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Abstract

Premature birth is one of the major perinatal health issues across the world. In 2007, the
estimated Canadian preterm birth rate was 8.1% (CIHI, 2009). Recent research has shown that
conditions, such as nosocomial infections or apnoeas, exhibit certain variations in the baby’s
physiological parameters which can indicate the onset of the event before it can be detected by
physicians and nurses. Neonatal Intensive Care Units are some of the highest information
producing areas in hospitals. The multidimensional and distributed nature of the data further adds
another layer of complexity as physiological changes can occur in one data stream or can be
cross-correlated between several streams. With the collection and storage of electronic data
becoming a global trend, there is an opportunity to analyse the collected data in order to extract
meaningful information and improve healthcare. The aforementioned properties of the data
motivate the need for a framework that supports analysis and trend detection in a

multidimensional and distributed environment,

Keywords: Distributed Data Mining, Temporal Abstraction, Relative Alignment, Time Series
Data Analysis, NICU, Critical Care, Clinical Decision Support, Multidimensional Distributed

Framework.
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1. Chapter 1 - Introduction

Preterm birth, which occurs in 11 percent of all pregnancies in North America, is
responsible for the majority of neonatal deaths (Khashan et al. 2008). The rate of premature birth
has increased by 36 percent since the early 1980s (Martin et. al. 2008). Globally, premature birth
and its associated complications are responsible for the mortality of one million premature babies
every year (Beck et. al. 2009). In Canada, in the year 2007, the estimated Canadian preterm birth
rate was 8.1% (CIHI, 2009). It is not uncommon for premature babies to spend three to four
months in the Neonatal Intensive Care Unit (NICU) and suffer from a number of different
conditions during their stay. Recent research is showing that these conditions, such as
nosocomial infections (hospital-acquired infections), seizures and apnoeas, appear to exhibit
certain early variations in the baby’s physiological parameters which have the potential to be
new pathophysiological markers for condition onset. Sepsis is a common nosocomial infection
that affects these babies and it has been shown to exhibit changes in physiological data before the
condition can be diagnosed through blood cultures (Griffin, Lake 2007). These changes require
high frequency analysis of the physiological stream and are frequently not detected by physicians
and nurses. Since indicative readings are mostly recorded on paper every 30 or 60 minutes by

nurses, the physiological changes can often go unnoticed until the illness manifests itself fully.

Intensive Care Units (ICUs), specifically NICUs, are some of the highest information
producing areas in hospitals because of the highly advanced patient monitoring equipment
present in these facilities, which often output 1024 readings of waveform data every second
(Stacey, 2007). The current problem is not a lack of data, but an inability to use this data for

early detection of problems and intelligent decision making. There is a need for systems aimed at
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clinical management to help analyze complex multidimensional data produced by the monitoring
devices connected to the babies. We also need clinical research systems and ﬁame;zvorks to
facilitate retrospective analysis on stored historical physiological patient data to enable the
discovery of previously unknown trends and patterns that may indicate the onset of some
condition. This knowledge can then be applied to new patient cases. As mentioned, medical
monitoring equipment produces large amounts of data, which makes analyzing this data
manually impossible. Another level of complexity is introduced by the multidimensional nature
of the data which means that there are now multiple streams of information that are interlinked
and can change simultaneously, further complicating the analysis. The data is considered
distributed because every NICU has its own method of data collection which can vary from one
site to another due to differences in equipment and data output. In addition, these patients can be
part of multicentre studies which are controlled studies executed by several cooperating
institutions; leading to the possibility of a highly distributed data set.

Faced with an exponential amount of data, many organizations are turning to data mining
to translate data to information and subsequent knowledge. Distributed data mining (DDM)
refers to the mining of distributed data sets which are often stored in local databases and hosted
by local computers connected through a network (Yongjian, 2001). Due to the advances made in
computing and communication over wired and wireless networks, we can now find many
distributed computing environments like the internet, intranets and local area networks. It is also
important to note that many of these environments have different distributed sources of
capacious data, the analysis of which requires data mining technology specific to distributed
applications. Medical data is often distributed due to concerns of security, privacy and

confidentiality of patient information; this is why it is likely to maintain its distributed nature in
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the future. The Canada Health Infoway (CHI) is an independent not-for-profit corporation
created by Canada’s First Ministers to foster and accelerate the development and adoption of
electronic health record (EHR) systems with compatible standards and communications
technologies. CHI’s model currently does not provide a central solution to locate the
physiological streams. In distributed data mining, the data mining occurs both at a local level and
a central level. At the global level, local data mining results are combined to discover global

patterns or themes present in the data.

Through the literature, DDM is also often referenced with parallel data mining which is
when data mining tools are implemented on high-performance parallel computers. Both
techniques aim towards improving the performance of traditional data mining systems but what
sets them apart is their system architectures. DDM's main objective is to execute data mining
operations based on the type and availability of the distributed resources (Park, & Kargupta,
2001). DDM techniques can be used to perform clinical research using physiological data
streams in order to evaluate whether a condition onset prediction is apparent from the
physiological stream behaviours prior to traditional clinical diagnosis. What distinguishes DDM
from Centralized Data Mining (CDM) is the fact that a DDM system can choose how to manage
and analyze data, based on the properties of computing, storage and communication capabilities,
either centrally or locally in the distributed locations. In contrast, the CDM system always relies
on the collection of data in a single central location before any analysis can be performed, which
is not practical when data is being streamed and is arriving at a very high rate. The reason this is
not practical is because the collection and storage of information centrally takes away from the
opportunity to analyse streaming data as it is produced. It is also important to note that DDM

systems can learn and derive models based on distributed data which means that the privacy of
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raw patient information is maintained because patient data does not have to leave the hospital
setting/distributed location. This can prove to be very beneficial in cross-country or cross
continental studies as it allows for the sharing of clinical applications without violating hospital
ethics or the requirements for patient data, security and privacy. Thus, a distributed approach to
analyze data is more scalable and practical especially when it is applied to data coming from a
number of distinct data sites. Chapter 2 reviews major DDM algorithms and systems found in the

literature.

1.1 Besearch Motivation

As demonstrated in chapter 2, there is an absence of flexible and distributed
multidimensional approaches to data mining of time series data. Monitoring systems currently
used in the NICUs are not capable of monitoring cross correlated data streams but the possibility
of such a system is discussed by McGregor and Stacey (2007). These monitoring systems often
have very limited on-board memory, mostly in the form of rolling memory which persists
anywhere between 24 to 72 hours. The data being output from them has the potential to be
streamed and stored beyond the NICU environment for higher levels of analysis (Foster and
McGregor, 2006). The cost of electronic storage is decreasing rapidly and the ability to collect
and store temporal data through real-time clinical monitoring has emerged as an open research

arca.

With the collection and storage of electronic data becoming a global trend, there is an
opportunity to analyse the collected data in order to extract meaningful information and improve
healthcare (Moskovitch et. al. 2007). There is mounting evidence that is being uncovered by

clinical research suggesting changes in physiological stream behaviours prior to the diagnosis of
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certain conditions such as neonatal sepsis and apnoea (Stacey et. al. 2007) (Catley et. al. 2010).
The recent momentum in such research has prompted hospitals across the globe to partake in
multicenter studies which can allow for the cross site analysis of the same physiological data
streams to see if they would be indicative of the same events at different hospitals. This brings
the element of data distribution into context as physiological data being collected from
monitoring devices may differ in format and frequency for each facility. The differences may
also occur due to the physiological monitoring devices being different at each facility. As will be
seen in chapter 2, the lack of a multidimensional distributed temporal data mining framework

drives the motivation behind this research.

1.2 Research Aims and Objectives

The lack of a multidimensional distributed temporal data mining framework which can
support multicenter studies formed the research motivation for the first, second and fourth
hypothesis. The need for a structure to run the temporal abstractions and relative alignments

motivated the third hypothesis. Therefore the primary hypotheses for this research are:

1. A multidimensional distributed data mining framework can be defined for time series

data research for the discovery of trends and patterns prior to a given clinical event.

2. The framework will utilize elements of data fusion and agent-based analysis so that it will

work with relational databases and large scale data mining applications.

3. A set of data mining tools can be applied for temporal abstraction, relative alignment and

cluster analysis in a distributed manner to support multiple research studies.
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4. The framework can be applied in a broad neonatal context addressing issues of data
privacy and confidentiality and being deployable as part of multicenter studies while

maintaining data integrity at each participating site.

1.3 Research Method

This research follows a constructive methodology which is a commonly used computer
science research method but has also been utilized in information systems and medical domains
(Martin & Maojo, 2002). The construct can be a new theory, algorithm, model, software, or a
framework which can allow us to draw theoretical conclusions. Constructive research will allow
us to develop a distributed data mining framework which can contribute to the discovery of
trends and patterns from medical stream data. The term construct is used in this context to refer
to the new contribution being developed. Figure 2 (below) outlines the common elements found

in constructive research.

Practical utility (a)
Relevant SOLUTION .| Practivalrelevance
problem Pl - weak market tealing
- Theorgtical - strong market testing
framework
Theorstical - Problam solution
body of Theoretical
knowledge o
relevanca
& A
Fuzzy info
from many
Sourses Epistemic utility (b)

Figure .0 - Outline for Constructive Research (Constantinesew, 2005)
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In this research, the problem that will be addressed is the need to use distributed
multidimensional data to perform temporal abstractions and relative alignments which can help
identify trends and patterns being exhibited in data coming from multiple sources. This can aid in

the early detection of the onset of patients of interest for specific conditions in the NICU.

In order to fully understand the topic and problem at hand, a thorough review of the
literature was completed in the areas of distributed data mining, temporal abstraction and
knowledge discovery in databases (KDD). This helped in designing a framework that can handle
multidimensional data coming from distributed sources allowing data mining for relevant

information and providing the necessary alerts when required.

1.4 Contribution to Knowledge

There are several unique challenges to support clinical research for critical care health
informatics in a distributed setting. By investigating the scholarly knowledge domain, we can
obtain an understanding of the issues and gain insight into the specifics of knowledge discovery
and data mining in the medical space. By applying this research within the context of neonatal
care we can demonstrate a real world solution that can be applied in the NICU setting as well as
evaluate its applicability in other areas. The areas of research contribution to knowledge resulting

from this thesis are:

e Extensions to the existing Service based Multi-Dimensional Temporal Data Mining
(STDM") framework to support a distributed multidimensional environment.
e Design of a framework to:
o Enable the distribution of Temporal Rules in a multi-dimensional environment

o Support the multi-dimensional distribution of Relative Rules

16




o Support distribution of Rule Base data which can be deployed for real time

analysis

1.5 Thesis Overview

Chapter 2 presents a literature review of the areas of influence for this thesis, mainly
DDM, Distributed Data Mining of Time Series Data, Temporal Abstraction and Distributed
Temporal Abstraction. The chapter explores these areas in their application to medical systems in
order to highlight the open health informatics research areas leading to the development of the
research hypotheses addressed by the techniques proposed in this research. Chapter 3 discusses
the physical context by describing the NICU environment which provides the setting for the
Service Based Multi-Dimensional Distributed Temporal Data Mining (SDTDM")) framework
designed and presented in this thesis. Chapter 4 begins by presenting the existing STDM",
architecture, presenting how both static and streaming data, as well as temporal and relative
temporal data are used and integrated in the STDM", framework. Chapter 5 presents the revised
SDTDM" framework and highlights areas of distribution. Chapter 6 demonstrates how the
SDTDM", framework can be used for conducting clinical research within a distributed NICU
context. Chapter 7 concludes the thesis, summarising the research contributions and providing

directions for future research.
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2. Chapter 2 ~ Literature Review

2.4 Imroduction

The main motivation for this research is the lack of distributed multidimensional
approaches to data mining of time series data. The intensive care environment, where
observations of the patient’s condition is supported through the provision of several
physiological time series data streams via medical monitors, presents an opportunity for
discovering new knowledge that may exist in patient data indicative of the onset of specific
conditions. A distributed multi-dimensional framework can allow for the possibility of running
abstractions across multiple locations simultaneously while keeping data consistent across sites.
In this chapter, the area of DDM is introduced followed by a review of DDM in relation to time
series data. Next the area of temporal abstraction is reviewed followed by a detailed look into

literature relating to distributed temporal abstractions.

2.2 Distributed Data Mining (DDM)

Distributed Data Mining (DDM) involves the use of distributed data analysis algorithms
as well as distributed systems. Throughout the literature, the use of the Multi-Agent System
(MAS) has been a common theme for many DDM systems (Ferber, 1999). The MAS has been
developed from the Distributed Artificial Intelligence (DAI) which focuses on artificial
intelligence based search, learning, planning and problem solving techniques for distributed
environments (Ferber, 1999). Existing literature on multi-agent systems and learning do not
address the issues of large scale distributed data analysis. The MAS focuses on learning control

knowledge and adaptive behaviour (Byme & Edwards, 1995).
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The concept of data fusion is also an important finding in the literature and refers to the
seamless integration of data from disparate sources (Park, & Kargupta, 2001). Within the context
of data fusion, the distributed approach of multi sensor data fusion is closely linked to our
scenario. This approach discusses sensors that make a local decision based on the raw data and
then combine all of the individual local decisions at a fusion center in order to produce a global
decision. This not only maintains the privacy of the raw data, but also helps maximize the
probability of determining the optimum local and global decision rules which in turn help make
signal detection much more accurate, Making these decisions also relies on hypothesis testing
techniques which are often done using the the Bayesian criteria (Hoballah & Varshney, 1989) or

the Neyman-Pearson criteria (Vishvanathan & Varshney, 1997).

Determining how the data is distributed is the starting point in developing a distributed
data mining solution (Park, & Kargupta, 2001). Throughout the literature on DDM, two
assumptions are commonly made when it comes to the concept of how data is distributed across
multiple sites: 1) either the data is distributed homogeneously, that is partitioned horizontally or
2) the data is distributed heterogeneously, that is partitioned vertically. This relates back to the
relational database in which the database schema provides the information on the relations it
stores. By identifying the different schema from different tables, we are able to identify their
shared dependencies which in turn help determine the type of data mining algorithm best suited
for it. The majority of existing DDM algorithms assume that the data is distributed
homogeneously across different sites meaning that each distributed site contains the same set of
attributes. The heterogeneous scenario assumes that each site contains a collection of columns
and do not have the same set of attributes and each tuple is assumed to contain a unique key

column that links corresponding rows across the tables.
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As discussed, a distributed approach to data analysis is more scalable. Agent based data
mining is one way to perform scalable mining on large data sets that contain distributed data.
The agent based DDM systems use one or multiple agents on each data site. These agents are
responsible for the analysis of local data and for communicating with other agents during the
mining phase. Once the local data has been mined for knowledge or patterns, it is pooled
together in a global cloud of synthesized knowledge. In order to keep the local agents at optimal
mining performance and keep control over the resources, agent based systems require a
“supervisor agent” often called a facilitator that controls the behaviour of each local agent.
BODHI and JAM (Java Agents for Meta-learning) are two DDM architectures that follow the
supervisor agent concept, are able to work with relational databases, support large scale data
mining applications, and can be implemented using Java which also makes them platform
independent; all of which make them well suited for our environment. The JAM system not only
provides distributed data mining capabilities, it also allows a user to monitor and visualize the

various learning agents and derives models in real time (Stolfo et al. 1997).

2.3 Distributed Data Mining of Time Series Data

Abe & Yamaguchi discuss an integrated time series data mining environment (Abe &
Yamaguchi 2005). The design integrates time series pattern extraction methods, rule induction
methods and rule evaluation methods with active human interaction. The authors suggest that
time series rules can prove to be an important form of medical evidence but it is often difficult to
find such evidence systematically. This limitation motivated their development of a time series
data mining environment which applies data mining techniques to systematically discover
medical evidence. The cooperation of data miners, system developers and domain experts are

also key factors in the success of such an environment. The authors present a hepatitis related
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case study to help identify procedures needed to execute time series data mining cooperatively
with active human system interaction. In the study, interferon (IFN) treatment results data are
taken as the target for the representation. as if-then classification rules. Two key phases are
identified: firstly, rousing a new hypothesis in the expert is said to be key in gathering interest
from the domain experts as this adds in a level of involvement for the expert. In this first phase,
patterns extracted from historic data are presented to the physician to help identify the
distinguishing patterns from their perspective. The next step involves the validation of identified
patterns with each patient sequence to determine pattern 0: the typical course; pattern 1: the least
reaction; and pattern 2: the adverse reaction to IFN treatment. The second phase involves
ensuring the expert’s hypothesis which involves the extraction of patterns for 40 weeks as the
observation period. Next, patterns are joined as attributes of data sets from which if-then rules
are induced within the data set. Then, patterns and rules are presented to the physician for
evaluation using a Graphical User Interface (GUI). The authors make an important point about
present time series data analysis techniques which is that they mainly utilize statistical methods
like the Autoregressive Integrated Moving Average (ARIMA) which are suited for well-formed
data. It is also noted that present signal processing methods like Fourier transform, wavelet and
fractal analysis are used to analyze well-formed time series data but the problem that exists for
medical data is that it is mostly ill-formed, meaning that they can include data such as clinical
test data, purchase and financial data. To combat this issue, the authors suggest the use of
Dynamic Time Warping (DTW) which utilizes time series clustering with multi-scale matching
of data. The authors conclude their work by identifying key procedures in time series data

mining frameworks, which include: procedures for pattern extraction i.e. data pre-processing,
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rule induction i.e. mining and the evaluation of rules with a visualized rule i.e. post-processing of

mined results.

2.4 Temporal Abstraction

Clinical time series data is often collected in large volumes but very little is done to
analyze, interpret and extract from these data sets. Temporal Abstraction (TA) is an important
piece in the development of clinically relevant evidence based support systems. TA adds
qualitative information to generally quantitative data which allows us to identify the patterns or
trends present in the data set. This is important because almost all clinical data has an associated
temporal dimension (Dolin, 1995); for example, most diseases have an onset or a set duration,
studying which can help in early detection of their onset or progression. Thus, automated
systems that work with clinical data must be able to reason and cope with this type of input

which is often called temporal reasoning (O’ Connor et. al. 2002).

One of the core steps in forming temporal reasoning is the creation of high level
temporally extended concepts from raw time-stamped data which is often referred to as temporal
abstraction (Shahar, 1997). To further add to the complexity, clinical data can often be multi-
dimensional and distributed across multiple sites. It is often seen that an increase in data
frequency, distribution and dimensionality is directly proportional to the complexity of the
potential trends and patterns that can be observed in clinical data (Catley et. al. 2010). Temporal
Data Mining (TDM) is an emerging area of research that helps with this problem as it integrates
the TA processes involved in trend and pattern detection with new knowledge gained from data

mining,.
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Intensive Care Units (ICUs) are some of the highest information producing areas in
hospitals because of the highly advanced patient monitoring equipment present in these facilities
which often output 1024 readings every millisecond (McGregor and Stacey, 2007). There is a
need for TA and TDM systems aimed at clinical management to help analyze complex
multidimensional data produced by the monitoring devices connected to the patients and derive

relationships from that data which can help in earlier diagnosis and treatment of conditions.

2.5 Distributed Temporal Abstraction

This section presents a review of the Distributed Temporal Abstraction Systems that have
been developed to date. The aim was to determine how existing distributed systems are designed
and to review the degree to which security, privacy and confidentiality are considered in the
design of current distributed temporal abstraction systems. In addition we sought further review

of the function of TA in a distributed setting.

Medical data is often distributed and stored locally with each healthcare provider due to
concerns of security, privacy and confidentiality of patient information. This is why it is likely to
maintain its distributed nature in the future as policies encompassing patient privacy improve.
Most of the systems that were reviewed however, do not discuss much with respect to data
privacy and security. The systems that have been reviewed do not discuss the possibility of a
distributed storage of TA but rather assume a local data storage model with a very minimal
amount of distribution i.e. mainly the distribution of the TA queries only or a distributed data

collection method.

Shahar et al. (1998) present the Asgaard framework used to abstract raw monitoring data

collected by NICU monitoring devices to the abstract concepts that are used in therapeutic
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plans. The authors explain the nature of the data that is being output from the NICU as a
stream of high frequency raw information. The framework involves the high-level abstraction
derived from the raw data which is then compared to predefined conditions described in the
therapeutic plans. The authors also discuss the systems and languages that are currently used to
abstract and store data at present. They mainly focus on the system named RESUME which is
traditionally used on low frequency data. This poses a problem because the data stream output
from the NICUs monitoring devices is at a high frequency rate and may cause the RESUME

system to overlook some of the underlying patterns in the output data.

O’Connor et. al. (2002) present a Distributed Temporal Abstraction System which allows
for the facilitation of knowledge-driven monitoring of clinical databases. The system, named A
System for Temporal Abstraction (RASTA), is based on a component based architecture called
EON which was developed by the authors as a means for building automated clinical decision
support systems. The EON architecture made use of RESUME as the knowledge-based system
for performing temporal reasoning. The authors further discuss the problem with RESUME
which is the fact that it does not scale to the significantly higher data processing requirements
for working with large amounts of data. Another issue is that it is a stand-alone rule-based
system and does not offer real-time response rates for anything other than small single-patient
data sets. RESUME also does not allow the abstraction tasks to be distributed. Finally,
RESUME has an exponential relationship between the size of the data set it operates on and its

memory and CPU requirements.

In order to address the aforementioned issues the authors propose the use of the RASTA.
In many ways, RASTA is an extension to RESUME as it incorporates many of the ideas and

concepts used by the latter. The authors explain that RASTA uses a distributed algorithm that
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allows independent evaluation of each abstraction in an abstraction hierarchy which allows it
to use separate processes for each portion of an abstraction tree for each patient. Thus working
on very large data sets does not cause any problems in relation to memory or CPU
consumption making this system much more efficient. The authors also describe the
modularity of RASTA as it can be deployed as a single standalone process if enough resources

are available or it can be distributed across multiple processes on multiple machines.

The algorithm used by RASTA for temporal abstraction involves four main data sources:
(1) Domain knowledge base (2) Time stamped data (3) Contextual data and (4) Case
identifiers. RASTA also draws some subtasks in its temporal abstraction algorithm from
Shahar's knowledge-based temporal-abstraction problem-solving method (Shahar and Musen,
1993). These include (1) Context Restriction (2) Vertical Temporal Inference (3) Horizontal
Temporal Inference and (4) Temporal Interpolation. All of the aforementioned subtasks work
well for RESUME but are again not ideal for a distributed and high volume data set. The
authors further discuss how horizontal temporal inferences and temporal interpolations can be
very expensive computationally. An increase in raw time stamped data points means the
response time when performing TA will also increase significantly. The response time for
these abstractions can be acceptable for single patient data but when dealing with multi patient
data the response rate can become unacceptably long. The authors address this issue in
RASTA by building a TA algorithm that is parallelizable and distributable (O’ Connor et. al.

2002). Details on the algorithm can be found on Page 3 of the paper.

Finally, the implementation of RASTA has also been designed in a way that it stays
modular and extensible. RASTA is written in Java and uses CORBA (Vinoski, 2002) as its

inter-process communication mechanism. RASTA also uses the XML format for the data that
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is exchanged between processes. All knowledge bases used by RASTA are written using
Protégé-2000 (O Connor et. al. 2002) which is a knowledge base authoring environment with
the main benefit being that it provides automated assistance in the acquisition of abstraction
knowledge from domain experts (O Connor et. al. 2002). It is important to note though that

there is no standard way for knowledge collection that is discussed by the authors.

Boaz and Shahar, (2005) present a distributed temporal-abstraction mediator for medical
databases known as Idan. The authors claim the need for an integration of data and knowledge
in clinical practice. Most stored data include a time stamp in which the particular datum was
valid and the authors outline the need for a system that can automatically create abstractions of
time oriented clinical data and be able to answer queries about the abstractions (Boaz and
Shahar, 2005). The key to the success of such a system, according to Boaz and Shahar, is the
intelligent integration of knowledge sources, data sources and computational services. They
emphasize the fact that any distributed TA system must be modular and at the same time
support knowledge and data sharing. The authors also note that data, knowledge and
computational services might be integrated in multiple configurations which demand that the
TA architecture be distributed and possibly accessible via the Internet. Boaz and Shahar further
emphasize that the system should exploit domain specific knowledge and should be able to
support several modes of interaction by various applications that use its services (Boaz and

Shahar, 2005).

One of the main parts of the Idan architecture is the temporal abstraction mediation.
Temporal reasoning and temporal data maintenance i.e. storage, query and retrieval of time-
oriented data, must often be performed at the same time in order to support clinical needs

(Boaz and Shahar, 2005). A temporal database mediator “mediates” time oriented queries from
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decision support applications to patient databases. It acts as an intermediate layer of processing
between client applications and databases and is not reliant on a particular application or a
particular database. This type of temporal abstraction mediator has been discussed by Nguyen
et. al. in the Tzolkin system (Nguyen et. al., 1999). According to the authors, implementation
of a temporal abstraction mediator has many advantages as it can be task specific and domain
independent but it also must use standard controlled medical vocabularies to support sharing of

data and knowledge as much as possible.

Thus the Idan architecture, being a modular distributed TA mediator fully implements the
temporal-abstraction mediation approach discussed eatlier. The main integration points in Idan
are (1) time oriented data sources (2) domain specific knowledge sources (3) vocabulary
servers (4) a computational process specific to the task of abstraction of time oriented data
using domain specific knowledge and (5) a controller for the integration of all services. All of

these points have been shown diagrammatically by the authors in the figure below.
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Figure 2.2 - The Idan Architechiure, (Boaz and Shahar, 2005)

Idan is able to answer abstract, time-oriented queries by adequately handling the queries
to the various key modules in a distributed system (Boaz and Shahar, 2005). Where it differs
from RASTA is that it is capable of handling temporal constraints in a uniform way between

the system level and the interface level.

Stonebaker et. al. (1996) discusses an architecture for distributed data called Mariposa.
One of the main objectives of this architecture is to unify disparate approaches of distributed
database management systems (DBMS). Mariposa works by distributing data over a number of
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sites that can be connected via LAN or WAN. In addition to this, Mariposa requires each site
to have a storage device and in case multiple storage devices are connected, then Mariposa

considers them as a secondary site.

The authors describe the Mariposa database as one consisting of instances of objects in
named classes each of which contain a collection of attributes of the specific data types. The
Mariposa database uses a fragment storage system in which each class is divided into a
collection of fragments. The authors also state that these fragments can be shared across sites
as they do not have a specific home and can move freely within a network. The Mariposa
system also organizes these fragments based on usage i.e. if a fragment is being accessed

frequently, the system will allot that fragment more resources.

User control for the various sites in the Mariposa Architecture is also locally controlled
by a database administrator. Having such local control helps database administrators specify
local rules for that storage site. For example, if storage space at one site reaches maximum
capacity, then the system references the storage rule set by the administrator which can tell it

where to move a specific fragment of data or what to delete.

The authors also outline a rule processing subsystem that is part of the Mariposa
architecture. Every Mariposa site runs an instance of the rule processor which watches for
events of interest, the criteria or policies for which can be pre-determined and programmed
into the system. Conventional systems, according to the authors, make changing these
“policies” quite difficult as they are hard coded into the system. Mariposa, on the other hand,

allows these policies to be changed dynamically at any site across the network.
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Table 2.1 summarizes the findings detailed above and highlights areas that are largely

unaddressed in current studies.

Systems Environment Freq. Multiple Real-time? Privacy Dist. Abst. Locations TA
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Table 2, - A Summary of Existing Distributed Temporal Abstraction Systems and their
Shortialls

2.6 Conclusions and Implications of Research

There are several challenges in developing a distributed data mining framework able to
work in a multidimensional environment. Ability to handle varied data frequencies,
considerations on data privacy and the location of where patient data exists, ability to handle real

time stream data and the synchronous deployment of abstractions for data consistency are key
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considerations towards designing a functional framework. In order to enable the discovery of
new trends and patterns that may be indicative‘of the onset of a condition in patients, there is a

need for an integrated multidimensional distributed data mining framework.

As a result of the investigations from the literature the research hypotheses as presented in

chapter 1 were determined.
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3. Chapter 3 - The NICU Environment

This chapter presents an overview of the clinical environment which provides intensive
care for newborn babies, often referred to as neonates, during their first 28 days of life. Neonates
admitted to an intensive care unit may' be seriously ill full-term babies or babies born

prematurely.

The Neonatal Intensive Care Unit (NICU) is the unit of a hospital specializing in the care
of premature and critically ill newborn infants. NICUs were developed in the 1950s and 1960s
by paediatricians to provide better isolation from infection, better temperature support, and
greater access to specialized resources and equipment (Hilberman, 1975). NICUs often deal with
premature babies who require constant monitoring and care. These babies are also at a high risk
of developing multiple complications during their hospitalisation so it is crucial to keep track of

their condition at all times.

About 8% of babies born in Canada each year are born premature, and many of them
require extra support. Speaking globally, every year one million premature babies around the
world do not survive, according to the March of Dimes (Beck et. al. 2009). Graduates of the
NICU have higher rates of learning disabilities, respiratory illness and can have a highef

incidence of developmental and behavioural problems (Kramer et. al. 2002).

3.1 The Canadian Context

Canadian NICUs follow a highly regionalized system of neonatal care (CPS, 2006). The
concept of a regionalized system for hospitals that care for newborn infants according to the

level of complexity of care that is provided was first proposed in 1970 by the Canadian
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neonatologist Paul Swyer (CPS, 2006); this was later put into action in the year 1976 following a

March of Dimes report (Stark, 2004). There are three main levels of care (CPS, 2006):

1. Level one (normal newborn care)
2. Level two (high dependency care) and

3. Level three (intensive care)

Level one, two and three NICUs are strategically located within health regions: some
very small regions may not have a level three NICU, Patients in level 1 NICUs are considered to
be normal newborn infants aged 34 weeks gestation or higher (CPS, 2006). The units at this level
have to be equipped to evaluate healthy newborns and provide postnatal care, perform neonatal
resuscitation if needed and stabilize infants until they are transferred to an appropriate higher
level facility if needed. Level 2 NICUs provide care to moderately ill infants with problems that
are expected to resolve soon or who are recovering after intensive care treatment. Infants in level
2 NICUs are aged 32 weeks gestation or higher. Finally, level 3 NICUs support critically ill
newborn infants as well as infants that require surgical intervention. Infants assigned here
generally require an intricate level of care and typically have the longest length of stay from all

other levels.
3.2 The “Wired” Neonate

It is common for the neonates in the NICU to undergo numerous medical diagnoses,
procedures and other treatments. All of these require constant supervision by NICU clinicians
and the sophisticated equipment of the NICU comes to the clinician’s aid. At any given point, a
neonate may be connected to multiple devices performing both analytical and support tasks in

the NICU and generating a plethora of information. Figure 3.1 shows a typical NICU bed space
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and highlights the range of devices that a baby can be connected to during their stay. In The
Hospital for Sick Children, for example, the Phillips IntelliVue MP70 monitoring devices play
an important role in collecting and displaying data such as heart rate, transcutaneous oxygen

saturation (Sp0O,), electrocardiogram (ECG), blood pressure, and respiration rate.
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Figure 3. ~ A display of the typical NICU environment

3.2.1 Technology in the NiCU

The constant close supervision of NICU patients is assisted by the use of a wide variety

of medical devices, some of which include (Neonatology on the Web, 2002):

1. Incubators and/or radiant warmers
2. Physiologic or cardiorespiratory monitors
3. Transcutaneous oxygen saturation monitors for pulse oximetry

4, Intravenous infusion pumps
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5. Phototherapy lights

6. Mechanical ventilators

The graphic below shows a typical NICU physiological monitor which would be used by
physicians, nurses and respiratory therapists for monitoring heart rate and rhythm, breathing rate

and blood pressure.

Figure 3. - A typical NICU physiological monitor

These devices often have very limited on-board memory, mostly in the form of rolling

memory which lasts anywhere between 24 to 72 hours. Thus the data being output often needs to
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be streamed and stored beyond the NICU environment for higher levels of analysis (Foster and
McGregor, 2006). A higher level of analysis is needed because in the NICU, nurses often
perform routine checks on infants and record information on paper based or electronic data
sheets every 30 to 60 minutes. However, it is common for critically ill neonates to have a
significantly abnormal variation in the measured parameters every minute which can easily be

missed in the 30 or 60 minute readings captured by nurses (McGregor and Eklund 2008).

3.4 Understanding the data rich environment

The NICU environment can often prove to be data rich yet information poor. The data
intensive nature of this environment creates situations where physicians are faced with an
overwhelming number of variables when caring for an infant. Miller, (1956) claims that even
seasoned physicians are often unable to develop a systematic response to problems that involve
more than seven variables (Miller, 1956). Data collected from the aforementioned monitoring
systems can reach millions of entries in a database. Thus the data being collected provides no
usable information due to the sheer volume of stored information. Data needs to be extracted and
organized to become information, and a domain expert must then interpret this information

before it becomes knowledge.

There are two forms of data that can be defined in the NICU environment. First, the
physiological data which is collected from sensory and monitoring devices like the ones
discussed in Section 3.2.1. Secondly, the clinical data which may include information on patient
age, weight, paper notes or periodic readings taken by nurses. The physiological data is
comprised of data streams, often acquired at varying frequencies. For example, the Phillips

Component Management System (CMS) outputs the following types of data streams:
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1. Numeric - a reading generated every 1024 milliseconds
2. Wave - every 32 milliseconds four data values arrive via the wave data stream (128
values every 1024 milliseconds)

3. Fast Wave - 16 values arrive every 32 milliseconds (512 values every 1024 milliseconds).

Similarly, the Phillips IntelliVue series of patient monitors can stream fast wave data
values of one every 1024 milliseconds. The frequency at which data is generated may vary

between different devices and manufacturets.

3.5 Existing Physiological Onset Predictors

There is mounting clinical evidence suggesting changes in physiological stream
behaviours prior to the diagnosis of certain conditions. Stacey et. al. (2007) state that enabling
TA to be applied across multiple patients within the NICU offers the potential of early detection
of conditions such as sepsis which may exhibit early warning characteristics before being

diagnosed through traditional means.

There are several conditions of interest affecting patients in the NICU. Infection is a very
common cause of morbidity and an important cause of mortality for the newborn infant.
Although many infants acquire their infection around the time of delivery, others acquire an
infection while receiving intensive care in the NICU. These are referred to as hospital-acquired
or nosocomial infections. The early diagnosis of a nosocomial infection is difficult, because the
clinical signs of infection are usually subtle and nonspecific until the infection is well established
(Blount et. al., 2010). These infections can occur 48 hours or more after birth and data indicates
that almost 30% of infants born at 25-28 weeks gestation and more than 45% of infants born

prior to 25 weeks gestation will experience a serious nosocomial infection while in the NICU
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(Blount et. al., 2010). Intraventricular Hemorrhage (IVH) is another common cause of morbidity
and mortality for the newborn infant. Approximately 20% of preterm infants develop an IVH.
The haemorrhages occur during the first few days of life and more than 90% of the IVHs have

occurred by the third day of life (Blount et. al., 2010).

Additionally, Catley et. al. (2010) discussed a framework to model and translate clinical
rules to support complex real-time analysis of both synchronous physiological data and
asynchronous clinical data. The authors demonstrate how a clinical rule for detecting an apneic
event is modeled across multiple physiological data streams; these included a lapse in respiration
rate (RR) of a neonate for greater than 15 seconds and a fall in peripheral oxygen saturation less
than 85% for greater than 20 seconds combined with a heart rate of less than 100 BPM. Thus,
there is increased interest and research in the early detection of the clinical decline of the patient
as knowledge of early indicators of medical conditions can be made available to clinicians as

soon as they are detected allowing for better patient outcomes.

3.6 NICU Clinical Research: A Distributed Problem

Patterns can be detected in the physiological data if the data from devices is captured and
stored in data warehouses and is available for data mining. The main reason for storing and
mining this data would be to discover previously unknown trends and patterns across various
parameters and the establishment of indicators of the onset of conditions that may have an
adverse effect on outcomes. Looking at this from the perspective of a distributed data
environment that involves multiple hospitals across the globe, both the type and frequency at
which data is being output may differ from one site to another. The differences may also occur

due to the physiological monitoring devices being different at each facility. As an example, The
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Hospital for Sick Children, Toronto makes use of the Philips IntelliVue MP70 series of patient
monitoring devices in their NICU, The Shenzhen Maternity and Children’s Hospital, Shenzhen,
China makes use of the Driger Infinity Delta XL series of monitors and the Women & Infants
Hospital in Providence, Rhode Island makes use of the Spacelabs Ultraview SL series patient
monitors, Not only can the format and frequency of data output differ between these devices, the
frequency at which this data can be streamed to the data warehouse can also vary for each site. In
addition, the three levels of NICU care can add another level of complexity and distribution as a
patient graduates or is moved from one NICU to another. Thus, the need for a distributed data

mining framework is quite evident when dealing with multicenter studies.

3.7 Conclusions and Implications of this Research

This chapter has introduced the NICU case study context and supported the motivation of

hypothesis 4 of this thesis:

4, The framework can be applied in a broad neonatal context addressing issues of data
privacy and confidentiality and being deployable as part of multicenter studies while

maintaining data integrity at each participating site.

The known physiological behaviours in combination with previous non computing
related clinical research form the motivation for this research. The need for a distributed data
mining environment that can support multicenter studies also provides the context for the case

study demonstration in chapter 6 of this thesis.

39




Section 3.6 of this chapter introduced the distributed problem within the context of the
NICU. The intensive nature of the medical care provided to neonates in the NICU is not
dissimilar to the intensive care provided in adult intensive care units; thus the applications

discussed in this thesis can be extended beyond the NICU environment in the future.
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4. Chapter 4 - The Existing Architecture

Chapter 2 demonstrated a current lack of frameworks to support distributed data mining
environments. Heterogeneous data environments demand data mining frameworks that can
normalize data in order to make them consistent across sites. This chapter presents details of the
Service Based Multi-Dimensional Temporal Data Mining (STDM"g) framework, highlighting the
need for its operation in a distributed setting and discussing current limitations that make

distributed deployment impossible. These challenges are addressed in Chapter 5.

4.1 Componenis of The Existing Framework

The STDM"; framework (Figure 4.1) focuses on reducing the gap between clinical
management and clinical research (Bjering & McGregor, 2010, McGregor C. P., 2010); allowing
for the effective use of the large volumes of data being collected from medical monitoring
devices and stored in medical databases. The framework comprises three main components or
layers i.e. the multi-agent system which is driving the framework, the extended CRISP-DM
model layer which defines the data mining tasks and the STDM"; framework task layer. In
addition, there is also a layer for web services, active rules ontology, and data managefnent. The
n and 0 in the STDM", framework represent the data mining extensions incorporating null
hypothesis and the dimensionality. The following sections explain the details of the existing
framework which leads into a discussion of the extensions that will be made to the framework to

enable its use in a distributed setting.
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Figure 4.1 -~ The STDM"y Framework

The framework also makes use of components from Foster and McGregor’s (2005) multi-
agent system (discussed in section 4.1.1), which has been extended to facilitate the tasks needed
in the STDM" framework. In addition, the framework employs Heath’s extended CRISP-DM
data mining model (Heath, 2006, Heath and McGregor, 2010). The extended CRISP-DM model
and the multi-agent system are integrated to allow for the new data mining model to complete the

tasks of the STDM"; framework.

141 Multi-Agent System

As discussed, the STDM"y framework utilises the multi-agent system developed by

Foster and McGregor (2005) which is an extension of the Analytical Processor that forms one of
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the components of the Solution Manager Service developed by McGregor (2005). The original

framework consisted of an Agent Server which manages the communication between five

agents: sub agent, processing agent, functional agent, rules generating agent and human agent.

The framework also manages communication between the agents and the database access server

DBAS). The main agents utilized by the STDM"y framework are the processing agent, temporal
p

agent, relative agent, functional agent and rules generating agent (Bjering & McGregor, 2010).

1.4.2  Processing Agent
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Figure 4.2 - The Processing Agent
The Processing Agent (Figure 4.2) is the first step into the STDM"; framework; at this

stage data is retrieved from external databases and processed in order to be stored in a
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Physiological or Clinical Data Warehouse. This agent also supports the Data Understanding and

Data Preparation phases of the extended CRISP-DM mode! and prepares the data to be used by

the Temporal Agent for further processing.
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The Temporal Agent (Figure 4.3) utilizes physiological data being fed into the STDM"

framework and helps create temporal abstractions based on the temporal rules defined in the

temporal rules table. Temporal abstractions allow for the retention of the context of the data and

act as a pre-processing method before data mining. They are also part of the data preparation
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phase of the extended CRISP-DM model. In order to better understand the movement and use of

data at this stage, Bjering & McGregor (2010) outline the six main functions of the temporal

agent below:

1.

The first step is to retrieve the physiological data from the physiological data store for
each parameter for each patient

Next, relevant abstraction rules are retrieved from the temporal rules table.

The rules are then applied to the physiological data, creating simple abstractions for
individual data streams for individual patients

The created abstractions are then stored in the SDTDM", temporal data store

Complex abstractions are now created from the simple abstractions, based on any rules
found in the temporal rules table.

Finally, any complex abstractions that are created are then stored in the SDTDM",

temporal data store.
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1.1.4

Relative Agent

Figure 4.4 - The Relative Agent
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The Relative Agent (Figure 4.4) is used when dealing with clinical research studies. Once

the Temporal Agent has created the abstractions from physiological data, it is common for this

data to be used in various research studies. The Relative Agent uses the abstractions created by

the Temporal Agent, together with clinical information from individual patients relative to the

point of interest of the study, such as diagnosis of a particular clinical condition. The Relative

Agent realigns the time of abstractions relative to a particular point in time that is of interest; this

is an important step because the actual start and end times of the abstractions give no indication

of what time this abstraction takes place in relation to the diagnosis of interest. This is done by
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calculating the start and finish times for each abstraction relative to a particular event. Finally,

the abstractions that have been relatively aligned are stored in the relative temporal data store for

further processing. It is also common for different research studies to use the same temporal

abstractions which can lead to different realignment techniques to be applied to the same data.

This is also the reason why every realigned temporal abstraction is stored in the relative temporal

data table specific to the study that has utilized it.
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Figure 4.5 - The Functional Agent

The realigned temporal abstractions form the basis for exploratory and confirmatory data

mining, processed by the Functional Agent (Figure 4.5). Exploratory data mining is used to
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analyse the realigned temporal abstractions across multiple data streams for multiple patients in

order to detect new trends and patterns that might be present in the data prior to or after the event

of interest. This also allows for the selection of the rules of significance based on the results of

the exploratory data mining exercise. The next phase of confirmatory data mining begins with

the formulation of the null hypothesis for any results that arouse interest and further

investigation. The role of the confirmatory data mining process is to help prove or disprove the

null hypothesis once it has been defined.
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The Rules Generating Agent (Figure 4.6) utilizes findings made by the Functional Agent to
allow for the creation of rules that can be defined in the rules database (Foster and McGregor
2005). The hypotheses created via the exploratory data mining phase are used by the Rules
Generating Agent to create rules that can be stored and utilized by an event stream processor.
This processor allows for the application of abstractions on real-time data streams which in turn
can help establish these rules in a live analytical system to aid clinicians in real time analysis of

data and provide alerts when necessary.

1.2 Implications of this research

One of the main themes that emerged from the review of existing literature in the area of
data mining and distribution was a redundancy in the distribution approach. Commonly, the tasks
that were distributed were used as temporary steps towards the data update process with the
overall structure or framework still relying on a local storage and update for data and knowledge.
We also have to consider the fact that a distributed database may contain a homogenous data set
where the attributes describing the data are the same across each distributed database or a

heterogeneous data set in which the attributes describing the data may differ.

Section 4.1 presented a detailed overview of the existing framework and outlined the
processes involved at each of the Agents in the STDM", framework. However, the existing
STDM", framework does not address the area of data distribution and lacks a structure which can

support multicenter studies. The main limitations of the current framework include:

1. Notion of only one Temporal Rule table which is not suited for a multi centered

approach.
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2. Notion of only one Relative Rule table which is not suited for a multi centered
approach.

3. Lack of a structure to accommodate multi centered studies, which may allow for the
possibility of cross comparison of results between similar studies taking place at the
same time.

4. Lack of clarity on how the Temporal Abstractions will be kept consistent in different
locations/sites.

5. No discussion on how static and stream data can be handled in a distributed
environment as this data set mostly contains patient identifying information which may

not be easy to distribute due to improved privacy policies.

When we consider the possibility of a multidimensional application of the STDM",
framework, it is clear that there is a need for a new approach towards the distribution of certain
tasks, such as the Temporal Abstractions and temporal rules as well as the Relative and
Functional Rules. There is a lack of clarity of how the distributed tasks will be performed and

how they affect the systems at different sites.

This chapter has introduced the existing framework and supported the motivation of

hypotheses 1, 2 and 3:

1. A multidimensional distributed data mining framework can be defined for time series

data research for the discovery of trends and patterns prior to a given clinical event.

2. The framework will utilize elements of data fusion and agent-based analysis so that it will

work with relational databases and large scale data mining applications.
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3. A set of data mining tools can be applied for temporal abstraction, relative alignment and

cluster analysis in a distributed manner to support multiple research studies.
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5. Chapter 5 - Service Based Multi-Dimensional Distributed Temporal
Data Mining (SDTDMng)

The Setvice Based Multi-Dimensional Distributed Temporal Data Mining (SDTDM"y)
provides the functionality determined as lacking in the STDM", framework (Figure 5.1), as
discussed in Chapter 4. This chapter proposes a multidimensional distributed data mining
framework that provides a structure to support multi center studies and manages the Temporal
and Relative Rule tables in a distributed environment while maintaining consistency across the

distributed sites.

The chapter addresses the following research hypotheses:

1. A multidimensional distributed data mining framework can be defined for time series
data research for the discovery of trends and patterns prior to a given clinical event.

2. A set of data mining tools can be applied for temporal abstraction, relative alignment and |-
cluster analysis in a distributed manner to support multiple research studies. |

3. A set of data mining tools can be applied for temporal abstraction, relative alignment and

cluster analysis in a distributed manner to support multiple research studies.

This chapter addresses the research hypotheses above by presenting a multidimensional
distributed data mining framework that is suitable for use in clinical research, as shown in Figure

5.1. This framework addresses the limitations of the STDM", discussed in Chapter 4.

52




STDM'y
Agenls.

J———

Tempor
ol AT L

Funcional Agenly
e

el Kaant
Funclions fgopty: ¢

itk Flunclional Agent

Modelllng

STDM';Datn
Management | -

[irutos Qamnmting ]

Bussn Cunarsting

Evaluatian

Load accepicd Rule-sets

STOM' Daln
Managomaent

Ma Struar Sttic.

-
Semices [ ol J[ om Gt ... ] { e 1
Interiaces

] {
O Mg
‘Web Sercs

pa— .
ooy i
e

Figure 5.1 - The SDTDM"; Framework

53




5.1 The Distributed Temporal Agent
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Figure 5.2 - The Distributed Temporal Agent

As discussed in Chapter 4, the Temporal Agent manages physiological data being used

by the STDM", framework and helps create temporal abstractions based on the temporal rules.
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The main elements in this phase are the creation of the simple abstractions for individual data
streams for individual patients which are stored in the STDM"y temporal data store and the
creation of complex abstractions based on any rules found in the temporal rules table which are

also stored in the STDM", temporal data store.

Based on the existing architecture, the creation and storage of Temporal Abstractions and
Temporal Rules are local to each site and have no mechanism for distribution. In a
multidimensional environment, the physiological data that is being retrieved would come from
multiple sites which may not be the same in terms of data structure or even data frequency. It
would also not be very efficient to have multiple local stores of temporal data and temporal rules
for each site. However, due to current health care policies and improved patient privacy
concerns, it is required that the static and stream data as well as the Temporal Abstractions exist
locally at each site. The Temporal Rules, however, do not contain patient identifying information

and thus can be decentralized (Figure 5.2). Several advantages arise from de-centralizing data:

1. Allows for the Temporal Abstractions and Rules to be kept consistent across different
sites.

2. Allows for better control over the security of the data as there is only one location to
manage.

3. Allows for better accessibility to the data through a controlled and secure
environment.

4, A decentralized environment is very modular with respect to resource management,
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The task of decentralizing the Temporal Rules starts by moving elements of the

framework into the central data server that will act as a cloud distribution layer across all

participating sites. The following four steps describe the distributed approach in detail:

1.

The physiological data is retrieved from the physiological data store for each
parameter for each patient.

A link is made with the cloud distribution layer in order to retrieve the relevant
abstraction rules from the temporal rules table which are then applied to the
physiological data.

The simple abstractions that are created for individual data streams for individual
patients are then stored locally at each site. They are also tagged with a SITE_ID for
ease of identification of their source site for comparison studies.

Complex abstractions are created from the simple abstractions using the temporal
rules table. Once completed the newly created complex abstractions are also stored

locally in the same TA tables and tagged for easy identification.

56




yitted Relative Agent

o5
e
oy
&%
=4
@&
o
=
¢
el

Site A
K SR M
N Refative i} Lai0
STOM Agernt;- i
Agenls Relative | {57
Agany
<
STDM", Site B
Extensions
b e Relal
CRISP-DM alativa
iTDM“o “Agenly :
gents .. Relative : Sl
3 Agant. 3 i
STOM"
Extenslons
to
CRISP-DM
STDM"
Rules
Ontology
STOM" Data
Management
STDM"y
Rules
Ontology
STDM% Data
Management
udy S¢
T s,
Site C
e ™\
SfbM" ; [ Refativa
] Agent
Agenls ’_9—"‘
L Relative 3 5
Agsnt e : =,
STDM"
Extenslons
o
CRISP-DM

STDM"
Rufes
Ontology

STDM% Data
Management

Figure 5.3 - The Distributed Relative Agent
The Relative Agent plays an important role in clinical research studies and can greatly
benefit from a distributed framework. The Relative Agent needs access to the abstractions
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created by the Temporal Agent, as well as the clinical information of the individual patient
relative to the time of the study of interest. In order to enable this functionality in a distributed
structure, the distributed framework makes use of the Relative Alignment Web Service which
acts as the gatekeeper for data access. It is important to note that different research studies might
use the same temporal abstractions. For this reason, the central data server will contain a relative
temporal data table specific to each study. Abstractions that have been relatively aligned can be

stored in the relative temporal data store and tagged for easy identification as well.

By decentralizing the Relative Rule data (Figure 5.3) from the original framework we can
enable multicenter studies to take place simultaneously and also allow for the possibility of cross

comparison of results between similar studies taking place at the same time.

5.3 The Distributed Functional & Rules Generating Agents

The functional agent performs data mining tasks used to enable detection of interesting
trends and patterns for a particular study. Exploratory data mining is used to analyse the
realigned temporal abstractions across multiple data streams for multiple patients in order to
detect new trends and patterns that might be present in the data prior to or after the event of
interest. Once possible trends and patterns have been discovered, they need to be evaluated by
the clinician to enable the creation of a hypothesis. This also allows for the selection of the rules
of significance based on the results of the exploratory data mining exercise. The steps involved
in the distribution of these agents are as follows (represented diagrammatically in Figure 5.4):

1. Exploratory Mining used to analyse the realigned temporal abstractions, from the

Relative Agent, across multiple data streams for multiple patients in order to detect new

trends and patterns that might be present in the data.
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2. Rules Generating Agent uses the exploratory functional rules in the creation of a new

Rule Base Data table which is then stored centrally.

3. Event Stream Processor connects with Rule Base Data table for the application of

abstractions on real-time data streams.

Details of the local stores seen in Figure 5.4 will be discussed in greater detail in Chapter 6.
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5.4 Data Structure & Storage

<3

The overall data storage schema for the STDM"j can be seen in Figure 5.5 (McGregor C.

P., 2010). This section will elaborate on the components being distributed and the changes that

will take place.

5.4.1 Temporal Rules

Figure 5.5 - The STDM"; Data Storage Schema
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The TA_Rule table (Figure 5.6) contains rules for how to abstract particular

physiological parameters. Each physiological parameter can be linked to multiple rules and

incidentally create more than one abstraction. The TA Rule table is also capable of containing

the entire SQL abstraction query that needs to be run to abstract particular physiological

parameters.
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Figure 5.6 - The TA_Rule Table
There are three attributes in the TA_ Rule table i.e. the TARuleID which contains the
unique ID of a particular rule, the PhysiologicallD which links the TA Rule table to the
PhysiologicalDefinition table, and is used to identify which type of parameter the particular rule
applies to and finally the Rule attribute which contains the details of the particular rule including
the SQL query needed to run the rule. The TA_Rule table has a many to one relationship to the
PhysiologicalDefinition table, which indicates that a particular PhysiologicalDefinition can have

more than one TA rule applied to it.

5.4.2 Temporal Abstraction Data

The Temporal Abstraction table (Figure 5.7) contains TAs created from the patient’s
physiological parameters (McGregor C. P., 2010). The temporal abstractions stored in this table
are created by applying the rules contained in the TA_Rule table to the relevant physiological
parameter of a patient. The PatientID attribute is used to link a particular abstraction to a
particular patient, the PhysiologicallD attribute is used to relate the abstraction to a particular
physiological definition, ABSTRACTIONTYPE indicates the type of abstraction i.e. a trend or a
level shift, ABSTRACTIONVALUE contains the results of the abstraction. These values may
indicate an increase, decrease or a range of values from high to normal (McGregor C. P., 2010).
Finally, the ACTUALSTARTTIME and ACTUALENDTIME attributes indicate the time that

the abstraction became true and when the particular abstraction no longer holds true. This table is
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linked to the Patient table in a many to one relationship, thus implying that a particular patient
can have many abstractions stored in the table. The Temporal Abstraction table also maintains a
many to one relationship with the PhysiologicalDefinition table meaning that a physiological

parameter can have several abstractions performed on it.

- TemporalAbstraction

PK | PATIENT ID

PK [PHYSIOLOGICAL _ID
PK | ABSTRACTIONTYPE
PK | ACTUALSTARTTIME

ACTUALENDTIME
ABSTRACTIONVALUE
STREAMVALUE

Figure 5.7 - The Temporal Abstraction Table

5.4.3 Relative Rule

The Relative Rule or Study table (Figure 5.8) specifies a particular alignment of
abstractions for a particular study and contains the information about any relative rules that may
need to be applied to the abstractions stored in the Temporal Abstraction table (McGregor C. P.,
2010). The StudyID attribute is a unique identifier for each study. The StudyOwner, StudyName
and StudyDescription attributes contain details on the study and to whom they belong. The
EntityRestriction, TARestriction, EventRestriction and the TARelativeRestriction attributes
contain where clauses providing higher levels of constraints to the Study table (McGregor C. P.,

2010).
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Study

PK | StudylD

StudyOwner
StudyName
StudyDescription
EntityRestriction
TARestriction
EventRestriction
TARelativeRestriction

Figure 5.8 - The Relative Rule Table

5.4.4 Relative Temporal Abstractions

The Relative Temporal Abstraction table (Figure 5.9) holds the abstractions that have
been realigned relative to a point of interest to the researcher who owns the study (McGregor C.
P., 2010). The attributes of this table are similar to the Temporal Abstraction table (Figure 5.7)
except that this table contains RelativeTAStartTime and RelativeTAEndTime values which are
times relative to the period in time that is interesting to the researchers/owners of the study. A
unique StudyID attribute is also included in this table to allow abstractions to be linked with the
Study Table (Figure 10) with which it shares a many to one relationship meaning that there can
be many entries in the TA_RelativeTime table that belong to a particular study (McGregor C. P.,

2010).

TA_RelativeTime

PK,FK4 | TARulelD
PK,FK3 | StudylD
PK,FK1 | PatientiD

PK,FK2 | PhysiologicallD
PK RelativeTAStartTime

Relative TAEndTime
TAValue

Figure 5.9 - The Relative Temporal Data Table
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5.4.5 Rule Base Data

The Rules created from hypothesis as a result of the last step can then be stored in the
RuleBase table (Figure 5.10). The attributes of this table include a unique EventID,
PhysiolocialID and TARuleID from the tables discussed earlier as well as the RelativeStartTime
and RelativeEndTime attributes (McGregor C. P., 2010). A Value attribute is also contained in
this table indicating the threshold values that are of interest to researchers and can be deployed in
a real time environment, for example, a lapse in the breathing of a neonate for greater than 15
seconds and a fall in peripheral oxygen saturation less than 85% for greater than 20 seconds
combined with a heart rate of less than 100 BPM may be an indicator of an apneic event (Catley

et. al. 2010).

Real-time RuleBase

PK,FK1 | EventID

PK,FK2 | PhysiologicailD
PK,FK3 | TARulelD

RelativeStartTime
RelativeEndTime
Value

Figure 5,10 - The Rule Base Table

5.6 Design Changes to Support Distributed Functionality

In order to perform temporal abstractions on data, the data must first be processed from
its raw format. The role of the processing agent is to initiate collection of stored physiological
and clinical data from external data stores supporting online analysis. Once the data has passed

from the external collection phase, the Processing Agent converts the data to the required format,
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if necessary, and then the data is structured and stored in the clinical data and physiological data
tables. Once completed, the Temporal Agent begins to process data in order to create the

temporal abstractions using rules defined in the temporal rules table.

5.6.4 Distribution of Temporal Rules

Chapter 4 presented the limitations of the STDM" framework, one of which was the fact
that it is structured to support only one Temporal Rule table. There was also a lack of clarity on
how the Temporal Abstractions will be kept consistent across the multidimensional distributed
locations. Figure 5.11 presents a solution to this problem and highlights the management of
multiple Temporal Rule tables while keeping the Temporal Abstractions consistent across the
distributed sites. As discussed in Section 5.1, due to current health care policies and improved
patient privacy concerns, it is required that certain types of data exist locally at each site. Thus
the Temporal Abstractions have to be stored locally at each distributed site, but the same is not
true for the Temporal Rules. As they contain no patient identifying information, they can be de-
centralized to allow for consistency, better control over the security and better accessibility.
Figure 5.11 presents a structure which supports the distribution of Temporal Rules and at the
same time provides a solution for the Distribution of Temporal Abstractions where they are

allowed to be distributed.

65




TA Ruls.
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logicallD
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TA_Rule

PK | TARulelD
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~ TARue

PK

DM_ARTEMIS TA

PHYSIOLOGICAL ID
ABSTRACTIONTYPE
ACTUALSTARTTIME

ACTUALENDTIME
ABSTRACTIONVALUE
STREAMVALUE

DM_ARTEMIS_TA

WHERE AVAILABLE

&

Local Store Local Store Local Store
DM ARTEMISTA & DM_ARTEMIS TA -  DM_ARTEMIS_TA
PK | SITE_ID PK | SIIE_ID PK | SITE_ID
PK |PATIENT ID PK | PATIENT ID PK | PATIENT 1D
PK | PHYSIOLOGICAL (D PK | PHYSIOLOGICAL ID PK | PHYSIOLQGICAL_ID
PK | ABSTRACTIONTYPE PK | ABSTRACTIONTYPE PK | ABSTRACTIONTYPE
PK | ACTUALSTARTTIME PK | ACTUALSTARTTIME PK | ACTUALSTARTTIME
ACTUALENDTIME ACTUALENDTIME ACTUALENDTIME
ABSTRACTIONVALUE ABSTRACTIONVALUE ABSTRACTIONVALUE
STREAMVALUE STREAMVALUE STREAMVALUE

Figure 5,11 - Distribution of Temporal Rules
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Policies regarding the handling of data and its privacy will always differ across the

multidimensional distributed sites; hence the need to support the data in a distributed setting.

Following are the steps involved in the distribution of Temporal Rules, as shown in Figure 5.11:

L.

The Temporal Rules have been distributed so that they are stored centrally. When TA’s
need to be run, the associated rules are deployed simultaneously for each participating
site (Site A, Site B, Site C ... Site N). The TA rules deployed for each site also contain the
SQL query that needs to be run to perform the abstraction at each site as this is supported
by the TA_Rule table.

Once deployed, the Temporal Abstractions are run locally at each site based on the
parameters provided by the Temporal Rules.

A unique identifier is attached to the resulting output. This identifier is called the
SITE_ID tag which gives each location a unique ID and also allows for comparison of
results across sites when needed.

Finally, the results of the Temporal Abstractions are stored locally at each site in data
tables (DM_ARTEMIS TA). Where available, these results will also be populated back

at the central data store (DM_ARTEMIS_TA).

5.6.2 Distribution of Relative Rules

The Relative Rule table, which specifies a particular alignment of abstractions for a

particular study, holds the information about any relative rules that may need to be applied to the

abstractions stored in the Temporal Abstraction table. In Chapter 4, it was highlighted that the

existing STDM"y framework supports the notion of only one Relative Rule table which is not
g

suited for multidimensional distributed studies.
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RELATIVEENDTIME
ABSTRACTIONVALUE
STREAMVALUE

' DM_ARTEMIS_TA | - DM_ARTEMIS_TA ~ DM_ARTEMIS_TA -
PK | SITE ID SITE ID SITE_ID
PATIENT ID PATIENT ID PATIENT ID
PHYSIOLOGICAL ID PHYSIOLOGICAL_ID PHYSIOLOGICAL [D
ABSTRACTIONTYPE ABSTRACTIONTYPE ABSTRACTIONTYPE
ACTUALSTARTTIME ACTUALSTARTTIME ACTUALSTARTTIME
ACTUALENDTIME ACTUALENDTIME ACTUALENDTIME
ABSTRACTIONVALUE ABSTRACTIONVALUE ABSTRACTIONVALUE
STREAMVALUE STREAMVALUE STREAMVALUE
Local Store Local Store Local Store
. DM_ARTEMIS_RA_  DM_ARTEMIS'RA. . DM_ARTEMIS_RA
SITE_ID SITE_ID
TARulelD TARulelD TARulelD
STUDY_ID STUDY_ID D
PATIENT ID PATIENT_ID IE
PHYSIOLOGICAL ID PHYSIOLOGICAL 1D PHYSIOLOGICAL ID
RELATIVESTARTTIME RELATIVESTARTTIME RELATIVESTARTTIME
ABSTRACTIONTYPE ABSTRACTIONTYPE ABSTRACTIONTYPE
RELATIVEENDTIME RELATIVEENDTIME RELATIVEENDTIME
ABSTRACTIONVALUE ABSTRACTIONVALUE ABSTRACTIONVALUE
STREAMVALUE STREAMVALUE STREAMVALUE
Local Store Local Store Local Store

Figure 5,12 - Distribution of Relative Rules

68




Figure 5.12 outlines the structure supporting the distribution of Relative Rules. The

following three step approach is taken to enable the distribution of Relative Rules:

1. Relative rules for each study are deployed from the central data store. A separate study
table exists for each participating facility and is assigned a unique StudyID.

2. Once deployed, the Temporal Abstractions table created at each site is accessed locally in
order to perform the Relative Alignments needed for the particular study.

3. The re-aligned Temporal Abstractions are then created and stored locally in the Relative
Temporal Data tables specific to the study and the site which is identified by the unique
SITE ID (DM_ARTEMIS RA). Where supported, the Relative Temporal Data will also
be populated back at the central data store (DM_ARTEMIS RA) with the addition of a

SITE_ID tag that allows for separation and comparison between sites.

5.6.3 Distribution of Rule Base Data

The Rules Generating Agent utilizes findings made by the Functional Agent to allow for
the creation of rules that can be defined in the rules database. Hypotheses created via the
exploratory data mining phase are used by the rules generating agent to create rules that can be
stored and utilized by an event stream processor in the application of abstractions on real-time
data streams. The distributed Rule Base data exists centrally and is invoked every time a rule
needs to be applied for real-time monitoring. In this case (Figure 5.4), the Functional Agent
invokes the Relative Temporal Abstractions stored locally at each site (DM_ARTEMIS RA).
The Rules Generating Agent then uses results produced by the Functional Agent to create Rule
Base Data in the central data store. These rules can then by deployed for active real-time

monitoring of patient data.
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5.7 Conclusion

This chapter has presented the design of the SDTDM", framework, which has been
extended by this research to support a multidimensional distributed data mining environment.
This allows for the management of Temporal and Relative Rule tables in a distributed
environment to support multicenter studies as well as the distribution of Rule Base data which
can be applied for real-time monitoring across sites. The chapter has addressed research
hypotheses one, two and three by demonstrating and defining the SDTDM", framework, a

multidimensional distributed data mining framework that is suitable for use in clinical research.

70




6. Chapter 6 - Demonstration within the NICU Context

This chapter presents a demonstration of the architectural framework detailed in Chapter 5
within the context of its deployment to support clinical research in neonatal intensive care.
Evidence for research hypotheses three and four is presented with further validation to support

hypotheses one and two. These hypotheses were:

1. A multidimensional distributed data mining framework can be defined for time series

data research for the discovery of trends and patterns prior to a given clinical event.

2. The framework will utilize elements of data fusion and agent-based analysis so that it will

work with relational databases and large scale data mining applications.

3. A set of data mining tools can be applied for temporal abstraction, relative alignment and

cluster analysis in a distributed manner to support multiple research studies.

4, The framework can be applied in a broad neonatal context addressing issues of data
privacy and confidentiality and being deployable as part of multicenter studies while

maintaining data integrity at each participating site.

Through an active collaboration between The Hospital of Sick Children, Toronto, led by
Dr. Andrew James, The Women and Infants Hospital (WIHRI), Providence, Rhode Island,
led by Dr. James Padbury and the Health Informatics Research team, University if Ontario
Institute of Technology (UOIT), Oshawa, led by Dr. Carolyn McGregor, we are utilising
current clinical research activities within the NICU to demonstrate the architecture proposed

in Chapter 5 and provide analytical support for the clinical research activities. The research
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being conducted at UOIT is part of the clinical research studies that have been ethically
approved at both sites as part of the Artemis project. Artemis is a platform for real-time
enactment of clinical knowledge as it relates to multi-dimensional data analysis and clinical
research. The Artemis framework (as seen in Figure 6.1) is a platform for real-time analysis

of clinical knowledge as it relates to multi-dimensional data analysis and clinical research.
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Figure 6.1 - The Artemis Framework (UOIT Health Informatics Research),

As discussed in Chapter 3, there is mounting evidence suggesting changes in
physiological stream behaviours prior to the diagnosis of certain conditions. The Health
Informatics Research group at UOIT is focusing on research into earlier detection of late
onset neonatal sepsis and episodes of apnoea using physiological stream data being collected
from three distributed sites. A number of parameters are being analysed in order to support
this research such as: 1) abstractions for heart rate decelerations in an hourly time window; 2)

fall in peripheral oxygen saturation less than 85% for greater than 20 seconds; 3) a lapse in
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breathing of a neonate of 35 weeks gestation for greater than 15 seconds; and 4) a low heart

rate and respiratory rate variability in an hourly segment.

6.1 The Multidimensional Distributed Bavironment

There are three main distributed sites which will be considered in this scenario. The first
deployment is located at The Hospital for Sick Children, Toronto, Ontario (as seen in Figure
6.3). Multiple streams of physiological data are being generated from this location from the
Philips IntelliVue MP70 neonatal monitors at the rate of a reading every 1024 milliseconds.
These include the constant collection of electrocardiogram derived heart rate (ECG-HR),
transcutaneous oxygen saturation (SpO,) and respiration rate (RR) which is standard clinical
practice for all patients in the NICU at The Hospital for Sick Children. Diastolic, systolic and
mean blood pressures (DBP, SBP and MBP) are also available when collected as part of clinical
practice. Currently, these streams are being used as part of research into earlier detection of late
onset neonatal sepsis. To date a combined data set equalling around 115726985 readings has
been collected. The complete Artemis deployment occurs in two locations, namely at The
Hospital for Sick Children and the UOIT Health Informatics Research (HIR) laboratory and
currently supports eight concurrent patients. The following three components are located at The

Hospital for Sick Children:

1. The first is responsible for data acquisition from the medical data hub.
2. The second for online analysis utilizing the InfoSphere Streams Runtime from IBM.

3. The third for stream or data persistence utilizing the data integration manager.

Data Persistence occurs to support Online Analysis and Knowledge Extraction. An

incremental backup of the data is made each day to a persistence storage mitror located at UOIT
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and used by the Knowledge Extraction component (as seen in Figure 6.1) at UOIT for
knowledge discovery. Redeployment occurs after this step which is where new rules are
translated to Stream Processing Application Declarative Engine (SPADE) which is an
intermediate language for flexible composition of parallel and distributed data-flow graphs.
SPADE allows for potential future deployment in the Online Analysis to monitor future patients

in real-time.

The second deployment is situated at The Women and Infants Hospital (WIHRI) in
Rhode Island, United States. This site makes use of the SpaceLabs Ultraview SL patient
monitors to collect HR, RR, SpO,, Pulse Rate derived from SpO2 sensor and, where collected,
continuous DBP, SBP and MBP. The frequency of data coming from this site is in the form of
spot readings taken every minute and stored in its raw form at the UOIT. In order to enable data
collection from WIHRI, a cloud based environment is setup where data is transported via a
secure tunnel to UOIT in the form of HL'7 formatted data packets (as seen in Figure 6.2). In this
environment, components of the Data Acquisition exist across both sites and all remaining
Artemis components are situated at UOIT instead of the hospital. Presently, the data set from

WIHRI amounts to around 3654615 records.
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MSH | *™"\& | GTWY | HOSP | RECVY_APP|HQOSP|20090826040011-04| | ORUARDL| 128957328110
MSH|182811|P|2.3 '
PID| | |UV_01234567

oD1
PViI | [NICUABEDxxABEDxxAAA.\AAgs&BEDXX| l I IAI\AAAAJ\AAAA.AAI\NlAJ\:\A/\/\AJ\AAAJ‘-AA’U‘
PVL[[[|[[|[[~]|nnnnanannanann]172c087532908F37 [ || ||| [[[|ITTITIITTTITTT]

pvi|||20090823110850

ORC| | | CA361400F18E1IAIAGTWY | | GTWYUSID

OBR| | | CA361400F13E1IA9AGTWY | AUSID for all Monitor

OBR| | |data*GTWY| | | 20090825235911

OBX|1|NM|1.6.10.0"MF Alarms Suspended| [0]Aanasa| ||| F] | | 20090825235904
OBX|2|NM|2.1.1.0°Heart Rate | | 161 | beats/min]| ||| |F| || 20090825235904
'OBX|3|NM|2.1.2.0°Displayed Lead 1] |1]|2.1.2.0] | | | |F| | | 20090825235304
 OBX|4|NM|3.9.1.1ANIBP Mean| |61 mmHg| | | | |F| | | 20090825235733
OBX|5|NM|3.9.2.1°NIBP Sys| | 74| mmHg| | | | |F| | | 20090825235733
OBX|6|NM|3.9.3.1*NIBP Dias| |56|mmHg| | | | | F| | | 20090825235733
OBX]7|NM|3.9.4.1"NIBP Pulse rate| | 151 | beats/min|| | | |F| | | 20090825235733

. OBX|8|NM|3.9.4.2ANIBP Pulse Source| |1]3.9.4.2| | | | |F] | | 20090825235733
OBX|9|NM|6.1.1.145PQ2| |94|%]| | | | | F| ] | 20090825235504
 OBX|10|NM|6.1.2.0°5p02 Pulse rate| | 162| beats/min| | | | | F| | | 20090825235303
 0BX|11[NM|6.1.3.0°ART Waveform index| |177]6.1.3.0] | | | |F| | | 20090825235303
'OBX|12|NM|7.1.1.0°RESP Rate | [46|br/min]| | | | |F| | | 200908252355904

Figure 6.2 - An example of the HL7 data file

The third and final deployment is located at UOIT and comprises of 30 second spot
readings of retrospective data from The Hospital for Sick Children collected over a time span of
two years. The main purpose of this deployment is to support research for the early detection of
multiple clinical diagnoses such as neonatal sepsis and apnoea. As such it contains the Data

Persistence, Knowledge Extraction and Redeployment components only.
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Figure 6.3 - The Multidimensional Distvibuted Envivonment

5.1.1 Technical Challenges with Multidimensional Distributed Data

The Multidimensional Distributed Data being collected from the three NICU sites poses

some inherent challenges that can prevent normalization of data across the different sites. The

main challenge is the differences in data frequency that exists from one location to the next. As

highlighted earlier, each site generates data differently which leads to the lack of consistency.

For instance:

milliseconds

The Hospital for Sick Children supplies data at the rate of a reading every 1024

76




e WIHRI supplies data in the form of spot readings taken every minute

e UOIT - Retrospective Data which comprises of 30 second spot readings.

Normalization of data is the first solution that comes to mind when we discuss the varied
frequencies of data collected. However, the data cannot be normalized because different
frequencies are required depending on the type of analysis that needs to be performed. For
example, trend analysis temporal abstractions on raw heart rate and respiratory rate data could be
performed at spot readings taken every 30 seconds. However, this same technique cannot be
applied in the analysis of apnoea because apnoea events can occur between two consecutive 30
second spot readings and hence for example transient falls in blood oxygen saturation of less
than 30 seconds would be missed. Thus, we need to categorize the abstractions based on

similarity as well as frequency in order to effectively run them in a distributed environment.

6.2 Data Structure

The Knowledge Extraction component of Artemis implements the STDM", framework.
In order to perform temporal abstractions on data, it must first be processed from its raw format.
The role of the processing agent is to initiate the collection of stored physiological and clinical
data from external data stores supporting the online analysis or collected via some other means
outside of Artemis. STDM" is the technique used in the knowledge extraction component of
Artemis, Within the first two distributed sites as detailed above the processing agent performs
the replication of the data from the Online Analysis Data Persistence component to the
Knowledge Extraction Data Persistence component. Once the data has passed from the external
collection phase, the processing agent converts the data to the required format if and as necessary

and then the data is structured and stored in the clinical data and physiological data tables (see

77




Figure 6.4) accessible by the Knowledge Extraction component. After the completion of this

phase, the Temporal Agent begins to process data in order to create the Temporal Abstractions.

.~ RawHR ||  RawRR ||  RawsPO2
PK |PATIENTID ||PK |PATIENTID ||PK |PATIENTID

TIMESTAMP TIMESTAMP TIMESTAMP
HRVALUE RRVALUE SPO2VALUE

Figure 6.4 - Structure of the tables created by the Processing Agent

6.2.1 The Temporal Phase

Once the processing agent structures and stores the data in local data stores, the Temporal
Agent takes over to process the data using rules defined in the Temporal Rules Table (Figure
6.5). Temporal Abstractions are created using the temporal rules and the physiological data that

has been collected from the monitoring devices.

. TARWe
PK | TARulelD

PhysiologicallD
Rule

Figure 6.5 - Structure of the Temporal Rules Table

As outlined in Chapter 4, there are six main functions of the Temporal Agent:

1. The first step is to retrieve the physiological data from the physiological data store for
each parameter for each patient

2. Next, relevant abstraction rules are retrieved from the Temporal Rules Table

3. The rules are then applied to the physiological data, creating simple abstractions for
individual data streams for individual patients
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4, The created abstractions are then stored in the STDM", Temporal Data store (Figure
6.6)

5. Complex abstractions are now created from the simple abstractions (from point 3
above), based on any rules found in the Temporal Rules Table

6. Finally, any complex abstractions that are created are then stored in the STDM"

Temporal Data store (Figure 6.6).

PK | PATIENT ID
PK | PHYSIOLOGICAL _ID

PK | ABSTRACTIONTYPE
PK | ACTUALSTARTTIME

ACTUALENDTIME
ABSTRACTIONVALUE
STREAMVALUE

Figure 6.6 - Structure of the Tempeoral Abstraction Table

Data for each patient may consist of multiple time stamped data streams. The time
stamped physiological readings are first abstracted individually to simple temporal abstractions
and later can be used to create complex abstractions. A typical abstraction may address level
shifts i.e. increase, decrease or stable from point x or trends i.e. changes over a set period. Since
a time stamped physiological reading for a certain patient can be part of a number of simple

abstractions it is computationally efficient to perform both types of abstractions on one data set.

In order to elaborate further, we take the example of an abstraction run hourly on the
respiratory rate (RR) value in a non-distributed setting. In order to analyze patient data, we
consider a 60 minute period for our abstraction with the goal of finding when the RR value falls

below a specific threshold, which in this case is a value with a threshold of 10. The abstractions
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created are stored in the Temporal Abstraction Table (as seen the Table 6.1) which condenses

and adds context to the data.

PATIENT_ID | PHYS_ID | ABSTRACTIONTYPE ACTUALSTARTTIME ACTUALENDTIME ABST_VALUE
A12345 SRR Hourly RR < 10%7 | Oct-04 |:-2009 5:00:00 AM 000000, | Qct-04 | - 2009 5:59:59 AM 955000 15
A12345 RR Hourly RR < 10 Oct-04 | 20096:00:00 AM000000 | Oct-04 | 2009 6:58:59 AM 999000 0.8
A12343 RR Hourly RR <10~ | Oct-04 | 2009 7:00:00 AM 000000 | Oct-04 ;2009 7:55:59 AM 999000 LU B3
A12345 RR Hourly RR < 10 0ct-04 | 20098:00:00 AMOO0D000 | Oct-04 | 20098:59:59 AM 999000 1.617
Al2345 RR Hourly RR 10~ =1 "Oct-04 | 2009 9:00:00AMO00000 | Oct-04 | 2009 9:59:59 AM 992000 24633
A12345 RR Hourly AR < 10 Dct04 | 2009 10:00:00 AMO0O0000 | Oct-04 | 2009 10:59:55 AM 939000 0.117

- “A12345 RR 0470 Hourly RR < 10777 Oct-04 | 2009 12:00:00 PMB00000 | Oct-04 | 2009 12:58:59PM 983000 | =703
A12345 RR Hourly AR < 10 Dct-04 | 2009 2:00:00 PM 000000 | Oct-04 | 2008 2:59:59 PM 995000 0.167
A12345- /] ~ Hourly RR <10 Oct-04 | 2009 3:00:00 PM000000. | Oct-04 1 :20093:59:59 PM 399000 -5 © |~ +.0.783
A12345 RR Hourly RR < 10 Oct-04 | 20094:00:00 PMOOO000 | Ock04 | 2008 4:5:59 PM 999000 1.417
A12345 - 1= RR Hourly RR < 10 Oct-04 | 2009 5:00:00 PMO00000 - | Qct-04 1 2009 5:59:59PM 9990001 |-~ 1.217
A12345 AR Hourly RR < 10 Qct-04 | 20096:00:00 PMOC0000 | Oct-04 | 2009 6:59:59 PM 989000 13
A12345 TRR: 10 Hourly RR ¥ 10 0ct-04 | 20097:00:00 PM0OOQO00, | Oct-04 |20097:59:59 PM 999000 i3
Al2345 AR Hourly RR <10 | Oct-04 | 2009 8-00:00 PM000000 | Oct-04 | 20098.59:55 P 999000 1717
A12345 5 RR " Hourly 88 < 10 ~Oct04'| 2009 5:00:00 PMO00000 | Oct-D4'} 2009 9:59:59 PM 999000 - | 1.317
A12345 RR. Hourly AR < 10 Oct-04 | 2009 10:00:00 PM 000000 | Oct-04 | 2009 10:59:59 PM 995000 1.5
A12345 RR -~ Hourly RR < 10 - | Oct-04 | "200911:00:00 PM 000000 | Oct-04 | 2009 11:59:59 PM 595000 L8567
A12345 AR Hourly RR < 10 Oct-0S | 2009 12:00-00 AM 000000 | Oct05 | 2009 12:59:59 AM 999000 7.033
A12345 0 AR Hourly RR % 10 * | 'Oct-05°| 2009 1:00:00 AMO00000 | "Oct-05 | 2009 1:58:58 AM 595000 - 205
A12345 RR Hourly RR < 10 Oct-05 | 2009 6:00:00 AM 000000 Oct-05 2009 6:59:59 AM 999000 0.553

Table 6.1 - Hourly RR Temporal Abstraction Resulfts

Table 6.1 highlights the output of the Temporal Abstraction (TA) process relating to
Respiratory Rate Variability (RRV). Once the TAs are deployed via the TA_Rule table, hourly
summaries of RRV are created and stored in the TA table. In this case the event of interest for

the TA was the drop in the RR value below 10 within a set period.

6.2.2 The Relative Aligniaent Phase

Once the Temporal Agent has created the abstractions from physiological data, it is
common for this data to be used in various clinical research studies. Once the abstractions have

been created they are stored locally in the STDM", data stores until they are needed for a
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particular study. When a study is prepared, it will often be necessary to realign the time of
abstractions relative to a particular point in time of interest. The Relative Rule table (Figure 6.7),
which specifies a particular alignment of abstractions for a particular study, holds the
information about any relative rules that may need to be applied to the abstractions stored in the

Temporal Abstraction table.

 RelativeRule

PK | StudylD

StudyOwner
StudyName
StudyDescription
EntityRestriction
TARestriction
EventRestriction
TARelativeRestriction

Figure 6.7 - Structure of the Relative Rule Table

The Relative Agent realigns the time of abstractions relative to a particular point in time
that is of interest by calculating the start and finish times for each abstraction relative to a
particular event. If the aim of a research study is to find new trends and patterns that can be
indicative of the onset of a condition it will be essential to tealign the time of each patient’s
abstractions relative to the time of the patient being diagnosed with the condition. The
abstractions that have been relatively aligned are then stored in the relative temporal data store
for further processing, It is also common for different research studies to use the same temporal
abstractions which can lead to different re-alignment techniques to be applied to the same data.
This is also the reason why every re-aligned Temporal Abstraction is stored in the relative

temporal data table (Figure 6.8) specific to the study that has utilized it.
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_ Relative Temporal Data

PK
PK
PK
PK
PK

TARulelD

STUDY_ ID

PATIENT ID
PHYSIOLOGICAL ID
RELATIVESTARTTIME

ABSTRACTIONTYPE
RELATIVEENDTIME
ABSTRACTIONVALUE
STREAMVALUE

Figure 6.8 - Structure of the Relative Temporal Data table

Table 6.2 displays the structure of the Relative Temporal Abstraction table in its current

state. In order to analyze patient data, we consider a 60 minute period for our abstraction with the

goal of finding when the HR value falls below a specific threshold, which in this case has a

threshold value of 100.

TARulelD | STUDY_E3 | PATIENT_ID| PHYS_ID ABSTRACTIONTYPRE RELATIVESTARTTIMIE RELATIVEENDTIME ABST_VALLE
: ~k?ll : WG o A12345 HR : Hnurfy HR.< 100 Qet-04 :ZOQQS:ODSOAM OOGOQG Dct{)é 2008 5}5359:‘\!&?839000“ 1583
Wi Wi A12345 HR Hourly HR < 100 Oct-04 | 2009260000 AM 09000 Dct04 | 2099 6:59:53 AK 953000 8.117
Wit 3 SWig : : Al2345 ,HB Hourly HR & 109 DCH'M, 2089 ?;QPQQAM OOOOOD ',Oft‘a'; ,2?65 7:59:5951% 933000 0017
WA Wid A12348 HR Hourly HR < 100 Oct-04 | 2009 8:00:00 AMIOO0DRD Oct04 | 20032 85258 AM 999000 0.017
Wi wia TA1234E “HR | Hourly HR < 100 0ct04 [ 20099:0000AM000000 | Oct-03 |- 2009 5:59.53 A 499000 5245
}n‘.‘ll VWi 832345 HR Hourly HR < 100 Oct-04 | 2009 10:00:00 AMOOO000 | Oct-04 | 20093 19:59:53 AN 992300 0.633
Wil ; Wid ‘A1234S‘ :HR Hourly HR < 100 y Gct-04 | 2009 12:00:00 PMOQODDO 09-64 ;27009712:59:59 P 935000 R 01
wil Wwig AL2345 HR Hourly HR < 100 Oct04 | 2003 2:0002PM 0000090 Dct-04 | 2003 2:5359PRID99000 0.683
7‘4‘;’!1 wWis - AL2245 = HR Hourly HR < 100 'Drct-Obi‘ 2209 S:GD:OQPMOOOOVODV Oct4 29093:59‘59”.199?0&9 : 0.'95‘
Wil Wwig AL12345 HR Hourly HR < 109 Oct-04 | Z009 $:0000PM DOR000 Dct04 { 2003 4:5355PRI993000 0.433
Wil ) \'{H ; : A12_345 =4 HR g Hquﬂy HR < 100 Oct-04 | 2003 5:0000 PM Q00000 0ct—04 2052 5;59:5? PAIO83000 o067
Wil Wwid A312345 HR Hourly HR < 100 Ozt-04 | 2003 6:00:00PM 000000 Oct-04 | 2003 6:5359PM293000 9.15
WL WM i !\.’%2345 HE Houﬁy.HR = 109 Oct-04.1. 2009 7’:0{3?00 Pra OOQOSD O;t-ﬂ‘i 2009 7:5958 P11 993000 O.3§3
Wil Wid A12245 HR Houriy HR < 100 Oct-04 2083 8:0000FK1 000000 Oct-04 2009 B:5859 P11 593000 0.367

: Wil WG e ‘5\123457 HR HauirlryiHR < 10805 Q104 :ZDDS SIUB.OQ %] GDO}):ID 05(-{174' 2602 2:5953 FRI993000 3.023
Wil Wi A12345 HR Hourly HR < 100 Qct-04 | 2002 100000 PAIOOOI00 | Dot-04 2049 50:59:59 PMI 933000 0117
RN Wis S 812345 HR -} Hourly HR < 180 0?({)4 Z?QS 11:00:00}’!"'!009000 Oct-04 {2002 ?.1:59:59 ngﬂm 0012
Wil wid A12345 HR Hourly HR < 100 Ort-05 20039 12:080:00 ANMIOO0000 | Det-05 2009 12:59:59 AR4 933000 0.067
Wil W4 : A§:2345 - HR i - Hously HR = 100 oct0s 2003 lzoﬂﬂDﬂMQOOm Oct-05.§ "2009 QZSVSSSAM 9393000 06T
WAL Wid A13345 HR Hourty HR < 190 Oct-85 2009 £:0000AK 000000 Oct95s 2009 6:59 52 AN BR300 0.5

Table 6.2 - HR Relative Temporal Abstraction Besults
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In order to explain the Relative Temporal Abstraction process further, consider the
example of Heart Rate Variability (HRV). Once the TAs have been deployed via the TA_ Rule
table, hourly summaries of HRV are created and stored in the TA table. In this case the event of

interest for the TA was the drop in the HR value below 100 within a set period.

To enable the detection of particular patterns of this abstraction at a particular time before
the event of interest, re-alignment of the abstractions relative to the time of the event of interest
is necessary. The periods of interest would be abstracted by the temporal agent and stored locally
at each site. The role of the relative agent is to re-align the time of the TAs that have been
created previously, with an event of interest, thus giving the relative TAs a start time and end
time relative to the point of diagnosis. This will enable the comparison and mining of the
abstractions to identify particular behaviours that may indicate the onset of the condition being

researched.

6.2.3 The Functional Agent

The re-aligned Temporal Abstractions form the basis for exploratory and confirmatory
data mining, processed by the Functional Agent. The Functional Agent performs data mining
tasks used to enable detection of interesting trends and patterns for a particular study.
Exploratory data mining is used to analyse the re-aligned Temporal Abstractions across multiple
data streams for multiple patients in order to detect new trends and patterns that might present in
the data prior to or after the event of interest. The Temporal Abstractions created from the
physiological data for each patient that is part of the study must be realigned based on the time of
diagnosis as this allows for the search and comparison of all the patients' abstractions regardless

of the actual time of the abstractions or the actual time of diagnosis.
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Once possible trends and patterns have been discovered, they need to be evaluated by the
clinician to enable the creation of a hypothesis. This also allows for the selection of the rules of
significance based on the results of the exploratory data mining exercise. The next phase of
confirmatory data mining begins with the formulation of the null hjfpothesis for any results that

arouse interest and further investigation.

6.2.4 Rules Generating Agent

The Rules Generating Agent utilizes findings made by the Functional Agent to allow for

the creation of rules that can be defined in the real-time rules database (Figure 6.9).

_ Realtime RuleBase

PK | EventID
PK [PHYSIOLOGICAL ID
PK | TARulelD

RELATIVESTARTTIME
RELATIVEENDTIME
VALUE

Figure 6.9 - Structure of the Real time RuleBase table

The hypotheses created via the exploratory data mining phase are used by the Rules
Generating Agent to create rules that can be stored and utilized by an event stream processor
which allows for the application of abstractions on real-time data streams which in turn can help

establish these rules in a live analytical system to aid clinicians in real time analysis of data.
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6.3 Distribution of Temporal Rules

As discussed in Chapter 4, one of the limitations of the STDM"y framework was the
notion of only one Temporal Rule table which does not address the area of data distribution and
lacks a structure which can support multicenter studies. Another limitation was the lack of clarity
on how the Temporal Abstractions will be kept consistent in different sites. In this section, we
present a demonstration of the distributed temporal rules environment which highlights the
management of multiple Temporal Rule tables (Figure 6.10). This will also enable the Temporal

Abstractions to be consistent across the distributed sites.
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Figure 6.10 - Distribution of Temporal Rules
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As discussed, we have three different multidimensional distributed sites which would
need to run the Temporal Abstractions. Due to current health care policies and improved patient
privacy concerns, it is required that certain types of data exist locally at each site. However, the
Temporal Rules do not contain patient identifying information and thus can be decentralized to
allow for consistency, better control over the security and better accessibility. In the case of our
multidimensional distributed environment, there are four main steps to enable the distribution of

some of the data:

1. The Temporal Rules exist at a central hub i.e. at UOIT in this senario. When TA’s
need to be run, the associated rules are deployed simultaneously for each participating
site. The TA rules deployed for each site also contain the SQL query that needs to be
run to perform the abstraction at each site as this is supported by the TA_Rule table.

2. Once the Temporal Rules have been deployed, they are run locally at each of the
three sites.

3. A SITE ID tag is also attached to each abstraction that is run at these sites in order to
allow for comparison of results across sites when needed (Table 6.2).

4, Finally, the results of the Temporal Abstractions are stored locally at each site
(DM_ARTEMIS TA). Where available, these results will also be populated back at

the central UOIT store under the DM_ ARTEMIS TA data table.

Table 6.3 outlines the structure of the distributed Temporal Abstraction tables as they
exist at each local multidimensional distributed site. In this table, the data shown contains a
SITE_ID tag of SK indicating the data belongs to The Hospital of Sick Children. A similar
structure is adopted for each distributed site which is identified by their unique SITE_ID i.e.

WIHRI being identified as W1 and the SickKids Retrospective data being identified as SK30.
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SIE D | PATIENTID | PHYS_ID | ABSTRACTIONTYPE ACTUATSTARTTIME ACTUALENDTIME ABST_VALUE
W AL7345 RR HobTy RR € 10| DcwDA | 2008 5:00:00 AN 000000 | OCe-04 | 2009 5:59:58 ARS 859000 115
e A12345 R Hourly RR <10 | Oc-04"| 2008 5.:00:00 AW 006000 | Get-04 | 2059 5:55:59 AM 585000 53
5K A12345 RR Hourly R <10 | Oci-04 | 72000 7:00:00 AM 000000 - | Oct-0d | 2059 7:59:50 Al 539000 3
5K A12345 RR HoulyRR<10 | Ocr03 | 2008 8.0D:00 AN 0ODD0D | Ocr-08 | 2005 §.59:58 AM 593000 1617
KT TRz RR | HouryRR<10 | Oc04 | 2005 9.00:00 AMOCO000 | . Oci-0d.| 2009 5:59.59 AM 539000 3533
K 17335 AR Houriy AR < 10 004 | 2009 10:00:00 AM 000000 | Oct-04 | 2009 105553 AM 593000 L7
K| o ALZads RR HourlyRR <10 | Oc-04 | 2009 12:00:00 PM G00000 | - Oct-04 | 2008 12:50:59 PN 595000 03
5K | ALzads RR Fiuriy RR < 10 004 | 2008 2:00:00 PM CO00G0 | Oce-D3 | 2008 2.56:59 PM 599000 5167

T AT7335 RR HoulyRR< 10 | Oc-04 | 20093.00:00 PN 000000 | G4 | 2009 355855 PIA 939000 5753
SK A17345 RR Houly RR <10 | Oct.04 | 2008 4:00:00 P 000000 | Gec0d | 2008 4:59:56 PW 955600 1417
K| TAIE TURR “Hourly RR <10~ | Oct-04 | 2009 5:00:00 PV 000000 |~ Ocr-04 | 2009 5:58:59 PHA 399000 TR
5K A12345 RR Hourly RR < 10 Ori-04 | 2008 6:00:00 PN 000000 | Ocr-03 | 2003 6:50:59 PM 595000 i3
5K FYPEVTSEE Sy Ty HourlyRR <10 | Oct-04 | 2000 7-00:00 PV 000000 | | OA-04 | 2009 7.59:59 PV 999000 ¥
5K A12335 RR Hourly RR <10 | OccO4 | 2009 BGO:00 PN OODGOO | Oct-03 | 2009 8:59:59 PM 535000 1717
5K AL2335 “RR. . |_ “HounyRR<10 .| . OG0A | 2009 9:00:00 PV CODO0Y | | OCt-D4 | 2009 9:56:58 PM 55000 1317
B3 712335 AR HoulRR <10 | Oct-04 | 2008 10:00.00 P 000000 | Oct04 | 2009 1059:59 PM 395000 15

TR 212335 RR | HouryRR<10 | Oct04 | 2009 11:00:00 P 000000 |  Oc-0% | 2003 11:59:59 PM 999000 5567
SK AL2345 RR HourlyRR <10 | Oc05 | 2009 12:00:00 AN GOG000 |  Oct05 | 3009 12:59:59 AM 555000 7033
K| TALz:5. 1 RR FowlyRR<10 | Oc-05 | 2009 10000 AN 000000 | Oct-05 | 2009 159,55 Al 935000 355
5K AL2345 AR Hourly AR <10 | Gci05 | 2000 6:00:00 AM OBOG00 | Oce05 | 2008 6:59:59 AM 959000 5553

Table 6.3 - Structure of the Distributed DM_ARTEMIS_TA Tables

Policies regarding the handling of data and its privacy will always differ across the

multidimensional distributed sites; hence the need to support the data in a distributed setting. By

having regulatory requirements that will govern where the data has to reside and how it can be

interacted with we can manage sensitive patient data properly and at the same time improve

patient outcomes at the health facilities.

6.4 Distribution of Relative Rules

Chapter 4 presented details on The Relative Agent which realigns the time of abstractions

relative to a particular point in time that is of interest. Depending on the study taking place, the

temporal abstractions may need to be realigned relative to a particular point in time if the

behaviour of certain parameters in the time leading up to a diagnosis needs to be studied. The

Relative Rule table, which specify a particular alignment of abstractions for a particular study,
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holds the information about any relative rules that may need to be applied to the abstractions

stored in the Temporal Abstraction table.
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Figure 6.11 - Distribution of Relative Rules
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Figure 6.11 outlines the structure supporting the distribution of Relative Rules. As
discussed earlier, the STDM" framework presents the notion of only one Relative Rule table
which is not suited in multi-centered studies. The following three step approach is taken to

enable the distribution of Relative Rules:

1. Relative rules for each study are deployed from the central data store (at UOIT). A
separate study table exists for each participating facility and is assigned a unique
StudyID

2. Once deployed, the Temporal Abstractions table created at each site is accessed
locally in order to perform the Relative Alignments needed for the particular study

3. The re-aligned Temporal Abstractions are then stored in the relative temporal data
tables specific to the study and the site. Each site is identified by a unique StudyID
and SITE_ID (Table 6.4).

4. Where available, these results will also be populated back at the central UOIT store

under the DM_ARTEMIS_RA data table.

Table 6.4 shows an example of the distributed Relative Temporal Abstraction table. The
data shown contains a SITE_ID tag of WI indicating the data belongs to The Women’s and
Infants Hospital. The corresponding TARuleID and unique STUDY_ID attributes are also
contained in this table. A similar structure is adopted for each distributed site which is identified
by their unique SITE_ID i.e. SickKids being identified as SK and the SickKids Retrospective

data being identified as SK30.
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SITE_ID | TARuleiD | STUDY_ID | PATIENT_ID | PHYS_ID | ABSTRACTIONTYPE RELATIVESTARTTIME RELATIVEENDTIME ABST_VALUE
il Wil Wia ALZ345 HR Hourly HR 3 100 L] Qer04 2009 5:00D0AMJ00000. 1 Oct-04 1 2009 5:5253 AR 593000 1583
WA Wil Wwid 212245 HR Hourly HR < 100 Oct=04 | 20096:0008aM093000 | Qct04 | 2009 6:59.52A11922000 0.117
Wi Wik Wwis A12345 HR Hourly HR < 100. 1} Qct-04 § 2009 7:00:00404 000000 7 |- .Oct-08 | - 2008 ;5952 AM 233000 o017
Wi Wit Wwis A12345 HR Hourly HR < 108 Oct-04 | 2009 8:0000AM020000 | Oct-04 | 2008 S1E9EIAMSII0D 0.017
wi Wik Wi A12345 HR Hourly HR 2 100 7| - Oct-04 | -2009 3:00:00AM 300000 O‘:t-ﬁf% 72009 %5353 AM 992000 9.333
Wi Wil Wig A12245 HR Hourly HR < 100 Oct-04 | 2003 10:00:00 ANOQDO00 ;| Cct-04 | 2009 10152153 AN 959000 2.633
Wi Wil Wwi4 A12345 HR Heurly HR < 10{) Qct—Oé 2003 12:00:00 PMO3CXND | | D041 2003 1;15135‘3 PI835000 e
Wi Wil Wi4 A12345 HR Hourly HR < 104 Oct-d4 | 2002 2:0000PM Q03000 Cct-04 | 2003 2:59353PR1593030 D.683
Wi wil wid A12345 HR Hourly HR < 103~ Oﬁt—?‘-ﬁ 2002 3:0000PM QOJOJQ Oct-04 2009 3:5859PM 932000 a.98
Wi Wil Wwid A12345 HR Hourly HR < 180 Oct84 | 2009 4:0000PMO00000 | Oct-04 | 2009 $:5959PM93I000 0533

Wi Wi wid A12245 HR Hourly HR < 100 ; Oct-04 | 2009 5:0000PM U000 1. Oct-04 2909 5:59:597PM37997000 67257
Wi Wil Wis A12345 HR Hourly HR < 180 Oct-04 | 2092 6:0000PMON0000 | Oct-04 | 2005 6:5953FM393030 045
Wi LW Wig ,A;ZB#S HR Hourly HR < 100 - Oct-q‘i 2008 7:0000FMO0000Q | Oct-04 | 2908 7:5955?!‘&593900 0383
Wi B ES Wwis A12345 HR Hourly HR 2 100 Qct-04 | 20092 8:03:00PM4000000 | Oct-04 | 2005 8:5953FM 253000 9367
Wi \'{Il, 12 Wi4 A12235- CHR. V)= Hourly HR < 108 Oct-047} 2005 2:0000PMI00000 3 Oct-04 | 1009 35953PM 553000 9.053
ks Wil Wia A12245 HR Hourly HR < 100 Cet-04 | 200910:00:00 PMOOD000 | Oct-04 | 2009 10:5359 P14 932000 0447

M Wit wia Al2345] g : HR VHourly HR < 100 Oet-D41 2003 ii:DO:OOVPMOGGODDV 7473,:(»04 20?9 11:55:59 PM 932000 | = 0‘03'7'
Wi Wi Wis A12345 HR Hourly HR = 108 Qct05 | 2009 12:00:00 AMOO00QQ | Oct-05 | 2008 12:53:53 AR 333000 0.067
Wi Wil wi4 Al2345 HR Hourly HR 2 ;DO, Qct—QS 720?9 1:0900AM 000000 | Oct-05 |7 2008 115953 AR BIB000 a.167
Wi Wil Wit A12345 HR Hourly HR < 108 Oct-05 | 20096:0000AMO00000 | Oct-05 | 2009 6:5953AMD35000 0.45

Table 6.4 - Structure of the Distributed DM_ARTEMIS RA Tables

6.5 Distribution of Rule Base Data

The realigned temporal abstractions created by the Relative Agent are further processed

by the Functional Agent. In the STDM", framework the Functional Agent is responsible for data

mining tasks used to enable detection of interesting trends and patterns for a particular study. If

the particular study is exploring the possibility of communal patterns or trends being exhibited in

the physiological data of neonates in the time period leading up to diagnosis of a particular

condition, then the Temporal Abstractions created for each patient that is part of the study must

be realigned based on the time of diagnosis. This enables the comparison of all the abstractions

for all the patients regardless of the actual time of the abstractions and diagnosis.
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The Functional Agent utilizes exploratory data mining to detect new trends and patterns
in multiple parameters. These trends and patterns are then evaluated by the clinician or
researcher to create a hypothesis. Once the hypothesis is created from the result of the
exploratory data mining, a null hypothesis can be established and tested with confirmatory data

mining techniques.

The Rules Generating Agent processes the hypotheses created by the functional agent
into appropriate rules that can be stored in the Rule Base. These rules can further be used in a
real-time monitoring system aiding clinicians in the early detection of events of interest for better
diagnosis and treatment (as seen in Figure 6.12). The rules coming back in the multicentre
studies are used in an iterative way to derive one rule that is applicable across all studies. This is
done using null hypothesis testing which allows us to refine the Temporal Abstractions of

importance and derive globally applicable rules.
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6.6 Conclusion

This chapter presented the application of the SDTDM"y framework within the NICU
context. The multidimensional distributed environment is presented and the technical challenges
associated with the distribution of the data have also been discussed. The data structure at each
of the distributed sites has also been presented in this chapter along with a presentation of how
the data changes as it processed by the Agents in the STDM"; framework. The distribution of
Temporal Rules, Relative Rules and Rule Base data are presented as they would appear in a
multidimensional distributed environment along with a description of which components are

located centrally and which exist locally.

95




7. Chapter 7 -~ Conclusion

7.1 Summayry

This thesis presented a service based multidimensional distributed temporal data mining
framework which extended the functionality of the existing non-distributed framework. The
research is demonstrated through a case study utilising NICU patient physiological time series

data streams from three distributed sites.

To highlight the demand for a framework which can support a multidimensional
distributed environment, current literature in the area of Distributed Data Mining, Distributed
Data Mining of Time Series Data, Temporal Abstraction and Distributed Temporal Abstraction
was reviewed in chapter 2. During the literature review no direct reference to the utilization of
distributed data mining of multiple and multi-frequency data streams was found; this is a
significant limitation because the inherently distributed nature of health care could benefit
immensely from distributed data mining applications. The review also revealed several shortfalls
in existing systems: a focus on single site rather than several distributed sites; lack of discussion
on managing data privacy and confidentiality; a lack of interaction with real time data streams in
a distributed environment; and a lack of the concept of synchronous deployment of temporal

abstractions.

Resulting from the review, the research hypotheses of this thesis were that:

1. A multidimensional distributed data mining framework can be defined for time series

data research for the discovery of trends and patterns prior to a given clinical event.
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2. The framework will utilize elements of data fusion and agent-based analysis so that it
will work with relational databases and large scale data mining applications.

3. A set of data mining tools can be applied for temporal abstraction, relative alignment
and cluster analysis in a distributed manner to support multiple research studies.

4. The framework can be applied in a broad neonatal context addressing issues of data
privacy and confidentiality and being deployable as part of multicenter studies while

maintaining data integrity at each participating site.

Chapter 3 introduced the Neonatal Intensive Care Unit (NICU) which is the application
domain for this research and extended the understanding on the data rich environment of the
NICU. This chapter also introduced the clinical distributed problem as well as the implications
for this research. As this research extends previous research, chapter 4 introduced the context for
this extension by describing the existing architecture of the Service Based Multidimensional
Temporal Data Mining (STDM";) framework. The chapter highlighted the need for its operation
in a distributed setting and discussed current limitations that make distributed deployment
impossible. Chapter 5 addresses the highlighted limitations by introducing the Service Based
Multidimensional Distributed Temporal Data Mining (SDTDM") framework. The framework
provides a structure to support multicenter studies and allows for the management of the
Temporal and Relative Rule tables in a distributed environment, while keeping them consistent
across the distributed sites. In chapter 6 the functions of the SDTDM", framework were

demonstrated and explained within the context of the NICU.
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The research hypotheses have been addressed by this thesis and this is summarised below:

1. A multidimensional distributed data mining framework can be defined for time series

data research for the discovery of trends and patterns prior to a given clinical event.
Chapters 5 and 6 discuss the design and application of the framework in a

multidimensional distributed setting.

The framework will utilize elements of data fusion and agent-based analysis so that it will
work with relational databases and large scale data mining applications. This is
demonstrated in chapter 6 where a detailed account of the agent based analysis is

highlighted.

. A set of data mining tools can be applied for temporal abstraction, relative alignment
and cluster analysis in a distributed manner to support multiple research studies. Chapter
5 provides a framework that can support multiple research studies and this is

demonstrated further in chapter 6.

The framework can be applied in a broad neonatal context addressing issues of data
privacy and confidentiality and being deployable as part of multicenter studies while
maintaining data integrity at each participating site. Chapter 3 provides background into
the neonatal context and provides the understanding on the data rich environment of the
NICU. Chapter 6 discusses the use of the SDTDM", framework in a neonatal context, by

illustrating the framework’s use with real life neonatal monitoring data.
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7.2 Contributions

The areas of research contribution to knowledge resulting from this thesis are:

e Extensions to the STDM"; framework to allow for the application of the framework in a
multidimensional distributed setting.

e Enable the deployment of Temporal and Relative Rules from a distributed setting.

e Enable the synchronization of Temporal and Relative Temporal Data at each of the
multidimensional distributed sites.

e Ability to support multiple research studies and a structure allowing for the comparison
of results from each study.

¢ Enabling the distribution of Rule Base Data allowing for the synchronous deployment of

Real-Time Rules at each participating site.

7.3 Fubure Research

Currently, the SDTDM"; framework is designed to distribute the Temporal Rules,
Relative Rules and Rule Base Data but the storage of the Temporal Abstractions and Relative
Temporal Abstractions are still local to each site. The SDTDM" framework hints towards the

possibility to store this data in a cloud environment (Figure 7.1).
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Figure 7. - Potential Cloud Storage of Relative Temporal Abstraction Data

Storage of Temporal Abstractions and Relative Temporal Abstractions has been kept
local to each site due to current health care policies and improved patient privacy concerns.
However, the creation of regionalized cloud environments can be a potential solution to
distribute the Temporal and Relative Temporal Abstractions. For example, each region,
province, state or country can have one dedicated cloud environment which can store these
abstractions in accordance to the privacy policies governing the particular area. This may also
allow for cross site comparison of results in multicenter studies in order to identify trends that

may occur globally or only at certain facilities.
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Apart from the potential regionalized cloud storage environment of the SDTDM",
framework, there are several other opportunities to explore in future work. Firstly, there is an
opportunity to test this approach further through clinical research into late onset neonatal sepsis.
As mentioned earlier, neonatal sepsis is a common nosocomial infection that affects neonates
and has been shown to exhibit changes in physiological data before the condition can be
diagnosed through blood cultures. There also lies an opportunity for the testing of the distributed
multidimensional data mining technique with other conditions such as Apnoea and
Intraventricular Haemorrhage which were highlighted in chapter 3 to be conditions that may
greatly benefit from the discoveries made by a distributed data mining framework. These would
also include testing for sensitivity and specificity of what is researched in order to confirm the

findings and highlight the rules of significance.

Future work will also include further details of the web services for the communications
between the distributed sites as well as the implementation of a backup mechanism for the
deployment of Temporal and Relative Rules in case the communication link to the cloud is
interrupted. This is an important consideration as the connection between a cloud environment
and a distributed site is easily influenced by external elements governing each location, Having a
strong backend design will ensure synchronous deployment of rules across each site; thus
maintaining data consistency. Finally, there is also potential in the application and extension of
this work outside the medical domain in areas such as peer-to-peer networking, distributed data

mining in mobile environments, stock prediction, fraud prevention and intelligent user interfaces.
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7.4 Conclusion

This thesis has presented a framework for clinical research in neonatal intensive care
physiological monitoring data by the design of the SDTDM"y framework, a multidimensional
distributed data mining framework supporting time series data analysis. A demonstration of the
distribution of Temporal and Relative Rules in a multidimensional environment is provided in
order to support multicenter studies. A potential area of future work has been discussed to further
extend this framework which will allow for greater insights into the abstractions and allow for
the comparison of results on a global scale in turn improving the discovery of new knowledge.
As the rate of preterm birth and mortality around the world increases, so does the demand for
faster diagnosis and quicker treatment of patients. Collaboration between leading health facilities
around the world can prove to be a key factor in discovering novel trends and patterns from
patient data and consequently improve patient care with faster and more accurate patient
diagnosis. The SDTDM", framework provides a multidimensional distributed data mining
structure to collaborating facilities while maintaining consistency of data across the distributed

sites and supporting multicenter studies to achieve new strides towards better patient care.
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