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Abstract 

Premature birth is one of the major perinatal health issues across the world. In 2007, the 

estimated Canadian preterm birth rate was 8.1 % (CIHI, 2009). Recent research has shown that 

conditions, such as nosocomial infections or apnoeas, exhibit certain variations in the baby's 

physiological parameters which can indicate the onset of the event before it can be detected by 

physicians and nurses. Neonatal Intensive Care Units are some of the highest information 

producing areas in hospitals. The multidimensional and distributed nature of the data further adds 

another layer of complexity as physiological changes can occur in one data stream or can be 

cross-correlated between several streams. With the collection and storage of electronic data 

becoming a global trend, there is an opportunity to analyse the collected data in order to extract 

meaningful information and improve healthcare. The aforementioned properties of the data 

motivate the need for a framework that supports analysis and trend detection in a 

multidimensional and distributed environment. 

Keywords: Distributed Data Mining, Temporal Abstraction, Relative Alignment, Time Series 

Data Analysis, NICU, Critical Care, Clinical Decision Support, Multidimensional Distributed 

Framework. 
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1. Chapter 1 ~ Introduction 

Preterm birth, which occurs in 11 percent of all pregnancies in North America, is 

responsible for the majority of neonatal deaths (Khashan et al. 2008). The rate of premature birth 

has increased by 36 percent since the early 1980s (Martin et. al. 2008). Globally, premature birth 

and its associated complications are responsible for the mortality of one million premature babies 

every year (Beck et. al. 2009). In Canada, in the year 2007, the estimated Canadian preterm birth 

rate was 8.1 % (CIHI, 2009). It is not uncommon for premature babies to spend three to four 

months in the Neonatal Intensive Care Unit (NICU) and suffer from a number of different 

conditions during their stay. Recent research is showing that these conditions, such as 

nosocomial infections (hospital-acquired infections), seizures and apnoeas, appear to exhibit 

certain early variations in the baby's physiological parameters which have the potential to be 

new pathophysiological markers for condition onset. Sepsis is a common nosocomial infection 

that affects these babies and it has been shown to exhibit changes in physiological data before the 

condition can be diagnosed through blood cultures (Griffin, Lake 2007). These changes require 

high frequency analysis of the physiological stream and are frequently not detected by physicians 

and nurses. Since indicative readings are mostly recorded on paper every 30 or 60 minutes by 

nurses, the physiological changes can often go unnoticed until the illness manifests itself fully. 

Intensive Care Units (ICUs), specifically NICUs, are some of the highest information 

producing areas in hospitals because of the highly advanced patient monitoring equipment 

present in these facilities, which often output 1024 readings of waveform data every second 

(Stacey, 2007). The current problem is not a lack of data, but an inability to use this data for 

early detection of problems and intelligent decision making. There is a need for systems aimed at 
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clinical management to help analyze complex multidimensional data produced by the monitoring 

devices connected to the babies. We also need clinical research systems and frameworks to 

facilitate retrospective analysis on stored historical physiological patient data to enable the 

discovery of previously unknown trends and patterns that may indicate the onset of some 

condition. This knowledge can then be applied to new patient cases. As mentioned, medical 

monitoring equipment produces large amounts of data, which makes analyzing this data 

manually impossible. Another level of complexity is introduced by the multidimensional nature 

of the data which means that there are now multiple streams of information that are interlinked 

and can change simultaneously, further complicating the analysis. The data is considered 

distributed because every NICU has its own method of data collection which can vary from one 

site to another due to differences in equipment and data output. In addition, these patients can be 

part of multicentre studies which are controlled studies executed by several cooperating 

institutions; leading to the possibility of a highly distributed data set. 

Faced with an exponential amount of data, many organizations are turning to data mining 

to translate data to information and subsequent knowledge. Distributed data mining (DDM) 

refers to the mining of distributed data sets which are often stored in local databases and hosted 

by local computers connected through a network (Y ongjian, 2001 ). Due to the advances made in 

computing and communication over wired and wireless networks, we can now find many 

distributed computing environments like the internet, intranets and local area networks. It is also 

important to note that many of these environments have different distributed sources of 

capacious data, the analysis of which requires data mining technology specific to distributed 

applications. Medical data is often distributed due to concerns of security, privacy and 

confidentiality of patient information; this is why it is likely to maintain its distributed nature in 
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the future. The Canada Health Infoway (CHI) is an independent not-for-profit corporation 

created by Canada's First Ministers to foster and accelerate the development and adoption of 

electronic health record (EHR) systems with compatible standards and communications 

technologies. CHI's model currently does not provide a central solution to locate the 

physiological streams. In distributed data mining, the data mining occurs both at a local level and 

a central level. At the global level, local data mining results are combined to discover global 

patterns or themes present in the data. 

Through the literature, DDM is also often referenced with parallel data mining which is 

when data mining tools are implemented on high-performance parallel computers. Both 

techniques aim towards improving the performance of traditional data mining systems but what 

sets them apart is their system architectures. DDM's main objective is to execute data mining 

operations based on the type and availability of the distributed resources (Park, & Kargupta, 

2001). DDM techniques can be used to perform clinical research using physiological data 

streams in order to evaluate whether a condition onset prediction is apparent from the 

physiological stream behaviours prior to traditional clinical diagnosis. What distinguishes DDM 

from Centralized Data Mining (CDM) is the fact that a DDM system can choose how to manage 

and analyze data, based on the properties of computing, storage and communication capabilities, 

either centrally or locally in the distributed locations. In contrast, the CDM system always relies 

on the collection of data in a single central location before any analysis can be performed, which 

is not practical when data is being streamed and is arriving at a very high rate. The reason this is 

not practical is because the collection and storage of information centrally takes away from the 

opportunity to analyse streaming data as it is produced. It is also important to note that DDM 

systems can learn and derive models based on distributed data which means that the privacy of 
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raw patient information is maintained because patient data does not have to leave the hospital 

setting/distributed location. This can prove to be very beneficial in cross-country or cross 

continental studies as it allows for the sharing of clinical applications without violating hospital 

ethics or the requirements for patient data, security and privacy. Thus, a distributed approach to 

analyze data is more scalable and practical especially when it is applied to data coming from a 

number of distinct data sites. Chapter 2 reviews major DDM algorithms and systems found in the 

literature. 

1. t .Research Motivation 

As demonstrated in chapter 2, there is an absence of flexible and distributed 

multidimensional approaches to data mining of time series data. Monitoring systems currently 

used in the NICUs are not capable of monitoring cross correlated data streams but the possibility 

of such a system is discussed by McGregor and Stacey (2007). These monitoring systems often 

have very limited on-board memory, mostly in the form of rolling memory which persists 

anywhere between 24 to 72 hours. The data being output from them has the potential to be 

streamed and stored beyond the NICU environment for higher levels of analysis (Foster and 

McGregor, 2006). The cost of electronic storage is decreasing rapidly and the ability to collect 

and store temporal data through real-time clinical monitoring has emerged as an open research 

area. 

With the collection and storage of electronic data becoming a global trend, there is an 

opportunity to analyse the collected data in order to extract meaningful information and improve 

healthcare (Moskovitch et. al. 2007). There is mounting evidence that is being uncovered by 

clinical research suggesting changes in physiological stream behaviours prior to the diagnosis of 
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certain conditions such as neonatal sepsis and apnoea (Stacey et. al. 2007) (Catley et. al. 2010). 

The recent momentum in such research has prompted hospitals across the globe to partake in 

multicenter studies which can allow for the cross site analysis of the same physiological data 

streams to see if they would be indicative of the same events at different hospitals. This brings 

the element of data distribution into context as physiological data being collected from 

monitoring devices may differ in format and frequency for each facility. The differences may 

also occur due to the physiological monitoring devices being different at each facility. As will be 

seen in chapter 2, the lack of a multidimensional distributed temporal data mining framework 

drives the motivation behind this research. 

1.2 Research Aims and Objectives 

The lack of a multidimensional distributed temporal data mining framework which can 

support multicenter studies formed the research motivation for the first, second and fourth 

hypothesis. The need for a structure to run the temporal abstractions and relative alignments 

motivated the third hypothesis. Therefore the primary hypotheses for this research are: 

1. A multidimensional distributed data mining framework can be defined for time series 

data research for the discovery of trends and patterns prior to a given clinical event. 

2. The framework will utilize elements of data fusion and agent-based analysis so that it will 

work with relational databases and large scale data mining applications. 

3. A set of data mining tools can be applied for temporal abstraction, relative alignment and 

cluster analysis in a distributed manner to support multiple research studies. 
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4. The framework can be applied in a broad neonatal context addressing issues of data 

privacy and confidentiality and being deployable as part of multicenter studies while 

maintaining data integrity at each participating site. 

This research follows a constructive methodology which is a commonly used computer 

science research method but has also been utilized in information systems and medical domains 

(Martin & Maojo, 2002). The construct can be a new theory, algorithm, model, software, or a 

framework which can allow us to draw theoretical conclusions. Constructive research will allow 

us to develop a distributed data mining framework which can contribute to the discovery of 

trends and patterns from medical stream data. The term construct is used in this context to refer 

to the new contribution being developed. Figure 2 (below) outlines the common elements found 

in constructive research. 

Practical utility (a) 

I Relevant SOLUTION Practical relevance 
problem r ·weak ltlMket testing 

- Theorntkial • strong market, testing 
framework 

Theoretical . Prnblem solution 

body of 
Theoretical r,_nowledge ~ releYance 

~ J 

Fuzzy info 
from many 
sonrces 

I Epist~mic utility (b) I 

Figure ,0 -- Outline for Ct:msh'ucfrve Resemrch (Omstantiuescu, 2005) 
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In this research, the problem that will be addressed is the need to use distributed 

multidimensional data to perform temporal abstractions and relative alignments which can help 

identify trends and patterns being exhibited in data coming from multiple sources. This can aid in 

the early detection of the onset of patients of interest for specific conditions in the NICU. 

In order to fully understand the topic and problem at hand, a thorough review of the 

literature was completed in the areas of distributed data mining, temporal abstraction and 

knowledge discovery in databases (KDD). This helped in designing a framework that can handle 

multidimensional data coming from distributed sources allowing data mining for relevant 

information and providing the necessary alerts when required. 

1,4 Contribution to Knowledge 

There are several unique challenges to support clinical research for critical care health 

informatics in a distributed setting. By investigating the scholarly knowledge domain, we can 

obtain an understanding of the issues and gain insight into the specifics of knowledge discovery 

and data mining in the medical space. By applying this research within the context of neonatal 

care we can demonstrate a real world solution that can be applied in the NICU setting as well as 

evaluate its applicability in other areas. The areas of research contribution to knowledge resulting 

from this thesis are: 

• Extensions to the existing Service based Multi-Dimensional Temporal Data Mining 

(STDM0
0) framework to support a distributed multidimensional environment. 

• Design of a framework to: 

o Enable the distribution of Temporal Rules in a multi-dimensional environment 

o Support the multi-dimensional distribution of Relative Rules 
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o Support distribution of Rule Base data which can be deployed for real time 

analysis 

Chapter 2 presents a literature review of the areas of influence for this thesis, mainly 

DDM, Distributed Data Mining of Time Series Data, Temporal Abstraction and Distributed 

Temporal Abstraction. The chapter explores these areas in their application to medical systems in 

order to highlight the open health informatics research areas leading to the development of the 

research hypotheses addressed by the techniques proposed in this research. Chapter 3 discusses 

the physical context by describing the NICU environment which provides the setting for the 

Service Based Multi-Dimensional Distributed Temporal Data Mining (SDTDMno) framework 

designed and presented in this thesis. Chapter 4 begins by presenting the existing STDMno 

architecture, presenting how both static and streaming data, as well as temporal and relative 

temporal data are used and integrated in the STDMno framework. Chapter 5 presents the revised 

SDTDMno framework and highlights areas of distribution. Chapter 6 demonstrates how the 

SDTDMno framework can be used for conducting clinical research within a distributed NICU 

context. Chapter 7 concludes the thesis, summarising the research contributions and providing 

directions for future research. 
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2. Chapter 2 ~ Literature Review 

The main motivation for this research is the lack of distributed multidimensional 

approaches to data mining of time series data. The intensive care environment, where 

observations of the patient's condition is supported through the provision of several 

physiological time series data streams via medical monitors, presents an opportunity for 

discovering new knowledge that may exist in patient data indicative of the onset of specific 

conditions. A distributed multi-dimensional framework can allow for the possibility of running 

abstractions across multiple locations simultaneously while keeping data consistent across sites. 

In this chapter, the area of DDM is introduced followed by a review of DDM in relation to time 

series data. Next the area of temporal abstraction is reviewed followed by a detailed look into 

literature relating to distributed temporal abstractions. 

2,2 Distributed Data Mining (DDM) 

Distributed Data Mining (DDM) involves the use of distributed data analysis algorithms 

as well as distributed systems. Throughout the literature, the use of the Multi-Agent System 

(MAS) has been a common theme for many DDM systems (Ferber, 1999). The MAS has been 

developed from the Distributed Artificial Intelligence (DAI) which focuses on artificial 

intelligence based search, learning, planning and problem solving techniques for distributed 

environments (Ferber, 1999). Existing literature on multi-agent systems and learning do not 

address the issues of large scale distributed data analysis. The MAS focuses on learning control 

knowledge and adaptive behaviour (Byrne & Edwards, 1995). 
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The concept of data fusion is also an important finding in the literature and refers to the 

seamless integration of data from disparate sources (Park, & Kargupta, 2001). Within the context 

of data fusion, the distributed approach of multi sensor data fusion is closely linked to our 

scenario. This approach discusses sensors that make a local decision based on the raw data and 

then combine all of the individual local decisions at a fusion center in order to produce a global 

decision. This not only maintains the privacy of the raw data, but also helps maximize the 

probability of determining the optimum local and global decision rules which in tum help make 

signal detection much more accurate. Making these decisions also relies on hypothesis testing 

techniques which are often done using the the Bayesian criteria (Hoballah & Varshney, 1989) or 

the Neyman-Pearson criteria (Vishvanathan & Varshney, 1997). 

Determining how the data is distributed is the starting point in developing a distributed 

data mining solution (Park, & Kargupta, 2001). Throughout the literature on DDM, two 

assumptions are commonly made when it comes to the concept of how data is distributed across 

multiple sites: 1) either the data is distributed homogeneously, that is partitioned horizontally or 

2) the data is distributed heterogeneously, that is partitioned vertically. This relates back to the 

relational database in which the database schema provides the information on the relations it 

stores. By identifying the different schema from different tables, we are able to identify their 

shared deperidencies which in tum help determine the type of data mining algorithm best suited 

for it. The majority of existing DDM algorithms assume that the data is distributed 

homogeneously across different sites meaning that each distributed site contains the same set of 

attributes. The heterogeneous scenario assumes that each site contains a collection of columns 

and do not have the same set of attributes and each tuple is assumed to contain a unique key 

column that links corresponding rows across the tables. 
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As discussed, a distributed approach to data analysis is more scalable. Agent based data 

mining is one way to perform scalable mining on large data sets that contain distributed data. 

The agent based DDM systems use one or multiple agents on each data site. These agents are 

responsible for the analysis of local data and for communicating with other agents during the 

mining phase. Once the local data has been mined for knowledge or patterns, it is pooled 

together in a global cloud of synthesized knowledge. In order to keep the local agents at optimal 

mining performance and keep control over the resources, agent based systems require a 

"supervisor agent" often called a facilitator that controls the behaviour of each local agent. 

BODHI and JAM (Java Agents for Meta-learning) are two DDM architectures that follow the 

supervisor agent concept, are able to work with relational databases, support large scale data 

mining applications, and can be implemented using Java which also makes them platform 

independent; all of which make them well suited for our environment. The JAM system not only 

provides distributed data mining capabilities, it also allows a user to monitor and visualize the 

various learning agents and derives models in real time (Stolfo et al. 1997). 

2.3 Distributed Minin.g of Time Se.ries Data 

Abe & Yamaguchi discuss an integrated time series data mining environment (Abe & 

Yamaguchi 2005). The design integrates time series pattern extraction methods, rule induction 

methods and rule evaluation methods with active human interaction. The authors suggest that 

time series rules can prove to be an important form of medical evidence but it is often difficult to 

find such evidence systematically. This limitation motivated their development of a time series 

data mining environment which applies data mining techniques to systematically discover 

medical evidence. The cooperation of data miners, system developers and domain experts are 

also key factors in the success of such an environment. The authors present a hepatitis related 
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case study to help identify procedures needed to execute time series data mining cooperatively 

with active human system interaction. In the study, interferon (IFN) treatment results data are 

taken as the target for the representation as if-then classification rules. Two key phases are 

identified: firstly, rousing a new hypothesis in the expert is said to be key in gathering interest 

from the domain experts as this adds in a level of involvement for the expert. In this first phase, 

patterns extracted from historic data are presented to the physician to help identify the 

distinguishing patterns from their perspective. The next step involves the validation of identified 

patterns with each patient sequence to determine pattern O: the typical course; pattern 1: the least 

reaction; and pattern 2: the adverse reaction to IFN treatment. The second phase involves 

ensuring the expert's hypothesis which involves the extraction of patterns for 40 weeks as the 

observation period. Next, patterns are joined as attributes of data sets from which if-then rules 

are induced within the data set. Then, patterns and rules are presented to the physician for 

evaluation using a Graphical User Interface (GUI). The authors make an important point about 

present time series data analysis techniques which is that they mainly utilize statistical methods 

like the Autoregressive Integrated Moving Average (ARIMA) which are suited for well-formed 

data. It is also noted that present signal processing methods like Fourier transform, wavelet and 

fractal analysis are used to analyze well-formed time series data but the problem that exists for 

medical data is that it is mostly ill-formed, meaning that they can include data such as clinical 

test data, purchase and financial data. To combat this issue, the authors suggest the use of 

Dynamic Time Warping (DTW) which utilizes time series clustering with multi-scale matching 

of data. The authors conclude their work by identifying key procedures in time series data 

mining frameworks, which include: procedures for pattern extraction i.e. data pre-processing, 
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rule induction i.e. mining and the evaluation of rules with a visualized rule i.e. post-processing of 

mined results. 

Clinical time series data is often collected in large volumes but very little is done to 

analyze, interpret and extract from these data sets. Temporal Abstraction (TA) is an important 

piece in the development of clinically relevant evidence based support systems. TA adds 

qualitative information to generally quantitative data which allows us to identify the patterns or 

trends present in the data set. This is important because almost all clinical data has an associated 

temporal dimension (Dolin, 1995); for example, most diseases have an onset or a set duration, 

studying which can help in early detection of their onset or progression. Thus, automated 

systems that work with clinical data must be able to reason and cope with this type of input 

which is often called temporal reasoning (O'Connor et. al. 2002). 

One of the core steps in forming temporal reasoning is the creation of high level 

temporally extended concepts from raw time-stamped data which is often referred to as temporal 

abstraction (Shahar, 1997). To further add to the complexity, clinical data can often be multi­

dimensional and distributed across multiple sites. It is often seen that an increase in data 

frequency, distribution and dimensionality is directly proportional to the complexity of the 

potential trends and patterns that can be observed in clinical data (Catley et. al. 2010). Temporal 

Data Mining (TDM) is an emerging area of research that helps with this problem as it integrates 

the TA processes involved in trend and pattern detection with new knowledge gained from data 

mining. 
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Intensive Care Units (ICUs) are some of the highest information producing areas in 

hospitals because of the highly advanced patient monitoring equipment present in these facilities 

which often output 1024 readings every millisecond (McGregor and Stacey, 2007). There is a 

need for TA and TDM systems aimed at clinical management to help analyze complex 

multidimensional data produced by the monitoring devices connected to the patients and derive 

relationships from that data which can help in earlier diagnosis and treatment of conditions. 

2.5 Distributed Tempo:ral Abstraction 

This section presents a review of the Distributed Temporal Abstraction Systems that have 

been developed to date. The aim was to determine how existing distributed systems are designed 

and to review the degree to which security, privacy and confidentiality are considered in the 

design of current distributed temporal abstraction systems. In addition we sought further review 

of the function of TA in a distributed setting. 

Medical data is often distributed and stored locally with each healthcare provider due to 

concerns of security, privacy and confidentiality of patient information. This is why it is likely to 

maintain its distributed nature in the future as policies encompassing patient privacy improve. 

Most of the systems that were reviewed however, do not discuss much with respect to data 

privacy and security. The systems that have been reviewed do not discuss the possibility of a 

distributed storage of TA but rather assume a local data storage model with a very minimal 

amount of distribution i.e. mainly the distribution of the TA queries only or a distributed data 

collection method. 

Shahar et al. (1998) present the Asgaard framework used to abstract raw monitoring data 

collected by NICU monitoring devices to the abstract concepts that are used in therapeutic 
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plans. The authors explain the nature of the data that is being output from the NICU as a 

stream of high frequency raw information. The framework involves the high-level abstraction 

derived from the raw data which is then compared to predefined conditions described in the 

therapeutic plans. The authors also discuss the systems and languages that are currently used to 

abstract and store data at present. They mainly focus on the system named RESUME which is 

traditionally used on low frequency data. This poses a problem because the data stream output 

from the NICUs monitoring devices is at a high frequency rate and may cause the RESUME 

system to overlook some of the underlying patterns in the output data. 

O'Connor et. al. (2002) present a Distributed Temporal Abstraction System which allows 

for the facilitation of knowledge-driven monitoring of clinical databases. The system, named A 

System for Temporal Abstraction (RAST A), is based on a component based architecture called 

EON which was developed by the authors as a means for building automated clinical decision 

support systems. The EON architecture made use of RESUME as the knowledge-based system 

for performing temporal reasoning. The authors further discuss the problem with RESUME 

which is the fact that it does not scale to the significantly higher data processing requirements 

for working with large amounts of data. Another issue is that it is a stand-alone rule-based 

system and does not offer real-time response rates for anything other than small single-patient 

data sets. RESUME also does not allow the abstraction tasks to be distributed. Finally, 

RESUME has an exponential relationship between the size of the data set it operates on and its 

memory and CPU requirements. 

In order to address the aforementioned issues the authors propose the use of the RASTA. 

In many ways, RASTA is an extension to RESUME as it incorporates many of the ideas and 

concepts used by the latter. The authors explain that RASTA uses a distributed algorithm that 
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allows independent evaluation of each abstraction in an abstraction hierarchy which allows it 

to use separate processes for each portion of an abstraction tree for each patient. Thus working 

on very large data sets does not cause any problems in relation to memory or CPU 

consumption making this system much more efficient. The authors also describe the 

modularity of RASTA as it can be deployed as a single standalone process if enough resources 

are available or it can be distributed across multiple processes on multiple machines. 

The algorithm used by RASTA for temporal abstraction involves four main data sources: 

(1) Domain knowledge base (2) Time stamped data (3) Contextual data and (4) Case 

identifiers. RASTA also draws some subtasks in its temporal abstraction algorithm from 

Shahar's knowledge-based temporal-abstraction problem-solving method (Shahar and Musen, 

1993). These include (1) Context Restriction (2) Vertical Temporal Inference (3) Horizontal 

Temporal Inference and (4) Temporal Interpolation. All of the aforementioned subtasks work 

well for RESUME but are again not ideal for a distributed and high volume data set. The 

authors further discuss how horizontal temporal inferences and temporal interpolations can be 

very expensive computationally. An increase in raw time stamped data points means the 

response time when performing TA will also increase significantly. The response time for 

these abstractions can be acceptable for single patient data but when dealing with multi patient 

data the response rate can become unacceptably long. The authors address this issue in 

RASTA by building a TA algorithm that is parallelizable and distributable (O' Connor et. al. 

2002). Details on the algorithm can be found on Page 3 of the paper. 

Finally, the implementation of RASTA has also been designed in a way that it stays 

modular and extensible. RASTA is written in Java and uses CORBA (Vinoski, 2002) as its 

inter-process communication mechanism. RASTA also uses the XML format for the data that 
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is exchanged between processes. All knowledge bases used by RASTA are written using 

Protege-2000 (0 Connor et. al. 2002) which is a knowledge base authoring environment with 

the main benefit being that it provides automated assistance in the acquisition of abstraction 

knowledge from domain experts (0 Connor et. al. 2002). It is important to note though that 

there is no standard way for knowledge collection that is discussed by the authors. 

Boaz and Shahar, (2005) present a distributed temporal-abstraction mediator for medical 

databases known as Idan. The authors claim the need for an integration of data and knowledge 

in clinical practice. Most stored data include a time stamp in which the particular datum was 

valid and the authors outline the need for a system that can automatically create abstractions of 

time oriented clinical data and be able to answer queries about the abstractions (Boaz and 

Shahar, 2005). The key to the success of such a system, according to Boaz and Shahar, is the 

intelligent integration of knowledge sources, data sources and computational services. They 

emphasize the fact that any distributed TA system must be modular and at the same time 

support knowledge and data sharing. The authors also note that data, knowledge and 

computational services might be integrated in multiple configurations which demand that the 

TA architecture be distributed and possibly accessible via the Internet. Boaz and Shahar further 

emphasize that the system should exploit domain specific knowledge and should be able to 

support several modes of interaction by various applications that use its services (Boaz and 

Shahar, 2005). 

One of the main parts of the Idan architecture is the temporal abstraction mediation. 

Temporal reasoning and temporal data maintenance i.e. storage, query and retrieval of time­

oriented data, must often be performed at the same time in order to support clinical needs 

(Boaz and Shahar, 2005). A temporal database mediator "mediates" time oriented queries from 
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decision support applications to patient databases. It acts as an intermediate layer of processing 

between client applications and databases and is not reliant on a particular application or a 

particular database. This type of temporal abstraction mediator has been discussed by Nguyen 

et. al. in the Tzolkin system (Nguyen et. al., 1999). According to the authors, implementation 

of a temporal abstraction mediator has many advantages as it can be task specific and domain 

independent but it also must use standard controlled medical vocabularies to support sharing of 

data and knowledge as much as possible. 

Thus the Idan architecture, being a modular distributed TA mediator fully implements the 

temporal-abstraction mediation approach discussed earlier. The main integration points in Idan 

are (1) time oriented data sources (2) domain specific knowledge sources (3) vocabulary 

servers ( 4) a computational process specific to the task of abstraction of time oriented data 

using domain specific knowledge and (5) a controller for the integration of all services. All of 

these points have been shown diagrammatically by the authors in the figure below. 
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Idan is able to answer abstract, time-oriented queries by adequately handling the queries 

to the various key modules in a distributed system (Boaz and Shahar, 2005). Where it differs 

from RAST A is that it is capable of handling temporal constraints in a uniform way between 

the system level and the interface level. 

Stonebaker et. al. (1996) discusses an architecture for distributed data called Mariposa. 

One of the main objectives of this architecture is to unify disparate approaches of distributed 

database management systems (DBMS). Mariposa works by distributing data over a number of 
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sites that can be connected via LAN or WAN. In addition to this, Mariposa requires each site 

to have a storage device and in case multiple storage devices are connected, then Mariposa 

considers them as a secondary site. 

The authors describe the Mariposa database as one consisting of instances of objects in 

named classes each of which contain a collection of attributes of the specific data types. The 

Mariposa database uses a fragment storage system in which each class is divided into a 

collection of fragments. The authors also state that these fragments can be shared across sites 

as they do not have a specific home and can move freely within a network. The Mariposa 

system also organizes these fragments based on usage i.e. if a fragment is being accessed 

frequently, the system will allot that fragment more resources. 

User control for the various sites in the Mariposa Architecture is also locally controlled 

by a database administrator. Having such local control helps database administrators specify 

local rules for that storage site. For example, if storage space at one site reaches maximum 

capacity, then the system references the storage rule set by the administrator which can tell it 

where to move a specific fragment of data or what to delete. 

The authors also outline a rule processing subsystem that is part of the Mariposa 

architecture. Every Mariposa site runs an instance of the rule processor which watches for 

events of interest, the criteria or policies for which can be pre-determined and programmed 

into the system. Conventional systems, according to the authors, make changing these 

"policies" quite difficult as they are hard coded into the system. Mariposa, on the other hand, 

allows these policies to be changed dynamically at any site across the network. 
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Table 2.1 summarizes the findings detailed above and highlights areas that are largely 

unaddressed in current studies. 
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Table 2. -·A Summary of Existing Distributed Temporal Abstraction Systems and their 
Shortfalls 

2.6 Condush:m.s and Implications of Research 

There are several challenges in developing a distributed data mining framework able to 

work in a multidimensional environment. Ability to handle varied data frequencies, 

considerations on data privacy and the location of where patient data exists, ability to handle real 

time stream data and the synchronous deployment of abstractions for data consistency are key 
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considerations towards designing a functional framework. In order to enable the discovery of 

new trends and patterns that may be indicative of the onset of a condition in patients, there is a 

need for an integrated multidimensional distributed data mining framework. 

As a result of the investigations from the literature the research hypotheses as presented in 

chapter 1 were determined. 
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3. Chapter 3 - The NICU Environment 

This chapter presents an overview of the clinical environment which provides intensive 

care for newborn babies, often referred to as neonates, during their first 28 days of life. Neonates 

admitted to an intensive care unit may be seriously ill full-term babies or babies born 

prematurely. 

The Neonatal Intensive Care Unit (NICU) is the unit of a hospital specializing in the care 

of premature and critically ill newborn infants. NICUs were developed in the 1950s and 1960s 

by paediatricians to provide better isolation from infection, better temperature support, and 

greater access to specialized resources and equipment (Hilberman, 1975). NICUs often deal with 

premature babies who require constant monitoring and care. These babies are also at a high risk 

of developing multiple complications during their hospitalisation so it is crucial to keep track of 

their condition at all times. 

About 8% of babies born in Canada each year are born premature, and many of them 

require extra support. Speaking globally, every year one million premature babies around the 

world do not survive, according to the March of Dimes (Beck et. al. 2009). Graduates of the 

NICU have higher rates of learning disabilities, respiratory illness and can have a higher 

incidence of developmental and behavioural problems (Kramer et. al. 2002). 

3.1 The Canadian Context 

Canadian NICUs follow a highly regionalized system of neonatal care (CPS, 2006). The 

concept of a regionalized system for hospitals that care for newborn infants according to the 

level of complexity of care that is provided was first proposed in 1970 by the Canadian 
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neonatologist Paul Swyer (CPS, 2006); this was later put into action in the year 1976 following a 

March of Dimes report (Stark, 2004). There are three main levels of care (CPS, 2006): 

1. Level one (normal newborn care) 

2. Level two (high dependency care) and 

3. Level three (intensive care) 

Level one, two and three NICUs are strategically located within health regions: some 

very small regions may not have a level three NICU. Patients in level 1 NICUs are considered to 

be normal newborn infants aged 34 weeks gestation or higher (CPS, 2006). The units at this level 

have to be equipped to evaluate healthy newborns and provide postnatal care, perform neonatal 

resuscitation if needed and stabilize infants until they are transferred to an appropriate higher 

level facility if needed. Level 2 NICUs provide care to moderately ill infants with problems that 

are expected to resolve soon or who are recovering after intensive care treatment. Infants in level 

2 NICUs are aged 32 weeks gestation or higher. Finally, level 3 NICUs support critically ill 

newborn infants as well as infants that require surgical intervention. Infants assigned here 

generally require an intricate level of care and typically have the longest length of stay from all 

other levels. 

3.2 The "Wired" Neonate 

It is common for the neonates in the NICU to undergo numerous medical diagnoses, 

procedures and other treatments. All of these require constant supervision by NICU clinicians 

and the sophisticated equipment of the NICU comes to the clinician's aid. At any given point, a 

neonate may be connected to multiple devices performing both analytical and support tasks in 

the NICU and generating a plethora of information. Figure 3.1 shows a typical NICU bed space 

33 



and highlights the range of devices that a baby can be connected to during their stay. In The 

Hospital for Sick Children, for example, the Phillips lntelliVue MP70 monitoring devices play 

an important role in collecting and displaying data such as heart rate, transcutaneous oxygen 

saturation (Sp02), electrocardiogram (ECG), blood pressure, and respiration rate. 

PlCCllne~ 

Oxygen 
saturation 
monitor 

Electrocardiogram 
and blood 
pres$ure monitor 

figure 3. - A display of the typical NlCU errvirnmuent 

3.2.1 Ted:mology in the NICU 

The constant close supervision of NICU patients is assisted by the use of a wide variety 

of medical devices, some of which include (Neonatology on the Web, 2002): 

1. Incubators and/or radiant warmers 

2. Physiologic or cardiorespiratory monitors 

3. Transcutaneous oxygen saturation monitors for pulse oximetry 

4. Intravenous infusion pumps 
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5. Photo therapy lights 

6. Mechanical ventilators 

The graphic below shows a typical NICU physiological monitor which would be used by 

physicians, nurses and respiratory therapists for monitoring heart rate and rhythm, breathing rate 

and blood pressure. 

,Figure 3. - A typical NlCU physiological monitor 

These devices often have very limited on-board memory, mostly in the form of rolling 

memory which lasts anywhere between 24 to 72 hours. Thus the data being output often needs to 
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be streamed and stored beyond the NICU environment for higher levels of analysis (Foster and 

McGregor, 2006). A higher level of analysis is needed because in the NICU, nurses often 

perform routine checks on infants and record information on paper based or electronic data 

sheets every 30 to 60 minutes. However, it is common for critically ill neonates to have a 

significantly abnormal variation in the measured parameters every minute which can easily be 

missed in the 30 or 60 minute readings captured by nurses (McGregor and Eklund 2008). 

3.4 Understanding the data rkh environment 

The NICU environment can often prove to be data rich yet information poor. The data 

intensive nature of this environment creates situations where physicians are faced with an 

overwhelming number of variables when caring for an infant. Miller, (1956) claims that even 

seasoned physicians are often unable to develop a systematic response to problems that involve 

more than seven variables (Miller, 1956). Data collected from the aforementioned monitoring 

systems can reach millions of entries in a database. Thus the data being collected provides no 

usable information due to the sheer volume of stored information. Data needs to be extracted and 

organized to become information, and a domain expert must then interpret this information 

before it becomes knowledge. 

There are two forms of data that can be defined in the NICU environment. First, the 

physiological data which is collected from sensory and monitoring devices like the ones 

discussed in Section 3.2.1. Secondly, the clinical data which may include information on patient 

age, weight, paper notes or periodic readings taken by nurses. The physiological data is 

comprised of data streams, often acquired at varying frequencies. For example, the Phillips 

Component Management System (CMS) outputs the following types of data streams: 
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1. Numeric - a reading generated every 1024 milliseconds 

2. Wave - every 32 milliseconds four data values arrive via the wave data stream (128 

values every 1024 milliseconds) 

3. Fast Wave - 16 values arrive every 32 milliseconds (512 values every 1024 milliseconds). 

Similarly, the Phillips IntelliVue series of patient monitors can stream fast wave data 

values of one every 1024 milliseconds. The frequency at which data is generated may vary 

between different devices and manufacturers. 

Existing Physiological Predictors 

There is mounting clinical evidence suggesting changes in physiological stream 

behaviours prior to the diagnosis of certain conditions. Stacey et. al. (2007) state that enabling 

TA to be applied across multiple patients within the NICU offers the potential of early detection 

of conditions such as sepsis which may exhibit early warning characteristics before being 

diagnosed through traditional means. 

There are several conditions of interest affecting patients in the NICU. Infection is a very 

common cause of morbidity and an important cause of mortality for the newborn infant. 

Although many infants acquire their infection around the time of delivery, others acquire an 

infection while receiving intensive care in the NICU. These are referred to as hospital-acquired 

or nosocomial infections. The early diagnosis of a nosocomial infection is difficult, because the 

clinical signs of infection are usually subtle and nonspecific until the infection is well established 

(Blount et. al., 2010). These infections can occur 48 hours or more after birth and data indicates 

that almost 30% of infants born at 25-28 weeks gestation and more than 45% of infants born 

prior to 25 weeks gestation will experience a serious nosocomial infection while in the NICU 
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(Blount et. al., 2010). Intraventricular Hemorrhage (NH) is another common cause of morbidity 

and mortality for the newborn infant. Approximately 20% of preterm infants develop an NH. 

The haemorrhages occur during the first few days of life and more than 90% of the NHs have 

occurred by the third day of life (Blount et. al., 2010). 

Additionally, Catley et. al. (2010) discussed a framework to model and translate clinical 

rules to support complex real-time analysis of both synchronous physiological data and 

asynchronous clinical data. The authors demonstrate how a clinical rule for detecting an apneic 

event is modeled across multiple physiological data streams; these included a lapse in respiration 

rate (RR) of a neonate for greater than 15 seconds and a fall in peripheral oxygen saturation less 

than 85% for greater than 20 seconds combined with a heart rate of less than 100 BPM. Thus, 

there is increased interest and research in the early detection of the clinical decline of the patient 

as knowledge of early indicators of medical conditions can be made available to clinicians as 

soon as they are detected allowing for better patient outcomes. 

3.6 NiCU Clinical Research: A Distributed Problem 

Patterns can be detected in the physiological data if the data from devices is captured and 

stored in data warehouses and is available for data mining. The main reason for storing and 

mining this data would be to discover previously unknown trends and patterns across various 

parameters and the establishment of indicators of the onset of conditions that may have an 

adverse effect on outcomes. Looking at this from the perspective of a distributed data 

environment that involves multiple hospitals across the globe, both the type and frequency at 

which data is being output may differ from one site to another. The differences may also occur 

due to the physiological monitoring devices being different at each facility. As an example, The 
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Hospital for Sick Children, Toronto makes use of the Philips IntelliVue MP70 series of patient 

monitoring devices in their NICU. The Shenzhen Maternity and Children's Hospital, Shenzhen, 

China makes use of the Drager Infinity Delta XL series of monitors and the Women & Infants 

Hospital in Providence, Rhode Island makes use of the Spacelabs Ultraview SL series patient 

monitors. Not only can the format and frequency of data output differ between these devices, the 

frequency at which this data can be streamed to the data warehouse can also vary for each site. In 

addition, the three levels ofNICU care can add another level of complexity and distribution as a 

patient graduates or is moved from one NICU to another. Thus, the need for a distributed data 

mining framework is quite evident when dealing with multicenter studies. 

3,7 Conclusions and Implications this 

This chapter has introduced the NICU case study context and supported the motivation of 

hypothesis 4 of this thesis: 

4. The framework can be applied in a broad neonatal context addressing issues of data 

privacy and confidentiality and being deployable as part of multicenter studies while 

maintaining data integrity at each participating site. 

The known physiological behaviours in combination with previous non computing 

related clinical research form the motivation for this research. The need for a distributed data 

mining environment that can support multicenter studies also provides the context for the case 

study demonstration in chapter 6 of this thesis. 
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Section 3.6 of this chapter introduced the distributed problem within the context of the 

NICU. The intensive nature of the medical care provided to neonates in the NICU is not 

dissimilar to the intensive care provided in adult intensive care units; thus the applications 

discussed in this thesis can be extended beyond the NICU environment in the future. 
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4. Chapter 4 - The Existing Architecture 

Chapter 2 demonstrated a current lack of frameworks to support distributed data mining 

environments. Heterogeneous data environments demand data mining frameworks that can 

normalize data in order to make them consistent across sites. This chapter presents details of the 

Service Based Multi-Dimensional Temporal Data Mining (STDMno) framework, highlighting the 

need for its operation in a distributed setting and discussing current limitations that make 

distributed deployment impossible. These challenges are addressed in Chapter 5. 

4.l Components ofthe Existing Framework 

The STDMno framework (Figure 4.1) focuses on reducing the gap between clinical 

management and clinical research (Bjering & McGregor, 2010, McGregor C. P., 2010); allowing 

for the effective use of the large volumes of data being collected from medical monitoring 

devices and stored in medical databases. The framework comprises three main components or 

layers i.e. the multi-agent system which is driving the framework, the extended CRISP-DM 

model layer which defines the data mining tasks and the STDMno framework task layer. In 

addition, there is also a layer for web services, active rules ontology, and data management. The 

n and 0 in the STDMno framework represent the data mining extensions incorporating null 

hypothesis and the dimensionality. The following sections explain the details of the existing 

framework which leads into a discussion of the extensions that will be made to the framework to 

enable its use in a distributed setting. 
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The framework also makes use of components from Foster and McGregor's (2005) multi-

agent system (discussed in section 4.1.1 ), which has been extended to facilitate the tasks needed 

in the STDMno framework. In addition, the framework employs Heath's extended CRISP-DM 

data mining model (Heath, 2006, Heath and McGregor, 2010). The extended CRISP-DM model 

and the multi-agent system are integrated to allow for the new data mining model to complete the 

tasks of the STDMno framework. 

1.1.1 Multi-Agent System 

As discussed, the STDMno framework utilises the multi-agent system developed by 

Foster and McGregor (2005) which is an extension of the Analytical Processor that forms one of 
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the components of the Solution Manager Service developed by McGregor (2005). The original 

framework consisted of an Agent Server which manages the communication between five 

agents: sub agent, processing agent, functional agent, rules generating agent and human agent. 

The framework also manages communication between the agents and the database access server 

(DBAS). The main agents utilized by the STDMno framework are the processing agent, temporal 

agent, relative agent, functional agent and rules generating agent (Bjering & McGregor, 2010). 

1.1.2 Processing Agent 

........................................................................................................................................................ 

Relative Functional Agent,, Rules Generating 
Agentn Agentn 

Temporal Relative Functional Agent, Rules Generating 
Agent Agent1 Agent1 

Modelling Evaluation 

Data 
Management 

Jiigure 4.2 - The Processing Agent 

The Processing Agent (Figure 4.2) is the first step into the STDMno framework; at this 

stage data is retrieved from external databases and processed in order to be stored in a 
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Physiological or Clinical Data Warehouse. This agent also supports the Data Understanding and 

Data Preparation phases of the extended CRISP-DM model and prepares the data to be used by 

the Temporal Agent for further processing. 

1.1.3 Temporal Agent 
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Figure 4.3 - The Tempornl Agent 

The Temporal Agent (Figure 4.3) utilizes physiological data being fed into the STDMno 

framework and helps create temporal abstractions based on the temporal rules defined in the 

temporal rules table. Temporal abstractions allow for the retention of the context of the data and 

act as a pre-processing method before data mining. They are also part of the data preparation 
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phase of the extended CRISP-DM model. In order to better understand the movement and use of 

data at this stage, Bjering & McGregor (2010) outline the six main functions of the temporal 

agent below: 

1. The first step is to retrieve the physiological data from the physiological data store for 

each parameter for each patient 

2. Next, relevant abstraction rules are retrieved from the temporal rules table. 

3. The rules are then applied to the physiological data, creating simple abstractions for 

individual data streams for individual patients 

4. The created abstractions are then stored in the SDTDMno temporal data store 

5. Complex abstractions are now created from the simple abstractions, based on any rules 

found in the temporal rules table. 

6. Finally, any complex abstractions that are created are then stored in the SDTDMno 

temporal data store. 
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I~'igure 4.4 - The Refotive Agent 

The Relative Agent (Figure 4.4) is used when dealing with clinical research studies. Once 

the Temporal Agent has created the abstractions from physiological data, it is common for this 

data to be used in various research studies. The Relative Agent uses the abstractions created by 

the Temporal Agent, together with clinical information from individual patients relative to the 

point of interest of the study, such as diagnosis of a particular clinical condition. The Relative 

Agent realigns the time of abstractions relative to a particular point in time that is of interest; this 

is an important step because the actual start and end times of the abstractions give no indication 

of what time this abstraction takes place in relation to the diagnosis of interest. This is done by 
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calculating the start and finish times for each abstraction relative to a particular event. Finally, 

the abstractions that have been relatively aligned are stored in the relative temporal data store for 

further processing. It is also common for different research studies to use the same temporal 

abstractions which can lead to different realignment techniques to be applied to the same data. 

This is also the reason why every realigned temporal abstraction is stored in the relative temporal 

data table specific to the study that has utilized it. 

1.1.5 Fmutimrnl Agent 
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The realigned temporal abstractions form the basis for exploratory and confirmatory data 

mining, processed by the Functional Agent (Figure 4.5). Exploratory data mining is used to 
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analyse the realigned temporal abstractions across multiple data streams for multiple patients in 

order to detect new trends and patterns that might be present in the data prior to or after the event 

of interest. This also allows for the selection of the rules of significance based on the results of 

the exploratory data mining exercise. The next phase of confirmatory data mining begins with 

the formulation of the null hypothesis for any results that arouse interest and further 

investigation. The role of the confirmatory data mining process is to help prove or disprove the 

null hypothesis once it has been defined. 

1.1.6 Rules Generating Agent 
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The Rules Generating Agent (Figure 4.6) utilizes findings made by the Functional Agent to 

allow for the creation of rules that can be defined in the rules database (Foster and McGregor 

2005). The hypotheses created via the exploratory data mining phase are used by the Rules 

Generating Agent to create rules that can be stored and utilized by an event stream processor. 

This processor allows for the application of abstractions on real-time data streams which in tum 

can help establish these rules in a live analytical system to aid clinicians in real time analysis of 

data and provide alerts when necessary. 

1.2 this research. 

One of the main themes that emerged from the review of existing literature in the area of 

data mining and distribution was a redundancy in the distribution approach. Commonly, the tasks 

that were distributed were used as temporary steps towards the data update process with the 

overall structure or framework still relying on a local storage and update for data and knowledge. 

We also have to consider the fact that a distributed database may contain a homogenous data set 

where the attributes describing the data are the same across each distributed database or a 

heterogeneous data set in which the attributes describing the data may differ. 

Section 4.1 presented a detailed overview of the existing framework and outlined the 

processes involved at each of the Agents in the STDM0
0 framework. However, the existing 

STDM0
0 framework does not address the area of data distribution and lacks a structure which can 

support multicenter studies. The main limitations of the current framework include: 

1. Notion of only one Temporal Rule table which is not suited for a multi centered 

approach. 
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2. Notion of only one Relative Rule table which is not suited for a multi centered 

approach. 

3. Lack of a structure to accommodate multi centered studies, which may allow for the 

possibility of cross comparison of results between similar studies taking place at the 

same time. 

4. Lack of clarity on how the Temporal Abstractions will be kept consistent in different 

locations/sites. 

5. No discussion on how static and stream data can be handled in a distributed 

environment as this data set mostly contains patient identifying information which may 

not be easy to distribute due to improved privacy policies. 

When we consider the possibility of a multidimensional application of the STDM0
0 

framework, it is clear that there is a need for a new approach towards the distribution of certain 

tasks, such as the Temporal Abstractions and temporal rules as well as the Relative and 

Functional Rules. There is a lack of clarity of how the distributed tasks will be performed and 

how they affect the systems at different sites. 

This chapter has introduced the existing framework and supported the motivation of 

hypotheses 1, 2 and 3: 

1. A multidimensional distributed data mining framework can be defined for time series 

data research for the discovery of trends and patterns prior to a given clinical event. 

2. The framework will utilize elements of data fusion and agent-based analysis so that it will 

work with relational databases and large scale data mining applications. 
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3. A set of data mining tools can be applied for temporal abstraction, relative alignment and 

cluster analysis in a distributed manner to support multiple research studies. 
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5. Chapter 5 - Service Based Multi-Dhnensional Distributed Temporal 
Data Mining (SDTDMno) 

The Service Based Multi-Dimensional Distributed Temporal Data Mining (SDTDMno) 

provides the functionality determined as lacking in the STDMno framework (Figure 5.1), as 

discussed in Chapter 4. This chapter proposes a multidimensional distributed data mining 

framework that provides a structure to support multi center studies and manages the Temporal 

and Relative Rule tables in a distributed environment while maintaining consistency across the 

distributed sites. 

The chapter addresses the following research hypotheses: 

1. A multidimensional distributed data mining framework can be defined for time series 

data research for the discovery of trends and patterns prior to a given clinical event. 

2. A set of data mining tools can be applied for temporal abstraction, relative alignment and 

cluster analysis in a distributed manner to support multiple research studies. 

3. A set of data mining tools can be applied for temporal abstraction, relative alignment and 

cluster analysis in a distributed manner to support multiple research studies. 

This chapter addresses the research hypotheses above by presenting a multidimensional 

distributed data mining framework that is suitable for use in clinical research, as shown in Figure 

5.1. This framework addresses the limitations of the STDMno discussed in Chapter 4. 
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As discussed in Chapter 4, the Temporal Agent manages physiological data being used 

by the STDMno framework and helps create temporal abstractions based on the temporal rules. 
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The main elements in this phase are the creation of the simple abstractions for individual data 

streams for individual patients which are stored in the STDMno temporal data store and the 

creation of complex abstractions based on any rules found in the temporal rules table which are 

also stored in the STDMno temporal data store. 

Based on the existing architecture, the creation and storage of Temporal Abstractions and 

Temporal Rules are local to each site and have no mechanism for distribution. In a 

multidimensional environment, the physiological data that is being retrieved would come from 

multiple sites which may not be the same in terms of data structure or even data frequency. It 

would also not be very efficient to have multiple local stores of temporal data and temporal rules 

for each site. However, due to current health care policies and improved patient privacy 

concerns, it is required that the static and stream data as well as the Temporal Abstractions exist 

locally at each site. The Temporal Rules, however, do not contain patient identifying information 

and thus can be decentralized (Figure 5.2). Several advantages arise from de-centralizing data: 

1. Allows for the Temporal Abstractions and Rules to be kept consistent across different 

sites. 

2. Allows for better control over the security of the data as there is only one location to 

manage. 

3. Allows for better accessibility to the data through a controlled and secure 

environment. 

4. A decentralized environment is very modular with respect to resource management. 
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The task of decentralizing the Temporal Rules starts by moving elements of the 

framework into the central data server that will act as a cloud distribution layer across all 

participating sites. The following four steps describe the distributed approach in detail: 

1. The physiological data is retrieved from the physiological data store for each 

parameter for each patient. 

2. A link is made with the cloud distribution layer in order to retrieve the relevant 

abstraction rules from the temporal rules table which are then applied to the 

physiological data. 

3. The simple abstractions that are created for individual data streams for individual 

patients are then stored locally at each site. They are also tagged with a SITE_ ID for 

ease of identification of their source site for comparison studies. 

4. Complex abstractions are created from the simple abstractions using the temporal 

rules table. Once completed the newly created complex abstractions are also stored 

locally in the same TA tables and tagged for easy identification. 
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The Relative Agent plays an important role in clinical research studies and can greatly 

benefit from a distributed framework. The Relative Agent needs access to the abstractions 
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created by the Temporal Agent, as well as the clinical information of the individual patient 

relative to the time of the study of interest. In order to enable this functionality in a distributed 

structure, the distributed framework makes use of the Relative Alignment W eh Service which 

acts as the gatekeeper for data access. It is important to note that different research studies might 

use the same temporal abstractions. For this reason, the central data server will contain a relative 

temporal data table specific to each study. Abstractions that have been relatively aligned can be 

stored in the relative temporal data store and tagged for easy identification as well. 

By decentralizing the Relative Rule data (Figure 5.3) from the original framework we can 

enable multicenter studies to take place simultaneously and also allow for the possibility of cross 

comparison of results between similar studies taking place at the same time. 

5.3 The Distributed Functional & Rules Gene.rating Agents 

The functional agent performs data mining tasks used to enable detection of interesting 

trends and patterns for a particular study. Exploratory data mining is used to analyse the 

realigned temporal abstractions across multiple data streams for multiple patients in order to 

detect new trends and patterns that might be present in the data prior to or after the event of 

interest. Once possible trends and patterns have been discovered, they need to be evaluated by 

the clinician to enable the creation of a hypothesis. This also allows for the selection of the rules 

of significance based on the results of the exploratory data mining exercise. The steps involved 

in the distribution of these agents are as follows (represented diagrammatically in Figure 5.4): 

1. Exploratory Mining used to analyse the realigned temporal abstractions, from the 

Relative Agent, across multiple data streams for multiple patients in order to detect new 

trends and patterns that might be present in the data. 
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2. Rules Generating Agent uses the exploratory functional rules in the creation of a new 

Rule Base Data table which is then stored centrally. 

3. Event Stream Processor connects with Rule Base Data table for the application of 

abstractions on real-time data streams. 

Details of the local stores seen in Figure 5.4 will be discussed in greater detail in Chapter 6. 

Functional Agent,, 

Functional Agent, 

Modelling 

Monitoring Devices 

DM_ARTE"11S_RA 

PK mU12 
PK TARll1il.P 
PK llil1llY....lD. 
PK PATIENT IP 
PK PHYSIOLOGICAL Ip 
PK RELATIYESTARTTIME 

DM_ARTEMIS_RA 

PK mU12 
p K TARll1il.P 
PK llil1llY....lD. 
PK PATIENT Ip 
PK PHYSIOLOGICAL IP 
PK RELATIYESTARTTIME 

ABSTRACTIONTYPE 
RELATIVEENDTIME 
ABSTRACTIONVALUE 
STREAMVALUE 

ABSTRACTIONTYPE 
RELATIVEENDTIME 
ABSTRACTIONVALUE 
STREAMVALUE 

Local Store 
(SlckKlds) 

Local Store 
(WIHRI) 

Dt,(ARTEMIS_RA 

PK SITE ID 
PK TARulelD 
PK STUDY ID 
PK PATIENT ID 
PK PHYSIOLOGICAL ID 
PK RELATIVESTARTTIME 

ABSTRACTION TYPE 
RELATIVEENDTIME 
ABSTRACTIONVALUE 
STREAMVALUE - -

Local Store 
(UOIT) 

Rules Generating 
Agent,, 

Rules Generating 
Agent1 

Evaluation 

··1 

~~~~~~~~~~~~~~~~~,, 

Load accepted Rule- ,

1

. 

sets into RuleBase 

~~~~~~~CREA----'-~-S~~~~~~~--J!I 1 

Hypothesis/Rule I 
generated and added 

to the Rulebase i 
.. ) 

.Figure 5.4 ~ The Distributed Fundion:d & Rules Generating Agents 

59 



The overall data storage schema for the STDMno can be seen in Figure 5.5 (McGregor C. 

P., 2010). This section will elaborate on the components being distributed and the changes that 

will take place. 
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5.4.1 Temporal Rules 

The TA_Rule table (Figure 5.6) contains rules for how to abstract particular 

physiological parameters. Each physiological parameter can be linked to multiple rules and 

incidentally create more than one abstraction. The TA_ Rule table is also capable of containing 

the entire SQL abstraction query that needs to be run to abstract particular physiological 

parameters. 
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PK TARulelD 

FK1 PhysiologicallD 
Rule 

li'igure 5.6 -The TA_ Rule Table 

There are three attributes in the TA Rule table i.e. the TARuleID which contains the 

unique ID of a particular rule, the PhysiologicalID which links the TA_ Rule table to the 

PhysiologicalDefinition table, and is used to identify which type of parameter the particular rule 

applies to and finally the Rule attribute which contains the details of the particular rule including 

the SQL query needed to run the rule. The TA_Rule table has a many to one relationship to the 

PhysiologicalDefinition table, which indicates that a particular PhysiologicalDefinition can have 

more than one TA rule applied to it. 

5.4.Z Tem.ponll A.bstrai:::th:m Data 

The Temporal Abstraction table (Figure 5.7) contains TAs created from the patient's 

physiological parameters (McGregor C. P., 2010). The temporal abstractions stored in this table 

are created by applying the rules contained in the TA_Rule table to the relevant physiological 

parameter of a patient. The PatientlD attribute is used to link a particular abstraction to a 

particular patient, the PhysiologicalID attribute is used to relate the abstraction to a particular 

physiological definition, ABSTRACTIONTYPE indicates the type of abstraction i.e. a trend or a 

level shift, ABSTRACTIONV ALUE contains the results of the abstraction. These values may 

indicate an increase, decrease or a range of values from high to normal (McGregor C. P., 2010). 

Finally, the ACTUALSTARTTIME and ACTUALENDTIME attributes indicate the time that 

the abstraction became true and when the particular abstraction no longer holds true. This table is 
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linked to the Patient table in a many to one relationship, thus implying that a particular patient 

can have many abstractions stored in the table. The Temporal Abstraction table also maintains a 

many to one relationship with the PhysiologicalDefinition table meaning that a physiological 

parameter can have several abstractions performed on it. 

.· 

TemporalAbstraction 

PK PATIENT ID 
PK PHYSIOLOGICAL ID 
PK ABSTRACTIONTYPE 
PK ACTUALSTARTTIME 

ACTUALENDTIME 
ABSTRACTIONVALUE 
STREAMVALUE 

Figure 5.7 -The Tempornl Abstraction Table 

5.4.3 Relative Rule 

The Relative Rule or Study table (Figure 5.8) specifies a particular alignment of 

abstractions for a particular study and contains the information about any relative rules that may 

need to be applied to the abstractions stored in the Temporal Abstraction table (McGregor C. P ., 

2010). The StudyID attribute is a unique identifier for each study. The StudyOwner, StudyName 

and StudyDescription attributes contain details on the study and to whom they belong. The 

EntityRestriction, T ARestriction, EventRestriction and the T ARelativeRestriction attributes 

contain where clauses providing higher levels of constraints to the Study table (McGregor C. P., 

2010). 
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The Relative Temporal Abstraction table (Figure 5.9) holds the abstractions that have 

been realigned relative to a point of interest to the researcher who owns the study (McGregor C. 

P., 2010). The attributes of this table are similar to the Temporal Abstraction table (Figure 5. 7) 

except that this table contains RelativeTAStartTime and RelativeTAEndTime values which are 

times relative to the period in time that is interesting to the researchers/owners of the study. A 

unique StudyID attribute is also included in this table to allow abstractions to be linked with the 

Study Table (Figure 10) with which it shares a many to one relationship meaning that there can 

be many entries in the TA_ RelativeTime table that belong to a particular study (McGregor C. P., 

2010). 
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Figure 5.9 ~ The Refative Temporal Data Table 
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5.4.s; Rule Base Data 

The Rules created from hypothesis as a result of the last step can then be stored in the 

RuleBase table (Figure 5.10). The attributes of this table include a unique EventID, 

PhysiolocialID and T ARuleID from the tables discussed earlier as well as the RelativeStartTime 

and RelativeEndTime attributes (McGregor C. P., 2010). A Value attribute is also contained in 

this table indicating the threshold values that are of interest to researchers and can be deployed in 

a real time environment, for example, a lapse in the breathing of a neonate for greater than 15 

seconds and a fall in peripheral oxygen saturation less than 85% for greater than 20 seconds 

combined with a heart rate of less than 100 BPM may be an indicator of an apneic event ( Catley 

et. al. 2010). 

Real-time RuleBase 

PK,FK1 EventlD 
PK,FK2 Ph)lsiologicallD 
PK,FK3 TARulelD 

RelativeStartTime 
RelativeEndTime 
Value 

Figure 5.10 ~The Rule Base Table 

5.6 Design Changes to Support Distributed Functionality 

In order to perform temporal abstractions on data, the data must first be processed from 

its raw format. The role of the processing agent is to initiate collection of stored physiological 

and clinical data from external data stores supporting online analysis. Once the data has passed 

from the external collection phase, the Processing Agent converts the data to the required format, 
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if necessary, and then the data is structured and stored in the clinical data and physiological data 

tables. Once completed, the Temporal Agent begins to process data in order to create the 

temporal abstractions using rules defined in the temporal rules table. 

5.6.1 mstrHmUon ofTempoiral Rules 

Chapter 4 presented the limitations of the STDMno framework, one of which was the fact 

that it is structured to support only one Temporal Rule table. There was also a lack of clarity on 

how the Temporal Abstractions will be kept consistent across the multidimensional distributed 

locations. Figure 5.11 presents a solution to this problem and highlights the management of 

multiple Temporal Rule tables while keeping the Temporal Abstractions consistent across the 

distributed sites. As discussed in Section 5 .1, due to current health care policies and improved 

patient privacy concerns, it is required that certain types of data exist locally at each site. Thus 

the Temporal Abstractions have to be stored locally at each distributed site, but the same is not 

true for the Temporal Rules. As they contain no patient identifying information, they can be de­

centralized to allow for consistency, better control over the security and better accessibility. 

Figure 5.11 presents a structure which supports the distribution of Temporal Rules and at the 

same time provides a solution for the Distribution of Temporal Abstractions where they are 

allowed to be distributed. 
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Policies regarding the handling of data and its privacy will always differ across the 

multidimensional distributed sites; hence the need to support the data in a distributed setting. 

Following are the steps involved in the distribution of Temporal Rules, as shown in Figure 5 .11: 

1. The Temporal Rules have been distributed so that they are stored centrally. When TA's 

need to be run, the associated rules are deployed simultaneously for each participating 

site (Site A, Site B, Site C ... Site N). The TA rules deployed for each site also contain the 

SQL query that needs to be run to perform the abstraction at each site as this is supported 

by the TA_ Rule table. 

2. Once deployed, the Temporal Abstractions are run locally at each site based on the 

parameters provided by the Temporal Rules. 

3. A unique identifier is attached to the resulting output. This identifier is called the 

SITE_ ID tag which gives each location a unique ID and also allows for comparison of 

results across sites when needed. 

4. Finally, the results of the Temporal Abstractions are stored locally at each site in data 

tables (DM_ARTEMIS_TA). Where available, these results will also be populated back 

at the central data store (DM _ARTEMIS_ TA). 

5.6.2 Distribution of Relative Rules 

The Relative Rule table, which specifies a particular alignment of abstractions for a 

particular study, holds the information about any relative rules that may need to be applied to the 

abstractions stored in the Temporal Abstraction table. In Chapter 4, it was highlighted that the 

existing STDMno framework supports the notion of only one Relative Rule table which is not 

suited for multidimensional distributed studies. 
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Figure 5.12 outlines the structure supporting the distribution of Relative Rules. The 

following three step approach is taken to enable the distribution of Relative Rules: 

1. Relative rules for each study are deployed from the central data store. A separate study 

table exists for each participating facility and is assigned a unique StudyID. 

2. Once deployed, the Temporal Abstractions table created at each site is accessed locally in 

order to perform the Relative Alignments needed for the particular study. 

3. The re-aligned Temporal Abstractions are then created and stored locally in the Relative 

Temporal Data tables specific to the study and the site which is identified by the unique 

SITE_ID (DM_ARTEMIS_RA). Where supported, the Relative Temporal Data will also 

be populated back at the central data store (DM_ARTEMIS_RA) with the addition of a 

SITE_ ID tag that allows for separation and comparison between sites. 

5.6.3 Distribution of Rule Base Data 

The Rules Generating Agent utilizes findings made by the Functional Agent to allow for 

the creation of rules that can be defined in the rules database. Hypotheses created via the 

exploratory data mining phase are used by the rules generating agent to create rules that can be 

stored and utilized by an event stream processor in the application of abstractions on real-time 

data streams. The distributed Rule Base data exists centrally and is invoked every time a rule 

needs to be applied for real-time monitoring. In this case (Figure 5.4), the Functional Agent 

invokes the Relative Temporal Abstractions stored locally at each site (DM_ARTEMIS_RA). 

The Rules Generating Agent then uses results produced by the Functional Agent to create Rule 

Base Data in the central data store. These rules can then by deployed for active real-time 

monitoring of patient data. 
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5,7 

This chapter has presented the design of the SDTDMno framework, which has been 

extended by this research to support a multidimensional distributed data mining environment. 

This allows for the management of Temporal and Relative Rule tables in a distributed 

environment to support multicenter studies as well as the distribution of Rule Base data which 

can be applied for real-time monitoring across sites. The chapter has addressed research 

hypotheses one, two and three by demonstrating and defining the SDTDMno framework, a 

multidimensional distributed data mining framework that is suitable for use in clinical research. 
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6. Chapter 6 ~ De:monstration within the NICU Context 

This chapter presents a demonstration of the architectural framework detailed in Chapter 5 

within the context of its deployment to support clinical research in neonatal intensive care. 

Evidence for research hypotheses three and four is presented with further validation to support 

hypotheses one and two. These hypotheses were: 

1. A multidimensional distributed data mining framework can be defined for time series 

data research for the discovery of trends and patterns prior to a given clinical event. 

2. The framework will utilize elements of data fusion and agent-based analysis so that it will 

work with relational databases and large scale data mining applications. 

3. A set of data mining tools can be applied for temporal abstraction, relative alignment and 

cluster analysis in a distributed manner to support multiple research studies. 

4. The framework can be applied in a broad neonatal context addressing issues of data 

privacy and confidentiality and being deployable as part of multicenter studies while 

maintaining data integrity at each participating site. 

Through an active collaboration between The Hospital of Sick Children, Toronto, led by 

Dr. Andrew James, The Women and Infants Hospital (WIHRI), Providence, Rhode Island, 

led by Dr. James Padbury and the Health Informatics Research team, University if Ontario 

Institute of Technology (UOIT), Oshawa, led by Dr. Carolyn McGregor, we are utilising 

current clinical research activities within the NICU to demonstrate the architecture proposed 

in Chapter 5 and provide analytical support for the clinical research activities. The research 
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being conducted at UOIT is part of the clinical research studies that have been ethically 

approved at both sites as part of the Artemis project. Artemis is a platform for real-time 

enactment of clinical knowledge as it relates to multi-dimensional data analysis and clinical 

research. The Artemis framework (as seen in Figure 6.1) is a platform for real-time analysis 

of clinical knowledge as it relates to multi-dimensional data analysis and clinical research. 

Result 
---~........ Presentation 

Figure 6.1 - The Artemis Framework (UOIT Heidth Informatics Research). 

As discussed in Chapter 3, there is mounting evidence suggesting changes in 

physiological stream behaviours prior to the diagnosis of certain conditions. The Health 

Informatics Research group at UOIT is focusing on research into earlier detection of late 

onset neonatal sepsis and episodes of apnoea using physiological stream data being collected 

from three distributed sites. A number of parameters are being analysed in order to support 

this research such as: 1) abstractions for heart rate decelerations in an hourly time window; 2) 

fall in peripheral oxygen saturation less than 85% for greater than 20 seconds; 3) a lapse in 
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breathing of a neonate of 35 weeks gestation for greater than 15 seconds; and 4) a low heart 

rate and respiratory rate variability in an hourly segment. 

There are three main distributed sites which will be considered in this scenario. The first 

deployment is located at The Hospital for Sick Children, Toronto, Ontario (as seen in Figure 

6.3). Multiple streams of physiological data are being generated from this location from the 

Philips lntelliVue MP70 neonatal monitors at the rate of a reading every 1024 milliseconds. 

These include the constant collection of electrocardiogram derived heart rate (ECG-HR), 

transcutaneous oxygen saturation (Sp02) and respiration rate (RR) which is standard clinical 

practice for all patients in the NICU at The Hospital for Sick Children. Diastolic, systolic and 

mean blood pressures (DBP, SBP and MBP) are also available when collected as part of clinical 

practice. Currently, these streams are being used as part of research into earlier detection of late 

onset neonatal sepsis. To date a combined data set equalling around 115726985 readings has 

been collected. The complete Artemis deployment occurs in two locations, namely at The 

Hospital for Sick Children and the UOIT Health Informatics Research (HIR) laboratory and 

currently supports eight concurrent patients. The following three components are located at The 

Hospital for Sick Children: 

1. The first is responsible for data acquisition from the medical data hub. 

2. The second for online analysis utilizing the InfoSphere Streams Runtime from IBM. 

3. The third for stream or data persistence utilizing the data integration manager. 

Data Persistence occurs to support Online Analysis and Knowledge Extraction. An 

incremental backup of the data is made each day to a persistence storage mirror located at UOIT 
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and used by the Knowledge Extraction component (as seen in Figure 6.1) at UOIT for 

knowledge discovery. Redeployment occurs after this step which is where new rules are 

translated to Stream Processing Application Declarative Engine (SP ADE) which is an 

intermediate language for flexible composition of parallel and distributed data-flow graphs. 

SP ADE allows for potential future deployment in the Online Analysis to monitor future patients 

in real-time. 

The second deployment is situated at The Women and Infants Hospital (WIHRI) in 

Rhode Island, United States. This site makes use of the SpaceLabs Ultraview SL patient 

monitors to collect HR, RR, Sp02, Pulse Rate derived from Sp02 sensor and, where collected, 

continuous DBP, SBP and MBP. The frequency of data coming from this site is in the form of 

spot readings taken every minute and stored in its raw form at the UOIT. In order to enable data 

collection from WIHRI, a cloud based environment is setup where data is transported via a 

secure tunnel to UOIT in the form of HL7 formatted data packets (as seen in Figure 6.2). In this 

environment, components of the Data Acquisition exist across both sites and all remaining 

Artemis components are situated at UOIT instead of the hospital. Presently, the data set from 

WIHRI amounts to around 3654615 records. 
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Figure 6.2 - An example of the .HL 7 data me 

The third and final deployment is located at UOIT and comprises of 30 second spot 

readings of retrospective data from The Hospital for Sick Children collected over a time span of 

two years. The main purpose of this deployment is to support research for the early detection of 

multiple clinical diagnoses such as neonatal sepsis and apnoea. As such it contains the Data 

Persistence, Knowledge Extraction and Redeployment components only. 

75 



Online Analysis 

Data Data 
Persistence Acquisition 

Re-Deployment Re-Deployment 

Knowledge Knowledge 
Extraction Extraction 

Data Data 
Persistence Persistence 

Re-Deployment Knowledge 
Extraction 

Data Persistence 
(Real Time) 

Data 
Acquisition 

Data 
Acquisition 

Data 
Persistence 

:Figure 6.3 - The MuUidimensiomd Distributed Environment 

5.1.1 Tedrnkal ClrnHenges with Multidimensional Distributed Data 

Kids 
Retrospective 

The Multidimensional Distributed Data being collected from the three NICU sites poses 

some inherent challenges that can prevent normalization of data across the different sites. The 

main challenge is the differences in data frequency that exists from one location to the next. As 

highlighted earlier, each site generates data differently which leads to the lack of consistency. 

For instance: 

• The Hospital for Sick Children supplies data at the rate of a reading every 1024 

milliseconds 
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• WIHRI supplies data in the form of spot readings taken every minute 

• VOIT-Retrospective Data which comprises of 30 second spot readings. 

Normalization of data is the first solution that comes to mind when we discuss the varied 

frequencies of data collected. However, the data cannot be normalized because different 

frequencies are required depending on the type of analysis that needs to be performed. For 

example, trend analysis temporal abstractions on raw heart rate and respiratory rate data could be 

performed at spot readings taken every 30 seconds. However, this same technique cannot be 

applied in the analysis of apnoea because apnoea events can occur between two consecutive 30 

second spot readings and hence for example transient falls in blood oxygen saturation of less 

than 30 seconds would be missed. Thus, we need to categorize the abstractions based on 

similarity as well as frequency in order to effectively run them in a distributed environment. 

6.2 Data Strm:ture 

The Knowledge Extraction component of Artemis implements the STDMno framework. 

In order to perform temporal abstractions on data, it must first be processed from its raw format. 

The role of the processing agent is to initiate the collection of stored physiological and clinical 

data from external data stores supporting the online analysis or collected via some other means 

outside of Artemis. STDMno is the technique used in the knowledge extraction component of 

Artemis. Within the first two distributed sites as detailed above the processing agent performs 

the replication of the data from the Online Analysis Data Persistence component to the 

Knowledge Extraction Data Persistence component. Once the data has passed from the external 

collection phase, the processing agent converts the data to the required format if and as necessary 

and then the data is structured and stored in the clinical data and physiological data tables (see 
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Figure 6.4) accessible by the Knowledge Extraction component. After the completion of this 

phase, the Temporal Agent begins to process data in order to create the Temporal Abstractions. 

·. 

RawHR Raw RR RawSP02 
·. 

PK PATIENTID PK PATIENTID PK PATIENTID 

TIM EST AMP TIMESTAMP TIMESTAMP 
HRVALUE RRVALUE SP02VALUE 

6.2.1 The Te1rnpo.ral Phase 

Once the processing agent structures and stores the data in local data stores, the Temporal 

Agent takes over to process the data using rules defined in the Temporal Rules Table (Figure 

6.5). Temporal Abstractions are created using the temporal rules and the physiological data that 

has been collected from the monitoring devices. 

TA_Rule 

PK TARulelD 

PhysiologicallD 
Rule 

Figure 6.5 - Structure of the Tempo ml Rules Table 

As outlined in Chapter 4, there are six main functions of the Temporal Agent: 

1. The first step is to retrieve the physiological data from the physiological data store for 

each parameter for each patient 

2. Next, relevant abstraction rules are retrieved from the Temporal Rules Table 

3. The rules are then applied to the physiological data, creating simple abstractions for 

individual data streams for individual patients 
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4. The created abstractions are then stored in the STDMno Temporal Data store (Figure 

6.6) 

5. Complex abstractions are now created from the simple abstractions (from point 3 

above), based on any rules found in the Temporal Rules Table 

6. Finally, any complex abstractions that are created are then stored in the STDMno 

Temporal Data store (Figure 6.6) . 

.. . 
DM_ARTEMIS_ TA 

PK PATIENT ID 
PK PHYSIOLOGICAL ID 
PK ABSTRACTIONTYPE 
PK ACTUALSTARTIIME 

ACTUALENDTIME 
ABSTRACTIONVALUE 
STREAMVALUE 

Figure 6.6 - Structure of the Temporal Abstraction T~1ble 

Data for each patient may consist of multiple time stamped data streams. The time 

stamped physiological readings are first abstracted individually to simple temporal abstractions 

and later can be used to create complex abstractions. A typical abstraction may address level 

shifts i.e. increase, decrease or stable from point x or trends i.e. changes over a set period. Since 

a time stamped physiological reading for a certain patient can be part of a number of simple 

abstractions it is computationally efficient to perform both types of abstractions on one data set. 

In order to elaborate further, we take the example of an abstraction run hourly on the 

respiratory rate (RR) value in a non-distributed setting. In order to analyze patient data, we 

consider a 60 minute period for our abstraction with the goal of finding when the RR value falls 

below a specific threshold, which in this case is a value with a threshold of 10. The abstractions 
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created are stored in the Temporal Abstraction Table (as seen the Table 6.1) which condenses 

and adds context to the data. 

PATIENT_!D PHYS_ID AB5TRACTIONTYPE ACTUALSTARmME ACTUALENDTIME ABST_VALUE 

A12345 RR Hourly RR < 10 - Oct-04 , :ioo95:oo:o;AMoooooo I act-04 ~- 1.15 

A12345 RR Hourly RR < 10 oct-04 2009-6:0D:OOAMOOOOOO- oct-041 20096:59:59AM999000 0.8 

Hourly RR< oct-o4 zoo9 7-:-oo:ooAM-00-oorio-Tod-04 ·1 20097:-59:s9AM 999000- -----·--
Al2345 RR 

-

. - 6.3 

:~1:-04- 20098:°-?!'.? Ar~ooo~~-- ~~~:04J_~2!?_~-~~9-:s9A:0~9o~= -···-····~--·······--··-····-A12345 RR Houri\' RR < 10 1.617 
·----··-·····-··--····· 

Al2345 RR Hourly RR Oct 2009 9:00:00 AM 000000 oct-o4 I 2009 9:59:59AM 999000 4.633 
~--

1rly RR< 10 Oct-04 1 ---- ------~ 

A12345 RR Oct 2009 10:00:00 AM 000000 200910:59:59 AM 999000 0.117 

-A12345 RR -i Hourly RR< 10 Oct-04 2009 12:00:00 PM 000000 Oct-04 2009 12:59:59 PM 999000 0.3 

Al2345 RR I Hourly RR < 10 Oct-04 2009 2:00:00 PM 000000 Oct-04 2009 2:59:59 PM 999000 0.167 

A12345 RR j Hourly RR< 10 Oct-04 2009 3:00:00 PM 000000 Oct-04 i 2009 3:59:!19 PM 999000 0.783 I - ! 

A12345 RR Hourly RR< 10 Oct-04 2009 4:00:00 PM 000000 Oct-041 2009 4:59:59 PM 999000 1.417 

A12345 RR Hourly RR< 10 Oct-04 2009 5:00:00 PMOOOOOO Oct-041 2009 5:59:59 PM 999000 1.217 
-·~· 

2009 6:00:00 PM 000000 --oct-04 i 2009 6:59:59 PM 999000 
--------

A12345 RR Hourly RR< 10 Oct-04 1.3 
---- wog ?;oo:oo PM ooooo-o-r oct-04T20o9is9:s9 PM999ooo --

---·----
Al2iH5 RR, Hourl1• 10 Oct-04 3.2 

--2oo98~oo:oo'PM oociooo ___ o~-t-04T--2oo9i59~-s9PM 999000 ___ 
-·····---·-··'--······-···--

A12345 RR Hourly RR< 10 Oct-04 1.717 

A12345 RR Hourly RR < 10 Oct-04 2009 9:00:00 PMOOOOOO Oct-04 j 20099:59:59 PM999000 1.317 
~--·-

Oct-04 r -~ r----------
A12345 RR Hourly RR < 10 Oct-04 200910:00:00 PM 000000 200910:59:59 PM 999000 1.5 

A12345 RR J Hourly RR < 10 Oct-04 200911:00:00 PMOOOOOO Oct-04 I 200911:59:59 PM 999000 6567 

A12345 RR l Hourly RR < 10 Oct·OS 200912:00:00 AM 000000 Oct-OS 200912:59:59 AM 999000 7.033 

A12345 ,_ RR I Hourly RR < 10 Oct-05 2009 1:00:00 AM 000000 ·oct-05 20091:59:59 AM 999000 - 2.05 

A12345 RR _[ Hourly RR < 10 Oct-05 2009 6:00:00 AM 000000 Oct-05 I 2009 6:59:59 AM 999000 0.533 
-----··· -····-------· ------- i ---- '----···---

Table 6.1 - I-foudy RR Temporal Abstraction Results 

Table 6.1 highlights the output of the Temporal Abstraction (TA) process relating to 

Respiratory Rate Variability (RRV). Once the TAs are deployed via the TA_Rule table, hourly 

summaries of RRV are created and stored in the TA table. In this case the event of interest for 

the TA was the drop in the RR value below 10 within a set period. 

6.2.2 The Relative Alignment Phase 

Once the Temporal Agent has created the abstractions from physiological data, it is 

common for this data to be used in various clinical research studies. Once the abstractions have 

been created they are stored locally in the STDMno data stores until they are needed for a 
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particular study. When a study is prepared, it will often be necessary to realign the time of 

abstractions relative to a particular point in time of interest. The Relative Rule table (Figure 6.7), 

which specifies a particular alignment of abstractions for a particular study, holds the 

information about any relative rules that may need to be applied to the abstractions stored in the 

Temporal Abstraction table. 

Relative Rule 

PK Stud)llD 

StudyOwner 
StudyName 
StudyDescription 
EntityRestriction 
T ARestriction 
EventRestriction 
T ARelativeRestriction 

The Relative Agent realigns the time of abstractions relative to a particular point in time 

that is of interest by calculating the start and finish times for each abstraction relative to a 

particular event. If the aim of a research study is to find new trends and patterns that can be 

indicative of the onset of a condition it will be essential to realign the time of each patient's 

abstractions relative to the time of the patient being diagnosed with the condition. The 

abstractions that have been relatively aligned are then stored in the relative temporal data store 

for further processing. It is also common for different research studies to use the same temporal 

abstractions which can lead to different re-alignment techniques to be applied to the same data. 

This is also the reason why every re-aligned Temporal Abstraction is stored in the relative 

temporal data table (Figure 6.8) specific to the study that has utilized it. 
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Relative Temporal Data 
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Figure 6.8 - Structure of the Relative Ternpond Data table 

Table 6.2 displays the structure of the Relative Temporal Abstraction table in its current 

state. In order to analyze patient data, we consider a 60 minute period for our abstraction with the 

goal of finding when the HR value falls below a specific threshold, which in this case has a 

threshold value of 100. 
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Oct-04 2009 7:QO:OOPMOOOOOO , Wll 1Nl4 .1112345 HR I Hourly HR< lOQ 
---- ---------·----f----· 

Oct-04 2009 7:59:59 PM 999000 
0.383 

2009 B:59:59PM999000-- -------
0.367 

1'111 Wl4 A12345 HR Hourly HR< 100 Oct-04 2009 8:00:00 PM 000000 Oct-04 

Oct-04 20099:00:00PMOOOOOO Oct-04 20099:59:59PM999000 0.
033 --!----!-------·------------------------

Oct-04 200910:00:00 PMOOOOOO Oct-04 200910:59:59 PM999000 

Wll 1.'.'14 A12345 HR - Hou_rly HR < 100 
-----· W11 W14 Al2345 HR Hourly HR< 100 

0.117 -· 
\Vil Wl4 A12345 HR Hourly HR< 100 Oct-04 200911:00:00 PMOOOOOO Oct-04 200911:59:59 PM999000 

0.017 
\Vil W14 Al2345 HR Hourly HR< 100 Oct-05 200912:00:00 i>.MOOOOOO Ort-05 2009 12:59:59 .O.M 999000 

0.067 
·-····---------·-···-- -·---·------ ··----- --··-----·-··-- ··---- ·-····-····---···------··----·- ---------··-·-··--------·-·---·----r--·-·----·-

Wll Wl4 A12345 HR - Hourly HR< 100 Oct-05 20091:00:00AMOOOOOO Oct-05 20091:59:59AM999000 
0

_
167 

Wll Wl4 Al2345 HR _J Hourly HR< 100 Oct-05 2009 6:00:00AMOOOOOO Oct-05 2009 6:59:59AM999000 
----- ----- -··--··-···-·--- ----- --·------·-- -·----- -······---·------·-,___ _________ Q~ 

Table 6.2 - HU Relative Temporal Abstraction Results 
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In order to explain the Relative Temporal Abstraction process further, consider the 

example of Heart Rate Variability (HRV). Once the TAs have been deployed via the TA_Rule 

table, hourly summaries of HRV are created and stored in the TA table. In this case the event of 

interest for the TA was the drop in the HR value below 100 within a set period. 

To enable the detection of particular patterns of this abstraction at a particular time before 

the event of interest, re-alignment of the abstractions relative to the time of the event of interest 

is necessary. The periods of interest would be abstracted by the temporal agent and stored locally 

at each site. The role of the relative agent is to re-align the time of the TAs that have been 

created previously, with an event of interest, thus giving the relative TAs a start time and end 

time relative to the point of diagnosis. This will enable the comparison and mining of the 

abstractions to identify particular behaviours that may indicate the onset of the condition being 

researched. 

6.2.3 The Fum::tional Agent 

The re-aligned Temporal Abstractions form the basis for exploratory and confirmatory 

data mining, processed by the Functional Agent. The Functional Agent performs data mining 

tasks used to enable detection of interesting trends and patterns for a particular study. 

Exploratory data mining is used to analyse the re-aligned Temporal Abstractions across multiple 

data streams for multiple patients in order to detect new trends and patterns that might present in 

the data prior to or after the event of interest. The Temporal Abstractions created from the 

physiological data for each patient that is part of the study must be realigned based on the time of 

diagnosis as this allows for the search and comparison of all the patients' abstractions regardless 

of the actual time of the abstractions or the actual time of diagnosis. 
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Once possible trends and patterns have been discovered, they need to be evaluated by the 

clinician to enable the creation of a hypothesis. This also allows for the selection of the rules of 

significance based on the results of the exploratory data mining exercise. The next phase of 

confirmatory data mining begins with the formulation of the null hypothesis for any results that 

arouse interest and further investigation. 

6.2.4 Rules Generating Agent 

The Rules Generating Agent utilizes findings made by the Functional Agent to allow for 

the creation of rules that can be defined in the real-time rules database (Figure 6.9). 

Real-tirne RuleBase 

PK EventlD 
PK PHYSIOLOGICAL ID 
PK TARulelD 

RELATIVESTARTTIME 
RELATIVEENDTIME 
VALUE 

Figure 6.9 - Stn1dure of the Real time Ruh:Biue fable 

The hypotheses created via the exploratory data mining phase are used by the Rules 

Generating Agent to create rules that can be stored and utilized by an event stream processor 

which allows for the application of abstractions on real-time data streams which in tum can help 

establish these rules in a live analytical system to aid clinicians in real time analysis of data. 
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As discussed in Chapter 4, one of the limitations of the STDM0
0 framework was the 

notion of only one Tempor_al Rule table which does not address the area of data distribution and 

lacks a structure which can support multicenter studies. Another limitation was the lack of clarity 

on how the Temporal Abstractions will be kept consistent in different sites. In this section, we 

present a demonstration of the distributed temporal rules environment which highlights the 

management of multiple Temporal Rule tables (Figure 6.10). This will also enable the Temporal 

Abstractions to be consistent across the distributed sites. 
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Figure 6,10 - Distril:mtion of Temporal Rules 
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As discussed, we have three different multidimensional distributed sites which would 

need to run the Temporal Abstractions. Due to current health care policies and improved patient 

privacy concerns, it is required that certain types of data exist locally at each site. However, the 

Temporal Rules do not contain patient identifying information and thus can be decentralized to 

allow for consistency, better control over the security and better accessibility. In the case of our 

multidimensional distributed environment, there are four main steps to enable the distribution of 

some of the data: 

1. The Temporal Rules exist at a central hub i.e. at UOIT in this senario. When TA's 

need to be run, the associated rules are deployed simultaneously for each participating 

site. The TA rules deployed for each site also contain the SQL query that needs to be 

run to perform the abstraction at each site as this is supported by the TA_Rule table. 

2. Once the Temporal Rules have been deployed, they are run locally at each of the 

three sites. 

3. A SITE_ ID tag is also attached to each abstraction that is run at these sites in order to 

allow for comparison ofresults across sites when needed (Table 6.2). 

4. Finally, the results of the Temporal Abstractions are stored locally at each site 

(DM_ARTEMIS_TA). Where available, these results will also be populated back at 

the central UOIT store under the DM ARTEMIS TA data table. - -

Table 6.3 outlines the structure of the distributed Temporal Abstraction tables as they 

exist at each local multidimensional distributed site. In this table, the data shown contains a 

SITE_ ID tag of SK indicating the data belongs to The Hospital of Sick Children. A similar 

structure is adopted for each distributed site which is identified by their unique SITE_ID i.e. 

WIHRI being identified as WI and the SickKids Retrospective data being identified as SK30. 
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l ~l~~~:::~~J~~;,-;-~J_ABS~ACTI~ ~-- ACTUALSTARTIIME ACTUALENDTIME ABST_VAlUE 

SK A12345 j RR . Hourly RR < 10 . OcHl4 }~~~~~~~~~~- Oct-04 2009 5:59:59 AM 999000 _ _ 1.15 

·s-1(-- -;;;12345--·r--iiii ___ - --iiouiiv-R"R-<iii- ---o-ct::-0:4 2009 6:00:00 AM 000000 oct-04 -20096:S9:S9A"tXsssoc-O ---- o.s 

SK A12345 _j RR Hourly RR < 10 Oct-04 2009 7:00:00 AM 000000 Oct-04 2009 7:59:59 AM 999000 6.3 

-Si<-- -----Ai2345 ____ j-RR-- --H~RR<iO-- -oc:Hl4 2009 a 0000 AM 000000 · -ocr:04"~20098:59:59~- ---1.617 

I SK A12345 RR Houri•/ RR < 10 Oct-04 2009 9:00:00 AM 000000 Oct-04 2009 9:59:59 AM 999000 4.633 

l SK A12345 . RR Hourly RR< 10 Oct-04 2009 10:00:00 AM OOOOC-0 Oct-04 200910:59:59 AM 9990C-O 0.117 

I SK _ A12345 I RR Hourly RR< 10 Oct-04 200912:00:00 PM OC-0000 ·. Oct-04 2009 12:59:59 PM 999000 0.3 

~ 
SK A1*345 RR Hourly RR< 10 Oct-04 2009 2:00:00 PM 000000 Oct-04 2009 2:59'59 PM 999000 0.167 

___ ,_____ ----- -----.----- -------------·----- -----f---------·---- ----··-
SK A12345 RR Hourly R_R < 10 Oct--04 2009 3:00:00 PM 000000 . Oct-04 2009 3:59:59 PM 999000 - _ 0.783 

--------- ~---· -----··---···· --·-------·---------
SK A12345 RR Hourly RR< 10 Oct-04 2009 4:00:00 PM 000000 Oct-04 2009 4:59:59 PM 999000 1.417 

R.=~ -::.==;~:~~~·~~·····~:::::f:~?='~ 
SK A12345 RR- -Houri•/ RR< 10 ~ ~ Oct-04 2.009 8 00:00 PM OG•OOOD Oct-04 2009 8:59:59 PM 999000 1.717 
SK AH345 RR Hou.riv RR< 10 Oct-04 2009 9:00:00 PM 000000 ·. Oct-04 2009 9:59:59 PM 999000 1.317 

SK A12345 RR Hourly RR< 10 Oct-04 2009 10:00:00 PM 000000 Oct-04 2009 10:59:59 PM 999000 1.5 

SK A12345 I RR Hourly RR< 10 oct-04 200911:00:00 PM 000000 Oct-04 2009 11:59:59 PM 999000 6.567 

SK A12345 J RR Hourly RR < 10 Oct-05 100912:00:00 AM 000000 Oct-05 2009 12:59:59 AM 999000 7.033 
-~-!----·----,------ -----~-·--- ------- ------------·------ ----·--------~:--·-------

SK A12345 j RR HourlyRR<10 Oct-05 20091:00:00AMOOOOOO ,Oct~05 20091:59:59AM999000 . 2.05 

SK A1234S j RR Hourly RR< 10 Oct-05 ioo9 6:00:00 AM oooDOO-· Oct-05 2009 6:59:59 AM 999000 ____ 0.5S3 
--··-- -·----------1--------- ----------------··--- ---·-··----------·-·- '---··---- ·-----------···---- ···-·--------·-

Table 6.3 - Structure of me Dish:ibuted UIVI_ARTElVUS_TA TaMes 

Policies regarding the handling of data and its privacy will always differ across the 

multidimensional distributed sites; hence the need to support the data in a distributed setting. By 

having regulatory requirements that will govern where the data has to reside and how it can be 

interacted with we can manage sensitive patient data properly and at the same time improve 

patient outcomes at the health facilities. 

Distribution of Relative Rules 

Chapter 4 presented details on The Relative Agent which realigns the time of abstractions 

relative to a particular point in time that is of interest. Depending on the study taking place, the 

temporal abstractions may need to be realigned relative to a particular point in time if the 

behaviour of certain parameters in the time leading up to a diagnosis needs to be studied. The 

Relative Rule table, which specify a particular alignment of abstractions for a particular study, 
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holds the information about any relative rules that may need to be applied to the abstractions 

stored in the Temporal Abstraction table. 
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li'igm·e 6, 11 - :Distribution of Refative Rules 
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Figure 6.11 outlines the structure supporting the distribution of Relative Rules. As 

discussed earlier, the STDMno framework presents the notion of only one Relative Rule table 

which is not suited in multi-centered studies. The following three step approach is taken to 

enable the distribution of Relative Rules: 

1. Relative rules for each study are deployed from the central data store (at UOIT). A 

separate study table exists for each participating facility and is assigned a unique 

Study ID 

2. Once deployed, the Temporal Abstractions table created at each site is accessed 

locally in order to perform the Relative Alignments needed for the particular study 

3. The re-aligned Temporal Abstractions are then stored in the relative temporal data 

tables specific to the study and the site. Each site is identified by a unique StudyID 

and SITE_ID (Table 6.4). 

4. Where available, these results will also be populated back at the central UOIT store 

under the DM ARTEMIS RA data table. - -

Table 6.4 shows an example of the distributed Relative Temporal Abstraction table. The 

data shown contains a SITE_ID tag of WI indicating the data belongs to The Women's and 

Infants Hospital. The corresponding TARuleID and unique STUDY _ID attributes are also 

contained in this table. A similar structure is adopted for each distributed site which is identified 

by their unique SITE_ID i.e. SickKids being identified as SK and the SickKids Retrospective 

data being identified as SK30. 
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SJTE_ID TARulelO STUDY_[) PATIEllT_ID PHYS_ID 

WI Wll W14 A12345 HR 

Vil Wll Wl4 A12345 HR 

ABSTRA::.:::~::~"" ""= RElATIVESTARTTTME ~:;; :=~~~~~~IM~-,-.. m1~B~:-: VAL~ 
Hourly HR< 100 Oct-04 20095 OO:DOAMOOO -04 20095:59:59AM99.9ll00 l SS

3 
Hourly HR< 100 Oct-04 2009 6.00:!JOAM•OOO{)JQ Oct-04 2009 6 5959AM99.90-)() -~ 

I WI Wll \'114 A12345 HR Hourly HR< mo. O<t-04 2009 7:0-0:00.:,MOOOOOO Oct-04 2009 7:S9:59AM999000 
---r--~-t--~--jr-~~-t~~-~~~~~~-t-~~{-~~~~~-·~-+--~-+-~~~-~~-+--~~~ 

1- WI Wll \'114 A12345 HR Hourly HR< 100 Oct--04 2009 B:OO:DOAMOOOOOO Oc.t--04 2009 S:59:59AM999000 
0.017 

~ WI Wll Wl4 A12345 HR Hourly HR< 100-"clot-04 2009 9:0{);00AM000000 i Oct--04 2009 9:59:59AM999000 

1---;;.;;i--~- Wl1 W14 Al2345 HR Hourly HR< 100 . -Oct--04 -200910:00:00 .~Mo&.'XiOOl Oct--04 200910:59:59-Ali9-99'J:Xl ----;=~~ 
I~ Wll Wl4 Al2345 .. HR ~JYHR < 100 oct-04 ·-200912:00.00 PIAOOroxJ1- Oct-04 -2-00912:59:59 PM<i39DOO ___ ,,_. -

t= \~1:==-==~~:-= _---1'114 == ==~~~~=- ----~~--- ~''.~~~ < 10~_-: --~~~ =2.~~9:~~~~,~~~~~~~j_~;;-04 ~o92:s~~~?'.X99~~~= =:=-=~~-":: · 
1

1__w1 >--_::'.~1_ ___ Wl4 _L~~~~- -~-R-···-·Hou~~-~1:__<_!_~-~~ _:_0093:~~-~~~~~-~~--L~~~ __:009-~=~9p~99900_'.l_ ____ (J.;S 
WI Wll Wl4 A1234S HR Hourly HR< 100 O<t-04 2009 4:00:00 PMOOOOOO j Oct-04 2009 4:59:59 PM999000 

0
_
433 

,---::;;;n-~--- -\~- -;.,12345- _HR ___ HQ;;riy-HR-<i:Oo -Oct-04 Z0095:00:DOPMOOOOOO-To~l:04 Z009-s:S959P'M999000- ---------
! . ! . 0.267 

[
WI -~-~ -~ -i\123.i"s -HR- H~-;;;:ly HR< 100 Oct--04 2009 G:OO:ilO p~,1000000" oci..04 -2009 6:59:59 PM9990-JOc-------

O.lS 

l WI Wll Wl4 A12345 HR Hourly HR< 10Q Oot-04 2009_ 7:_00:-00PMOOOOOO Oct-04 2009·7:59:59PM999000 .. - 0.383 

I WI 

WI 

V/I 

WI 
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Wll 

Wll 

\Nii 

Wf4 A12345 

\Vl4 A1234S 

\Vl4 A12345 

Wl4 A12345 

Wl4 A1234S 

HR 

HR 

HR 

HR 

HR 

Hourl•1 HR < 100 Oct-04 2009 B:OO:DOPM0-00000 Oct-04 2009 8:5959PM999000 

- Hourly HR< 100 Oct-04 2.009 9:QO:DOPMOOOOOO Oct-04 2009 9:59:59PM999000 -

Hourly HR< 100 Oct-04 200910:00:00 PMOOOOOO Ckt-04 200910:59:59 PM993'.'lQO 

Hourly HR< 100 Oct-041 200911:00:00 PMOOOOOO i O<t--04 200911:59:59 PM999000 
! 

Hotlrly HR< 100 Oct--05 200912:00:00 AMOOOO..'Xl I Oct-OS 2009 12:59:59 AM999000 
I 

Table 6.4 ~Structure of the Disfril.:mted DM ART.'EMIS RA Tables - -

6.5 Distribution of Rule Base Data 

0.367 

O.OB 

0.117 

0,017 

0.067 

The realigned temporal abstractions created by the Relative Agent are further processed 

by the Functional Agent. In the STDMno framework the Functional Agent is responsible for data 

mining tasks used to enable detection of interesting trends and patterns for a particular study. If 

the particular study is exploring the possibility of communal patterns or trends being exhibited in 

the physiological data of neonates in the time period leading up to diagnosis of a particular 

condition, then the Temporal Abstractions created for each patient that is part of the study must 

be realigned based on the time of diagnosis. This enables the comparison of all the abstractions 

for all the patients regardless of the actual time of the abstractions and diagnosis. 
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The Functional Agent utilizes exploratory data mining to detect new trends and patterns 

in multiple parameters. These trends and patterns are then evaluated by the clinician or 

researcher to create a hypothesis. Once the hypothesis is created from the result of the 

exploratory data mining, a null hypothesis can be established and tested with confirmatory data 

mining techniques. 

The Rules Generating Agent processes the hypotheses created by the functional agent 

into appropriate rules that can be stored in the Rule Base. These rules can further be used in a 

real-time monitoring system aiding clinicians in the early detection of events of interest for better 

diagnosis and treatment (as seen in Figure 6.12). The rules coming back in the multicentre 

studies are used in an iterative way to derive one rule that is applicable across all studies. This is 

done using null hypothesis testing which allows us to refine the Temporal Abstractions of 

importance and derive globally applicable rules. 
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This chapter presented the application of the SDTDMno framework within the NICU 

context. The multidimensional distributed environment is presented and the technical challenges 

associated with the distribution of the data have also been discussed. The data structure at each 

of the distributed sites has also been presented in this chapter along with a presentation of how 

the data changes as it processed by the Agents in the STDMno framework. The distribution of 

Temporal Rules, Relative Rules and Rule Base data are presented as they would appear in a 

multidimensional distributed environment along with a description of which components are 

located centrally and which exist locally. 
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7. Chapter 7 - Condusion 

7,1 

This thesis presented a service based multidimensional distributed temporal data mining 

framework which extended the functionality of the existing non-distributed framework. The 

research is demonstrated through a case study utilising NICU patient physiological time series 

data streams from three distributed sites. 

To highlight the demand for a framework which can support a multidimensional 

distributed environment, current literature in the area of Distributed Data Mining, Distributed 

Data Mining of Time Series Data, Temporal Abstraction and Distributed Temporal Abstraction 

was reviewed in chapter 2. During the literature review no direct reference to the utilization of 

distributed data mining of multiple and multi-frequency data streams was found; this is a 

significant limitation because the inherently distributed nature of health care could benefit 

immensely from distributed data mining applications. The review also revealed several shortfalls 

in existing systems: a focus on single site rather than several distributed sites; lack of discussion 

on managing data privacy and confidentiality; a lack of interaction with real time data streams in 

a distributed environment; and a lack of the concept of synchronous deployment of temporal 

abstractions. 

Resulting from the review, the research hypotheses of this thesis were that: 

1. A multidimensional distributed data mining framework can be defined for time series 

data research for the discovery of trends and patterns prior to a given clinical event. 
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2. The framework will utilize elements of data fusion and agent-based analysis so that it 

will work with relational databases and large scale data mining applications. 

3. A set of data mining tools can be applied for temporal abstraction, relative alignment 

and cluster analysis in a distributed manner to support multiple research studies. 

4. The framework can be applied in a broad neonatal context addressing issues of data 

privacy and confidentiality and being deployable as part of multicenter studies while 

maintaining data integrity at each participating site. 

Chapter 3 introduced the Neonatal Intensive Care Unit (NICU) which is the application 

domain for this research and extended the understanding on the data rich environment of the 

NICU. This chapter also introduced the clinical distributed problem as well as the implications 

for this research. As this research extends previous research, chapter 4 introduced the context for 

this extension by describing the existing architecture of the Service Based Multidimensional 

Temporal Data Mining (STDMno) framework. The chapter highlighted the need for its operation 

in a distributed setting and discussed current limitations that make distributed deployment 

impossible. Chapter 5 addresses the highlighted limitations by introducing the Service Based 

Multidimensional Distributed Temporal Data Mining (SDTDMno) framework. The framework 

provides a structure to support multicenter studies and allows for the management of the 

Temporal and Relative Rule tables in a distributed environment, while keeping them consistent 

across the distributed sites. In chapter 6 the functions of the SDTDMno framework were 

demonstrated and explained within the context of the NICU. 
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The research hypotheses have been addressed by this thesis and this is summarised below: 

1. A multidimensional distributed data mining framework can be defined for time series 

data research for the discovery of trends and patterns prior to a given clinical event. 

Chapters 5 and 6 discuss the design and application of the framework in a 

multidimensional distributed setting. 

2. The framework will utilize elements of data fusion and agent-based analysis so that it will 

work with relational databases and large scale data mining applications. This is 

demonstrated in chapter 6 where a detailed account of the agent based analysis is 

highlighted. 

3. A set of data mining tools can be applied for temporal abstraction, relative alignment 

and cluster analysis in a distributed manner to support multiple research studies. Chapter 

5 provides a framework that can support multiple research studies and this is 

demonstrated further in chapter 6. 

4. The framework can be applied in a broad neonatal context addressing issues of data 

privacy and confidentiality and being deployable as part of multicenter studies while 

maintaining data integrity at each participating site. Chapter 3 provides background into 

the neonatal context and provides the understanding on the data rich environment of the 

NICU. Chapter 6 discusses the use of the SDTDMno framework in a neonatal context, by 

illustrating the framework's use with real life neonatal monitoring data. 
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The areas of research contribution to knowledge resulting from this thesis are: 

• Extensions to the STDMno framework to allow for the application of the framework in a 

multidimensional distributed setting. 

• Enable the deployment of Temporal and Relative Rules from a distributed setting. 

• Enable the synchronization of Temporal and Relative Temporal Data at each of the 

multidimensional distributed sites. 

• Ability to support multiple research studies and a structure allowing for the comparison 

of results from each study. 

• Enabling the distribution of Rule Base Data allowing for the synchronous deployment of 

Real-Time Rules at each participating site. 

7.3 Future Research 

Currently, the SDTDMno framework is designed to distribute the Temporal Rules, 

Relative Rules and Rule Base Data but the storage of the Temporal Abstractions and Relative 

Temporal Abstractions are still local to each site. The SDTDMno framework hints towards the 

possibility to store this data in a cloud environment (Figure 7 .1 ). 
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Figure 7. - Potential Cloud Storage of Refative Temponil Abstraction Data 

Storage of Temporal Abstractions and Relative Temporal Abstractions has been kept 

local to each site due to current health care policies and improved patient privacy concerns. 

However, the creation of regionalized cloud environments can be a potential solution to 

distribute the Temporal and Relative Temporal Abstractions. For example, each region, 

province, state or country can have one dedicated cloud environment which can store these 

abstractions in accordance to the privacy policies governing the particular area. This may also 

allow for cross site comparison of results in multicenter studies in order to identify trends that 

may occur globally or only at certain facilities. 
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Apart from the potential regionalized cloud storage environment of the SDTDMn 0 

framework, there are several other opportunities to explore in future work. Firstly, there is an 

opportunity to test this approach further through clinical research into late onset neonatal sepsis. 

As mentioned earlier, neonatal sepsis is a common nosocomial infection that affects neonates 

and has been shown to exhibit changes in physiological data before the condition can be 

diagnosed through blood cultures. There also lies an opportunity for the testing of the distributed 

multidimensional data mining technique with other conditions such as Apnoea and 

lntraventricular Haemorrhage which were highlighted in chapter 3 to be conditions that may 

greatly benefit from the discoveries made by a distributed data mining framework. These would 

also include testing for sensitivity and specificity of what is researched in order to confirm the 

findings and highlight the rules of significance. 

Future work will also include further details of the web services for the communications 

between the distributed sites as well as the implementation of a backup mechanism for the 

deployment of Temporal and Relative Rules in case the communication link to the cloud is 

interrupted. This is an important consideration as the connection between a cloud environment 

and a distributed site is easily influenced by external elements governing each location. Having a 

strong backend design will ensure synchronous deployment of rules across each site; thus 

maintaining data consistency. Finally, there is also potential in the application and extension of 

this work outside the medical domain in areas such as peer-to-peer networking, distributed data 

mining in mobile environments, stock prediction, fraud prevention and intelligent user interfaces. 
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This thesis has presented a framework for clinical research in neonatal intensive care 

physiological monitoring data by the design of the SDTDMno framework, a multidimensional 

distributed data mining framework supporting time series data analysis. A demonstration of the 

distribution of Temporal and Relative Rules in a multidimensional environment is provided in 

order to support multicenter studies. A potential area of future work has been discussed to further 

extend this framework which will allow for greater insights into the abstractions and allow for 

the comparison of results on a global scale in tum improving the discovery of new knowledge. 

As the rate of preterm birth and mortality around the world increases, so does the demand for 

faster diagnosis and quicker treatment of patients. Collaboration between leading health facilities 

around the world can prove to be a key factor in discovering novel trends and patterns from 

patient data and consequently improve patient care with faster and more accurate patient 

diagnosis. The SDTDMno framework provides a multidimensional distributed data mining 

structure to collaborating facilities while maintaining consistency of data across the distributed 

sites and supporting multicenter studies to achieve new strides towards better patient care. 
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