
Toward Graph Layout of Large Data Visualization:
Algorithms, Evaluations and Application

by

Michael Ferron

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Faculty of Graduate Studies (Computer Science)
University of Ontario Institute of Technology

Supervisor(s): Dr. K. Pu and Dr. J. Szlichta

Copyright c© 2016 by Michael Ferron

Abstract

Toward Graph Layout of Large Data Visualization: Algorithms, Evaluations and

Application

Michael Ferron

Master of Science

Faculty of Graduate Studies

University of Ontario Institute of Technology

2016

Generating layouts for millions of points on a spatially-restricted platform is a difficult

task with a unique set of constraints. These layouts are traditionally generated on a

server out of sight of the user. User-oriented applications would benefit from a real-

time view of layout generation, which can assist user decision making and improve user

experience by introducing interactivity. The literature of constraint resolution and mobile

visualization is briefly surveyed to achieve an understanding of the state of the art for

this problem, and motivate a solution with scenario-based examples. We formally identify

the major constraints associated with this specialized layout generation problem and the

special interplay between them. A pipeline-based layout generation method is defined

algorithmically, coupled with the implementation of the algorithm(s). The quality of

the result is analyzed on a constraint-dependent basis. Applications and future system

improvements and extensions are discussed.

ii

Acknowledgements

I would like to thank UOIT for providing a wonderful environment to conduct research

and to pursue academic study.

I would like to thank my supervisors, Ken Q. Pu and Jaroslaw (Jarek) Szlichta for

their support and guidance through the course of this research. I have learned greatly

through their counsel; they are both incredible researchers and role-models. I would like

to thank Mehdi Kargar for his assistance in the integration of his system with our work.

I would like to thank my thesis committee for their informative feedback and helpful

comments.

I would like to thank my colleagues and friends within UOIT for their company and

for interesting discussion on research topics. I would like to thank my friends outside

of UOIT for being available at odd hours of the night when a break was needed and

providing support.

Lastly, I would like to thank my family for their continued support through the years,

and for tolerating the impact of my abnormal schedule on their lives. I am truly grateful

for their love and support.

iii

Contents

1 Introduction 1

1.1 Contributions . 2

1.2 Motivating Application . 4

1.3 Background . 6

1.4 Related Work . 10

1.5 Problem Definition . 13

2 Methodology 15

2.1 Algorithm . 15

2.1.1 Pipeline Solution . 16

2.1.2 Score Calculation . 17

2.1.3 Annealing . 17

2.1.4 Resizing . 18

2.1.5 Compacting . 19

2.2 Visual Walkthrough . 20

2.2.1 Layout Resolution . 20

2.2.2 Population . 28

2.3 Implementation . 30

2.3.1 Clojure . 30

2.3.2 Concurrency . 32

iv

2.3.3 Channels . 34

2.3.4 Go-blocks . 35

2.3.5 Channels and Go Blocks in the Pipeline 37

3 Applications 40

3.1 Jaccard Similarity as a Ranking Measure 40

3.2 Visually Enriching Query Answers . 45

4 Experimental Evaluation 50

4.1 Annealing Quality Evaluation . 52

4.2 Compactness . 54

4.3 Resizing Quality Evaluation . 56

5 Conclusion 61

5.1 Summary of Contribution . 61

5.2 Limitations . 62

5.3 Future Work . 64

Bibliography 67

v

Chapter 1

Introduction

Modern data systems often contain data on the order of big data, consisting of millions

of tuples distributed across multiple tables, each with a variety of different attributes.

These tuples can express relationships within the dataset through identifying indexing

attributes. Data visualizations are produced to present to users and analysts these trends,

patterns and relationships via aggregation. Many applications can make use of layouts

that map the aggregate source points to the canvas, instead of presenting an aggregated

view. Highly granular views of source datasets are primarily presented on screens of very

high pixel count, in order to be unencumbered by the dimensions of the device. Due to the

high volume of data, these views are not easily mappable to a two- or three-dimensional

visualization medium.

With smartphones and tablets being common tools both in the user’s home and

the enterprise setting, it may not be possible for application developers to escape the

constraint of a two- or three-dimensional visualization. Analysts often work through their

mobile devices alongside their computers, and with the integration of the smartphone

into both the workplace and home life, users may contend with applications that present

a high volume of data as well. Efficient production of layouts suitable to these devices is

a problem that will need to be resolved in order to expand the ability of data scientists to

1

Chapter 1. Introduction 2

present nuanced views of the data to others. As mobile devices are restricted by multiple

constraints, the problem of laying out a high granularity view of the data must take these

constraints into consideration.

Primarily, layouts are generated in the backend of a system on a server, as a black

box technology unavailable to the user. While this approach has its benefits regarding

performance and device responsiveness, it does not provide to the user the story of the

dataset’s path to its destination. Datasets vary wildly in volume and in feature sets,

thus automating the process of layout generation can be a difficult problem to address.

Niche case layouts can be created on a dataset-by-dataset basis, but such an approach

is inefficient as a tool for enterprise decision-making, where multiple views of multiple

datasets may be required to drive business logic and decision-making. Automatic layout

generation for big data-level datasets on mobile platforms would enable a variety of

tools to benefit data scientists, analysts working directly and often with the data, and

application developers, who may use such a technique to create a popular recommender

system.

1.1 Contributions

The contributions of this thesis can be summarized as follows:

• Definition of the problem of layout generation for datasets containing

millions of tuples on a mobile or small screen device. In working with

millions of tuples, as mobile devices and tablets become more prevalent in the

workforce as an analytical tool, the challenge of fitting each tuple to the restricted

screen space becomes increasingly relevant. The problem is formulated ahead, with

supporting examples and considerations to show its relevance. The IMDb dataset is

used as an illustrative dataset, containing approximately 3.3 million movie entries.

• Establishment of a meta-layout generation method using hyperparame-

Chapter 1. Introduction 3

ter tuning. A pipeline approach to data visualization allows the system to be

augmented to implement a variety of simulation models. The system shows the

novelty of a pipeline approach being used to generate a layout by breaking the

problem of ideal layout generation into multiple phases, each phase representative of

a particular constraint to resolve, and a task that seeks to solve this constraint, and

iterating on each constraint resolution method multiple times with hyperparameter

tuning.

• Ad-hoc layout generation via one or more user-defined indexing attributes.

Graph layouts are generated in the implemented system ad-hoc by a user-defined

indexing attribute. Layouts generated for these attributes are saved, enabling large

volumes of relational data to be visualized by a technique determined after layout

generation.

• Implementation of the meta-layout generation via hyperparameter tun-

ing enabling database visualization. The meta-layout generation process has

been implemeneted in a system using ClojureScript. This system encompasses the

primary contribution of this work, demonstrating the use of time-tested algorithms

in a novel approach to enable database visualization.

• Optimizations for data visualization. The reduction of nodes to process allows

the system to generate layouts quickly. Compared to many visualization techniques

and systems taking hours to place millions of nodes, the system’s pipeline approach

can model as many tuples as these systems in a much smaller time frame. This

approach provides in a timely fashion a layout that can be used to map the

aforementioned points to a visualization space without incurring much delay.

• A scalable data prepartion technique. As part of the system, scores are

calculated between aggregated nodes for a given indexing attribute on millions of

tuples. The score calculation method in the system scales effectively with the number

Chapter 1. Introduction 4

of aggregate nodes, providing a lightweight method of computing relationship data

with which layouts can be generated.

• Applications of the pipeline method for augmenting query answers us-

ing generated layouts both visually and in selection. Using a system that

provides query answers in the form of answer trees as a base, the Jaccard Similarity

measure is investigated as a ranking measure for query answer selection, showing

different sets of selected query answers. Additionally, a method for enriching the

answers returned by the system using layouts generated by the pipeline system is

described.

• Experimental evaluation of constraint resolution. Metrics for the evaluation

of the resolution of constraints via the annealing, compacting and resizing algorithms

are defined. These metrics are used to determine the effectiveness of the defined

algorithms in the pipeline.

1.2 Motivating Application

Consider the IMDb dataset shown in Figure 1.1. The IMDb dataset contains millions of

actors and millions of movies distributed on multiple tables. These entities are described

by a number of different attributes corresponding to metadata. This dataset is rich in

relationships, as actors can be related to each other and to movies via particular pieces of

metadata, and the same holds true for movies. Further, these entities may hold multiple

values for a given attribute. Visually representing such a dataset is typically done by

aggregating these entities according to some indexing attribute. The aggregation process

is time-consuming and relegated to a server backend. Due to the high volume of data and

the multidimensional nature of the data, visualizations working with this dataset scale

poorly, as there are very many calculations that must be performed each iteration. In

order to efficiently provide a view of the data, an approach must be taken to lay out the

Chapter 1. Introduction 5

Figure 1.1: The IMDb Schema.

tuples within the database in a lightweight fashion. If an approach for quickly generating

a layout of the millions of movies in the dataset can be determined, then that layout

generation can be used for the presentation of data for many different tasks, including

scenarios that involve cleaning the dataset or in presenting answers to a user via the

layout.

In data analysis, showing the relationships between data is the motivation behind

a wide number of problems and applications. Consider the task of a film critic writing

an article about a prominent director, to be viewed online. The film critic may want

to organize all movies based on their language(s), and then show the concentration of

movies produced by the director based on their language. This visual representation

could be used to show the languages that a given director favours, as well as showing the

different languages that are similar to each other. Such a layout can be used to visually

and intuitively portray the information discussed in the article.

Chapter 1. Introduction 6

1.3 Background

In a relational database, data are stored within tables in the form of tuples. A tuple is

an n-dimensional entity with n fields. Each field has a value, either a predeclared data

type or the null type for empty fields. These values correspond to different attributes. An

attribute is a characteristic that can be used to describe, organize and aggregate tuples.

Consider the incorporated figure below:

Figure 1.2: A relation, with several tuples and attributes.

In Figure 1.2, consider the very first row. This row is a tuple with the values

(3103148, TheBigBang, null, 1, 1989, null, B2152, null, null, null). Each of these values

corresponds to the attribute named at the top of the column (i.e. ’The Big Bang’ is the

tuple’s value for the title attribute. As shown, not every entry of a tuple must have a

non-null value or a unique value. These values pertain to a single attribute, the constraints

of which are defined on an attribute-by-attribute basis. To explore these concepts further,

let us consider the below image.

In Figure 1.3, a sampling of IMDb movie data is provided. Each row is a tuple, with

attribute values for each tuple shown. These attributes can have either unique values, or

indistinct values. Examining the four attributes shown, all columns contain indistinct

Chapter 1. Introduction 7

Figure 1.3: An executed query showing some tuples in the relation.

values for each movie. Attributes that contain completely unique values are candidates

for declaration as a primary key. A primary key is an attribute for which the field of a

tuple most be both not null, as well as unique. Consider the column to the far left in

the above image. Each entry is not null, as well as different from every other value in

the column. Any attribute that functions as a primary key provides an avenue by which

tuples with similar values are differentiated from each other.

The descriptive nature of attributes allows tuples to have operations performed on

them based on their attribute values. To perform these operations, the database is issued a

query, the results of which are a set of attribute values. A query is a descriptive statement

that fetches a set of attribute values from a relation. These values are presented as a query

answer. Queries can be used to modify tuples, as well as aggregate them. Aggregation

Chapter 1. Introduction 8

is the process of combining together all tuples that have a given value, presenting these

combinations as one unique tuple per row for every row. Aggregation of tuples provides

a condensed view of the data, and can be used to show relationships within tuples on

a higher level. Once a query has returned a set of attribute values across a table’s

tuples, data analysis can be performed by aggregating the tuples on one or more of these

attributes.

To demonstrate relationships within tuples, similarity data between tuples is used. In

order to determine similarities between tuples, the tuples must be aggregated according

to an attribute of interest. This attribute is designated as the indexing attribute, as the

data are classified according to keywords (the keywords being the attribute values of

each tuple). An indexing attribute is an attribute by which tuples in the result set are

sorted. Referring to Figure 1.3, genre is an example of a possible indexing attribute, as it

organizes tuples based on the tuples’ value[s] for genre. An important note is that an

indexing attribute can contain multiple values for a given tuple, classifying that tuple in

all groups where it shares the value of the group (i.e. movie ID 659 can be indexed to

both Comedy and War).

Relationships between aggregations can be stored in one of a number of data structures.

In visualization, relationships are demonstrated through a number of different graphs. A

graph consists of a set of vertices connected by edges, as shown in Figure 1.4. A vertex

is a point in space with positional values for each dimension. A two-dimensional space

like the one shown in Figure 1.4 would produce a vertex with two positional values (x, y).

Given two vertices, an edge is a line connecting two vertices.

To demonstrating similarity or distance scores for a set of tuples grouped by genre, for

example, a tree of vertices and edges can be created, where the vertices are representative

of the different possible values of the indexing attribute, and the edges are weighted with

a score calculated to represent the similarity between two connected vertices. In this

work, a maximal spanning tree is used to represent the calculated relationships between

Chapter 1. Introduction 9

Figure 1.4: A tree, a type of graph.

attribute values. A maximal spanning tree consists of a set of vertices, representing every

different possible value a tuple can have for a selected indexing attribute, and a set of

edges. For a tree to be maximally-spanning, every value must be represented in the set

of vertices, and each vertex must be connected to at least one other vertex. The set of

a vertex’s edges must contain an edge that connects it to the vertex it has the highest

similarity score with.

In order to model similarities, scores must be computed that show the strength

of connection between vertices, or the degree of similarity between two values in a

given attribute. Scores such as the Jaccard similarity return a value bound between

zero and one, which lends itself easily to use as a percentage. Given two sets A =

Tom, Jane,Marty, B = Tom,Lewis, Carrol, the Jaccard similarity of these two sets is

calculated as
A ∩B
A ∪B

. The result of this calculation with the given sets is 1/5, producing

Chapter 1. Introduction 10

a similarity of 0.2.

1.4 Related Work

With respect to visualizing high volumes of data, many different approaches have been

taken in different contexts. When working with large graphs as datasets, graph decompo-

sition and reduction may be necessary in order to present the graph to the user. Kruskal

provides a method for creating a minimized structure, within which the similarities of a

graph can be embedded [18]. In work presented by Ahmed et al., a method for graph

decomposition is presented. This decomposition is achieved by partitioning the graph to

minimize the number of neighbouring vertices [3]. Calculating similarity values on the

input data set may be required before visualizing the data. A possible tree structure for

use in live updating visualizations is presented by Beygelzimer et al., where the authors

describe a tree which is space-constant, reducing the edges contained while maintaining

the performance properties of a full navigating net [4]. In creating graphs, Tang et al.

(2015) presents a method for embedding information networks in low-dimensional spaces

using edge sampling and the satisfaction of an objective function that preserves network

structures [26]. Our work computes input scores based on the technique described by

Kruskal, focusing on the edges with the highest weights to create a maximal spanning

tree instead of a minimal spanning tree [18]. This set of nodes and edges forms our input

graph for layout generation.

To prepare data for visualization, the dataset may need to undergo the process of

dimensionality reduction - selecting a representative subset of the set of a dataset’s at-

tributes - to fit the 2D or 3D visualization medium. Yan et al. present a graph embedding

framework, defining both the objectives and framework with experimental evaluation

[28]. Dimensionality reduction is further explored by Hinton and Roweis, where the

authors define a method for performing dimensionality reduction to place objects in a

Chapter 1. Introduction 11

low-dimensional space while respecting their similarities [13]. This method uses a natural

cost function to create a gradient that adjusts embedded objects in the lower-dimensional

space. An application of this work is present in work by Cook et al., where the stochastic

neighbour embedding method is used to visualize pairwise similarities by using conditional

probabilities with aspect maps [7]. Our work performs dimensional reduction by relying

on a user-defined indexing attribute to determine similarity data between aggregate nodes

based on the indexing attribute.

After dimensionality reduction has been performed, visualization methods designate

positions of data points in two or three dimensions. An extension of SNE coupled with

visualization application is presented by Van der Maaten and Hinton, describing visualizing

high-dimensional data by extending the SNE method [27]. The work presented by Tang

et al. (2016) tackles the visualization of high-dimensional, large-scale data by creating an

approximated nearest-neighbour graph, presenting the graph in the lower-dimensional

space [25]. Another visualization method is shown in work presented by Novotny [20].

Novotny describes the visual abstraction method of visualizing large data, providing

discussion on the challenges faced when working with large data. With respect to data

presentation methods, Singh et al. present an alternate method of showing query results

with many tuples by selecting representative tuples as a representation of the query result

[23]. Kargar et al. show query results by identifying and ranking answer trees based

on query keywords [15]. Our pipeline layout generation uses the algorithm described by

Fruchterman and Reingold, along with hyperparameter tuning, to determine positions of

nodes [10]. These positions can then be used to create a visualization.

Network and graph layout algorithms have been presented in other works. Applications

can use frameworks such as the one described by Fruchterman and Reingold, wherein

a framework for graph drawing using a force-based simulation is described [10], an

implementation of which can be found in D3.js [1], a collection of data-driven documet

manipulation algorithms. Enright and Ouzounis present an automatic graph layout method

Chapter 1. Introduction 12

BioLayout to visualize protein sequence similarities [8]. BioLayout uses a variation of

force-directed layout generation, annealing layout based on temperature reduction to

slow node movement to a final position. Jacomy et al. also utilize a modification of the

force-directed layout described by Fruchterman and Reingold to continuously generate

layouts of networks [14]. ForceAtlas2 uses a ”scaling parameter” in place of attraction

and repulsion to generate layouts in a single pass. Sander creates layouts of graphs

by partitioning nodes and determining their position by one of two methods, followed

by determining a degree of edge bending [22]. Ko and Yen combine a modified stress

majorization node placement algorithm with torque equilibrium to generate graph layouts

[16]. These graph layout generation methods vary from our work as we take a meta-layout

generation approach with an existing, proven layout algorithm as opposed to a single-pass

layout generation approach. The pipeline graph layout method drives a force-directed

layout in a multi-pass approach, utilizing hyperparameter tuning to generate layouts.

An application of network layout is the visualization of social networks. Sköld describes

methods by which social networks can be analyzed and layouts for social networks can

be generated, containing an implementation of a social network visualization tool [24].

Mccarty et al. compare social network visualizations generated algorithmically from alter-

pairs with personal network visualizations determined manually by users [19]. Christakis

and Fowler demonstrate the visualization of social networks in an epidemiological context,

citing algorithms that are used to draw undirected large graphs and showing visualizations

of social networks [6]. Heer and Boyd present a tool for visualizing social networks,

the layout being generated using a spring embedding algorithm [12]. Boccaletti et al.

investigate the characteristics of multilayer networks and the use of adjacency matrices to

determine multilayer network structure, in applications such as social networks [5]. Social

network visualization is restricted by attribute, where our approach to generating graph

layouts can be used to organize data in an ad-hoc fashion according to a user-defined

indexing attribute. The notion of a user-selected indexing attribute allows for attributes

Chapter 1. Introduction 13

to be selected that create both sparse and dense graphs.

1.5 Problem Definition

Given a collection of relational tables {R1, R2, ..., Rn} and a set of millions of entities,

defined to be tuples T in a query Q : (R1 ./ R2 .// Rn) having a key in the set

of attributes I ⊆ A{A(Ri) : i = 1, 2, ..., k}, consider the tuples contained within the

projection ΠI(T). This projection restricts the fields of T present solely to the indexing

attribute I.

Problem 1. Relationship Determination: ΠI(T) contains a collection of tuples

grouped according to I. Calculate Sim, the relationships between two nodes Na, Nb in

ΠI(T), for all pairs of nodes, where a node Na is the aggregate of all tuples in ΠI(T) that

contain the value a.

Problem 2. Given Sim, produce a data structure MST that contains all nodes N in

PiI(T), coupled with a set of edges E. E must contain the edge connecting a node Ni to

its most similar neighbour node, for all N .

Definition 1. Window (D): The window is a two dimensional bounding box with

width W and height H. The area of the window is A : W × H. A approximates the

area of a computing device screen. With respect to mobile and small screen devices, the

dimensions of A are restricted greatly. The number of pixels within A is approximately

the number of tuples in ΠI(T).

Problem 2. Node-Neighbour Positioning: Given the projection of tuples based

on the indexing attribute, map ΠI(T) to D. For each node N in MST , position N such

that the distance to each node N is connected to is minimized. In a spatially-restricted

window, reduce the length of the edges connecting two neighbouring nodes as much as

possible to conserve space.

Problem 3. Proportional Node Sizing: Given the number of tuples in a node in

Chapter 1. Introduction 14

ΠI(Q), scale the nodes in D such that each node placed within D approximates its size in

ΠI(Q) relative to the cardinality of tuples in Q. As space on a mobile screen is restricted,

each node must fit within the window while also approximating the percentage of tuples

that contain the value of the node.

Definition 2. Layout (L): A layout is the positions of all nodes and edges contained

in MST within D. Each layout consists exclusively of the positioning of the tree’s

components.

Problem 4. Whitespace Reduction: Given a layout L, nodes can have a variable

amount of empty space between them. Eliminate the intermittent whitespace as much as

is possible in order to most efficiently use the pixels available on a mobile device.

Chapter 2

Methodology

In this chapter we will briefly review the problem being addressed by the automatic

pipeline method layout generation algorithm. The issue of data preparation encompassed

by the pipeline algorithm will also be touched on. The algorithms for each step of

the pipeline will then be defined, and the algorithms implemented together in a layout

generation system will be presented as a visual walkthrough of the stages of the pipeline

algorithm. An implementation of the discussed algorithms will be described in detail,

topics of which include the relevant program environment and constructs employed to

enable the system to perform tasks outlined in the algorithm discussion.

2.1 Algorithm

A set of problems have previously been defined in Chapter 1 that describe the prob-

lems associated with graph layouts of large data visualizations, both in general and on

screen spatially-restricted devices such as mobile phones and tablets. What follows is a

presentation of a pipeline algorithm being introduced to solve the previously-outlined

constraints. The pipeline-style solution will be described, and each stage of the pipeline

will be introduced in detail.

15

Chapter 2. Methodology 16

2.1.1 Pipeline Solution

As previously discussed, there are two primary problems to be addressed. The first issue

is the task of generating a layout on a high volume of data, wherein the layout must

adhere to environment-specific constraints. In presenting a high enough volume of tuples

to be described as big data, the speed of layout generation decreases greatly. To preserve

suitability for user interaction, the layout generation process must be as unhindered by

increase in volume of points as possible. Even moderate decreases in responsiveness can

greatly impact the user experience.

The second problem to be addressed centers around the issue of solving multiple

constraints. A common method of resolving multiple constraints involves attempting

to solve all constraints simultaneously, performing actions that are more complex in

nature and considering all constraints with each action. In the case that some constraints

are in conflict, cost-benefit and requirement analysis is performed in order to identify a

constraint’s importance, determining an acceptable threshold of lower quality for a given

constraint. To resolve the defined problem these constraints possibly in conflict must be

resolved to generate a layout, a pipeline methodology is proposed. The pipeline method

of constraint resolution follows a logical ordering.

Definition 3. Pipeline Constraint Resolution: Given a set of constraints C :

{Ca, Cb, ..., Ci} with varying objectives for resolution, organize the constraints such that

they follow a particular order O. Resolve constraints in the order they appear in O.

Pipeline constraint resolution allows for a system to deconstruct a problem that may

be too complex to resolve automatically given a set of constraints, enabling components

of a system to solve the problem. By decoupling conflicting constraints, a system can

resolve a given constraint using simpler approaches. This approach enables automatic

constraint resolution.

The pipeline approach to constraint resolution allows the problem of layout generation

to be rendered automatic. A system that can automatically generate layouts provides

Chapter 2. Methodology 17

opportunity for a generalized approach to solve for combinations of constraints for different

environments. The components of the pipeline method for automatic layout generation

will be outlined in this chapter.

2.1.2 Score Calculation

In order to present the relational dataset in 2D space, network data is provided to the

system. In the absence of a prepared network relationship, one can be induced. This

network data represents the similarity between elements of ΠIσk(Q). In our system,

similarity between nodes of I is represented by the Jaccard set containment score. The

Jaccard set containment score between two nodes (j, j)′ in I is represented as:

sim(j, j′) =
I(j) ∩ I(j′)

max(I(j), I(j′))
(2.1)

where I(j) = ΠIσj(Q) is the collection of keys in j, I(j) ∩ I(j′) is the set of shared keys

between j and j′, and I(j) ∪ I(j′) is the union of keys in j and j′. The result of (2.1)

for any (j, j′) is bound between
[
0, 1
]
, where 1 is complete similarity and 0 is complete

dissimilarity. These similarity measures can be approximated to improve performance. In

an end-to-end system, the Jaccard set containment score is approximated for efficiency.

2.1.3 Annealing

Nodes in ΠIσk(Q) are placed. Once nodes are placed, their positions are driven through

a force-directed simulation, governed by a modified equation in [10]:

pj(i+ 1) = pj(i) +
∑

F (2.2)

F = k × pj − g + α

n∑
i=1

C (2.3)

where pj is the node j’s position, g represents the attractive force of gravity, C is the

repulsive charge force, α represents the system cooling factor, and k × pj is the displaced

spring force. Each node will have a repulsive forced applied by its geometric neighbours.

Chapter 2. Methodology 18

Input: x Input Node Positions P (N) and Velocities V (N)

Output: x Updated Node Positions P ′(N)

Energy ← IncreaseEnergy(Energy);

for i ← 0 to x do

Vi = Vi + Fi;

P ′i = P ′i + Vi + ki;

end

Input: Input Node Velocities V (N)

Output: Updated Node Velocities V ′(N)

On simulation time tick: for i ← 0 to x do

F (i) =
∑m

0 (k)− C + g V ′I = Vi − Fi;

end

The force-directed simulation has its energy increased by a fixed amount. This energy

influx is constant on each iteration. As energy is introduced into the simulation, the

velocity of each node increases. The nodes’ positions shift according to the change in their

velocity. As nodes are connected, their neighbours will exert a spring force proportional

to the strength of the spring and the nodes’ velocities. The simulation energy cools after

receiving an increase in energy. Nodes’ momentums decrease, and they settle toward a

position at the end of each annealing phase. After the initial injection of kinetic energy,

each node slowly decelerates, the force of dragging connected nodes reducing the velocity

of nodes in an inelastic environment.

2.1.4 Resizing

During the resizing phase, nodes have their size determined according to a nonlinear

transformation. Resizing is governed by the following equations:

r = (a+ s(b− a))×O (2.4)

Chapter 2. Methodology 19

s =
1

e−c(x−0.5) + 1
(2.5)

The node’s raw size determines the percentile x it belongs to. The sigmoid function 2.5 is

sampled at x, scaled by c. Equation 2.4 determines the pixel size of the node, having a

minimum size of a, scaled at a rate of O per resizing. Genres falling in different percentiles

can be seen in scaled in figure 1.4, where more populated genres scale to larger radii.

During the resizing phase, collision detection between nodes is enabled for the duration

of the pipeline. As nodes initially needed to be able to freely shift toward locations to

remove edge crossings, the system does not enable collisions during said phase. Once the

initial layout is determined, collision detection is enabled to prevent major restructuring

of the initial layout through the compacting and resizing phases. Collision detection is

performed as follows:

Input: Input Node Positions P (N)

Output: Updated Node Positions P ′(N)

for i ← 0 to x− 1 do

for j ← i to x do

if Pi overlaps with Pj then

Pi and Pj are shifted away from the collision point ;

else

Only charge, gravity and spring forces act on Pi and Pj;

end

end

end

2.1.5 Compacting

Consider equation 2.4. The cooling parameter α reduces in this phase. The magnitude of
n∑

i=1

C decreases, compacting the nodes together. Figure 1.4 shows a layout compacted

Chapter 2. Methodology 20

after the resizing phase. As demonstrated, the nodes have been drawn together by the

reduction in charge, and similar genres are placed with their neighbours.

Input: Node Positions P (N), Charge C

Output: Updated Node Positions P ′(N), Charge C’

On simulation time tick:;

Reduce C by a fixed interval ;

for i ← 0 to x do

F (N) =
∑x

0(k)− C + g;

P ′(N) = P(N) + F(N);

end

2.2 Visual Walkthrough

The pipeline system is demonstrated using captures of each stage, accompanied by a brief

description describing the changes in the simulation at each step.

The system constructs a maximum spanning tree from the provided similarity data,

using Kruskal’s algorithm [18]. Edge weights are determined based on the paired node

similarity values obtained from Equation 2.1. Edges with the highest weight are selected,

and if one of the edge’s nodes is not in the spanning tree, the edge is added to the spanning

tree. This set of edges forms the input graph used by the system in layout generation.

2.2.1 Layout Resolution

The tree is introduced to the canvas with random node placements. This introduces edge

crossings between nodes and, due to the charge and gravity parameters, a high volume of

inter-node whitespace. At this stage, the nodes are shifted due to the high amount of

initial energy present in the simulation, their velocities degrade rapidly as charge, spring

Chapter 2. Methodology 21

Figure 2.1: Initial placement with momentum.

force and gravity oppose their movement. Upon laying out nodes in their initial positions,

edge crossings are introduced to the layout.

Definition 4. Edge Crossing: Given four nodes Na, Nb, Nc, Nd and two edges con-

necting pairs of nodes Eab, Ecd, an edge crossing occurs when the two edges Eab and Ecd

intersect i.e. there exists a point p in the window such that both Eab and Ecd contain p.

Due to the forces involved in the automatic layout generation, nodes in Eab will not lie

directly on nodes in Ecd. This means that p can only belong to the set of points in {E} if

Na and Nb lie in between Nc and Nd but on opposite sides of Ecd.

Annealing

In order to remove edge crossings and reposition the nodes, the simulation is annealed.

The simulation ’ticks’, receiving an increase in energy. This energy translates to an

Chapter 2. Methodology 22

Figure 2.2: Initial annealing.

increase in momentum for the nodes of the tree. Nodes will shift around the canvas in

an attempt to produce an untangled tree. At this stage, collision resolution is disabled.

The goal of annealing is to satisfy the objective described in Problem 2. While annealing

at this stage does not directly contribute to a reduction in inter-node whitespace, the

removal of edge crossings will facilitate later stages in the pipeline to achieve the objective

described therein.

Consider equation 2.2. This equation governs movement of nodes in the system. In

the annealing phase, equation 2.3 drives the motion of all nodes on each tick of the

simulation. Node position is settled by the degradation of node velocities. This is tuned

by an internal decay coefficient f of 0.9. Using figure 2.2 and the IMDb dataset for

reference, genre positions are calculated according to equation 2.2, and move at a rate of

v(i) = v(i− 1)× f to their position.

Figure 2.3 demonstrates the annealing of nodes progressing by introduction of energy

Chapter 2. Methodology 23

Figure 2.3: Intermediary annealing.

to the system. As the annealing phase continues, nodes are displaced by increase in

momentum caused by the simulation receiving energy. These nodes drag their neighbours

as they travel, contorting the shape of the tree. As nodes are shifted through this

introduced energy, the secondary goal alluded to in Problem 2 is approached - the

geographical neighbouring position of nodes directly connected by an edge.

As shown in Figure 2.4, the general structural layout of the maximal spanning tree has

approached a stable state. Branches are not horribly displaced further by introduction of

energy to the simulation, as nodes are not pushing each other away to alter the tree’s

layout.

Chapter 2. Methodology 24

Figure 2.4: Final anneal.

Resizing

Once the node positions have been finalized, the pipeline is ready to begin solving the

second constraint as described in Problem 3. This constraint is focused on ensuring

the representative size of the node matches the population representation of the node’s

value in the source dataset. Directly, a node’s representative size of the distribution of

tuples that contain that node’s value can be achieved using a non-linear scaling function.

Window W has a finite set of pixels as mentioned in Definition 1.. To provide a visual

indicator of the representation of a node’s values in the input data, the percentage of

tuples that contain said node’s value can be approximately translated to the window.

The percentage of pixels a node occupies in the window approximately represents the

percentage of tuples that contain that node’s value for the indexing attribute.

Chapter 2. Methodology 25

(a) Initial resize. (b) Layout begins to perturb

due to collision detection.

Figure 2.5: Two node resize steps.

Figure 2.5a shows the initial resizing of nodes. The nodes begin resizing according to

Equation 2.4. Nodes are resized as a percentage of their final size, so even smaller nodes

will increase in size on the first iteration. These current sizes are not indicative of the

tuple value distribution due to the stepwise resizing approach, so further iterations of

resizing are to be performed.

An additional resizing step is demonstrated in Figure 2.5b. With the nodes being

bound to the window’s walls, the tree structure will slightly warp as nodes on the periphery

push against the hard boundaries. This warping effect contributes to a change in the

amount of inter-node space, touching on the objective described in Problem 2 while also

moving toward completion of Problem 3.

The shift in tree structure is clearly visible in Figure 2.6. This conveniently reduces

the amount of space some branches will have to travel during the compacting process,

impacting the objective of Problem 4. The previous two figures show the interplay between

the shift in quality of multiple constraints, an interesting side-effect of force-directed

layouts being used to solve for constraints tareting positioning and space.

Chapter 2. Methodology 26

Figure 2.6: Final resize.

Compacting

Once the resizing phase has completed as shown in Figure 2.8b, the system can move to

resolve the final constraint described in Problem 4. In order to compact, the simulation

parameters are tuned as discussed previously. Gravity, charge and edge strength draw

the nodes together into a cluster. Equation 2.2, as previously mentioned, governs the

movement of objects in the window. During the compacting step, charge and gravity

parameters in this equation are iteratively tuned to produce a stepwise compacting effect,

collapsing the tree layout into itself.

Refer to Figure 2.7. As the charge parameter is reduced in a stepwise fashion, the

reduction of used space is gradual in nature. This allows nodes to slowly fill into place,

rather than be jarringly thrown across the canvas. A gradual compacting of the layout is

Chapter 2. Methodology 27

Figure 2.7: Tuples placed within the window.

important in order to minimize the disturbance to the objective described in Problem 2

regarding the positiong of connected nodes as neighbours.

In Figure 2.8a, the layout is mostly compacted after the second compacting step.

There is still some whitespace present, indicating that Problems 2 and 4 are in the process

of being resolved, but that the constraints are not yet resolved.

Examination of the smallest nodes shows that they have shifted around the large

nodes that they are nearby, or attached to, as shown in Figure 2.8b. This slightly reduces

the unusable whitespace that poses an issue. When the indexing attribute does not have

an excessively high number of nodes, solving the objective described in Problem 4 does

not pose a threat to the quality of Problem 2.

Chapter 2. Methodology 28

(a) Intermediate compacting. (b) Fully compacted.

2.2.2 Population

With node positioning finalized, the system preserves the layout for future use. An example

usage of the layout generated by the system is shown in Figure 2.9. The visualizatyion,

implemented using the d3 hexbin.js plugin, distributes hexagonal cells across the area

covered by the generated layout within the canvas. A cell’s colour is determined chiefly by

the node that it rests within. Each node within the layout has a colour associated with it,

selected randomly. Any cells that lie directly within the area of a given node’s position

in the final generated layout are assigned the colour of the node. In the cases where a

cell is positioned in between two nodes, the cell’s colour is determined by the node it is

closer to. Additional parameters such as border thickness and opacity are available to

be leveraged in application-specific contexts. Exploration of the use of these parameters

will be exercised further in Chapter 3, where a use case of the layout will be provided

alongside with methods in which the characteristics of the hexbin library can be used to

provide information to the user.

Chapter 2. Methodology 29

Figure 2.9: One possible use of the layout, differentiated with colour and tiling.

2.3 Implementation

A version of the described system has been implemented in a server environment. 1 In

order to implement the pipeline technique, a server has been written in ClojureScript

that calculates similarities for a given attribute, creating the input maximal spanning tree

stored as a JSON file. Within the JSON file, the degree of similarity between each node

is provided, along with the count of entries for each individual attribute value. Accepting

this information enables the server implementation of the layout generation simulation

to exclude the similarity generation task from the pipeline itself, making it an external

component that allows the pipeline to accept data based on any possible similarity metric.

The system is implemented using a combination of Clojure and JavaScript libraries,

1The system is hosted at db.science.uoit.ca/share/imdb.

Chapter 2. Methodology 30

code generated through the ClojureScript compiler. The d3.js library is used to implement

a force-based simulation that resolves the layout generation process. Clojure’s core.async

library contains several relevant constructs required for asynchronous execution. To pre-

pare for a presentation of the core constructs and technologies used in the implementation,

a discussion of Clojure is necessary.

2.3.1 Clojure

Clojure is a functional programming language that runs on the Java Virtual Machine and

the JavaScript engine. The Clojure language is a Lisp dialect designed for concurrent

program development. The Clojure compiler extends the Lisp philosophy that treats

functions as data, which allows for code chunks to be accessed and transformed. This

property of homoiconicity is powerful in conjunction with the core syntax of Clojure, the

S-expression. An S-expression is a nested tree structure, the leaves of which are either

atomic values or S-expressions. In Clojure, functions are written as S-expressions, with

the leaves being either values, symbols, or function calls. The nested functions, being

S-expressions, can also have a number of atoms or function calls as leaves. The syntax of

Clojure is demonstrated in the following toy function definition.

(defn sum [x y]

println (+ x y))

Figure 2.10: A demonstrative function definition.

The S-expression in Figure 2.10 is a very simple function that, given two parameters,

prints the sum of the two input parameters. The function forms an abstract syntax tree

with a height of 4. The value of the sum expression is the atom of the S-expression

containing the println function call. In the system implementation, a number of more

complex functions have been written that demonstrate nested S-expressions in practical

Chapter 2. Methodology 31

contexts. Consider the functions shown, which identifies and corrects any overlapping

nodes in the layout. A number of S-expressions are present in both functions, and the

use of functions as data is present as well.

(defn resolve-collision!

[p node]

(let [dx (- (.-x node) (.-x p))

dy (- (.-y node) (.-y p))

l (sqrt (+ (* dx dx) (* dy dy)))

r (+ (.-size node) (.-size p))]

(if (< l r)

(let [l (* 0.5 (/ (- l r) l))]

(set! (.-x node) (- (.-x node) (* dx l)))

(set! (.-y node) (- (.-y node) (* dy l)))

(set! (.-x p) (+ (.-x p) (* dx l)))

(set! (.-y p) (+ (.-y p) (* dy l)))))))

Figure 2.11: Functions in the system implementation resolving collisions.

The resolve-collision! function determines the distance between two given nodes as

well as their combined radius. If the distance between the two nodes is less than their

combined radius, a collision is detected. The determination of the distance between nodes,

as well as the determination of the combined radius are both S-expressions that contain

further S-expressions. The logic contained within the let statement that adjusts the

positions of the nodes such that they are not colliding is another S-expression. In other

environments, the adjustment of variable values along with function calls that use their

updated values may be written sequentially, but S-expressions enable the nesting of these

separate tasks.

Chapter 2. Methodology 32

2.3.2 Concurrency

When building a system that has both an active user-facing front end responsible for

portraying information to and receiving input from a user, as well as data processing

handling in a non-visible back end, problems impacting one end of the system can arise.

Components that are self-contained operate without relying on input from any other

system unit, in turn preventing other units from waiting on results of computations being

performed by these units. A simple example of unit-dependent functional interference

with respect to the implemented system involves the presentation of a specific step of the

layout generation to the user. The front end layout can only present the state of a step

of layout generation once all components of the layout that are being manipulated by a

function in the pipeline have had their parameters adjusted. While even one component

is still in processing, the visual presentation must wait for a response on the state of that

component before updating the canvas.

With respect to the pipeline, in the case of annealing, all nodes have their positions

updated based on forces acting on them both within the system as a whole and from other

nodes in the vicinity, as described previously in Equation 2.3. If computation of the sum

of forces on each nodes’ position change is performed quickly, then calculating each node’s

positional change sequentially is not an obstruction - the task completes quickly and the

front end will not wait on the result. However, if the calculation of the change in a node’s

position takes a lot of time, then performing these calculations in order will force the

front end to wait longer for an updated set of positions. This model of task completion,

wherein a set of tasks is executed in order, is known as synchronous implementation, with

sequential execution. To bypass the previously-described scenario in which a front end is

waiting on slow, ordered task completion, a different model of computation is used.

Asynchronous execution is the programming model by which tasks are completed

in an unordered fashion. Consider the calculation of nodes’ positions in the annealing

stage of the pipeline method of layout generation. In a synchronous environment, each

Chapter 2. Methodology 33

node’s positional change would be calculated in sequence. Asynchronous execution

distributes each node’s positional change calculation to a concurrent construct, which

are all performed simultaneously and independently of each other. The distribution of

tasks across multiple worker units results in high reduction of run time investment for a

high number of computations. With respect to the pipeline layout generation system, this

improvement in performance via reduction in time required for computation is relevant

in two ways. Firstly, as mentioned before, systems which have a front end waiting on

state updates reduce the possibility of encountering a wait, maintaining a responsive

environment for user interaction and application. The second relevant factor comes in

the form of scalability. Distributing tasks across a set of workers allows for a system to

produce layouts on attributes with a higher potential number of nodes than in synchronous

implementations, which enables systems like the layout generation system to generate

layouts on a larger range of attribute node cardinalities.

Ahead, a concurrent construct functioning as a cornerstone of the implementation

will be introduced and discussed. The definition and functions of the channel will be

provided, and the use case of the channel with respect to the layout generation system

will be explained. Go blocks are also presented, a macro that implements asynchronous

behaviour using channels.

2.3.3 Channels

The channel is a construct that processes can use to store and retrieve information.

Processes and channels are defined in the core.async library.

Definition 5. Process: A process is a concurrent logical object that operates on

observing an event.

The process is the basic operator through which asynchronous execution is enabled.

A set of processes is generated by the go-block based on the number of cores of the

currently-used computer. These processes are run in a thread pool with a finite, defined

Chapter 2. Methodology 34

number of threads. Processes run on different threads in the thread pool as events on

listened objects are detected, enabling asynchronous task execution. Processes listen to

events occurring within channels.

Definition 6. Channel: Consider data of any type as a message M generated by work

performed by a process P. A channel is a construct that accepts a messages created as a

result of work done by one of a set of processes P1, ..., Pn and stores them. The number

of messages a channel can hold is described as the channel buffer. Any given P can put

a message in a channel, or get messages from a channel based on which channel/s P

is watching. If a channel has more messages placed on it than its defined capacity, the

thread that the channel is defined on blocks.

The basic functions of a channel can be shown in the code presented in Figure 2.12.

As a channel is a construct that receives values and stores them to be extracted by other

processes, operations and channel access occur in the context of threads.

(let [ch (chan 10)]

(thread (>!! ch "Channel operations in Clojure - in action!"))

(println (<!! ch))

(close! ch))

Figure 2.12: Basic channel functions and behaviour.

The fundamental operations involved in channel creation and use are shown in Figure

2.12. Channel creation is facilitated using the chan function. (chan) can optionally be

called with a numerical parameter; the number provided to the function defines the buffer

size of the channel, or how many values a channel can hold before it forces blocking

putting additional values. Two other methods of channel creation set up the channel

such that the action of putting values does not block - when the buffer is filled, a value is

dropped from the channel. These functions are (chan (sliding-buffer n)), which creates

a buffer of size n and removes the oldest value in the buffer when it is full, and (chan

Chapter 2. Methodology 35

(dropping-buffer n)), which is similar to sliding-buffer, but removes the newest value from

the buffer when the buffer is full. Filling the channel is done by putting values in the

channel, using expressions containing the ¿!! blocking put operator. These values are

referenced using the ¡!! blocking take operator. Blocking is one of two classes of waiting,

and is described further ahead. When using standard threads, put and take operators

must stop execution until there is either space to put values in a channel or there is a

value to remove, respectively.

2.3.4 Go-blocks

Much of the asynchronous functionality of channels comes from the go-block. Consider

the following code:

(def ex-chan []

(let [ch (chan)]

(go (>! ch 4))

(assert (= 4 (<!! (go (<! ch)))))

(close! ch))

)

Figure 2.13: Basic go-routine syntax and use.

In examining the go block in Figure 2.13, the basic semantics of go blocks are presented.

A go block encapsulates an expression that interacts with a given channel. There are two

go-routines present in Figure 2.13. The first go-routine places a values in the generated

channel ch while freeing the thread for execution. This go block demonstrates the structure

of a go block in a simplistic fashion - go blocks consist of the go macro followed by an

expression that interacts with a channel. Go blocks can be used at any depth within an

S-expression. The second go block takes the value present within the defined channel and

checks whether it satisfies an expression. Both go-routines create a thread on execution

Chapter 2. Methodology 36

- using a go block within a doseq expression creates a thread each time a go-routine is

executed. The body of the go block executes asynchronously on the thread generated by

the associated go block.

The concurrency model within core.async defines two different types of waiting. One

previously mentioned type of wait is blocking - a thread will hold execution of tasks until

the current task is completed. This model of waiting prevents further execution, which in

turn inhibits the responsiveness of an application. Large amounts of blocking can interfere

with the speed of task completion - threads blocking do not perform work, which delays

the completion of their task set. The second type of wait is parking. When a given process

is waiting when park waiting is used, the waiting process is removed from the thread

it is on, and another process is placed on the thread instead. The difference between

parking and blocking can be summarized thusly: with blocking, a waiting process remains

on the thread until completion, while with parking the waiting process is moved off of

the thread and multiple process execution timings are interleaved on the thread instead,

maximizing the amount of time that a given thread is allowing non-waiting processes to

execute. With respect to processes working on channels, the two operations of interest are

put and take. The operations >! and <! are parking put and parking take, respectively.

As explained, these free the current thread to execute another process. The other two

operations >!! and <!! refer to blocking put and blocking take. As discussed, blocking

operations do not free up the current thread to execute another process.

Within Clojure, a go-block (or a go-loop) is a concurrent construct. A go macro signals

a position where code is to be executed asynchronously. The go-block itself returns a

channel immediately to the thread that calls it. The body of a go-block will then execute

asynchronously, and the results from the completion of the body evaluation will be put

into the returned channel, where the returned data can then be taken and processed or

used elsewhere in the system.

Chapter 2. Methodology 37

2.3.5 Channels and Go Blocks in the Pipeline

With the two core asynchronous tools, channels and go blocks, described in detail, it

is now possible to explore how these constructs are used in the system. Channels and

go-routines enable an asynchronous process execution method that enable the layout

generation pipeline to function.

The pipeline system implementation utilizes channels to identify which stage of the

pipeline the layout generation process is currently in. The associated function is shown

in the following figure. The contents of a given message are the state of the simulation.

In the implemented simulation, a simulation state is composed of a set of nodes, edges,

and simulation force parameters. Within the context of a constraint-resolving pipeline,

processes are defined that operate based on the current stage of the pipeline. The messages

possibly stored within a channel specify the stage of the pipeline that the simulation

has currently progressed to. The system incorporates two channels; the first channel C1

stores the progressed step of the pipeline, while the second channel C2 stores the current

step. Processes take the current state from C2, checking what stage of the pipeline is to

be executed. Once the stage has been identified, the corresponding tasks are evaluated,

progressing the state of the simulation. The process that took the message from C2

increments the message and places it in C1. C2 is then updated with the message in C1.

Once the message identifies a non-existent stage of the pipeline, the channels are closed.

A closed channel does not accept any further messages put in the channel. This prevents

the system from attempting to continue when tasks are not defined further.

The system’s use of channels is shown in Figure 2.14. The previously-described series

of operations are defined within a pipeline function. The pipeline function demonstrates

the culmination of all previous implementation discussion with S-expressions containing

functions as data, channel definition, putting and taking, and go-blocks that return

channels as well as function body value passing to channels.

Chapter 2. Methodology 38

(defn pipeline

[]

(let [c1 (chan)

c2 (chan)]

(go-loop [n 0]

(let [ping (<! c2)]

(println "[PIPELINE] Received" ping)

(let [stage (get-stage n)]

(if stage

(do (>! c1 stage)

(recur (inc n)))

(do (js/console.debug "Closing c1")

(close! c1))))))

[c1 c2]))

Figure 2.14: The pipeline function.

Chapter 3

Applications

This chapter will provide a relevant application of the layouts generated by the pipeline

algorithm. Systems that produce query results with extremely high volumes of tuples are

commonplace and used in a variety of scenarios, including data analytics, data cleaning

and business logic. One such system will be referenced and described briefly. The system

in question will then have its results evaluated with layouts generated by the pipeline

system. The objective is not only to show that the results of the query answer system

are presented visually, but that the incorporation of layouts allows further intuitive

comprehension and pattern recognition of the provided answers. This application can

then extend to other systems that operate within the same domain.

3.1 Jaccard Similarity as a Ranking Measure

Consider a system such as the one described in [15]. The system, provided with a labeled

graph using previously-defined node and edge weights with an accompanying set of

keywords as a query, identifies a set of trees containing all the keywords in the query.

Each tree is a join-network of shortest path connections between nodes. This set of trees

is ranked according to a defined quantity - the edge weight objective.

Definition 9. Edge Weight Objective (EW): Given an answer tree T composed

39

Chapter 3. Applications 40

of a set of nodes connected by a set of edges e1, e2, ..., em, the answer tree’s edge weight is

defined as EW (T) =
m∑
i=1

w(ei) with w(ei) defined as the weight of a given edge Ei).

Answer trees in the resultant set of trees are ranked according to the edge weight

objective, described previously. The minimization of the edge weight objective is a

NP-hard problem, as shown in [11]. As the problem is NP-hard, the system utilizes a

greedy algorithm to identify answer trees which satisfy a minimized edge weight objective.

To efficiently determine the nodes within an answer tree, the system computes a 2-hop

cover index, storing the shortest distance between every node and each other node in the

graph.

To find an answer, the system implements a variation of the root semantic approach

as described in [11]. Each node in the full graph is considered as a possible root node for

an answer tree. To evaluate which trees are suitable answer trees, for each node in the

graph, a tree is formed with the closest node that contains the input keywords. Trees

with the smallest sum of edge weights are selected as the set of answer trees. The distinct

root semantic operation runs in polynomial time, making the answer selection algorithm

run in polynomial time.

Further, the system also incorporates an answer selection approach using the Jaccard

similarity as defined in Equation 2.1. The system thus provides three methods for returning

sets of answer trees that contain input nodes. The join networks can be determined and

ranked according to minimization of the edge weight, ranked according to the Jaccard

similarity functioning as a weight, or with a doubly-weighted combination of both of the

previously-mentioned weights, each weight scaled by an input lambda coefficient.

To show the difference in results generated by these different weights, consider the

system as presented in Figures 3.2a and 3.2b. 1 The Keywords field accepts two or more

input keywords contained within double quotes to signify individual keyword entries.

The user can select either the edge weight minimization, the Jaccard similarity, or the

1The eGraphSearch system is accessible online at http://data.science.uoit.ca:8080/graphsearch/web/P1.jsp.

Chapter 3. Applications 41

Figure 3.1: Resultant Query

combined objective ranking method. The top-k fields specify how many answers are

presented by the system. The top-k’ field determines how many answers of the top-k

set are selected for presentation. The distinction between these sets is straightforward:

top-k’ answers are reranked according to the Jaccard similarity scores of nodes within the

answer tree from the initial top-k set of answers selected by edge weight minimization.

The lambda parameter determines the degree to which each ranking method’s input is

considered. Depending on the input keywords, this process can produce very diverse

sets of answer trees that are suitable for different purposes. To demonstrate the possible

variability in result sets, some of the top answers from each ranking method have been

selected based on the input keywords ”Al Cerullo” and ”Robert [de] Niro”.

The answer trees presented in Figure 3.3 are the first three answers presented from

the previously-mentioned keyword search with the edge weights ranking method selected,

with a top− k parameter of 100, a top− k′ parameter of 20 and a lambda parameter of 0.

The root node of each of these trees are all films - titles that both Al Cerullo and Robert

de Niro have acted in. Executing the keyword search using the same input keywords

Chapter 3. Applications 42

(a) Input parameters using

Jaccard similarity.

(b) Input parameters using

edge weights.

Figure 3.2: The eGraphSearch system.

Figure 3.3: The top three answer trees selected based on minimized edge weight.

shows that the first eighteen answer trees all connect Al Cerullo and Robert De Niro

based on common projects. These trees are a visual presentation of a subset of rows that

would be retrieved if one were to run a query on a movie database searching for films that

contain both Al Cerullo and Robert De Niro, and would be of use in the same situations

where a user or developer requests project work histories of workers. For many cases,

directly querying a database would provide similar results that are easier to work with.

In Figure 3.4, the top three answer trees reranked based on Jaccard similarity are

shown based on a top − k parameter of 100, a top − k′ parameter of 20 and a lambda

parameter of 1.0. Of the initial 100 selected answer trees, each tree is ranked based

on their internally-determined Jaccard similarities. On evaluation, each root node is

Chapter 3. Applications 43

Figure 3.4: The top three answer trees selected based on Jaccard similarity.

shown to be the same type of entity as the input nodes - all the root nodes connecting

the input nodes are fellow actors and actresses. Entering the same input keywords and

parameters as described with the Jaccard Similarity ranking method selected shows that

all top twenty answers have root nodes that are people working in the same industry

as Al Cerullo and Robert De Niro. Initially, this may not seem as useful a response as

the answers provided by the edge weight ranking method, but a set of applications have

rapidly grown that utilize this type of result.

Social networks leverage these kinds of connections in many contexts: personal,

professional, academic and more. These answer trees provide valuable data for showing

relationships in a social network. With enough connections shown by the returned result,

the Jaccard Similarity ranking method can be used to find data required to build domain-

specific social networks and analyze the relationships between nodes in a particular domain

based on their shared project involvement. In the context of movies, such a network

can potentially show which movie industry professionals work together and point out

possible commonalities in their genres of choice, or show preferences between professionals

in different roles (i.e. which actors prefer to work with a particular director).

Chapter 3. Applications 44

3.2 Visually Enriching Query Answers

Answer trees demonstrate a connection between input nodes through common nodes. As

an illustrative example, the answer tree presented in Figure 3.1 demonstrates a connecting

node Cassandra Barbour between actors Steve Martin and Meryl Streep, connected

through a film that Cassandra Barbour has appeared in with Steve Martin (Jiminy Glick

in Lalawood), and a work she has appeared in with Meryl Streep (Rendition). The set of

films that Meryl Streep has participated in function as the domain of movies of Meryl

Streep. Similarly, the films that Steve Martin and Cassandra Barbour have worked in are

their domains. These domains are used to compare the similarity between actors based

on common works.

Application: Answer tree node relationship presentation. The enrichment of

a given answer tree Ti can be defined as follows. Given the nodes N1, ..., Nk of the tree

that represent input keywords K1, ..., Kk as well as connecting node(s) Nc1, ..., Nck′ of

the same type as input and the nodes’ domains Da, ..., Dk, generate layout L using an

indexing attribute. Augment the layout nodes in L with visual indicators that rank the

top k layout nodes for Nx based on Dx.

The answer shown in Figure 3.1 is one result of a query that, given two keywords

K1 = ”Meryl Streep”, K2 = ”SteveMartin” produces answer trees that include one or

more leaves connecting the two input keywords. For the input dataset, consider the

distribution of tuples according to attribute value Genre being laid out in the following

image.

Recall the node positions shown by Figure 3.5 In this layout, each of the nodes’ final

positions is representative of a set of hexagonal cells. The hexagonal cells represent a

distribution of tuples within each cell. Cells are coloured according to the colour associated

with the node closest to the cell. If a cell lies within a node in the layout, the cell receives

that node’s colour value. Otherwise, a cell’s colour value is equal to the colour value of

the node with the shortest distance to the cell. In the layout pictured in Figure 3.5, labels

Chapter 3. Applications 45

Figure 3.5: Tuple layout by Genre

have been added to inform the viewer visually of the node at a given cluster.

This layout can be used to show the concentration of a set of nodes according to the

characteristics of a tuple. As an illustration of the solution described previously in practice,

the top k layout nodes for a given K are accented and distinguished from each other in

the following layouts using a combination of node cell size, node cell border thinness, and

node cell opacity. The following layouts are representative of the distribution of movies

that the three actors ”Meryl Streep”, ”Steve Martin”, and ”Cassandra Barbour” have

participated in.

Figures 3.6a and 3.6b show the distribution of movies that the two input keywords

have participated in. Within both layouts, some patterns can be shown - by the data,

Steve Martin and Meryl Streep act in similar genres of movies. The border-thinness of a

cluster is correlated with the ranking of that genre for a given actor in a Top-k list of

Chapter 3. Applications 46

(a) Movies with Meryl Streep (b) Movies with Steve Martin

genres. Given the rankings in D, the top 5 most populated genres will be distinguished

visually. To accomplish this, as a node’s position in D falls (i.e. is less populated), the

borders of cells in that node increase in thickness. The border thickening corresponds

to a reduction in the individual node size, visually identifying highly-populated nodes

as containing extremely compact cells. Further, as a node’s position in D decreases, its

opacity also decreases. The effect being sought after is, through these visual indicators,

for a given K the user’s eyes will be drawn to the most populated nodes. This information

augments the data from the answer tree, showing the user that the two input keywords

have a degree of similarity of genre participation, if not also in ranking of genre.

In Figure 3.7, the movies that Cassandra Barbour has participated in are shown. In

this layout, it is plain to see that there is not a high degree of overlap between the answer

node of the result tree, and the two input keywords. This information provides richness

to the result of the answer tree, showing the user that while Cassandra Barbour has

connected with both Meryl Streep and Steve Martin, the genres that Cassandra Barbour

participates in most do not have high overlap with Steve Martin or Meryl Streep.

To summarize, the layouts generated have provided a method by which query answers

can be visually presented and augmented to provide the user with richer insight into the

Chapter 3. Applications 47

Figure 3.7: Movies involving Cassandra Barbour

answer. The layout generation pipeline has application in query answer presentation in

the following ways:

• The base query answer shows node values. Layouts provide a visual representation

of the distribution of a node’s value in the source dataset. This gives a context for

the nodes of an answer tree with respect to the data.

• Showing a node’s distribution over the dataset by an attribute gives an at-a-glance

summary of a node’s presence in the dataset. With respect to the shown layouts,

showing the distribution of an actor/actress gives an at-a-glance summary of what

genres a given actor prefers to act in.

• In comparing multiple layouts, it is possible to visually identify the similarities and

differences between the input nodes and root nodes of an answer tree. As shown, it

is possible to see if two actors tend to work in similar or different genres.

These applications are proof of concept of a method by which the pipeline layout

generation algorithm can be used to visually present and augment a given query answer.

The efficacy of the particular tuning of visual indicators, as well as the effectiveness of

Chapter 3. Applications 48

various visual variables usable for annotating a layout, evaluated through user study, are

designated as possible future work. As the layout provides positioning for clusters of

points, visualizations using other techniques for aggregation than hexbins can be utilized.

The most effective visualization for a given layout, evaluated through either user study or

metric evaluation, is designated as possible future work.

Chapter 4

Experimental Evaluation

In order to experimentally evaluate the ability of the pipeline automatic layout generation

process, the quality of the resultant layouts must be analyzed. The quality of a layout is

defined as the degree to which all of the constraints in the pipeline are resolved. Different

visualization and layout generation techniques that rely on different data structures than

trees will not necessarily be able to apply the same metrics that we will be using, as not

all quality metrics can be applied across all structures (i.e. a TreeMap visualization will

not be able to use edge crossing reduction to evaluate its quality).

The pipeline layout generation system produces layouts using a maximal spanning

tree. In order to determine the quality of layouts generated by the system, quality metrics

for each phase of the pipeline must be identified. The pipeline works with three specific

constraints: the generation of a node positioning where connected nodes are neighbouring

nodes, the size of each node is visually representative of the tuples in the dataset that

have that node’s value, and the space occupied by the layout is minimized as much as

possible without negatively impacting the visibility of nodes within the generated tree. To

identify the quality of the layout with respect to each of these constraints, three quality

evaluation metrics have been selected. The quality metrics of total edge crossings, layout

compactness, and node size distribution will be discussed in the following sections.

49

Chapter 4. Experimental Evaluation 50

4.1 Annealing Quality Evaluation

To determine the quality of the layout with respect to preserving the neighbouring spatial

relationship between connected nodes, confounding factors that can impede the ability of

two connected nodes to be placed next to each other must be identified. One of these

factors is the crossing of unrelated pairs of nodes.

To understand this metric for quality evaluation, recall Definition 3. Edge crossings

prevent connected nodes from positioning such that they are nearest-neighbours to each

other. This positioning must be upheld in order to satisfy the objective of Problem 2, the

minimization of unused space by positioning connected nodes next to each other.

Figure 4.1: Edge Crossings Present In Genre Layout Over Time

In Figure 4.1, the number of edge crossings between branches is shown for the layout

generated using the Genre indexing attribute with 32 nodes. With a lower number of

distinct nodes present in the indexing attribute, the figure shows that edge crossings

are drastically reduced, with few to no edge crossings reintroduced in future constraint

Chapter 4. Experimental Evaluation 51

resolution phases. The slope shows that, for attributes with a lower number of nodes, the

quality of constraint resolution at all points in the pipeline does not suffer instability or

degeneration.

Figure 4.2: Edge Crossings Present In Country Layout Over Time

The above figure plots the number of edge crossings in the layout at all points in the

pipeline for a layout generated using Country as an indexing attribute. This indexing

attribute contains 235 nodes, a much higher number of nodes from the previous attribute.

With 235 nodes, the generated tree has 234 edges. With a much higher number of edges,

the number of possible edge crossings increases greatly. Further, the resolution of this

constraint is unstable in later stages of the pipeline. This phenomenon occurs due to

multiple factors. The first factor is the increased volume of edges. Due to edge volume

being higher, the probability of edges intercrossing in the same canvas space is higher.

The second factor involved in a higher chance of edges intercrossing is related to the

population distribution of the data points. This attribute has a similar number of input

data points as compared to Genre, with seven times as many nodes and edges. This

distributes the points into many more nodes, reducing the average node size. Since larger

Chapter 4. Experimental Evaluation 52

nodes are less likely to reposition in the compacting process and smaller nodes are more

likely to be repositioned due to gravity and repulsion, these nodes have a higher chance

of being repositioned across a node.

4.2 Compactness

To determine the compactness of the layout, one method of evaluation involves identifying

the dimensions of the bounding box of the layout and determining the area of the window

that the bounding box covers. During the layout generation process, a bounding box of

the layout initially will take up the majority of the

Definition 4. Bounding Box: Given a layout L consisting of nodesN : {N1, N2, ..., Nn}

connected by edges E : {E1, E2, ..., En−1}, the bounding box B of L is a rectangle that

encompasses the absolute leftmost, rightmost, topmost and bottommost points contained

by nodes. The leftmost point contained within a node is a point pl with the lowest x

value. The rightmost point pr has the highest x value. The topmost point within a node

is defined as the point pt with the lowest y value, and the bottommost point pb has the

highest y value of all p within any N .

Definition 5. Layout Compactness: The compactness C of a layout L is the

bounding box of L contained within the dimensions of the window W . It is the percentage

of the window covered by the bounding box, or (widthB ∗ heightB)/(widthW ∗ heightW).

The compactness of nodes in the genre attribute is shown to increase greatly in the

associated pipeline step, the final stage in the graph in Figure 4.3. As the compacting

phase iterates, the nodes collapse in to a minimized space. This effective compacting is

partially due to the uneven distribution of points across nodes; a lower number of larger

nodes will act as landmark nodes, shifting smller nodes around them. The smaller nodes

become drawn in close to the larger nodes they are connected to, filling in the gaps of

space between larger nodes. Due to there being a relatively uneven distribution of nodes

Chapter 4. Experimental Evaluation 53

Figure 4.3: Genre Compactness

and a high variance in node size, pockets of whitespace remain in the final layout that

cannot be reduced.

The characteristics of the country attribute that contribute to the increased number of

edge overlaps present are relevant in the analysis of layout compactness. The distribution

of entities to nodes is still fairly uneven, but the number of nodes present with fewer

members is much higher, leading to a higher number of smaller nodes present in the

layout. These smaller nodes will be pulled into pockets of whitespace in between larger

nodes, filling more space due to their lower diameter and higher count. This contributes

to a layout that maintains a high degree of compactness as node count scales up, showing

stability in the satisfaction of compactness resolution.

Chapter 4. Experimental Evaluation 54

Figure 4.4: Country Compactness

4.3 Resizing Quality Evaluation

In order to provide context for the discussion surrounding the quality of the resizing

constraint, layouts will be provided for both indexing attributes used. The layout for Genre

is shown in Figure 4.5. This visual representation is a point of reference for discussion

regarding the general mapping of tuples from the source dataset to their respective nodes

in the resultant layout and is provided as a point of reference for further discussion.

Presented in Figure 4.6 is the distribution of points in the generated layout and the

database for the indexing attribute Genre. The green points are related to the area

covered by a given node with respect to the entire layout. The blue data points show the

percentage of tuples that have a given attribute value (what will become the contents

Chapter 4. Experimental Evaluation 55

Figure 4.5: A layout of nodes for the Genre attribute.

of a node). This graph illustrates that the trend in tuple distribution in the database

for an indexing attribute is maintained in direction and exaggerated in magnitude. This

disparity occurs as a result of the percentile-based node scaling performed by the pipeline.

Pictured in Figure 4.7 is a layout of nodes indexed according to their country of

production. This layout corresponds with the point distribution in Figure 4.8. Labels have

been included for clarity of position for the larger nodes. This layout also demonstrates

the factors that contribute to the degradation of quality of edge crossings.

Similar to Figure 4.6, the graph in Figure 4.8 shows the distribution of nodes according

to the Country attribute. The red data points in this graph show the size of a given node

Chapter 4. Experimental Evaluation 56

Figure 4.6: Genre Size Ratios

in a layout relative to all other nodes, as a percentage. Similarly to the case with Genre,

the trend for individual nodes in the database is preserved in the layout.

One may wonder why there is a great disparity between the highest and lowest points

in the displayed graphs. In order to maintain the ability to see and potentially interact

with every node, the layout generation system incorporates a minimum size that, while

quite small, allows the user of the layout to always see even nodes with extremely low

membership. This is a safeguard in the case that particular nodes have a membership of

far lower than one percent of the tuples. Similarly, the largest nodes reach a maximum

size that ensures that they will always be visible within the layout, and does its best to

ensure that all nodes are visible on any visualization using the layout.

In examining the figures corresponding to annealing over time, layout compacting

Chapter 4. Experimental Evaluation 57

Figure 4.7: A layout of nodes for the Country attribute.

over time and tuple distribution, the impact of constraint ordering on constraint quality

is present. Consider the trend of edge crossing resolution in the figures presented. The

initial rate of edge crossing reduction is very high in the annealing stage, resolving

that constraint first. With attributes that contain a higher number of edges, the edge

overlap count increases during the final compacting step due to the factors previously

discussed; the high number of small nodes and the more drastic repositioning of small

node pairs linked together by the force directed simulation have a stronger impact in

such an attribute. Ordering of constraints is relevant to the final degree of constraint

resolution on a constraint-by-constraint basis; the constraints resolved earlier in the

Chapter 4. Experimental Evaluation 58

Figure 4.8: Country Size Ratios

pipeline experience a chance of quality due to future steps altering the layout. Using

the presented cases as a baseline, the effect of quality degradation is correlated not only

with constraint ordering but also with node count for a given attribute; a higher number

of nodes in an attribute points to a more normally-distributed size of nodes in a given

layout, producing more small nodes. Small nodes are more likely to be displaced in a

step in the layout generation process which, depending on the constraint in question, can

partially undo the quality improvement of a layout according to a constraint. Future

experiments with different phases of a pipeline approach may seek to evaluate the optimal

order for constraint resolution of a given set of constraints in order to maintain the highest

average degree of stability in all constraints as layouts increase in node count, in order to

determine whether a general pattern exists for different classes of constraints.

Chapter 5

Conclusion

The conclusion will be organized as follows. First, the summary of contributions made

by the thesis will be presented. Following this, limitations of the system proposed to

solve the layout generation process will be outlined. Lastly, possible future work related

to the system, both in relation to overcoming limitations and in expanding the scope of

the problem to be solved. Directions for further optimizations of the system, alongside

possible problem spaces to explore, will be outlined. Next, the discussion of the thesis

will be summarized. Contributions of the thesis will also be briefly summarized. Lastly,

the thesis will be summarized.

5.1 Summary of Contribution

Within the thesis, the problem of creating layouts to visualize relational data on small

screen devices was described. A method of layout generation of large volumes of relational

data for small screen devices was presented and implemented. A system for performing

meta-layout generation via sequencing of constraints, resolved by a multipass hyperpa-

rameter tuning of layout algorithms was created. This system provides a method for

visualizing relational data using generated layouts. The system’s multipass hyperparam-

eter tuning and implementation were described with an illustrative walkthrough. The

59

Chapter 5. Conclusion 60

quality of the generated layouts with respect to each constraint was evaluated experi-

mentally through defined metrics. Applications of the visual pipeline layout generation

system were presented.

5.2 Limitations

While the proposed system does quickly produce layouts that efficiently organize similar

nodes close to each other, the implementation and algorithm have some limitations that

can be addressed going forward. Discussion of these unaddressed constraints will be

divided into discussion regarding the layout resolution problem and concerns contained

within the force-directed simulation’s impact on the layouts generated.

Limitation Category I: Layout Generation. While the layout generation problem

is solved using a force-directed simulation to arrange nodes of a tree, there are some

restrictions. First, the pipeline approach to generating layouts is based upon an approxi-

mation of a set of similarities within an attribute. These similarities form the structure of

the input maximum spanning tree, but beyond determining which nodes are connected,

they do not contribute further to the generation of the layout (particularly as a system

parameter). Another limiting factors involves the number of attributes being used. Many

possibly interesting and possibly useful layouts are not producible as they combine, either

directly (an IMDb Language layout corresponding equally to movie name and lead actor)

or with a priority hierarchy (an IMDb layout corresponding first to organization by movie

name, then by director) multiple keys for a given attribute. Such layouts can enable a

wide variety of user-based applications, such as a recommendation layout that, given a

particular tuple selection shows the most similar movies based on the aforementioned

keys. Lastly, the generated layouts are specific to the type of dataset investigated within

the thesis (the IMDb dataset), a dataset that does not contain an organic network which

necessitates the inorganic inducing of a network. The ability of this approach to generate

Chapter 5. Conclusion 61

layouts for datasets with organic networks would need to be explored, to determine

whether this approach is applicable.

Limitation Category II: Force-directed Simulation. With respect to the force-

directed simulation used to drive the positioning of nodes in the final layout, there

are some weaknesses. Chiefly, the parameters driving the simulation have not been

experimentally evaluated to determine the optimal relative strengths of forces. The

spring force is relatively weak compared to the initial values of gravity and charge, as

a result the compacting force relies on a weak charge and a strong gravity to position

the nodes instead of also incorporating spring force. It is possible that relying on spring

force to facilitate compacting would result in a more compacted layout, but this has

not been tested. Another significant limitation of the simulation is that it is time-based.

Layout quality is, as shown in the experiments chapter, evaluated based on constraint

resolution. The current implementation of the system steps through the pipeline process

after a set number of iterations. The result is that a constraint’s degree of resolution can

only approach a bound, rather than meeting or approximating a threshold of resolution.

The result is that, from attribute to attribute, the resultant layouts do not have an

approximately consistent quality based on the previously-described factors, possibly

leading to an expectation of quality being unmet. For two attributes both with node

count N, layouts generated indexed on them are not guaranteed to achieve the same level

of quality. One final limitation of the simulation is that it cannot be applied globally to

every data structure - the layout node placement is exclusive to tree-based layouts. Based

on the shape of the canvas and the shape of a given node, the fit of a layout may have

very small, unremovable zones of unusable space between nodes.

Chapter 5. Conclusion 62

5.3 Future Work

There are a number of directions that can the implemented system can be extended

toward. These directions are informed by the limitations outlined in Section 5.2.

• Determination of constraint sets for various platforms. As an algorithm for auto-

mated layout generation, the algorithm can most likely be optimized in order to

conform to different platform constraint sets. For example, extremely large displays

may warrant a relaxation of the layout compactness constraint, which may warrant

testing of appropriate whitespace presence. Constraint sets for different platforms

can be determined, to produce a set of methods for meta-layout generation for each

target platform.

• Automatic attribute selection. As an automatic meta-layout generation system,

complete automation can be identified as a goal. To do this, implementation of an

automatic attribute selection system to determine the indexing attribute(s) greatly

strengthens the work, and provides additional possible applications to the system.

• Identification of suitable and unsuitable attributes. In implementing automatic

attribute selection, criteria for identifying bad candidate attributes (attributes

that are keys [fully unique], constant attributes) can be determined in order to

automatically select good indexing attributes. These preferred indexing attribute

would ideally tend to generate layouts that satisfy the set of constraints identified

for a given platform, both based on experimental evaluation according to metrics

and on visual inspection by users familiar with the data.

• Investigation of suitability of other visualization algorithms for layout generation.

The D3.js layout library contains various additional layout generation methods,

including chord, partition and circle-packing layouts. Additionally, different layout

generation methods have been defined in graph layout literature. Implementation

Chapter 5. Conclusion 63

of and investigation into the suitability of these different layout generation methods

can strengthen the system by enabling applicability to different domains. If suitable,

incorporation of these additional layout generation algorithms can address limitations

described in the force-directed layout generation.

• Determination of optimal constraint-resolution sequencing. As the previously-listed

future works are implemented, the logical sequencing of constraint resolution stages

in the pipeline being determined provides additional generality to the meta-layout

generation. Different layout methods and different problem domains call for different

sets of constraints. Investigation into a possible common pattern of constraint

organization and resolution in order to minimize the quality degradation of earlier-

resolved constraints (a problem that has shown itself to be present as node count

increases) is a possible avenue of development. Results of this exploration would

answer the question: are there classes of constraint resolution methods that, when

specifically ordered, minimize the loss of quality for each constraint in the pipeline?

An answer to this question could provide a general approach to implementing

constraint resolution methods in particular order.

• Crowdsourcing in applications for data management and traversal. Crowdsourcing

in applications like data cleaning and data curation provide a well-defined user

role for the completely automatic system. Indexing attributes can be selected on a

per-user basis, depending on the expertise of the user and their familiarity with the

data. The resultant visualization of generated layouts may show the subset of the

data relevant to a given expert to allow for interactive navigation of the data, for

the purpose of curating or cleaning the data. Changes made to the data may trigger

an automatic updated layout generation, providing a platform for continuous data

cleaning of the dataset by expert users.

Chapter 5. Conclusion 64

The defined future works would strengthen the system and generalize its applicability, both

from the position of automatic graph layout, and from the position of an automatically

updated visual interface as a tool.

Bibliography

[1] D3.js. https://d3js.org/.

[2] IMDbPy. http://imdbpy.sourceforge.net/.

[3] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, and

Alexander J Smola. Distributed large-scale natural graph factorization. In Proceedings

of the 22nd international conference on World Wide Web, pages 37–48. International

World Wide Web Conferences Steering Committee, 2013.

[4] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest

neighbor. In Proceedings of the 23rd international conference on Machine learning,

pages 97–104. ACM, 2006.

[5] Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús

Gómez-Gardeñes, Miguel Romance, Irene Sendiña-Nadal, Zhen Wang, and Massimil-

iano Zanin. The structure and dynamics of multilayer networks. Physics Reports,

544(1):1–122, 2014.

[6] Nicholas A Christakis and James H Fowler. Social network visualization in epidemi-

ology. Norsk epidemiologi= Norwegian journal of epidemiology, 19(1):5, 2009.

[7] James Cook, Ilya Sutskever, Andriy Mnih, and Geoffrey E Hinton. Visualizing

similarity data with a mixture of maps. In International Conference on Artificial

Intelligence and Statistics, pages 67–74, 2007.

65

Bibliography 66

[8] Anton J Enright and Christos A Ouzounis. Biolayoutan automatic graph layout

algorithm for similarity visualization. Bioinformatics, 17(9):853–854, 2001.

[9] Michael Ferron, Ken Q. Pu, and Jaroslaw Szlichta. ARC: A pipeline approach enabling

large-scale graph visualization. In 2016 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining, ASONAM 2016, San Francisco,

CA, USA, August 18-21, 2016, pages 1397–1400, 2016.

[10] Thomas MJ Fruchterman and Edward M Reingold. Graph drawing by force-directed

placement. Software: Practice and experience, 21(11):1129–1164, 1991.

[11] Hao He, Haixun Wang, Jun Yang, and Philip S Yu. BLINKS: ranked keyword searches

on graphs. In Proceedings of the 2007 ACM SIGMOD international conference on

Management of data, pages 305–316. ACM, 2007.

[12] Jeffrey Heer and Danah Boyd. Vizster: Visualizing online social networks. In IEEE

Symposium on Information Visualization, 2005. INFOVIS 2005., pages 32–39. IEEE,

2005.

[13] Geoffrey E Hinton and Sam T Roweis. Stochastic neighbor embedding. In Advances

in neural information processing systems, pages 833–840, 2002.

[14] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian.

Forceatlas2, a continuous graph layout algorithm for handy network visualization

designed for the gephi software. PloS one, 9(6):e98679, 2014.

[15] Mehdi Kargar, Lukasz Golab, and Jaroslaw Szlichta. eGraphSearch: Effective keyword

search in graphs. In Proceedings of the 25th ACM International on Conference on

Information and Knowledge Management, CIKM 2016, Indianapolis, IN, USA,

October 24-28, 2016, pages 2461–2464, 2016.

Bibliography 67

[16] Yu-Jung Ko and Hsu-Chun Yen. Drawing clustered graphs using stress majoriza-

tion and force-directed placements. In Information Visualisation (IV), 2016 20th

International Conference, pages 69–74. IEEE, 2016.

[17] Robert Kosara, Helwig Hauser, and Donna L Gresh. An interaction view on infor-

mation visualization. State-of-the-Art Report. Proceedings of EUROGRAPHICS,

2003.

[18] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical society, 7(1):48–50,

1956.

[19] Christopher McCarty, Jose Luis Molina, Claudia Aguilar, and Laura Rota. A

comparison of social network mapping and personal network visualization. Field

Methods, 19(2):145–162, 2007.

[20] Matej Novotny. Visually effective information visualization of large data. In Proceed-

ings of the 8th Central European Seminar on Computer Graphics (CESCG 2004),

pages 41–48, 2004.

[21] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290(5500):2323–2326, 2000.

[22] Georg Sander. Graph layout through the vcg tool. In International Symposium on

Graph Drawing, pages 194–205. Springer, 1994.

[23] Manish Singh, Arnab Nandi, and HV Jagadish. Skimmer: rapid scrolling of relational

query results. In Proceedings of the 2012 ACM SIGMOD International Conference

on Management of Data, pages 181–192. ACM, 2012.

[24] Magnus Sköld. Social network visualization. Skolan för datavetenskap och kommu-

nikation, Kungliga Tekniska högskolan, 2008.

Bibliography 68

[25] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing Large-scale

and High-dimensional data. In Proceedings of the 25th International Conference

on World Wide Web, pages 287–297. International World Wide Web Conferences

Steering Committee, 2016.

[26] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line:

Large-scale information network embedding. In Proceedings of the 24th International

Conference on World Wide Web, pages 1067–1077. International World Wide Web

Conferences Steering Committee, 2015.

[27] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal

of Machine Learning Research, 9(2579-2605):85, 2008.

[28] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and Stephen

Lin. Graph embedding and extensions: a general framework for dimensionality reduc-

tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(1):40–51,

2007.

