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Abstract 

Only humans can understand and comprehend the actual meaning that underlies natural 

written language, whereas machines can form semantic relationships only after humans 

have provided the parameters that are necessary to model the meaning. To enable computer 

models to access the underlying meaning in written language, accurate and sufficient 

document representation is crucial. Recent word embedding approaches have drawn much 

attention to text mining research. One of the main benefits of such approaches is the use of 

global corpuses with the generation of pre-trained word vectors. Although very effective, 

these approaches have their disadvantages, namely sole reliance on pre-trained word 

vectors that may neglect the local context and increase word ambiguity. In this thesis, four 

new document representation approaches are introduced to mitigate the risk of word 

ambiguity and inject a local context into globally pre-trained word vectors. The proposed 

approaches, which are frameworks for document representation while using word 

embedding learning features for the task of text classification, are: Content Tree Word 

Embedding; Composed Maximum Spanning Content Tree; Embedding-based Word 

Clustering; and Autoencoder-based Word Embedding. 

The results show improvement in the F_score accuracy measure for a document 

classification task applied to IMDB Movie Reviews, Hate Speech Identification, 20 

Newsgroups, Reuters-21578, and AG News as benchmark datasets in comparison to using 

three deep learning-based word embedding approaches, namely GloVe, Word2Vec, and 

fastText, as well as two other document representations: LSA and Random word 

embedding. 

 

Keywords: Document Representation; Word Embedding; Text Classification; Deep 
Learning; Neural Networks 
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Chapter 1. Introduction 

1.1 Overview 

Text mining is now broadly applied to a wide range of applications, including information 

retrieval, security, social media, and marketing. In this domain, the performance and 

computational cost of tasks such as classification, clustering, content analysis, and machine 

translation are completely dependent on document representation  [1]. The bag-of-words 

approach is one of the first and most popular document representation models in the field 

of natural language processing (NLP). In this approach, each document is represented as a 

bag-of-words [2]. While this approach is fast and simple, and has a low-computational cost, 

it disregards grammar and even word order. It also suffers from the “Curse of 

Dimensionality” in that a short sentence for presentation needs a very high dimensional 

feature vector, which is also sparse. In this situation, classifiers lose their power of 

discrimination. This is the point where feature selection and feature transformation tools, 

such as Principal Component Analysis (PCA) [3], Latent Dirichlet Allocation (LDA) [4], 

Independent Component Analysis [5], Latent Semantic Indexing [6], and Document 

Frequency [7], come into account. An alternative to the bag-of-words is the word 

embedding approach, in which words or phrases are mapped to the low-dimensional vectors 

of a continuous space. Word2Vec [8], Global Vectors (GloVe) [9], and fastText [10] are 

three successful deep learning-based word embedding models. In order to accurately work, 

these models should be trained with vast corpuses. In summary, these models can present 

an acceptable vector for each word in training data. 

Calculating the average and the summation of word vectors are the two common 

approaches that are used to represent a document, but these approaches do not consider the 

context of the document. For example, the word vector for “jaguar” as a car is equal to its 

word vector as an animal. The Doc2Vec model [11] presents a vector for each document 

or paragraph that is trained according to local data. The Doc2Vec model does not use 

background knowledge but it can involve the context of the document. The drawback of 

this model is the high computational cost of creating a model each time, while Word2Vec, 
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GloVe, and fastText create the respective models according to the training corpus one time 

only. Another problem that the Word2Vec, GloVe, and fastText models cannot overcome 

is that of ignoring the relationship between terms that do not literally co-occur. In order to 

solve these problems, the use of ontology-based vectors is suggested [12]. Taxonomy is the 

backbone of ontology, and using ontology can solve the problem of data sparseness by 

replacing words with concepts [13]. The main objective of this thesis is to present low cost 

and accurate document representations that simultaneously use background knowledge and 

local data. 

A named standard method for information retrieval (IR) tasks is Term Frequency - Inverse 

Document Frequency (TF-IDF), which is a basic method based on word count. A 

combination of this method and a classifier such as the Support Vector Machine (SVM) 

can serve as the state-of-the-art for text classification tasks [14, 15].  

Similar to the bag-of-words, the TF-IDF is a high-dimensional text representation method 

where all the vector elements are independent whereas, in reality, the words occur in a 

highly correlated way. A low-dimensional representation approach is Latent Semantic 

Analysis (LSA) [16], which is based on the singular value decomposition (SVD) method. 

Due to the variance of phrases and sentences, document representation is a more 

challenging problem regarding word representation.  

Calculating the unweighted average of embeddings of all the words that occur in a text [17] 

is the most popular but not the best representation of a document from pre-trained word 

embedding. As an example, the representation document vector for the sentence “I like 

Apple computers” and “I prefer a green apple” are close to each other in the vector space. 

In this study, four novel methods are described in Chapter 3: Content Tree Word 

Embedding (CTWE); Composed Maximum Spanning Content Tree (CMSCT); 

Embedding-based Word Clustering (EbWC); and Autoencoder-based Word Embedding 

(AbWE). These approaches create a document representation for each word in the training 

vocabulary based on the Word2Vec, GloVe, fastText, LSA, and Random word embedding 

models, then use the average of the updated word vectors for document representation. 

The first approach, CTWE, employs a semi-taxonomy structure named content tree, and 

subsequently updates the word embedding vectors.  
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The second approach, MSCT, is proposed in order to select the root based on the node 

degree and then generate the maximum spanning tree. CMSCT, another version of this 

approach, which does not require a high amount of memory to generate the fully connected 

graph of all the words in the training vocabulary, is defined. This approach generates a 

small-size spanning tree for each document and then generates a training data spanning tree 

by combining them. In the last step, the word vectors are updated based on their location 

in the maximum spanning tree.  

The third approach, EbWC, uses the clustering method for extracting the conceptual 

structure of the context. Each element of the new word embedding is the distance from the 

centroid of each word group cluster. 

The final method, AbWE, uses autoencoder for dimensionality and noise reduction in the 

context. The main idea is to train an autoencoder to capture the training data concepts and 

then update the word vectors by encoding them. 

1.2 Problem Statement 

Text mining tasks that are based on a bag-of-words representation cannot guarantee 

satisfactory results [18]. By using the bag-of-words approach, the word order and grammar 

in the context are lost. The high dimension of the feature vector in the bag-of-words 

approach can also cause high computational complexity. In general, the use of words as the 

only feature involves various limitations such as:  

Synonymy, when different words and phrases indicate the same concept. As an example, 

the words “manufacture” and “make” refer to the concept of production [19]. 

Polysemy, when a word has several meanings; for example, the word “apple” as a company 

or as a fruit [19]. In some cases, the words cannot be used independently.  As an example, 

the phrase “passed away” refers to death, but either word on its own is not enough [19]. 

Some documents do not contain indicator terms. An example of this is the phrase “an armed 

man took the money”, referring to robbery. However, none of the words are good indicator 

terms [19]. 
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Using word-level embeddings such as the Word2Vec or GloVe suffers from the out-of-

vocabulary issue. In this case, the model ignores the words that do not appear in their 

training data. From another perspective, in order to work accurately, the Word2Vec, GloVe, 

and fastText models should be trained with vast corpuses. These models are able to suggest 

an acceptable vector for each word in the training corpus. Calculating the average and the 

summation of word vectors in a document are the two proposed approaches, both based on 

Word2Vec, GloVe, and fastText. These approaches use vectors that are calculated 

according to global knowledge rather than by considering the context of the document. As 

an example, the word vector for “blackberry” as a fruit is equal to its word vector as a 

company.  

The Doc2Vec model presents a vector for each document or paragraph that is trained from 

local data. This approach does not use background knowledge but involves the context. A 

drawback of the Doc2Vec model is the high computational cost of model creation for each 

document, compared to Word2Vec, GloVe, and fastText, which create a onetime only 

model. 

The main objective of this research is to provide document representations of the 

simultaneous use of global knowledge (pre-trained features) and local context for text 

classification, which is one of the most popular tasks in the domain of text mining. In 

addition, no dramatic improvement is expected since the focus of this research is to present 

new word embeddings that simultaneously employ global knowledge and local context. 

The presented approaches, which are described in Chapter 3, are: Content Tree Word 

Embedding (CTWE)[20]; Composed Maximum Spanning Content Tree (CMSCT); 

Embedding-based Word Clustering (EbWC); and Autoencoder-based Word Embedding 

(AbWE).  

These approaches create a document representation for each word in the training 

vocabulary based on the Word2Vec, GloVe, fastText, LSA, and Random word embedding 

models. For document representation, the average of the updated word vectors is calculated. 

Figure 1.1 presents the criteria considered in this thesis and compares CTWE, AbWE, 

CMSCT, and EbWC to other document representation approaches.  
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Figure 1.1. The four proposed approaches vs. other document representation approaches 

1.3 Research Questions 

• To what extent is the effect of the local context in the task of text classification? 

• How can the local context be embedded into word embedding to improve the task 

of classification? 

1.4 Research Objectives 

Two main objectives are defined for this thesis: 

 

• To provide document representation approaches that simultaneously use global 

knowledge (pre-trained features) and the local context. 

• To evaluate the effectiveness of simultaneously using the local context and global 

knowledge in word embedding for the task of text classification. 
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1.5 Research Contribution 

This thesis provides four different approaches to improving three word embedding-based 

word representations, namely: Word2Vec, GloVe, and fastText. The aim of this research is 

to provide approaches that can present enhanced document representation by employing 

information in the local context, as well as establishing the benefits of using pre-trained 

global models.  

In summary, the main contributions of this thesis are: 

• A study of word embedding, and document representation methods is provided 

in Chapter 2. 

• In Chapter 3, the following four novel approaches are provided to generate new 

document representations that use global knowledge as well as the local context: 

o Content Tree Word Embedding 

o Composed Maximum Spanning Content Tree 

o Embedding-based Word Clustering 

o Autoencoder-based Word Embedding 

• A description of how the four novel approaches are implemented and generate 

new word embeddings is provided in Chapter 4. The new word embeddings are 

evaluated, and the results are analysed and discussed in Chapter 5.  

1.6 Thesis Outline 

This thesis consists of six chapters. Following the introduction, which contains an 

overview, Chapter 1 presents the problem statement, research challenges, objectives and 

contribution of this work.  A review of relevant literature is provided in Chapter 2. The 

proposed document representation methods are introduced in Chapter 3, while Chapter 4 

describes the methodology. Experimental results are discussed in Chapter 5. Chapter 6 

concludes the study by summarizing the main findings and suggesting future areas of 

exploration.
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Chapter 2. Literature Review 

2.1 Introduction 

In this chapter, a comprehensive literature review of the related research in the domain of 

word embedding and document representation is presented. The document representation 

methods used before word embedding are categorized as traditional document 

representation methods. The Word2Vec, GloVe, fastText, LSA and Doc2Vec approaches 

are presented in detail. Other combination methods are later described, following which 

taxonomy induction approaches are reviewed.  

2.2 Traditional Document Representations Methods 

Using the words in a document is the most instinctive approach for document 

representation. Since 1954, different document representations have been introduced, the 

earliest of which is bag-of-words by Harris [2]. In this model, the document is presented as 

a fixed length vector where the length is the number of unique selected terms in the 

document repository. Stop word filtering, stemming, and lemmatization are optional 

filtering methods that can be used to improve the quality of representation. Using single 

words as features suffers from the "Curse of Dimensionality" in that a very high 

dimensional feature vector is needed to represent a short sentence. Losing the semantic 

meaning of the text and phrases is another limitation of the bag-of-words approach. 

The n-gram document representation uses a continuous sequence of n words, which are 

chunks of words used as features to represent a document. Each element of the document 

representation vector is a set of two or more neighboring words in a document repository. 

Another similar approach is using a fixed chunk of letters where unique chunks of letters 

represent elements in the feature vector for each document. This approach has applications 

in language identification and spelling error detection. For documents with references, such 

as scholarly documents or web-pages with hyperlinks, another method can be used to 

represent the document, as references are related to the contents of the document. The 
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weight of the references can be modified based on frequency of use and location in the 

document. In this approach, each reference is one dimension of the feature vector, which 

has a much lower dimensionality in comparison to the bag-of-words and n-grams 

approaches. [21] 

Explicit Semantic Analysis (ESA) is a mixed approach based on the contents and references 

in a document. In ESA, the similarity of documents is calculated based on their reference 

sets. In the feature vector, each element is weighted in relation to specific documents within 

the reference sets[22]. 

The similarity measure based on the compression approach [23] is also used for computing 

representation of documents. This method is based on the hypothesis that the similarity of 

two files can be estimated by comparing the compressed size of the concatenated version 

of the two files and the summation of the compressed size of each file. The elements of the 

representation vector are the similarity between documents in the repository. 

In a study by Maas et al. [24], a word representation was introduced to capture the semantic 

and sentiment meaning of words. The model created vectors by an unsupervised 

probabilistic-based approach. Words that come together in most documents have similar 

representation. In the next phase, by using a supervised learning-based method, the 

sentiment of words comes into account and the model is trained. 

Yang et al. [25] extracted key terms from training documents based on the Gini Index, 

Information Gain, Mutual Information, Odds Ratio, Ambiguity Measure, and the 

Darmstadt Indexing Approach association factor. Extracted key terms were used for the 

document representation, which is known as KT-Of-Doc. In the proposed approach, each 

document is shown by the terms that appear in the document to enhance the effect of words 

and non-key terms that do not appear in the document to weaken the effect of the non-key 

terms. In another study by Yang et al. [26], the attention network of a document was created 

by detecting the more and less important parts of the content. The extracted network was 

used for the document representation. The proposed model had two levels: word level, 

which detects important words, and sentence level, which detects and relates important 

sentences. The introduced representation was used for text classification tasks. 
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Wei et al. [1] tried to solve the problem of meaningless latent representation of documents. 

Discriminative neighbors were defined and an autoencoder trained by minimizing the 

Bernoulli Cross-Entropy Error. This autoencoder was used to create a new document 

representation method.  

In a study by Lao and Jagadeesh [27], legal questions were classified into 16 legal areas. 

The bag-of-words, bag-of-bigrams, TF-IDF technique, and average Word2Vec vectors of 

questions were used as features and compared to five different classifiers for this 

classification task. The Linear SVM classifier gained the best results in comparison to the 

other four models: Logistic Regression (LR), Multi nominal Naïve Bayes (NB), SVM with 

stochastic gradient descendent (SGD), and one-layer neural network. 

In a study by Kim et al.[28], three approaches for document representation were introduced, 

based on the Word2Vec vector of content words. The first approach was average pooling, 

the second was class-specific Gaussian Mixture distribution and the third was Semantic 

Space Allocation, which uses global Gaussian Mixture Model components. Average 

Pooling had the best result in comparison to the other two methods and outperformed the 

traditional LDA method when applied to a Chinese article classification task. Bernotas et 

al. [12] used a tagging-based document representation method and improved a clustering 

task by using ontology. Based on the results, tagging-based representation had a negative 

impact on small scale documents, but if the document was large scale, the results were 

better than the word-based document representation. 

Lu et al. [29] created a cluster's universe and, by segmenting documents into topics and 

assigning topics to the clusters, a relationship was made between each document and the 

clusters. The documents were assigned as members of the strongest relative cluster and 

associated with the second most strongly related cluster. 

In a study by Socher et al. [30], a Neural Tensor Network was used to extract the 

relationship between entities in a knowledge base. The vector representation of words was 

used to calculate the average of the word vectors in an entity. The learning relation classifier 

and the entity representation were joined. This approach is used for knowledge-based 

completion tasks, which are useful in query expansion, question answering, and 

information retrieval.  
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2.3 Word2Vec 

Word co-occurrence is at the heart of several machine learning algorithms, including the 

recently introduced Word2Vec by Mikolov et al. [8]. Word2Vec is a two-layer neural 

network-based approach that learns embedding for words. Negative sampling has been 

used in the softmax step of the output layer. The objective function maximizes the log 

probability of a context word (𝒘𝑶), given its input words (𝒘𝑰). By using negative sampling, 

the objective function is to maximize the dot product of 𝒘𝑰 and randomly selected negative 

words, while minimizing the dot product of 𝒘𝑰 and 𝒘𝑶. The output is a vocabulary of words 

from the original document and one n-dimensional fixed-size vector representation. Co-

occurring words in the training corpus are located adjacent to each other in a vector space. 

Figure 2.1 [8]illustrates how Word2Vec creates word vector representation by use of two 

architectures: Continuous Bag of Words (CBOW) and Skip-gram. The CBOW architecture 

model, which can predict a word according to the surrounding context words, works faster 

than Skip-gram, which predicts the surrounding words by a center word, in a fixed-length 

window. For infrequent words, the Skip-gram architecture works better.  

 
Figure 2.1. The Word2Vec architectures 
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Word2Vec generates vector representation only for words while, for document 

representation, a representation for the entire document is needed. Averaging or summation 

of all the word vectors of a given document can be a naive solution for creating document 

representation. 

During the training phase, words that appear in similar contexts are grouped together in the 

same direction by this unsupervised learning algorithm. 

In [31], it was  highlighted that not only the direction but also the length of word vectors 

carries important information. The length of a vector merely reflects the frequency with 

which a word appears in the corpus and the similarity of the contexts in which the word 

appears. Accordingly, a word that is consistently used in a similar context will be 

represented by a longer vector than a word of the same frequency that is used in different 

contexts. 

 

2.4 GloVe 

Pennington et al. [9] introduced an unsupervised word embedding model, known as GloVe, 

for word representation.  

GloVe tries to encode meaning as vector offsets in an embedding space. This model 

captures the frequency of word co-occurrences within a specific window in a large text 

corpus to generate linear dimensions of meaning and uses global matrix factorization and 

local context window methods.  The model also offers a local cost function and includes a 

weighting function that is used to balance rare co-occurrences. Optimization methods are 

used to minimize the cost function.  

Based on the hypothesis that similar words have similar distributions, it is expected that 

generally trained word vectors can be used to measure semantic similarity. Similar to 

Word2Vec, averaging the vectors of words in a document is an option for generating a 

fixed length vector for document representation. 

In order to achieve GloVe word embedding, word co-occurrence information should first 

be collected as a word co-occurrence matrix (X). In this matrix, the value of 
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the	𝑋-. illustrates the number of times that word i was in the context (fixed window size) 

of the word j in the training data. The decay factor shown in Equation 2.1 is applied to 

reduce the weight of distant words: 
𝑫𝒆𝒄𝒂𝒚 = 𝟏 𝒐𝒇𝒇𝒔𝒆𝒕⁄  Equation 2.1 

In the next step, a soft constraint for each word pair is assigned by Equation 2.2: 

 
𝑽𝒆𝒄𝒊𝑻	𝑽𝒆𝒄𝒋 + 𝒃𝒊+𝒃𝒋 = 𝐥𝐨𝐠𝑿𝒊𝒋 Equation 2.2 

 

where 𝑉- represents the vector for the main word, 𝑉. is the vector representation for the 

context word, and  𝑏- and 𝑏.	are scalar biases for the main and context words. 

The cost function is defined in Equation 2.3: 

𝑱 =FF𝒇(𝑿𝒊𝒋)
𝑱I𝟏𝒊I𝟏

(𝑽𝒆𝒄𝒊𝑻	𝑽𝒆𝒄𝒋 + 𝒃𝒊+𝒃𝒋 − 𝐥𝐨𝐠𝑿𝒊𝒋)𝟐 
Equation 2.3 

 

In order to avoid learning only the form of extremely common word pairs, a weighting 

function 𝑓 (Equation 2.4) is used: 

𝒇M𝑿𝒊𝒋N =	O
(
𝑿𝒊𝒋
𝒙𝒎𝒂𝒙

)𝒂										𝒊𝒇	𝑿𝒊𝒋 < 	𝒙𝒎𝒂𝒙	

𝟏									𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

Equation 2.4 

 

The GloVe approach is different from Word2Vec. While Word2Vec is a "predictive" 

model, GloVe can be called a "count-based" model. A count-based model generates word 

vectors by applying dimensionality reduction methods over the co-occurrence matrix, 

while predictive models try to develop their capability to predict loss. 

2.5 fastText 

fastText,   an extension of Word2Vec, was proposed in 2016 by Bojanowski et al. [10] from 

Facebook AI Research. While fastText learns the word representations, it considers the 

structure of the words, an approach that is useful for languages where words are 

morphologically similar. When it wants to represent rarely occurring words, this method is 

an advance on others. This feature allows the algorithm to identify prefixes, suffixes, stems, 
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and other phonological, morphological and syntactic structures in a manner that does not 

rely on words being used in a similar context, thus represented in similar vector space. 

The fastText approach uses the n-grams of words to train a neural network. As an example, 

the tri-grams for the word “hello” is hel, ell, and llo. The word embedding vector 

for “hello” will be the sum of all these n-grams. A word embedding for all the n-grams, 

given the training dataset, is generated. By having the word embedding of the n-grams, rare 

words can also be represented, since they may contain some of the n-grams.  

In theory, fastText embeddings should work more accurately on syntactic analogies since 

they are mostly morphology-based. In a manner similar to Word2Vec, fastText learns word 

embeddings with the difference that it enriches word vectors with sub word information by 

using character n-grams of variable length.  

It is expected that fastText will outperform Word2Vec and GloVe when the size of the 

dataset is small. FastText word embedding is based on continuous Skip-gram architecture, 

using n-gram at character level. A hashing function, called Fowler-Noll-Vo, is used to map 

n-grams to integers. This hashing function bonds the memory requirement of the model, 

which uses SGD in the negative log likelihood of solving the optimization problem. 

In fastText architecture when there is a large number of classes, the hierarchical softmax 

[32] is used to calculate probability distribution over predefined classes. The use of linear 

classifiers is computationally expensive in this situation.   

For word representation, a hashed version of n-gram, called the hashing trick, has been 

used[33]. The average of the word vectors is used as the document representation and then 

fed into a linear classifier, similar to the CBOW model [8].  

2.6 LSA 

Latent Semantic Analysis [16], or latent semantic indexing, is a document analyzing 

method to identify the concepts and underlying meaning of documents. 

In the first step, the term document matrix (𝑀 = 𝑛 ∗ 𝑚 where m, the size of the row, is the 

number of terms and n, the column, is the number of documents while  𝑀[𝑖, 𝑗] illustrates 

the frequency of the term 𝑖, in the document 𝑗) is constructed.  The SVD method is then 
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applied to the matrix 𝑀 to decompose it into three matrices, according to Equation 2.5. The 

S is the diagonal matrix while the U, 𝑉&are the orthogonal matrices. Based on Equation 

2.6, the k largest singular values of the three matrices will be used as the reduced dimension 

version of the 𝑀, which is the 𝑀^: 

 
𝑀 = 𝑈 ∗ 𝑆 ∗ 𝑉& Equation 2.5 

𝑀^ = 𝑈^ ∗ 𝑆^ ∗ 𝑉a Equation 2.6 

 Based on the research conducted by Naili et al. [34],  the local and global weighting 

functions and settings have an important impact on the output of the SVD model which, in 

their case, was the topic segmentation task. 

2.7 Doc2Vec 

Le and Mikolov [11] presented Doc2Vec, also known as Paragraph2Vec. An extension of 

Word2Vec, the Doc2Vec model represents a document, sentence, and paragraph by a fixed-

length vector. This unsupervised learning model can represent a document in two forms: 

Paragraph Vector with Distributed Memory (PV-DM), a complex model with more 

parameters that can achieve better results in comparison to the Distributed Bag of Words 

(PV-DBOW), which is simple and does not consider word order. The PV-DM approach 

considers the order of words in a paragraph and generates a vector that carries the 

information where other models, such as vector averaging or clustering, loses them.  

PV-DBOW works in a largely similar way as Skip-gram with the difference that the input 

is a unique vector that represents the document and the order of words is ignored. PV-DM 

works in the same way as CBOW.  The additional vectors used by PV-DM are a 

concatenation of document vectors and several target words. The objective is to use the 

concatenated document and word vectors to predict a context word.  

The objective of a subsequent study by Hong  [35] was to better the performance of 

Paragraph2Vec by use of two approaches: the addition of both a hidden layer and a tensor 

layer to the paragraph vector, such that it can  interact with word vectors, both complexly 

and non-linearly. 
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The Doc2Vec model can acknowledge the context of a document but cannot benefit the 

background knowledge. However, the high computational cost of creating a model each 

time is a distinct weakness of this approach. In comparison, Word2Vec and GloVe allow 

pre-trained models to be used multiple times by fine-tuning the input feature vectors to a 

specific task.  

Doc2Vec uses the Word2Vec model and adds another vector (Paragraph ID), as shown in 

Figure 2.2 [11]: 

 
Figure 2.2. Doc2Vec PV-DM Model 

The architecture of the PV-DM is similar to the CBOW model, with a new feature vector 

for the document. During the training phase, the document vector is also trained and can 

then represent the concept of the document. 

Similar to Word2Vec, the other architecture, PV-DBOW, is inspired by Skip-gram, as 

illustrated in Figure 2.3[11]. 

The second architecture needs less memory and is faster than the PV-DM since it is does 

not save word vectors.  

Le and Mikolov [11] recommended use of a combination of both architectures, although 

PV-DM is the superior method in most cases. 
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Figure 2.3. Doc2Vec PV-DBOW Model 

2.8 Other Word Embedding Approaches 

In 2015, Hong et al. [36] used the deep learning and Latent Dirichlet Allocation (LDA) 

approaches to detect anomaly sentences in End User License Agreement (EULA) legal 

texts. In the first step, topics were extracted by LDA from a EULA corpus; the words in 
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This model is known as Tree-Structured LSTM. Three classes of models represented the 
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Recently, Cer et al. [38] developed a transfer learning-based approach, called USE 

(Universal Sentence Encoder), for encoding text into embedding vectors. The presented 

encoder employs two encoding models: DAN (Deep Averaging Network), introduced for 

the first time by Iyyer et al. [39] in 2015, and Transformer-based sentence encoding by 

Vaswani et al. [40], introduced in 2017. Both models convert an English string into fixed 

dimensional embedding representation. To produce the embedding in DAN encoding, the 

embedding of the word and bi-grams are averaged together and passed through a 

feedforward deep neural network. This model targets efficient inference. The transformer-

based sentence encoding uses an encoder sub-graph to compute context aware embedding 

for each word in the text and calculates an element-wise sum at each word position to 

produce an embedding vector for the entire document. 

Zhu and Hu [41] presented a variation of doc2vec (the Distributed Bag of Words model), 

which is known as context aware document embedding. In their approach, each word 

occurrence is weighted based on its contribution in the context. This weighting allows 

document embedding to capture sub-topic level keywords to facilitate the learning process. 

Their computation and memory cost depend on the size of the text. 

Mirowsky et al. [42], developed a non-linear multi-layer algorithm based on autoencoder 

architecture for text classification, information retrieval and topic modeling. This algorithm 

generates a compact document representation. 

Ranzato and Szummer [43] provided an autoencoder-based document representation built 

on a semi-supervised approach. The authors mentioned that learning deep architecture 

works more efficiently with compact document representations. More compact 

representation needs less storage space and is computationally more efficient for indexing 

lookup procedures. 

More recently, deeper neural architectures have been developed to generate these 

embeddings and to perform text classification tasks. Some of these architectures involve 

sequential information of text, such as LSTMs [44]. Le and Mikolov [11] developed a 

method to generate embeddings that outperform the traditional bag-of words [2] approach.  

Extracting the list of nearest neighbors of a specific word or calculating the similarity 

distance between selected terms are examples of intrinsic evaluation methods. Previous 
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studies show that different types of information can be encoded by different layers of 

LSTM [45, 46].  

Levy et al. [47]showed that, when the hyperparameters of an algorithm are tuned, the results 

of all traditional and deep learning-based approaches are comparable. They claimed that 

the performance of word embedding and classification results are more dependent on 

hyperparameter optimization than the total approach. They compared four different word 

representations: Word2Vec’s Skip-gram with negative sampling architecture; GloVe; 

SVD; and explicit representation, which is a Positive Pointwise Mutual Information (PPMI) 

matrix [48]. Based on their conclusions, for different tasks, different types of word 

embedding with different hyperparameter values could achieve the best results. As an 

example, in different experiments, Skip-gram outperformed GloVe, while the study by 

Pennington et al. [9] showed that completely opposite or deep learning-based word 

embeddings did not always outperform traditional count-based distributional methods. 

In a comparative study by Altszyler et al. [49] between the LSA and Word2Vec, the results 

showed that, in cases with a low number of documents and low frequency of target words, 

the LSA works more accurately than Word2Vec. 

In 2018,  Peters et al. [50], introduced ELMo, a semi-supervised embedding from Language 

Models. By using bi-LSTM architecture, this deep contextualized word representation can 

capture complex characteristics of word use as well as characteristics of word use and 

variety across linguistic contexts. The ELMo model uses a concatenation of the vectors that 

are generated by the left-to-right LSTM and the right-to-left LSTM. These two vectors are 

independently trained. The authors showed that lower level LSTM architectures can 

compute syntax-based aspects of a word, while high level LSTM can capture context-

dependent information of word meaning. 

In 2018, Devlin et al. [51], from the Google AI lab, introduced a new word embedding 

named Bidirectional Encoder Representations from Transformers (BERT). Unlike ELMo, 

this architecture trains the vectors on the left and right contexts in all layers, so that one 

additional output layer can then tune the output. This architecture can be used for pre-

training tasks as well as fine-tuning procedures. The authors claimed to have advanced 
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state-of-the-art results for 11 NLP tasks, namely: question answering, Named-entity 

recognition, and next sentence prediction. 

2.9 Taxonomy Induction 

Taxonomy plays an important role in information systems, ontology learning, and the 

semantic web. Taxonomy is the backbone of ontology; using ontology can solve the 

problem of data sparseness by replacing words with concepts [13]. Ontology-based vector 

approach is suggested for using background knowledge and solving the problem of the high 

computational cost inherent in creating a model and ignoring the term relationship between 

terms that do not literally co-occur. [12].  

The CTWE approach, which is described in 3.2.2, is inspired by creating a taxonomy of 

words for each document. While taxonomy is the backbone of ontology, using ontology 

can solve the problem of data sparseness by replacing words with concepts [13]. Significant 

research efforts have been made with respect to using different document representation 

models. In the introduction to a book edited by Buitelaar et al. [52], the focus was on 

ontology learning and describing a six layer model. The base layer of the model was 

comprised of terms. Term extraction was introduced as the first step of ontology learning. 

Acquisition of semantic terms in a language or between languages was described as the 

second layer of the model, which uses clustering-based techniques and the Latent Semantic 

Indexing (LSI) algorithm. The concepts layer formed the third layer, which was defined as 

the intentional definition of concepts, a set of instances, and a set of linguistic realizations. 

Taxonomy was placed as the fourth layer in the proposed model. The three paradigms of 

lexico-syntactic patterns, term clustering, and document-based notation of term 

subsumption are used to induce taxonomies. Extracting non-hierarchical relations was the 

fifth layer of the model, which focused on discovering new relations between known 

concepts. The sixth and highest layer was rule extraction, defined as: deriving lexical 

entailment rule extraction. 

In another study, Nazar et al. [53], the authors mentioned two main automatic taxonomy 

strategies: the first group of strategies is lexico-syntactic, which is based on finding patterns 

in texts such as "is a", "consists of", and "belongs to". The second group is composed of 
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quantitative strategies, which assume that hyponyms of a term occur in a context window, 

based on redundancy in texts because of the definition or characterizing statements. A 

strategy from the quantitative group is presented based on the asymmetry and transitivity 

of hypernym relations. A limited set of terms was assumed as seeds that are related to a 

specific domain; after searching these terms on the Internet, the co-occurrence of terms was 

calculated. The terms were arranged in the taxonomy, based on the asymmetric nature of 

the syntagmatic association of terms. Lu et al. [29] created a cluster's universe and, by 

segmenting documents into topics and assigning the topics into clusters, a relationship was 

made between each document and the clusters. The documents were assigned as members 

of the strongest relative cluster and associated with the second most strongly related cluster. 

In another study by Ben et al. [54] in 2016, "Is a" taxonomy was extracted from a Wikipedia 

categories graph. Two algorithms were used: an algorithm to split a "Direct Acyclic Graph" 

into sub graphs, and a second algorithm to merge the sub graphs. This approach uses the 

semantic similarity measure between terms and compares the results with WordNet. 

Additional research studies that focused on cold start taxonomy induction were also 

conducted. In this context, the cold start procedure involves an automotive process of 

taxonomy induction that is purpose-built. In a very early study in 1992, Hearst [55] 

presented a new approach to finding relationships between words in a text corpus by finding 

patterns. The approach was based on bootstrapping to automatically finding patterns. In 

order to extract the taxonomy from an unstructured data extracted from the web, Sánchez 

and Moreno [56] presented a combination of three approaches: the Hearst, the noun phrase, 

and the web search methods. The authors mentioned that taxonomy construction is the first 

step in structuring domain knowledge as well as the web in comparison to other data 

sources such as dictionaries, databases, and news reports, which are unstructured, 

untrustworthy, noisy, and ambiguous. However, data from the web is vast in size and 

heterogeneous, as well as a real distribution of human knowledge. The authors tried to 

maximize the performance by a bootstrapping approach. In the first phase, the patterns were 

extracted by the Hearst approach and enriched by the noun verb approach. In the next phase, 

the most suitable candidates were selected and applied to web scale statistics by using a 

search engine. Human experts were also involved in the evaluation of the extracted 

taxonomy. 
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Alvarado and Arevalo [57] presented a text clustering-based approach for ontology 

learning. In the proposed approach, a verb-norm table was created and mutual information 

calculated for each pair of verbs and norms. In the next step, by using the Minipar parser, 

the dependency between the nouns was determined by using Clustering by Committee 

algorithms, and the inferred topic and hyponyms were identified. The Hearst approach, 

contextual information extraction, and web querying approaches were used to create a 

taxonomy for each topic. In a similar study by Woon and Madnick [58], a new measurable 

distance was introduced based on term co-occurrence, which can be used for taxonomy 

construction. The main characteristic of the research was the use of academic literature as 

the knowledge base and the use of Google scholar for obtaining the query. In the presented 

approach, the Kolmogorov complexity was used to calculate the distance between two 

terms. In a study by Meijer et al. [59], an automatic taxonomy construction framework was 

presented for extracting a taxonomy from a corpus in four steps: term extraction; filtering 

of relevant terms; the disambiguating phase; and finally, determining of hierarchical 

relations. 

In 2007, Makrehchi and Kamel [60] used "Google distance" to find the relationship 

between terms to make a taxonomy. To create the term dependency and adjacency matrix, 

the normalized Google distance was calculated based on page count in the searched results 

of a term in the Google search engine. In 2006, Heymann and Garcia-Molina [61] converted 

two corpuses of tags into a hierarchical taxonomy of tags. For each new tag, similarity with 

the other tags was calculated and added under the most similar, if the cosine similarity was 

greater than the threshold. Otherwise, the new tag went under the taxonomy's root. This 

algorithm was applied to the Delicious and SiteUlike corpuses. 

Bast et al. [62] used the PCA method to find types of relationships between terms. The 

types of relationships in the study were: unrelated; symmetrically related; asymmetrically 

related (when the first term is more specific than the second); and finally, asymmetrically 

related in the other direction. A term-term similarity matrix was created, and similarity of 

terms was calculated based on a co-occurrence matrix. In the next step, each term was 

ranked according to the optimal dimensions that were needed to best describe the similarity. 

The rank has been used to find the relationship between terms and to show which term 

covers another term. To justify the model, a normalized document-term matrix was created 
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and the similarity between the terms was calculated. The authors mentioned that evaluation, 

whether automatic or manual, is difficult. 

Yang and Callan [63] introduced five features for automatic taxonomy induction: (1), 

Contextual information: Global context Kullback–Leibler divergence (KL-Divergence), 

and Local context KL-Divergence; (2), Co-occurrence: Using Google search results for 

documents and sentences; (3), Syntactic dependency, such as the minipar syntactic 

distance, the modifier and the overlap for objects, subjects, and verbs; (4), Lexical syntactic 

patterns: Hyponym, sibling, and part of patterns; (5), Miscellanies: Word length difference, 

and definition overlap. Wikipedia and Google corpora have been used for training the 

model. The F_score was calculated for different types of relations. In another work by Yang 

and Callan [64], a new matrix between two terms, known as "the ontology metric", was 

calculated, providing a score to show the semantic distance of terms in a taxonomy. The 

terms were incrementally clustered, based on this new metric, using a clustering-based 

method with features described in [63]. The proposed approach tried to minimize changes 

in the taxonomy structure while inserting a new term. 

Navigli et al. [13] extracted terms with a tool known as a "term extractor", and hyponym 

terms were then extracted by a World Class Lattices classifier. In the subsequent step, 

domains were filtered based on weights, and taxonomy induction was performed by using 

topological graph properties, which were produced in the previous steps. False roots, leaves 

and waiting edges were eliminated based on graph connectivity and path length. Finally, 

the results were compared with WordNet and two other studies. 

In another effort to conduct automatic taxonomy extraction, Liu et al. [65] presented an 

approach to derive the taxonomy from a set of keywords by the Bayesian approach while 

efficiently using the knowledgebase of a search engine. The authors mentioned that manual 

taxonomy extraction is costly and very subjective. Finding a valid and accurate corpus for 

specific domains is not easy; some domains are fast changing while the data is also sparse. 

In a study into taxonomy extraction, Wu et al. [66]  tried to discover frequent sequential 

patterns in a text. The output of the model, which was named the pattern taxonomy model, 

can demonstrate extracted sequential pattern relationships. 
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Garcia et al. [67] presented an approach for automatic taxonomy extraction from the 

Wikipedia categories structure. This approach, which is language independent, used 

syntactic, structural, and content based features for taxonomy extraction. In a study by 

Nguyen et al. [68], Wiktionary was used as the knowledgebase and the Hidden Markov 

Support Vector Machines approach was used for solving the problem of word ambiguity in 

the English, Vietnamese, and Korean languages. In another study, Saleem and Bellahsene 

[69] presented a tree mining-based approach for extracting mini taxonomies from existing 

ontologies, XML schemas, and Folksonomies with tree-based data structures. Makrehchi 

[70, 71] identified the dependency of terms calculated according to the inclusion index with 

a taxonomy extracted from a term to term matrix. By using the extracted taxonomy, sets of 

queries were generated and the ranking score of each generated query was calculated for 

each document. These calculated ranking scores were used as new feature vectors for 

clustering documents based on query. The results showed an improvement in comparison 

to the traditional bag-of-words method. 

In a study by Socher et al. [30], the Neural Tensor Network was used to extract the 

relationship between entities in a knowledgebase. The vector representation of words was 

used to calculate the average of the word vectors in an entity. The learning relation classifier 

and the entity representation were joined. This approach is used for a knowledgebase 

completion task, which is useful in query expansion, question answering, and information 

retrieval tasks. 

In 2018, Lai et al. [72] presented a combined approach that employed the pre-trained GloVe 

word embedding model and statistical information from an Is-A taxonomy for the task of 

semantic differentiation. The extracted features consisted of word frequency, co-

occurrence word frequency and other statistical data from the Is-A taxonomy and word 

vectors, cosine distance, and L1 norm of vector difference from the GloVe pre-trained 

model that is passed through an SVM classifier. 
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2.10  Summary 

In this section, various document representation and word embedding approaches are 

explored and reviewed. The primary approaches, namely bag-of-words and n-gram, suffer 

from the curse of dimensionality and are limited to the local context, while the word 

embedding-based approaches, which benefit from global knowledge, demand high 

computational power to be able to train over vast corpuses. Deep learning-based approaches 

benefit from global knowledge by adding an embedding layer to their complex architecture 

but, in terms of computational power, the cost of generating the model is high. In the 

following chapter, four novel approaches, which are able to inject a local context into 

globally pre-trained word vectors, are presented. 
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Chapter 3. Proposed Document Representation 

Approaches 

3.1 Introduction 

This chapter illustrates the four novel approaches to representing a document in a way 

that uses pre-trained word vectors as well as the document context. The document content 

tree, which is the foundation of the CTWE approach, is described and the CTWE is then 

presented. The MSCT and CMSCT are later introduced, followed by a full explanation of 

the EbWC and AbWC details and algorithms.  

3.2 Content Tree Word Embedding 

3.2.1 Document Content Tree 

A document content tree is based on a semi-taxonomy representation of a document that 

shows the dependency between the terms in the document. In this proposal, in order to 

measure the dependency of terms, a correlation metric is used to evaluate the relationship 

between the deep learning-based generated vectors of the terms used in the document. 

Equation 3.1 illustrates the formula used to calculate the correlation between two 1-D 

arrays, X and Y: 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)
𝜎𝑋.

𝜎𝑌
 

Equation 3.1 

 

where cov is the covariance, σX is the standard deviation of X, and σY is the standard 

deviation of Y.  

Figure 3.1 illustrates the process of adding a new word to the content tree in the early steps. 

The content tree induction algorithm assumes the first word (Word A) in the vocabulary of 

the content as the root and the second word (Word B) as its child. The correlation of the 

third word’s vector (Word C) with the two previously added words in the content tree will 

be measured, as shown in Figure 3.1 (a), and added as the child of the word with maximum 
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correlation, which might be the root, as shown in Figure 3.1 (b), or the second word, as 

shown in Figure 3.1 (c). This process continues recursively for all new words in the content 

in order to find their location in the content tree.  

 

Figure 3.1. Content Tree Induction Early Process 

Algorithm 3.1 shows the process of the content tree creation while Figure 3.2 shows an 

example of a generated Document Content Tree for a sample movie review.  

 
 Algorithm 3.1: Generating Document Content Tree  

 Input: Dataset  
Output: Content Tree, Content Tree-based updated Word Vectors. 
 
Split Training and Testing Data. 
For each word in the Training Data: 

If it exists in the model: 
For each word in the Content Tree: 

Calculate the correlation between the word vectors. 
Parent ¬ Word with Maximum Correlation 
Add the word to the Content Tree as the child of the parent. 

Return Content Tree-based updated Word Vectors. 

 

 

For the computational cost, the worst-case scenario is when all the words in the content 

text are unique. In this situation, Algorithm 3.1 follows 𝑂(𝑛2) complexity to estimate the 

correlation between the word vectors of each word in the content text with all the words in 

the updated constructed content tree, where n is the length of the content text.  

Word A 
(Root)

Word BWord C

Word A 
(Root)

Word BWord C

Word A 
(Root)

Word B

Word C

(a) (b) (c)



27 
 

 
Figure 3.2. Content Tree Sample generated from an IMDB Movie Review with the Word2Vec Model 

3.2.2 Content Tree Word Embedding Document Representation 

In order to define the baseline, the average for the vector of words is calculated from the 

two deep learning-based models. The first model was trained by the Google News corpus, 

which generated a 300-dimensional vector for each word. The second model was trained 

by a corpus from open repository web crawl data, which also generated a 300-dimensional 

vector for each word. Furthermore, the Word2Vec model was trained and used for the 

classification task on the introduced dataset as another deep learning-based document 

representation method. The main idea of the presented approach is to create a content tree 
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for training data. To create the content tree and find the parent-child relationship between 

words, the maximum correlation between the new word and all the other words in the 

content tree is calculated and used as the criteria. The new word will be the child of the 

word between the existing words (visited words) with the maximum correlation to the 

word’s vector. For example, if the union of words:  (“story”, “apartment”, “book”) is 

assumed as the visited nodes in the content tree, the new correlation between the vector of 

the new word “chapter” should be calculated with all the words. The word with the 

maximum correlation will be the parent of the new word, which in this example is “book”. 

The key idea of the approach is to update the word vector of the new word by calculating 

the weighted average of the word’s vector and its parent’s word vector. The new vector 

will be used to calculate the average of the word vectors in reviews for training and in 

testing phases of the study. This approach, illustrated in Equation 3.2, will consider the 

influence of the parent’s word vector on the new word vector:  

 

𝑽𝒆𝒄𝑼𝒑𝒅𝒂𝒕𝒆 =
(𝟏p𝜹).𝑽𝒆𝒄𝑷𝒂𝒓𝒆𝒏𝒕t	𝜹.𝑽𝒆𝒄𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍

𝟏p𝜹t𝜹I𝟏
   Equation 3.2 

where VecUpdate is the new generated vector, VecParent is the parent of the word in the 

context tree, VecOriginal is the word vector learned from the global training data, and δ is 

the decay factor to reduce the effect of the original word vector and increase the power of 

the parent’s word vector. The effect of the decay factor has been investigated in [20].The 

following formula (Equation 3.3) shows the general form of a word vector calculation 

based on its location in the content tree: 
𝑽𝒆𝒄𝒏(𝑵𝒆𝒘) = (𝟏 − 𝜹). 𝑽𝒆𝒄𝒏p𝟏 + 𝜹. 𝑽𝒆𝒄𝒏 = (𝟏 − 𝜹). [(𝟏 − 𝜹). 𝑽𝒆𝒄𝒏p𝟐 + 𝜹. 𝑽𝒆𝒄𝒏p𝟏] + 𝜹. 𝑽𝒆𝒄𝒏	

= (𝟏 − 𝜹)𝟐. 𝑽𝑵p𝟐 + (𝟏 − 𝜹). 𝜹. 𝑽𝑵p𝟏 + 𝜹. 𝑽𝑵	

= (𝟏 − 𝜹)𝟐. [(𝟏 − 𝜹). 𝑽𝑵p𝟑 + 𝜹. 𝑽𝑵p𝟐] + (𝟏 − 𝜹). 𝜹. 𝑽𝑵p𝟏 + 𝜹. 𝑽𝑵	

= (𝟏 − 𝜹)𝟑. 𝑽𝑵p𝟑 + (𝟏 − 𝜹)𝟐. 𝜹. 𝑽𝑵p𝟐 + (𝟏 − 𝜹). 𝜹. 𝑽𝑵p𝟏 + 𝜹. 𝑽𝑵	

																																																																		
.
.
.
	

= (𝟏 − 𝜹)𝒏. 𝑽𝒆𝒄𝑹𝒐𝒐𝒕 + ⋯+ (𝟏 − 𝜹)𝒏p𝒎. 𝜹. 𝑽𝒆𝒄𝒏 + ⋯+ (𝟏 − 𝜹). 𝜹. 𝑽𝒆𝒄𝒏p𝟏 + 𝜹. 𝑽𝒆𝒄𝒏 

Equation 3.3 

where n is the depth of the word in the content tree, Vecn is the original word embedding 

and Vecn(New) is its updated word vector.  
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As shown in Equation 3.4, for each review, VecAverage is the average vector of all words 

that is calculated and used as a feature vector for training a linear SVM classifier. The same 

feature vector is generated for each review in the test data.  

 

𝑽𝒆𝒄𝑨𝒗𝒆𝒓𝒂𝒈𝒆 =
∑ 𝑽𝒆𝒄𝑈𝑝𝑑𝑎𝑡𝑒(𝒊)	
𝑵
𝒊I𝟏

𝑵  Equation 3.4 

where N is the number of words of each review and VUpdate is the content tree-based 

generated vector. Algorithm 3.2 is used for the content tree-based word vector modification 

and to calculate the average of the modified words for each document in the datasets. The 

calculated average word vector is used as a feature vector in the task of classification. 

 
 Algorithm 3.2: Generating CTWE  

 Input: Dataset  
Output: CTWE-based Average Word Vectors. 
 
Split Training and Testing Data. 
For each word in the Training Data:  

If it exists in the model: 
For each word in the Content Tree: 

Calculate the correlation between the word vectors. 
Parent ¬ Word with Maximum Correlation 
𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒	¬	

(1 − 𝛿). 𝑉𝑒𝑐𝑃𝑎𝑟𝑒𝑛𝑡 + 	𝛿. 𝑉𝑒𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	
 

Add the word to the Content Tree as the child of the parent. 

Vec������� =
∑ 𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒(𝑖)	
�
-I�

𝑁  

Return CTWE-based Average Word Vectors 

 

 

Since Algorithm 3.2 employs Algorithm 3.1 to create the content tree, this algorithm 

follows Algorithm 3.1 complexity order, which is 𝑂(𝑛2). 

In the case of scalability for the presented approach, because creating a content tree is an 

exponential algorithm, a solution to reduce the size of the training data is presented. A part 

of the training data is randomly selected as “seed data” and used to train the content tree. 

The size of the seed data is reduced to 10% of the original training data. 
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Figure 3.3 shows a block diagram of the updated word embedding process for a 

classification task.  

 

 

Figure 3.3. Block Diagram of the CTWE Approach 

 

3.3 Composed Maximum Spanning Content Tree 

3.3.1 Maximum Spanning Content Tree Document Representation 

The maximum spanning tree (MST) is a tree with a minimum number of links and the 

highest possible weights that span all of one node.  Kruskal’s algorithm [73], which is used 

to calculate this tree, is applied in order to identify a graph's minimum spanning tree. It 

first sorts the edges in order of increasing cost and then adds edges to generate a fully 

connected graph by bridging the separate components. Negativizing the weights of each 

node allows the algorithm to compute the maximum weight spanning tree. 

In the maximum spanning content tree (MSCT) approach, the same algorithm is used to 

generate the content tree. To select the root word, the fully connected graph of all the words 
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(Text)
Seed Data

Content Tree

Updated Word Embedding'sCreating Content Tree
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Vectors
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in the training data should first be generated. In this weighted graph, the weight between 

every two nodes is the cosine similarity of their word vectors. The summation of weights 

for each node should then be calculated and the node with the highest weight summation 

is selected as the root node. The Kruskal algorithm will be applied over the graph and the 

MSCT will be generated for the words in the training data. In the subsequent step, the word 

vectors will be updated based on the parent-child relationship in the MSCT, similar to the 

CTWE approach. Algorithm 3.3 and Figure 3.4 illustrate the MSCT approach. 

 
Figure 3.4. Block Diagram of the MSCT Approach 

 
 Algorithm 3.3: Generating MSCT  

 Input: Dataset  
Output: MSCT-based Average Word Vectors. 
 
Split Training and Testing Data. 
For each word in the Training Data:  

If it exists in the model: 
Calculate the cosine similarity with all other word vectors as an 
Edge. 
Add the Edge to the fully connected graph: G. 

For each node in G: 
𝑊𝑒𝑖𝑔ℎ𝑡���� =F 𝑊𝑒𝑖𝑔ℎ𝑡����

�����
 

Root ¬ Max (𝑊𝑒𝑖𝑔ℎ𝑡����) 
𝐺���& ¬ Kruskal (G, Root) 
 
For each node in 𝐺���&: 

𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒	¬	
(1 − 𝛿). 𝑉𝑒𝑐𝑃𝑎𝑟𝑒𝑛𝑡 + 	𝛿. 𝑉𝑒𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	

 
 

Vec������� =
∑ 𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒(𝑖)	
�
-I�

𝑁  

Return MSCT-based Average Word Vectors 

 

 

Algorithm 3.3 follows 𝑂(𝑛2)  complexity in order to calculate the cosine similarity 

between all the nodes in the fully connected graph, where n is the size of the vocabulary in 

the training data. The Kruskal algorithm follows 𝑂(𝑒	 log 𝑒), where e is the number of 

Train
Vocabulary

Fully Connected Graph Maximum Spanning Tree

MSCT
Word Vectors

Updated Word Vectors
(0.124,0.4213,…,0.147)

Word Vectors
(0.323,0.4343,…,0.545)

Kruskul Algorithma
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edges (Here e=N) in the graph.[74] 

3.3.1.1 The memory challenge of the MSCT 

The phase of generating the fully connected graph in the MSCT follows the 𝑂(𝑛2)  (n is 

the number of words). This present work implements an experiment that involves 

Word2Vec word embedding over the IMDB movie review dataset. During the 

implementation phase, for the total of 114,583 unique terms in the training data, at least 

1TB memory (RAM) was needed. The only available resource at the time of the experiment 

was the Graham distributed system [75] in Compute Canada, which is the largest and by 

far the most powerful cluster among the current SHARCNET fleet of supercomputers. Due 

to the long processing time and queue to access the resources, another version of the 

MSCT, called the Composed Maximum Spanning Content Tree (CMSCT) document 

representation, is proposed. 

3.3.2 Composed Maximum Spanning Content Tree Document 

Representation  

In this approach, similar to the MSCT approach, a graph is generated but not the fully 

connected graph of the training data. The fully connected graph is generated for the first 

document in the training data and the MST is then extracted from it. A similar MST should 

also be extracted for the second document. These two graphs are then composed together. 

The composition in this context results in a union of the nodes and edges. For the remainder 

of the documents in the training data, the MST will be generated and composed to the 

current content tree. At the end of this process, the Kruskal algorithm will again be applied 

in order to remove the cycles and generate a new tree. This sequential algorithm does not 

suffer from the need to have an inordinately large memory. In the next step, the word 

vectors will be updated based on the parent-child relationship in the CMSCT, similar to the 

CTWE and MSCT approaches. Error! Reference source not found. and Algorithm 3.4 

show the process of the CMSCT approach. 

The evaluation result of the CMSCT in comparison to the MSCT approach is shown in 

Table 5.13. In terms of complexity, Algorithm 3.4 follows 𝑂(𝑚2)  to create a fully 
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connected graph where m is the vocabulary size of each document, (m<<N) and follows 

the 𝑂(𝑒	 log 𝑒) to create the maximum spanning tree for each document and again for the 

composed graph of all documents in the training data. 

 
 Algorithm 3.4: Generating CMSCT  

 Input: Dataset  
Output: CMSCT-based Average Word Vectors. 
 
Split Training and Testing Data. 
For each document in the Training Data: 

For each word in the Training Data:  
If it exists in the model: 

Calculate the cosine similarity with all other word 
vectors as an Edge. 
Add the Edge to the Document’s fully connected 
graph:𝐺���� �¡a. 

For each node in 𝐺���� �¡a: 
𝑊𝑒𝑖𝑔ℎ𝑡���� =F 𝑊𝑒𝑖𝑔ℎ𝑡����

�����
 

𝑅𝑜𝑜𝑡���� �¡a¬ Max (𝑊𝑒𝑖𝑔ℎ𝑡����) 
𝑀𝑆𝐶𝑇���� �¡a ¬ Kruskal (𝐺���� �¡a, 𝑅𝑜𝑜𝑡���� �¡a) 

 
For each document in the Training Data: 

𝐺���&=Composed (𝐺���&, 𝑀𝑆𝐶𝑇���� �¡a) 
 

For each node in 𝐺���&: 
𝑊𝑒𝑖𝑔ℎ𝑡���� =F 𝑊𝑒𝑖𝑔ℎ𝑡����

�����
 

𝑅𝑜𝑜𝑡���& ¬ Max (𝑊𝑒𝑖𝑔ℎ𝑡����) 
𝐺����& ¬ Kruskal (𝐺���&, Root) 
 
For each word in CMSCT: 

𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒	¬	
(1 − 𝛿). 𝑉𝑒𝑐𝑃𝑎𝑟𝑒𝑛𝑡 + 	𝛿. 𝑉𝑒𝑐𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	

 
 

Vec������� =
∑ 𝑉𝑒𝑐𝑈𝑝𝑑𝑎𝑡𝑒(𝑖)	
�
-I�

𝑁  

Return CMSCT-based Average Word Vectors 
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Figure 3.5. Block Diagram of the CMSCT Approach 

3.4 Embedding-based Word Clustering Document 

Representation 

The presented approach, Embedding-based Word Clustering (EbWC), consists of two 

phases: word clustering and word vector generation. 

In the task of text clustering, the target class is not being predicted, but trying to group 

similar words based on different similarity measures.  Groups should not ultimately be 

similar to each other. 

In the presented approach, all the words contained in the training data are first arranged 

into a specified number of clusters based on their word vector from the Word2Vec, GloVe, 

fastText, LSA, or Random word embedding approaches. The clustering algorithm uses K-

means or hierarchical clustering by which, for this study, both clustering methods build the 

same clusters. In the second step, the bag-of-clusters method is used for mapping each 

document to a vector. The distance of the word’s vector to the centroid of each cluster is 

an element of the new representation vector. In this study, in order to be able to compare 

this approach with other presented word embeddings, the number of clusters in the K-

means algorithm, which is the number of dimensions in the representation vector, is set to 

300. Figure 3.6 illustrates the process of cluster vector creation in the EbWC approach.  
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Figure 3.6. Block Diagram of the EbWC Approach 

In this approach, each word (𝒘𝒊) is presented with a vector of distances to the clusters’ 

centroids, as shown in Equation 3.5: 

 
𝑽𝒆𝒄𝒘 = M𝒅𝟏, 𝒅𝟐,…	, 𝒅𝒎N	, 𝐂𝐥𝐮𝐬𝐭𝐞𝐫𝐬 = M𝑪𝟏, 𝑪𝟐,…	, 𝑪𝒏N	

𝑽𝒆𝒄𝑬𝒃𝑾𝑪𝒊 = M𝒗𝟏, 𝒗𝟐,…	, 𝒗𝒏N	

𝒗𝒋 = 𝐂𝐨𝐬𝐢𝐧𝐞(𝑾𝒊, 𝑪𝒆𝒏𝒕𝒓𝒐𝒊𝒅M𝑪𝐣N) 

Equation 3.5 

where W is a word and 𝒅𝟏	to	𝒅𝒎 are elements in its word vector, 𝑉𝑒𝑐𝑤. 𝑪 represents a 

cluster’s centroid, while i is the number of words, and n is the number of final word vector 

dimensions (the number of clusters extracted from the training data). The 𝒗𝒋 is the cosine 

distance of the word 𝑾𝒊 and centroid of the 𝑪𝐣. Algorithm 3.5 shows the process of creating 

EbWC representation vectors. 

Algorithm 3.5 follows 𝑂(𝑛2) , according to the k-means algorithm [76] used for the 

clustering phase while creating new word vectors by calculating the distance from each 

cluster’s centroid follows 𝑂(𝑛). 
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 Algorithm 3.5: Generating EbWC  

 Input: Dataset  
Output: EbWC-based Average Word Vectors. 
 
Split Training and Testing Data. 
Cluster the words in the Training Data based on their word vectors. 
For each word in the Training Data:  

If it exists in the model: 
For each cluster in clusters: 
𝑣. = cosine_distance(𝑉𝑒𝑐-, 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑M𝐶¹N) 

𝑉𝑒𝑐�º»�	¬	(𝑣
�, 𝑣¼, …	, 𝑣¡) 

 

Vec���� �¡a =
∑ 𝑉𝑒𝑐𝐸𝑏𝑊𝐶

𝑖 	¾
¿ÀÁ

�
 (N is the number of words in the Document) 

Return EbWC-based Average Word Vectors 

 

 

3.5 Autoencoder-based Word Embedding  

3.5.1 Autoencoder 

An autoencoder is a type of neural network that tries to reconstruct inputs to outputs. This 

architecture uses non-linear encoder and decoder modules to provide a latent representation 

based on training data, which is known as “encoding the input”. Deep multi-layer neural 

networks are used in the architecture of autoencoders.  

Several studies have been conducted into model word counts by different types of 

autoencoders, namely: Softmax decoder [77], Poisson decoder [78], and binary stochastic 

hidden units. 

Similar to the PCA and other dimensionality reduction methods, autoencoders compress the 

input into a latent-space representation and reconstruct the output from this representation. 

For this purpose, autoencoders use the transformation. Unlike the PCA which uses linear 

transformation, autoencoders use non-linear transformation. 

Autoencoder architecture consists of two parts: the encoder and decoder. The encoder 

compresses the data in the input to a latent-space representation (h=f(x)) while the decoder 

reconstructs the original input from that latent-space representation (r=g(h)). 
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Figure 3.7. Autoencoder Block Diagram 

Figure 3.7 demonstrates a two-layer vanilla autoencoder with one hidden layer. The 

popular types of autoencoders are: convolutional autoencoder; variational autoencoder; 

denoising autoencoder; and sparse autoencoder. For this study, an autoencoder that uses a 

single fully-connected neural layer as the encoder and decoder is implemented. An 

embedding layer with a size of 300 is used to generate new word vectors the size of 300. 

 

3.5.2 Autoencoder-based Word Embedding Document 

Representation 

The main objective of Autoencoder-based Word Embedding (AbWE) is to train the 

autoencoder neural network with the training data and then update (encode) the word 

vectors with this autoencoder. The new word representation should carry the hidden 

information from the training data context. Figure 3.8 illustrates the generation process of 

the autoencoder-based word vector representation and Algorithm 3.6 describes the 

intention: 
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Figure 3.8. Block Diagram of the AbWE 

The complexity of Algorithm 3.6 depends on the training phase that trains the autoencoder 

by the word vectors of the training dataset. This algorithm follows 𝑂(𝑛), as each word 

vector passes through the network once during each training iteration.  

 
 
 

 Algorithm 3.6: Generating AbWE  

 Input: Dataset  
Output: AbWE-based Average Word Vectors. 
 
Split Training and Testing Data. 
For each word in the Training Data:  

If it exists in the model: 
 

𝐴𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ���Ä = 𝑡𝑟𝑎𝑖𝑛_𝑎𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝐼𝑛𝑝𝑢𝑡:𝑊𝑖, 𝑂𝑢𝑡𝑝𝑢𝑡:𝑊𝑖) 
 
For each word in the Training and Testing Data: 

𝑉𝑒𝑐�ºÇ�
- = 𝐴𝑢𝑡𝑜𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ���Ä(𝑊𝑖) 

 

Vec���� �¡a =
∑ 𝑉𝑒𝑐𝐴𝑏𝑊𝐸

𝑖 	¾
¿ÀÁ

�
 (N is the number of words in the Document) 

Return AbWE-based Average Word Vectors 
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3.6 Comparison with Similar Studies 

The current study can be differentiated from other similar investigations due to the subject 

and method.   

In comparison to the original versions of the Word2Vec, GloVe, and fastText, which 

generate word vectors in an unsupervised manner and independent from the local context, 

as well as to the LSA which is completely based on the local context, the presented 

approaches use local context information as well as global information. 

Maas et al. [24] introduced a word representation to capture the semantic and sentiment 

meaning of words. Their approach used supervised and unsupervised learning that fit the 

representation into the task, not the context. 

A similar study was conducted by Hong [35], who tried to improve the performance of 

Paragraph2Vec by adding a hidden layer and a tensor layer. This study was also different 

from the present work in that it fit into the task, similar to the Paragraph2Vec approach.  

Kim et al. [28] introduced three approaches for document representation, based on the 

Word2Vec vector of content words. These approaches did not change the word level vector 

but calculated the document vector in a novel approach. 

Bernotas et al. [12] used a tagging-based document representation method  by using 

ontology, which was conducted at the document representation level and for a clustering 

task. 

The study of Lu et al. [29] was similar to the EbWC approach.  Here, they created a cluster's 

universe and, by segmenting documents into topics and assigning topics to the clusters, a 

relationship was made between each document and the clusters. Their approach did not 

change the word representation based on the context. 

The study of  Socher et al. [30] employed the Neural Tensor Network  to extract the 

relationship between entities in a knowledge base. The vector representation of words was 

used to calculate the average of the word vectors in an entity, which made this study 

different from the presented approaches in the current study. Tai et al. [37] introduced a 
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new representation for sentences that is a combination of LSTM and tree-structured 

network topologies. The authors first generated an alternative representation based on 

concepts in a document and then aggregated the results with the original word vectors. This 

model is also used for document representation. 

In comparison with the presented approaches, the USE [38] is a transfer learning-based 

approach that encodes text into embedding vectors.  It computes context aware embedding 

for each word in the text and calculates an element-wise sum at each word position to 

produce an embedding vector for the whole document. This representation should be 

calculated for each sentence and is not a one-time process. 

The document representation by [41] uses weighted word occurrence based on its 

contribution in the context and captures sub-topic level keywords to facilitate the learning 

process. The computation and memory cost depend on the size of the text and is another 

variation of the Doc2Vec approach. 

The approaches by [42] and [43] employed autoencoders similar to the AbWE approach. 

However, as well as not presenting a new word vector for each word in the context, these 

approaches worked at the document embedding level. 

In comparison, ELMo [50] and BERT [51], presented LSTM based architectures that 

achieved state-of-the-art results in some NLP tasks, and could represent new word 

embeddings. Their main focus in the model is more on the architecture than the context 

aware word representation. 

3.7 Summary 

The first approach, CTWE, employs a semi-taxonomy structure, known as a content tree, 

and subsequently updates the word embedding vectors. The second approach, MSCT, is 

proposed in order to first select the root based on the node degree, then generate the 

maximum spanning tree. Another version of this approach, called the CMSCT, which does 

not require a high amount of memory to generate the fully connected graph of all the words 

in the training vocabulary, is defined. This approach first generates a small spanning tree 

for each document, then generates the training data spanning tree by combining them. In 

the final step, the word vectors are updated based on their location in the maximum 
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spanning tree. The third approach, EbWC, uses the clustering method for extracting the 

conceptual structure of the context. Each element of the new word embedding is the 

distance from the centroid of each word group cluster. The fourth method, AbWE, uses an 

autoencoder for dimensionality and noise reduction in the context. The main idea here is to 

train the autoencoder to capture the training data concepts, then update the word vectors by 

encoding them. 
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Chapter 4. Experimental Evaluation Setup 

4.1 Introduction 

To study the effectiveness of the methods presented in Chapter 3, the design and conduct 

of experiments on datasets and classifiers with different characteristics is needed.   

In Chapter 4, the experimental setup of the research is described. The five selected datasets 

are first introduced and the rationale behind this selection is described. The 11 classifiers 

used in this study are described and the evaluation metrics are then initiated. The 

experimental setup is described as Algorithm 4.1. 

4.2 Datasets 

The following five datasets, which are some of the most well-known in the domain of text 

mining and text classification, have been used as the benchmark in this study. For covering 

the aspect of classification type, two binary datasets and three categorical datasets are 

selected. Different observation sizes, unique words count, and class distributions were 

collected as datasets to evaluate the proposed approaches in different situations. Table 4.1  

shows the statistics pertaining to the datasets. 
Table 4.1. Dataset Statistics 

Dataset # of 
classes 

Training Observations Testing Observations # Unique Words in 
Training 

# Unique Words 
in Testing 

IMDB 2 25,000 25,000 114,583 99,805 
HSI 2 7,254 7,255 20,553 19,126 
20 Newsgroups 20 11,347 7,550 261,846 189,503 
Reuters-21578 74 7,769 3,019 49,240 29,397 
AG News 4 120,000 7,600 182,591 38,767 

 

4.2.1 IMDB Movie Review 

The Internet Movie Database (IMDB) Movie Review [79] is a sentiment (binary) 

classification dataset, consisting of 25,000 training and 25,000 testing records. The 

information is collected from movie reviews from the website www.imdb.com. The state-

of-the-art result that is found for this dataset represents an ensemble approach based on 
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naïve base SVM and recurrent neural networks (RNNs), presented by Mesnil et al. [80], 

which is 92.57 in terms of accuracy. 

4.2.2 Hate Speech Identification 

The hate speech identification (HSI) dataset [81] contains 14,509 tweets with three classes. 

In their study, Almeida et al. [82] achieved a result of 96% F_score with a k-NN classifier 

for this dataset. 

For this present study, the dataset is modified and converted to a binary classification task. 

The positive class is when a tweet contains hate or offensive speech and the negative class 

is when the tweet was not offensive.  

4.2.3 20 Newsgroups 

The 20 Newsgroups (20 NG) collection [83] is one of the popular datasets in text clustering 

and text classification. The dataset includes 18,897 posts on 20 topics, split into training 

and testing. The training and testing data are divided according to a specific date. Each 

newsgroup corresponds to a specific topic. 

Lai et al. [84] employed a recurrent convolutional neural network architecture and reported 

state-of-the-art results for this dataset as 96.49 in terms of the F_score macro. 

4.2.4 Reuters 

The Reuters-21578 benchmark corpus [85] includes 10,788 news documents from the 

newswire service of the Reuters financial newswire service. The training data is a collection 

of 7,769 documents while the testing data contains 3,019 documents.  

Nam et al. in [86] achieved the highest reported F_score for this dataset with 87.89%. A 

cross-entropy algorithm with TF-IDF document representation was used as the solution. 
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4.2.5 AG News 

The AG news topic classification dataset [87] contains four classes with 30,000 training 

samples and 1,900 testing samples for each class, a total of 120,000 training and 7,600 

testing records. 

This dataset is collected by the ComeToMyHead academic search engine from more than 

2,000 news sources during a period of almost one year. For this dataset, Conneau et al. 

[88], who designed a deep learning-based architecture called the Very Deep Convolutional 

Network, reported a state-of-the-art identified result  of 7.64 in terms of error rate.  

4.3 Classification 

The machine learning approaches in the domain of text mining can be differentiated as 

supervised, unsupervised and semi-supervised learning algorithms [89, 90].  

In supervised learning, the model is trained by a set of labeled input features. The set of 

labels are typically fixed. In the task of regression, the labels can be a continuous value 

vector. In supervised learning, the aim is to find the best parameters for prediction based 

on a loss function. 

In unsupervised learning such as PCA and clustering methods, the data is not labeled, and 

the objective is to find hidden patterns. 

Semi-supervised learning refers to methods that fall between supervised and unsupervised 

learning. This approach typically uses a combination of a small amount of labeled data and 

a large amount of unlabeled data. These methods are not as expensive as supervised 

learning methods that need a labeling process. Moreover, the results are usually more 

accurate than the unsupervised methods. 

In this research, the supervised learning method is used by employing 11 classifiers, which 

are introduced in Sections 4.3.1 to 4.3.10. 
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4.3.1 Logistic Regression 

Logistic regression (LR) is a classification technique in machine learning that originates 

from the field of statistics. It is a common method for binary classification problems, as a 

result of its low computational cost. The goal of LR is similar to linear regression, namely 

to find the weight of each input (coefficient). The difference is in the transformation 

function, called the logistic function [91]. This logistic function transforms the values to a 

range between 0 and 1, from which can be predicted the class based on the rules or 

probabilities. LR works better by removing the correlated attributes or those that are not 

related to the output.   

4.3.2 Support Vector Machine 

One of the most famous algorithms in machine learning is SVM, which is based on the 

functionality of the hyperplane, which is a line that is supposed to split the variable space 

based on each class of the input. The SVM calculates the coefficients for the hyperplane to 

most effectively split the classes. 

The margin is the distance between the hyperplane and the closest bordering point of the 

data. An optimized hyperplane can distinguish the classes with the maximum size of 

margin. The points that are used to define (support) the hyperplane are classed as the 

support vectors. Discriminant hyperplanes are used for generalization capabilities during 

classification [92, 93]. 

Linear SVMs use linear decision boundaries. Non-linear classifiers, which are more 

complex, use the “Kernel Trick” by indirectly mapping the data  to another higher 

dimensional space. The generalization power of SVMs  prevents overfitting into the data, 

[94] and also strengthens them to face the Curse of Dimensionality [92, 93] 

4.3.3 Naïve Bayes 

The Naïve Bayes (NB) classifier is a powerful and simple solution for predictive modeling. 

The pre-assumption is the independency of each input variable. As this assumption is not 

realistic, the classifier is referred to as naïve. However, it is an effective solution for 
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complex problems. The probability for each class and the conditional probability given to 

each value are calculated to create a probability model. For new data, the model uses the 

Bayes theorem for prediction. 

This present study employs the Gaussian Naïve Bayes (GNB) classifier, which is a type of 

NB that can be used when its distribution of data follows the Gaussian (normal) 

distribution. For real-valued data, it is common to assume a Gaussian distribution (bell 

curve), so that the GNB can accurately estimate these probabilities[95]. 

4.3.4 Decision Tree 

Tree representation is used by a decision tree (DT) to generate a predictive model by 

learning the decision rules. The middle nodes of the tree represent the conjunctions of the 

features while the leaves are the class labels. 

One of the specific features of DT is the understanding level of the DT algorithm, which is 

easy for humans to understand, compared with other classification algorithms. In text 

classification, the document will start from the root and go through the query structure to 

reach a certain leaf that shows a certain class [96]. The classification logic can be explained 

to humans by simple mathematical algorithms. This is useful when we know the presence 

of the relevant features is a nature of the problem [14].  For tasks with a limited number of 

features, DT can be a good candidate due to its understandability, simplicity, and 

performance. A drawback of DT is the tendency to overfit the training data [97].  

4.3.5 Random Forest 

The Random Forest (RF) approach uses multiple DT structures that are generated by 

random sampling with replacement. This supervised learning classifier works according to 

the bagging or bootstrap ensemble machine learning algorithms. DTs can be classification 

or regression trees; RF can handle both classification and regression problems. 

Bootstraps are used to estimate a quantity from a data sample, similar to calculating the 

mean of multiple samples and then calculating the average of all the mean values to 

determine a fine estimation of the true mean value. 
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The bagging approach is similar. For each sample of the training data, a model is 

constructed, and each model predicts for a new observation. All the predictions are 

averaged in order to estimate the final output [98]. 

Based on the sample training data, each model is accurate but different. A combination of 

predictions can lead to a prediction with higher quality in comparison with each individual 

model. 

4.3.6 k-Nearest Neighbor 

The k-Nearest Neighbor (k-NN) algorithm [99] is an instant-based learning algorithm that  

is widely used in text classification tasks. In the case of text classification, the k-NN can 

classify each object based on the closest document in the multi-dimensional feature space 

according to the training dataset. Based on the training data, the feature space is divided 

into partitions and each observation is assigned to one partition (class) based on the k 

nearest neighbor. For the regression problem, this algorithm uses the mean output variable.  

While this method needs to search the entire feature space for the most similar instances, 

it uses all the features for computing the distance. Hence, it is computationally intensive 

and requires significantly large memory according to the size of the training data. Also, 

noise or unrelated data can reduce the accuracy of the k-NN. 

The training phase consists of storing the features and categorizing them in accordance 

with the training data. In the classification phase, the algorithm needs to calculate the 

distance from the new observation's vector to all the instances in the training data in order 

to predict the class (the call that contains most of the neighbors). Finding similar neighbors 

is critical for the k-NN, which needs a proper similarity (distance) measure. The type of 

calculated distance impacts the k-NN efficiency. The Euclidean distance is the typical 

distance measure that is used with the k-NN [99] 

4.3.7 Deep Neural Networks 

Linear classifiers are limited when a few samples are available in a large output space 

because they cannot share parameters between features and classes. Factorizing to low rank 

metrics [8, 100] or using multilayer neural networks [101] are common solutions. 
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The majority of deep learning methods are formed in accordance with the neural network 

learning algorithms. Noteworthy research studies have been conducted on machine 

learning through deep neural networks. Imitating the brain's process is the significant 

feature of neural networks, which is applicable for image, text, and other signal processing 

problems. The data goes through layers, from an input layer to the final layer, in order to 

produce the output. Hidden layers are known as the layers between the input layer and the 

output layer. The network with several hidden layers is known as the deep neural network 

(consequently the term “deep learning”). The activations are distributed over classes in the 

final layer. 

The parameters are calculated by the maximum likelihood method with SGD based on the 

dataset. SGD uses a small subset of data for each gradient update. Binary cross-entropy 

loss is used for binary classification and categorical cross-entropy for multi-class tasks. 

The convolutional neural networks (CNNs) and the RNNs are the most popular 

architectures. 

4.3.8 Convolutional Neural Networks 

The convolution function is defined as a sliding window that is applied to a matrix. In the 

field of image processing, where the matrix represents the image and each element 

corresponds to one pixel, this sliding window is named as the filter, kernel, or feature 

detector. The filter multiplies over the matrix elements and calculates the total. This process 

is conducted for the entire matrix. In this case, finding the difference between a pixel and 

its neighbors can detect the edges. 

CNNS are composed of several convolution layers with non-linear activations applied to 

the output, namely tanh or rectified linear unit (ReLU). The convolution layer is used to 

compute the output. Each region of the input is connected to an output neuron. Different 

filters are applied over each layer and the results are combined. The filters' coefficients are 

calculated during the training phase according to the training dataset. The network captures 

different aspects of the features on each layer. As an example in the field of image 

processing, the architecture learns the edges from the raw data in the first CNN layer, and 
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use the edges to detect shapes in another layer. The pattern is repeated to the final layer,  

which can use the high-level captured features [102]. 

The vanilla architecture of a CNN for supervised prediction is made by a convolution layer, 

pooling layer, and an optional fully connected layer. More than 10 convolutional and 

pooling layers are regularly needed in practice to achieve acceptable results. CNNs, which 

need a considerably extensive amount of labeled data for training, achieve success mostly 

in the field of image processing (computer vision)[103].  

CNN architecture is a feed-forward neural network. The generated features are convolved 

together in each layer since classification is applied. In image processing, the features are 

extracted from small 2d regions. For text documents, a one-dimensional region is used 

[104]. Each sentence can be presented by a sequence of the k-dimensional vectors of its 

words. The convolution of the words, selected by a fixed-sized window with a filter, can 

produce feature mapping. Feature mapping is provided by applying the filter to all the 

documents in the training dataset. The max-over-pooling technique is applied to the 

extracted features to obtain the maximum value for the filter. To obtain the output class, 

the softmax layer is applied as the last step in the CNNs. The input matrix is convolved 

with a set of kernels and the biases are added to generate a new feature map. A non-linear 

transformer is then applied, and this process is repeated for each convolutional layer.  

In the majority of NLP tasks, the inputs are sentences of documents or their represented 

version with a matrix. The column (or sometimes the row) corresponds to a token, which 

can be a character, a word or a sequence of characters or words. Each row (or column) is a 

vector to represent the token. These vectors can be pre-trained word embeddings such as 

Word2Vec, GloVe, fastText, or even the one-hot vector to index the word into a 

vocabulary. For a 15-word sentence that uses a 300-dimensional word embedding, a 15 by 

300 (15x300) matrix is used as the input. This matrix can be comparable with an image. In 

NLP, the filters regularly slide over full rows (words), unlike images which use local 

regions. For this reason, the width of the filters should be the same as the width of the 

matrix, but the height of the filter can vary. Typically, the size of a window is two to five 

words. A definition of the higher level is not as clear as the field of computer vision but 

can be interpreted as the concepts or meanings. Convolutional filters can effectively learn 
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representation of the token (usually the words), with no need to learn the entire vocabulary. 

This present study uses a total 128 filters with size 5 and max pooling of 5 and 35 as the 

vanilla simple CNN, known as One Dimensional CNN (1D-CNN). 

4.3.9 Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) were developed for discrete sequence analysis. The 

model learns the class distribution for a sequence of inputs, rather than a single input [105]. 

At any one time, the output of non-linear mapping is a hidden state (latent) that is 

maintained by an RNN. This can be useful in applications, such as machine translation 

where the input is the sentence of the source, and target languages as well as a previous 

state. Weight matrices are shared over time. In the case of classification, the fully connected 

and softmax layers are needed to map the sequence to a class. For the training phase, RNNs 

suffer from the problems that should be dealt with by other deep learning approaches, as 

the gradient needs to be backpropagated through time [106]. The LSTM [107] is one of the 

developed popular specialized memory unit architectures of the RNN. The Gated Recurrent 

Unit (GRU) [108] is another architecture that is commonly used. 

The RNNs have achieved success in processing streams of data [109]. One network is 

applied over all elements in a sequence while each output depends on the previous. To 

solve the gradient problem, the original RNNs only considered limited previous steps. The 

LSTM and GRU architectures address this problem by modeling hidden states with cells 

to determine what to consider, based on input value, as well as previous and current states. 

This can capture long-term dependencies that are essential for NLP tasks [110, 111]. 

4.3.10  Hybrid Approaches 

4.3.10.1 Deep CNN-LSTM 

A sequential combination of CNN and LSTM layers, followed by a dense layer, can define 

a Deep CNN-LSTM architecture. CNN models extract the features while LSTM models 

can interpret the features across time steps. The fully-connected layer generates the final 

output from a concatenation of the CNN and LSTM branches. The network uses 16 and 
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128 batches for training [112]. The first layer of the network, the embedding layer, converts 

the sequence of word indices and embeds each word into a fixed-size vector. This layer is 

a matrix of weights that are trained according to the training data. The multiplication of 

this matrix and the word index generates the word vector. Each branch, which accepts the 

output of the embedding layer as the input, has a one-dimensional convolution layer. 

Applying multiple filters with different sizes generates multiple outputs. These outputs 

understand a word when it appears with other words. A ReLU activation is applied to 

introduce the non-linear output of the CNN layer by replacing a negative result with zero. 

After the ReLU is activated, a one-dimensional max pooling is applied to convert the kernel 

size input to a single output, which is the maximum perceived number.  Using max pooling 

will reduce overfitting with down sampling. To prevent overfitting, the dropout layer is 

applied by randomly replacing a part of the input to zero. This will help the generalization 

of the network. The next layer is the batch normalization, which normalizes the distribution 

of the result in each branch. This will facilitate convergence by reducing the internal 

covariate shift. The LSTM, as the last layer in each branch, is used according to the nature 

of the sequential data and will allow the previous input to impact the new input. The outputs 

of the branches are concatenated and generate an array. A fully-connected array will 

convert this array to a final output. The sigmoid activation function will adopt the output 

to a range between 0 and 1. A binary cross entropy loss function and an optimizer will 

compile the network.  

4.3.10.2 AdvCNN 

AdvCNN [113] is a parallel CNN based deep network with varying filter widths, able to 

achieve a state-of-the-art performance on sentiment analysis and question classification.   

The basic idea is to use a CNN where different convolutions are used to produce different 

n-gram-like filters to determine the sentiment of a given text. For each convolution, 128 

filters are used. The words are embedded in the first layer and convolutions with different 

filter sizes are applied over the vectors to generate feature maps of different lengths. A max 

pooling layer is applied over each feature map to generate a univariate feature vector. The 

concatenation of the feature vectors will pass to a softmax layer for classification. The 

original architecture is designed for the task of binary classification. 



52 
 

4.3.10.3 Boosted CNN 

In a study by Gultepe et al. [104], a modified version of the AdvCNN architecture with n-

gram filter sizes = (1,2,3,4) is presented. Each n-gram filter size pertains to a separate and 

parallel convolutional layer in the model. The core of the Boosted CNN is a 1D-CNN 

model [110]. These layers are finally concatenated with each other in a max-over-time 

pooling layer, prior to the softmax classification layer. The following are the parameters 

used for the network of the presented architecture: 

For each n-gram, the number of filters is set to 128, which is a popular size in convolutional 

network models [114]. The size of the embedding dimension is set to 300 according to the 

size of the used word embeddings, such as the Word2Vector [8]. An 𝐿¼ parameter weight 

decay of 10𝑒pÊ [115, 116] is used in the convolutional layers to apply regularization over 

the weights. The ReLU activation function was used, according to its acceptable 

performance in other studies [117]. 

 

4.4  Evaluation Metrics 

Measuring text classification performance is an important issue in the field of text mining. 

Experimental methods are more common than analytical evaluation methods.  

In a 2018 survey study by Schnabel et al. [118], the evaluation methods for unsupervised 

word embeddings were divided into two major categories: intrinsic and extrinsic 

evaluations. In an intrinsic evaluation, the syntactic or semantic relationship between words 

is directly evaluated while, in the extrinsic method, word embedding is used as the input 

feature for another specific task.  

Similar to evaluation methods in other fields of data mining, in text mining, the terms true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN) are used to 

compare the classifier’s predicted results with the expected results.  

Here, precision and recall are defined in [119] as follows: 
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Precision = 
&Ë

&ËtÌË
 Equation 4.1 

Recall= 
&Ë

&ËtÌ�
 Equation 4.2 

 

Accuracy is then defined as: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 Equation 4.3  

 

The F_score measure combines the precision and recall by calculating the harmonic mean. 

The balanced F-score formula [120, 121] is shown in Equation 4.4: 

 

𝐹_����� = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

Equation 4.4 

The F_score macro individually calculates the metrics for each label and then calculates 

the unweighted mean. This does not take label imbalance into account. The F_score micro 

is calculated based on the total of true positives, false negatives and false positives.  

There is a statement that suggests calculating the F_score micro for a class imbalance 

problem but, in this research, the F_score macro is selected to evaluate each approach and 

compare the results. The F_score macro is preferred over micro as it gives equal importance 

to each class whereas, similar to the accuracy metric, the F_score micro gives equal 

importance to each sample and is influenced by the number of samples in a class. For this 

reason, the F_score macro is consistently used in this research to evaluate each approach 

and compare the results. 

 

4.5 Experimental Setup 

To study the effect of the proposed document representations, the following set of 

experiments are designed. For each one of the five datasets, the four proposed approaches 

are implemented and word vectors for the dataset’s vocabulary are generated based on five 

baseline word embeddings: Word2Vec, GloVe, fastText, LSA, and Random word 
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embedding. The new word vectors are employed by the 11 introduced classifiers for 

application to the pre-defined task of the dataset. For the traditional classifiers, the average 

of the new word vectors is used as the document representation and, for the deep learning-

based approaches, the new generated word vectors are used as the embedding layer. 

Algorithm 4.1 shows the steps involved in the study.  

This research involved conducting a total of 1,111 experiments in order to evaluate the 

effect of the four proposed approaches:  

 

 Algorithm 4.1: Experimental Setup  

 Input: Datasets (IMDB Movie Reviews, Hate Speech Identification, 20 
Newsgroups, Reuters-21578, and AG News) 
Output: Evaluation results in terms of the F1_score Macro 
 
For each dataset:  

Split Training and Testing Data. 
For each baseline word embedding: 

For each proposed approach: 
Generate new word embedding (Thesis contribution) 
For each classifier: 

If Traditional Classifier: 

𝑉������� =
∑ 𝑉𝑈𝑝𝑑𝑎𝑡𝑒(𝑖)	
�
-I�

𝑁  
If deep learning-based Classifier: 

Embedding Layer ¬	𝑉𝑈𝑝𝑑𝑎𝑡𝑒 
Return F1_score for the test datasets 

 

 

5 datasets x 5 baseline word embeddings x 4 proposed approaches x 11 classifiers = 1,100 

experiments plus 11 experiments that evaluated the word embedding generated by applying 

MSCT over the Word2Vec word embedding. 

4.6 Summary 

In this chapter, the experimental setup to evaluate the four novel document representation 

approaches is explained. Statistics for the five datasets that are used in this study are 

described. The theory behind the traditional and deep learning-based classifiers is specified 

and the evaluation metrics that are used are explained. 
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Chapter 5. Experimental Results and Discussions 

5.1 Introduction 

The results of the experiments that are conducted in Chapter 4 are presented and described 

in this chapter. The effect of the baseline document representations on traditional and deep 

learning-based classifiers is first evaluated and described. The four novel approaches, 

namely CTWE, CMSCT, EbWC, and AbWE are then applied to five baseline word 

embeddings for each dataset and new word embeddings are generated. By using these 

newly generated word embeddings as the new word vectors, the performance of the 

classifiers is compared with the corresponding baseline word embedding. Also, the word 

embedding that is generated by the MSCT approach for the IMDB movie review on 

Word2Vec word embedding is compared with the word embedding that is generated by the 

CMSCT approach. For each classifier, the variance of the word embedding is studied and 

the results, together with a discussion, are reported in the following subsections. By the 

end of this chapter, the total effect of the proposed approaches on the studied word 

embeddings, and a comparison between all the represented approaches among the different 

document representations, are considered and visualized as two heatmap charts. 

 

5.2 The Effect of Document Representation on Traditional 

Classification Approaches 

Table 5.1 shows the evaluation results for different combinations of six traditional 

classifiers that use different document representation methods. The bag of words, the bi-

gram, and the LSA are the representatives of traditional word embeddings, while 

Word2Vec, GloVe, and fastText are the deep learning-based representations.  

For the task of sentiment analysis in the IMDB Movie Review dataset, the best result, 

which is 0.8860 in terms of F_score macro, is achieved by a combination of LSA document 

representation and the SVM classifier. 
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An evaluation of classifiers shows that the LR could achieve the best result when using 

five out of six document representations, although it should be made clear that the main 

purpose of this experiment is to evaluate the document representations, not the classifiers. 

Using the bi-gram enabled the LR and GNB classifiers to achieve their best results, while 

using the LSA produced the best results for the SVM and DT. Glove and fastText did not 

achieve any best result with these classification approaches.  

For the task of sentiment analysis in the HSI dataset, employing the bi-gram approach 

showed the best results in four out of six classifiers. The highest F_score belongs to the 

LR, which uses bi-gram for document representation. The LSA, Word2Vec, and GloVe 

failed to achieve an improvement in any classifier. 

For the task of document classification in the 20 NG dataset, using the LSA approach for 

the document representation helped four out of six classifiers to gain their best results. In 

addition, the best results were achieved by the SVM classifier when using the LSA 

document representation. The bag-of-words helped the LR and GNB to achieve their best 

results, while all three deep learning-based word embeddings could not produce any best 

result.  

For the task of document representation in the Reuters dataset, the bi-gram achieved the 

best results when half of the classifiers used it as the document representation method. In 

this dataset, by using the bag-of-words document representation, the SVM classifier 

achieved the best result. 

For the AG News dataset, the bi-gram document representation was able to achieve the 

best result in five out of six datasets. The best result was achieved by LR while using bi-

gram as the document representation method. The second highest F_score was achieved 

by k-NN when using the fastText document representation.  

In conclusion, it can be inferred that the bi-gram and LSA document representation 

approaches can work more effectively with traditional classifiers.  Taking the average of 

the word vectors failed to achieve the best results in the majority of experiments. 
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Table 5.1.The Effect of Document Representation on Traditional Classification Approaches 

 
 LR SVM GNB DT RF KNN 

IMDB 

bag-of-words 0.8668 0.8405 0.5819 0.7238 0.7820 0.6070 

bi-gram 0.8749 0.8563 0.7453 0.7262 0.7816 0.5737 

Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495 

GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397 

fastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460 

LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780 

HSI 

bag-of-words 0.8574 0.8410 0.6522 0.8249 0.8469 0.7757 

bi-gram 0.8605 0.8532 0.6560 0.8353 0.8456 0.7814 

Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261 

GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534 

fastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576 

LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483 

20 NG 

bag-of-words 0.7781 0.7449 0.7119 0.5454 0.6339 0.3016 

bi-gram 0.7719 0.7445 0.7084 0.5493 0.6503 0.3059 

Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983 

GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334 

fastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502 

LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861 

Reuters 

bag-of-words 0.5719 0.6082 0.2454 0.3607 0.2884 0.3100 

bi-gram 0.5762 0.5992 0.2986 0.3656 0.3262 0.2809 

Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650 

GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419 

fastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710 

LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777 

AG News 

bag-of-words 0.9059 0.8964 0.8609 0.8208 0.8639 0.5361 

bi-gram 0.9087 0.8985 0.8653 0.8209 0.8668 0.5666 

Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020 

GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044 

fastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068 

LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995 
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5.3 The Effect of Word Embedding on Deep Learning-based 

Approaches  

 

Table 5.2 illustrates the effect of using variant word embeddings for the embedding layer 

of the deep learning-based approaches that are investigated in this thesis. 

LSA word embedding is used to compare the results of pre-trained word embedding 

approaches that carry global knowledge with the locally trained word embedding that 

carries context knowledge. Comparing the results of different word embeddings with the 

results of Random word embedding can show to what extent locally or globally trained 

word embeddings can help the classifier to perform more effectively.  

For the task of sentiment analysis in the IMDB Movie Review dataset, the best result is 

achieved by the Boosted CNN architecture that uses fastText word embedding for its 

embedding layer. Two deep CNN architectures, AdvCNN and Boosted CNN, produced 

their best result with fastText word embedding. Such a similarity in results could be 

expected due to the similarity between the architectures. The 1D-CNN produced its best 

result when using the Word2Vec for the embedding layer. The other results are not 

significantly different, with the exception of Random word embedding, which means that 

using the trained word embedding can outperform the result of this architecture for 

approximately 3%. Using GloVe word embedding achieves the best result for the LSTM 

architecture, while Word2Vec produced the weakest results, even lower than using the 

Random word embedding. 

For the task of HSI, the GloVe word embedding performed better than other word 

embeddings in three out of five architectures: Deep CNN-LSTM, AdvCNN, and Boosted 

CNN. The random architecture realized the best result in two architectures, 1D-CNN and 

LSTM. As this pattern is never repeated, it can be assumed that this result is not persistent. 

The best result in this dataset belongs to the Boosted CNN architecture that used GloVe 

document representation. 



59 
 

In the 20 NG dataset, for the task of document classification, the GloVe and the LSA word 

embedding each attained the best results for two architectures, while fastText performed 

better than others only in the 1D-CNN. In this dataset, GloVe performed more effectively 

with architectures that used the LSTM approach. Again, in this dataset, there was 10% up 

to 42% difference between Random word embedding and the trained word embedding 

model.   Using the Boosted CNN with the LSA document representation created the best 

result in this task. 

 
Table 5.2. The Effect of Word Embedding on Deep Learning-based Approaches 

  1D-CNN LSTM Deep CNN-LSTM AdvCNN BOOSTED 
CNN 

IM
D

B
 

Word2Vec 0.8892 0.8295 0.8454 0.8983 0.8997 

GloVe 0.8815 0.8637 0.8432 0.8923 0.8979 

fastText 0.8881 0.8582 0.8474 0.9051 0.9058 

LSA 0.8854 0.8512 0.8378 0.8879 0.8980 

Random 0.8578 0.8550 0.8457 0.8521 0.8622 

H
SI

 

Word2Vec 0.7467 0.7657 0.6505 0.7873 0.7936 

GloVe 0.7511 0.7804 0.6664 0.7913 0.7966 

fastText 0.7366 0.7755 0.6508 0.7896 0.7928 

LSA 0.7236 0.7473 0.6077 0.7666 0.7792 

Random 0.7658 0.7827 0.6319 0.7866 0.7883 

20
 N

G
 

Word2Vec 0.7707 0.7871 0.7804 0.8005 0.7794 

GloVe 0.7808 0.8183 0.8099 0.8151 0.8049 

fastText 0.8019 0.7825 0.7923 0.8174 0.8080 

LSA 0.7963 0.7130 0.7798 0.8352 0.8309 

Random 0.6943 0.3942 0.4786 0.5232 0.7141 

R
eu

te
rs

 

Word2Vec 0.5536 0.4882 0.2785 0.6008 0.5756 

GloVe 0.5439 0.5137 0.3867 0.5707 0.5482 

fastText 0.5260 0.4337 0.3446 0.6432 0.5575 

LSA 0.4707 0.2083 0.2372 0.5976 0.5268 

Random 0.4404 0.0908 0.0809 0.4091 0.4762 

A
G

 N
ew

s 

Word2Vec 0.9212 0.9125 0.8979 0.9181 0.9185 

GloVe 0.9237 0.9138 0.9062 0.9243 0.9139 

fastText 0.9248 0.9107 0.9034 0.9226 0.9199 

LSA 0.9183 0.9081 0.8990 0.9121 0.9189 

Random 0.9151 0.9055 0.9003 0.8924 0.9085 
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In the Reuters dataset, GloVe achieved the best results for the LSTM and Deep CNN-

LSTM approaches. In contrast to the three previous approaches explained above, the 

AdvCNN and Boosted CNN produced their best results with different word embeddings. 

The highest F-score was gained by AdvCNN architecture by using fastText word 

embedding. The Glove word embedding attained the best result in the two LSTM-based 

architectures, similar to the 20 NG dataset. 

Finally, in the document classification task for the AG News dataset, the fastText word 

embedding with the 1D-CNN architecture outperformed the other approaches. The GloVe 

word embedding performed better than other word embeddings in three out of five 

architectures. 

In conclusion, in most of the experiments, neither the Random nor LSA word embedding 

could achieve the best result while the pre-trained word embeddings performed better with 

the deep learning-based architectures. 

 

5.4 The Effect of CTWE on Word Embeddings 

5.4.1 The Effect of CTWE on Word2Vec 

Table 5.3 shows the effect of the CTWE approach when applied to Word2Vec word 

embedding and employed by different classifiers. In the task of sentiment analysis in the 

IMDB Movie Review dataset, the CTWE-based word embedding outperformed the 

original Word2Vec representation for 7 out of 11 classifiers. The highest improvement is 

observed in the GNB classifier from 0.3416 to 0.7601 in terms of the F_score macro. All 

of the traditional classifiers showed improvement with CTWE while only the LSTM 

architecture improved in the deep learning-based approaches. The highest result was 

achieved by the regular Word2Vec when used with the Boosted CNN architecture. 

In the task of HSI, the CTWE approach was more effective than the regular Word2Vec in 

3 out of 11 classifiers. Similar to the IMDB Movie Review dataset, the Boosted CNN 

achieved the best result when used with the original Word2Vec document representation. 
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In the task of document classification in the 20 NG dataset, the CTWE-based document 

representation improved the results in five of the classifiers. Also, the best result was 

achieved by the AdvCNN when used in the CTWE-based Word2Vec representation. The 

results improved in three out of 11 classifiers when the CTWE was applied to Word2Vec 

in the Reuters dataset while the best result was achieved by the AdvCNN, which used the 

original Word2Vec. In the AG News dataset, the best result was produced by the Boosted 

CNN when the CTEW was used as word representation. In total, six out of 11 classifiers 

performed better when the CTWE was applied to Word2Vec. The RF classifier showed 

improvement in all datasets when the CTWE modified the Word2Vec word representation. 
 

Table 5.3. The Effect of CTWE on Word2Vec 

 

 LR SVM GNB DT RF KNN 1D-
CNN LSTM Deep CNN-

LSTM AdvCNN BOOSTED 
CNN 

IM
D

B
 Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495 0.8892 0.8295 0.8454 0.8983 0.8997 

CTWE 0.8585 0.8576 0.7601 0.6729 0.7289 0.7642 0.8525 0.8439 0.8403 0.8895 0.8980 

H
SI

 Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261 0.7467 0.7657 0.6505 0.7873 0.7936 

CTWE 0.6442 0.6844 0.7021 0.5411 0.5982 0.6236 0.7386 0.7354 0.6400 0.7675 0.7725 

20
 N

G
 Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983 0.7707 0.7871 0.7804 0.8005 0.7794 

CTWE 0.5740 0.6568 0.5439 0.3060 0.4264 0.5909 0.7538 0.7268 0.7663 0.8007 0.7870 

R
eu

te
rs

 

Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650 0.5536 0.4882 0.2785 0.6008 0.5756 

CTWE 0.0739 0.3102 0.4035 0.2145 0.2494 0.3659 0.5205 0.2821 0.2483 0.5755 0.5508 

A
G

 N
ew

s  

Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020 0.9212 0.9125 0.8979 0.9181 0.9185 

CTWE 0.8859 0.8920 0.8451 0.7394 0.8387 0.9017 0.9199 0.9096 0.9007 0.9142 0.9189 

 

5.4.2 The Effect of CTWE on GloVe 

The CTWE approach was applied to GloVe word embedding, the results for which are 

presented in Table 5.4. In the task of sentiment analysis for the IMDB Movie Review 

dataset, the CTWE improved all the traditional classifier results as well as the 1D-CNN 

architecture. The maximum improvement from 0.4268 to 0.7398 in terms of F_score macro 

is observed in the GNB classifier.  The best result was achieved by the Boosted CNN when 

the original GloVe was used for the word embedding layer. In the HSI dataset, the CTWE 

approach improved the results of six out of 11 classifiers while the best result was gained 

by the GNB classifier with the original GloVe. The Deep CNN-LSTM is the only deep 

learning architecture to be improved by CTWE. Modifying GloVe with CTWE in the 



62 
 

results of the 20 NG dataset may have led to an improvement in five classifiers, namely 

DT, RF, 1D-CNN, AdvCNN and Boosted CNN, with the best result coming from AdvCNN 

when the CTWE modified the GloVe word embedding. Similar to the 20 NG dataset, the 

best result in the Reuters dataset was achieved by AdvCNN when CTWE was applied to 

GloVe, although the CTWE improved the results of only three classifiers. In the AG News 

dataset, seven out of 11 classifiers were improved by CTWE, with the best result belonging 

to the 1D-CNN when using CTWE for its embedding layer. 
 

Table 5.4. The Effect of CTWE on GloVe 

 

 LR SVM GNB DT RF KNN 1D-
CNN LSTM Deep CNN-

LSTM AdvCNN BOOSTED 
CNN 

IM
D

B
 GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397 0.8815 0.8637 0.8432 0.8923 0.8979 

CTWE 0.8557 0.8561 0.7398 0.6947 0.7463 0.7591 0.8849 0.8466 0.8429 0.8909 0.8970 

H
SI

 GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534 0.7511 0.7804 0.6664 0.7913 0.7966 

CTWE 0.8223 0.8186 0.8238 0.6799 0.7749 0.7536 0.7486 0.7730 0.6805 0.7766 0.7840 

20
 N

G
 GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334 0.7808 0.8183 0.8099 0.8151 0.8049 

CTWE 0.6617 0.7157 0.5940 0.3777 0.5028 0.6259 0.8030 0.7962 0.7801 0.8204 0.8057 

R
eu

te
rs

 

GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419 0.5439 0.5137 0.3867 0.5707 0.5482 

CTWE 0.1490 0.4122 0.4122 0.1651 0.2353 0.3326 0.4810 0.3846 0.2875 0.5799 0.5742 

A
G

 N
ew

s 

GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044 0.9237 0.9138 0.9062 0.9243 0.9139 

CTWE 0.8924 0.8930 0.8556 0.7592 0.8527 0.9062 0.9265 0.9143 0.9051 0.9219 0.9177 

 
 

5.4.3 The Effect of CTWE on fastText 

The performance of almost all the traditional classifiers improved when the CTWE 

modified the original fastText word embedding in the IMDB Movie Review dataset. 

However, in this task, none of the deep learning-based architectures showed improvement 

with the CTWE approach. The greatest improvement occurred in the GNB classifier for 

0.3576 improvement in terms of the F_score macro. The Boosted CNN architecture with 

the original fastText achieved the best accuracy in terms of the F_score macro. 

None of the deep learning-based approaches showed improvement when the CTWE was 

applied to the fastText word embedding in the HSI dataset, while four out of the six 

traditional classifiers were improved in the evaluation. In contrast, the best result was 

achieved by the SVM classifier with CTWE and fastText word embedding.  
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Table 5.5. The Effect of CTWE on fastText 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 FastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460 0.8881 0.8582 0.8474 0.9051 0.9058 

CTWE 0.8648 0.8654 0.7349 0.6899 0.7419 0.7656 0.8399 0.8377 0.8416 0.8956 0.9010 

H
SI

 FastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576 0.7366 0.7755 0.6508 0.7896 0.7928 

CTWE 0.8237 0.8374 0.8201 0.7254 0.7853 0.7676 0.7279 0.7571 0.6252 0.7750 0.7822 

20
 N

G
 FastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502 0.8019 0.7825 0.7923 0.8174 0.8080 

CTWE 0.6606 0.7152 0.5988 0.3605 0.4846 0.6471 0.7878 0.7661 0.7752 0.8250 0.8063 

R
eu

te
rs

 FastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710 0.5260 0.4337 0.3446 0.6432 0.5575 

CTWE 0.0983 0.3632 0.4148 0.1503 0.2095 0.3612 0.5308 0.3803 0.2436 0.6135 0.5526 

A
G

 N
ew

s  FastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068 0.9248 0.9107 0.9034 0.9226 0.9199 

CTWE 0.8895 0.8932 0.8470 0.7427 0.8472 0.9071 0.9221 0.9084 0.8990 0.9180 0.9221 

 

In the 20 NG dataset, the fastText-based CTWE word embedding produced the best result 

when used in the embedding layer of the AdvCNN architecture. Only three out of 11 

classifiers improved by applying CTWE over fastText word embedding. In the Reuters 

dataset, only the GNB classifier showed improvement in terms of the F_score macro when 

the CTWE modified the fastText word embedding. In this dataset, applying the CTWE 

caused a drop in the rest of the classifiers. In the AG News dataset, the SVM, GNB, DT, 

RF and k-NN classifiers improved by applying CTWE over the fastText word embedding. 

The best result was achieved by the 1D-CNN architecture, which used the original fastText 

in the embedding layer. Table 5.5 shows the above results in more detail. 

 

5.4.4 The Effect of CTWE on LSA 

The effect of CTWE on LSA word representation is demonstrated in Table 5.6. In the task 

of sentiment analysis for the IMDB Movie Review dataset, in comparison to using the 

original LSA word embedding, three out of the six traditional classifiers improved when 

CTWE was applied to the LSA word embedding, while only one of the deep learning-based 

approaches showed improvement. In the HSI dataset, the results of none of the traditional 

classifiers improved when CTWE was applied to the LSA and only the LSTM and CNN 

LSTM approaches showed better results in terms of the F_score macro.  
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Table 5.6. The Effect of CTWE on LSA 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 
IM

D
B

 LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780 0.8854 0.8512 0.8378 0.8879 0.8980 

CTWE 0.8261 0.8709 0.1532 0.7820 0.7067 0.6791 0.8695 0.8422 0.8441 0.8827 0.8898 

H
SI

 LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483 0.7236 0.7473 0.6077 0.7666 0.7792 

CTWE 0.1440 0.6549 0.4068 0.6763 0.6478 0.5418 0.7046 0.7519 0.6348 0.7543 0.7611 

20
 N

G
 LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861 0.7963 0.7130 0.7798 0.8352 0.8309 

CTWE 0.6862 0.7722 0.4986 0.5846 0.6474 0.6910 0.7932 0.7008 0.7671 0.8048 0.8033 

R
eu

te
rs

 LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777 0.4707 0.2083 0.2372 0.5976 0.5268 

CTWE 0.0238 0.2595 0.4268 0.2420 0.2879 0.3833 0.4760 0.2194 0.1841 0.5378 0.5450 

A
G

 N
ew

s LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995 0.9183 0.9081 0.8990 0.9121 0.9189 

CTWE 0.8753 0.8884 0.8332 0.8126 0.8699 0.9028 0.9194 0.9077 0.8965 0.9113 0.9127 

 

In another experiment, none of the deep learning-based approaches improved by applying 

the CTWE over the 20 NG dataset and comparing the result with the original LSA word 

representation while three traditional classifiers, DT, RF, and k-NN, showed a slight 

improvement in the evaluation results. 

In the Reuters dataset, five out of 11 classifiers showed an improvement in their F_score 

macro evaluation results. The best result was achieved by the AdvCNN classifier when the 

original LSA was used as the embedding layer. 

 

5.4.5 The Effect of CTWE on Random Word Embedding 

In the AG Newsgroup dataset, applying CTWE to the LSA caused the best result when the 

1D-CNN was used as the classifier. Two traditional and two deep learning-based classifiers 

showed improvement in their evaluation results. 

In Random word embedding, a random vector is assigned to a word. Applying the CTWE 

to random word vectors injects the local context information into the new word 

representation. Table 5.7 shows that, in all datasets, applying CTWE to the Random word 

embedding improved the results in most of the classifiers. In the IMDB Movie Review 

dataset, eight out of 11 classifiers showed improvement. The best result was achieved by 

the Boosted CNN when the CTWE was applied to its word embedding. 
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In the HSI dataset, five of the classifiers produced better results while 10 out of 11 

classifiers showed improvement in the 20 NG dataset. The best result was achieved by the 

Boosted CNN, which used the CTWE approach. In the Reuters dataset, all the deep 

learning-based approaches were improved when CTWE was applied to the Random word 

embedding, although the results are not state-of-the-art. However, the best result in this 

setup is achieved by the Boosted CNN, which used the CTWE. In the AG News dataset, 

all of the classifiers showed an improvement, with the exception of the Boosted CNN.  The 

best result belongs to the AdvCNN classifier when using the CTWE approach. THE DT, 

RF, and Deep CNN-LSTM showed improvement in all datasets when the CTWE was 

applied to the Random word embedding. 

 
Table 5.7. The Effect of CTWE on Random Word Embedding 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 Random 0.7363 0.7359 0.6525 0.5502 0.5360 0.5836 0.8578 0.8550 0.8457 0.8521 0.8622 

CTWE 0.7364 0.7399 0.6477 0.5560 0.5399 0.5758 0.8650 0.8546 0.8462 0.8673 0.8776 

H
SI

 Random 0.6871 0.6823 0.4143 0.4058 0.3595 0.6003 0.7658 0.7827 0.6319 0.7866 0.7883 

CTWE 0.6006 0.6900 0.4050 0.4133 0.3780 0.6061 0.7467 0.7562 0.6419 0.7701 0.7663 

20
 N

G
 Random 0.4596 0.4513 0.2211 0.0910 0.1151 0.3142 0.6943 0.3942 0.4786 0.5232 0.7141 

CTWE 0.3898 0.4556 0.2277 0.1044 0.1232 0.3297 0.7492 0.5870 0.7034 0.7376 0.7505 

R
eu

te
rs

 Random 0.2275 0.5008 0.3122 0.0703 0.1073 0.3227 0.4404 0.0908 0.0809 0.4091 0.4762 

CTWE 0.0434 0.2672 0.3053 0.0790 0.1088 0.3292 0.4632 0.1537 0.1029 0.4256 0.5117 

A
G

 N
ew

s Random 0.6726 0.3984 0.6119 0.3688 0.4277 0.7853 0.9151 0.9055 0.9003 0.8924 0.9085 

CTWE 0.6775 0.6767 0.6117 0.3716 0.4567 0.8155 0.9136 0.9068 0.9042 0.9177 0.8897 

 

5.5 The Effect of CMSCT on Word Embeddings 

5.5.1 The Effect of CMSCT on Word2Vec 

Table 5.8 shows the effect of the CMSCT approach when applied to the Word2Vec word 

embedding. In the IMDB Movie Review dataset, four out of the six traditional classifiers 

showed improvement when the CMSCT was applied to the regular Word2Vec word 

embedding and used as the word representation. Only the LSTM architecture showed a 
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0.2220 improvement in terms of the F_score macro. The best result was achieved by the 

Boosted CNN architecture when using the original Word2Vec, followed by the same 

architecture when the CMSCT was applied to Word2Vec. For the task of classification in 

the HSI dataset, the 1D-CNN and LSTM showed an improvement out of the deep learning-

based approaches. The SVM, DR, and RF also improved when CMSCT was applied to 

Word2Vec and the average of the word vectors was used for the purpose of document 

representation. Similar to the IMDB Movie Review movie dataset, the Boosted CNN 

achieved the best result with an F_score of 0.8997. In the 20 NG dataset, the best result 

was achieved by the AdvCNN classifier when the CTWE modified the Word2Vec and was 

used as the embedding layer of the architecture. The DT, RF, LSTM, and AdvCNN were 

the classifiers that showed an improvement in the F_score macro when the CMSCT was 

applied to their original word embedding. In the Reuters dataset, only the DEEP CNN-

LSTM approach was improved by the CMSCT. The AdvCNN performed better than the 

other classifiers in this dataset. The 1D-CNN produced the best result in the AG News 

dataset when using the CMSCT modified Word2Vec approach. The second highest result 

was achieved by the AdvCNN, again when the CMSCT was applied to Word2Vec and 

used as the embedding layer. In this experiment, the DT and RF improved together in four 

out of five datasets, which makes sense as the RF consists of several DTs. 

 
Table 5.8. The Effect of CMSCT on Word2Vec 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495 0.8892 0.8295 0.8454 0.8983 0.8997 

CMSCT 0.8543 0.8541 0.7416 0.6731 0.7257 0.7557 0.8850 0.8517 0.8447 0.8966 0.8988 

H
SI

 Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261 0.7467 0.7657 0.6505 0.7873 0.7936 

CMSCT 0.6634 0.6581 0.6546 0.5628 0.5955 0.6130 0.7485 0.7474 0.6491 0.7758 0.7771 

20
 N

G
 Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983 0.7707 0.7871 0.7804 0.8005 0.7794 

CMSCT 0.6317 0.6745 0.5278 0.3309 0.4243 0.5784 0.7525 0.7878 0.7633 0.8010 0.7779 

R
eu

te
rs

 Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650 0.5536 0.4882 0.2785 0.6008 0.5756 

CMSCT 0.1999 0.4367 0.3894 0.1655 0.2231 0.3553 0.5008 0.4572 0.3076 0.5996 0.5346 

A
G

 N
ew

s Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020 0.9212 0.9125 0.8979 0.9181 0.9185 

CMSCT 0.8889 0.8893 0.8348 0.7509 0.8401 0.9008 0.9251 0.9118 0.9016 0.9208 0.9145 
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5.5.2 The Effect of CMSCT on GloVe 

Table 5.9 illustrates the result of experiments when the CMSCT was applied to the GloVe 

word embedding. All the traditional classifiers showed an improvement when the CMSCT 

was applied to the GloVe word representation in the IMDB Movie Review dataset. Only 

the Deep CNN-LSTM architecture from the deep learning-based classifiers showed a slight 

improvement (+0.0065) in terms of the F_score macro. For the task of HSI, only the DT 

and RF showed an improvement while the evaluation results of the deep learning-based 

classifiers showed a drop after applying CMSCT to GloVe in comparison with using the 

original GloVe as the embedding layer. The exact same pattern happened for the 20 NG 

dataset, when the DT and RF were the only improved classifiers out of all 11 approaches. 

In the Reuters dataset, the DT, 1D-CNN, and the AdvCNN classifiers were enhanced by 

applying the GloVe-based CMSCT word representation. Also, the best result in the Reuters 

dataset was attained by the AdvCNN when using the GloVe-based CMSCT word 

embedding. For the AG News dataset, almost all of the classifiers, with the exception of 

the k-NN and LR, showed an increase in terms of F_score macro when the CMSCT was 

applied to the GloVe word embedding. The AdvCNN was recognized as the best classifier 

when the GloVe-based CMSCT word embedding was used. 

Overall, it may be said that the DT was always enhanced when the CMSCT modified 

version of the GloVe word embedding was used. 
Table 5.9. The Effect of CMSCT on GloVe 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397 0.8815 0.8637 0.8432 0.8923 0.8979 

CMSCT 0.8542 0.8548 0.7227 0.6872 0.7458 0.7603 0.8400 0.8608 0.8497 0.8816 0.8971 

H
SI

 GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534 0.7511 0.7804 0.6664 0.7913 0.7966 

CMSCT 0.8060 0.7799 0.7906 0.7186 0.7656 0.7518 0.7448 0.7793 0.6460 0.7887 0.7887 

20
 N

G
 GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334 0.7808 0.8183 0.8099 0.8151 0.8049 

CMSCT 0.7048 0.7231 0.5835 0.3998 0.4953 0.6105 0.7791 0.8160 0.8010 0.8066 0.7921 

R
eu

te
rs

 GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419 0.5439 0.5137 0.3867 0.5707 0.5482 

CMSCT 0.2995 0.5241 0.3818 0.1891 0.2374 0.3335 0.5566 0.5088 0.3332 0.5755 0.5333 

A
G

 N
ew

s GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044 0.9237 0.9138 0.9062 0.9243 0.9139 

CMSCT 0.8923 0.8931 0.8544 0.7798 0.8645 0.9006 0.9251 0.9167 0.9073 0.9248 0.9200 
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5.5.3 The Effect of CMSCT on fastText 

The results of applying CMSCT to the fastText word embedding is illustrated in Table 

5.10. In the IMDB Movie Review dataset, all the traditional classifiers, with the exception 

of the LR, showed improvement, with the most significant change occurring in the GNB 

when its F_score macro improved from 0.3593 to 0.7155. None of the deep learning-based 

approaches were enhanced with the fastText-based CMSCT word representation while the 

best result was achieved by the Boosted CNN classifiers with the original and modified 

word embedding. 

In the HSI dataset, two classifiers from the traditional classifiers (DT and RF) and two 

classifiers from the deep learning-based architectures (1D-CNN and Deep CNN-LSTM) 

showed an improvement when the CMSCT was applied to the original fastText word 

embedding. 

In the task of document classification in the 20 NG dataset, six out of 11 of the examined 

classifiers improved with the CMSCT approach, with the best result achieved by the LSTM 

when using fastText-based CMSCT word embedding. In the Reuters dataset, the CMSCT 

approach had no significant effect over the performance of the classifiers. Only the RF and 

1D-CNN improved in this experiment. 
Table 5.10. The Effect of CMSCT on fastText 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep 

CNN-
LSTM 

AdvCNN BOOSTED 
CNN 

IM
D

B
 FastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460 0.8881 0.8582 0.8474 0.9051 0.9058 

CMSCT 0.8592 0.8603 0.7155 0.6888 0.7369 0.7541 0.8870 0.8434 0.8463 0.9019 0.9053 

H
SI

 FastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576 0.7366 0.7755 0.6508 0.7896 0.7928 

CMSCT 0.8031 0.7929 0.7957 0.7371 0.7842 0.7412 0.7720 0.7643 0.6563 0.7824 0.7876 

20
 N

G
 FastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502 0.8019 0.7825 0.7923 0.8174 0.8080 

CMSCT 0.7056 0.7305 0.5841 0.3893 0.5045 0.6255 0.7818 0.8214 0.7935 0.8199 0.7992 

R
eu

te
rs

 FastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710 0.5260 0.4337 0.3446 0.6432 0.5575 

CMSCT 0.2571 0.4787 0.3912 0.1481 0.2315 0.3420 0.5521 0.3981 0.3264 0.6059 0.5575 

A
G

 N
ew

s FastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068 0.9248 0.9107 0.9034 0.9226 0.9199 

CMSCT 0.8930 0.8926 0.8415 0.7688 0.8549 0.9053 0.9233 0.9185 0.9039 0.9229 0.9226 

 

Using fastText-based word embedding together with the AdvCNN classifier produced the 

best result in the AG News dataset, although the improvement was only slight in 
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comparison to the original fastText. Three out of six traditional classifiers and three out of 

five deep learning-based classifiers showed an improvement when using the CMSCT 

version of fastText. 

The RF was the only classifier that always improved when the CMSCT approach was 

applied to its fastText word embedding. The DT achieved similar results, with the 

exception of the Reuters dataset. The Boosted CNN and LR never improved when the 

CMSCT was applied to their word embedding. 

5.5.4 The Effect of CMSCT on LSA 

Table 5.11 shows the effect of applying CMSCT to an LSA word representation. GNB, 

RF, and Deep CNN-LSTM are the classifiers that showed an enhancement when CMSCT 

was applied to the LSA word representation in the IMDB Movie Review dataset. The best 

result was achieved by the Boosted CNN when using the LSA word representation. 

In the HSI dataset, out of the 11 classifiers, the Deep CNN-LSTM is the only classifier 

whose results were improved by applying the CMSCT to the LSA word representation. 

Similar to the IMDB Movie Review dataset, the Boosted CNN architecture achieved the 

best F_score macro. In the 20 NG dataset, three out of five deep learning-based classifiers 

showed an improvement when the Boosted CMSCT word representation was used as the 

embedding layer. The RF is the only traditional classifier to show an improvement when 

using this modified word embedding. In the Reuters dataset, using the CMSCT approach 

enhanced six out of 11 classifiers: the GNB, RF, and k-NN from the traditional classifiers 

and 1D-CNN, LSTM, and Boosted CNN from the deep learning-based architectures.  

In the AG News dataset, the RF, k-NN, 1D-CNN, and AdvCNN were improved by the 

CMSCT, while the Boosted CNN with the original LSA embedding layer produced the 

best result. 
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Table 5.11. The Effect of CMSCT on LSA 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep 

CNN-
LSTM 

AdvCN
N 

BOOS
TED 
CNN 

IM
D

B
 LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780 0.8854 0.8512 0.8378 0.8879 0.8980 

CMSCT 0.8540 0.8775 0.1845 0.7637 0.7061 0.6675 0.8822 0.8269 0.8441 0.8822 0.8945 

H
SI

 LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483 0.7236 0.7473 0.6077 0.7666 0.7792 

CMSCT 0.5727 0.7186 0.4062 0.6423 0.6368 0.3906 0.7293 0.7370 0.6164 0.7662 0.7769 

20
 N

G
 LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861 0.7963 0.7130 0.7798 0.8352 0.8309 

CMSCT 0.7639 0.7925 0.4968 0.5751 0.6536 0.6881 0.8019 0.7203 0.7870 0.8287 0.8196 

R
eu

te
rs

 LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777 0.4707 0.2083 0.2372 0.5976 0.5268 

CMSCT 0.1384 0.3852 0.4462 0.2338 0.2946 0.4060 0.5118 0.2633 0.2050 0.5817 0.5457 

A
G

 N
ew

s  LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995 0.9183 0.9081 0.8990 0.9121 0.9189 

CMSCT 0.8826 0.8883 0.8230 0.7987 0.8658 0.9021 0.9219 0.9066 0.8978 0.9124 0.9167 

 

5.5.5 The Effect of CMSCT on Random Word Embedding 

Table 5.12 illustrates the evaluation result of the CMSCT approach when applied to the 

Random word embedding. In the IMDB Movie Review dataset, the best result was 

achieved by the Boosted CNN architecture, which used the Random word embedding-

based CMSCT as the embedding layer. The DT, k-NN, and 1D-CNN are the other 

classifiers that were improved by using the random-based CMSCT word representation. In 

the HSI dataset, four out of 11 classifiers improved, of which three (GNB, DR, and RF) 

were from the traditional classifiers. The Deep CNN-LSTM architecture was the only 

architecture to show an improvement in terms of F_score macro. 

 
Table 5.12. The Effect of CMSCT on Random Word Embedding 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep 

CNN-
LSTM 

AdvCNN BOOSTED 
CNN 

IM
D

B
 Random 0.7363 0.7359 0.6525 0.5502 0.5360 0.5836 0.8578 0.8550 0.8457 0.8521 0.8622 

CMSCT 0.7336 0.7343 0.6162 0.5542 0.5357 0.5958 0.8605 0.8413 0.8175 0.7513 0.8679 

H
SI

 Random 0.6871 0.6823 0.4143 0.4058 0.3595 0.6003 0.7658 0.7827 0.6319 0.7866 0.7883 

CMSCT 0.6476 0.6554 0.4188 0.4271 0.4025 0.5813 0.7567 0.7610 0.6704 0.7775 0.7505 

20
 N

G
 Random 0.4596 0.4513 0.2211 0.0910 0.1151 0.3142 0.6943 0.3942 0.4786 0.5232 0.7141 

CMSCT 0.4495 0.4628 0.2016 0.0959 0.1137 0.3464 0.6117 0.3594 0.4318 0.3879 0.7011 

R
eu

te
rs

 Random 0.2275 0.5008 0.3122 0.0703 0.1073 0.3227 0.4404 0.0908 0.0809 0.4091 0.4762 

CMSCT 0.1416 0.4504 0.2269 0.0747 0.1151 0.3237 0.4489 0.0543 0.0682 0.2923 0.4346 

A
G

 N
ew

s Random 0.6726 0.3984 0.6119 0.3688 0.4277 0.7853 0.9151 0.9055 0.9003 0.8924 0.9085 

CMSCT 0.6993 0.6985 0.5938 0.3812 0.4763 0.8315 0.9162 0.9075 0.8986 0.8982 0.9007 
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In the 20 NG dataset, none of the deep learning-based classifiers showed enhancement, 

while 50% of the traditional classifiers improved by using the random-based CMSCT. In 

the Reuters dataset, 1D-CNN was the only enhanced deep learning architecture. Three 

traditional classifiers, DT, RF, and k-NN, showed improved evaluation results. In the AG 

News dataset, five out of six traditional classifiers, and three out of five deep learning 

architectures, were enhanced by using the random-based CMSCT approach. The 1D-CNN, 

which used the random-based CMSCT word embedding, achieved the best results out of 

all the classifiers in this dataset.  

The DT is the only classifier in all the datasets that always improved when the CMSCT 

was applied to its word embedding. 

5.6 CMSCT vs. MSCT 

Table 5.13 shows a comparison between the CMSCT and MSCT approaches in the IMDB 

Movie Review dataset. For the traditional classifiers, the MSCT and CMSCT were always 

higher than the baseline and, in the LSTM approach, the MSCT worked better than the 

other approaches. For the LR, DT and RF, the CMSCT worked even better than the MSCT, 

and needed much lower memory during the graph generation process. The MSCT worked 

better than the CMSCT with the SVM, GNB, k-NN, and LSTM classifiers. For the deep 

learning-based classifiers, the MSCT worked better with almost all of the approaches, with 

the exception of the 1D-CNN, for which the CMSCT achieved better results. 

 
Table 5.13. Comparison of CMSCT vs. MSCT 

Classifier 
Baseline 

F_score macro 
CMSCT 

F_score macro 
MSCT 

F_score macro 
LR 0.8577 0.8580 0.8549 

SVM 0.8451 0.8411 0.8557 

GNB 0.3415 0.7045 0.7438 

DT 0.6588 0.7078 0.6715 

RF 0.7186 0.7530 0.7266 

k-NN 0.7495 0.7441 0.7539 

1D-CNN 0.8891 0.8646 0.8402 

LSTM 0.8295 0.8352 0.8423 

CNN+LSTM 0.8454 0.8057 0.8251 

AdvCNN 0.8982 0.8706 0.8943 
Boosted CNN 0.8996 0.8775 0.8978 
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5.7 The Effect of AbWE on Word Embeddings 

5.7.1 The Effect of AbWE on Word2Vec 

The results of applying the introduced AbWE to the Word2Vec are illustrated in Table 

5.14. In the IMDB Movie Review dataset, the majority of the traditional classifiers, with 

the exception of the LR, showed an improvement in terms of F_score when the introduced 

AbWE was trained by the training data and then applied to the word vectors. The highest 

improvement occurred for the GNB classifier, where the F_score macro increased from 

0.3416 to 0.7336. The Boosted CNN, the only deep learning-based approach to be 

enhanced, achieved the best result in the evaluation. Applying the AbWE to the Word2Vec 

word representation in the HSI dataset and AG News failed to register a significant result. 

Only the LSTM architecture improved in the HSI dataset, and the Deep CNN-LSTM 

architecture in the AG News dataset showed improvement. In the 20 NG dataset, three 

traditional classifiers, DT, RF, and k-NN, were slightly improved. In the Reuters dataset, 

the RF and k-NN were the only enhanced classifiers. 

 
Table 5.14. The Effect of AbWE on Word2Vec 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED CNN 

IM
D

B
 Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495 0.8892 0.8295 0.8454 0.8982 0.8996 

AbWE 0.8575 0.8584 0.7336 0.6719 0.7276 0.7779 0.8416 0.8185 0.8390 0.8611 0.9052 

H
SI

 Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261 0.7467 0.7657 0.6505 0.7872 0.7935 

AbWE 0.5412 0.6285 0.6234 0.5084 0.5666 0.5567 0.7462 0.7676 0.6245 0.7593 0.7740 

20
 N

G
 Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983 0.7707 0.7871 0.7804 0.8004 0.7794 

AbWE 0.6563 0.6787 0.5219 0.3076 0.4076 0.5997 0.7360 0.7620 0.7246 0.7884 0.7972 

R
eu

te
rs

 Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650 0.5536 0.4882 0.2785 0.6008 0.5755 

AbWE 0.2536 0.4999 0.3467 0.1806 0.2679 0.3705 0.4349 0.2962 0.1817 0.5395 0.5525 

A
G

 N
ew

s  Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020 0.9212 0.9125 0.8979 0.9181 0.9184 

AbWE 0.7992 0.8244 0.7293 0.6725 0.7710 0.7918 0.9202 0.9080 0.8990 0.9122 0.9163 

 
 

5.7.2 The Effect of AbWE on GloVe 

Table 5.15 shows the results of the evaluation for when the AbWE was applied to the 

GloVe word representation. In the IMDB Movie Review dataset, four out of the six 
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traditional classifiers were enhanced in terms of F_score macro when the AbWE modified 

the GloVe word representation. None of the deep learning-based classifiers improved in 

this experiment. However, using the original GloVe as their embedding layer, they 

performed much better than the modified version. The best result was achieved by the 

Boosted CNN when it used the GloVe word embedding. 

In the HSI dataset, the SVM was the only classifier to achieve a positive impact from the 

AbWE approach. Similar to the HSI dataset, in the AG News dataset, only the SVM 

classifier showed a better accuracy in terms of F_score. The 1D-CNN and the Boosted 

CNN architectures improved in the 20 NG dataset when the AbWE modified the original 

GloVe word embedding, while none of the traditional classifiers were enhanced in this 

experiment. In the Reuters dataset, the LR and DT from the traditional classifiers with 

AdvCNN and Boosted CNN from the deep learning-based classifiers improved by applying 

the AbWE to the GloVe word embedding. The best result was achieved by the Boosted 

CNN architecture and GloVe-based word embedding. 

 
Table 5.15. The Effect of AbWE on GloVe 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397 0.8815 0.8637 0.8432 0.8923 0.8979 

AbWE 0.8533 0.8533 0.7345 0.6913 0.7468 0.7658 0.8655 0.8395 0.8482 0.8809 0.8729 

H
SI

 GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534 0.7511 0.7804 0.6664 0.7913 0.7966 

AbWE 0.7859 0.8213 0.7740 0.6656 0.7235 0.7203 0.7349 0.7643 0.6145 0.7791 0.7848 

20
 

N
ew

sg
ro

up
 GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334 0.7808 0.8183 0.8099 0.8151 0.8049 

AbWE 0.7191 0.7195 0.5842 0.3744 0.4715 0.6321 0.7926 0.8162 0.7750 0.8150 0.8096 

R
eu

te
rs

 GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419 0.5439 0.5137 0.3867 0.5707 0.5482 

AbWE 0.3821 0.5596 0.3863 0.1974 0.2223 0.3407 0.5284 0.4452 0.2398 0.5772 0.5825 

A
G

 N
ew

s GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044 0.9237 0.9138 0.9062 0.9243 0.9139 

AbWE 0.8525 0.8649 0.8046 0.7257 0.8213 0.8459 0.9196 0.9110 0.8956 0.9175 0.9027 

 
 

5.7.3 The Effect of AbWE on fastText 

Table 5.16 presents the evaluation results for when AbWE is applied to the fastText word 

embedding. Four traditional classifiers, namely SVM, GNB, RF, and k-NN, showed an 

improvement when the AbWE modified the fastText word representation in the IMDB 
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Movie Review dataset, while none of the deep learning-based architectures showed 

improvement. None of the classifiers were enhanced when the AbWE was applied to 

fastText in the HSI movie dataset, while the best result in the AG News dataset was 

achieved by the fastText-based AbWE word embedding when used by the Boosted CNN 

architecture. However, it should be noted that Boosted CNN was the only classifier to be 

enhanced in the AG News dataset.  

In the 20 NG dataset, the Boosted CNN deep learning architecture, together with the DT 

and RF traditional classifiers, are the three classifiers to be enhanced by the AbWE 

approach. The 1D-Classifier in the Reuters dataset was the only enhanced classifier when 

the AbWE was applied to the fastText word embedding. 

 
Table 5.16. The Effect of AbWE on fastText 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 FastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460 0.8881 0.8582 0.8474 0.9051 0.9058 

AbWE 0.8654 0.8671 0.7300 0.6843 0.7428 0.7682 0.8448 0.8178 0.8464 0.7575 0.8726 

H
SI

 FastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576 0.7366 0.7755 0.6508 0.7896 0.7928 

AbWE 0.7293 0.8056 0.7765 0.6464 0.7121 0.6713 0.7327 0.7534 0.6502 0.7711 0.7749 

20
 N

G
 FastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502 0.8019 0.7825 0.7923 0.8174 0.8080 

AbWE 0.7127 0.7218 0.5907 0.3560 0.4720 0.6460 0.7936 0.8020 0.7835 0.8039 0.8172 

R
eu

te
rs

 FastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710 0.5260 0.4337 0.3446 0.6432 0.5575 

AbWE 0.3067 0.5314 0.3691 0.1309 0.2166 0.3615 0.5487 0.3713 0.1430 0.5840 0.5435 

A
G

 N
ew

s FastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068 0.9248 0.9107 0.9034 0.9226 0.9199 

AbWE 0.8070 0.8312 0.7128 0.6417 0.7445 0.8069 0.9201 0.9091 0.9013 0.9183 0.9209 

 
 

5.7.4 The Effect of AbWE on LSA 

Table 5.17 shows the evaluation results for the investigated classifiers when AbWE was 

applied to the LSA word representation. In the IMDB Movie Review dataset, the Deep 

CNN-LSTM is the only deep learning classifier to be improved by the AbWE that modified 

the LSA. Three out of the six traditional classifiers, namely GNB, RF, and k-NN, were 

enhanced by this new version of LSA. In the HSI dataset, the k-NN was the only improved 

classifier, while two deep learning-based architectures, 1D-CNN and Deep CNN-LSTM, 

achieved better results when using the modified version of LSA word embedding. In the 
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20 NG dataset, the k-NN was the only improved classifier out of all the traditional and deep 

learning-based classifiers, while the best result in this dataset was achieved by the AdvCNN 

using the original LSA word embedding. In the Reuters dataset, none of the deep learning-

based architectures were enhanced while three out of the six traditional classifiers (DT, RF, 

and k-NN) showed improvement as a result of applying the AbWE to the LSA word 

representation. None of the classifiers showed improved results in the AG dataset. 

Moreover, in this dataset, using the AbWE was not effective in comparison to using the 

original LSA word vectors.  The k-NN was enhanced in five out of the six datasets. 

 
Table 5.17. The Effect of AbWE on LSA 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780 0.8854 0.8512 0.8378 0.8879 0.8980 

AbWE 0.8719 0.8841 0.1834 0.7617 0.6937 0.6806 0.8247 0.8130 0.8504 0.7838 0.8269 

H
SI

 LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483 0.7236 0.7473 0.6077 0.7666 0.7792 

AbWE 0.2917 0.4396 0.4067 0.4764 0.4321 0.5648 0.7283 0.7464 0.6341 0.7614 0.7603 

20
 N

G
 LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861 0.7963 0.7130 0.7798 0.8352 0.8309 

AbWE 0.7747 0.8036 0.4222 0.5547 0.6242 0.6906 0.7052 0.5758 0.5843 0.7589 0.7742 

R
eu

te
rs

 LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777 0.4707 0.2083 0.2372 0.5976 0.5268 

AbWE 0.1539 0.4198 0.3841 0.2550 0.3000 0.3838 0.4362 0.1840 0.1029 0.3851 0.4826 

A
G

 N
ew

s LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995 0.9183 0.9081 0.8990 0.9121 0.9189 

AbWE 0.8055 0.8121 0.6741 0.7510 0.8118 0.8475 0.9186 0.9069 0.8959 0.9077 0.9101 

 

5.7.5 The Effect of AbWE on Random Word Embedding 

The effect of applying the AbWE approach to Random Word Embedding is shown in Table 

5.18. The DT and Deep CNN-LSTM are the two classifiers that showed an improvement 

when the random-based AbWE approach was used for word representation. In the HSI 

dataset, the GNB, DT, and RF showed enhancement, while the Deep CNN-LSTM was the 

only deep learning-based architecture to show an increase in terms of F_score macro when 

using the random-based AbWE word vectors as the embedding layer. The k-NN is the only 

improved approach in the 20 NG dataset, while the k-NN, 1D-CNN, and the LSTM 

architecture showed an enhancement in the Reuters dataset. The LR, 1D-CNN, and 
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AdvCNN showed improvement in the AG News dataset when the AbWE approach was 

applied to the Random word embedding. The 1D-CNN with the random-based AbWE 

word embedding layer produced the best result out of all the deep learning-based and 

traditional classifiers. 

 
Table 5.18. The Effect of AbWE on Random Word Embedding 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 Random 0.7363 0.7359 0.6525 0.5502 0.5360 0.5836 0.8578 0.8550 0.8457 0.8521 0.8622 

AbWE 0.7344 0.7237 0.6258 0.5516 0.5252 0.5587 0.5166 0.8416 0.8603 0.7372 0.8002 

H
SI

 Random 0.6871 0.6823 0.4143 0.4058 0.3595 0.6003 0.7658 0.7827 0.6319 0.7866 0.7883 

AbWE 0.4798 0.5956 0.4258 0.4230 0.3629 0.3932 0.7476 0.7469 0.6516 0.7650 0.7710 

20
 N

G
 Random 0.4596 0.4513 0.2211 0.0910 0.1151 0.3142 0.6943 0.3942 0.4786 0.5232 0.7141 

AbWE 0.4537 0.4460 0.2078 0.0903 0.1070 0.3265 0.6705 0.3835 0.4173 0.1439 0.7023 

R
eu

te
rs

 Random 0.2275 0.5008 0.3122 0.0703 0.1073 0.3227 0.4404 0.0908 0.0809 0.4091 0.4762 

AbWE 0.2304 0.4963 0.2941 0.0699 0.0988 0.3328 0.4810 0.4256 0.0725 0.3875 0.4711 

A
G

 N
ew

s  Random 0.6726 0.3984 0.6119 0.3688 0.4277 0.7853 0.9151 0.9055 0.9003 0.8924 0.9085 

AbWE 0.5134 0.5561 0.4256 0.3595 0.4135 0.4660 0.9196 0.9040 0.8968 0.9144 0.9052 

 
 

5.8 The Effect of EbWC on Word Embeddings 

5.8.1 The Effect of EbWC on Word2Vec 

Table 5.19 illustrates the result of applying the EbWC approach to the Word2Vec in 

different classifiers and datasets.  

In the IMDB Movie Review dataset, four out of the six traditional classifiers (LR, GNB, 

DT, and RF) showed enhancement when the EbWC was applied to the Word2Vec word 

vectors while the LSTM was the only improved deep learning-based classifier. The greatest 

increase in terms of F_score macro, from 0.3416 to 0.7045, was observed in the GNB 

classifier. In the HSI dataset, the SVM and RF as traditional classifiers, plus 1D-CNN and 

LSTM from the deep learning-based classifiers, showed an increase in terms of F_score 

macro. In the 20 NG dataset, the DT, RF, and Boosted CNN showed enhancement by 

employing the EbWC-modified Word2Vec while the best result was achieved by the 

AdvCNN when the original Word2Vec was used. In the Reuters dataset, only the DT and 
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RF showed improved results by using the EbWC. In the AG News dataset, the SVM, DT, 

RF, 1D-CNN, and AdvCNN showed improvement. Furthermore, the best evaluation result 

in this dataset was generated by the 1D-CNN when the EbWC modified the Word2Vec 

word representation. The RF is the only classifier to improve in all the datasets as a result 

of employing the EbWC approach. 
 

Table 5.19. The Effect of EbWC on Word2Vec 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 Word2Vec 0.8577 0.8452 0.3416 0.6589 0.7187 0.7495 0.8892 0.8295 0.8454 0.8983 0.8997 

EbWC 0.8580 0.8411 0.7045 0.7078 0.7530 0.7442 0.8647 0.8352 0.8058 0.8707 0.8776 

H
SI

 Word2Vec 0.6796 0.6528 0.6944 0.5498 0.5943 0.6261 0.7467 0.7657 0.6505 0.7873 0.7936 

EbWC 0.6363 0.6709 0.6058 0.5002 0.5971 0.5998 0.7625 0.7744 0.6423 0.7740 0.7718 

20
 N

G
 Word2Vec 0.6596 0.6849 0.5438 0.3030 0.4050 0.5983 0.7707 0.7871 0.7804 0.8005 0.7794 

EbWC 0.5333 0.6083 0.3900 0.3963 0.4538 0.4516 0.7421 0.7847 0.7414 0.8000 0.7927 

R
eu

te
rs

 Word2Vec 0.2601 0.5003 0.4141 0.1854 0.2235 0.3650 0.5536 0.4882 0.2785 0.6008 0.5756 

EbWC 0.0965 0.3024 0.2173 0.2334 0.2482 0.2848 0.4747 0.3491 0.1902 0.5077 0.5595 

A
G

 N
ew

s  Word2Vec 0.8905 0.8838 0.8369 0.7231 0.8333 0.9020 0.9212 0.9125 0.8979 0.9181 0.9185 

EbWC 0.8787 0.8845 0.8066 0.7915 0.8597 0.8798 0.9252 0.9111 0.8990 0.9186 0.9167 

 
 

5.8.2 The Effect of EbWC on GloVe 

Table 5.20 shows the evaluation results of the investigated classifiers when the EbWC was 

applied to the GloVe word representation. In the IMDB Movie Review dataset, almost all 

the traditional classifiers, with the exception of the k-NN, showed enhancement in terms 

of F_score macro while none of the deep learning-based investigated solutions saw 

improvement when the EbWC was applied to the GloVe word embedding. In the HSI 

dataset, the SVM was the only improved classifier; the remainder showed no increase in 

terms of F_score macro during the evaluation. Similar to the HSI dataset, the DT was the 

only enhanced classifier out of all the traditional and deep learning-based approaches. In 

the Reuters dataset, all the classifiers showed a drop in the evaluation while the EbWC 

approach failed to work in any of the classifiers. Similar to the 20 NG dataset, the DT is 

the only enhanced classifier in the AG News dataset. None of the deep learning-based 
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investigated architectures showed an increase in terms of F_score macro when the EbWC 

approach was applied to the GloVe word embedding. 

 
Table 5.20. The Effect of EbWC on GloVe 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 GloVe 0.8536 0.8363 0.4268 0.6787 0.7326 0.7397 0.8815 0.8637 0.8432 0.8923 0.8979 

EbWC 0.8554 0.8450 0.6212 0.7160 0.7458 0.7277 0.8399 0.8380 0.8139 0.8698 0.8664 

H
SI

 GloVe 0.8214 0.7985 0.8255 0.6692 0.7502 0.7534 0.7511 0.7804 0.6664 0.7913 0.7966 

EbWC 0.7911 0.8191 0.6864 0.7102 0.7479 0.7368 0.7471 0.7688 0.6617 0.7749 0.7792 

20
 N

G
 GloVe 0.7205 0.7236 0.5992 0.3755 0.4887 0.6334 0.7808 0.8183 0.8099 0.8151 0.8049 

EbWC 0.5565 0.6422 0.2715 0.4014 0.4425 0.4133 0.7777 0.7962 0.7194 0.8035 0.7963 

R
eu

te
rs

 GloVe 0.3815 0.5762 0.4095 0.1757 0.2423 0.3419 0.5439 0.5137 0.3867 0.5707 0.5482 

EbWC 0.0738 0.2391 0.0743 0.1596 0.1794 0.1796 0.4596 0.2876 0.1708 0.4642 0.4615 

A
G

 N
ew

s GloVe 0.8935 0.8423 0.8517 0.7585 0.8549 0.9044 0.9237 0.9138 0.9062 0.9243 0.9139 

EbWC 0.8794 0.8869 0.7310 0.7905 0.8468 0.8572 0.9221 0.9131 0.9010 0.9198 0.9121 

 
 

5.8.3 The Effect of EbWC on fastText 

Table 5.21 shows the effect of EbWC on the fastText word representation method. In the 

IMDB Movie Review dataset, all of the traditional classifiers, as well as the LSTM 

classifier, were enhanced in terms of F_score macro. The highest increase belonged to the 

GNB, with an F_score that improved from 0.3593 to 0.6913. The best result in this dataset 

was achieved by the Boosted CNN, which used the original fastText word embedding. In 

the HSI dataset, none of the deep learning-based classifiers improved in the evaluation. 

The SVM, DT, and RF were the traditional classifiers that showed an increase in terms of 

F_score macro. The SVM, which used the modified (by EbWC) fastText word vectors, 

produced the best result in this dataset. In the 20 NG and the Reuters datasets, the DT is 

the only classifier to be positively affected by the EbWC approach. In both datasets, the 

AdvCNN classifier with the original fastText embedding layer achieved the best results. In 

the AG News dataset, SVM, DT, RF, and LSTM were the enhanced classifiers. The DT 

was the only classifier to improve in all datasets when the EbWC was applied to the 

fastText word representation. 
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Table 5.21. The Effect of EbWC on fastText 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 
IM

D
B

 FastText 0.8660 0.8443 0.3593 0.6725 0.7296 0.7460 0.8881 0.8582 0.8474 0.9051 0.9058 

EbWC 0.8683 0.8527 0.6913 0.7326 0.7646 0.7548 0.8633 0.8637 0.8366 0.8742 0.8762 

H
SI

 FastText 0.8287 0.8136 0.8260 0.7080 0.7711 0.7576 0.7366 0.7755 0.6508 0.7896 0.7928 

EbWC 0.8079 0.8368 0.6614 0.7354 0.7759 0.7541 0.7338 0.7568 0.6382 0.7743 0.7795 

20
 N

G
 FastText 0.7199 0.7247 0.6031 0.3506 0.4682 0.6502 0.8019 0.7825 0.7923 0.8174 0.8080 

EbWC 0.5380 0.6450 0.3346 0.4153 0.4682 0.4501 0.7571 0.7644 0.7375 0.7710 0.7877 

R
eu

te
rs

 FastText 0.3096 0.5483 0.4071 0.1614 0.2296 0.3710 0.5260 0.4337 0.3446 0.6432 0.5575 

EbWC 0.0710 0.2528 0.1408 0.1950 0.2109 0.2329 0.4600 0.1800 0.1349 0.4528 0.5140 

A
G

 N
ew

s FastText 0.8930 0.8676 0.8463 0.7376 0.8440 0.9068 0.9248 0.9107 0.9034 0.9226 0.9199 

EbWC 0.8782 0.8891 0.7709 0.7956 0.8568 0.8704 0.9245 0.9114 0.9012 0.9205 0.9112 

 
 

5.8.4 The Effect of EbWC on LSA 

Table 5.22 shows the evaluation result of the investigated classifiers when the EbWC 

modified the LSA word representation. In the IMDB Movie Review dataset, none of the 

deep learning-based classifiers showed improvement in evaluation, while the GNB, DT, 

RF, and k-NN were all improved by the EbWC. In the HSI dataset, three out of five 

classifiers (1D-CNN, LSTM, and Deep CNN-LSTM) were enhanced by the EbWC 

approach. The GNB and k-NN were the two improved traditional classifiers. 

In the 20 NG dataset, four out of the six traditional classifiers (GNB, DT, RF, and k-NN) 

and three out of the five deep learning-based classifiers (LSTM, Deep CNN-LSTM, and 

AdvCNN) were enhanced when the EbWC was applied to the LSA word representation. 

The highest F_score macro in this dataset was achieved by the AdvCNN when the LSA-

based EbWC embedding layer was used. 

In the Reuters dataset, the DT, k-NN, LSTM, and Boosted CNN classifiers showed increase 

in terms of F_score macro. 

SVM, GNB, DT, and k-NN, as the traditional classifiers, as well as 1D-CNN, AdvCNN, 

and Boosted CNN, achieved a higher F_score macro when the EbWC modified the fastText 

word representation in the AG News dataset. The highest evaluation result (0.9207 in terms 
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of F_score macro) belonged to the Boosted CNN architecture when the modified LSA (by 

EbWC) word embedding layer was used. 

 
Table 5.22. The Effect of EbWC on LSA 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 

IM
D

B
 LSA 0.8743 0.8860 0.1456 0.7837 0.6897 0.6780 0.8854 0.8512 0.8378 0.8879 0.8980 

EbWC 0.8672 0.8828 0.6584 0.7976 0.8180 0.7401 0.8399 0.8431 0.8318 0.8642 0.8592 

H
SI

 LSA 0.6706 0.7377 0.4086 0.6919 0.6624 0.5483 0.7236 0.7473 0.6077 0.7666 0.7792 

EbWC 0.6480 0.7228 0.4515 0.6706 0.6527 0.5610 0.7244 0.7579 0.6199 0.7664 0.7714 

20
 N

G
 LSA 0.7781 0.8058 0.5104 0.5806 0.6472 0.6861 0.7963 0.7130 0.7798 0.8352 0.8309 

EbWC 0.7713 0.8001 0.5877 0.6553 0.7085 0.7163 0.7678 0.8120 0.7916 0.8385 0.8313 

R
eu

te
rs

 LSA 0.1574 0.4208 0.4212 0.2480 0.2928 0.3777 0.4707 0.2083 0.2372 0.5976 0.5268 

EbWC 0.2011 0.4074 0.3460 0.2858 0.2751 0.4089 0.4550 0.4749 0.2003 0.5567 0.5327 

A
G

 N
ew

s LSA 0.8893 0.8913 0.8334 0.8063 0.8657 0.8995 0.9183 0.9081 0.8990 0.9121 0.9189 

EbWC 0.8869 0.8923 0.8620 0.8114 0.8598 0.9021 0.9190 0.9072 0.8954 0.9195 0.9207 

 
 

5.8.5 The Effect of EbWC on Random Word Embedding 

Table 5.23 illustrates the evaluation results for the investigated classifiers when the EbWC 

was applied to the Random word embedding. In the IMDB Movie Review dataset, as well 

as the 20 NG and Reuters datasets, none of the classifiers showed improvement in 

evaluation when the EbWC was applied to the Random Embedding. In the HSI dataset, out 

of all the traditional and deep learning-based architectures, the AdvCNN was the only 

classifier to be improved by the EbWC in comparison with using Random word 

embedding. It should be noted that the achieved result is the highest F_score macro in the 

HSI dataset. In the AG News dataset, the SVM classifier is a traditional classifier while the 

LSTM and the AdvCNN are the only enhanced classifiers when the EbWC was applied to 

the Random word embedding. 
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Table 5.23. The Effect of EbWC on Random Word Embedding 

  
LR SVM GNB DT RF KNN 1D-

CNN 
LSTM Deep CNN-

LSTM 
AdvCNN BOOSTED 

CNN 
IM

D
B

 Random 0.7363 0.7359 0.6525 0.5502 0.5360 0.5836 0.8578 0.8550 0.8457 0.8521 0.8622 

EbWC 0.6434 0.0045 0.2537 0.5434 0.5066 0.5194 0.6667 0.7986 0.8385 0.3333 0.8322 

H
SI

 Random 0.6871 0.6823 0.4143 0.4058 0.3595 0.6003 0.7658 0.7827 0.6319 0.7866 0.7883 

EbWC 0.0609 0.0588 0.3591 0.3678 0.3372 0.4292 0.7210 0.7714 0.6280 0.7903 0.7741 

20
 N

G
 Random 0.4596 0.4513 0.2211 0.0910 0.1151 0.3142 0.6943 0.3942 0.4786 0.5232 0.7141 

EbWC 0.0269 0.0128 0.0367 0.0799 0.0865 0.1251 0.5791 0.3116 0.4200 0.0163 0.6337 

R
eu

te
rs

 Random 0.2275 0.5008 0.3122 0.0703 0.1073 0.3227 0.4404 0.0908 0.0809 0.4091 0.4762 

EbWC 0.0079 0.0079 0.0016 0.0495 0.0556 0.1271 0.4244 0.0485 0.0398 0.0339 0.3182 

A
G

 N
ew

s Random 0.6726 0.3984 0.6119 0.3688 0.4277 0.7853 0.9151 0.9055 0.9003 0.8924 0.9085 

EbWC 0.4882 0.5752 0.2169 0.3292 0.3794 0.5706 0.9018 0.9069 0.8991 0.8977 0.8897 

 
 

5.9 Comparison: The Presented Document Representation 

Approaches over Logistic Regression Efficiency 

Table 5.24 compares the presented approaches in different datasets when the LR is used as 

the classification solution. 

In the IMDB Movie Review dataset, the CTWE was able to achieve the best result in 

comparison to the other three approaches when it was applied to the Word2Vec, GloVe, 

and Random word embedding. The EbWC more effectively improved Word2Vec, GloVe 

and fastText compared to other approaches, but no approach was able to improve the LSA 

word representation. The best result with the LR classifier was achieved by the original 

LSA in the IMDB Movie Review dataset.  

In the HSI dataset, only the CTWE was able to improve the GloVe word representation 

while none of the other approaches could improve the baseline results with the LR 

classifier. The best result was achieved by the fastText word representation in this dataset. 

None of the presented solutions was able to improve the baseline result when the LR was 

used as the classifier in the 20 NG dataset.  

The AbWE approach was the only solution in the Reuters dataset that was able to improve 

the evaluation result for two of the word representations, namely GloVe and Random word 
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embedding. In the Reuters dataset, the best F_score macro was achieved by the GloVe 

word representation that was modified by the AbWE approach. 

 
Table 5.24. Comparison: The presented document representation approaches over Logistic Regression 

Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 
IM

D
B

 
Word2Vec 0.8577 0.8585 0.8543 0.8575 0.8580 

GloVe 0.8536 0.8557 0.8542 0.8533 0.8554 

fastText 0.8660 0.8648 0.8592 0.8654 0.8683 

LSA 0.8743 0.8261 0.8540 0.8719 0.8672 

Random 0.7363 0.7364 0.7336 0.7344 0.6434 

H
SI

 

Word2Vec 0.6796 0.6442 0.6634 0.5412 0.6363 

GloVe 0.8214 0.8223 0.8060 0.7859 0.7911 

fastText 0.8287 0.8237 0.8031 0.7293 0.8079 

LSA 0.6706 0.1440 0.5727 0.2917 0.6480 

Random 0.6871 0.6006 0.6476 0.4798 0.0609 

20
 N

G
 

Word2Vec 0.6596 0.5740 0.6317 0.6563 0.5333 

GloVe 0.7205 0.6617 0.7048 0.7191 0.5565 

fastText 0.7199 0.6606 0.7056 0.7127 0.5380 

LSA 0.7781 0.6862 0.7639 0.7747 0.7713 

Random 0.4596 0.3898 0.4495 0.4537 0.0269 

R
eu

te
rs

 

Word2Vec 0.2601 0.0739 0.1999 0.2536 0.0965 

GloVe 0.3815 0.1490 0.2995 0.3821 0.0738 

fastText 0.3096 0.0983 0.2571 0.3067 0.0710 

LSA 0.1574 0.0238 0.1384 0.1539 0.2011 

Random 0.2275 0.0434 0.1416 0.2304 0.0079 

A
G

 N
ew

s 

Word2Vec 0.8905 0.8859 0.8889 0.7992 0.8787 

GloVe 0.8935 0.8924 0.8923 0.8525 0.8794 

fastText 0.8930 0.8895 0.8930 0.8070 0.8782 

LSA 0.8893 0.8753 0.8826 0.8055 0.8869 

Random 0.6726 0.6775 0.6993 0.5134 0.4882 

 

The CMSCT enhanced the results of using fastText and Random Word representation in 

the AG News dataset.  Meanwhile, CTWE had a positive effect on the Random word 

embedding. 
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In general, when the LR was used as the classifier in the selected datasets, all the presented 

approaches were able to enhance at least one word representation. 

 

5.10  Comparison: The Presented Document Representation 

Approaches over Support Vector Machine Efficiency 

Table 5.25 illustrates the evaluation results of using the SVM as the classifier in the five 

investigated datasets. The same as the LR results in the IMDB Movie Review dataset, none 

of the classifiers improved the results that were achieved by the original LSA word 

representation. The CTWE was able to improve the Word2Vec, GloVe, fastText and 

Random word embedding. Using the AbWE improved the Word2Vec, GloVe and fastText 

in this dataset. For the IMDB Movie Review dataset, neither the CMSCT nor EbWC 

achieved the highest F_score macro in any of the investigated word representations. In 

contrast, the AbWE enhanced Word2Vec, GloVe, and fastText while EbWC was effective 

on the F_score macro of both Glove and FastText. 

In the HSI dataset, the Word2Vec, GloVe and fastText, as well as the Random word 

embedding, were enhanced by the CTWE approach. The GloVe word representation was 

improved by using the AbWE solution while the CMSCT was only effective on the 

Word2Vec word representation. The EbWC improved the baseline result of the Word2Vec, 

GloVe, and fastText word embedding methods. The highest F_score macro in this dataset 

was gained when the fastText word embedding was modified by the CTWE approach.  

The CMSCT and CTWE are the only solutions that are positively effective in the 20 NG 

dataset. These approaches improved the Random word embedding. CMSCT was also 

effective on the fastText. 

In the Reuters dataset, applying the four presented approaches resulted in no improvement 

when the SVM was used as the classifier. In contrast to the evaluation results in the Reuters 

dataset, all of the word embeddings in the AG News are enhanced when the four presented 

solutions are applied to the five word representations. The CTWE and CMSCT improved 

the Word2Vec, GloVe, fastText and Random word embedding. Using the AbWE produced 
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improved results for GloVe and Random word embedding, while using the EbWC 

enhanced all five investigated word representations. 
Table 5.25. Comparison: The presented document representation approaches over Support Vector Machine 

Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.8452 0.8576 0.8541 0.8584 0.8411 

GloVe 0.8363 0.8561 0.8548 0.8533 0.8450 

fastText 0.8443 0.8654 0.8603 0.8671 0.8527 

LSA 0.8860 0.8709 0.8775 0.8841 0.8828 

Random 0.7359 0.7399 0.7343 0.7237 0.0045 

H
SI

 

Word2Vec 0.6528 0.6844 0.6581 0.6285 0.6709 

GloVe 0.7985 0.8186 0.7799 0.8213 0.8191 

fastText 0.8136 0.8374 0.7929 0.8056 0.8368 

LSA 0.7377 0.6549 0.7186 0.4396 0.7228 

Random 0.6823 0.6900 0.6554 0.5956 0.0588 

20
 N

G
 

Word2Vec 0.6849 0.6568 0.6745 0.6787 0.6083 

GloVe 0.7236 0.7157 0.7231 0.7195 0.6422 

fastText 0.7247 0.7152 0.7305 0.7218 0.6450 

LSA 0.8058 0.7722 0.7925 0.8036 0.8001 

Random 0.4513 0.4556 0.4628 0.4460 0.0128 

R
eu

te
rs

 

Word2Vec 0.5003 0.3102 0.4367 0.4999 0.3024 

GloVe 0.5762 0.4122 0.5241 0.5596 0.2391 

fastText 0.5483 0.3632 0.4787 0.5314 0.2528 

LSA 0.4208 0.2595 0.3852 0.4198 0.4074 

Random 0.5008 0.2672 0.4504 0.4963 0.0079 

A
G

 N
ew

s 

Word2Vec 0.8838 0.8920 0.8893 0.8244 0.8845 

GloVe 0.8423 0.8930 0.8931 0.8649 0.8869 

fastText 0.8676 0.8932 0.8926 0.8312 0.8891 

LSA 0.8913 0.8884 0.8883 0.8121 0.8923 

Random 0.3984 0.6767 0.6985 0.5561 0.5752 
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5.11 Comparison: The Presented Document Representation 

Approaches over Naïve Bayes Efficiency 

Table 5.26 shows the results of experiments on the five studied datasets, when using the 

NB classifier, and the four presented approaches applied to the Word2Vec, GloVe, 

fastText, LSA, and Random word embedding methods. In the IMDB Movie Review 

dataset, all of the word representations, with the exception of the Random word embedding, 

are enhanced by applying the CTWE, CMSCT, AbWE, and EbWC approaches. For the 

NB classifier, the highest result in this dataset is achieved by the Word2Vec when enhanced 

by the CTWE approach.  

In the HSI dataset, CTWE improved the Word2Vec, while the CMSCT and AbWE 

approaches were only able to improve the results of the Random word embedding 

approach.  

In the 20 NG dataset, the Word2Vec and Random word embedding showed an increase in 

terms of F_score macro when the CTWE was applied. The LSA word representation was 

improved by the EbWC approach. 

The CTWE was positively effective on the GloVe, fastText, and LSA word embeddings 

while LSA, the remaining word embedding, was enhanced by the CMSCT approach. 

The GloVe word embedding in the AG News dataset was improved by the CTWE and 

CMSCT approaches. Word2Vec and fastText were enhanced only by CTWE while the 

LSA word embedding was improved by the EbWC approach. 

 

 

 

 
 

 



86 
 

Table 5.26. Comparison: The presented document representation approaches over Naïve Bayes Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.3416 0.7601 0.7416 0.7336 0.7045 

GloVe 0.4268 0.7398 0.7227 0.7345 0.6212 

fastText 0.3593 0.7349 0.7155 0.7300 0.6913 

LSA 0.1456 0.1532 0.1845 0.1834 0.6584 

Random 0.6525 0.6477 0.6162 0.6258 0.2537 

H
SI

 
Word2Vec 0.6944 0.7021 0.6546 0.6234 0.6058 

GloVe 0.8255 0.8238 0.7906 0.7740 0.6864 

fastText 0.8260 0.8201 0.7957 0.7765 0.6614 

LSA 0.4086 0.4068 0.4062 0.4067 0.4515 

Random 0.4143 0.4050 0.4188 0.4258 0.3591 

20
 N

G
 

Word2Vec 0.5438 0.5439 0.5278 0.5219 0.3900 

GloVe 0.5992 0.5940 0.5835 0.5842 0.2715 

fastText 0.6031 0.5988 0.5841 0.5907 0.3346 

LSA 0.5104 0.4986 0.4968 0.4222 0.5877 

Random 0.2211 0.2277 0.2016 0.2078 0.0367 

R
eu

te
rs

 

Word2Vec 0.4141 0.4035 0.3894 0.3467 0.2173 

GloVe 0.4095 0.4122 0.3818 0.3863 0.0743 

fastText 0.4071 0.4148 0.3912 0.3691 0.1408 

LSA 0.4212 0.4268 0.4462 0.3841 0.3460 

Random 0.3122 0.3053 0.2269 0.2941 0.0016 

A
G

 N
ew

s 

Word2Vec 0.8369 0.8451 0.8348 0.7293 0.8066 

GloVe 0.8517 0.8556 0.8544 0.8046 0.7310 

fastText 0.8463 0.8470 0.8415 0.7128 0.7709 

LSA 0.8334 0.8332 0.8230 0.6741 0.8620 

Random 0.6119 0.6117 0.5938 0.4256 0.2169 

 
 

5.12  Comparison: The Presented Document Representation 

Approaches over Decision Tree Efficiency 

Table 5.27 compares the evaluation results of the presented approaches when the DT is 

used as the classifier. The CTWE, CMSCT, and AbWE approaches enhanced the four 

investigated word embeddings in the IMDB Movie Review dataset: Word2Vec, GloVe, 

fastText, and the Random word embedding. The EbWC was the only approach that not 
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only improved Word2Vec, GloVe, and fastText, but also improved the LSA word 

embedding and produced the highest F_score macro in this dataset.  

In the HSI dataset, LSA was the only word representation that failed to be improved by 

any of the approaches. The Word2Vec was enhanced only by the CMSCT, while the GloVe 

and fastText were improved by the CTWE, the CMSCT, and the EbWC approaches. The 

Random word embedding was positively impacted by the CTWE, CMSCT, and AbWE 

approaches. 

In the 20 NG dataset, the CTWE approach improved all the   investigated word 

embeddings. The CMSCT improved the results of all the word embeddings with the 

exception of the LSA approach. Applying the AbWE approach had a positive effect on the 

Word2Vec and fastText. The EbWC approach improved all the investigated word 

embeddings, with the exception of the Random word embedding. 

In the Reuters dataset, all the word embeddings were improved by at least one of the 

presented approaches. Word2Vec was enhanced by both the CTWE and EbWC. The GloVe 

was improved by the CMSCT and the AbWE. The fastText was enhanced by the EbWC 

while the LSA was improved by the AbWE and the EbWC. The Random word embedding 

was improved by both the CTWE and CMSCT approaches. 

In the AG News dataset, the CTWE improved all the word embedding results and also 

achieved the highest F_score in this dataset when improved by the LSA word embedding. 

The CMSCT enhanced all the word embedding methods with the exception of the LSA 

while the AbWE had no effect on any of the word representations. The EbWC increased 

the F_score macro of all the word embeddings, with the exception of the Random word 

embedding. 
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Table 5.27. Comparison: The presented document representation approaches over Decision Tree Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.6589 0.6729 0.6731 0.6719 0.7078 

GloVe 0.6787 0.6947 0.6872 0.6913 0.7160 

fastText 0.6725 0.6899 0.6888 0.6843 0.7326 

LSA 0.7837 0.7820 0.7637 0.7617 0.7976 

Random 0.5502 0.5560 0.5542 0.5516 0.5434 

H
SI

 
Word2Vec 0.5498 0.5411 0.5628 0.5084 0.5002 

GloVe 0.6692 0.6799 0.7186 0.6656 0.7102 

fastText 0.7080 0.7254 0.7371 0.6464 0.7354 

LSA 0.6919 0.6763 0.6423 0.4764 0.6706 

Random 0.4058 0.4133 0.4271 0.4230 0.3678 

20
 N

G
 

Word2Vec 0.3030 0.3060 0.3309 0.3076 0.3963 

GloVe 0.3755 0.3777 0.3998 0.3744 0.4014 

fastText 0.3506 0.3605 0.3893 0.3560 0.4153 

LSA 0.5806 0.5846 0.5751 0.5547 0.6553 

Random 0.0910 0.1044 0.0959 0.0903 0.0799 

R
eu

te
rs

 

Word2Vec 0.1854 0.2145 0.1655 0.1806 0.2334 

GloVe 0.1757 0.1651 0.1891 0.1974 0.1596 

fastText 0.1614 0.1503 0.1481 0.1309 0.1950 

LSA 0.2480 0.2420 0.2338 0.2550 0.2858 

Random 0.0703 0.0790 0.0747 0.0699 0.0495 

A
G

 N
ew

s 

Word2Vec 0.7231 0.7394 0.7509 0.6725 0.7915 

GloVe 0.7585 0.7592 0.7798 0.7257 0.7905 

fastText 0.7376 0.7427 0.7688 0.6417 0.7956 

LSA 0.8063 0.8126 0.7987 0.7510 0.8114 

Random 0.3688 0.3716 0.3812 0.3595 0.3292 

 
 

5.13  Comparison: The Presented Document Representation 

Approaches over Random Forest Efficiency 

Table 5.28 illustrates the evaluation results of different word embeddings when the RF 

classifier is used. 

In the IMDB Movie Review dataset, all the word embedding methods, with the exception 

of the Random word embedding, were improved by applying any one of the presented 
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approaches. The CTWE was the only approach that was able to improve the F_score macro 

of the Random word embedding. The highest F_score macro was achieved by fastText 

when the EbWC modified the word representations. 

In the HSI dataset, both the CTWE and CMSCT improved the Word2Vec, GloVe, fastText, 

and Random word embedding methods. The original LSA approach was not improved in 

this dataset. The AbWE approach was only effective on the Random word embedding 

while the EbWC improved the results of the Word2Vec and fastText methods. 

In the 20 NG dataset, the CTWE improved all the studied word representations. The 

Random word embedding was the only word representation method that was not improved 

by the CMSCT in this dataset. The AbWE had a positive effect on the Word2Vec and 

fastText approaches while the EbWC improved the results of the Word2Vec and the LSA 

approaches, with the most recent being the highest F_score macro to be achieved in this 

dataset. 

In the Reuters dataset, none of the approaches improved the GloVe word embedding while 

the Word2Vec was improved by the CTWE, AbWE, and EbWC approaches. CMSCT was 

the only approach to improve the fastText word embedding while the LSA approach was 

positively affected by the CMSCT and AbWE approaches. The Random word embedding 

was improved by applying the CTWE and CMSCT approaches to this dataset. 

In the AG News dataset, the CMSCT approach improved all the investigated word 

embedding methods. In contrast, the AbWE had no positive effect. The CTWE improved 

all the word embeddings with the exception of the GloVe. The EbWC was effective on 

both the Word2Vec and fastText word representations in this dataset. 
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Table 5.28. Comparison: The presented document representation approaches over Random Forest Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.7187 0.7289 0.7257 0.7276 0.7530 

GloVe 0.7326 0.7463 0.7458 0.7468 0.7458 

fastText 0.7296 0.7419 0.7369 0.7428 0.7646 

LSA 0.6897 0.7067 0.7061 0.6937 0.8180 

Random 0.5360 0.5399 0.5357 0.5252 0.5066 

H
SI

 
Word2Vec 0.5943 0.5982 0.5955 0.5666 0.5971 

GloVe 0.7502 0.7749 0.7656 0.7235 0.7479 

fastText 0.7711 0.7853 0.7842 0.7121 0.7759 

LSA 0.6624 0.6478 0.6368 0.4321 0.6527 

Random 0.3595 0.3780 0.4025 0.3629 0.3372 

20
 N

G
 

Word2Vec 0.4050 0.4264 0.4243 0.4076 0.4538 

GloVe 0.4887 0.5028 0.4953 0.4715 0.4425 

fastText 0.4682 0.4846 0.5045 0.4720 0.4682 

LSA 0.6472 0.6474 0.6536 0.6242 0.7085 

Random 0.1151 0.1232 0.1137 0.1070 0.0865 

R
eu

te
rs

 

Word2Vec 0.2235 0.2494 0.2231 0.2679 0.2482 

GloVe 0.2423 0.2353 0.2374 0.2223 0.1794 

fastText 0.2296 0.2095 0.2315 0.2166 0.2109 

LSA 0.2928 0.2879 0.2946 0.3000 0.2751 

Random 0.1073 0.1088 0.1151 0.0988 0.0556 

A
G

 N
ew

s  

Word2Vec 0.8333 0.8387 0.8401 0.7710 0.8597 

GloVe 0.8549 0.8527 0.8645 0.8213 0.8468 

fastText 0.8440 0.8472 0.8549 0.7445 0.8568 

LSA 0.8657 0.8699 0.8658 0.8118 0.8598 

Random 0.4277 0.4567 0.4763 0.4135 0.3794 

 
 

5.14  Comparison: The Presented Document Representation 

Approaches over k-Nearest Neighbor Efficiency 

Table 5.29 shows the evaluation results for when the k-NN classifier is used. In the IMDB 

Movie Review dataset, with the exception of the Random word embedding, the CTWE and 

the AbWE improved the results of all word embeddings. The CMSCT was positively 

effective on the Word2Vec, GloVe, fastText, and Random word embedding. The EbWC 
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enhanced both fastText and LSA. With fastText, the AbWE achieved the highest F_score 

macro in the IMDB Movie Review dataset. 

In the HSI dataset, none of the approaches improved the Word2Vec.  In contrast, the LSA 

was improved by both the AbWE and EbWC approaches. The CMSCT failed to improve 

any of the investigated word embeddings, while the CTWE enhanced the results for the 

GloVe, fastText, and Random word embedding. 

In the 20 NG dataset, the CTWE and CMSCT approaches were able to improve the results 

of the LSA and Random word embedding. The AbWE improved the Word2Vec as well as 

the LSA and Random word embedding while the EbWC had a positive effective only on 

the LSA Word Embedding. 

Experiments for the Reuters dataset show that the Word2Vec, LSA, and Random word 

embedding were improved by both the CTWE and AbWE approaches. Similar to the 20 

NG dataset, the GloVe and the fastText word embeddings consistently failed to be 

enhanced by the approaches. The CMSCT was effective over the LSA and Random word 

embedding while the EbWC was only able to improve the LSA word representation. 

In the AG News dataset, similar to the HSI dataset, the Word2Vec did not improve while 

the CTWE improved all the other word representation methods. The CMSCT enhanced the 

LSA and Random representations while the EbWC was effective only for the LSA 

embedding. The AbWE failed to increase the F_score macro of any of the investigated 

embeddings. 
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Table 5.29. Comparison: The presented document representation approaches over k-Nearest Neighbor 

Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.7495 0.7642 0.7557 0.7779 0.7442 

GloVe 0.7397 0.7591 0.7603 0.7658 0.7277 

fastText 0.7460 0.7656 0.7541 0.7682 0.7548 

LSA 0.6780 0.6791 0.6675 0.6806 0.7401 

Random 0.5836 0.5758 0.5958 0.5587 0.5194 
H

SI
 

Word2Vec 0.6261 0.6236 0.6130 0.5567 0.5998 

GloVe 0.7534 0.7536 0.7518 0.7203 0.7368 

fastText 0.7576 0.7676 0.7412 0.6713 0.7541 

LSA 0.5483 0.5418 0.3906 0.5648 0.5610 

Random 0.6003 0.6061 0.5813 0.3932 0.4292 

20
 N

G
 

Word2Vec 0.5983 0.5909 0.5784 0.5997 0.4516 

GloVe 0.6334 0.6259 0.6105 0.6321 0.4133 

fastText 0.6502 0.6471 0.6255 0.6460 0.4501 

LSA 0.6861 0.6910 0.6881 0.6906 0.7163 

Random 0.3142 0.3297 0.3464 0.3265 0.1251 

R
eu

te
rs

 

Word2Vec 0.3650 0.3659 0.3553 0.3705 0.2848 

GloVe 0.3419 0.3326 0.3335 0.3407 0.1796 

fastText 0.3710 0.3612 0.3420 0.3615 0.2329 

LSA 0.3777 0.3833 0.4060 0.3838 0.4089 

Random 0.3227 0.3292 0.3237 0.3328 0.1271 

A
G

 N
ew

s 

Word2Vec 0.9020 0.9017 0.9008 0.7918 0.8798 

GloVe 0.9044 0.9062 0.9006 0.8459 0.8572 

fastText 0.9068 0.9071 0.9053 0.8069 0.8704 

LSA 0.8995 0.9028 0.9021 0.8475 0.9021 

Random 0.7853 0.8155 0.8315 0.4660 0.5706 

 
 

5.15  Comparison: The Presented Document Representation 

Approaches over 1D-CNN Efficiency 

Table 5.30 shows the result of the proposed approaches when the investigated word 

representation methods were used as the embedding layer of the 1D-CNN architecture for 

classification purposes. 
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In the IMDB Movie Review dataset, the EbWC and the AbWE had no positive effect over 

the word embeddings. The CMSCT was only able to improve the Random word embedding 

while the CTWE was effective for the GloVe and Random word embedding. 

In the HSI dataset, neither the Glove nor Random word embedding were improved.  

Further, the CTWE was not effective for any of the investigated word embeddings. The 

CMSCT enhanced the Word2Vec, fastText and LSA. The AbWE improved the LSA while 

the EbWC enhanced the LSA as well as the Word2Vec. 

The Word2Vec and fastText showed no improvement in the 20 NG dataset when the four 

presented approaches were applied. The GloVe was enhanced by the CTWE and the AbWE 

approaches while the LSA was improved by the CMSCT. The CTWE was the only 

approach to enhance the Random word embedding. 

In the Reuters dataset, none of the presented approaches was able to improve the 

Word2Vec word representation while the CMSCT improved the remaining word 

representation methods. The CTWE was effective when applied to the fastText, LSA, and 

Random word embedding. Unlike the EbWC, which was not successful in this dataset, the 

AbWE improved the fastText and Random word embedding.  

In the AG News dataset, all the word embeddings, with the exception of fastText, were 

enhanced with the CMSCT approach. The CTWE improved the GloVe and LSA while the 

AbWE was effective for the LSA and Random word embedding. Both the Word2Vec and 

LSA were enhanced by the EbWC approach. 
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Table 5.30. Comparison: The presented document representation approaches over CNN Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.8892 0.8525 0.8850 0.8416 0.8647 

GloVe 0.8815 0.8849 0.8400 0.8655 0.8399 

fastText 0.8881 0.8399 0.8870 0.8448 0.8633 

LSA 0.8854 0.8695 0.8822 0.8247 0.8399 

Random 0.8578 0.8650 0.8605 0.5166 0.6667 

H
SI

 
Word2Vec 0.7467 0.7386 0.7485 0.7462 0.7625 

GloVe 0.7511 0.7486 0.7448 0.7349 0.7471 

fastText 0.7366 0.7279 0.7720 0.7327 0.7338 

LSA 0.7236 0.7046 0.7293 0.7283 0.7244 

Random 0.7658 0.7467 0.7567 0.7476 0.7210 

20
 N

G
 

Word2Vec 0.7707 0.7538 0.7525 0.7360 0.7421 

GloVe 0.7808 0.8030 0.7791 0.7926 0.7777 

fastText 0.8019 0.7878 0.7818 0.7936 0.7571 

LSA 0.7963 0.7932 0.8019 0.7052 0.7678 

Random 0.6943 0.7492 0.6117 0.6705 0.5791 

R
eu

te
rs

 

Word2Vec 0.5536 0.5205 0.5008 0.4349 0.4747 

GloVe 0.5439 0.4810 0.5566 0.5284 0.4596 

fastText 0.5260 0.5308 0.5521 0.5487 0.4600 

LSA 0.4707 0.4760 0.5118 0.4362 0.4550 

Random 0.4404 0.4632 0.4489 0.4810 0.4244 

A
G

 N
ew

s 

Word2Vec 0.9212 0.9199 0.9251 0.9202 0.9252 

GloVe 0.9237 0.9265 0.9251 0.9196 0.9221 

fastText 0.9248 0.9221 0.9233 0.9201 0.9245 

LSA 0.9183 0.9194 0.9219 0.9186 0.9190 

Random 0.9151 0.9136 0.9162 0.9196 0.9018 

 
 

5.16  Comparison: The Presented Document Representation 

Approaches over LSTM Efficiency 

Table 5.31 demonstrates the evaluation results for when different word representations are 

used as the embedding layer of the LSTM architecture. In the IMDB Movie Review dataset, 

the Word2Vec method is enhanced by the CTWE, CMSCT, and EbWC approaches. The 
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fastText word embedding was improved by the EbWC while the GloVe, LSA, and Random 

word embedding showed no positive response to any of the presented approaches. 

In the HSI dataset, the Word2Vec was enhanced by the AbWE and EbWC approaches and 

the LSA was improved by the CTWE and EbWC approaches. The GloVe, fastText, and 

Random word embedding did not change in this dataset, nor did the CMSCT have any 

positive effect. 

In the 20 NG dataset, the CTWE method was effective for the Random word embedding 

only while the CMSCT enhanced the Word2Vec, fastText, and LSA word representations. 

The AbWE increased the fastText and the LSA was enhanced by the EbWC approach. The 

highest score in this dataset was achieved by the fastText when modified by the CMSCT 

approach. 

In the Reuters dataset, the LSA method was enhanced by the CTWE, CMSCT, and EbWC 

approaches while the Word2Vec, GloVe, and fastText showed no improvement as a result 

of any of the presented approaches. The Random word embedding showed a positive 

response to both the CTWE and AbWE approaches. 

Finally, in the AG News dataset, the CTWE enhanced the GloVe and Random word 

embedding, the CMSCT was effective for the GloVe, fastText, and Random word 

embedding, and the EbWC enhanced both the fastText and Random word embedding. The 

AbWE was not effective in this dataset and Word2Vec and LSA were not improved by any 

of the presented approaches. 
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Table 5.31. Comparison: The presented document representation approaches over LSTM Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.8295 0.8439 0.8517 0.8185 0.8352 

GloVe 0.8637 0.8466 0.8608 0.8395 0.8380 

fastText 0.8582 0.8377 0.8434 0.8178 0.8637 

LSA 0.8512 0.8422 0.8269 0.8130 0.8431 

Random 0.8550 0.8546 0.8413 0.8416 0.7986 

H
SI

 
Word2Vec 0.7657 0.7354 0.7474 0.7676 0.7744 

GloVe 0.7804 0.7730 0.7793 0.7643 0.7688 

fastText 0.7755 0.7571 0.7643 0.7534 0.7568 

LSA 0.7473 0.7519 0.7370 0.7464 0.7579 

Random 0.7827 0.7562 0.7610 0.7469 0.7714 

20
 N

G
 

Word2Vec 0.7871 0.7268 0.7878 0.7620 0.7847 

GloVe 0.8183 0.7962 0.8160 0.8162 0.7962 

fastText 0.7825 0.7661 0.8214 0.8020 0.7644 

LSA 0.7130 0.7008 0.7203 0.5758 0.8120 

Random 0.3942 0.5870 0.3594 0.3835 0.3116 

R
eu

te
rs

 

Word2Vec 0.4882 0.2821 0.4572 0.2962 0.3491 

GloVe 0.5137 0.3846 0.5088 0.4452 0.2876 

fastText 0.4337 0.3803 0.3981 0.3713 0.1800 

LSA 0.2083 0.2194 0.2633 0.1840 0.4749 

Random 0.0908 0.1537 0.0543 0.4256 0.0485 

A
G

 N
ew

s 

Word2Vec 0.9125 0.9096 0.9118 0.9080 0.9111 

GloVe 0.9138 0.9143 0.9167 0.9110 0.9131 

fastText 0.9107 0.9084 0.9185 0.9091 0.9114 

LSA 0.9081 0.9077 0.9066 0.9069 0.9072 

Random 0.9055 0.9068 0.9075 0.9040 0.9069 

 
 

5.17  Comparison: The Presented Document Representation 

Approaches over Deep CNN-LSTM Tree Efficiency 

Table 5.32 shows the effect of the CTWE, CMSCT, AbWE, and EbWC approaches over 

the investigated word representations when the Deep CNN-LSTM is used as a 

classification solution in the five selected datasets. 
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In the IMDB Movie Review dataset, the CTWE was able to improve the LSA and Random 

word embedding and the CMSCT was effective for the GloVe and LSA. The EbWC was 

unable to help any of the word representations to improve their evaluation results while the 

AbWE enhanced the GloVe, LSA, and Random word embedding. 

In the HSI dataset, the LSA word representation method was enhanced by all the presented 

approaches, while none of the approaches proved effective for the Word2Vec method. The 

GloVe was enhanced by the CTWE and produced the highest F_score macro. The CMSCT 

improved only the fastText method and the Random word embedding was positively 

impacted by the CTWE, CMSCT, and AbWE approaches. In the 20 NG dataset, the CTWE 

approach enhanced the Random word embedding, the CMSCT improved the fastText and 

LSA, and the EbWC increased the F_score macro of the LSA method. The AbWE was not 

effective in this dataset and the Word2Vec and GloVe were not improved by the presented 

approaches. 

In the Reuters dataset, Random word embedding and Word2Vec were the only word 

representations to be enhanced by the CTWE and the CMSCT approaches, respectively.  

The Word2Vec method was enhanced by all the presented approaches in the AG News 

dataset. The GloVe and fastText were enhanced by the CMSCT approaches while the 

Random word embedding was improved by the CTWE.  Meanwhile, the LSA in this 

dataset could not reach a higher F_score when the presented approaches were applied. 
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Table 5.32. Comparison: The presented document representation approaches over Deep CNN STM Tree 

Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.8454 0.8403 0.8447 0.8390 0.8058 

GloVe 0.8432 0.8429 0.8497 0.8482 0.8139 

fastText 0.8474 0.8416 0.8463 0.8464 0.8366 

LSA 0.8378 0.8441 0.8441 0.8504 0.8318 

Random 0.8457 0.8462 0.8175 0.8603 0.8385 

H
SI

 

Word2Vec 0.6505 0.6400 0.6491 0.6245 0.6423 

GloVe 0.6664 0.6805 0.6460 0.6145 0.6617 

fastText 0.6508 0.6252 0.6563 0.6502 0.6382 

LSA 0.6077 0.6348 0.6164 0.6341 0.6199 

Random 0.6319 0.6419 0.6704 0.6516 0.6280 

20
 N

G
 

Word2Vec 0.7804 0.7663 0.7633 0.7246 0.7414 

GloVe 0.8099 0.7801 0.8010 0.7750 0.7194 

fastText 0.7923 0.7752 0.7935 0.7835 0.7375 

LSA 0.7798 0.7671 0.7870 0.5843 0.7916 

Random 0.4786 0.7034 0.4318 0.4173 0.4200 

R
eu

te
rs

 

Word2Vec 0.2785 0.2483 0.3076 0.1817 0.1902 

GloVe 0.3867 0.2875 0.3332 0.2398 0.1708 

fastText 0.3446 0.2436 0.3264 0.1430 0.1349 

LSA 0.2372 0.1841 0.2050 0.1029 0.2003 

Random 0.0809 0.1029 0.0682 0.0725 0.0398 

A
G

 N
ew

s 

Word2Vec 0.8979 0.9007 0.9016 0.8990 0.8990 

GloVe 0.9062 0.9051 0.9073 0.8956 0.9010 

fastText 0.9034 0.8990 0.9039 0.9013 0.9012 

LSA 0.8990 0.8965 0.8978 0.8959 0.8954 

Random 0.9003 0.9042 0.8986 0.8968 0.8991 
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5.18  Comparison: The Presented Document Representation 

Approaches over AdvCNN Tree Efficiency 

Table 5.33 compares the evaluation results of the different approaches when the AdvCNN 

architecture was used as the classifier. 

In the IMDB Movie Review dataset, almost none of the approaches were able to enhance 

the evaluation results of the baseline methods. In fact, only the CTWE enhanced the 

Random word embedding from 0.8521 to 0.8673 in terms of F_score macro. 

A similar pattern occurred for the HSI dataset and the only improved result was for the 

Random word embedding that was improved by the EbWC approach. 

In the 20 NG dataset, the CTWE enhanced all the word embeddings, with the exception of 

the LSA. The CMSCT improved the Word2Vec and fastText. The EbWC, which was the 

only approach to enhance the LSA, also produced the highest F_score macro in this dataset. 

None of the methods were improved by the AbWE, which was also the case for the IMDB 

Movie Review dataset, HSI dataset, and the AG News dataset. 

In the Reuters dataset, the Word2Vec, GloVe, and LSA were not improved by the presented 

approaches while the GloVe was enhanced by the CTWE, the CMSCT, and the AbWE 

approaches. The Random word embedding was enhanced only by the CTWE method. 

In the AG News dataset, the CMSCT enhanced all of the word embedding methods in this 

study and achieved the highest F_score macro with the GloVe word embedding. The 

CTWE and AbWE was only able to improve the Random word embedding. In contrast, the 

EbWC was effective in improving the results of the Word2Vec, LSA and Random word 

embedding. 
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Table 5.33. Comparison: The presented document representation approaches over AdvCNN Tree Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.8983 0.8895 0.8966 0.8612 0.8707 

GloVe 0.8923 0.8909 0.8816 0.8809 0.8698 

fastText 0.9051 0.8956 0.9019 0.7575 0.8742 

LSA 0.8879 0.8827 0.8822 0.7838 0.8642 

Random 0.8521 0.8673 0.7513 0.7372 0.3333 

H
SI

 
Word2Vec 0.7873 0.7675 0.7758 0.7593 0.7740 

GloVe 0.7913 0.7766 0.7887 0.7791 0.7749 

fastText 0.7896 0.7750 0.7824 0.7711 0.7743 

LSA 0.7666 0.7543 0.7662 0.7614 0.7664 

Random 0.7866 0.7701 0.7775 0.7650 0.7903 

20
 N

G
 

Word2Vec 0.8005 0.8007 0.8010 0.7884 0.8000 

GloVe 0.8151 0.8204 0.8066 0.8150 0.8035 

fastText 0.8174 0.8250 0.8199 0.8039 0.7710 

LSA 0.8352 0.8048 0.8287 0.7589 0.8385 

Random 0.5232 0.7376 0.3879 0.1439 0.0163 

R
eu

te
rs

 

Word2Vec 0.6008 0.5755 0.5996 0.5396 0.5077 

GloVe 0.5707 0.5799 0.5755 0.5772 0.4642 

fastText 0.6432 0.6135 0.6059 0.5840 0.4528 

LSA 0.5976 0.5378 0.5817 0.3851 0.5567 

Random 0.4091 0.4256 0.2923 0.3875 0.0339 

A
G

 N
ew

s 

Word2Vec 0.9181 0.9142 0.9208 0.9122 0.9186 

GloVe 0.9243 0.9219 0.9248 0.9175 0.9198 

fastText 0.9226 0.9180 0.9229 0.9183 0.9205 

LSA 0.9121 0.9113 0.9124 0.9077 0.9195 

Random 0.8924 0.9177 0.8982 0.9144 0.8977 

 
 

5.19  Comparison: The Presented Document Representation 

Approaches over Boosted CNN Efficiency 

The impact of the presented approaches on the word embeddings when the Boosted CNN 

is used as the classifier is presented in Table 5.34. 
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In the IMDB Movie Review dataset, only the Random word embedding and Word2Vec 

showed improvement. The Random word embedding was enhanced by the CTWE and 

CMSCT, while the AbWE was able to enhance the Word2Vec method. 

None of the presented approaches were successful in the HSI dataset and the highest result 

was achieved by the baseline GloVe word embedding. 

In the 20 NG dataset, the CTWE successfully increased the F_score macro in the 

Word2Vec, GloVe, and Random word embedding. The AbWE approach enhanced the 

results of the Word2Vec, GloVe, and fastText methods. The EbWC was successful in 

enhancing the Word2Vec and LSA word embeddings. The CMSCT was unable to improve 

any of the studied word embedding methods in this dataset. 

The CTWE approach was successful in enhancing all the word embedding methods in the 

Reuters dataset, with the exception of the GloVe word embedding for which none of the 

presented approaches could increase the F_score macro. In this dataset, the only enhanced 

word embedding method with the CMSCT was the fastText. The Word2Vec and Random 

word embedding were enhanced by the AbWE method, producing the highest F_score 

macro in this dataset. In the Reuters dataset, the fastText was improved by the EbWC. 

In the AG News dataset, the CTWE approach enhanced three word embedding methods: 

the Word2Vec, GloVe, and fastText. The CMSCT increased the F_score macro for the 

GloVe and fastText word embeddings.  The LSA is the only word representation method 

in this dataset to be enhanced by the EbWC, the only approach that successfully enhanced 

it. The fastText was also enhanced by the AbWE. The highest F_score to be achieved in 

this dataset belongs to the fastText, which was modified by the CMSCT approach. 
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Table 5.34. Comparison: The presented document representation approaches over Boosted CNN Efficiency 

  Baseline CTWE CMSCT AbWE EbWC 

IM
D

B
 

Word2Vec 0.8997 0.8980 0.8988 0.9053 0.8776 

GloVe 0.8979 0.8970 0.8971 0.8729 0.8664 

fastText 0.9058 0.9010 0.9053 0.8726 0.8762 

LSA 0.8980 0.8898 0.8945 0.8269 0.8592 

Random 0.8622 0.8776 0.8679 0.8002 0.8322 
H

SI
 

Word2Vec 0.7936 0.7725 0.7771 0.7741 0.7718 

GloVe 0.7966 0.7840 0.7887 0.7848 0.7792 

fastText 0.7928 0.7822 0.7876 0.7749 0.7795 

LSA 0.7792 0.7611 0.7769 0.7603 0.7714 

Random 0.7883 0.7663 0.7505 0.7710 0.7741 

20
 N

G
 

Word2Vec 0.7794 0.7870 0.7779 0.7973 0.7927 

GloVe 0.8049 0.8057 0.7921 0.8096 0.7963 

fastText 0.8080 0.8063 0.7992 0.8172 0.7877 

LSA 0.8309 0.8033 0.8196 0.7742 0.8313 

Random 0.7141 0.7505 0.7011 0.7023 0.6337 

R
eu

te
rs

 

Word2Vec 0.5482 0.5742 0.5333 0.5825 0.4615 

GloVe 0.5575 0.5526 0.5575 0.5435 0.5140 

fastText 0.5268 0.5450 0.5457 0.4826 0.5327 

LSA 0.4762 0.5117 0.4346 0.4711 0.3182 

Random 0.5482 0.5742 0.5333 0.5825 0.4615 

A
G

 N
ew

s 

Word2Vec 0.9185 0.9189 0.9145 0.9163 0.9167 

GloVe 0.9139 0.9177 0.9200 0.9027 0.9121 

fastText 0.9199 0.9221 0.9226 0.9209 0.9112 

LSA 0.9189 0.9127 0.9167 0.9101 0.9207 

Random 0.9085 0.8897 0.9007 0.9052 0.8897 
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5.20  Comparison between All the Represented Approaches 

among the Different Document Representations 

Figure 5.1 is a heatmap chart that compares the different presented document 

representation approaches. Each cell indicates the summation of the times where the 

approach in the column header outperforms the approach in the row title among the 

different datasets and classifiers. Equation 0.1 shows how each cell is calculated: 

 
𝐂𝐞𝐥𝐥(𝐱, 𝐲) = ∑ 𝛈(𝐅𝐬𝐜𝐨𝐫𝐞M𝐃𝐑𝐲N, 𝐅𝐬𝐜𝐨𝐫𝐞(𝐃𝐑𝐱)

𝐩
𝐢I𝟎  ) 

𝛈(𝛂, 𝛃) = Û
𝟏	𝛂 ≥ 𝛃
𝟎	𝛂 < 𝛃 

Equation 0.1 

 

 

where P (=55, 11 classifiers multiply by five datasets) is the total number of experiments 

for which the document representation (DR) x or y is used and 𝛈  is the comparison 

function. The values from 0 to 55 are divided into four levels that are arranged from light 

to dark according to value. 

Out of all the approaches, the baseline methods were most improved by the CMSCT.  The 

CTWE, CMSCT, and AbWE were more successful in improving the GloVe and fastText 

compared to the Word2Vec, LSA, and Random word embedding. As could have been 

predicted, the Random word embedding is the weakest embedding.  This means that all the 

investigated word embeddings carry information and that the CTWE and CMSCT more 

effectively enhanced the baseline word embedding compared to the AbWE and EbWC. 

The EbWC better improved the baseline word embedding compared to the AbWE. 

According to Figure 5.1, the presented approaches can be ranked as follows: the CMSCT, 

CTWE, EbWC and, finally, the AbWE. 
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Figure 5.1. Heatmap Chart Comparing Presented Approaches 

In summary, the CTWE improved the GloVe, the CMSCT was more successful in 

improving the fastText, the AbWE enhanced the GloVe, and the EbWC worked more 

effectively with the LSA in comparison to the other word embedding approaches. 

5.21  The Total Effect of the Proposed Approaches Over Word 

Embeddings 

The heatmap chart in Figure 5.2 shows the effect of the presented approaches over different 

baseline word embeddings. This heatmap concludes the results from Table 5.3 to Table 

5.12 and Table 5.14 to Table 5.23. Each cell indicates the summation of the times where 

the proposed approach (in the column) enhanced the word embedding method in the row 

among the different datasets and classifiers. Similar to Figure 5.1, the same formula 

(Equation 0.1) is used to calculate each cell score. The values from 0 to 55 are divided into 

three levels that are arranged from light to dark according to the value. 
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Figure 5.2. Heatmap Chart Comparing the Effect of Proposed Approaches over Word Embeddings 

According to Figure 5.2, the Word2Vec is enhanced by CTWE, CMSCT, EbWC and 

AbWE, respectively. For the GloVe word embedding, the CTWE and CMSCT could be 

more beneficial approaches. For the fastText, the CMSCT was able to enhance the results 

more effectively, while the EbWC was the best approach to use for the LSA. According to 

the results of the random word embedding, the CTWE and CMSCT were able to improve 

the random results in a more efficient way. 

 

5.22  Comparison with the State-Of-the-Art Results 

In this present work, comparing state-of-the-art results may not be regarded as peer to peer 

since this evaluation calculates the F_score macro while other studies either reported other 

metrics or failed to clearly mention their metrics. For the IMDB Movie Reviews dataset, 

the highest reported result by Mesnil et al. is 92.57 in terms of accuracy [80]. As it is a 

binary classification with equal observations from each class in training and testing, it can 

be assumed that the accuracy and F_score macro are almost equal. In this present study, 

the maximum achieved result for the IMDB Movie Reviews dataset was 90.52, which was 

obtained by applying the MSCT over the fastText word embedding and employing the 

Boosted CNN architecture. 

For the HSI dataset, the highest reported result, by Almeida et al., is 96 in terms of F_score 

[82]. This present study used a modified version of the dataset and changed the number of 

classes from three to two by removing one of the classes. The highest result in terms of 

F_score is 83.73, obtained by applying the CTWE approach to the fastText and using the 

SVM classifier. 
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For the 20 NG dataset, an F_score of  96.49 was reported by Lai et al. [84].  In this present 

study, the highest result in terms of F_score macro, 83.84, was obtained by applying the 

EbWC approach to the LSA and using AdvCNN architecture. 

For the Reuters-21578 dataset, an F_score of 87.89 was reported by Nam et al. in [86]. In 

this present study, the highest reported result is 61.35 in terms of F_score, which was 

obtained by applying the CTWE approach to the fastText and employing the AdvCNN 

architecture. 

The state-of-the-art result for the AG News dataset is 7.64 in terms of error rate, as reported 

by Conneau et al. [88]. In the present study, a 92.64 F_score macro was achieved by 

applying the CTWE approach to the GloVe word embedding and using the 1D-CNN 

architecture. This result is very close to the state-of-the-art results. 

5.23  Summary 

In this section, four novel approaches, namely CTWE, CMSCT, EbWC, and AbWE, are 

applied to five baseline word embedding methods: Word2Vec, GloVe, fastText, LSA, and 

Random. These five popular NLP task datasets, together with 11 classifiers, are used to 

evaluate the presented approaches. A total of 1,111 experiments are conducted. The 

effectiveness of the four novel approaches are evaluated and discussed over each word 

embedding as well as each classifier. All the newly generated word representations are 

ultimately compared and ranked against each other, as well as the baseline word 

embeddings. In summary, the GloVe word embedding is improved by CTWE, the CMSCT 

is successful in improving the fastText, the AbWE slightly enhances the GloVe, while the 

EbWC works more effectively with the LSA when compared to the other word embedding 

approaches. From a classifier perspective, when the SVM is used, the CTWE and CMSCT 

improve the Word2Vec, GloVe, fastText and Random Word Embeddings. The AbWE 

improves the results for the GloVe and Random Word Embedding while the EbWC 

enhances all five word representations. By using the NB classifier, all four approaches on 

the IMDB Movie dataset are improved. When the DT and RF are used, CTWE and CMSCT 

show consistent improvement. CTWE, CMSCT and AbWE improve the baseline results in 

the case of the KNN. When the deep learning architectures of CNN, Deep CNN-LSTM, 
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and AdvCNN are used for classification, CMSCT and CTWE outperform the two other 

approaches and the baseline in the majority of the experiments while the LSTM architecture 

fails to benefit from the use of updated word representations. 
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Chapter 6. Conclusion and Future Works 

6.1 Summary and Conclusion 

In this thesis, four novel approaches are presented in an attempt to combine local context 

information with the global knowledge that is pre-trained over large corpuses of text. The 

main application of these word embeddings is to provide more accurate document 

representation for the task of text classification. 

The presented approaches attempt to improve three well-known word embedding methods, 

namely: Word2Vec, GloVe, and fastText. In order to compare the evaluation results, two 

other methods are considered as the baseline: the locally trained method of LSA and 

Random Word Embedding, which assigns a random vector to each word in the training 

dataset.  

A comprehensive literature review of the related research in the domain of word embedding 

and document representation is presented in Chapter 2.  

The four presented methods, which are described in Chapter 3, are: Content Tree Word 

Embedding (CTWE); Composed Maximum Spanning Content Tree (CMSCT); 

Embedding-based Word Clustering (EbWC): and Autoencoder-based Word Embedding 

(AbWE). 

These approaches create a document representation for each word in the training 

vocabulary based on the Word2Vec, GloVe, fastText, LSA, and Random word embedding 

models, then use the average of the updated word vectors for document representation. 

The first approach, CTWE, employs a semi-taxonomy structure named content tree, and 

subsequently updates the word embedding vectors.  

The second approach, MSCT, is proposed in order to select the root based on the node 

degree and then generate the maximum spanning tree. Another version of this approach, 

called CMSCT, is defined. This approach does not require a high level of memory to 

generate a fully connected graph of all the words in the training vocabulary. In addition, 
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CMSCT generates a small-size spanning tree for each document, then generates a training 

data spanning tree by combining them. In the final step, the word vectors are updated based 

on their location in the maximum spanning tree. 

The third approach, EbWC, uses the clustering method for extracting the conceptual 

structure of the context. Each element of the new word embedding is the distance from the 

centroid of each word group cluster. 

The AbWE method uses autoencoder for dimensionality and noise reduction in the context. 

The main intention of this present work was to train an autoencoder to capture the training 

data concepts and then update the word vectors by encoding them. 

In order to evaluate the presented approaches, each approach is applied over the five 

mentioned word embeddings. The new word vectors are then used for the evaluation task 

over five well-known datasets in the domain of NLP and text mining. The five datasets are: 

IMDB Movie Reviews; Hate Speech Identification; 20 NG; Reuters-21578; and AG News. 

In order to show the effect of each approach over the different types of classifiers, 11 

different classifiers are employed, six of which are traditional classifiers: LR, SVM, GNB, 

DT, RF, and KNN.  Five other classifiers were designed based on deep learning solutions 

(1D-CNN, LSTM, Deep CNN-LSTM, AdvCNN, and Boosted CNN). Overall, 1,111 

experiments are executed, for which the evaluation results are presented and described in 

Chapter 4. 

According to the experiments with the original (non-modified) document representation 

methods and the traditional classifiers that are shown in Table 5.1, it can be inferred that 

the bi-gram and LSA document representation approaches can work more effectively with 

traditional classifiers.  In contrast, taking an average of the word vectors failed to achieve 

the best results in the majority of experiments. 

As shown in  

Table 5.2, which illustrates the effect of using variant word embedding for the embedding 

layer of the deep learning-based approaches, the Random and the LSA Word Embeddings 

could not achieve the best results in the majority of experiments, while the pre-trained word 

embeddings performed better with the deep learning-based architectures. These results 
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confirm that using pre-trained word embeddings that use global knowledge can be 

employed as a successful approach for text mining challenges.  

The results of applying the CTWE approach to the studied word embeddings are illustrated 

in Tables 5.3 to 5.7, shown in different patterns depending on the dataset and the used 

classifier. The CTWE mostly improves the results when a traditional classifier is used 

rather than a deep learning-based solution. It should be considered that the deep learning-

based classifiers outperformed the traditional classifiers.  In those cases where CTWE 

improved the results of a deep learning-based approach, it was the best result among all the 

traditional and deep learning-based approaches. As an example, this pattern is observed in 

the IMDB movie, 20 NG, Reuters, and AG news datasets when the Word2Vec that was 

employed by the boosted CNN or the AdvCNN was improved by CTWE and achieved the 

highest F_score macro. 

It can be concluded that the CTWE is more effective on the traditional classifiers, with a 

lower performance level than the deep learning approaches while, when the classifier is 

powerful, there is no remaining capacity for improvement. 

Tables 5.8 to 5.12 present the effect of CMSCT on the investigated word embeddings. 

Similar to CTWE, the CMSCT was more effective with the traditional approaches that use 

the average of the words in the document as the feature vector rather than the deep learning-

based solutions that use the new word representation in their embedding layer. 

The effect of the AbWE on word embeddings is presented in Tables 5.14 to 5.18, and the 

effect of the EbWC approach is presented in Tables 5.19 to 5.23. However, these two 

approaches did not have as much influence over the results as the CTWE and CMSCT. 

Greater improvement occurred for the traditional word embedding areas than situations 

where the deep learning-based solutions were used.  

In order to compare all the different presented document representation approaches, for 

each two approaches where one has outperformed the other, a summation of the times 

among the different datasets and different classifiers is calculated and shown in Figure 5.1. 

Compared to the other approaches, the CMSCT improved the baseline methods to a higher 

level. The CTWE, CMSCT, and AbWE were more successful in improving the GloVe and 

fastText compared to the Word2Vec, LSA, and Random word embedding. The Random 
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word embedding is the weakest embedding, which could have been predicted. This means 

that all the studied word embeddings carry information and that the CTWE and the CMSCT 

more effectively enhanced the baseline word embedding than either AbWE or EbWC. The 

EbWC more successfully improved the baseline word embedding than the AbWE. The 

CTWE and AbWE improved the GloVe, the CMSCT was more successful in improving 

the fastText, and the EbWC works better with the LSA in comparison with other word 

embedding approaches.  

Based on this comparison, the presented approaches can be ranked as follows: the CMSCT, 

the CTWE, the EbWC and, finally, the AbWE.  

Tables 5.24 to 5.34 show the effect of the presented approaches on each investigated 

classifier. 

For the LR, none of the approaches could show significant or persistent improvement. 

Applying the presented approaches works more efficiently when using the SVM 

classification. The CTWE and CMSCT improved the Word2Vec, GloVe, fastText and 

Random word embedding. Using the AbWE improved the results of GloVe and Random 

word embedding, while using the EbWC enhanced all five investigated word 

representations. 

Although its results were not promising in general, the Naïve Bayes results were improved 

by applying the four presented approaches in the IMDB movie dataset, but not significantly 

in the other datasets.   

When the DT and RF were used as the classifier, the presented approaches showed 

improvement in the majority of the datasets, particularly CTWE and CMSCT, which 

showed consistent improvement in the results. The KNN works much better with CTWE, 

CMSCT and AbWE versus the EbWC in a different dataset.  

The CMSCT and CTWE improved the results of 1D-CNN in the majority of the 

experiments, while the LSTM approach worked more efficiently with the baseline word 

embeddings, although in some cases one approach could improve the results. 

The effect of the approaches was not consistent for the Deep CNN-LSTM classifier, the 

LSA and the Random word embedding, which produced better results when the CTWE or 
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CMSCT was applied over their baseline word vectors. However, improvements to the 

Word2Vec, GloVe, and fastText were inconsistent.  

Depending on the dataset, the AdvCNN showed better results with different word 

embeddings. In 20 NG, the CTWE boosted the results and in the AG News dataset, the 

CMSCT consistently showed improvement. In the other datasets, the baseline word 

representation produced the better results in the majority of experiments.  Similar to the 

AdvCNN, the boosted CNN architecture was not always improved, and in different 

datasets, different approaches could or could not improve the results.    

In general, it can be concluded that the best combination of classification approach and 

word embedding differed according to the nature of the data and the task. 

For a binary and balanced dataset, similar to the IMDB movie reviews, the SVM, NB, DT, 

and RF classifiers can benefit from all four presented approaches. For the KNN classifier, 

although CTWE, CMSCT, and AbWE showed enhancement, the EbWC could not improve 

results. 

For a binary dataset which is unbalanced, similar to the HSI dataset, the SVM with CTWE 

and RF with CTWE and CMSCT can create appropriate combinations. 

For categorical datasets that have a balanced distribution between their classes, similar to 

the AG News and 20 NG datasets, when the number of categories is limited, the SVM or 

NB with CTWE can be a good combination as well as the DT, RF, and AdvCNN with 

CTWE and CMSCT. When the number of classes is higher, similar to the 20 NG dataset, 

the AdvCNN with CTWE can be a good option. 

For categorical and unbalanced datasets, such as the Reuters-21578, although the results 

failed to show a consistent pattern, it can be concluded that the combination of the CNN 

family with CTWE could be a good option. 
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6.2 Future Works 

The following issues are the most important in terms of requiring further investigation: 

 

• In order to fairly compare the results of different approaches, all the parameters 

among the traditional classifiers and deep learning-based architectures are used 

with their default values. While the parameter tuning can change, the final results 

for each combination of document representation and classifier should be further 

investigated in another independent environment. 

• Similar to the above issue, further studies could be conducted into how word 

representation can be changed by different parameters such as vector length, 

number of learning iterations, and training text corpuses.  The investigated tasks 

that are defined for this study are classification approaches. A similar study should 

be conducted for other text mining and NLP tasks such as clustering. 

• The present study was conducted only for English documents. However, it would 

be valuable to repeat such a study for other languages. 
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