the

LSA and Random representations while the EbWC was effective only for the LSA

embedding. The AbWE failed to increase the F_score macro of any of the investigated

embeddings.

92

Table 5.29. Comparison: The presented document representation approaches over k-Nearest Neighbor

Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.7495 0.7642 0.7557 0.7779 0.7442

GloVe 0.7397 0.7591 0.7603 0.7658 0.7277

fastText 0.7460 0.7656 0.7541 0.7682 0.7548

LSA 0.6780 0.6791 0.6675 0.6806 0.7401

Random 0.5836 0.5758 0.5958 0.5587 0.5194
H

SI

Word2Vec 0.6261 0.6236 0.6130 0.5567 0.5998

GloVe 0.7534 0.7536 0.7518 0.7203 0.7368

fastText 0.7576 0.7676 0.7412 0.6713 0.7541

LSA 0.5483 0.5418 0.3906 0.5648 0.5610

Random 0.6003 0.6061 0.5813 0.3932 0.4292

20
 N

G

Word2Vec 0.5983 0.5909 0.5784 0.5997 0.4516

GloVe 0.6334 0.6259 0.6105 0.6321 0.4133

fastText 0.6502 0.6471 0.6255 0.6460 0.4501

LSA 0.6861 0.6910 0.6881 0.6906 0.7163

Random 0.3142 0.3297 0.3464 0.3265 0.1251

R
eu

te
rs

Word2Vec 0.3650 0.3659 0.3553 0.3705 0.2848

GloVe 0.3419 0.3326 0.3335 0.3407 0.1796

fastText 0.3710 0.3612 0.3420 0.3615 0.2329

LSA 0.3777 0.3833 0.4060 0.3838 0.4089

Random 0.3227 0.3292 0.3237 0.3328 0.1271

A
G

 N
ew

s

Word2Vec 0.9020 0.9017 0.9008 0.7918 0.8798

GloVe 0.9044 0.9062 0.9006 0.8459 0.8572

fastText 0.9068 0.9071 0.9053 0.8069 0.8704

LSA 0.8995 0.9028 0.9021 0.8475 0.9021

Random 0.7853 0.8155 0.8315 0.4660 0.5706

5.15 Comparison: The Presented Document Representation

Approaches over 1D-CNN Efficiency

Table 5.30 shows the result of the proposed approaches when the investigated word

representation methods were used as the embedding layer of the 1D-CNN architecture for

classification purposes.

93

In the IMDB Movie Review dataset, the EbWC and the AbWE had no positive effect over

the word embeddings. The CMSCT was only able to improve the Random word embedding

while the CTWE was effective for the GloVe and Random word embedding.

In the HSI dataset, neither the Glove nor Random word embedding were improved.

Further, the CTWE was not effective for any of the investigated word embeddings. The

CMSCT enhanced the Word2Vec, fastText and LSA. The AbWE improved the LSA while

the EbWC enhanced the LSA as well as the Word2Vec.

The Word2Vec and fastText showed no improvement in the 20 NG dataset when the four

presented approaches were applied. The GloVe was enhanced by the CTWE and the AbWE

approaches while the LSA was improved by the CMSCT. The CTWE was the only

approach to enhance the Random word embedding.

In the Reuters dataset, none of the presented approaches was able to improve the

Word2Vec word representation while the CMSCT improved the remaining word

representation methods. The CTWE was effective when applied to the fastText, LSA, and

Random word embedding. Unlike the EbWC, which was not successful in this dataset, the

AbWE improved the fastText and Random word embedding.

In the AG News dataset, all the word embeddings, with the exception of fastText, were

enhanced with the CMSCT approach. The CTWE improved the GloVe and LSA while the

AbWE was effective for the LSA and Random word embedding. Both the Word2Vec and

LSA were enhanced by the EbWC approach.

94

Table 5.30. Comparison: The presented document representation approaches over CNN Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.8892 0.8525 0.8850 0.8416 0.8647

GloVe 0.8815 0.8849 0.8400 0.8655 0.8399

fastText 0.8881 0.8399 0.8870 0.8448 0.8633

LSA 0.8854 0.8695 0.8822 0.8247 0.8399

Random 0.8578 0.8650 0.8605 0.5166 0.6667

H
SI

Word2Vec 0.7467 0.7386 0.7485 0.7462 0.7625

GloVe 0.7511 0.7486 0.7448 0.7349 0.7471

fastText 0.7366 0.7279 0.7720 0.7327 0.7338

LSA 0.7236 0.7046 0.7293 0.7283 0.7244

Random 0.7658 0.7467 0.7567 0.7476 0.7210

20
 N

G

Word2Vec 0.7707 0.7538 0.7525 0.7360 0.7421

GloVe 0.7808 0.8030 0.7791 0.7926 0.7777

fastText 0.8019 0.7878 0.7818 0.7936 0.7571

LSA 0.7963 0.7932 0.8019 0.7052 0.7678

Random 0.6943 0.7492 0.6117 0.6705 0.5791

R
eu

te
rs

Word2Vec 0.5536 0.5205 0.5008 0.4349 0.4747

GloVe 0.5439 0.4810 0.5566 0.5284 0.4596

fastText 0.5260 0.5308 0.5521 0.5487 0.4600

LSA 0.4707 0.4760 0.5118 0.4362 0.4550

Random 0.4404 0.4632 0.4489 0.4810 0.4244

A
G

 N
ew

s

Word2Vec 0.9212 0.9199 0.9251 0.9202 0.9252

GloVe 0.9237 0.9265 0.9251 0.9196 0.9221

fastText 0.9248 0.9221 0.9233 0.9201 0.9245

LSA 0.9183 0.9194 0.9219 0.9186 0.9190

Random 0.9151 0.9136 0.9162 0.9196 0.9018

5.16 Comparison: The Presented Document Representation

Approaches over LSTM Efficiency

Table 5.31 demonstrates the evaluation results for when different word representations are

used as the embedding layer of the LSTM architecture. In the IMDB Movie Review dataset,

the Word2Vec method is enhanced by the CTWE, CMSCT, and EbWC approaches. The

95

fastText word embedding was improved by the EbWC while the GloVe, LSA, and Random

word embedding showed no positive response to any of the presented approaches.

In the HSI dataset, the Word2Vec was enhanced by the AbWE and EbWC approaches and

the LSA was improved by the CTWE and EbWC approaches. The GloVe, fastText, and

Random word embedding did not change in this dataset, nor did the CMSCT have any

positive effect.

In the 20 NG dataset, the CTWE method was effective for the Random word embedding

only while the CMSCT enhanced the Word2Vec, fastText, and LSA word representations.

The AbWE increased the fastText and the LSA was enhanced by the EbWC approach. The

highest score in this dataset was achieved by the fastText when modified by the CMSCT

approach.

In the Reuters dataset, the LSA method was enhanced by the CTWE, CMSCT, and EbWC

approaches while the Word2Vec, GloVe, and fastText showed no improvement as a result

of any of the presented approaches. The Random word embedding showed a positive

response to both the CTWE and AbWE approaches.

Finally, in the AG News dataset, the CTWE enhanced the GloVe and Random word

embedding, the CMSCT was effective for the GloVe, fastText, and Random word

embedding, and the EbWC enhanced both the fastText and Random word embedding. The

AbWE was not effective in this dataset and Word2Vec and LSA were not improved by any

of the presented approaches.

96

Table 5.31. Comparison: The presented document representation approaches over LSTM Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.8295 0.8439 0.8517 0.8185 0.8352

GloVe 0.8637 0.8466 0.8608 0.8395 0.8380

fastText 0.8582 0.8377 0.8434 0.8178 0.8637

LSA 0.8512 0.8422 0.8269 0.8130 0.8431

Random 0.8550 0.8546 0.8413 0.8416 0.7986

H
SI

Word2Vec 0.7657 0.7354 0.7474 0.7676 0.7744

GloVe 0.7804 0.7730 0.7793 0.7643 0.7688

fastText 0.7755 0.7571 0.7643 0.7534 0.7568

LSA 0.7473 0.7519 0.7370 0.7464 0.7579

Random 0.7827 0.7562 0.7610 0.7469 0.7714

20
 N

G

Word2Vec 0.7871 0.7268 0.7878 0.7620 0.7847

GloVe 0.8183 0.7962 0.8160 0.8162 0.7962

fastText 0.7825 0.7661 0.8214 0.8020 0.7644

LSA 0.7130 0.7008 0.7203 0.5758 0.8120

Random 0.3942 0.5870 0.3594 0.3835 0.3116

R
eu

te
rs

Word2Vec 0.4882 0.2821 0.4572 0.2962 0.3491

GloVe 0.5137 0.3846 0.5088 0.4452 0.2876

fastText 0.4337 0.3803 0.3981 0.3713 0.1800

LSA 0.2083 0.2194 0.2633 0.1840 0.4749

Random 0.0908 0.1537 0.0543 0.4256 0.0485

A
G

 N
ew

s

Word2Vec 0.9125 0.9096 0.9118 0.9080 0.9111

GloVe 0.9138 0.9143 0.9167 0.9110 0.9131

fastText 0.9107 0.9084 0.9185 0.9091 0.9114

LSA 0.9081 0.9077 0.9066 0.9069 0.9072

Random 0.9055 0.9068 0.9075 0.9040 0.9069

5.17 Comparison: The Presented Document Representation

Approaches over Deep CNN-LSTM Tree Efficiency

Table 5.32 shows the effect of the CTWE, CMSCT, AbWE, and EbWC approaches over

the investigated word representations when the Deep CNN-LSTM is used as a

classification solution in the five selected datasets.

97

In the IMDB Movie Review dataset, the CTWE was able to improve the LSA and Random

word embedding and the CMSCT was effective for the GloVe and LSA. The EbWC was

unable to help any of the word representations to improve their evaluation results while the

AbWE enhanced the GloVe, LSA, and Random word embedding.

In the HSI dataset, the LSA word representation method was enhanced by all the presented

approaches, while none of the approaches proved effective for the Word2Vec method. The

GloVe was enhanced by the CTWE and produced the highest F_score macro. The CMSCT

improved only the fastText method and the Random word embedding was positively

impacted by the CTWE, CMSCT, and AbWE approaches. In the 20 NG dataset, the CTWE

approach enhanced the Random word embedding, the CMSCT improved the fastText and

LSA, and the EbWC increased the F_score macro of the LSA method. The AbWE was not

effective in this dataset and the Word2Vec and GloVe were not improved by the presented

approaches.

In the Reuters dataset, Random word embedding and Word2Vec were the only word

representations to be enhanced by the CTWE and the CMSCT approaches, respectively.

The Word2Vec method was enhanced by all the presented approaches in the AG News

dataset. The GloVe and fastText were enhanced by the CMSCT approaches while the

Random word embedding was improved by the CTWE. Meanwhile, the LSA in this

dataset could not reach a higher F_score when the presented approaches were applied.

98

Table 5.32. Comparison: The presented document representation approaches over Deep CNN STM Tree

Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.8454 0.8403 0.8447 0.8390 0.8058

GloVe 0.8432 0.8429 0.8497 0.8482 0.8139

fastText 0.8474 0.8416 0.8463 0.8464 0.8366

LSA 0.8378 0.8441 0.8441 0.8504 0.8318

Random 0.8457 0.8462 0.8175 0.8603 0.8385

H
SI

Word2Vec 0.6505 0.6400 0.6491 0.6245 0.6423

GloVe 0.6664 0.6805 0.6460 0.6145 0.6617

fastText 0.6508 0.6252 0.6563 0.6502 0.6382

LSA 0.6077 0.6348 0.6164 0.6341 0.6199

Random 0.6319 0.6419 0.6704 0.6516 0.6280

20
 N

G

Word2Vec 0.7804 0.7663 0.7633 0.7246 0.7414

GloVe 0.8099 0.7801 0.8010 0.7750 0.7194

fastText 0.7923 0.7752 0.7935 0.7835 0.7375

LSA 0.7798 0.7671 0.7870 0.5843 0.7916

Random 0.4786 0.7034 0.4318 0.4173 0.4200

R
eu

te
rs

Word2Vec 0.2785 0.2483 0.3076 0.1817 0.1902

GloVe 0.3867 0.2875 0.3332 0.2398 0.1708

fastText 0.3446 0.2436 0.3264 0.1430 0.1349

LSA 0.2372 0.1841 0.2050 0.1029 0.2003

Random 0.0809 0.1029 0.0682 0.0725 0.0398

A
G

 N
ew

s

Word2Vec 0.8979 0.9007 0.9016 0.8990 0.8990

GloVe 0.9062 0.9051 0.9073 0.8956 0.9010

fastText 0.9034 0.8990 0.9039 0.9013 0.9012

LSA 0.8990 0.8965 0.8978 0.8959 0.8954

Random 0.9003 0.9042 0.8986 0.8968 0.8991

99

5.18 Comparison: The Presented Document Representation

Approaches over AdvCNN Tree Efficiency

Table 5.33 compares the evaluation results of the different approaches when the AdvCNN

architecture was used as the classifier.

In the IMDB Movie Review dataset, almost none of the approaches were able to enhance

the evaluation results of the baseline methods. In fact, only the CTWE enhanced the

Random word embedding from 0.8521 to 0.8673 in terms of F_score macro.

A similar pattern occurred for the HSI dataset and the only improved result was for the

Random word embedding that was improved by the EbWC approach.

In the 20 NG dataset, the CTWE enhanced all the word embeddings, with the exception of

the LSA. The CMSCT improved the Word2Vec and fastText. The EbWC, which was the

only approach to enhance the LSA, also produced the highest F_score macro in this dataset.

None of the methods were improved by the AbWE, which was also the case for the IMDB

Movie Review dataset, HSI dataset, and the AG News dataset.

In the Reuters dataset, the Word2Vec, GloVe, and LSA were not improved by the presented

approaches while the GloVe was enhanced by the CTWE, the CMSCT, and the AbWE

approaches. The Random word embedding was enhanced only by the CTWE method.

In the AG News dataset, the CMSCT enhanced all of the word embedding methods in this

study and achieved the highest F_score macro with the GloVe word embedding. The

CTWE and AbWE was only able to improve the Random word embedding. In contrast, the

EbWC was effective in improving the results of the Word2Vec, LSA and Random word

embedding.

100

Table 5.33. Comparison: The presented document representation approaches over AdvCNN Tree Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.8983 0.8895 0.8966 0.8612 0.8707

GloVe 0.8923 0.8909 0.8816 0.8809 0.8698

fastText 0.9051 0.8956 0.9019 0.7575 0.8742

LSA 0.8879 0.8827 0.8822 0.7838 0.8642

Random 0.8521 0.8673 0.7513 0.7372 0.3333

H
SI

Word2Vec 0.7873 0.7675 0.7758 0.7593 0.7740

GloVe 0.7913 0.7766 0.7887 0.7791 0.7749

fastText 0.7896 0.7750 0.7824 0.7711 0.7743

LSA 0.7666 0.7543 0.7662 0.7614 0.7664

Random 0.7866 0.7701 0.7775 0.7650 0.7903

20
 N

G

Word2Vec 0.8005 0.8007 0.8010 0.7884 0.8000

GloVe 0.8151 0.8204 0.8066 0.8150 0.8035

fastText 0.8174 0.8250 0.8199 0.8039 0.7710

LSA 0.8352 0.8048 0.8287 0.7589 0.8385

Random 0.5232 0.7376 0.3879 0.1439 0.0163

R
eu

te
rs

Word2Vec 0.6008 0.5755 0.5996 0.5396 0.5077

GloVe 0.5707 0.5799 0.5755 0.5772 0.4642

fastText 0.6432 0.6135 0.6059 0.5840 0.4528

LSA 0.5976 0.5378 0.5817 0.3851 0.5567

Random 0.4091 0.4256 0.2923 0.3875 0.0339

A
G

 N
ew

s

Word2Vec 0.9181 0.9142 0.9208 0.9122 0.9186

GloVe 0.9243 0.9219 0.9248 0.9175 0.9198

fastText 0.9226 0.9180 0.9229 0.9183 0.9205

LSA 0.9121 0.9113 0.9124 0.9077 0.9195

Random 0.8924 0.9177 0.8982 0.9144 0.8977

5.19 Comparison: The Presented Document Representation

Approaches over Boosted CNN Efficiency

The impact of the presented approaches on the word embeddings when the Boosted CNN

is used as the classifier is presented in Table 5.34.

101

In the IMDB Movie Review dataset, only the Random word embedding and Word2Vec

showed improvement. The Random word embedding was enhanced by the CTWE and

CMSCT, while the AbWE was able to enhance the Word2Vec method.

None of the presented approaches were successful in the HSI dataset and the highest result

was achieved by the baseline GloVe word embedding.

In the 20 NG dataset, the CTWE successfully increased the F_score macro in the

Word2Vec, GloVe, and Random word embedding. The AbWE approach enhanced the

results of the Word2Vec, GloVe, and fastText methods. The EbWC was successful in

enhancing the Word2Vec and LSA word embeddings. The CMSCT was unable to improve

any of the studied word embedding methods in this dataset.

The CTWE approach was successful in enhancing all the word embedding methods in the

Reuters dataset, with the exception of the GloVe word embedding for which none of the

presented approaches could increase the F_score macro. In this dataset, the only enhanced

word embedding method with the CMSCT was the fastText. The Word2Vec and Random

word embedding were enhanced by the AbWE method, producing the highest F_score

macro in this dataset. In the Reuters dataset, the fastText was improved by the EbWC.

In the AG News dataset, the CTWE approach enhanced three word embedding methods:

the Word2Vec, GloVe, and fastText. The CMSCT increased the F_score macro for the

GloVe and fastText word embeddings. The LSA is the only word representation method

in this dataset to be enhanced by the EbWC, the only approach that successfully enhanced

it. The fastText was also enhanced by the AbWE. The highest F_score to be achieved in

this dataset belongs to the fastText, which was modified by the CMSCT approach.

102

Table 5.34. Comparison: The presented document representation approaches over Boosted CNN Efficiency

 Baseline CTWE CMSCT AbWE EbWC

IM
D

B

Word2Vec 0.8997 0.8980 0.8988 0.9053 0.8776

GloVe 0.8979 0.8970 0.8971 0.8729 0.8664

fastText 0.9058 0.9010 0.9053 0.8726 0.8762

LSA 0.8980 0.8898 0.8945 0.8269 0.8592

Random 0.8622 0.8776 0.8679 0.8002 0.8322
H

SI

Word2Vec 0.7936 0.7725 0.7771 0.7741 0.7718

GloVe 0.7966 0.7840 0.7887 0.7848 0.7792

fastText 0.7928 0.7822 0.7876 0.7749 0.7795

LSA 0.7792 0.7611 0.7769 0.7603 0.7714

Random 0.7883 0.7663 0.7505 0.7710 0.7741

20
 N

G

Word2Vec 0.7794 0.7870 0.7779 0.7973 0.7927

GloVe 0.8049 0.8057 0.7921 0.8096 0.7963

fastText 0.8080 0.8063 0.7992 0.8172 0.7877

LSA 0.8309 0.8033 0.8196 0.7742 0.8313

Random 0.7141 0.7505 0.7011 0.7023 0.6337

R
eu

te
rs

Word2Vec 0.5482 0.5742 0.5333 0.5825 0.4615

GloVe 0.5575 0.5526 0.5575 0.5435 0.5140

fastText 0.5268 0.5450 0.5457 0.4826 0.5327

LSA 0.4762 0.5117 0.4346 0.4711 0.3182

Random 0.5482 0.5742 0.5333 0.5825 0.4615

A
G

 N
ew

s

Word2Vec 0.9185 0.9189 0.9145 0.9163 0.9167

GloVe 0.9139 0.9177 0.9200 0.9027 0.9121

fastText 0.9199 0.9221 0.9226 0.9209 0.9112

LSA 0.9189 0.9127 0.9167 0.9101 0.9207

Random 0.9085 0.8897 0.9007 0.9052 0.8897

103

5.20 Comparison between All the Represented Approaches

among the Different Document Representations

Figure 5.1 is a heatmap chart that compares the different presented document

representation approaches. Each cell indicates the summation of the times where the

approach in the column header outperforms the approach in the row title among the

different datasets and classifiers. Equation 0.1 shows how each cell is calculated:

𝐂𝐞𝐥𝐥(𝐱, 𝐲) = ∑ 𝛈(𝐅𝐬𝐜𝐨𝐫𝐞M𝐃𝐑𝐲N, 𝐅𝐬𝐜𝐨𝐫𝐞(𝐃𝐑𝐱)

𝐩
𝐢I𝟎)

𝛈(𝛂, 𝛃) = Û
𝟏	𝛂 ≥ 𝛃
𝟎	𝛂 < 𝛃

Equation 0.1

where P (=55, 11 classifiers multiply by five datasets) is the total number of experiments

for which the document representation (DR) x or y is used and 𝛈 is the comparison

function. The values from 0 to 55 are divided into four levels that are arranged from light

to dark according to value.

Out of all the approaches, the baseline methods were most improved by the CMSCT. The

CTWE, CMSCT, and AbWE were more successful in improving the GloVe and fastText

compared to the Word2Vec, LSA, and Random word embedding. As could have been

predicted, the Random word embedding is the weakest embedding. This means that all the

investigated word embeddings carry information and that the CTWE and CMSCT more

effectively enhanced the baseline word embedding compared to the AbWE and EbWC.

The EbWC better improved the baseline word embedding compared to the AbWE.

According to Figure 5.1, the presented approaches can be ranked as follows: the CMSCT,

CTWE, EbWC and, finally, the AbWE.

104

 CTWE CMSCT AbWE EbWC

 Word2
Vec

Glo
Ve

fastT
ext

L
S
A

Rand
om

Word2
Vec

Glo
Ve

fastT
ext

L
S
A

Rand
om

Word2
Vec

Glo
Ve

fastT
ext

L
S
A

Rand
om

Word2
Vec

Glo
Ve fastT

ext

L
S
A

Rand
om

B
as

el
in

e

Word2
Vec

GloVe
fastTe
xt

LSA
Rando
m

C
TW

E

Word2
Vec

GloVe
fastTe
xt

LSA
Rando
m

C
M

SC
T

Word2
Vec

GloVe
fastTe
xt

LSA
Rando
m

A
bW

E

Word2
Vec

GloVe
fastTe
xt

LSA
Rando
m

Eb
W

C

Word2
Vec

GloVe
fastTe
xt
LSA
Rando
m

Figure 5.1. Heatmap Chart Comparing Presented Approaches

In summary, the CTWE improved the GloVe, the CMSCT was more successful in

improving the fastText, the AbWE enhanced the GloVe, and the EbWC worked more

effectively with the LSA in comparison to the other word embedding approaches.

5.21 The Total Effect of the Proposed Approaches Over Word

Embeddings

The heatmap chart in Figure 5.2 shows the effect of the presented approaches over different

baseline word embeddings. This heatmap concludes the results from Table 5.3 to Table

5.12 and Table 5.14 to Table 5.23. Each cell indicates the summation of the times where

the proposed approach (in the column) enhanced the word embedding method in the row

among the different datasets and classifiers. Similar to Figure 5.1, the same formula

(Equation 0.1) is used to calculate each cell score. The values from 0 to 55 are divided into

three levels that are arranged from light to dark according to the value.

105

 CTWE CMSCT EbWC AbWE

Word2Vec

GloVe

fastText

LSA

Random

Figure 5.2. Heatmap Chart Comparing the Effect of Proposed Approaches over Word Embeddings

According to Figure 5.2, the Word2Vec is enhanced by CTWE, CMSCT, EbWC and

AbWE, respectively. For the GloVe word embedding, the CTWE and CMSCT could be

more beneficial approaches. For the fastText, the CMSCT was able to enhance the results

more effectively, while the EbWC was the best approach to use for the LSA. According to

the results of the random word embedding, the CTWE and CMSCT were able to improve

the random results in a more efficient way.

5.22 Comparison with the State-Of-the-Art Results

In this present work, comparing state-of-the-art results may not be regarded as peer to peer

since this evaluation calculates the F_score macro while other studies either reported other

metrics or failed to clearly mention their metrics. For the IMDB Movie Reviews dataset,

the highest reported result by Mesnil et al. is 92.57 in terms of accuracy [80]. As it is a

binary classification with equal observations from each class in training and testing, it can

be assumed that the accuracy and F_score macro are almost equal. In this present study,

the maximum achieved result for the IMDB Movie Reviews dataset was 90.52, which was

obtained by applying the MSCT over the fastText word embedding and employing the

Boosted CNN architecture.

For the HSI dataset, the highest reported result, by Almeida et al., is 96 in terms of F_score

[82]. This present study used a modified version of the dataset and changed the number of

classes from three to two by removing one of the classes. The highest result in terms of

F_score is 83.73, obtained by applying the CTWE approach to the fastText and using the

SVM classifier.

106

For the 20 NG dataset, an F_score of 96.49 was reported by Lai et al. [84]. In this present

study, the highest result in terms of F_score macro, 83.84, was obtained by applying the

EbWC approach to the LSA and using AdvCNN architecture.

For the Reuters-21578 dataset, an F_score of 87.89 was reported by Nam et al. in [86]. In

this present study, the highest reported result is 61.35 in terms of F_score, which was

obtained by applying the CTWE approach to the fastText and employing the AdvCNN

architecture.

The state-of-the-art result for the AG News dataset is 7.64 in terms of error rate, as reported

by Conneau et al. [88]. In the present study, a 92.64 F_score macro was achieved by

applying the CTWE approach to the GloVe word embedding and using the 1D-CNN

architecture. This result is very close to the state-of-the-art results.

5.23 Summary

In this section, four novel approaches, namely CTWE, CMSCT, EbWC, and AbWE, are

applied to five baseline word embedding methods: Word2Vec, GloVe, fastText, LSA, and

Random. These five popular NLP task datasets, together with 11 classifiers, are used to

evaluate the presented approaches. A total of 1,111 experiments are conducted. The

effectiveness of the four novel approaches are evaluated and discussed over each word

embedding as well as each classifier. All the newly generated word representations are

ultimately compared and ranked against each other, as well as the baseline word

embeddings. In summary, the GloVe word embedding is improved by CTWE, the CMSCT

is successful in improving the fastText, the AbWE slightly enhances the GloVe, while the

EbWC works more effectively with the LSA when compared to the other word embedding

approaches. From a classifier perspective, when the SVM is used, the CTWE and CMSCT

improve the Word2Vec, GloVe, fastText and Random Word Embeddings. The AbWE

improves the results for the GloVe and Random Word Embedding while the EbWC

enhances all five word representations. By using the NB classifier, all four approaches on

the IMDB Movie dataset are improved. When the DT and RF are used, CTWE and CMSCT

show consistent improvement. CTWE, CMSCT and AbWE improve the baseline results in

the case of the KNN. When the deep learning architectures of CNN, Deep CNN-LSTM,

107

and AdvCNN are used for classification, CMSCT and CTWE outperform the two other

approaches and the baseline in the majority of the experiments while the LSTM architecture

fails to benefit from the use of updated word representations.

108

Chapter 6. Conclusion and Future Works

6.1 Summary and Conclusion

In this thesis, four novel approaches are presented in an attempt to combine local context

information with the global knowledge that is pre-trained over large corpuses of text. The

main application of these word embeddings is to provide more accurate document

representation for the task of text classification.

The presented approaches attempt to improve three well-known word embedding methods,

namely: Word2Vec, GloVe, and fastText. In order to compare the evaluation results, two

other methods are considered as the baseline: the locally trained method of LSA and

Random Word Embedding, which assigns a random vector to each word in the training

dataset.

A comprehensive literature review of the related research in the domain of word embedding

and document representation is presented in Chapter 2.

The four presented methods, which are described in Chapter 3, are: Content Tree Word

Embedding (CTWE); Composed Maximum Spanning Content Tree (CMSCT);

Embedding-based Word Clustering (EbWC): and Autoencoder-based Word Embedding

(AbWE).

These approaches create a document representation for each word in the training

vocabulary based on the Word2Vec, GloVe, fastText, LSA, and Random word embedding

models, then use the average of the updated word vectors for document representation.

The first approach, CTWE, employs a semi-taxonomy structure named content tree, and

subsequently updates the word embedding vectors.

The second approach, MSCT, is proposed in order to select the root based on the node

degree and then generate the maximum spanning tree. Another version of this approach,

called CMSCT, is defined. This approach does not require a high level of memory to

generate a fully connected graph of all the words in the training vocabulary. In addition,

109

CMSCT generates a small-size spanning tree for each document, then generates a training

data spanning tree by combining them. In the final step, the word vectors are updated based

on their location in the maximum spanning tree.

The third approach, EbWC, uses the clustering method for extracting the conceptual

structure of the context. Each element of the new word embedding is the distance from the

centroid of each word group cluster.

The AbWE method uses autoencoder for dimensionality and noise reduction in the context.

The main intention of this present work was to train an autoencoder to capture the training

data concepts and then update the word vectors by encoding them.

In order to evaluate the presented approaches, each approach is applied over the five

mentioned word embeddings. The new word vectors are then used for the evaluation task

over five well-known datasets in the domain of NLP and text mining. The five datasets are:

IMDB Movie Reviews; Hate Speech Identification; 20 NG; Reuters-21578; and AG News.

In order to show the effect of each approach over the different types of classifiers, 11

different classifiers are employed, six of which are traditional classifiers: LR, SVM, GNB,

DT, RF, and KNN. Five other classifiers were designed based on deep learning solutions

(1D-CNN, LSTM, Deep CNN-LSTM, AdvCNN, and Boosted CNN). Overall, 1,111

experiments are executed, for which the evaluation results are presented and described in

Chapter 4.

According to the experiments with the original (non-modified) document representation

methods and the traditional classifiers that are shown in Table 5.1, it can be inferred that

the bi-gram and LSA document representation approaches can work more effectively with

traditional classifiers. In contrast, taking an average of the word vectors failed to achieve

the best results in the majority of experiments.

As shown in

Table 5.2, which illustrates the effect of using variant word embedding for the embedding

layer of the deep learning-based approaches, the Random and the LSA Word Embeddings

could not achieve the best results in the majority of experiments, while the pre-trained word

embeddings performed better with the deep learning-based architectures. These results

110

confirm that using pre-trained word embeddings that use global knowledge can be

employed as a successful approach for text mining challenges.

The results of applying the CTWE approach to the studied word embeddings are illustrated

in Tables 5.3 to 5.7, shown in different patterns depending on the dataset and the used

classifier. The CTWE mostly improves the results when a traditional classifier is used

rather than a deep learning-based solution. It should be considered that the deep learning-

based classifiers outperformed the traditional classifiers. In those cases where CTWE

improved the results of a deep learning-based approach, it was the best result among all the

traditional and deep learning-based approaches. As an example, this pattern is observed in

the IMDB movie, 20 NG, Reuters, and AG news datasets when the Word2Vec that was

employed by the boosted CNN or the AdvCNN was improved by CTWE and achieved the

highest F_score macro.

It can be concluded that the CTWE is more effective on the traditional classifiers, with a

lower performance level than the deep learning approaches while, when the classifier is

powerful, there is no remaining capacity for improvement.

Tables 5.8 to 5.12 present the effect of CMSCT on the investigated word embeddings.

Similar to CTWE, the CMSCT was more effective with the traditional approaches that use

the average of the words in the document as the feature vector rather than the deep learning-

based solutions that use the new word representation in their embedding layer.

The effect of the AbWE on word embeddings is presented in Tables 5.14 to 5.18, and the

effect of the EbWC approach is presented in Tables 5.19 to 5.23. However, these two

approaches did not have as much influence over the results as the CTWE and CMSCT.

Greater improvement occurred for the traditional word embedding areas than situations

where the deep learning-based solutions were used.

In order to compare all the different presented document representation approaches, for

each two approaches where one has outperformed the other, a summation of the times

among the different datasets and different classifiers is calculated and shown in Figure 5.1.

Compared to the other approaches, the CMSCT improved the baseline methods to a higher

level. The CTWE, CMSCT, and AbWE were more successful in improving the GloVe and

fastText compared to the Word2Vec, LSA, and Random word embedding. The Random

111

word embedding is the weakest embedding, which could have been predicted. This means

that all the studied word embeddings carry information and that the CTWE and the CMSCT

more effectively enhanced the baseline word embedding than either AbWE or EbWC. The

EbWC more successfully improved the baseline word embedding than the AbWE. The

CTWE and AbWE improved the GloVe, the CMSCT was more successful in improving

the fastText, and the EbWC works better with the LSA in comparison with other word

embedding approaches.

Based on this comparison, the presented approaches can be ranked as follows: the CMSCT,

the CTWE, the EbWC and, finally, the AbWE.

Tables 5.24 to 5.34 show the effect of the presented approaches on each investigated

classifier.

For the LR, none of the approaches could show significant or persistent improvement.

Applying the presented approaches works more efficiently when using the SVM

classification. The CTWE and CMSCT improved the Word2Vec, GloVe, fastText and

Random word embedding. Using the AbWE improved the results of GloVe and Random

word embedding, while using the EbWC enhanced all five investigated word

representations.

Although its results were not promising in general, the Naïve Bayes results were improved

by applying the four presented approaches in the IMDB movie dataset, but not significantly

in the other datasets.

When the DT and RF were used as the classifier, the presented approaches showed

improvement in the majority of the datasets, particularly CTWE and CMSCT, which

showed consistent improvement in the results. The KNN works much better with CTWE,

CMSCT and AbWE versus the EbWC in a different dataset.

The CMSCT and CTWE improved the results of 1D-CNN in the majority of the

experiments, while the LSTM approach worked more efficiently with the baseline word

embeddings, although in some cases one approach could improve the results.

The effect of the approaches was not consistent for the Deep CNN-LSTM classifier, the

LSA and the Random word embedding, which produced better results when the CTWE or

112

CMSCT was applied over their baseline word vectors. However, improvements to the

Word2Vec, GloVe, and fastText were inconsistent.

Depending on the dataset, the AdvCNN showed better results with different word

embeddings. In 20 NG, the CTWE boosted the results and in the AG News dataset, the

CMSCT consistently showed improvement. In the other datasets, the baseline word

representation produced the better results in the majority of experiments. Similar to the

AdvCNN, the boosted CNN architecture was not always improved, and in different

datasets, different approaches could or could not improve the results.

In general, it can be concluded that the best combination of classification approach and

word embedding differed according to the nature of the data and the task.

For a binary and balanced dataset, similar to the IMDB movie reviews, the SVM, NB, DT,

and RF classifiers can benefit from all four presented approaches. For the KNN classifier,

although CTWE, CMSCT, and AbWE showed enhancement, the EbWC could not improve

results.

For a binary dataset which is unbalanced, similar to the HSI dataset, the SVM with CTWE

and RF with CTWE and CMSCT can create appropriate combinations.

For categorical datasets that have a balanced distribution between their classes, similar to

the AG News and 20 NG datasets, when the number of categories is limited, the SVM or

NB with CTWE can be a good combination as well as the DT, RF, and AdvCNN with

CTWE and CMSCT. When the number of classes is higher, similar to the 20 NG dataset,

the AdvCNN with CTWE can be a good option.

For categorical and unbalanced datasets, such as the Reuters-21578, although the results

failed to show a consistent pattern, it can be concluded that the combination of the CNN

family with CTWE could be a good option.

113

6.2 Future Works

The following issues are the most important in terms of requiring further investigation:

• In order to fairly compare the results of different approaches, all the parameters

among the traditional classifiers and deep learning-based architectures are used

with their default values. While the parameter tuning can change, the final results

for each combination of document representation and classifier should be further

investigated in another independent environment.

• Similar to the above issue, further studies could be conducted into how word

representation can be changed by different parameters such as vector length,

number of learning iterations, and training text corpuses. The investigated tasks

that are defined for this study are classification approaches. A similar study should

be conducted for other text mining and NLP tasks such as clustering.

• The present study was conducted only for English documents. However, it would

be valuable to repeat such a study for other languages.

114

References

[1] C. Wei, S. Luo, X. Ma, H. Ren, J. Zhang, and L. Pan, "Locally Embedding Autoencoders: A Semi-

Supervised Manifold Learning Approach of Document Representation," PloS one, vol. 11, no. 1,

2016.

[2] Z. S. Harris, "Distributional structure," Word, vol. 10, no. 2-3, pp. 146-162, 1954.

[3] K. Pearson, "LIII. On lines and planes of closest fit to systems of points in space," The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 2, no. 11, pp. 559-572,

1901.

[4] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," Journal of machine Learning

research, vol. 3, no. Jan, pp. 993-1022, 2003.

[5] A. Jung, "An introduction to a new data analysis tool: Independent Component Analysis," in

Proceedings of Workshop GK" Nonlinearity"-Regensburg, 2001.

[6] S. Deerwester, "Improving information retrieval with latent semantic indexing," 1988.

[7] E. E. Milios, M. M. Shafiei, S. Wang, R. Zhang, B. Tang, and J. Tougas, "A systematic study on

document representation and dimensionality reduction for text clustering," Technical report, Faculty

of Computer Science, Dalhousie University2006.

[8] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in

vector space," arXiv preprint arXiv:1301.3781, 2013.

[9] J. Pennington, R. Socher, and C. D. Manning, "Glove: Global Vectors for Word Representation," in

EMNLP, 2014, vol. 14, pp. 1532-43.

[10] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, "Enriching word vectors with subword

information," arXiv preprint arXiv:1607.04606, 2016.

[11] Q. V. Le and T. Mikolov, "Distributed representations of sentences and documents," arXiv preprint

arXiv:1405.4053, 2014.

[12] M. Bernotas, K. Karklius, R. Laurutis, and A. Slotkienė, "The peculiarities of the text document

representation, using ontology and tagging-based clustering technique," Information Technology

And Control, vol. 36, no. 2, 2015.

[13] R. Navigli, P. Velardi, and S. Faralli, "A graph-based algorithm for inducing lexical taxonomies

from scratch," in IJCAI, 2011, pp. 1872-1877.

[14] T. Joachims, "Text categorization with support vector machines: Learning with many relevant

features," in European conference on machine learning, 1998, pp. 137-142: Springer.

[15] F. Debole and F. Sebastiani, "An analysis of the relative hardness of Reuters‐21578 subsets," Journal

of the American Society for Information Science and technology, vol. 56, no. 6, pp. 584-596, 2005.

115

[16] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, "Indexing by latent

semantic analysis," Journal of the American society for information science, vol. 41, no. 6, pp. 391-

407, 1990.

[17] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, "Towards universal paraphrastic sentence

embeddings," arXiv preprint arXiv:1511.08198, 2015.

[18] J. Jiang, "Information extraction from text," in Mining text data: Springer, 2012, pp. 11-41.

[19] E. Riloff and W. Lehnert, "Information extraction as a basis for high-precision text classification,"

ACM Transactions on Information Systems (TOIS), vol. 12, no. 3, pp. 296-333, 1994.

[20] M. Kamkarhaghighi and M. Makrehchi, "Content Tree Word Embedding for Document

Representation," Expert Systems with Applications, 2017.

[21] J. SzymańSki, "Comparative analysis of text representation methods using classification,"

Cybernetics and Systems, vol. 45, no. 2, pp. 180-199, 2014.

[22] E. Gabrilovich and S. Markovitch, "Computing semantic relatedness using Wikipedia-based explicit

semantic analysis," in IJcAI, 2007, vol. 7, pp. 1606-1611.

[23] M. Li and P. Vitányi, An introduction to Kolmogorov complexity and its applications. Springer

Science & Business Media, 2009.

[24] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, "Learning word vectors for

sentiment analysis," in Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies-Volume 1, 2011, pp. 142-150:

Association for Computational Linguistics.

[25] J. Yang, Z. Liu, and Z. Qu, "Text Representation Based on Key Terms of Document for Text

Categorization," International Journal of Database Theory and Application, vol. 9, no. 4, pp. 1-22,

2016.

[26] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, "Hierarchical attention networks for

document classification," in Proceedings of the 2016 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, 2016.

[27] B. Lao and K. Jagadeesh, "Classifying Legal Questions into Topic Areas Using Machine Learning,"

2014.

[28] H. K. Kim, H. Kim, and S. Cho, "Distributed Representation of Documents with Explicit

Explanatory Features," 2014.

[29] Q. Lu, J. G. Conrad, K. Al-Kofahi, and W. Keenan, "Legal document clustering with built-in topic

segmentation," in Proceedings of the 20th ACM international conference on Information and

knowledge management, 2011, pp. 383-392: ACM.

[30] R. Socher, D. Chen, C. D. Manning, and A. Ng, "Reasoning with neural tensor networks for

knowledge base completion," in Advances in Neural Information Processing Systems, 2013, pp. 926-

934.

[31] A. M. Schakel and B. J. Wilson, "Measuring word significance using distributed representations of

words," arXiv preprint arXiv:1508.02297, 2015.

116

[32] J. Goodman, "Classes for fast maximum entropy training," in Acoustics, Speech, and Signal

Processing, 2001. Proceedings.(ICASSP'01). 2001 IEEE International Conference on, 2001, vol. 1,

pp. 561-564: IEEE.

[33] K. Weinberger, A. Dasgupta, J. Attenberg, J. Langford, and A. Smola, "Feature hashing for large

scale multitask learning," arXiv preprint arXiv:0902.2206, 2009.

[34] M. Naili, A. H. Chaibi, and H. H. B. Ghezala, "Comparative study of word embedding methods in

topic segmentation," Procedia Computer Science, vol. 112, pp. 340-349, 2017.

[35] S. Hong, "Improving Paragraph2Vec," 2016.

[36] Y. Hong and T. Zhao, "Automatic Hilghter of Lengthy Legal Documents," 2015.

[37] K. S. Tai, R. Socher, and C. D. Manning, "Improved semantic representations from tree-structured

long short-term memory networks," arXiv preprint arXiv:1503.00075, 2015.

[38] D. Cer et al., "Universal sentence encoder," arXiv preprint arXiv:1803.11175, 2018.

[39] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III, "Deep unordered composition rivals

syntactic methods for text classification," in Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), 2015, vol. 1, pp. 1681-1691.

[40] A. Vaswani et al., "Attention is all you need," in Advances in Neural Information Processing

Systems, 2017, pp. 5998-6008.

[41] Z. Zhu and J. Hu, "Context Aware Document Embedding," arXiv preprint arXiv:1707.01521, 2017.

[42] P. Mirowski, M. Ranzato, and Y. LeCun, "Dynamic auto-encoders for semantic indexing," in

Proceedings of the NIPS 2010 Workshop on Deep Learning, 2010, vol. 2.

[43] M. A. Ranzato and M. Szummer, "Semi-supervised learning of compact document representations

with deep networks," in Proceedings of the 25th international conference on Machine learning,

2008, pp. 792-799: ACM.

[44] H. Palangi et al., "Deep sentence embedding using long short-term memory networks: Analysis and

application to information retrieval," IEEE/ACM Transactions on Audio, Speech and Language

Processing (TASLP), vol. 24, no. 4, pp. 694-707, 2016.

[45] Y. Belinkov, N. Durrani, F. Dalvi, H. Sajjad, and J. Glass, "What do Neural Machine Translation

Models Learn about Morphology?," arXiv preprint arXiv:1704.03471, 2017.

[46] A. Søgaard and Y. Goldberg, "Deep multi-task learning with low level tasks supervised at lower

layers," in Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), 2016, vol. 2, pp. 231-235.

[47] O. Levy, Y. Goldberg, and I. Dagan, "Improving distributional similarity with lessons learned from

word embeddings," Transactions of the Association for Computational Linguistics, vol. 3, pp. 211-

225, 2015.

[48] K. W. Church and P. Hanks, "Word association norms, mutual information, and lexicography,"

Computational linguistics, vol. 16, no. 1, pp. 22-29, 1990.

117

[49] E. Altszyler, M. Sigman, S. Ribeiro, and D. F. Slezak, "Comparative study of LSA vs Word2vec

embeddings in small corpora: a case study in dreams database," arXiv preprint arXiv:1610.01520,

2016.

[50] M. E. Peters et al., "Deep contextualized word representations," arXiv preprint arXiv:1802.05365,

2018.

[51] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert: Pre-training of deep bidirectional

transformers for language understanding," arXiv preprint arXiv:1810.04805, 2018.

[52] P. Buitelaar, P. Cimiano, and B. Magnini, Ontology learning from text: methods, evaluation and

applications. IOS press, 2005.

[53] R. Nazar, J. Vivaldi, and L. Wanner, "Automatic taxonomy extraction for specialized domains using

distributional semantics," Terminology, vol. 18, no. 2, pp. 188-225, 2012.

[54] M. B. Aouicha, M. A. H. Taieb, and M. Ezzeddine, "Derivation of “is a” taxonomy from Wikipedia

Category Graph," Engineering Applications of Artificial Intelligence, vol. 50, pp. 265-286, 2016.

[55] M. A. Hearst, "Automatic acquisition of hyponyms from large text corpora," in Proceedings of the

14th conference on Computational linguistics-Volume 2, 1992, pp. 539-545: Association for

Computational Linguistics.

[56] D. Sánchez and A. Moreno, "Pattern-based automatic taxonomy learning from the Web," Ai

Communications, vol. 21, no. 1, pp. 27-48, 2008.

[57] A. B. Rios-Alvarado and I. Lopez-Arevalo, "Ontology Learning by using text clustering techniques,"

2010.

[58] W. L. Woon and S. Madnick, "Asymmetric information distances for automated taxonomy

construction," Knowledge and information systems, vol. 21, no. 1, pp. 91-111, 2009.

[59] K. Meijer, F. Frasincar, and F. Hogenboom, "A semantic approach for extracting domain taxonomies

from text," Decision Support Systems, vol. 62, pp. 78-93, 2014.

[60] M. Makrehchi and M. S. Kamel, "Automatic taxonomy extraction using google and term

dependency," in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence,

2007, pp. 321-325: IEEE Computer Society.

[61] P. Heymann and H. Garcia-Molina, "Collaborative creation of communal hierarchical taxonomies

in social tagging systems," 2006.

[62] H. Bast, G. Dupret, D. Majumdar, and B. Piwowarski, "Discovering a term taxonomy from term

similarities using principal component analysis," in Semantics, Web and Mining: Springer, 2006, pp.

103-120.

[63] H. Yang and J. Callan, "Feature selection for automatic taxonomy induction," in Proceedings of the

32nd international ACM SIGIR conference on Research and development in information retrieval,

2009, pp. 684-685: ACM.

[64] H. Yang and J. Callan, "A metric-based framework for automatic taxonomy induction," in

Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International

118

Joint Conference on Natural Language Processing of the AFNLP: Volume 1-Volume 1, 2009, pp.

271-279: Association for Computational Linguistics.

[65] X. Liu, Y. Song, S. Liu, and H. Wang, "Automatic taxonomy construction from keywords," in

Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data

mining, 2012, pp. 1433-1441: ACM.

[66] S.-T. Wu, Y. Li, Y. Xu, B. Pham, and P. Chen, "Automatic pattern-taxonomy extraction for web

mining," in Web Intelligence, 2004. WI 2004. Proceedings. IEEE/WIC/ACM International

Conference on, 2004, pp. 242-248: IEEE.

[67] R. D. García, S. Schmidt, C. Rensing, and R. Steinmetz, "Automatic taxonomy extraction in different

languages using wikipedia and minimal language-specific information," in Computational

Linguistics and Intelligent Text Processing: Springer, 2012, pp. 42-53.

[68] K.-H. Nguyen and C.-Y. Ock, "Using wiktionary to improve lexical disambiguation in multiple

languages," in Computational Linguistics and Intelligent Text Processing: Springer, 2012, pp. 238-

248.

[69] K. Saleem and Z. Bellahsene, "Automatic extraction of structurally coherent mini-taxonomies," in

Conceptual Modeling-ER 2008: Springer, 2008, pp. 341-354.

[70] M. Makrehchi, "Taxonomy-based Document Clustering," JDIM, vol. 9, no. 2, pp. 79-86, 2011.

[71] M. Makrehchi, "Query-relevant document representation for text clustering," in Digital Information

Management (ICDIM), 2010 Fifth International Conference on, 2010, pp. 132-138: IEEE.

[72] S. Lai, K. S. Leung, and Y. Leung, "SUNNYNLP at SemEval-2018 Task 10: A Support-Vector-

Machine-Based Method for Detecting Semantic Difference using Taxonomy and Word Embedding

Features," in Proceedings of The 12th International Workshop on Semantic Evaluation, 2018, pp.

741-746.

[73] J. B. Kruskal, "On the shortest spanning subtree of a graph and the traveling salesman problem,"

Proceedings of the American Mathematical society, vol. 7, no. 1, pp. 48-50, 1956.

[74] N. Patel and D. K. Patel, "A Survey on: Enhancement of Minimum Spanning Tree," Journal of

Research and Application, vol. 5, no. 1, pp. 06-10, 2015.

[75] C. Canada. (2018, May 2018). Sharcnet Graham Cluster. Available:

https://www.sharcnet.ca/help/index.php/Graham

[76] M. K. Pakhira, "A linear time-complexity k-means algorithm using cluster shifting," in

Computational Intelligence and Communication Networks (CICN), 2014 International Conference

on, 2014, pp. 1047-1051: IEEE.

[77] G. E. Hinton and R. R. Salakhutdinov, "Replicated softmax: an undirected topic model," in Advances

in neural information processing systems, 2009, pp. 1607-1614.

[78] P. V. Gehler, A. D. Holub, and M. Welling, "The rate adapting poisson model for information

retrieval and object recognition," in Proceedings of the 23rd international conference on Machine

learning, 2006, pp. 337-344: ACM.

119

[79] IMDB. (2011, January 2018). IMDB movie Review. Available: https://data.world/crowdflower/hate-

speech-identification

[80] G. Mesnil, T. Mikolov, M. A. Ranzato, and Y. Bengio, "Ensemble of generative and discriminative

techniques for sentiment analysis of movie reviews," arXiv preprint arXiv:1412.5335, 2014.

[81] T. Davidson, D. Warmsley, M. Macy, and I. Weber, "Automated hate speech detection and the

problem of offensive language," arXiv preprint arXiv:1703.04009, 2017.

[82] T. G. Almeida, B. À. Souza, F. G. Nakamura, and E. F. Nakamura, "Detecting Hate, Offensive, and

Regular Speech in Short Comments," in Proceedings of the 23rd Brazillian Symposium on

Multimedia and the Web, 2017, pp. 225-228: ACM.

[83] K. Lang. (2008, January 2018). 20 Newsgroups. Available:

http://qwone.com/~jason/20Newsgroups/

[84] S. Lai, L. Xu, K. Liu, and J. Zhao, "Recurrent Convolutional Neural Networks for Text

Classification," in AAAI, 2015, vol. 333, pp. 2267-2273.

[85] Reuters. (1999, January 2018). Reuters-21578. Available:

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html

[86] J. Nam, J. Kim, E. L. Mencía, I. Gurevych, and J. Fürnkranz, "Large-scale multi-label text

classification—revisiting neural networks," in Joint european conference on machine learning and

knowledge discovery in databases, 2014, pp. 437-452: Springer.

[87] ComeToMyHead. (2004, January 2018). AG's corpus of news articles. Available:

https://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

[88] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, "Very deep convolutional networks for text

classification," arXiv preprint arXiv:1606.01781, 2016.

[89] P. S. S. S. Bhumika and P. A. Nayyar, "A review paper on algorithms used for text classification,"

International Journal of Application or Innovation in Engineering & Management, vol. 2, no. 3, pp.

90-99, 2013.

[90] V. Korde and C. N. Mahender, "Text classification and classifiers: A survey," International Journal

of Artificial Intelligence & Applications, vol. 3, no. 2, p. 85, 2012.

[91] S. B. Kommina, P. Sandeep, and V. S. Raj, "Mining Social Media Data to Identify the Sentiments

of," 2017.

[92] C. J. Burges, "A tutorial on support vector machines for pattern recognition," Data mining and

knowledge discovery, vol. 2, no. 2, pp. 121-167, 1998.

[93] K. P. Bennett and C. Campbell, "Support vector machines: hype or hallelujah?," Acm Sigkdd

Explorations Newsletter, vol. 2, no. 2, pp. 1-13, 2000.

[94] A. K. Jain, R. P. Duin, and J. Mao, "Statistical pattern recognition: A review," IEEE Transactions

on pattern analysis and machine intelligence, vol. 22, no. 1, pp. 4-37, 2000.

[95] K. S. Divya, P. Bhargavi, and S. Jyothi, "Machine Learning Algorithms in Big data Analytics," 2018.

120

[96] A. Khan, B. Baharudin, and L. H. Lee, "Khairullah khan,(2010)“A Review of Machine Learning

Algorithms for Text-Documents Classification, journal of advances in information technology, vol.

1, no. 1," ed: February, 2010.

[97] R. Greiner and J. Schaffer, "AIxploratorium-decision trees," Department of Computing Science,

University of Alberta, Edmonton, AB T6G 2H1, Canada., 2001.

[98] S. Ali, M. Khan, and A. Anjum, "Time Frequency Feature Extraction Scheme based on MUAP for

classification of Neuromuscular Disorders using EMG signals," International Journal on Recent and

Innovation Trends in Computing and Communication, vol. 5, no. 7, pp. 249–257-249–257, 2017.

[99] V. Tam, A. Santoso, and R. Setiono, "A comparative study of centroid-based, neighborhood-based

and statistical approaches for effective document categorization," in Pattern Recognition, 2002.

Proceedings. 16th International Conference on, 2002, vol. 4, pp. 235-238: IEEE.

[100] H. Schütze, "Dimensions of meaning," in Proceedings of the 1992 ACM/IEEE conference on

Supercomputing, 1992, pp. 787-796: IEEE Computer Society Press.

[101] R. Collobert and J. Weston, "A unified architecture for natural language processing: Deep neural

networks with multitask learning," in Proceedings of the 25th international conference on Machine

learning, 2008, pp. 160-167: ACM.

[102] A. Moreno and T. Redondo, "Text analytics: the convergence of big data and artificial intelligence,"

IJIMAI, vol. 3, no. 6, pp. 57-64, 2016.

[103] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, "Deep learning for healthcare: review,

opportunities and challenges," Briefings in bioinformatics, 2017.

[104] K. M. Gultepe E, Makrehchi M., "Latent Semantic Analysis Boosted Convolutional Neural

Networks for Document Classification," presented at the The 5th International Conference on

Behavioral, Economic, and Socio-Cultural Computing (BESC), National Univerisity of Kaohsoung,

Taiwan, 2018.

[105] G. Litjens et al., "A survey on deep learning in medical image analysis," Medical image analysis,

vol. 42, pp. 60-88, 2017.

[106] Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is

difficult," IEEE transactions on neural networks, vol. 5, no. 2, pp. 157-166, 1994.

[107] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8,

pp. 1735-1780, 1997.

[108] K. Cho et al., "Learning phrase representations using RNN encoder-decoder for statistical machine

translation," arXiv preprint arXiv:1406.1078, 2014.

[109] A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen, "Deep feature learning for knee

cartilage segmentation using a triplanar convolutional neural network," in International conference

on medical image computing and computer-assisted intervention, 2013, pp. 246-253: Springer.

[110] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, "Natural language

processing (almost) from scratch," Journal of Machine Learning Research, vol. 12, no. Aug, pp.

2493-2537, 2011.

121

[111] I. Sutskever, O. Vinyals, and Q. V. Le, "Sequence to sequence learning with neural networks," in

Advances in neural information processing systems, 2014, pp. 3104-3112.

[112] A. Yenter and A. Verma, "Deep CNN-LSTM with combined kernels from multiple branches for

IMDb review sentiment analysis," in Ubiquitous Computing, Electronics and Mobile

Communication Conference (UEMCON), 2017 IEEE 8th Annual, 2017, pp. 540-546: IEEE.

[113] Y. Kim, "Convolutional neural networks for sentence classification," arXiv preprint

arXiv:1408.5882, 2014.

[114] F.-F. Li, A. Karpathy, and J. Johnson, "Cs231n: Convolutional neural networks for visual

recognition," University Lecture, 2015.

[115] R. Johnson and T. Zhang, "Effective use of word order for text categorization with convolutional

neural networks," arXiv preprint arXiv:1412.1058, 2014.

[116] Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proceedings of the

22nd ACM international conference on Multimedia, 2014, pp. 675-678: ACM.

[117] Y. Zhang and B. Wallace, "A sensitivity analysis of (and practitioners' guide to) convolutional neural

networks for sentence classification," arXiv preprint arXiv:1510.03820, 2015.

[118] T. Schnabel, I. Labutov, D. Mimno, and T. Joachims, "Evaluation methods for unsupervised word

embeddings," in Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, 2015, pp. 298-307.

[119] J. Davis and M. Goadrich, "The relationship between Precision-Recall and ROC curves," in

Proceedings of the 23rd international conference on Machine learning, 2006, pp. 233-240: ACM.

[120] Y. Sasaki, "The truth of the F-measure," Teach Tutor mater, vol. 1, no. 5, pp. 1-5, 2007.

[121] C. Van Rijsbergen, "Information retrieval. dept. of computer science, university of glasgow," URL:

citeseer. ist. psu. edu/vanrijsbergen79information. html, vol. 14, 1979.

