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Abstract

This research is to develop a blockchain based database based on a relational

database management system (RDBMS). The database guarantees authenticity

of the stored records using immutable and verifiable signatures. The database

supports query evaluation over the entire timeline of the transaction log. To

support efficient query evaluation, we utilize materialized snapshots at selected

timestamps. We propose an optimal snapshot algorithm to compute the best

timestamps so that the overall query load can be evaluated with minimal com-

putation.
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Chapter 1

Motivation and Problem Definition

1.1 Motivation

Historical data is widely analysed for a lot of purposes such as making data-

driven decisions [27]. Historical data could be financial reports, project data,

emails, audit logs or any similar documents which contain past occurrences in

an organization.

Historical data of a database provides data provenance which makes it pos-

sible to investigate the origin, the cause and the time of the processes that made

changes to the tables and records ever exsisted in a database [3]. This data could

be collected by auditing all the transactions that occur on a database system and

store them in a logfile [12]. Although in large database systems, storing these

historical data could seem burdensome and impractical due to the size they may

get into [5], but current big data technologies such as cloud storages has made

it possible to store these information in an easier and more affordable way than

before [35]. In practice, not only these logfiles are useful assets that could be an-

alyzed to detect maliciously manipulated data by outsider adversaries, but they

can also give a valuable insight into the activities of the privileged users on a

database system [31].
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Utilizing logfiles as the source of data provenance gives us a useful tool to es-

tablish a trustworthy database environment [37], however this requires to make

sure that the records in the logfile are trusted themselves [6].The challenge is

that these files are not immune from being compromised [39][21]. In fact, not

only the inherent security tools of most of the database management systems

including the relational database management system (RDBMS) has proven to

be vulnearable to complex cyber-security attacks [38], but also the malicious ac-

tivities of the insiders who can bypass all the security requirements can add up

to the complexity of the problem [39].

For a better understanding of the complexity of malicious attacks on the log

files, consider a scenario in which a database super-user who acts as root can

perform a lot of administrative tasks on a relational database. Since the super-

user can bypass all the security requirements, they can remove the trace of their

malicious activities from the log file. Such attempts results in the maliciously

altered data in the database that are hard to identify because there are no evi-

dences to contradict their legitimacy.

The afformentioned example clearly proves that restricting the activities of

the users or utilizing preventive security tools for the database system cannot

guarantee that the records will always remain trustworthy. Therefore, there is a

need of a mechanism that makes the complexity of creating undetectable forg-

eries on the data provenance sources extremely expensive and unimaginable for

all the users regardless of their level of accessibility to the system. The system

should also be able to detect any malicious or accidental data manipulation on

the database solely by relying on the verifiable evidences.

Our objective is to design a mechanism based on relational database man-

agement system that provides trustworthy logfiles that are used as the source

of data provenance of the database system. To achieve the objective of both
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providing trusted data and a functional system, we argue that the following re-

quirements need to be addressed.

• Immutability of the records: To make sure that the a record in a relational

database is trustworthy, performing undetectable malicious modification

on that record should be extremely expensive. That is, any malicious or ac-

cidental attempts to modify the records stored in a database should result

in an evident inconsistency in the data stored.

• Verifiability of trustworthiness: For all the records that are submitted in a

database system, the origin of that transaction as well as the ligitimacy of

the origin should be investigatbale using the verifiable evidences .

• Fast querying: The temporal relations are widely used for decision mak-

ing, data analytics and more. Since the temporal relations could poten-

tially become extremely large, a mechanism is needed to guarantee that

the queries are answered in an acceptable time.

The tables that contain historical records can become extremely large, and

as a result, querying on these tables and verifying the trustworthiness of

the result of queries can become inefficient [5][2]. For the system to be

functional, a mechanism should be implemented in order to reduce the

cost of both answeing to the queries and verifying the trustworthiness of

the query results.

• Fast appending: The system needs to collect all the security information of

the transactions and append them to the logfile in an immutable way. In

order to create a functional system, this process should be done as cheap

as possible.
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Our research is a generic data model for temporal relations that can be applied

to a wide range of scenarios. We believe that our proposed system is powerful

in the sense that it removes the user-based trust and testifies the credibility or

invalidity of the records by analyzing verifiable evidences. The system is able to

detect privileged database misuses such as altering the auditing mechanism or

manipulating the historical data.

We also made a contribution on performance aware optimization for large

query workload on the temporal relations. This optimization is needed because

the temporal relation can become extremely large in size and as a result the

query latency could become high. By using the proposed method in this thesis,

the select-query-aggregation queries on the temporal relation could be answered

in a lower cost.

Our system utilizes many native to RDBMS tools such as relational temporal

tables to store the historical data and cryptographic techniques to make transac-

tions immutable and verifiable, therefore it could be supported by all RDBMSes

available today with least additional requirements.
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Chapter 2

Background and Related Work

In this chapter, the concepts and definitions which are needed to implement the

proposed system are identified. In the first section, the tools that are needed to

build a blockchain-based strategy are introduced. In the next section, the tools

and concepts borrowed from the relational database management system are

identified. The last section is also dedicated to discuss the related work and the

researches which have been done in this field.

2.1 Blockchain

Blockchain technology is a distributed trusted public ledger that the stored data

in it are linked using cryptography. The stored data in Blockchain are immutable

and open to anyone to inspect [25]. There are a numerous number of applica-

tions that are using Blockchain [8], however, it got its reputation because of its

application as the backbone of cryptocurrencies such as Bitcoin [24]. We uti-

lize Blockchain technology because it is able to provide immutability and ver-

ification to the stored records in a temporal table. The immutability that the

Bockchain provides makes forgeries on the records extremely difficult. Also it

enables every user of the system to investigate about the trustworthiness of the
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records without revealing the confidential information. In this section, the in-

gredients of creating a Blockchain is discussed.

2.1.1 Digital signatures

Digital signatures are the main building block of Blockchains. Blockchain uti-

lizes digital signatures for the purpose of providing immutability and verifi-

cation for its stored data. The ingredients of building a digital signatures are

cryptographic keys, asymmetric encryption and hash functions that we discuss

them in this section.

Definition 1 (Cryptographic Keys) Cryptographic keys �Kpriv, Kpub� ∈ N+ are a

pair of strings that are generated using mathematical functions, where Kpub is the public

key that is accessible to everyone on the system, and Kpriv is the private key that is

known only to u. These keys are used to encrypt/decrypt messages which are transmitted

between the users[34].

The procedure of creating a pair of Cryptographic keys is shown in Algorithm

1.

Function generateKeys(keySize):

randomVal ← Random.new()

publicKey, privateKey = RSA.generate(keySize, randomVal)

return publicKey,privateKey
Algorithm 1: Generate Cryptographic keys

The cryptographic keys are mainly used to encrypt data. The purppose of

encryption is to convert data from their ordinary form to unintellegible infor-

mation that are unreadable by unprivileged users [16]. By having a pair of cryp-

tographic keys �Kpriv, Kpub�, the encryption is done asymmetrically.
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Definition 2 (Asymmetric Encryption) Given the cryptographic keys �Kpub, Kpriv�
and a message m, an encryption technique is said to be asymmetric if:

c = Encrypt(Kpub, m) and m = Decrypt(Kpriv, c)

or

c = Encrypt(Kpriv, m) and m = Decrypt(Kpub, c)

Note that, if Kpub is known, and E(Kpub, m) is also known, in asymmetric

encryption method, it is impossible to get m without Kpriv [34]. Algorithm 2

shows the basic steps to encrypt a message using Kpub and Algorithm 3 shows

the steps to decrypt a message using Kpriv

Function encrypt(m,Kpub):

publicKeyObj = RSA.importKey(Kpub)

randomParam ← random.choice()

return publicKeyObj.encrypt(m,randomparam)
Algorithm 2: Encrypt a message using public key

Function decrypt(enc_message,Kpriv):

privateKeyObj = RSA.importKey(Kpriv)

return privateKeyObj.decrypt(enc_message)
Algorithm 3: Decrypt an encrypted message using private key

In addition to asymmetric encryption, hash functions are also another ingre-

dient of the digital signatures.

Definition 3 (Hash function) Assume m to be the message with an arbitrary size

chosen from domain A. hash(m) → sketch is a function that maps the m of any size

from domain A to a fixed size string (normally 256 bits) in a smaller domain B [1].
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Now we discuss the procedure of generating a digital signature using the

tools that we introduced.

Definition 4 (Digital signature) Let m be the message which needs to be digitally

signed. In order to digitally sign the message m using the private key Kpriv the steps

shown in Algorithm 4 are taken:

Function digitalSignature(m,Kpriv):

hashVal = hash(m)

randomVal = random.choice()

privateKeyObj = RSA.importKey(Kpriv)

return privateKeyObj.encrypt(hashVal,randomVal)
Algorithm 4: Creating the digital signature of m

Note that only the person who has the private key is able to create digital

signatures. On contrary, anyone who has access the public key of the users are

able to verify the digital signature.

Definition 5 (digital signature verification) given a digital signature ”signature”,

the message m and the public key Kpub, the steps that needs to be taken in order to verify

the authenticity of the record using a digital signature is shown in Algorithm 5:

Function verifySign(m,signature,Kpub):

publicKeyObj = RSA.importKey(Kpub)

hashVal = hash(m)

signHash = publicKeyObj.decrypt(signature)

if hashVal == signHash then
return valid

return invalid
Algorithm 5: Verify the authenticity of the record using digital signature
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FIGURE 2.1: Idea of the Blockchain for the proposed system.

As mentioned earlier, digital signatures are the main ingredient of a Blockchain.

In the follwing, we discuss the creation of Blockchain for a database relation, us-

ing digital signatures.

Definition 6 (Blockchain) Let reci be specific records stored in a relation rT. We

denote sign as the digital signature of each record. We can create a blockchain of multiple

records by augmenting an attribute prev_sign in reci that stores the digital signature

of reci−1 in reci.

The idea of the Blockchain has been depicted in figure 2.1.

2.2 Temporal Relational Databases

The main focus of this research is to build a trusted temporal relation using

Blockchain technology that provides data provenance for the database system.

In this section, we introduce the tools and concepts that were utilized in this

research to establish a trusted temporal relation.

Definition 7 (Temporal database) Let r, be a relation in the database D. Denote the

attributes of the relation as attr(r). A temporal table of relation denoted rT is a table

with attributes attr(rT) = attr(ri) ∪ {timestamp, deleted} where timestamp is the

time in which transactions on r happened and deleted is a flag showing whether or not



10 Chapter 2. Background and Related Work

that transaction was meant to delete a record from r. A temporal database denoted DT

is the result of augmenting D by rT:

DT = D ∪ {rT : r ∈ D}

The temporal database DT contains the entire history of the records ever ex-

isted in D.

Example 1 Given a normal relational table r1 (Table 2.1) and a temporal table rT (Table

2.2), the attr(r1) = {id, item, value} and attr(rT) = {id, item, value, updated, deleted}.

The result of a few example queries are:

• q1: SELECT * FROM r WHERE id = 22;

Result: [(22, Pencil, 7.50)]

• q2: SELECT * FROM rT WHERE id = 22;

Result: [(22, pencil, 8.0, 2018 − 03 − 21, False),

(22, pencil, 7.50, 2018 − 03 − 30, False)]

• q3: SELECT * FROM r WHERE id = 21;

Result: []

• q4: SELECT * FROM rT WHERE id = 21;

Result: [(21, ruler, 3.25, 2018 − 02 − 10, False),

(21, ruler, 3.25, 2018 − 02 − 20, True)]

This example clearly shows that the temporal tables can provide data provenance for the

records ever existed in the normal relations. For exmaple by having the temporal table

“rT“ it could be seen that the record with “id = 22“ used to have the value of “8.0“ set

in “2018− 03− 21“ but then changed to “7.50“ at “2018− 03− 30“. Also, once there

was a record with “id = 21“ but deleted at “2018− 02− 20“ and that is why the query

q3 does not return any results.
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TABLE 2.1: Normal Relational Table r1

id item value
22 Pencil 7.50
23 Notebook 12.0

TABLE 2.2: Temporal Table rT

id item value timestamp deleted
21 Ruler 3.25$ 2018-02-10 False
21 Ruler 3.25$ 2018-02-20 True
22 Pencil 8.0$ 2018-03-21 False
22 Pencil 7.50$ 2018-03-30 False
23 Notebook 12.0$ 2018-04-01 False

The temporal database provides information about the timestamp in which

the transactions on the database system occurred.

Definition 8 (Time domain) The time domain T consists of discrete timestamps t0, t1, ..., tn

in which transactions on tables r ∈ D happened. The range of time domain is: T =

[t0, tn] where the lower bound t0 is the timestamp in which the first record added and

the upper bound tn is the timestamp of the most recent transaction to the table r.

Example 2 The time domain of a temporal table rT (Table 2.2) is given by:

T = range(rT[timestamp]) = [2018 − 02 − 10, 2018 − 04 − 01]

Definition 9 (Timestamps) A timestamp ti ∈ T is a particular position in the time

domain, in which (a) particular transaction(s) happened. For example in the temporal

table rT 2.2, “2018-03-30” is a timestamp in which the record with “id = 22” updated.

Definition 10 (Timeline) Let u1, u2, ..., un be the total number of transactions on the

tables r ∈ D at timestamps tj ∈ T , where j = {0, 1, ..., n}. These transactions could
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FIGURE 2.2: Timeline.

be represented as an ordered set points on a vector. This vector is called the timeline of

transactions for r ∈ D.

Figure 2.2 illustrates the concept of timeline.

Given a temporal database, for the sake of data analytics, it is a common

practice to query for the form of a table in an specific timestamp. These queries

could be answered by creating snapshot of the relation using the temporal table.

Definition 11 (Snapshot) Given a temporal table rT ∈ DT and a timestamp t ∈ T ,

we denote s(t) to be the table instance that obtained by calculating the {max(rT[m])|t :

m ∈ r)} − rT[deleted] for T ≤ t. A snapshot is a materialized version of D(t) =

{s1(t), s2(t), ..., sn(t)}.

Example 3 Given a normal relational table r1 (Table 2.3), the temporal relational table

rT (Table 2.4) contains the historical data of r1. The snapshot of the r1 at t = 2018 −
04 − 01 could be generated as Table 2.5.
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TABLE 2.3: Normal Relational Table r1

id item value
22 Pencil 7.50
23 Notebook 12.0
24 Console 230.0

TABLE 2.4: Temporal Table rT

id item value timestamp deleted
21 Ruler 3.25 2018-02-10 False
22 Pencil 8.0 2018-03-21 False
22 Pencil 9.0 2018-03-30 False
23 Notebook 11.0 2018-04-01 False
22 Pencil 6.0 2018-04-01 False
21 Ruler 3.25 2018-04-02 True
23 Notebook 12.0 2018-04-02 False
22 Pencil 7.50 2018-04-05 False
24 Console 230.0 2018-04-05 False

TABLE 2.5: Normal Relational Table r1 at t = 2018-04-01

id item value
21 Ruler 3.25
22 Pencil 6.0
23 Notebook 11.0
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2.3 Related Work

There has been a wide range of studies on ensuring the trustworthiness of records

in a database from different perspectives. These studies range from establish-

ing trust between nodes in a real-time distributed systems [17] to secret shar-

ing schemes in cloud databases [10] and utilizing logfiles for forensic purposes

[31]. In this project, the assumption is that the preventive models are not able to

stop the adversaries from manipulating the data of a relational database system,

therefore a tamper-evident log table has been offered to evaluate whether or not

the data has been altered.

Database audit logs contain valuable information such as any insertions,

deletions, and modifications of the records performed in a database along with

the timestamp of the performed tasks. The United States Department of De-

fense in its “Trusted Computer System Evaluation Criteria” document and un-

der requirement 4 pointed out the importance of auditing the transactions in

a computer system in a secure and efficient manner [7]. In this document also

protecting the audit logs from modification or destruction has been stressed out.

Analyzing audit logs for forensic purposes has been the topic of research by

many scientists, however, since the trustworthiness of the results from log ta-

ble analysis has a direct relationship with the authenticity of the records of the

log file, a lot of studies have been carried out to make log tables tamper-proof.

Haber et al.[13] proposed a basic methodology by utilizing timestamping and

hash chains in order to make unmodifiable historical records for digital doc-

uments. Peha in [26] offered a method to detect log tampering by one way

hashing and employing multiple trusted notaries to keep track of all transac-

tions. The author argued that if any notary decided to falsify the transaction,

the attempt is discovered by other notaries. Snodgrass et al. [32] also offered
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one-way hashing mechanism and employed trusted notaries, however in or-

der to enhance the security of the method offered by Peha, they offered to hash

the records with a timestamp of previous transaction modification. Schneier et

al.[28] offered a cryptographic-based mechanism to create hash chains and make

the log files nearly impossible for the attacker to alter. The validity of the trans-

actions was also done by trusted third-parties who have the cryptographic keys.

However the aforementioned researches might have promising results to

protect the historical records from being compromised by an outsider, but they

have one thing in common which is the role of an insider to carry out malicious

attacks is forgotten. Also hiring third-party software/hardware may bring up

a lot of privacy concerns. Therefore, unlike the mentioned works, not only our

proposed system does not require a third-party notary to attest the authenticity

but also it does not put trust on any user of the system.

The role of privileged users in acting maliciously in a database has been dis-

cussed by many researchers [5] [39]. Liu et al. [22] offered a network-based

auditing mechanism which also keeps track of privileged users’ activity and

performs audit analysis through event correlation. Wagner et al. [38] proposed

a mechanism to detect database file tampering by looking for inconsistencies in

the database’s storage. The authors argued that the databases follow patterns in

storage which even the privileged users have no access to. Therefore, if a record

is deleted maliciously in the log file, the inconsistency in the storage is evident

for a period of time. Unlike mentioned proposed methods, our system uses

inherent to RDBMS tools and does not require a network-level-auditing mecha-

nism or having access to the server’s storages, therefore it could be easily imple-

mented on remote servers and relational databases on cloud storages. Also, our

proposed system not only discovers maliciously deletion of the records but also

identifies any malicious modification without any time constraints.
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For the sake of gathering verifiable pieces of evidence, in our proposed sys-

tem, any changes to the database regardless of the users’ access privileges need

to be tracked. This action could be done by utilizing inherent to DBMS tools.

Fabbri et al. [11] extensively talked about SELECT triggers which are inherent

RDBMS functions, required database specifications and efficient implementa-

tion techniques for data auditing. Hauger et al.[14] also discussed the use of

triggers in the database for forensic purposes. Triggers are supported by RDBMS

which makes them a good candidate to be used in our proposed system how-

ever, it is naive to assume that a simple trigger solely is secure enough to be used

for forensic purposes. Therefore we propose to use the Blockchain technology to

make immutable chains of transactions that are captured by database triggers.

The first attempt to use chained hashes for securing data from tampering is

known to be done by Haber et al. [13] where the authors proposed a method-

ology to securely timestamp the digital files and create digital signatures and

hash chains. This work was then improved by Schneier et al. [28] [29] [30] by

offering to exchange secret codes with a trusted third party who is able to verify

the authenticity of the chain. They offered a method to change the shared se-

cret as the new transaction occurs, therefore since the attackers do not have the

previous secret codes, it is impossible for them to alter any records which were

previously added. Our proposed method is similar to the mentioned works

in this aspect that our historical records are chained together using the digital

signatures, however, we use asymmetric encryption to generate digital signa-

tures that removes the need of the third-parties to attest the authenticity of the

transactions. The asymmetric encryption method also enables anybody to verify

signatures without revealing the users’ secrets.
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Chapter 3

Problem Definition and Algorithms

In this chapter, we introduce a practical procedure to implement the Blockchain

methodology in a temporal relational database as well as the principles to ver-

ify trustworthiness of the records and Blockchain. Then we talk about creating

snapshots of relations using the temporal database. In that section we fomally

define the problem of large query workload inefficiency in the context of tempo-

ral relational databases and then we propose a solution to lower the cost of such

queries. Majority of the definitions, figures, examples and discussions used for

the topic of snapshot materialization of this chapter were borrowed from our

paper in [2].

3.1 Development of Blockchain-based temporal re-

lations

In this section we extensively talk about the implementation of Blockchain for

the temporal relational database. The first step towards this objective is to aug-

ment some attributes to the relations that hold the security information of the

records.
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3.1.1 Temporal table with security information

The first step towards building a temporal table with security information is

to generate a pair of Cryptographic keys �Ku
priv, Ku

pub� and a unique username

for each user of the system. Using the Cryptographic keys, the system is able

to create and verify digital signatures of the transactions performed by users.

We previousely discussed the generation of digital signatures in 2.1.1. Now we

talk about the generation of digital signatures in the context of the proposed

temporal database.

Definition 12 (digital signature of the transactions) Let u be the user who sub-

mitted a set of records recj = {rec1, rec2, ..., recn} to rT
i . Given the private key of the

user denoted as Ku
priv the signature of each record could be computed as

signature(recj|Ku
priv) = encrypt(hash(recj), Ku

priv)

By storing the digital signature of the records, we provide trustworthy ver-

ification for the records. This attempt makes it difficult for the adversaries to

forge the records of the database, however the undetectable malicious activities

are still possible. In order to add to the difficulty of forgeries on the temporal

relation, we tend to create a chain of records using the digital signatures.

Definition 13 (Temporal table with Blockchain) The temporal relational table with

chained security information denoted as rT∗
i is a table with the attributes

attr(rT∗
i ) = attr(rT

i ) ∪ {username, currentSignature, previousSignature)}



3.1. Development of Blockchain-based temporal relations 19

TABLE 3.1: Temporal Table rT
1 with chained security information

r_id id item value timestamp deleted username curSgn prevSgn
151 21 Ruler 3.25 2018-02-10 False Bob r3T49TR 0
152 21 Ruler 3.25 2018-02-20 True Alice yu0PmER r3T49TR
153 22 Pencil 8.0 2018-03-21 False Alice gI90vjN yu0PmER
154 23 Pen 12.0 2018-03-30 False Bob 89Ec578 gI90vjN
155 22 Pencil 7.50 2018-04-01 False Eve Ipu32h6 89Ec578

FIGURE 3.1: Blockchain representation of the table rT
1 .

where username is the unique identity of the user who submitted the transaction, cur-

rentSignature is the digital signature of the submitted transaction and previousSigna-

ture is the signature of the previous record stored in rT
i .

Example 4 The Table 3.1 is an example of a temporal relational table with chained

security information. With assumption that each record is a block, this table also could

be depicted as Figure 3.1 which is the blockchian representation of Table 3.1.

Definition 14 (Chain verification) To verify if a chain of the records are valid, the

following steps are proposed:
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• step 1. verify the currentSignature of individual records.

• step 2. check if recj[previousSignature] == recj−1[currentSignature] except

for rec0

A chain is said to be broken if inconsistent information being gained in any

of the above steps.

3.1.2 Appending transactions

We previousely talked about how to provide security information for the records

of the temporal relations. In order to append a transaction along with its security

information to these temporal relations, the following steps should be taken:

• First the triggers of the database detect transactions on the records of the

database.

• The transaction submitter’s information is retrived from the users table.

• The position of the updated record on the temporal table is determined

and the digital signature of its previous record is retrieved.

• A digital signature of the updated record concatinated with its previous

record’s digital signature is computed by utilizing the transaction submit-

ter’s cryptographic keys.

• The updated record is appended at the end of the table and chained to the

end of blockchain by pointing to its previous record’s digital signature.
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incremental manitenance of blockchain cost

By assuming that the updates δD on the temporal database occur in constant

time, appending these updates to the end of blockchain is done in a constant

time O(δD).

It is not realistic to assume that all the transactions in a database system oc-

cur in separate timestamps. In fact when concurrent transactions are performed,

a database system without concurrency control, has no preference to decide

which transaction to be submitted first, therefore it may result in an inconsis-

tent database and consequently an inconsistent blockchain.

To solve the issue of concurrent transactions on the database, the transac-

tions on the database need to be serializable. Serializability grants some order to

the execution of concurrent transactions on the database system. This could be

achieved by utilizing either the inherent to relational database engine concur-

rency control tools or software-based alternatives such as software transactional

memory. In this project we utilized serializable isolation level that is defined by

SQL standards and supported by Postgresql database to provide serializability

for the concurrent transactions on the database system.

3.2 Snapshot creation

Our proposed trusted temporal database provides data provenance for the records

that are stored in a relational database. Given a temporal relation, for the sake

of decision making and data analytics, it is common to query for the version of a

relation in an specific timestamp. These queries could be answered by creating

snapshot of the relation using temporal database.
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FIGURE 3.2: The notion of creating snapshot on the timeline.

FIGURE 3.3: The records which needs to be checked when creating
a snapshot.

Linear time in creating snapshots

Given a relation r, we are interested to create a snapshot of this relation at time t,

using the temporal relation rT. Assume that the table was updated at a constant

rate over time, then the complexity of snapshot(r, t) is

O(|{x : x ∈ rT and x.updates ≤ t}|) � O(t)

Creating snapshots from timeline perspective could be depicted in Figure

3.2. Also the records that need to evaluated to create a snapshot can be shown in

Figure 3.3. This clearly shows that computing a snapshot requires visiting each

record that has been submitted before t once, and apply the updates. The prob-

lem is that, as the number of records to be evaluated grow, creating snapshot

become computationally more expensive.
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FIGURE 3.4: The records which needs to be checked when creating
a snapshot with having a precomputed snapshot for materializa-

tion.

3.2.1 Query answering using materialized snapshots

Using pre-computed materialized view has been proven to be effective in re-

ducing the computational time of query answering [33] [9]. As discussed ear-

lier, running queries Q(t) on temporal table rT to build snapshots and verifying

its Blockchain requires linear time with time complexity of approximately O(t).

Consequently in the presence of multiple and concurrent queries, such transac-

tions are computationally expensive and inefficient. We argue that, if a snapshot

is computed at an specific timestamp t and placed on the timeline for material-

ization, the computational time of answering to the subsequent queries on rT is

reduced. The notion of having precomputed snapshots for materialization can

be depicted as Figure 3.4. Note that the snapshot could exist before or after a

query and in both cases, the query can use the snapshot for materialization.

Proposition 1 suppose we have a precomputed snapshot s that is placed on the timeline

for materialization. Then creating snapshot(r, t) can be computed with complexity:

O(|{x : x ∈ rT and x.updates ∈ [s, t]}|) � O(|s − t|)

where t is the timestamp of interest.
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TABLE 3.2: Temporal Table rT
1

id item value timestamp deleted
1 Paper 0.25 2018-02-10 False
2 Scissors 8.0 2018-02-12 False
3 Folder 1.50 2018-02-12 False
1 Paper 0.30 2018-02-13 False
4 Pencil 3.0 2018-02-16 False
3 Folder 1.75 2018-02-21 False
5 Batteries 8.0 2018-02-23 False
1 Paper 0.35 2018-02-25 False
6 Notebook 7.0 2018-03-01 False
5 Batteries 9.0 2018-03-01 False
4 Pencil 3.25 2018-03-04 False
1 Paper 0.35 2018-03-04 True
7 Ruler 4.0 2018-03-06 False
2 Scissors 8.50 2018-03-07 False
7 Ruler 4.50 2018-03-08 False
5 Batteries 11.0 2018-03-10 False
3 Folder 1.75 2018-03-11 True
7 Ruler 4.50 2018-03-12 True
6 Notebook 7.50 2018-03-15 False
2 Scissors 7.50 2018-03-17 False

Example 5 Given a temporal relational table rT
1 (Table 3.2) and a precomputed snapshot

table s1 at timestamp t = 2018 − 03 − 11(Table 3.3), we are interested to create a

snapshot s2 which is the instance of table r1 at the timestamp of t = 2018 − 03 − 15.

In order to compute snapshot s2, Table 3.4 shows the transactions which needs to be

evaluated without using snapshot s1 and Table 3.4 is when s1 is used for materialization.

This example clearly shows that when creating snapshot s2 (Table 3.6), less transactions

need to be evaluated when s1 is used for materialization.
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TABLE 3.3: Snapshot s1 at t = 2018 − 03 − 11

id item value
2 Scissors 8.5
4 Pencil 3.25
5 Batteries 11.0
6 Notebook 7.0
7 Ruler 4.50

TABLE 3.4: the transactions to compute snapshot s2 at t = 2018 −
03 − 15 without using snapshot s1 for materialization

id item Transaction timestamp value query on
1 Paper cretaed 2018-02-10 0.25 rT

1
Paper updated 2018-02-13 0.30 rT

1
Paper updated 2018-02-25 0.35 rT

1
Paper deleted 2018-03-04 - rT

1
2 Scissors cretaed 2018-02-12 8.0 rT

1
Scissors updated 2018-03-07 8.50 rT

1
3 Folder cretaed 2018-02-12 1.50 rT

1
Folder updated 2018-02-21 1.75 rT

1
Folder deleted 2018-03-11 - rT

1
4 Pencil cretaed 2018-02-16 3.0 rT

1
Pencil updated 2018-03-04 3.25 rT

1
5 Batteries cretaed 2018-02-23 8.0 rT

1
Batteries updated 2018-03-01 9.0 rT

1
Batteries updated 2018-03-10 11.0 rT

1
6 Notebook cretaed 2018-03-01 7.0 rT

1
Notebook updated 2018-03-15 7.50 rT

1
7 Ruler cretaed 2018-03-06 4.0 rT

1
Ruler updated 2018-03-08 4.50 rT

1
Ruler deleted 2018-03-12 - rT

1

TABLE 3.5: the transactions to compute snapshot s2 at t = 2018 −
03 − 15 using snapshot s1 for materialization

id item Transaction timestamp value query on
2 Scissors - - 8.50 s1
4 Pencil - - 3.25 s1
5 Batteries - - 11.0 s1
6 Notebook - - 7.0 s1

Notebook updated 2018-03-15 7.50 rT
1

7 Ruler - - 4.50 s1
Ruler deleted 2018-03-12 - rT

1
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TABLE 3.6: Snapshot s2 at t = 2018 − 03 − 15

id item value
2 Scissors 8.50
4 Pencil 3.25
5 Batteries 11.0
6 Notebook 7.50

3.3 Single snapshot for materialization

Let Tq = {q1, q2, . . . , qn} be the timestamps of n queries, each querying the

database at DT(qi). To save on computational cost in answering the queries on

temporal database DT, we propose to compute snapshot s in optimal timestamp

on the timeline to answer to Tq at lower cost.

Definition 15 (Cost of Query Answering with single materialized snapshot) In

the presence of a single materialized precomputed snapshot s , the cost of answering the

query Tq is calculated as:

cost(Tq|s) = ∑
q∈Tq

|q − s|

Definition 16 (Optimal Snapshot placement) : For the single snapshot place-

ment problem, the goal is to find the timestamp s∗ such that

cost(Tq|s) = Argmin( ∑
q∈Tq

|q − s|)

3.3.1 Optimal single snapshot placement

Let T∗
q = {q1, q2, . . . , qn} be query workload on the temporal database. T∗

q gives

us a valuable insight into the query patterns on the temporal database, that
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FIGURE 3.5: Placing a single snapshot in the median of queries
guarantees the optimal cost of query answering.

could be used to find optimal position of snapshots.

Proposition 2 Given the performed queries T∗
q , the optimal position for a single snap-

shot on the timeline for materialization is s∗(T∗
q ) = median(T∗

q ) that can be computed

in O(|T∗
q |).

Figure 3.5 shows the notion of placing snapshot in the median of queries for

materialization.

Proof of the Proposition 2: At first, we solve the problem of a single snapshot

placement for two queries, and then we generalize the conclusion for multiple

queries:

Assume that there are two queries Tq = {q1, q2} on the timeline, such that,

q1 < q2. for the placement of a single snapshot s∗ on the timeline, there are

several cases which needs to be considered:

Case 1: s∗ ∈ [q1, q2], hence q1 ≤ s∗ ≤ q2. in this case, the cost is:

cost(Tq|s∗) =
2

∑
i=1

|qi − s∗| = (s∗ − q1 + q2 − s∗) = (q2 − q1)

from case 1, we can infer that the cost of running two queries q1 and q2 when

the snapshot is placed between them, is equal to the deviation between the two

queries.
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Case 2: s∗ /∈ [q1, q2] and s∗ < q1 < q2. for this case the cost could be calculated

as follows:

costT(Tq|s∗) =
2

∑
i=1

|qi − s∗| = (q1 − s∗ + q2 − s∗) = (q1 + q2 − 2s∗)

> (q1 + q2 − 2q1) = (q2 − q1)

Therefore we conclude that if the snapshot s∗ is placed before queries Tq, the

cost to perform both queries is greater than when the snapshot is placed between

the two queries.

Case 3: s∗ /∈ [q1, q2] and q1 < q2 < s∗.

cost(Tq|s∗) =
2

∑
i=1

|qi − s∗| = (s∗ − q1 + s∗ − q2) = (2s∗ − q1 − q2)

> (2q2 − q1 − q2) = (q2 − q1)

hence, if the snapshot s∗ is placed after the queries Tq, then the cost of per-

forming those queries are greater than when the snapshot is placed between

them.

From case1, case2 and case3, we can conclude that the optimal timestamp

on the timeline that we can place the single snapshot s∗ to perform two queries

Tq = {q1, q2}, where q1 < q2 is when s∗ ∈ [q1, q2].

Now, we generalize our conclusion from the cases that we evaluated, for

the placement of a single snapshot in the presence of a query workload on the

timeline:

Suppose that there is a set of queries Tq = {q1, q2, ..., qn} performed on the

timeline. To evaluate the most optimal position to place the single snapshot

s∗ for materialization, we breakdown the set of queries into the set of nested
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intervals [q1, qn], [q2, qn−1], ..., [qi, qn+1−i] where n is the number of queries on

timeline and i = 0, 1, 2, ..., c where c = n+1
2 for odd number of queries and c = n

2

for even number of queries.

Based on the conclusion that we obtained from examining case 1, case 2 and

case 3 earlier, for each nested interval, the cost of queries inside them is mini-

mized if snapshot s∗ is placed in a middle of the interval. Therefore if the snap-

shot is placed in a position which s∗ ∈ {[q1, qn]∧ [q2, qn−1]∧ ...∧ [qi, qn+1−i]} the

overall cost for all queries is minimized. In other words, if the snapshot is placed

in a position that is in the middle of all nested intervals, then the total sum of

absolute deviation of the snapshot from all queries is minimized. The place-

ment of snapshot s∗ in the median position of Tq guarantees that the snapshot

is placed in the middle of all nested query intervals, where the cost of queries is

calculated as follows:

cost(Tq|s∗) =
n

∑
i=1

|qi − s∗| =

[(|q1 − s∗|+ |qn − s∗|)+ (|q2 − s∗|+ |qn−1 − s∗|)+ ...+ |qc − s∗|+ |qn+1−c − s∗|)] =

[(s∗ − q1 + qn − s∗) + (s∗ − q2 + qn−1 − s∗) + ... + (s∗ − qc + qn+1−c − s∗)] =

[(qn − q1) + (qn−1 − q2) + ... + (qn+1−c − qc)]

where parenthesis indicate the deviation from endpoints for one of nested in-

tervals. In the case when there are odd number of queries performed on the

timeline, the innermost interval is [q n+1
2

, q n+1
2
] and the position of q n+1

2
is the op-

timal position to place snapshot s∗. Also when there are even number of queries

the innermost interval is [q n
2
, q n

2+1], therefore if we choose snapshot s∗’s position

to be at q n
2
≤ s∗ ≤ q n

2+1,it guarantees that the snapshot exists inside each of

nested intervals, and hence the sum of absolute deviation is minimized.
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3.4 Multiple snapshot placement

In the presence of thousands of queries on a temporal database with millions of

records, having a single snapshot reduces the cost of query answering but it is

still insufficient. Therefore, to reduce the overall cost of query answring, opti-

mal timestamps should be computed on the timeline of the temporal database

to place snapshots for materialization. In the following section, different ap-

proaches to compute the optimal positions on the timeline are discussed.

Proposition 3 (Cost of query answering with multiple materialized snapshots)

If multiple snapshots S = {s1, s2, . . . , sm} were precomputed and materialized, then

cost(Tq|S) = ∑
q∈Tq

min{|q − s| : s ∈ S}

Proposition 4 (optimal multiple snapshots for materialization) The m-snapshot

placement problem is to compute m number of timestamps S∗ = {s1, s2, . . . , sm} to

place m number of snapshots for materialization, such that

cost(Tq|S) = Argmin( ∑
q∈Tq

{|q − s| : s ∈ S})

Proposition 5 (Optimal number of snapshots) Let R be the total resources avail-

able on the system specified by the system designer to handle the given workload, and L
to be the average snapshot size. the maximum number of snapshots N could be deter-

mined by:

N = R/L
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FIGURE 3.6: The notion of creating segmentations on the timeline
and placing snapshot for each segmentation.

Now, we examine different approaches to find the optimal timestamps to

place snapshots. Let opt(Q, m) be the optimal m-snapshot placements for the

query workload Q. Denote Q[i, j] = {qi, qi+1, ..., qj−1, qj}.

Proposition 6 (Segmentation of queries) Given an ordered set of snapshot times-

tamps S = {s1, s2, ..., sm}, such that si ≤ si+1, and a query workload Q = {q1, q2, ..., qn},

snapshots create m number of non-overlapping segments on the queries Q[1, i1], Q[i1 +

1, i2], ..., Q[im−1, im] such that queries in the segment Q[ij, ij+1] use sj to answer the

queries in the optimal query answering strategy.

The notion of creating segmentations is depicted in Figure 3.6.

Proposition 7 (Optimality of sub-problems) Let S∗ = opt(Q, m). Let Q be the

partition of segments created by S∗. Then, the prefix of S∗ is also an optimal m − 1

snapshot placement of the prefix of Q. Formally,

prefix(S∗) = opt(∪prefix(Q), m − 1)
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3.4.1 recursive approach to find optimal segmentations of the

timeline

We can formulate a recursive definition of opt(Q, m) using Proposition 7. The

intuition is that we try out all possible last segment of Q, and pick the one with

the lowest cost.

The recursive definition of opt(Q, m) is given as:

• Base case opt(Q, 1) = {median(Q)}.

• Induction on m:

i∗ = argmin{cost(opt(Q[1, i], m − 1)) : i ∈ [1, n]}

opt(Q, m) = opt(Q[1, i∗]) ∪ {median(Q[i∗ + 1, m])

The recursive formulation of opt(Q, m) requires O(2m).

The recursive algorithm could be written as Algorithm 6

Function computeOPT(Q, m):
n = |Q|
OPT[i, 0] = ∞
for k ← 1 to m do

for i ← 1 to n do
j∗ = argmin

j∈[1,i]
(cost(OPT[j, k − 1]) + cost(Q[j + 1, n]))

OPT[i, k] = OPT[j∗, k − 1] ∪ {median(Q[j + 1], n)}
end

end
Algorithm 6: Recursive algorithm method to compute m number of optimal
segmentations

Example 6 Given the queries Q = {q1 = 2, q2 = 4, q3 = 9, q4 = 11, q5 = 17, q6 =

20} (Figure 3.7) and maximum number of snapshots m = 3, the goal is to find the most
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FIGURE 3.7: The quer on the timeline in Example.

optimal segmentations using recursive algorithm to place snapshots for materialization.

The steps to compute m number of optimal segmentations is shown in Figure 3.8. In this

example, the most optimal segmentation possible for 3 snapshots is when segment1 =

{q0, q1}, segment2 = {q2, q3}, segment3 = {q4, q5} where the total cost is 7 units.

Figure 3.9.

3.4.2 Dynamic programming approach to find optimal segmen-

tation of the timeline

Dynamic programming improves the time complexity of finding optimal seg-

mentations in recursive algorithm by utilizing memoization technique [15]. In

the memoization technique, if the cost of a segmentation is calculated, it is stored

in a table where the recursive calls can look up the results in the table instead

of recalculating them. We can build a table OPT as a two dimensional ar-

ray indexed by (i, k) where i ∈ [1, n] and k ∈ [1, m]. Each entry in the table

OPT[i, k] = opt(Q[1, i], k). We can compute OPT[i, k] in a bottom up fashion

[19]. The complexity of computing all the entries of OPT is O(mn2).

The Dynamic programming could be implemented as Algorithm 7

Example 7 Given a query workload Q = q0 = 2, q1 = 4, q2 = 9, q3 = 11, we want

to compute 3 segmentations from these queries, such that putting a snapshot in each

segmentation, make the overall cost of answering to the queries optimal. The process

of computing optimal snapshots is shown in Table 3.7. This method is more efficient

than recursive algorithm as for example in the memoization table T[3][2], the recursive
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FIGURE 3.8: Recursive approach to compute optimal segmenta-
tions for 3 snapshots.
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FIGURE 3.9: Segmentation of queries on the timeline for Example
6

Function computeOPT(Q, m):
n = |Q|
minVal = ∞
for i ← 1 to m do

for j ← 1 to n + 1 do
for k ← 1 to j do

minVal = min(minVal, Table[i, k] + cost(Q[j − k :]))
end
Table[i, j] = minVal

end
end

Algorithm 7: Dynamic programming method to compute m number of opti-
mal segmentations

call uses the cost stored in T[2][1], T[2][2] and T[2][3] without the need to recalu-

late them. In this example, the most optimal overall cost is 2 which is achieved by

either {segment1 = [q0, q1], segment2 = [q2], segment3 = [q3]} or {segment1 =

[q0], segment2 = [q1], segment3 = [q2, q3]}

3.4.3 Heuristic method to find optimal timeline segmentation

In the heuristic technique, the optimal solution to a problem is not guaranteed

however it could be seen as a suitable alternative solution when runtime has

more priority than the accuracy of the solution. For the purpose of finding the

optimal segmentation of queries for optimal query answering, we utilized K-

means clustering technique. We chose K-means clustering over other clustering

methods because each centroids resulted from this technique are in the middle



36 Chapter 3. Problem Definition and Algorithms

TABLE 3.7: Memoization table T for dynamic programming ap-
proach to compute 3 optimal segmentations from 4 queries.

0 0 0 0 0

0 T[0][0] + cost(q0) T[0][1] + cost(q0, q1) T[0][2] + cost(q0, q1, q2) T[0][3] + cost(q0, q1, q2, q3)

0 + 0 = 0 0 + 2 = 2 0 + 7 = 7 0 + 14 = 14

0 T[1][0] + cost[q0] min





T[1][1] + cost[q1]

T[1][2] + cost[]
min





T[1][1] + cost[q1, q2]

T[1][2] + cost[q2]

T[1][3] + cost[]

min





T[1][1] + cost[q1, q2, q3]

T[1][2] + cost[q2, q3]

T[1][3] + cost[q3]

T[1][4] + cost[]

0 + 0 = 0 min





0 + 0 = 0

0 + 2 = 2
min





0 + 5 = 5

2 + 0 = 2

7 + 0 = 7

min





0 + 7 = 7

2 + 2 = 4

7 + 0 = 7

14 + 0 = 14

0 T[2][0] + cost[q0] min





T[2][1] + cost[q1]

T[2][2] + cost[]
min





T[2][1] + cost[q1, q2]

T[2][2] + cost[q2]

T[2][3] + cost[]

min





T[2][1] + cost[q1, q2, q3]

T[2][2] + cost[q2, q3]

T[2][3] + cost[q3]

T[2][4] + cost[]

0 + 0 = 0 min





0 + 0 = 0

0 + 0 = 0
min





0 + 5 = 5

0 + 0 = 0

2 + 0 = 2

min





0 + 7 = 7

0 + 2 = 2

2 + 0 = 2

4 + 0 = 4
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of their cluster, hence they are good candidate to place the snapshots for mate-

rialization.

Proposition 8 Given T∗
q = {q0, q1, ..., qn} as the query workload on the temporal re-

lation rT, we would like to group the qi ∈ T∗
q into m number of "clusters".

Applying K-means clustering methodology to this problem requires to min-

imize the objective function defined as:

J =
m

∑
j=1

n

∑
i=1

||q(j)
i − µj||2

where µj is the centroid of jth cluster and ||q(j)
i − µj||2 is the squared error func-

tion which indicates the distance between each query and their assigned cen-

troids. Minimizing objective function is achieved by the relocation of µj until no

changes occur in the objective function.

The K-means clustering algorithm is given as Algorithm 8.

Function K-Means(T∗
q {q1, ..., qn}, m, maxIteration):

iteration ← 0
repeat

{µ1, ..., µm} ← SelectRandomSeeds({qi ∈ T∗
q }, m)

for i ← 1 to n do
J ← argminJ∗ ||µJ∗ − qi||2
Lj ← Lj ∪ {qi}

end
for j ← 1 to m do

µj ← 1
Lj

∑q∈Lj
q

end
iteration ++

until convergence and iteration ≤ maxIteration
return {µ1, ..., µm}

Algorithm 8: K-means clustering to compute m number of segmentations
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FIGURE 3.10: verify trustworthiness of the records in snapshot ma-
terialization

3.5 Trusted Snspshots for materialization

In order to reduce the cost of Blockchain verification and make it inline with

snapshot materialization strategy, we suggest the trusted snapshots.

Definition 17 (Trusted Snapshots) The trusted snapshot s∗ is a table with attributes

attr(s) ∪ {signature} where

tail(s∗[signature]) = signature(
n

∑
i=0

(reci) : reci ∈ s)

Definition 18 (Trusted snaphsot materialization) To materialize the trusted snap-

shots for Blockchain verification, the following steps should be taken:

• step 1. the signature of the materialized snapshot to be checked.

• step 2. The trustworthiness of the records which fall in between the query q and

snapshot s to be verified using blockchain verification.

These steps could also be depicted as Figure 3.10.
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FIGURE 3.11: rules that needs to be followed when signing pre-
computed snapshots

The remaining issue is that, to digitally sign the records in s, we need to

make sure about the trustworthiness of the records in the snapshot beforehand.

Therefore we propose the following rules for that purpose:

• The first snapshot’s records trustworthiness is checked using blockchain

verification.

• The subsequent snapshots materialize their previous snapshot, hence we

take the same steps that was proposed in Definition 18.

Figure 3.11 depicts the rules that needs to be followed when signing a pre-

computed snapshot.

3.6 Discussion

Utilizing Blockchain technology to provide verifiablilty and immutability for

the records that are stored in a temporal relation discussed in this chapter. We
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presented a way to store security information of the transactions also known as

proof of work to the temporal relations. this is basically achieved by adding the

information of the transaction submitter along with the digital signature of the

transaction using submitter’s cryptogrphic keys. Digital signature of the trans-

actions enables all the users who have access to the public key of the submitters

to verify whether or not the submitted records are authenticate or not.

Although digital signatures grant verifiability of the records but the tables

with the security information are still vulnerable to malicious attacks. For exam-

ple, a super user of the database who can bypass all the security requirements

can still perform unverifiable malicious attacks. Therefore, it is naive to assume

that using merely the digital signatures can guarantee the trustworthiness of the

records.

To solve the issue, we proposed chaining the submitted records together us-

ing their digital signature. This could be done by using the Blockchain tech-

nology in which the data are represented in the form of blocks and each block

contains the digital signature of their previously submitted block. Any changes

on the blocks result in a completely different signature that brings inconsistancy

in the chain of digital signatures. To implement this idea, we proposed to add

the previousSignature attribute to the records in the temporal table that contains

the digital signature of their previous record.

In order to verify the chain of digital signatures, each record in the temporal

relation need to be visited and the correctness of their digital signature as well

as the correctness of their previous record’s digital signature needs to be investi-

gated. We call this the manual blockchain verification method which is a linear

pocess.

Also, given a temporal relation which contains historical data of the database,

for the sake of decision making and data analytics, it is common to query for
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the version of the relation in an specific timestamp. These queries could be an-

swered by creating the snapshot of the relation until that timestamp. The pro-

cess of snapshot creation is also linear as all the records that fall before the query

timestamp needs to visited once and the updates on them needs to be applied.

In this chapter, We reasoned that answering to snapshot creation queries and

manual blockchain verification is expensive and inefficient, therefore we pro-

posed to place m number of snapshots for materialization. These snapshots in-

dicate the latest version of a database until that specific timestamp. Note that m

which is the number of snapshots to be generated and placed for materialization

is determined by checking the available resources of the host system.

To find optimal locations for placing snapshots, we proposed to store the

timestamp of the previous queries on the database to have the patterns of the

queries on the timeline. Pattern of the queries gives us the ability to identify the

hotspots on the timeline. We argued that it is highly likeley that the the subse-

quent queries to be performed in these hotspots. in order to solve the problem

of finding optimal locations for the snapshots, we proposed to create optimal

segmentations of the previously performed queries and allocate an exclusive

snapshot for each segmentation for materialization. In this case, when a query

falls in the boundaries of a segmentation, it materializes the snapshot of that

segmentation.

In order to find m number of optimal segmentation, we first solved the prob-

lem of finding an optimal position to place a single snapshot. We mathemati-

cally proved that the optimal place for a single snapshot is the median of the

queries, hence if m number of segmentations were created, the optimal position

to place snapshot within each segmentation is the median of that segmentation

queries. In the next step, we utilized three different methods to find multiple

optimal segmentation of queries: recursive algorithm, dynamic programming
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and heuristic method. In theory, the recursive algorithm consumes the high-

est computational time among the other two methods. Also, computationally,

heuristic method has the lowest computational time complexity over recursive

algorithm and dynamic programming, but the optimal solution to the problem

is not always guaranteed. In the next chapter we design multiple experiments

to evaluate the performance of each method in different scenarios.

With the intention of providing trusted query results, we proposed to create

the digital signatures of the snapshots and append it to the end of the snapshot

table. Digitally signing the precomputed snapshots requires to investigate the

authenticity of their records before signing them. This process requires manual

blockchain verification which is costly, especially for the snapshots that fall at

the end of the timeline. In order to save the computational time, we proposed

that only the first snapshot use the manual Blockchain verification and the sub-

sequent snapshots use the materialized Blockchain verification using their pre-

vious precomputed snapshot.
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Chapter 4

System Implementation And

Experimental Evaluation

This chapter attempts to discusses the experiments performed to evaluate the

proposed solutions for the implementation of the system. Section 4.1 provides

information about the system design and choice of software and programming

languages. Section 4.2 provides an evaluation of discussed methods for snap-

shot materialization by setting up different experiments.

4.1 Development environment and application de-

velopment tools

To setup the development environment of the project, we used the ’Leda’ re-

search server provided by the department of scinece at the University of Ontario

Institute of Technology with the ubuntu 16.04 operating system installed. The

application could be developed by various tools, but since one important goal

of this project was to be able to generalize our proposed solution for majority

of relational databases, we needed to choose the tools that are popular among

the developers for the development of their system. For the database choice,
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we favored the use of postgreSQL simply because of its wide adoptation by the

industry [4].

The experiments scripts were mainly developed by using Python 2.7 pro-

gramming language. We started off by generating a database using the TPCH

schema with 1,000,000 tuples in the main table. Using Python’s pycrypto 2.6.1

library 1, we developed a few functions to create digital signature of the transac-

tions on the database system. We generated a synthetic temporal database with

security information, by performing a set of random insert, delete and update

transactions and by creating their digital signature at 1000 distinct timestamps.

In each record, along with the digital signature of that record, we also stored

the digital signature of its previous record in the temporal table. This created a

Blockchain-based relational temporal table with 1,000 timestamps.

To be able to manage the relational database and perform queries on the ta-

bles, we utilized SQL query language. Generation of snapshots using the records

stored in the temporal tables required time series analysis and performing num-

bers of aggregations and self-joins on the relational table. In order to make this

process less cumbersome, we utilized the windowing function that is part of the

SQL standard and is supported by the relational databases [20].

In order to evaluate the effectiveness of snapshot materialization, the op-

timal snapshot placement had to be examined in different query distributions

on the timeline. The Python’s Numpy library gave us the ability to simulate

some query distributions on the timeline. The recursion and dynamic program-

ming experiments was performed using Python 2.7 programming language.

The heuristic method experiment, also is based on scikit-learn machine learning

library 2 for Python. After running the snapshot materialization experiments

1https://pypi.org/project/pycrypto/
2http://scikit-learn.org/stable/
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and collecting data, we utilized the Python’s plotly library in order to visualize

the collected data.

4.2 Experimental evaluation

In this section we discuss the evaluation of snapshot materialization through

different experiments. We start by showing a method to create snapshots using

the temporal relation. Then we show the problem of linear computational time

in performing snapshot generation on the temporal relation. Next, we evalu-

ate the placement of a single snapshot for matrialization in different timestamps

and visualize the optimal position for this purpose. In the next step we show the

effectiveness of utilizing multiple number of precomputed snapshots for mate-

rialization and at the end, multiple approaches to find multiple optimal times-

tamps are put into different experiments.

4.2.1 Generating snapshots by using records in a temporal database

We can construct the snapshots using simple windowing functions (as is sup-

ported by PostgreSQL [23]). The pseudo code of the developed function is

shown in Table 4.1.

The query snapshot(r, t) computes the snapshot of r at timestamp t by ap-

plying the latest update of each tuple up to timestamp t, while removing tuples

that have been deleted.
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snapshot(r, t) =
WITH T AS (

SELECT id, {last_value(x) as x : x ∈ attr(r)} OVER W
FROM rT

WHERE updates ≤ t
WINDOW W AS PARTITION BY id ORDER BY updates

)
SELECT id, {x : x ∈ attr(r)} FROM T
WHERE NOT T.deleted

TABLE 4.1: The windowing function to create snapshots

FIGURE 4.1: Linear time in computation of snapshots without
snapshot materialization

4.2.2 Evaluating the linearity of snapshot generation

To prove the linearity of snapshot generation experimentally, we developed an

experiment to create and record runtime of 100 snapshots on the timeline of

temporal database. Using the resulted runtime data, the cost-line was visualized

which is shown if Figure 4.1. Note that the runtime is in seconds.

Figure 4.1 clearly proves our claim that computation of snapshots on a tem-

poral table requires linear time. The issue of linearity in computation of snap-

shots makes such tasks on a very large table inefficient.
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4.2.3 Evaluating materialization of a single snapshot

The purpose of this experiment is to visually see that the optimal timestamp

of a single snapshot for materialization is the median of previousely performed

queries. For this purpose we randomly sampled 60 query timestamps from our

temporal database timeline. Each query was genrating an snapshot of the rela-

tion at an specific timestamp. In the next step we placed a single snapshot for

these queries to materialize and computed the overal cost of query answering

using definition 15. To see the effects of repositioning the materialized snapshot

on the timeline, we slided the materialized snapshot on the timeline of the tem-

poral relation. The resulted overall cost-line obtained from sliding the snapshot

is depicted in Figure 4.2.

The resulted cost line shown in Figure 4.2 clearly shows that the position of

a snapshot directly affects the overal cost of query answering on the temporal

table. We also computed the median of the queries on the timeline which is seen

as a red dot on the figure. As seen in the figure, the median of the queries is

indeed located in the position where the cost-line’s global minimum is. This

proves that the median of the queries is the most optimal position to place a

single snapshot for materialization.

4.2.4 Evaluating materialization of multiple snapshot

To evaluate the performance of our optimal snapshot computation, we evalu-

ated the recursive formulation given by Section 3.4.1, the dynamic programming

formulation given by Section 3.4.2 and heuristic method given by Section 3.4.3.

To illustrate that the optimal snapshot placement indeed produces the best

query answering performance, we compared the query answering cost of three

approaches:
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FIGURE 4.2: Cost of query answering using a single snapshot over
different snaptshot timestamps

• Pick m random timestamps to place the snapshots.

• Pick m evenly intervaled timestamps to place the snapshots.

• Pick m timestamps computed by dynamic programming.

Figure 4.3 shows that the placements obtained by dynamic programming

clearly beats the other two approaches.

In order to evaluate the effectiveness of m number of snapshots to lower

the overal cost of query answering, we recorded the overal cost of queries in

various number of snapshots. Figure 4.4 shows that as the number of snapshots

for materialization increases, the overal cost of answering to the queries drops.

4.2.5 Evaluating approaches for optimal placement of m snap-

shots

In this research, we examine three approaches to find the optimal timestamps

for m number of snashots for materialization. The performed approaches are:
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FIGURE 4.3: Query answering cost with forty snapshots with vari-
ous approaches to place snapshots for materialization

FIGURE 4.4: Query answering cost with increasing number of
snapshots
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FIGURE 4.5: Optimization runtime with respect to the number of
snapshots (in seconds)

• Recursive algorithm.

• Dynamic programming.

• K-Means clustering.

Experiment 1.

In the first experiment , we evaluate the performance of each approach with

respect to fixed number of queries and variable number of snapshots For this

experiment we sampled 140 number of queries and evalueted the runtime of

each approach while increasing the number of requested snapshots.

Figure 4.5 and Table 4.2 depict the observations of the experiment. The graph

shows that in comparison with dynamic programming and K-means clustering,

the recursive algorithm is computationally more expensive. In fact we could not
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TABLE 4.2: Optimization runtime with respect to the number of
snapshots

Snapshots Recursive (sec) Dynamic (sec) Clustering (sec)
1 0.0002 0.01 0.01
2 0.01 0.17 0.02
3 0.32 0.34 0.03
4 7.39 0.52 0.04
5 183.18 0.69 0.06
10 N/A 1.52 0.08
15 N/A 2.33 0.12
20 N/A 4.33 0.12
25 N/A 5.46 0.14
30 N/A 8.81 0.17
35 N/A 10.74 0.21
40 N/A 21.09 0.24

find the optimal timestamp for more than five snapshots because the results did

not converge.

Figure 4.5 and Table 4.3, have a closer look at the dynamic programming and

clustering method. As it could be seen, the clustering technique finds the opti-

mal timestamps for the snapshots in a lower runtime.

Exmperiment 2.

In the second experiment of this category, we evaluated the three approaches

of finding optimal timestamps for fixed the number of snapshots and variable

number of queries. For this reason, we computed 4 number of optimal times-

tamps for queries ranging from 12 to approximately 180.

Figure 4.8 and Table 4.5 shows that similar to the previous experiment, recur-

sive algorithm has proven to be expensive in computing the optimal timestamps
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FIGURE 4.6: Optimization runtime with respect to the number of
snapshots (in seconds)

TABLE 4.3: Optimization runtime with respect to the number of
snapshots

Snapshots Dynamic (sec) Clustering (sec)
1 0.01 0.01
2 0.17 0.02
3 0.34 0.03
4 0.52 0.04
5 0.69 0.06
10 1.52 0.08
15 2.33 0.12
20 4.33 0.12
25 5.46 0.14
30 8.81 0.17
35 10.74 0.21
40 21.09 0.24
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FIGURE 4.7: Optimization runtime with respect to the number of
queries (in seconds)

TABLE 4.4: Optimization runtime with respect to the number of
queries

Queries Recursive (sec) Dynamic (sec) Clustering (sec)
13 0.05 0.01 0.02
43 1.23 0.13 0.03
73 6.15 0.39 0.03
103 34.98 1.60 0.03
133 77.31 0.69 0.04
163 147.57 4.35 0.04
187 228.52 5.96 0.04
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FIGURE 4.8: Optimization runtime with respect to the number of
queries (in seconds)

TABLE 4.5: Optimization runtime with respect to the number of
queries (in seconds)

Queries Dynamic (sec) Clustering (sec)
13 0.01 0.02
43 0.13 0.03
73 0.39 0.03
103 1.60 0.03
133 0.69 0.04
163 4.35 0.04
187 5.96 0.04

of the snapshots. Figure 4.8 and Table 4.5 also compares the dynamic program-

ming with heuristic method.

The results obtained from these set of experiments show that, the heuristic

method is computationally more favorable than the other two methods. When

in a system, the exact optimal solution has more priority over the runtime, the

dynamic programming could be seen as a better option. However in largescale

systems that the runtime is more important, heuristic method could be more
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FIGURE 4.9: Comparing the outcome of dynamic programming
with the heuristic method

favorable. Mobile systems are one example in which the runtime matters the

most.

4.2.6 Evaluating the heuristic method

Since heuristic method does not guarantee the exact optimal solution, we tend

to compare the solution obtained from heuristic method with the exact opti-

mal solution obtained from dynamic programming method. Our objective was

to see if the heuristic method returns satisfactory results. In this experiment,

we compared the outcome of the dynamic programming and K-Means cluster-

ing method in varying number of snapshots but fixed number of queries (160

queries). Figure 4.9 and Table 4.6 show that the difference from outcome of dy-

namic programming and heuristic method is slight, and the heuristic method

has a satisfactory results.
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TABLE 4.6: Comparing the outcome of dynamic programming
with the heuristic method

Snapshots Dynamic Clustering
1 29439.26 29439.26
3 9141.55 9159.13
5 4626.77 4630.08
7 2867.74 2867.74
9 2410.46 2412.62
11 1972.14 1980.95
13 1664.14 1673.32
15 1471.58 1509.57
17 1300.32 1351.44
19 1162.25 1194.61
21 1051.97 1079.71
23 951.06 970.72
25 867.35 907.30
27 810.01 836.97
29 759.69 787.86
31 713.04 731.61
33 670.39 684.13
35 629.69 640.58
37 591.08 608.96
39 557.81 575.97
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FIGURE 4.10: Comparing the runtime of K-Means clustering
method with 30 and 300 iterations for variable number of snap-

shots

The K-means clustering method used in the experiments used 300 itterations

until the solution is converged. For the purpose of lowering the runtime even

more, we lowered the number of iterations to 30 and performed the experiments

again. Figure 4.11 shows the runtime comparison of K-Means clustering method

with 300 iterations and 30 iterations for fixed number of queries but variable

number of snapshots and Figure 4.10 shows the same comparison for fixed num-

ber of snapshots but varying number of queries.

Then we compared the overal cost of query answering with the same setting

in variable number of snapshots. As it could be inferred from Figure 4.12 and

Table 4.7, loweing the number of iterations lowers the precision of finding an

optimal solution but the results are still satisfactory.
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FIGURE 4.11: Comparing the runtime of K-Means clustering
method with 30 and 300 iterations for variable number of queries

FIGURE 4.12: Comparing the overal cost of query answering in
variable number of snapshots using K-Means clustering method
with 30 and 300 iterations to find optimal timestamps for snapshots
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TABLE 4.7: A comparison between K-means clustering with 30 and
300 iterations

Snapshots 300 iterations 5 iterations
1 29439.26 30439.26
3 9159.13 9841.13
5 4630.08 4921.08
7 2867.74 2945.76
9 2412.62 2732.38
11 1980.95 2023.24
13 1673.32 1789.50
15 1509.57 1521.68
17 1351.44 1430.66
19 1194.61 1284.61
21 1079.71 1182.71
23 970.72 1002.57
25 907.30 923.30
27 836.97 856.83
29 787.86 811.08
31 731.61 769.83
33 684.13 710.49
35 640.58 683.60
37 608.96 645.74
39 575.97 595.89
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4.3 Discussion

In this chapter the effectiveness of the proposed solutions to both lower the cost

of queries on the temporal tables and add verifiability to the stored records in a

database were put into experiment. We argued that the system could be devel-

oped by various tools but in order to generalize the application of our proposed

methods for majority of relational databases, we chose the most favorable pro-

gramming languages and tools by developers. The effectiveness of the snapshot

materialization was the first set of experiments which was carried out. The ex-

periments proved our claim that for a single snapshot placement for materializa-

tion, the median of the perviousely performed queries is the most optimal times-

tamp. The experiments also showed that for calculating the multiple optimal

segmentation of queries on the timeline, the heuristic method beats the recursive

and dynamic programming method in terms of computational time complexity.

Our experiments showed that although the optimal solution is not guaranteed

in the heuristic method, but the results obtained by using this method are satis-

factory. For the sake of reducing the computational time even more, we lowered

the iteration of the heuristic method and the results obtained were still satisfac-

tory.

Briefly speaking, the advantages and disadvantages of utilizing recursive al-

gorithm, dynamic programming and heuristic method could be shown in Table

4.8.
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TABLE 4.8: Comparison between the methods to create optimal
segmentations

method Pros Cons
Recursive algorithm Exact optimal solution Expensive for large

number of queries and
segmentations

Dynamic programming Exact optimal solution Expensive for large
number of queries and
segmentations

Cheaper than recursive
algorithm

K-Means clustering Fast in computation optimal solution not
guaranteed
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Chapter 5

Conclusion

5.1 Summary

In this work, implementation of a Blockchain based temporal database was pro-

posed that works based on Relational Database Management System (RDBMS).

The trustworthiness of the records in the temporal relations is verifiable using

immutable digital signatures. The temporal relation contains all the updates of

a particular relation, therefore it could be used as the source of data provenance

for that relation. To implement the system, two major problems were identified:

• Make the historical records stored in the temporal table immutable and

verifiable.

• Lower the cost of snapshot generation on the temporal database.

Using Blockchain to add immutability and verifiability for the records of

temporal relations, require these relations to have a few security information

attributes: the transaction submitters information, the digital signature of the

record signed by transaction submitter’s cryptoraphic keys and the previous

record’s digital signature. Creating the digital signature of the records and stor-

ing them with the record provides verifiability for that records. Also storing the
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digital signature of the previous record in current record, creates the chain of

records also known as Blockchain of records. The Blockchain which is created

by doing this, ensures that the malicious attempts on the temporal database, re-

sult in an evident inconsistent data. The validation of the chain of records is

done by

• validate the authenticity of each record by verifying their digital signa-

tures.

• making sure that the current record’s ’previous signature’ field, matches the

previous record’s ’current signature’ field for all the records in the table.

The process of verifying the chain is said to be linear because there is a need to

visit every single record of the temporal relation and verify their trustworthi-

ness.

Having a temporal database as the source of data provenance, enables users

to create snapshot of the relation in an specific timestamp. In fact for the purpose

of decision making and data analytics such queries are common. In this thesis,

the problem of linear time and storage to perform such queries on the temporal

databases shown both theoretically and experimentally. In the presence of multi-

ple and concurrent queries on the temporal table, performing snapshot creation

queries are inefficient and infeasable.

In oder to reduce the cost of snapshot creation queries, the materialization of

multiple precomputed snapshots proposed. The proposal advices that keeping

the timestamp of previous queries which was performed on the temporal ta-

ble gives insight into the pattern of queries on the table and identifies hotspots.

These hotspots are useful because there is a high chance that the subsequent
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queries to be performed in those hotspots. Optimal segmentation of the per-

formed queries, creates optimal clusters of the queries and specifies a precom-

puted snapshot for each cluster to materialize. It is expected that this method

result in lowering the overall cost of query answering on the temporal database.

For the placement of a single snapshot for materialization, both mathemati-

cal and experimental approach showed that the most optimal timestamps is the

median of previousely performed queries. This notion could be extended for

placing multiple precomputed snapshots for materialization. That is, when op-

timal multiple segmentations of the queries were computed, the optimal place

in each segmentation for placing the snapshot is the median of queries in that

segment.

Finding the optimal multiple segmentations of the previousely performed

queries was performed using three different aproaches: recursive algorithm, dy-

namic programming and heuristic method. The experiments showed that the

heuristic method does not guarantee the most optimal solution, but it is more

favorable than the other two methods because of less computational time and

satisfactory results.

To extend the idea of snapshot materialization for the problem of Blockchain

verification, it is recommended to create a digital signature of the precomputed

snapshots, and place it to the end of each snapshot table. By doing so, the vali-

dation of the Blockchain, when a query is performed is done by:

• check the digital signature of the snapshot that the query is materializing.

• for the records that fall in between the query timestamp and snapshot

timestamp, use the manual chain validation technique
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5.2 Conclusion

In this thesis, the development of a trusted relational temporal database was dis-

cussed. The temporal database contains the historical data of a database which

makes them a suitable source of data provenance for the database system. In or-

der for the temporal database to be trusted, the records in it must be immutable

and verifiable. For this purpose, digital signature is a suitable tool to be utilized.

Digital signatures provide verifiability for the stored records and also make un-

detectable forgeires on the temporal database difficult. Using digital signatures

in the context of this research is achieved by creating a signature of the submit-

ted transaction using the submitter’s private key. Moreover, To reduce the risk

of adverserial attacks, especially from the super-users of the system, the records

that are digitally signed could be chained together by a record holding its pre-

vious record’s digital signature. By doing so, any malicious or accidental data

manipulation on the temporal relation, results in an inconsistent data.

The temporal databases that we talked about can become massive as they

store all the updates on the relations of a database. This makes querying for the

snapshot of a relation on them expensive as there is a need to compute a large

workload for each query. Snapshot materialization is a suitable way to reduce

the cost of query answering on the temporal databases. For this purpose, mul-

tiple number of snapshots could be precomputed for materialization. Finding

the optimal timestamps to place the snapshots could be started by storing the

timstamp of performed queries on the temporal relation. By doing so, a useful

information about the hotspots of the timeline of temporal table is provided. If

one snapshot is to be placed, the median of queries is the most optimal place

for it. For multiple snapshots, optimally creating segmentations of the queries

and placing snapshots in the median of each segmentation, might an optimal
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solution.

Creating optimal segmentation could be seen as an optimization problem

and could be computed using recursive algorithm, dynamic programming and

heuristic method. Experiments proved that in this project, the heuristic method

is more favorable because it provides satisfactory results in a much affordable

runtime. Multiple experiments also proved our claim that the optimal snapshot

materialization can reduce the cost of query answering more significant than

placing materialized snapshots randomly or in fixed intervals.

At last, to guarantee that the snapshots created using materialized view is

trustworthy, digital signature of the materialized snapshot could be created and

added to their table. This is a beneficial method that reduces the cost of Blockchain

verification by materializing the snapshots.

5.3 Future work and other remarks

Many different extensions and changes to the proposed system has been left for

the future work due to the complicateness of the problems and the limitation of

time. Future works contain different possible applications of the proposed sys-

tem and methods which can make the current system perform better. It would

be interesting to consider the following applications, extensions and methods of

the proposed system.

5.3.1 Utilization in distributed storages on P2P networks

In recent years decentralized file systems have become a trend in business en-

vironments. Unlike centralized storages in which all data of a system stored

on central servers and any data access should be authorized by these central
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servers, in decentralized file systems, computers can share information with

each other directly without having an intermediary involved [18]. Current de-

centralized file systems such as Interplanetrory File System (IPFS), Storj and Sia

are distributed storages on peer to peer networks that do not rely on any central

service provider to monitor and permit file sharing between the nodes [40].

Many of decentralized file systems utilize Blockchain technology in order to

make digital assets that are shared between the nodes secure and virtually im-

mutable [40]. For example, IPFS utilizes Filecoin which is basically a Blockchain

that is built on top of IPFS and guarantees secure file replication and synchro-

nization between the nodes [36].

It would be interesting to employ the proposed trusted temporal relation to

not only provide data provenance for the records in such decentralized file sys-

tems but also make queries on the relation as well as verifying the authenticity

of the Blockchain computationally cheaper. However, in order to achieve the

objective there are multiple problems that need to be solved.

Finding the optimal snapshot materialization strategy in the distributed file

system is the most flagrant problem. In this thesis we argued that the optimal

snapshots could be placed in the center of hotspots on the timeline of the tempo-

ral database. We discussed that these hotspots could be identified by capturing

the timestamp of past queries. However the usefulness of this strategy for a

decentralized network needs to be investigated. It needs to be inquired if it

is optimal to either place snapshots for every individual node on the decentral-

ized network or it should be calculated once for all the nodes. The other possible

question is where to store these snapshots on the network. All mentioned and

many other problems create a new dimension to the optimal snapshot material-

ization problem.
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5.3.2 Trust certification

In the world wide web environment, in order to provide secure connections

between two parties in the network, Secure Socket Layer (SSL) certificates are used

that encrypts all the interactions between a browser and a web server. Similar to

that, based on our proposed system, a user interface with certification could be

created that reflects the "Trust" in the data exploration. This cerificate guarantees

that the stored data of a database and any results from queries on them are

trustworthy.

5.3.3 More efficient clustering methods

Another evaluation which is absent in this study is the comparison between

K-Means clustering method with other clustering techniques. Other clustering

techniques might serve as heuristics with more precise results or lower compu-

tational complexity.

5.3.4 Generalization for different database models

This system was designed based on the Relational Database Management Sys-

tem (RDBMS) which makes it inapplicable for other database models. For ex-

ample, graph databases who has gained popularity as an alternative to the re-

lational model, has different method of storing and retrieving data than the re-

lational databases. In order to generalize the implementation of the system for

different database models, further studies need to be conducted.
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5.4 Limitations

Our methodology has a number of limitations which are discussed in this sec-

tion. In this research, one of the steps to provide trust over the historical records

is to make them immutable. This requires that the temporal relation’s attributes

to be immutable as well. This limits the users to add or remove any attributes of

the temporal relation.

Another limitation is that the optimization method discussed in this research

is static. When the query workload change over time, the optimal location of

snapshots also change. With the current proposed method, instead of dynami-

cally computing the optimal locations, the optimal location must be recomputed

again.



71

Bibliography

[1] Jean-Philippe Aumasson et al. The Hash Function BLAKE. Berlin, Heidel-

berg: Springer, 2014.

[2] Amin Beirami, Ken Pu, and Ying Zhu. “Towards Optimal Snapshot Mate-

rialization To Support Large Query Workload For Append-only Temporal

Databases”. In: 2018 IEEE BigData Congress. 2018, pp. 268–271.

[3] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in Databases:

Why, How, and Where. Now Pub, 2009.

[4] Joshua Cook. Docker for Data Science Building Scalable and Extensible Data

Infrastructure Around the Jupyter Notebook Server. Apress, 2017.

[5] Scott A. Crosby and Dan S. Wallach. “Efficient data structures for tamper-

evident logging”. In: 2009 the 18th conference on USENIX security sympo-

sium. USENIX Association. 2009, pp. 317–334.

[6] Chenyun Dai et al. “An Approach to Evaluate Data Trustworthiness Based

on Data Provenance”. In: Secure Data Management. Springer Berlin Heidel-

berg, 2008, pp. 82–98.

[7] Department of Defense Trusted Computer System Evaluation Criteria. Stan-

dard. United States Department of Defense, 1985.

[8] Vikram Dhillon, David Metcalf, and Max Hooper. Blockchain Enabled Ap-

plications. Apress, Berkeley, CA, 2017.



72 BIBLIOGRAPHY

[9] Jiang Du et al. “DeepSea: Progressive Workload-Aware Partitioning of

Materialized Views in Scalable Data Analytics.” In: EDBT. 2017, pp. 198–

209.

[10] Rahul Dutta and Annappa B. “Privacy and trust in cloud database using

threshold-based secret sharing”. In: 2013 International Conference on Ad-

vances in Computing, Communications and Informatics (ICACCI). 2013, pp. 800–

805.

[11] Daniel Fabbri, Ravi Ramamurthy, and Raghav Kaushik. “SELECT triggers

for data auditing”. In: 2013 IEEE 29th International Conference on Data En-

gineering (ICDE). 2013, pp. 1141–1152.

[12] Devarshi Ghoshal and Beth Plale. “Provenance from Log Files: A BigData

Problem”. In: Proceedings of the Joint EDBT/ICDT 2013 Workshops. EDBT

’13. ACM, 2013, pp. 290–297.

[13] Stuart Haber and W. Scott Stornetta. “How to Time-Stamp a Digital Docu-

ment”. In: Advances in Cryptology-CRYPT0’ 90. Springer Berlin Heidelberg,

1991, pp. 437–455.

[14] Werner K. Hauger and Martin S. Olivier. “The role of triggers in database

forensics”. In: 2014 Information Security for South Africa. 2014, pp. 1–7.

[15] Richard Johnsonbaugh and Marcus Schaefer. Algorithms. Pearson, 2003.

[16] Bhushan Kapoor, Pramod Pandya, and Joseph S. Sherif. “Cryptography.

A security pillar of privacy, integrity and authenticity of data communica-

tion”. In: Kybernetes 40 (2011), pp. 1422–1439.

[17] Grace Khayat and Hoda Maalouf. “Trust in real-time distributed database

systems”. In: 2017 8th International Conference on Information Technology (ICIT).

2017, pp. 572–579.



BIBLIOGRAPHY 73

[18] Lance Koonce. “The wild, distributed world: get ready for radical infras-

tructure changes, from blockchains to the interplanetary file system to the

Internet of things”. In: Intellectual Property and Technology Law Journal 28.10

(2016), pp. 3–5.

[19] Donald Kossmann and Konrad Stocker. “Iterative dynamic programming:

a new class of query optimization algorithms”. In: ACM Transactions on

Database Systems (TODS) 25.1 (2000), pp. 43–82.

[20] Viktor Leis et al. “Efficient Processing of Window Functions in Analyti-

cal SQL Queries”. In: Proceedings of the VLDB Endowmen 8.10 (June 2015),

pp. 1058–1069.

[21] Chung-Yi Lin et al. “Secure logging framework integrating with cloud

database”. In: 2015 International Carnahan Conference on Security Technology

(ICCST). 2015, pp. 13–17.

[22] Peng Liu, Paul Ammann, and Sushil Jajodia. “Rewriting Histories: Recov-

ering from Malicious Transactions”. In: (2000), pp. 7–40.

[23] Bruce Momjian. PostgreSQL: introduction and concepts. Vol. 192. Addison-

Wesley New York, 2001.

[24] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https:

//bitcoin.org/bitcoin.pdf. 2008.

[25] OECD. OECD Science, Technology and Innovation Outlook 2016. OECD, 2016.

[26] Jon M. Peha. “Electronic commerce with verifiable audit trails”. In: In Pro-

ceedings of ISOC. 1999.

[27] Doug Rose. Data Science. Apress Berkeley,CA, 2016.



74 BIBLIOGRAPHY

[28] Bruce Schneier and John Kelsey. “Cryptographic Support for Secure Logs

on Untrusted Machines”. In: Proceedings of the 7th Conference on USENIX

Security Symposium - Volume 7. SSYM’98. USENIX Press, 1998, pp. 53–62.

[29] Bruce Schneier and John Kelsey. “Minimizing bandwidth for remote ac-

cess to cryptographically protected audit logs.” In: In Web Proceedings of

the 2nd International Workshop on Recent Advances in Intrusion Detection.

USENIX Press, 1999.

[30] Bruce Schneier and John Kelsey. “Secure Audit Logs to Support Computer

Forensics”. In: ACM Trans. Inf. Syst. Secur. 2.2 (1999), pp. 159–176.

[31] Arunesh Sinha et al. “Continuous Tamper-Proof Logging Using TPM 2.0”.

In: International Conference on Trust and Trustworthy Computing. Springer.

2014, pp. 19–36.

[32] Richard T. Snodgrass, Shilong Stanley Yao, and Christian Collberg. “Tam-

per Detection in Audit Logs”. In: Proceedings of the Thirtieth International

Conference on Very Large Data Bases - Volume 30. VLDB ’04. VLDB Endow-

ment, 2004, pp. 504–515.

[33] Mohammad Karim Sohrabi and Vahid Ghods. “Materialized View Selec-

tion for a Data Warehouse Using Frequent Itemset Mining.” In: Jcp 11.2

(2016), pp. 140–148.

[34] William Stallings. Cryptography and Network Security: Principles and Practice

(7th Edition). Pearson, 2017.

[35] Domenico Talia, Paolo Trunfio, and Fabrizio Marozzo. Data Analysis in the

Cloud: Models, Techniques and Applications. Elsevier, 2015.



BIBLIOGRAPHY 75

[36] Vatsalya et al. “MARINE HULL INSURANCE USING PRIVATE BLOCKCHAIN,

FILECOIN PROTOCOL AND SMART CONTRACTS”. In: International Jour-

nal of Advanced Research in Computer Science 9 (3 2018), pp. 94–99.

[37] Stratis D Viglas. “Data Provenance and Trust”. In: Data Science Journal 12

(2013), GRDI58–GRDI64.

[38] James Wagner et al. “Carving database storage to detect and trace security

breaches”. In: Proceedings of the Seventeenth Annual DFRWS USA. Elsevier.

2017, s127–s136.

[39] James Wagner et al. “Detecting Database File Tampering through Page

Carving”. In: 2018 21st International Conference on Extending Database Tech-

nology. 2018, pp. 121–132.

[40] Shangping Wang, Yinglong Zhang, and Yaling Zhang. “A Blockchain-Based

Framework for Data Sharing With Fine-Grained Access Control in Decen-

tralized Storage Systems”. In: IEEE Access 6 (2018), pp. 38437–38450.


