Study of fuzzy logic in safety and control systems in Nuclear Power Plant

> By

Harsh Deol

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Applied Science

in

The Faculty of Energy Systems and Nuclear Science

Nuclear Engineering

University of Ontario Institute of Technology
March 2016
© Harsh Deol, 2016

Abstract

Safety and control systems in Nuclear Power Plants are essentially run without intelligent systems. As nuclear industry starts to become more advanced and vendors are starting to manufacture more advance products, old structures and systems in place will eventually become obsolete needing alternatives to resolve discrepancies. Control System is considered as one protective layer with plant safety systems. Research demonstrates that intelligent control systems improve safety performance of power plants. This research studies fuzzy logic control (i.e. intelligent control system), its methodology, design and applicability to safety related systems in Nuclear Power Plant. Study further investigates fuzzy logic control approach and how it impacts improving safety related system performance. Critical system parameters and trends were studied, research plan developed and results recorded using Matlab \& Simulink applications. Two case studies selected demonstrate proposed fuzzy logic with effective results. First study demonstrates how implementing fuzzy logic improves operability of self-contained pneumatic assemblies that impact improving breathing air system performance. Second study demonstrates how fuzzy logic implementation can improve instrument air compressor performance with early detection of solenoid valve failures. Both studies reveal that using fuzzy logic results in better control, precision and performance in maintaining safety related systems and encourages its use to many other applications.

Key words: PID controller, fuzzy logic controller, control system design in nuclear power plants, breathing air system, reliability, safety instrumented system, risk reduction factor, instrument air, compressor, service water

Acknowledgements

I would like to thank Dr Hossam A.Gabbar and Energy Safety and Control Lab (ESCL) members for their guidance and support during my study period. I am extremely grateful for feedback, coaching and mentoring to help complete this research.

Many regards to Nuclear Engineering faculty for giving me the opportunity to pursue Masters of Nuclear Engineering (MASc) and providing balanced environment and resources to help me become better nuclear professional.

Thanks a lot to all my classmates, family members and specially my wife, Navdeep Deol, for being there for me and guiding me help achieve success.

Thank you to all for being there for me.

Table of Contents

Abstract 2
Acknowledgements. 3
List of Figures 6
List of Tables 8
List of Acronyms 9
List of Symbols 11
Chapter 1 - Introduction 15
1.1 Background 15
1.2 Problem Definition 16
1.3 Solution Approach 17
1.4 Objectives 18
1.5 Research Scope 18
1.6 Thesis Structure 19
Chapter 2 - Literature Review 20
2.1 Fuzzy Logic Control 20
2.2 Safety-Related Systems in Nuclear Power Plants and Their Classifications. 23
2.3 Self-Tuning Fuzzy Logic Controller Compared Against Conventional PID Controllers. 28
2.4 Challenges, Solutions and Limitations with Impact to Safety and Control System to a Nuclear Power Plant in Ontario. 30
2.5 Intelligent Control System Methods and Techniques 36
2.6 Current Trends of Intelligent Control Systems in Nuclear Power Plants 43
Chapter 3 - Framework and Methodology 45
3.1 Framework Flowchart 45
3.2 Framework Details 46
Chapter 4 - Design of Fuzzy Logic Based Self-Tuning Control System for Breathing Air System 47
4.1 Proposed Design 49
4.2 Data Sets 53
4.3 Control System Implementation 59
4.4 Results 65
4.5 Cost Comparison 69
4.6 Conclusions 73
Chapter 5 - Design of Fuzzy Logic System to Detect Solenoid Valve Failures within Safety Related
System 75
5.1 Problem Definition. 77
5.2 Proposed Solution 80
5.3 Proposed System Design/Algorithms 87
5.3.1 Methodology 88
5.4 Simulation/Results 95
5.5 Analysis of Solenoid Valve (SV) Failures on Air Compressor Performance 103
5.6 Reference Calculations 104
Chapter 6 - Results and Discussions 113
6.1 Fuzzy Logic Vs PID Control 113
6.2 Performance Improvement Of Instrument Air Compressors 119
6.3 Discussions 125
Chapter 7 - Conclusions and Future Work 127
7.1 Conclusion 127
7.2 Contribution and Innovation 128
7.3 Future Work 129
Chapter 8 - SIMULINK Algorithms 130
8.1 - Algorithm for Fuzzy Logic Based Self-Tuning Control System for Breathing Air System 130
8.2 - Algorithm for Fuzzy Logic System to Detect Solenoid Valve Failures within Safety Related System 161
References 251

List of Figures

Figure 1: Pictorial description of Fuzzy logic control of the distance between two cars [45] 21
Figure 2: Pictorial description of Fuzzy subset intervals for Distance, Velocity and braking force. [45] 21
Figure 3: Illustrations of interconnections of biological neurons.[45] 37
Figure 4: Pictorial description of single artificial neuron and its parts. [45] 38
Figure 5: Illustrates A Back propagation - ANN [45] 39
Figure 6: Backpropagation Algorithm [45] 39
Figure 7: Pictorial description of mutation (left) and crossover operations in genetic programming.[45]41 41
Figure 8: Flowchart depicting research plan. 45
Figure 9: Schematics of Breathing Air Compressor [2] 48
Figure 10: Proposed Design of Breathing Air System 50
Figure 11: Breathing Air Flowsheet [2] 52
Figure 12: Model of breathing air using Fuzzy+PID controller in Simulink 59
Figure 13: Model of breathing air using conventional PID controller in Simulink 60
Figure 14: Fuzzy Logic Controller with Rule-viewer in Simulink 61
Figure 15: Conventional PID controller developed in Simulink 62
Figure 16: Graph showing relationship between PID parameters, system pressure and error 63
Figure 17: Error range for fuzzy logic controller 63
Figure 18: Kp range for fuzzy logic controller to drive PID controller 64
Figure 19: Ki range for fuzzy logic controller to drive PID controller 64
Figure 20: Kd range for fuzzy logic controller to drive PID controller 65
Figure 21: Simulation results for Fuzzy PID controller for 60 secs. 66
Figure 22: Simulation results for conventional PID controller for 60 secs 67
Figure 23: Simulation results for conventional PID controller for 120 secs to understand system stability 68
Figure 24: Graph depicting area underneath 550kpa using PID controller 70
Figure 25: Graph depicting area underneath 550kpa using Fuzzy + PID controller 71
Figure 26: Simulation result of Fuzzy + PID controller for 120 secs to perform cost analysis 72
Figure 27: Rule-viewer for Fuzzy controller 72
Figure 28: Please refer to Fuzzy rules built to run simulation 73
Figure 29: Schematic System Diagram 76
Figure 30: Pictorial view of instrument air circuits at typical Nuclear Power Plant in Ontario [15] 77
Figure 31: Flowsheet view of compressor [18] 78
Figure 32: Instrument Air Block Diagram [24] 81
Figure 33: FMEA results 82
Figure 34: FMEA results 83
Figure 35: FMEA results 83
Figure 36: Proposed new Design of SV assembly with Fuzzy Logic and SIS 87
Figure 37: Schematic of Oil Cooler (heat exchanger inside air compressor) 89
Figure 38: Effectiveness for Heat Exchangers [26] 94
Figure 39: Simulink model results without SIS 96
Figure 40: Simulink model results with SIS 97
Figure 41: Pictorial depiction of SIF [27] 101

Figure 42: Simulation results for conventional PID controller for 60 secs
Figure 43: Simulation results for conventional PID controller for 120 secs to understand system stability
114Figure 44: Simulation results for Fuzzy PID controller for 60 secsFigure 45: Graph depicting area underneath 550kpa using PID controller115
116
Figure 46: Graph depicting area underneath 550kpa using Fuzzy + PID controller 117
Figure 47: Simulink model results without SIS 120
Figure 48: Simulink model results with SIS 121

List of Tables

Table 1: Simulation results for Fuzzy+PID controller 68
Table 2: Simulation results with simple PID controller 68
Table 3: Nusselt number for fully developed laminar flow in a circular annulus with one surface insulated and the other isothermal (Kays and Perkins) [26] 91
Table 4: Fouling factors used for Simulation based on Line pressure 94
Table 5: Risk Matrix [27] 99
Table 6: SV failure rate on air compressors since 1998 to 2012 [34] 100
Table 7: PFD Requirements [27] 102
Table 8: Nusselt number for fully developed laminar flow in a circular annulus with one surface insulated and the other isothermal [26] 108
Table 9: Simulation results with simple PID controller 115
Table 10: Simulation results for Fuzzy+PID controller 115
Table 11: PID Vs Fuzzy PID Controller 118

List of Acronyms

SIS	Safety Instrumented System
PNGS	Pickering Nuclear Generating Station
OPG	Ontario Power Generation
CP	Air Compressor
RB	Reactor Building
RC	Air Receiver
IA CP	Instrument Air Compressor
HX	Heat Exchanger
SV	Solenoid valve
FT	Flow transmitter
PM	Preventative Maintenance
PdM	Predictive Maintenance
CM	Corrective Maintenance
PRA	Probability Risk Assessment Model
SCR	Station Condition Record
CAP	Corrective Action Plan
SPMP	System Performance Monitoring Plan

FMEA	Failure Mode and Effect Analysis
ECR	Engineering change request
MOD	Modification
WR	Probability of failure on demand
PFD	Safety Instrumented Function
SIF	Safety Integrity Level
SIL	Probability of failure on demand
PFD	Variable-voltage and variable-frequency hydraulic system
RRF	VVF

List of Symbols

$T_{\text {water, } \text { in }}$	Compressor water temperature in (${ }^{\circ} \mathrm{C}$)
$T_{\text {water,out }}$	Compressor water temperature out (${ }^{\circ} \mathrm{C}$)
$T_{\text {oil,in }}$	Compressor oil temperature in (${ }^{\circ} \mathrm{C}$)
$T_{\text {oil,out }}$	Compressor oil temperature out (${ }^{\circ} \mathrm{C}$)
$C_{\text {water }}$	Heat capacity rate of water (${ }^{\mathrm{KW}} /{ }^{\circ} \mathrm{C}$)
$C_{\text {oil }}$	Heat capacity rate of oil (${ }^{\left(W W /{ }^{\circ} \mathrm{C}\right)}$
$c_{p, \text { water }}$	Specific heat of water ($\left.{ }^{K J} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C}\right)$
$c_{p, o i l}$	Specific heat of oil ($\left.{ }^{\mathrm{KJ}} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C}\right)$
U	Overall Heat Transfer Coefficient $\left(\frac{W}{m^{2}}{ }^{\circ} \mathrm{C}\right)$
m_{w}	Water mass flow rate (${ }^{\mathrm{kg} / \mathrm{sec} \text {) }}$
m_{0}	Oil mass flow rate (${ }^{\mathrm{kg} / \mathrm{sec} \text {) }}$

$R_{f} \quad$ Fouling factor $\left(\mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C} / W\right)$
$\mathrm{Nu} \quad$ Nusselt Number
$\rho_{w} \quad$ Density of water $\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$
$\rho_{o} \quad$ Density of oil $\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$

Pr Prandtl number
$k \quad$ Thermal Conductivity $\left(\mathrm{W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)$
$\mu \& v_{w} \quad$ Kinematic Viscosity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$
$h_{i} \quad$ Water Convection heat transfer coefficient $\left(W / m^{2} \cdot{ }^{\circ} \mathrm{C}\right)$
$h_{o} \quad$ Oil Convection heat transfer coefficient $\left({ }^{W} / m^{2} \cdot{ }^{\circ} \mathrm{C}\right)$
$D_{h} \quad$ Hydraulic diameter (m)
$A_{c} \quad$ Area of circular tube $\left(\mathrm{m}^{2}\right)$
$A_{s} \quad$ Total surface area of inner tube $\left(m^{2}\right)$
$\dot{Q}_{\text {max }} \quad$ Maxlum heat transfer rate (KW)
ϵ
Effectiveness factor for heat exchanger
$\dot{Q} \quad$ Actual heat transfer rate (KW)

C ratio of min/max heat capacity rate
mass of the valve
acceleration of valve movement
$\dot{y} \quad$ velocity of valve stem
friction displacement of valve

F force

P
S
area of valve diaphragm

K1 to K8 constants
y displacement of valve travel
$\Delta P \quad$ pressure diffrence across the valve
$q \quad$ air flowrate across the valve
$\partial \quad$ density of air

Q Total volume of breathing air in the system
$Q_{0} \quad$ Initial volume of breathing air in the system
$q(t) \quad$ Air flow going into the system

Chapter 1 - Introduction

1.1 Background

Safety of workers, environment, equipment and public is of paramount importance to Nuclear Sector. A Nuclear Power Plant produces energy that is used for various purposes in safe and reliable manner. Critical focus of any Nuclear Plant is reliable operation of instrumentation and control systems. Functionality of control systems and its instrumentation serves as a nervous system to the plant [9]. Various detection methods are used to proactively act on problems before they become reactive. Nuclear power plants meet more than 50 per cent Ontario electricity demand [31].Therefore, it is imperative to select systems that would run them reliably and safely at all times.

Value for money for safer operation is also an important factor in operating Nuclear Plants considering its controlled environment, employees and expensive equipment. Serious events such as reactor trip, radiation release, fire explosion or turbine trip may result due to equipment failure or undetected errors in plant operation, which could lead to repair or replacement expenditure. In order to ensure safe operation, control systems with right sensors \& detectors to monitor critical parameters are to be purchased with expenditure allocated for safer operation.

Industrial processes are not always defined and modeling them could be challenging task. Experimental modeling at times could also not be feasible since system outputs are not always measurable. When feasible, models are complicated using control algorithms that could reduce control bandwidth to result in unacceptable time lags and often can slow the process [10].

Fuzzy logic is an "intelligent control" system, which generates computer automated control decisions to alleviate problems with simultaneous monitoring, control of speed and variables. Fuzzy rules represent controlling processes to ensure output is of desired quality [10].

Identification of parameters for conventional control is analogous for this approach. Fuzzy logic uses rule based process consisting of IF-THEN rules that relate to defined ranges and represent outputs based on range of inputs that are matched with rules per fuzzy control interfaces.

Focus of this research is to study fuzzy logic in safety and control systems in Nuclear Power Plant. Two safety related systems (breathing air and instrument air system) are selected to analyse scenarios using fuzzy logic to demonstrate results, which signify if use of fuzzy control is advisable in Nuclear Power Plants or not.

1.2 Problem Definition

Safety and control systems in Nuclear Power Plants are essentially run without intelligent systems. As the industry becomes more advanced with computer technology (for the right reasons), it be critical to resolve old equipment \& part obsolesce issues that impact Nuclear safety in long run. Research demonstrates installing intelligent control systems will improve safety performance, reduce operational risks and associated costs of power plants.

This research will study fuzzy logic control and two relevant case studies to investigate how self contained pneumatic assemblies that have difficulty maintaining optimized design control can be resolved using fuzzy logic and how problem of using silted lake water to cool equipment that causes compressor
degradation can be resolved using fuzzy logic. Analysis of both cause studies is used to further support fuzzy logic implementation to other Nuclear applications.

Study of fuzzy logic to improve nuclear safety is critical in today's time for any power plant. It demonstrates why it is important to use existing and past research for betterment of Nuclear future and demonstrate effective research is put into good use for right reasons. Research conducted in this thesis involves various steps ranging from building intelligent control methods, safety designs, safety life cycle activities, risk analysis, risk reduction, safety system requirements, transfer functions, steady-state error, Kp, Ki, and Kd to ultimately improve plant performance.

1.3 Solution Approach

In order to approach solution to the problem defined in Section 1.2, functionality of fuzzy logic was studied and validated against nuclear safety related applications. Known problems were considered and reviewed for why they have not been solved without intelligent control. What were the implications, consequences and costs for not using fuzzy logic to fix the problem were studied. This included reviewing limitations of safety related systems with conventional PID controllers and other field deficiencies, developing plan to resolve existing deficiencies with fuzzy logic, analyzing system critical parameters that lead to system failures, studying tread of failures and implementing fuzzy logic to improve system performance.

Essentially, this research is looking at an industry problem of not utilizing potential of fuzzy logic (i.e. intelligent control system) in Nuclear sector, developing realistic plan for execution (conducting this research) and providing results (for two safety related case studies) to signify use of intelligent control for other Nuclear applications.

1.4 Objectives

This study focuses on investigation of intelligent control system (i.e. Fuzzy logic) and its application to improve performance of safety related systems. Objectives of the study are as follows:

- Design a self-tuning control system and apply on breathing air system (which is a safety-related system) in a Nuclear Power Plant to enhance performance of the system.
- Design fuzzy logic system to detect solenoid valve failures proactively and improve the performance of instrument air compressors (i.e. safety-related system).
- Determine feasibility of fuzzy logic implementation to other Nuclear applications.

1.5 Research Scope

The scope of research conducted involves studying intelligent control methods, safety designs, safety life cycle activities, risk analysis, risk reduction, safety system requirements, reviewing related journal papers, system performance monitoring plans (breathing air and instrument air systems), health reports and running simulations in Matlab (Simulink) applications to justify use of fuzzy logic to Nuclear applications.

Intent of this research is to prove fuzzy logic is beneficial to Nuclear Power Plant applications and must be considered for its current and future use. This thesis uses two safety related systems as case study to provide justice for fuzzy logic usage and why it must be used in other applications.

1.6 Thesis Structure

Intent of research is to provide justice to fuzzy logic usage and applicability for Nuclear Plants. Chapter 1 starts with introduction, fuzzy logic background, problem definition, solution approach, objectives, research scope and structure. It builds background on why fuzzy logic research is needed to justify its applicability and provides reason for research conducted for betterment of intelligent systems. Chapter 2 covers literature review involving safety related systems, comparison of self-tuning fuzzy logic controllers and conventional PID controllers, challenges, solutions and limitations of implementing resolutions to Nuclear Plant, background on intelligent control systems and current trends of controls systems in Nuclear industry. Chapter is covering fuzzy logic methods, techniques and how it applies to the industry. Chapter 3 provides framework and methodology in form of flowchart to aid research. Chapter 4 covers first case study to design fuzzy logic based self-tuning control for breathing air system, Chapter 5 covers second case study to design fuzzy logic system to detect solenoid valve failures proactively and improve instrument air performance. Chapter 6 covers results and discussions and Chapter 7 states conclusions and future work.

Chapter 2 - Literature Review

2.1 Fuzzy Logic Control

Fuzzy Logic explains the thinking behind human brain with a fact that human reasoning is approximate, non-binary and non-quantitative. In most cases, there are shades of grey but no exact answers.

Temperature is the simplest example for this as quite often, people don't say temperature is "25.36 degrees", but as its "pretty cold" or "really hot".

The approach to Fuzzy logic control (FLC) mainly consists of 5 steps as follows:

1. Defining input and output variables
2. Define subset's intervals
3. Select the membership functions
4. Setting IF-THEN rules
5. Adjust rules and perform calculations

The problem of controlling the distance between two cars is another example to explain fuzzy control steps.

Initially defining the input and outputs: The D , distance between the cars, and v , the velocity of following car are the two inputs. The B, amount of braking to apply to the following car (force) is the only one output. Figure 1 pictorially depicts input and outputs.

Figure 1: Pictorial description of Fuzzy logic control of the distance between two cars [45]

Second step is to define subset intervals: To make it simple, each variable has chosen three subset intervals. These are small, medium and big for braking force and low, medium and high for distance and velocity. Figure 2 explain these subset intervals.

Figure 2: Pictorial description of Fuzzy subset intervals for Distance, Velocity and braking force. [45]

Thirdly, to select membership functions: The membership functions shape be a linear transition between the different subsets, as shown in this example. Figure 2 is illustration of as distance goes from 0 to 5 metres; the membership function for low distance goes down linearly from 1 to 0 .

Fourth step is to set the IF-THEN rules: Output is determined by combinations of input. As an example, "IF the distance, D, between the cars is low AND the velocity of the following car is high, THEN the braking to apply is big." [45]. In same way, it defines other rules with non-quantitative human reasoning.

Adjusting the rules and performing calculations is fifth step: As by rule, to optimally control the vehicles distance non- exact adjustments may be necessary. For example, if the speed of the car is $100 \mathrm{~km} / \mathrm{hr}$ and distance between the vehicles is 2.5 meters. In Figure 2, referring to distance subset, 2.5 meter distance renders into 0.5 low distances plus 0.25 medium distance. Similarly, $100 \mathrm{~km} / \mathrm{hr}$ speed renders into 0.75 high speed. To determine the output, different methods can be used. We are using two inputs here for two possible subset memberships. A 0.75 high speed and 0.25 medium distance would give 0.25 medium braking. The quantum of braking to be applied for vehicles is based on and computed from the centre of gravity of the area under the breaking curve due to these two portions. There are different techniques for determining the output as for purpose to explain fuzzy logic theory in this example, centre of gravity is used.

2.2 Safety-Related Systems in Nuclear Power Plants and Their Classifications.

Following studies were reviewed to understand positive impact of intelligent systems to Nuclear Power Plants, which further helps to justify usage of fuzzy logic (i.e. intelligent control system) in Nuclear Plants.

Intelligent Control For A Nuclear Power Plant Using Artificial Neural Networks [36]

This paper presented an approach based on neural networks for the control system design of a pressurized water reactor (PWR), which is able to control the nuclear reactor in a robust manner under parameter variations originated from the uncertain parameter α_{f} and α_{c}, and on the bases of this feasibility study; it is suggested that artificial neural networks could be successfully implemented on the control system of a PWR-type nuclear power plant.

A Case Study In Developing Complex Safety Critical Systems [37]

This paper is reviewing a case study on 'the stepwise development of a distributed control program for a safety critical technical production process by highlighting elicitation of adequate modeling ideas, the development of precise and alterative descriptions of system functions and safety requirements and carry out a careful analysis of specifications and design solutions. The study results demonstrate it is effective to get feedback through trial use and error by using light versions of software specification, design and programming tools supporting the techniques.

An Intelligent Decision Support System For Spare Parts Joint Replenishment [38]

This paper is about integrating the artificial neural network and gene algorithms-based spare parts criticality class identifying system to confirm the target service level, and the web-based joint replenishment IDSS to obtain reasonable inventory control parameters that can be helpful for reducing of total inventory holding costs by modifying the unreasonable purchase applications while maintaining the predefined target service level. Study results demonstrate that the use of artificial neural network (ANN) model can be a persuasive analytical tool in deciding whether the criticality of a spare part should be classified as a category H, M, or L although these classification models do have their limitations, which can be eliminated by increasing classification accuracy of ANN-based spare parts criticality class identifying system (ANNCCIS)to improve the decision support ability of spare parts joint replenishment IDSS (SPJRIDSS).

Advanced Control Of A Steam Generator [39]

This paper is presenting a structure for addressing the problem of the violation of safety limits on the water level which is common at low operating power where the plant exhibits strong non-minimum phase characteristics based on a method of advanced control based on fuzzy model predictive control. As a result from validations of this system a new concept of modular advanced control system designed for a seamless and gradual integration into the existing distributed control system is proposed.

As proposed in this paper, the advanced control system can be integrated without production interruption into the primary distributed control system (the identification, modeling, control and validation stages are done on-line using a real image of the I/0 process data, without affecting the existing control system). Because of high level of interconnectivity between system components, it is necessary to provide the highest independency between communication and control modules of the designed system to achieve
unified API of extended generality and extendibility in order to unify access and information retrieval from various wireless and wired technology wherein communication interfaces are developed .A Client/Server architecture for advanced controller that run on the Windows environment with real-time characteristics is proposed too.

Hardware Reliability Prediction Of Computer Based Safety Systems Of Indian Nuclear Plants [40]

For forthcoming Computer Based Systems, new standardized Versa Module European (VME) bus based family of microcomputer boards are developed by Reactor Control Division, BARC. These boards and systems are configured using boards that need to be qualified to stringent requirements of nuclear industry. Paper briefly outlines microcomputer boards' description and qualification tests carried out on the boards. Board failure rate estimation is done by summing component failure rates. The board failure rate is then modified by various factors corresponding to process, environment, reliability growth and infant mortality characteristics. MIL-STD-217 Plus methodology is adopted for failure rate calculation of the components and boards. A fully integrated framework of reliability analysis tools is used that supports Reliability prediction, Reliability block diagram, Fault Tree and Event Tree evaluation, Failure Mode and Effect Analysis as per MIL-STD-1629A and Weibull Analysis. Paper includes details of failure rate analysis of microcomputer boards and results. The paper also presents system reliability analysis carried out for CBS system built using boards. On the basis of sub-system failure rates, various system level reliability metrics like on-demand failure probability, spurious failure probability and system availability can be determined. This is to ensure that the system meet its target reliability values during the design phase.

A Small Climbing Robot For The Intelligent Inspection Of Nuclear Power Plants [41]

This paper is about wall climbing robotic system for intelligent monitoring in nuclear power plants, the robot was designed as a bipedal robot with five degrees of freedom. It was actuated by an embedded controller, which was developed based on an ARM microprocessor and $\mu \mathrm{c} / \mathrm{os}$-ii operating systems. The controller also received and processed tele-manipulation commands from operator. To supply complete information about environment and key devices, robot was equipped with optimal cameras, radiometers, barometer and thermometer. These sensors and their electrical parts constituted the inspection subsystem. Experiment results demonstrate that robot has good capabilities but needs improvement on its movement, wall adsorption ability, enhancing autonomous guidance \& control ability, enlarging tele-operation distance, designing anti-radiation electronics and much more.

Control System Of A Small Intelligent Inspection Robot For Nuclear Power Plant Use [42]

This paper is about development of control system for intelligent monitoring robot used in nuclear power plants. The control system is actually a two-level controller, consisting of the host computer and lower computer. The host computer is traditional PC, supplying human-computer interface and also used for mission planning, control parameters setting, monitoring results processing and displaying and so on. The lower computer is an ARM embedded controller. It is directly connected to all actuators and sensors. The real-time operation system uc/os-ii is also migrated to ARM processor which can effectively manage the hardware resource and multiple tasks in real time. Typical experiments verified robot's effectiveness and reliability. Experiment results do demonstrate improvements that are needed in robot's movement, control ability, wall adsorption ability and much more.

Regulatory Review Of Computer Based Systems: Indian Perspectives [43]

AERB safety guide AERBISG/D-25 was prepared to prescribe criteria and requirements to assess qualitative reliability of computer based systems software based nuclear instrumentation. This paper elaborates on the regulatory approach adopted by AERB for regulatory review and control of design modifications in operating phase of Nuclear Power Plants (NPPs). This paper also covers a case study of AERB audit on verification \& validation activities for software based safety and Safety related systems used in an Indian plant. Review experience shows that documents provide adequate guidance to qualify software based nuclear instrumentation and control systems. However, use of commercially off the Shelf (COTS) as Pre Developed Software in safety applications at NPPs is still a concern. Further, quantifying the reliability of software used in CBS will go a long way in regulatory decision making.

Intelligent Platform Management Controller For Nuclear Fusion Fast Plant System Controllers [44]

An Intelligent Platform Management Controller (IPMC) is being developed by IPFN/IST. This controller in addition with Shelf Manager module is responsible for management of hardware failure, redundancy procedures and hot swapping of the modules in Advanced Telecommunications Computing Architecture (ATCA) crate. Verification of compatibility between modules that share ATCA resources, the power management of each module, temperature monitoring and fan control are as well as tasks that IPMC has responsibility to manage and programming of ATCA \& Advanced Mezzanine Cards (AMC) module firmware, application specific program selection and firmware version control. In this paper, hardware architecture of IPMC implementation at IPFN ATCA modules is also described. The xTCA AMC PCIe Carrier developed by IPFN/IST can be used in applications that require large, fast and distributed control systems such as nuclear fusion experiments, taking advantage of the standard ATCA/xTCA hardware platform management and the enhanced feature of remote reprogramming of FPGA firmware by the IPMC.

2.3 Self-Tuning Fuzzy Logic Controller Compared Against Conventional PID Controllers.

Following references demonstrate self-tuning fuzzy-logic controller is a better choice compared against conventional PID controllers.
"Fuzzy immune PID control in (variable-voltage and variable-frequency) VVVF Hydraulic system" [4] paper proved that conventional PID controller had difficulty maintaining precise pressure in the system whereas, biologically immune and principal adjusted amalgamated fuzzy controller is more effective to maintain system desired pressure to VVVF hydraulic system.
"Fuzzy PID control of intelligent pump" [5] also showed field pressure control problems to aerial hydraulic system solved via designing an intelligent pump. Non linear mathematical model for the pump was developed since load to aerial hydraulic system was complex. A fuzzy PID controlled algorithm was developed to raise output of the load. Simulation was performed and compared against PID controller. Results demonstrated Fuzzy PID controller having better accuracy and rapidity than conventional PID controller in maintaining pressure to the hydraulic system.
"Application of self-tuning fuzzy PID controller on industrial hydraulic actuator using system identification approach." [6] also demonstrated that self-tuning Fuzzy PID controller is better to optimize electro-hydraulic actuator performance. System Identification technique was used for investigating and estimating mathematical model of the system. Discrete transfer functions were developed, Matlab was used for simulation and fuzzy logic used to tune parameters of PID controller. Results indicated improved performance of hydraulic system with Fuzzy PID compared to conventional PID controller.
"The pump house constant pressure fuzzy self-tuning PID control system simulation"[7] also showed that keeping constant pressure to the water supply system using conventional PID controller produced large
delay times and often wasn't reflective of the working condition parameters. A self-tuning fuzzy PID led controller showed better real-time tuning of PID parameters to maintain pressure to the water supply system. Modeling to the system developed in Matlab/Simulink proved that by using Fuzzy led PID controller, short output response is attained and strong robustness was achieved in steady state, PID parameters with no overshoot. It was concluded again that Fuzzy led PID controllers were better solution for complicated pump delay system issues.
"Predictive fuzzy PID control: theory, design and simulation" [8] also reiterated same results. Controller was developed to improve time-delay systems using fuzzy led PID logic. Predictive control concepts and fuzzy PID control were used to develop a structure of a controller based on, on-line model identification, fuzzification, defuzzification, rule base and optimal cost index. Many simulations were performed and advantages to the controller were confirmed. Results indicated predictive fuzzy PID control methods providing better control to complex linear/nonlinear and uncertain systems.

2.4 Challenges, Solutions and Limitations with Impact to Safety and Control System to a Nuclear Power Plant in Ontario.

Research includes reviewing problem at a Nuclear Generation Plant in Ontario wherein, silt (encompassing algae/debris/zebra mussels) in service water is causing constant degradation to instrument air compressors (installed beneath sea level and service water system (with flow diversion impairments) that needs resolution.

a) Problem challenges

1) Silt in service water varies at Nuclear Plant.

Silt contained in Lake Ontario cannot be controlled by Plant Personnel. It could purely be seasonal and carry more quantities of silt in summer compared to winter. Data collected from air compressor walkdowns does demonstrate higher amounts of silt plugging of compressor internals during summer from lake water.
2) Service water intake at Lake water level.

Data collected from various stations does demonstrate more quantities of silt at lake water level (such as in PNGS) compared to underneath (like DNGS). Likewise, DNGS has less station backlog for silt and saves resources to resolve other critical areas [17][19][24].
3) Instrument Air Compressors at PNGS installed in the basement [17].

Location does matter when dealing with silted water. Per design, air compressors at Pick 058 units were installed at the lowest elevation in plant (elev 225) that further enhanced problems pertaining to silt as gravitational pull of silted water is more likely to constantly plug-up SVs and compressor internals contributing to its degradation all the time (diverting Maintenance resources for urgent cleaning). This also leads to higher work request backlogs for the station [17].

4) Breathing air pressure not maintained

The control problem investigated also involves Pressure CVs not operating reliably to maintain design pressure of 620 kPa . Typically, in Nuclear Generation plants, preventative maintenance practices exist to maintain functionality of Pressure CVs. Due to accumulation of dirt (ex rust), they could get stuck closed to further reduce pressure maintaining capability in the system. Consequences include, CVs not regulating system pressure properly and incurring extra costs to the company (e.g., during plant outages, when increased maintenance activities are carried out in the RB (reactor building), breathing air demand goes high but the CVs do not regulate to allow more air to pass through and maintain system pressure at 620 kPa . Therefore, breathing air pressure reduces beneath 550 kPa initiating alarm to the control room and all maintenance activities get stopped resulting in outage delays.)

b) Potential Solutions

1) Dredging at PNGS Forebay

Dredging can be performed at PNGS intake to rid of collected silt from years before to reduce station impact [11].

2) Seasonal Cleaning

Data can be gathered per system surveillance and time based preventative maintenance (PMs) can be implemented for divers to clean station intake channels.
3) Sediment Suction System

There is a sediment suction system installed at PNGS but not operational due to equipment problems. This system can be fully returned to service to reduce silt coming into station. It was operational in the 90s and station did observe less silting amounts at the intake but ever since system has equipment issues, internal station systems are accommodating the impact of silts.

4) Time based/conditioned based flushing of service water system

Instead of cleaning silt particulates at the intake, service water header used to feed air compressor loads can be cleaned/ flushed regularly to avoid plugging of HXs (oil cooler, inter-cooler and after-cooler) inside compressors.
5) Closed loop system installed to feed clean water to air compressors [34]

Supply of service water can be changed to station dematerialized water in a closed loop (to feed instrument air compressors). This way, there are no silting problems and compressor reliability will improve with clean supply of cooling water.
6) Filtration System (i.e. cyclone separators) installed upstream of SVs

Cyclone separators can be installed upstream of SVs to rid of silt feeding compressor internals. Clean supply of service water can be fed to cooling compressors and would lead to less CP trips and internal plugging (Oil cooler, intercooler, aftercooler).

7) Replace SVs with Motorized Ball Valves

To remove SV 'getting stuck' problem, equipment can be replaced with Motorized Ball Valves that would open/ close based on compressor configuration. This way, ball valves would never get stuck in any position and supply cooling service water (containing silt) to compressors. Small hole inside SV to assist with equipment operation be no longer needed (such as ball valves) to resolve the issue.

8) Installing PT (Pressure transmitters) downstream of SVs

PTs can be installed downstream of SVs to measure service water line pressure before water enters compressors. Decrease in line measure would mean SV likely plugged. Annunciations can be installed to inform operators of proactively cleaning SVs (before equipment gets plugged up).
c) Solution Limitations

NOTE: Pickering Station Life is extended till 2020 (proposal in review for 2024). Any solution to a recurring problem is to be cost justified.

1) Dredging

Benefits from dredging activities are short-lived (approx 5 years). Silt taken out of forebay will get accumulated with limited time (approx next 5 yrs) as a recurring problem. Hence, dredging is not be permanent solution and only resolves silting problems in the interim till permanent solution is implemented [11].

2) Seasonal Cleaning/ Sediment Suction System

Calling in divers (for time based PMs) could be expensive as it requires lot of security clearances, approvals and personnel alignment with Operations. It also requires permission to dispose collected silt for further monitoring. Resolution can only be an interim solution as silt can increase anytime of the year. Also, divers cannot be called in short-time frames to remove silt expeditiously [29][30][33].
3) Changing of SVs to motorized ball valves

This is possible but could lead to upstream pipe plugging (before SVs) due to silted water when ball valves are in closed position (i.e. when CP not running). Also, changing of SVs to ball valves is a big modification to existing system and time consuming activity (considering station life till 2020 with proposal in review for 2024). A permanent plant modification could take years for implementation due to various approval levels required.
4) Service Water flush (Instrument air compressors)

This is risky job. Four compressors are installed per unit $(5,6,7,8)$ and common service water header is used to feed all four compressors. Design configuration is such that its hard to isolate one compressor from other for flushing the system. To perform this activity, all four compressors must be taken offline for flushing to be effective. Instrument air supply to any unit cannot be isolated as its available all times. Hence, two units will be inter-tied to perform this activity, which puts both units at risk (as shortage of air on one unit could lead to shutting down both unit reactors) [3][13][17].

5) Closed loop system

This idea is expensive. It requires addition of new system with separate monitoring practices (i.e. system walkdowns, PMs for chemistry sampling, resources to analyze sample results etc). It will be a design change to existing air compressors. Even though the idea can work but considering PNGS life till 2020 (proposal in review for 2024), it is not cost effective.

6) Installing Pressure Transmitters

A Pressure transmitter installed to existing system is also minor modification to existing system design (time consuming activity that could take few years for field implementation). Other than that, annunciations for proactively cleaning SVs are a good measure to maintain compressor reliability till 2020 (proposal in review for 2024).

2.5 Intelligent Control System Methods and Techniques

This section describes concept of intelligent control (IC) at prominent level [45].

2.5.1 No System Modeling

IC works under concept of being controlled system without being precisely modeled. The proper stimulus is contributed by designer to the IC and evaluation is done on the basis of result. The IC is controlled by its own developed model system.

2.5.2 Intelligent Control Examples

Humans can do complicated things being unaware about the mechanism behind them. The following subsections are presenting control problems that are resolved by IC.

Examples of Intelligent Control include fuzzy logic, artificial neural network, genetic programming, support vector machines, reinforcement learning etc.

2.5.3 Artificial Neural Networks

The structure and function of the human nervous system is mimicked by Artificial neural networks (ANN). There are various kinds of ANN methods consisting of hopfield, art, artmap, backpropagation,
linear vector quantization designs and few more. Backpropagation is the most common used method wherein, interconnected neurons demonstrate human nervous system. The way the knowledge is stored per human biology is determined by the interconnections between neurons. As shown in Figure 3, electrical pulses travel along the axon which sends the signals between neurons. Axons attached to second neurons by synapse close to a dendrite. A neurotransmitter (small amount of chemical) is released and travels to dendrite when a pulse occurs at the synapse, which triggers a change in potential at dendrite. The electrical pulse triggers along the axon if the strength of all such interconnections is higher than some threshold and the process goes on.

Figure 3: Illustrations of interconnections of biological neurons.[45]

Functionality of ANN (as intelligent system) works on similar principal as human biology. As you can see in figure 4 , inputs are received by the artificial neurons from other neurons through a weighing function, which is generally a suppression and an amplification of the signals. On the addition of all the signals connected to the neurons, signal only travels from one neuron to other if the sum is higher than some threshold. The sigmoid function of the input determines the output of neuron not the threshold
function which produces a non- linear input to output connection in a neuron. Point to be taken is the input weighs of neuron is storage for knowledge. The ability to store different information in neurons comes by adjusting weights.

Figure 4: Pictorial description of single artificial neuron and its parts. [45]

Neurons interconnected in many layers have ability to store much more information as compare to one neuron (as referred in Figure 5).

Figure 5: Illustrates A Back propagation - ANN [45]

Figure 6 outlines backpropagation algorithm.

Initialize all weights to small random numbers

For each training example do

- For each hidden unit $h: o_{h}=\sigma\left(\sum_{i} w_{h i} x_{i}\right)$
- For each output unit k: $o_{k}=\sigma\left(\sum_{k} w_{k h} x_{h}\right)$
- For each output unit k: $\delta_{k}=o_{k}\left(1-o_{k}\right)\left(t_{k}-o_{k}\right)$
- For each hidden unit $h: \delta_{h}=o_{h}\left(1-o_{h}\right) \sum_{k} w_{h k} \delta_{k}$
- Update each network weight $w_{i j}$:

$$
w_{i j} \leftarrow w_{i j}+\Delta w_{i j} \text { With } \Delta w_{i j}=\eta \delta_{j} x_{i j}
$$

Figure 6: Backpropagation Algorithm [45]

2.5.4 Genetic Programming (GP)

GP output is a separate program except Genetic programming evolves from genetic algorithms. The main concept behind GP is to resolve control problem by creating a new program on the bases of programs that work best.

The implementation of GP involves four steps: Generating a random group of terminals and functions is an initial step. A computer program is a part of each random group. Functions operators as -,+,,*,etc... Problems consist of inputs and outputs that are terminals. As an example, earlier looking at the car, terminals would be the amount of braking applied following car, the velocity of car and the distance between the cars.

Executing each program with assigned number (known as fitness value) on basis of performance to solve the problem be the second step.

The next step is creation of new population through crossover, mutation and the fit program. A terminal of program and randomly changing functions is a part of mutation as shown in Figure 7. Exchange of functions and terminal of one program with another program is a crossover.

Figure 7: Pictorial description of mutation (left) and crossover operations in genetic programming.[45]

To reach a desired value the above mentioned three steps are repeated and the one that works best is the final result of genetic programming.

2.5.5 Support Vector Machines

The pattern recognition areas (computer vision) are the most common application of support vector machines and can also be utilized in control problems but that's not the most common purpose. Paper written by Suykens et al. be the most well known paper about the use of SVMs in non- linear systems for controls that consist of ball and beam problems (i.e. a ball rolling on a see-saw) and inverted pendulum problems.

2.5.6 Reinforcement Learning

Like other forms of intelligent controls, reinforcement learning is also important concept. A robot or plant act as an agent with already set of action choices as a part of reinforcement learning, prematurely considered to be as equally rewarding. An agent gets rewarded or punished (by a reward function) depends on the choices made by an agent as per behavioral policy. This way agent will learn how to make choices when the similar situation is confronted again.

2.5.7 Conclusion

Control system theory includes intelligent control system as well as classical control systems. In most of situations classical control systems are used when intelligent controls over kill it. When classical systems are unsuccessful, model of the system is impossible or difficult to obtain or areas are highly non- linear that's when intelligent systems demonstrate their excellence.

2.6 Current Trends of Intelligent Control Systems in Nuclear Power Plants.

"Safety Regulations and Fuzzy-Logic Control to Nuclear Reactors" [12] presents R\&D project using fuzzy control logic applied on Belgian Nuclear Reactors at research center. Project aimed at investigating value of fuzzy control implemented on reactors. Online tests that were successfully completed demonstrate fuzzy control is able to control reactor in stable state for various power levels and handle disturbance of rods per power changes. Project demonstrates its is feasible to apply fuzzy logic in nuclear reactors.
"Particle Swarm Optimization (PSO) Based Turbine Control" [16] uses genetic algorithm (GA) and particle swarm optimization (PSO) to optimize gains of proportional internal derivative (PID) algorithm and control steam turbine. Results were investigated and effectiveness of algorithm was evaluated. Numerical data also supports using PID controller coupled with PSO algorithm for better results. "The PSO-based PID controller was able to improve the optimization objective function by minimizing its value 0.51% lower than that of GA with spending 6.23% less time than GA. The PSO-based PID controller is highly recommended over GA-based PID controller." [16].
"Fuzzy-Logic-Based Safety Verification Framework for Nuclear Power Plants" [20]. Referring to nuclear power plants, paper presents practical implementation of safety verification framework per fuzzy logic. Safety and control limits in various plant processes with hazard scenarios are identified. In order to achieve Safety verification, risk is estimated quantitatively with safety limits in real time. Safety rules are defined using fuzzy logic to map hazard conditions with needed safety protection for viewing risk estimates. Proposed real time safety verification framework is analyzed with automated system developed to demonstrate safety limits for various hazard scenarios.
"Capacitive sensing technique for silt suspended sediment concentration monitoring" [21] studies suspended sediment concentration (SSSC) in water reservoirs using capacitance sensor techniques. Due to the fact that dielectric constants of water, air and sediments are different, characteristics of dielectric constants are studied for detecting concentration and soil moisture of water-air two phase flow. Capacitance sensor was used to monitor suspended silt concentration in the paper since it will increase in water-sediment mixture. This leads to dielectric constant of water increasing and also capacitance which is detective by sensing system increasing. Paper "demonstrated that the variations in the concentration of silt sediment correlates positively with the variations in observed capacitance in a linear fashion, and correlates negatively with voltage outputs but also in linear fashion" [21]. Paper demonstrates a good consideration of the technique that could be implemented at various Nuclear Power Plants that use sediment suction system at water intake points.
"Method for Improved Pressurizer System Knowledge Enabling Enhanced Pressure Control" [25] studies hybrid knowledge base with use of Kalman filter, model corrector and Recursive Least Squares Identification (RLS ID). Model updates dynamically per system changes based on measured data by RLS ID empirical identification system. Kalman filter estimates state variables, which are accurate considering uncertainties to improve system knowledge. Model corrector improves model accuracy using Kalman filter estimates. Paper introduces empirical and analytical pressurizer models to provide data sets (simulated) and describes techniques used by Kalman filter, RLS ID and model corrector. Results demonstrate better system knowledge achieved using the methods.

Chapter 3-Framework and Methodology

3.1 Framework Flowchart

Study of fuzzy logic in safety and control systems in Nuclear Power Plant

Figure 8: Flowchart depicting research plan

3.2 Framework Details

This research studies fuzzy logic in safety and control systems in a Nuclear Power Plant. Intent of thesis is to add value in improving performance of existing Nuclear Power Plants by using fuzzy logic and be good considerate for future plant implementation. Industry has to be fully aware of fuzzy logic benefits and how much productivity this logic can bring for plant reliability.

Problem and objectives were developed, limitation of safety related systems in Nuclear Power Plant were studied along with intelligent control systems. Study included review of self-tuning fuzzy logic controller compared against conventional PID controllers, safety related systems and classification in Nuclear Power Plant, intelligent control system methods, techniques, challenges, solutions and limitations.

Furthermore, two safety related systems (Breathing Air and Instrument Air) were selected for investigation and analysis with fuzzy logic. Case studies were investigated, one to study self-tuning control system applied on breathing air system to enhance performance, second to study fuzzy logic to detect solenoid valve failures proactively and improve instrument air compressor performance. Both case studies were evaluated to confirm improved performance of proposed intelligent control systems. Results were compared with and without fuzzy logic to prove logic integrity and usage. Results were also discussed at the end with conclusions and future work.

Chapter 4 - Design of Fuzzy Logic Based Self-Tuning Control System for Breathing Air System

Note: Breathing air system is a safety-related system in a Nuclear Power Plant. Design of self tuning control system is studies to enhance the performance of the system.

Nuclear power plants meet more than 50 per cent Ontario electricity demand [31]. It is imperative to run them reliably and safely at all times. This is partly done by executing plant outages wherein, a unit is taken offline and personnel enter reactor building to execute maintenance. Airborne radiation levels in the reactor building can be high, therefore, personnel require breathing air supply to perform work inside these buildings. Hence, pressure to the breathing air system at Nuclear Plant becomes crucial to execute work during outage and could lead to outage delays if not maintained within design limits [1].

Typical Breathing Air system at nuclear generating plant in Ontario is supplied by "three, two stage, water cooled and oil free rotary screw compressors, ZR3B type manufactured by Atlas Copco"[1]. Each compressor discharges air at 650 scfm at 860 kpa into air receiver that further discharges air to 4 inch diameter common header [1].

The compressor internals (i.e. oil coolers, intercoolers, aftercoolers, etc.) are cooled by service water supplied to each compressor to maintain its key parameters under acceptable limits.

Figure 9: Schematics of Breathing Air Compressor [2]

Each compressor also has a water separator at the aftercooler drain trap to extract moisture from breathing air before it's supplied to station. In addition, it also contains air filter to remove dust and foreign materials from air that is fed downstream.

After compressors and receivers, breathing air is fed to common header that contains two pressure control valves (Pressure CVs) with operating alignment as one valve in and one standby to reduce operating pressure from 860kpa to 620 kpa to be compliant with system design pressure.

Drain traps exist to air receivers, piping and stations to remove excess moisture from breathing air to keep its air quality within compliance of Z180.1-00 standards (CSA Compressed Breathing Air and Systems std).

The control problem investigated involves Pressure CVs not operating reliably to maintain design pressure of 620kpa. Typically, in Nuclear Generation plants, preventative maintenance practices exist to maintain functionality of Pressure CVs. Due to accumulation of dirt (ex rust), they could get stuck closed to further reduce pressure maintaining capability in the system. Consequences include, CV s not regulating system pressure properly and incurring extra costs to the company (Ex. during plant outages, when increased maintenance activities are carried out in the RB (reactor building), breathing air demand goes high but the CVs don't regulate to allow more air to pass through and maintain system pressure at 620 kpa . Therefore, breathing air pressure reduces beneath 550 kpa initiating alarm to the control room and all maintenance activities get stopped resulting in outage delays.)

4.1 Proposed Design

The new proposed design at a nuclear generating station in Ontario involves replacing CVs with Fuzzy+PID controllers as shown in Figure 10. This new model would ensure to sense pressure downstream in reactor building to indicate signals to fuzzy logic to drive Kp, Ki and Kd parameters and becomes self-tuning fuzzy logic driven PID controller.

Figure 10: Proposed Design of Breathing Air System

NOTE: $\mathrm{CP} \rightarrow$ Air Compressor, $\mathrm{RC} \rightarrow$ Receiver, $\mathrm{RB} \rightarrow$ Reactor Building

Following process was used to conclude proposed control design in Simulink [14].

1. Control goals established \rightarrow Maintain breathing air system pressure at 620 kpa and never below 550 kpa .
2. Variables to be controlled identified \rightarrow System pressure, steady-state error, Fuzzy/PID parameters Kp, Ki and Kd .
3. Specifications written \rightarrow modeling to PID done repeatedly to understand system behavior to develop fuzzy rules and establish Kp , Ki and Kd numerical ranges.
4. System configuration established \rightarrow Block diagram developed with Fuzzy matrix and rules to drive PID controllers.
5. Process model developed in Simulink (Figure 12).
6. Control problem analyzed, controllers developed and key parameters adjusted for simulation.
7. Simulation performance analyzed and parameters adjusted to produce optimum results.
8. Simulation performance adjured to specifications and process repeated to reach control goal (of maintaining system pressure at 620 kpa and never below 550 kpa). Control Design finalized in the end (refer to Figure 12).

Figure 11 demonstrates sample system configuration of breathing air controlling valves at a nuclear generating station in Ontario [2].

Figure 11: Breathing Air Flowsheet [2]

4.2 Data Sets

Modeling and building transfer functions of the system in Simulink consisted of four parts.

Part 1: Valve input signal to open or close the valve. Generated from an electrical controller, the electrical input signal range is kept between $4-20 \mathrm{ma}$ and relative output pressure range is $3-15 \mathrm{psi}(\mathrm{g})$.

Therefore Eq 1 calculates the slope.

$$
\begin{gathered}
G(A x)=\frac{p(s)}{u(s)}=\frac{15-3}{20-4}=\frac{12}{16} \\
G(A x)=0.75=K 0
\end{gathered}
$$

$$
G(A x)=K 0
$$

Part 2: Valve travel due to signal input. This includes the movement of valve stem including friction.
Following equation was used to drive the transfer functions.

$$
m * \ddot{y}=-F=(P * S)-(K 1 * \dot{y})-(K 2 * y)
$$

Where $(P * S)$ is the force created by valve diaphragm
($K 1 * \dot{y}$) is the friction of valve movement, propotional to velocity
$(K 2 * y)$ is the spring force, propotional to valve travel (movable part)
$m=$ mass of the valve
$\ddot{y}=$ acceleration of valve movement
$\dot{y}=$ velocity of valve stem
$y=$ friction displacement of valve (force created by spring)
$F=$ force
$P=$ pressure imposed on the valve
$S=$ area of valve diaphragm
$K 1 \& K 2=$ constants

Simplifying the equation gives:

$$
(m * \ddot{y})+(K 1 * \dot{y})+(K 2 * y)=(P * S)
$$

$$
\left((\ddot{y})+\left(\frac{K 1}{m} * \dot{y}\right)+\left(\frac{K 2}{m} * y\right)\right)=\left(\frac{S}{m} * P\right)
$$

$$
\ddot{y}+(K 3 * \dot{y})+(K 4 * y)=(K 5 * P)
$$

$$
\text { Where } K 3=\frac{K 1}{m}, \quad K 4=\frac{K 2}{m}, \quad K 5=\frac{S}{m}
$$

Laplace Transform to Eq(6) gives:

$$
\begin{gathered}
\frac{y(s)}{p(s)}=G(C V)=\frac{K 5}{S^{2}+(K 3 * S)+K 4} \\
G(C V)=\frac{K 5}{S^{2}+(K 3 * S)+K 4}
\end{gathered}
$$

Part 3: Air flow through the valve and into breathing air system.

$$
q=y * \frac{\sqrt{\Delta P}}{\partial}
$$

$y=$ displacement of valve travel (assuming linear valve characteristics)
$\Delta P=$ pressure diffrence across the valve (assuming contact pressure)
$q=$ air flowrate across the valve
$\partial=$ density of air

Simplifying the equation gives:
$q=K 6 * y$
Where $K 6=\frac{\sqrt{\Delta P}}{\partial}$

$$
G(f l o w)=\frac{q(s)}{y(s)}=K 6
$$

Adding all three transfer functions will produce final function to be used in Simulink for the valve.

$$
\begin{gathered}
G(\text { total })=\frac{q(s)}{u(s)}=G(A x) * G(C V) * G(\text { flow }) \\
G(\text { total })=\frac{p(s)}{u(s)} * \frac{y(s)}{p(s)} * \frac{q(s)}{y(s)}
\end{gathered}
$$

$G($ total $)=\frac{q(s)}{u(s)}=\mathrm{K} 0 * \frac{K 5}{s^{2}+(K 3 * S)+K 4} * K 6$
$G($ total $)=\frac{K 9}{S^{2}+(K 3 * S)+K 4}$

Where K9 = K $0 * \mathrm{~K} 5 * \mathrm{~K} 6$
$G($ total $)=\frac{K 9}{(S+K 7) *(S+K 8)}=\frac{K 9}{K 8-K 7}\left(\frac{1}{S+K 7}-\frac{1}{S+K 8}\right)$

For simplicity purposes, assume K8>>K7, this constitutes the faster mode of the valve movement (involving valve shaking etc), which is neglected since focus of research is kept on slow movement of the valve (involving K7) that would include opening, closing and valve regulations.

$$
\begin{aligned}
& G(\text { total })=\frac{K}{S+K 8}=\frac{K / K 8}{S / K 8+1} \\
&= \frac{K / K 8}{(T * S)+1} \\
& T=1 / K 8
\end{aligned}
$$

$$
\begin{gathered}
G(\text { total })=\frac{K 9}{K 8-K 7} * \frac{1}{S+K 7} \\
G(\text { total })=\frac{K 9 / K 7}{K 8-K 7} * \frac{1}{\frac{1}{K 7} * S+1} \\
G(\text { total })=K * \frac{1}{T * S+1} \\
\text { Where } K=\frac{K 9 / K 7}{K 8-K 7}, \quad T=\frac{1}{K 7}
\end{gathered}
$$

From various experiments on valve stroke tests pertaining to control valves and for simplicity purposes, the time constant (T) has been derived to be 0.0013 hrs (5 sec) and K assumed to be 1 .

Hence, $T=0.0013, \mathrm{~K}=1$

Therefore, complete transfer function for the valve is derived to be,

$$
\text { Valve transfer function }=\frac{1}{0.0013 S+1}
$$

Part 4: Breathing Air System.

Breathing Air System at PNGS was thought of as volume of air into a system. Therefore,

$$
Q=Q_{o}+\int_{0}^{t} q(t) d t
$$

$Q=$ Total volume of breathing air
in the system
$Q_{0}=$ Initial volume of breathing air
in the system
$q(t)=$ Air flow going into the system

Derivative of Eq (13) gives us.

$$
\dot{Q}=q(t)
$$

Equation 14

Laplace transform to Eq (14) gives

$$
S Q=q
$$

Equation 15

$$
\frac{Q(s)}{q(s)}=G_{B A}=\frac{1}{S}
$$

4.3 Control System Implementation

Please refer to newly proposed breathing air model (Figure 12) developed using PID + Fuzzy logic controllers in Simulink. Kindly note steps to build fuzzy rules are explained in Section 4.3.1.

Figure 12: Model of breathing air using Fuzzy+PID controller in Simulink

In order to prove effectiveness of the new model, it was compared against conventional PID controllers (Figure 13).

Figure 13: Model of breathing air using conventional PID controller in Simulink

4.3.1 Building fuzzy rules

Fuzzy rules were incorporated to fuzzy logic in order to develop Simulink model (Figure 12). This involves using fuzzy controller to support simulation of control model (Figure 14).

Figure 14: Fuzzy Logic Controller with Rule-viewer in Simulink

Input to the fuzzy model was kept as error (i.e. SP-actual pressure) to the breathing air system.

Furthermore, PID controller (Figure 15) was built to control positioning of the valves involving Kp, Ki and Kd parameters driven by the fuzzy controller (Figure 14).

Figure 15: Conventional PID controller developed in Simulink

To formulate fuzzy rules, simple PID controller was run numerous times to understand the pattern of Kp , Ki and Kd in relation with system pressure and steady state error (Figure 16). Using this data, ranges to error, Kp, Ki and Kd were established in fuzzy controller to reach optimum results. (Refer to Figure 17, $18,19,20)$

Figure 16: Graph showing relationship between PID parameters, system pressure and error

Error range was chosen from -620 to 620 .

Figure 17: Error range for fuzzy logic controller

Kp range was chosen from 0 to 50 .

Figure 18: Kp range for fuzzy logic controller to drive PID controller

Ki range was chosen from 1 to 3 .

Figure 19: Ki range for fuzzy logic controller to drive PID controller

Kd range was chosen from 4 to 40.

Figure 20: Kd range for fuzzy logic controller to drive PID controller

Rules used for building fuzzy logic are as follows:
If (Error is Low) then (Kd-Cal is Low)
If (Error is MediumNegative) then (Kp-Cal is High)(Ki-Cal is Medium)(Kd-Cal is Medium) If (Error is MediumPositive) then (Kp-Cal is High)(Ki-Cal is Medium)(Kd-Cal is Medium) If (Error is HighNegative) then (Kp-Cal is High)(Ki-Cal is High)(Kd-Cal is High) If (Error is HighPositive) then (Kp-Cal is High)(Ki-Cal is High)(Kd-Cal is High)

4.4 Results

Simulation with Fuzzy+PID was run for 60 sec and demonstrated as per following results (Figure 21).

Figure 21: Simulation results for Fuzzy PID controller for 60 secs

To prove the model's effectiveness, simulation was run with simple PID controller ($\mathrm{Kp}=3, \mathrm{Ki}=2, \mathrm{Kd}=30$) for 60 secs (Figure 22). Results demonstrate that pressure in the system didn't settle for 60 secs.

Figure 22: Simulation results for conventional PID controller for 60 secs

PID Simulation was repeated for 150 sec with following results (Figure 23).

Figure 23: Simulation results for conventional PID controller for 120 secs to understand system stability

Simulation results for Fuzzy+PID controller	
Rise time	approx $2.5 \sec (90 \%$ of $620 \mathrm{kpa}=558 \mathrm{kpa})$
Over-shoot	640 kpa
Settling time	50 sec
S-S error	0.907

Table 1: Simulation results for Fuzzy+PID controller

Simulation results with simple PID controller	
Rise time	approx 6 sec (90\% of 620kpa $=558 \mathrm{kpa}$)
Over-shoot	990 kpa
Settling time	130 sec
S-S error	0.907 (approx)

Table 2: Simulation results with simple PID controller

As is evident from table 1 and 2, reduced rise-time, overshoot and settling time were noted with amalgamated Fuzzy PID controller.

4.5 Cost Comparison

Average cost for delaying an outage is estimated to be $\$ 20,000 / \mathrm{hr}$ (Canadian dollar) at a nuclear power plant in Ontario.

When pressure in breathing air system reaches below 550kpa, alarm is initiated in PNGS control room and personnel in the RB building are directed to evaluate building to restore system pressure back to 620 kpa . Therefore, this results in delay in performing critical work in the Reactor Building.

A comparator was implemented to Simulink models to calculate area of running model beneath 550kpa.

Following were the results. Both controllers were run for 150 sec to understand their cost relation with respect to model stability. Conventional PID Controller results are shown in Figure 24.

Figure 24: Graph depicting area underneath 550kpa using PID controller

Total area underneath $550 \mathrm{kpa}=5750$ (approx)

Judging by simulation graph, we know system pressure reached below 550 kpa after rise time at 20 sec . In running plant, this would initiate breathing air pressure low alarm and personnel will be asked to evacuate from RB building. All critical work be stopped resulting in outage delay of approx 3hrs. Therefore, predicted outage delay cost with PID controller.

$$
3 h r \times \frac{\$ 20,000}{h r}=\$ 60,000(\text { Canadian dollars })
$$

Results for Fuzzy+PID controller for 150secs are shown in Figure 24.

Figure 25: Graph depicting area underneath 550kpa using Fuzzy + PID controller

Total area underneath $550 \mathrm{kpa}=428$ (approx).

This area is only calculated during the initial rise time when operators would not be sending people into the RB building until system has reached pressure above 550kpa (i.e. no alarms be initiated into the control room). Confirmed by simulation results in Figure 25, the system pressure never reaches below 550kpa after the initial rise time.

Hence, there be no delay to outage schedule as predicted delay cost using Fuzzy + PID controller is zero dollars as shown in Equation 18.

$$
0 h r \times \frac{\$ 20,000}{h r}=\$ 0(\text { Canadian dollars })
$$

Results to system pressure using fuzzy + PID are shown in Figure 26 with rule-viewer in Figure 27.

Figure 26: Simulation result of Fuzzy + PID controller for 120 secs to perform cost analysis

Figure 27: Rule-viewer for Fuzzy controller

NOTE: SS error $=0.00551$ (with Fuzzy + PID controller)

Figure 28: Please refer to Fuzzy rules built to run simulation

4.6 Conclusions

This thesis investigated using fuzzy PID controller to resolve control problem at PNGS station. Simulink was used to develop system model with fuzzy rules. Results were compared against conventional PID controller and demonstrated that fuzzy PID controller has superior control and precision in maintaining system design pressure with reduced rise-time, overshoot, settling time and steady-state error when compared against conventional PID. It was also shown that using PID conventional controller will cost extra $\$ 60,000$ for losses incurred due to instability in the system. Hence, it is recommended that fuzzy PID controller be implemented to breathing air systems at nuclear power stations in Ontario for optimized system air pressure control.

NOTE: It possible that various plants might defer in breathing air system designs (such as Pickering 014 vs Pickering 058), but overall intent of research is to resolve control problems at relevant plants with limited compressor availability and similar designs wherein breathing air pressure is regulated by control valves installed downstream of compressors.

Chapter 5 - Design of Fuzzy Logic System to Detect Solenoid Valve Failures within Safety Related System

Note: System impacted is instrument air system (which is safety related system). Design of fuzzy logic system is studied to improve performance of instrument air compressors.

Safety of workers, environment and public is of paramount importance to Nuclear Sector. A Nuclear Power Plant produces energy that is used for various purposes in safe and reliable manner. As stated earlier, functionality of control systems and its instrumentation serves as a nervous system to the plant [9]. Various detection methods are available to act on problems before they become reactive. Instrument Air System is one such critical safety impacted system that is to be operationally available at all times.

Uses of instrument air system include running various air-operated devices (valves, air motors, dampers etc) and also used as pressurized cover gas for various systems.

Typical Instrument Air System at a Nuclear Generation Plant in Ontario consists of four " $33 \%, 0.307 \mathrm{~m}^{3} / \mathrm{s}$ (650scfm), 860kpa gauge (125psig), two stage, water cooled oil free rotary screw compressors each driven by a 150 kW (200hp) motor" [17]. All four compressors discharge air to four $7 \mathrm{~m}^{3}(250 \mathrm{cu} \mathrm{ft})$ air receivers with parallel arrangement, connected downstream to four air driers via common header (Figure 29).

Figure 29: Schematic System Diagram

Four 33% heatless type air dryer units each has outlet capacity of $0.307 \mathrm{~m}^{3} / \mathrm{s}$ (650 scfm) are "twin tower, heatless, pressure swing solid activated alumina desiccant type giving an outlet dew point below minus $40 \mathrm{C}(-40 \mathrm{~F})$ at a rated gauge pressure of $860 \mathrm{kpa}(125 \mathrm{psig})$ " $[17]$ that provides dry air for station operation.

Once dry air is delivered, it is distributed via ring header to reactor buildings, reactor auxiliary bay, turbine auxiliary bay and turbine building. The headers consist of manual isolating valves for isolating the air for emergency purposes to avoid jeopardizing other air supply loads.

Individual compressed air stations consist of single/double manifolds with 8 outlets (1 cm diameter) installed with isolating valves to feed downstream equipment. Please refer to Figure 30 describing layout of instrument air circuits at typical Nuclear Plant in Ontario.

Figure 30: Pictorial view of instrument air circuits at typical Nuclear Power Plant in Ontario [15]

5.1 Problem Definition

The instrument air compressor internals (oil coolers, intercooler, and aftercoolers etc) are cooled using service water to maintain critical operational parameters under acceptable limits. These include inlet water pressure, intercooler air pressure, oil temperature, water temperature compressor out, discharge air pressure, air filter, oil pressure, discharge air temperature and water temperature aftercooler out [24].

Figure 31: Flowsheet view of compressor [18]

Referring to Figure 31, service water enters compressor via solenoid valve (SV854) and distributes in two lines, one line goes to cool Oil Cooler (heat exchanger, HX3012 and intercooler HX3009) and other cools after-cooler (heat exchanger, HX3015).

Service water often could contain silt particulates that could plug compressor internals and damage solenoid valves (SV) that open/close to supply water to cool compressor. Typical damage of solenoid valve involves plugging its internal assembly, interrupting its operation by failing in same position. For example, if solenoid valve is open (and supplying cooling water to compressor) plugging of silt will keep it stuck in open position. This would mean even if compressor downstream is not running, supply of silted water will keep flowing through and continue to plug its internals (i.e. oil cooler, intercooler and aftercooler) affecting its heat transfer efficiency in long run.

Failure of this type doesn't trip compressor in short-timeframe but reduces its lifespan due to equipment degradation that includes overcooling of compressor internals, increasing oil viscosity and causing condensation within compressor that could lead to corrosion problems requiring part replacements. It also leads to service water system impairments due to increase of flow diversion (with SV stuck open) that could otherwise be used to cool other equipment in the plant.

Second mode of solenoid valve failure involves plugging its internals in closed position and preventing it to open when signaled by control system to cool compressor internals. This operation trips compressor within seconds and equipment is declared unavailable (reducing redundancy in the system with increased burden on other three compressors as four are dedicated to one unit). Maintenance resources will be required to clean SVs and heat exchangers inside compressors repeatedly to return compressor back in service.

This thesis investigates detecting SV failures proactively with a use of safety instrumented system (SIS) and fuzzy logic (also non-SIS systems) to increase air compressor performance, service water reliability and save maintenance resources. It uses all safety life cycle activities to investigate the problem [27]:

- Risk analysis - analyze [system] risks
- Risk reduction - assessing need for risk reduction
- Safety System Requirements - establish system performance requirements
- Safety System Implementation - implementing the system according to the required performance criteria.
- Safety Assurance - assure that system is always correctly operated and maintained

A case study is used to investigate this problem at Pickering Nuclear Generation Plant in Ontario (PNGS) wherein, silt (encompassing algae/debris/zebra mussels) in service water is causing constant degradation to instrument air compressors (installed beneath sea level and service water system (with flow diversion impairments) that needs resolution.

5.2 Proposed Solution

Hazard Analysis using FMEA and OPG Modification risk assessment methods were used to analyze system critical failure modes.
a) FMEA process

This method is a "Logical, structured analysis of a system, subsystem, device, or process" [27]. It is "used to identify possible failure modes, their causes, and the effects of these failures" [27]

Identification of critical system failures helps to investigate control measures and understand system gaps to be addressed.

Figure 32 lists common mode system failures (in a block diagram) for instrument air system. This analysis helped in producing FMEA results [24].

Case Study/Data Sets

Figure 32: Instrument Air Block Diagram [24]

FMEA (Failure Mode and Effect Analysis) Results

Reviewing common failure modes for instrument air system, system reliability analysis was summarized by reviewing critical items, failure modes, failure causes, indications, consequences, severity, probability, criticality and control measures. These indications aid in daily system performance and monitoring to help reduce functional failures.

Figure 33: FMEA results

Figure 34: FMEA results

Item	Eailure Mode	Eailure Causes	IndicationsIParameters	Consequences	Severity	Probability	Criticality	Control MeasuresilRemarks
Inter-unit tie valve	Failure of inter-unit tie value to allow back.up instrument air to be supplied to a unit suffering a loss of Instument Riir	Accumulation of impurities leading to valve sticking	Tests performed for freedom of movement. Pipe degradation overtime causingleak due to loose hangers, bending or loads not suppotted uniformly.	Reduction in redundancy of supply air to a unit suffering a loss of instrument air loads		4	2	6 Investigateltepair as required
Diaphragm Valves	Inability to maintain instrument air system header pressure and flow due to insufficientleak tightress of pipes and values	Gaskets degradation	Runtime Vs. Load Time Plot Leak Check (audible)	Loss of instrument air loads lencessive is inleakage into RB		4	2	8
		Isolation valves fail to provide satisfactoryleak tightness				4	2	8
		Pipe failure					2	8
		Elastomertailure				4	2	8 Conduct Airl leak search and repair as
		Diaphragm fatigue				4	2	8 required
		Diaphragmlualve cracking from high eycle fatigue (due to vibration)	Diaphragm valves cracking to high cyyle Fatiguefvibration: Bir leaks developed overtime due to excessive pipe movement, intefference or loading.			4	2	8
		Wear or damage from moisture or other contamination in inler air				4	2	8
		Clearance between ualve body and seals/gasketsistem				4	2	8

Figure 35: FMEA results

Risk matrices (Figure 33, 34, 35) were developed using semi-quantitative analysis to identify accidental events and potential hazards, rank their severity \& probabilities and identify control measures to understand system gaps to recognize accidental events proactively for resolution.

Following criteria was used to classify severity rankings for the effects of failure modes [27]. Numbers were chosen based on system design and its impact on other systems.

Catastrophic: 1, Death, system loss, or severe environmental damage

Critical: 2, Severe injury, severe occupational illness, major system or environmental damage

Marginal: 3, Minor injury, minor occupational illness, or minor system or environmental damage

Negligible: 4, Less than minor injury, occupational illness, or less than minor system or environmental damage

Following criteria was used to estimate probabilities for identified failure modes [27]. Numbers were chosen based on System failure backlog (tracked per System Health Reports for the station as Work Order backlogs).

1-Extremely Remote (Unlikely to occur)

2-Remote (Possible to occur in time)

3-Reasonably Probable (Probably will occur in time)

4-Probable (Likely to occur immediately or within a short period of time)

Severity and Probabilities were multiplied to get Criticality values. Two hazardous scenarios (SV failure and Service water degradation) are rated Severity (3) X Probability (3) $=9$ (Criticality) for investigation.
a) Risk Assessment - Ontario Power Generation [22][23]

Risk assessment at any plant must be carried out by understanding safeguards at the station.

Following are safeguards at PNGS to catch, detect and resolve station deficiencies proactively. These processes help personnel in making decisions to manage station risks for safe operation.

Safeguards at station

System Performance Monitoring
System Health Teams
System Health Reports
Operator Rounds (daily)
System Walkdowns (weekly)
System Performance Monitoring Plans (SPMPs)
Compressor Alarms (in MCR)
Preventative Maintenance (PMs)
Predictive Maintenance (PdMs)
Corrective Maintenance (CMs)

Engineering Review Meetings (weekly)
Probability Risk Assessment (PRAs) Models - Reactor Safety
Equipment Criticality
Station Condition Record (SCRs)
Corrective Action Plan (CAP)
Air Leak searches performed every outage inside RBCP loading monitored by System Engineer
Relief Valve Program
Replacement every 5 years

Risk assessment process was carried out for installing pressure transmitter on service water downstream of SV. Process not laid out here to maintain company privacy.

After risk summation was performed to understand if modification be standard or reduced (to define permitry, approvals and resources needed for field execution), engineering change request (ECR) initiated for installing pressure transmitters downstream of solenoid valves will be reduced risk modification and easier to implement on field as it requires reduced permitry and approvals.

NOTE: Mod Preference at PNGS is not based on resources but based on maintaining safety \& reliability of systems. Standard MOD or Reduced Risk MOD only helps modification team leaders to align stakeholders for review/approvals on timely basis.

Path forward: Problem of silt (encompassing algae/debris/zebra mussels) in service water causing instrument air compressor \& service water degradation at Pickering Nuclear will be resolved by installing pressure transmitters (PTs) downstream of SVs to measure line pressure feeding compressors (as reduced risk modification at PNGS).

5.3 Proposed System Design/Algorithms

Figure 36 describes the embedded new design of solenoid assembly feeding compressors monitored by Safety instrumented system (with Fuzzy Logic and annunciations).

Figure 36: Proposed new Design of SV assembly with Fuzzy Logic and SIS.

Two constant values 'Service Water Pressure' and 'Clean bypass line' were used for simulation purposes. Water feeds into Switch1 that turns on and supplies water to 'SV'. There is 'Display' above to monitor pressure in the line that is linked with a 'Pressure Sensor' that feeds this live data to 'Fuzzy Logic'. Logic has ranges developed to take action and provide relevant annunciations.

Annunciation of 'SV good' is to be given when line pressure is reading between 400kpa to 600 kpa .
'SV needs proactive cleaning' signaled when line pressure reads 350 kpa to 400 kpa .
'Clean SV. Equipment can fail Anytime' is provided between 200kpa to 350 kpa .
'SV likely plugged. Open Bypass' is given between 100 kpa to 200kpa.
Lastly, 'URGENT: SV plugged. Open Bypass (by logic)' is signaled between 0 to 100 kpa . This will force bypass valve to open (with an Alarm) to alert operators to expeditiously bring maintenance to clean SV and restore cooling water supply via normal SV line to the compressor.

Fuzzy Logic rules were made to provide proactive annunciations for operators (during daily rounds) to act and file work requests (WR) based on SV annunciations and allow work assessing and maintenance time to schedule repair of SV as deficient maintenance rather than corrective maintenance (which is in reactive mode). This will also prevent compressor trips in long run.

5.3.1 Methodology

NOTE: For purposes of modeling in SIMULINK [35], heat transfer was studied for Oil Cooler as heat exchanger using properties of water and oil at average system temperature, 35C and 60C respectively to demonstrate how fuzzy logic based safety design can increase air compressor performance. [26]

Once service water passes the solenoid valve (SV), it is fed to 'Air Compressor' modeled as

1. heat exchanger to calculate water and oil temperatures going out based on inlet temperatures.

Figure 37: Schematic of Oil Cooler (heat exchanger inside air compressor)
2. Firstly, \dot{m}_{w} and \dot{m}_{o} are used as water and oil flow rates to start modeling process.
3. Temperature of service water going in $\left(T_{\text {water }, \text { in }}\right)$ is kept constant at 35 C for modeling purposes as its coming directly from lake.
4. Oil temperature going in $\left(T_{\text {oil,in }}\right)$, Fouling rate $\left(R_{f}\right)$ and water flowrate $\left(m_{w}\right)$ is looked up to move the iterations. Data collected is qualitative based on system surveillance, monitoring and experience.
5. Hydraulic diameter of inner tube $D_{h, w}=0.02 \mathrm{~m}$.

$$
V_{w}=\frac{\dot{m}}{\rho_{w} \cdot A_{c, \text { inner tube }}}(\mathrm{m} / \mathrm{sec})
$$

Using Eq (20), Reynolds number is determined

$$
\begin{aligned}
& \text { Re } e_{\text {water }}=\frac{V_{w} D_{h, w}}{v_{w}} \\
& \text { Note: } v_{w} \text { is the Kinematic viscosity }
\end{aligned}
$$

6. If Re number is turbulent, Nusselt number is determined using Eq (22) and water convection heat transfer coefficient $\left(h_{i}\right)$ is calculated.

$$
N u_{\text {water }}=\frac{h_{i} D_{h, w}}{k_{\text {water }}}=0.023 \cdot R e_{\text {water }}^{0.8} \cdot P r_{\text {water }}^{0.4}
$$

7. Same process is repeated for Oil.

Hydraulic diameter of annular space $D_{h, o}=0.01 \mathrm{~m}$.

Average velocity of Oil

$$
V_{o}=\frac{\dot{m}_{o}}{\rho_{o} \cdot A_{c, \text { outer tube }}}(\mathrm{m} / \mathrm{sec})
$$

Reynolds Number (for oil)

$$
R e_{o i l}=\frac{V_{o} D_{h, o}}{v_{o}}
$$

8. If $R e_{\text {oil }}$ for oil is determined as laminar flow in Eq 24, then Table 3 is used to get Nusselt number.

$\mathrm{D}(\mathrm{i}) / \mathrm{D}(\mathrm{o})$	Nu
0	17.46
0.05	11.56
0.1	7.37
0.25	5.74
0.5	4.86
1	

Table 3: Nusselt number for fully developed laminar flow in a circular annulus with one surface insulated and the other isothermal [26]
9. After $N u_{\text {oil }}$ is determined, convection heat transfer coefficient is determined using Eq (25).

$$
h_{o}=\frac{k_{o}}{D_{h, o i l}} \cdot N u_{o i l}\left(W / m^{2} \cdot{ }^{\circ} \mathrm{C}\right)
$$

10. Using specific heat rates for water $\left(c_{p, \text { water }}, 4.18\left({ }^{\mathrm{KJ}} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C}\right)\right)$ and oil $\left(c_{p, o i l}, 2.13\left({ }^{\mathrm{KJ}} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C}\right)\right)$, heat capacity rates for both water and oil are calculated.

$$
C_{\text {water }}=m_{w} \cdot c_{p, \text { water }}(K W / C) \quad \text { Equation } 26
$$

$$
C_{o i l}=m_{o} \cdot c_{p, o i l}(K W / C)
$$

Minimum heat capacity is divided with maximum heat capacity (Eq 28) to calculate ratio C .

$$
c=\frac{c_{\min }}{C_{\max }} \quad \quad \text { Equation } 28
$$

Maximum heat transfer in Oil Cooler is calculated

$$
\dot{Q}_{\max }(K W)=C_{\min }\left(T_{\text {oil,in }}-T_{\text {water,in }}\right)
$$

11. Afterwards, surface area of Oil Cooler (inner tube) is modeled in Simulink using Eq (30).

$$
A_{s}=\pi * D * L
$$

$$
\begin{gathered}
A_{s} \rightarrow \text { Total surface area of inner tube }\left(m^{2}\right) \\
\left.\qquad \begin{array}{c}
D \rightarrow \text { diameter }(m) \\
L
\end{array}\right) \text { length }(m)
\end{gathered}
$$

12. Overall heat transfer rate is calculated as follows:

$$
U=\frac{1}{1 / h i^{+1 / h o^{+R}}}
$$

Since we are interested in calculating heat transfer rate (\dot{Q}) and outlet temperatures $\left(T_{\text {water,out }}, T_{\text {oil,out }}\right), \log$ mean temperature difference method was reviewed and required tedious iterations to reach results that may not be practical. Kays and London in 1955 developed a method known as "effectiveness - NTU [number of transfer units] method" [26], which was modeled in Simulink to reach results.

Effectiveness - NTU method

NTU is first calculated with Eq (32).

$$
N T U=\frac{U A_{s}}{C_{\text {min }}}
$$

Referring to Figure 38, both C and NTU values are used to interpolate \in factor value

Actual heat transfer rate is calculated using (Eq 33).

$$
\dot{Q}(K W)=\in Q_{\max }
$$

Finally, $T_{\text {water,out }}$ and $T_{\text {oil,out }}$ are calculated as follows:

$$
T_{\text {water }, \text { out }}=T_{\text {water,in }}+\frac{\dot{Q}}{C_{\text {water }}}
$$

$$
T_{\text {oil }, \text { out }}=T_{\text {oil,in }}-\frac{\dot{Q}}{C_{\text {oil }}}
$$

Line Pressure (kpa)	Fouling factors R(f)
150	0.1
200	0.05
250	0.01
300	0.005
400	0.001
500	0.0009

Table 4: Fouling factors used for Simulation based on Line pressure

Figure 38: Effectiveness for Heat Exchangers [26]

5.4 Simulation/Results

a) Simulation without SIS (Figure 39).

Scenario considered: Inlet water pressure at 80 kpa and SV stuck open \rightarrow worst case for Air Compressor. This represents compressors acquiring cooling capacity with solenoid valve failed at open position with water flow maintained at 80kpa (pressure) flowing through compressors and analyzing its consequences without SIS.

As evident from Figure 39, Oil temperature of air compressor ONLY reduced from 72.8C to 57.45C with water temperature increased from 35C to 47.51 C . Fouling factor is 0.17 (Table 4) based on line pressure. An increasing fouling number is sign of more silt/particulates to negatively impact heat transfer rate and degrade equipment performance.

In long run, re-circulating Oil temperature will continue to rise due to SV stuck in open position and Oil cooler will continue to plug up further decreasing the heat transfer efficiency and eventually trip the compressor.

Figure 39: Simulink model results without SIS.
b) Simulation with SIS (Figure 40)

Scenario considered: Inlet water pressure at 80 kpa and SV stuck open \rightarrow worse case for Air Compressor.
This represents compressors acquiring cooling capacity with solenoid valve failed at open position with water flow maintained at 80 kpa (pressure) flowing through compressors and analyzing its consequences with SIS.

Figure 40: Simulink model results with SIS

Referring to Figure 40, Oil temperature of air compressor reduced from 59.4C to 49.37C.

NOTE: inlet Oil Temp is lower compared to 72.8C (without SIS) since rule based Fuzzy logic has opened bypass line (reading 450 kpa) and line pressure feeding compressor is 530 kpa (80 kpa with SV plugged +450 kpa from bypass line).

In addition, annunciation 'URGENT. SV plugged. Open Bypass (by logic)' is also turned ON with an ALARM to notify operators that maintenance is needed to clean SV urgent before silt deposits are excessively fed to compressor heat exchangers (i.e. oil cooler, intercooler and aftercooler).

COMPARISION (No SIS Vs SIS):

No SIS:

Oil Temp (in) $\rightarrow 72.8 \mathrm{C}$ (bypass not open)
Oil Temp (out) \rightarrow 57.45C (bypass not open)
Water Temp (in) \rightarrow 35C (bypass not open)
Water Temp (out) \rightarrow 47.51C (bypass not open)

Therefore, with no SIS, Oil temperature saw reduction of 15.35 C and water temperature saw increase of 12.51C. Re-circulation of high temperature of Oil will eventually trip the compressor since the bypass line is not open and heat transfer efficiency will decrease.

With SIS (bypass line opened by fuzzy logic)

Oil Temp (in) \rightarrow 59.4C
Oil Temp (out) $\rightarrow 49.37 \mathrm{C}$
Water Temp (in) \rightarrow 35C
Water Temp (out) $\rightarrow 43.18 \mathrm{C}$
Therefore, with SIS installed, Oil temperature saw reduction of 10.03 C and water temperature saw increase of 8.18C. Re-circulation of Oil temperature will remain low and not trip the compressor as the bypass line is opened by fuzzy logic and extra mass flowrate of water will maintain effective heat transfer rate.

NOTE: Operators also notified (with annunciation and alarm) of SV requiring urgent cleaning with SIS results modeled in SIMULINK that acquire less cleaning resources than cleaning compressor internals.

Cleaning SV requires less resources than cleaning compressor internals for which, more operation alignment is required and compressor is unavailable for service for longer duration reducing system redundancy (as only three compressors (out of four) be available to support unit station loads). Cleaning SV is few hours of work whereas cleaning compressor could take days or weeks.

In essence, using SIS with Fuzzy Logic results in reduced fouling factor, oil temperature and effective heat transfer rate to maintain high performance of air compressors.

Risk Matrix

		Risk Matrix											
			Consequences										
			Moderate	Major	Catastrophic	$	$	Probability	Insignificant	Minor			Compressors/ Service Water Almost Certain
:---	:---	:---	:---	:---	:---								
Likely													
Moderate													
Unlikely													
Rare													

Table 5: Risk Matrix [27]

Risk $=$ Probability X Consequence.

Problem investigated using the case study is categorized as 'Likely' probability based on system failure rate of SVs over the years (Table 6). Data for Table 6 is collected from service water backlog tracked by work orders.

Count of WO	Yea ${ }^{\text {F }}$															
Row Labels	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Grand Total
058-71310-SV854-								2		2			2	2	3	11
058-71310-SV855-						1		3		1			3	2	1	11
058-71310-SV856-					1			1		1	1		1	3	4	12
058-71310-SV857-		1	1					1	1		1	1		2	2	10
058-71310-SV858-		2			1			1	1		2	1	2	1	1	12
058-71310-SV859-					1		1		1					1	3	7
5-71310-SV850-				1				1	1					5	1	9
5-71310-SV851-		1					1	2	1		1			1		7
5-71310-SV852-					1	1		1	1	1		1	2	3	2	13
5-71310-SV853-					1			2	1	1	1		2	2	5	15
6-71310-SV850-			1	1					1	1	1	1		4	1	11
6-71310-SV851-		2					3	1	1		1		1	1	2	12
6-71310-SV852-		1					1		1			1	1	2	6	13
6-71310-SV853-		1						3		1			4	2	2	13
7-71310-SV850-															1	1
7-71310-SV851-						1					1		3	3	5	13
7-71310-SV852-		1			1						1		2	2	1	8
7-71310-SV853-					1	2		1	1	2	1		3	5	3	19
8-71310-SV850-	1	2					1			1			1	3	2	11
8-71310-SV851-		3	1			1	3	1	2	1	1			2	4	19
8-71310-SV852-		1					1				1	1	2	3	3	12
8-71310-SV853-		1					1		1				1	5	2	11
Grand Total	1	16	3	2	7	6	12	20	14	12	13	6	30	54	54	250

Table 6: SV failure rate on air compressors since 1998 to 2012 [34]

Consequences are judged as 'Major' due to problems pertaining to compressor degradation (requiring overhauls for repair tracked by system health reports [34]) and service water impairments.

Using SIS amalgamated results with fuzzy logic for condition based SV maintenance, it is concluded that installation of pressure transmitter as SIS will save huge cost incurs for PNGS in repairs and improve
reliability of instrument air compressors/service water by detecting SV failures proactively. It ensures proper functioning of SV that will prevent compressor internal plugging by maintaining its operation per system design (i.e. open when signaled to open and close when signaled to close)

Example of Safety Instrumented Function:

Figure 41: Pictorial depiction of SIF [27]

SIF of SIS is to "maintain safe state for the process industry in respect to hazardous event" [27]. In the case study, SIS provides operator annunciations (on timely basis) to avoid equipment degradation and flow diversion to service water.

Safety Integrity Level (SIL) "sets the performance target for the implementation in the form of the probability of Failure on Demand (PFD)" [27].

Performance target chosen for instrument air system and service water using SVs is 3. (SIL is 3).
Probability of failure on demand is

$$
(\mathrm{PFD})=10^{-3}
$$

Risk Reduction Factor:

$$
R R F=\frac{1}{P F D}=\frac{1}{10^{-3}}=1000
$$

Without SIS.
SIL is low $=\mathrm{a} 1$
$\mathrm{PFD}=10^{-1}$
$R R F=10$

Hence, SIS lowers the risk to the system (as also evident by the case study presented).

Table 7: PFD Requirements [27]

5.5 Analysis of Solenoid Valve (SV) Failures on Air Compressor Performance

Results of the case study demonstrated SV failure contributes to reduced air compressor performance (Modeled by SIMULINK) and require repetitive expensive repairs.

Based on OPEX, costs of repairs (without SIS) are as follows:

- Air compressor maintenance (approx)
- Labour + Parts \rightarrow Up to $\$ 105,000$ (Canadian $\$ \$$)
- Burden to service water (approx)
- Labour + Parts \rightarrow Up to \$50,000 (Canadian \$\$)

NOTE: dollar values estimated at the discretion of System Engineers at PNGS.

Costs of repairs (with SIS) only involve proactive cleaning of Solenoid valves (to avoid long term compressor problems).

- Proactive SV cleaning (approx)
- Labour + Parts \rightarrow Up to $\$ 1000$ (Canadian $\$ \$$)

Performance target of reporting SV condition and annunciations is given 'Safety Integrity Level three (SIL 3) to improve risk reduction factor on timely basis and save huge cost incurs for the company. Using SIS with Fuzzy Logic results in reduced fouling factor, oil temperature and effective heat transfer rate to maintain high performance of air compressors. Installation of pressure transmitters with fuzzy
logic will reduce maintenance burden, save company costs (in range of thousands of dollars) and improve system reliability by detecting proactive failures (via operator annunciation).

Please note pressure transmitter and associated logic will identify when silt collecting inside solenoid valve may potentially reduce flow of water below minimum required for compressor operation. Solution to this thesis is limited to prediction of early silt detection inside solenoid valve but not inside compressor internals.

Following principals of maintaining 'Value for Money and station safety, it is recommended that SIS (with fuzzy logic) be installed across Nuclear stations facing similar scenarios of silted water.

5.6 Reference Calculations

This section describes scenario calculation (modeled into Simulink) to describe how outlet water and oil temperatures were determined.

Hot oil inside air compressor is to be cooled in double tube counter flow heat exchanger (Oil Cooler, HX). HX has inner copper tubes (with diameter 2 cm) and negligible thickness. Inner diameter of outer tube (shell) is 3 cm .

Water flow through inner tube $\left(m_{w}\right)$ is
$m_{w} \quad \rightarrow$ Water mass flow rate $(\mathrm{kg} / \mathrm{sec})=0.5 \mathrm{~kg} / \mathrm{sec}$
$\dot{m_{o}} \quad \rightarrow$ Oil mass flow rate $(\mathrm{kg} / \mathrm{sec})=0.8 \mathrm{~kg} / \mathrm{sec}$
$T_{\text {water,in }} \rightarrow 35^{\circ} \mathrm{C}$ (This value is kept constant as lake water going into compressor is same for all modeling iterations)
$T_{\text {oil,in }} \rightarrow 60^{\circ} \mathrm{C}$ (Value taken to start iterations of Oil temp. Other iterations will depend on heat transfer coefficient and how particulates on silt will impact heat transfer efficiency)

Properties of Water at $35^{\circ} \mathrm{C}$ [26]
$\rho_{w} \rightarrow$ density of water $=994 \mathrm{Kg} / \mathrm{m}^{3}$
$\operatorname{Pr}_{\mathrm{w}} \rightarrow$ Prandtl number $=4.83$
$k_{w} \rightarrow$ Thermal Conductivity $=0.623 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$
$v_{w} \rightarrow$ Kinematic Viscosity $=0.724 * 10^{-6} \mathrm{~m}^{2} / \mathrm{S}$

Please refer to Figure 37 for schematic of Oil Cooler (i.e. heat exchanger evaluated for case study)

Overall heat transfer coefficient be determined by:

$$
\frac{1}{U}=\frac{1}{h_{i}}+\frac{1}{h_{o}}
$$

Equation 38

Hydraulic diameter of circular tube is diameter of inner tube itself.

$$
D_{h, w}=0.02 m
$$

Now, we calculate average velocity of service water in inner copper tube and Reynolds number.

$$
\begin{aligned}
& V_{w}=\frac{m_{w}}{\rho_{w} \cdot A_{c, i n n e r ~ t u b e}} \\
& V_{w}=\frac{0.5 \mathrm{~kg} / \mathrm{sec}}{\left(994 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot\left(\frac{1}{4} \pi(0.02 \mathrm{~m})^{2}\right.}=1.6 \mathrm{~m} / \mathrm{sec} \\
& R e_{\text {water }}=\frac{V_{w} D_{h, w}}{v_{w}} \\
& R e_{\text {water }}=\frac{(1.6(\mathrm{~m} / \mathrm{sec})) \cdot(0.02 \mathrm{~m})}{0.724 * 10^{-6} \mathrm{~m}^{2} / \mathrm{sec}}=44198.895
\end{aligned}
$$

Reynolds number for service water is greater than 10,000 and termed as turbulent. Assuming this flow is fully developed, Nusselt number is next calculated.

$$
\begin{gathered}
N u_{\text {water }}=\frac{h_{i} D_{h, w}}{k_{\text {water }}}=0.023 \cdot R e_{\text {water }}^{0.8} \cdot P r_{\text {water }}^{0.4}(22) \\
N u_{\text {water }}=0.023 \cdot(44198.89)^{0.8} \cdot(4.83)^{0.4}=224.71
\end{gathered}
$$

Therefore,
$h_{i}=\frac{224.71 * 0.623\left(\mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)}{0.02 \mathrm{~m}}$

$$
h_{i}=6999.72 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}
$$

Now, we repeat analysis for Oil.

Properties of Oil at $60 \square[26]$
$\rho_{o} \rightarrow$ density of oil $=863.9 \mathrm{Kg} / \mathrm{m}^{3}$
$\operatorname{Pr}_{\mathrm{o}} \rightarrow$ Prandtl number $=1080$
$k_{o} \rightarrow$ Thermal Conductivity $=0.1404 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$
$v_{o} \rightarrow$ Kinematic Viscosity $=8.565 * 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$

Hydraulic Diameter for the annular space is
$D_{h, o}=0.03-0.02=0.01 \mathrm{~m}$

$$
V_{o}=\frac{\dot{n}_{o}}{\rho_{o} \cdot A_{c, \text { outer tube }}}
$$

$V_{o}=\frac{0.8 \mathrm{~kg} / \mathrm{sec}}{\left(863.9 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot\left(\frac{1}{4} \pi(0.03-0.02) \mathrm{m}^{2}\right.}=2.36 \mathrm{~m} / \mathrm{sec}$

$$
R e_{o i l}=\frac{V_{o} D_{h, o}}{v_{o}}
$$

$R e_{\text {oil }}=\frac{(2.36(\mathrm{~m} / \mathrm{sec})) \cdot(0.01 \mathrm{~m})}{8.565 * 10^{-5} \mathrm{~m}^{2} / \mathrm{sec}}=275.54$

Reynolds number for oil is less than 2300 and termed as laminar. Referring to Table 8 and the oil flow is fully developed, Nusselt number is next calculated.

D(i)/D(o)	Nu
	0
	0.05
0.1	17.46
	0.25
	0.5
1	

Table 8: Nusselt number for fully developed laminar flow in a circular annulus with one surface insulated and the other

> isothermal [26]

$$
\frac{D_{i}}{D_{o}}=\frac{0.02}{0.03}=0.667
$$

Referring to Table 8 and interpolating for $\mathrm{D}(\mathrm{i}) / \mathrm{D}(\mathrm{o})$ as 0.667 ,

$$
N u_{\text {oil }}=5.45
$$

Oil convection heat transfer coefficient is

$$
h_{o}=\frac{k_{o}}{D_{h, o i l}} \cdot N u_{o i l}
$$

$h_{o}=\frac{0.1404\left(\mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right) \cdot(5.45)}{0.01 \mathrm{~m}}$
$h_{o}=76.52\left(\mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)$

Calculating Oil and water temperature going out

$$
\begin{aligned}
& c_{p, \text { water }} \rightarrow 4.18\left({ }^{\mathrm{KJ}} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C}\right) \\
& c_{p, \text { oil }} \rightarrow 2.13\left({ }^{\mathrm{KJ} / \mathrm{Kg}} \cdot{ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Calculating Heat Capacity rates for water and oil

$$
\begin{array}{r}
C_{\text {water }}=m_{w}^{\prime} \cdot c_{p, \text { water }} \\
=0.5(\mathrm{~kg} / \text { sec }) X 4.18\left({ }^{\mathrm{KJ} / \mathrm{Kg} \cdot} \cdot{ }^{\circ} \mathrm{C}\right)=2.09 \mathrm{KW} / \mathrm{C} \\
C_{\text {oil }}=m_{o}^{\cdot} \cdot c_{p, \text { oil }}
\end{array}
$$

Equation 45

Equation 46

$$
\begin{aligned}
& =0.8\left({ }^{\mathrm{kg} / \mathrm{sec}) X 2.13\left({ }^{\left.\mathrm{KJ} / \mathrm{Kg} \cdot{ }^{\circ} \mathrm{C}\right)=1.704 \mathrm{KW} / \mathrm{C}}\right.} \begin{array}{l}
C_{\min }=C_{\text {oil }}=1.704 \mathrm{KW} / \mathrm{C} \\
\qquad \mathrm{C}=\frac{C_{\min }}{C_{\max }} \\
=\frac{1.704(\mathrm{KW} / \mathrm{C})}{2.09(\mathrm{KW} / \mathrm{C})}=0.815
\end{array}\right.
\end{aligned}
$$

Maximum possible heat transfer rate in the oil cooler.

$$
\dot{Q}_{\max }=C_{\min }\left(T_{\text {oil,in }}-T_{\text {water,in }}\right)
$$

$\dot{Q}_{\max }=1.704 \frac{K W}{C}\left(60^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}\right)=42.6 \mathrm{KW}$

$$
A_{s}=\pi * D * L
$$

$=\pi *(0.02) *(10)=0.628 \mathrm{~m}^{2}$

Now, we calculate overall heat transfer coefficient (U). Fouling factor $\left(R_{f}\right)$ used is 0.0009 for this case wherein, line service water pressure is 500 kpa (Table 4).

$$
U=\frac{1}{1 / h i^{+1} / h o^{+R_{f}}}
$$

$$
U=\frac{1}{1 / 6999.72+1 / 76.52+0.0009}
$$

$$
U=70.86\left({\frac{W}{m^{2}}}^{\circ} \mathrm{C}\right)
$$

Using Effectives NTU (number of transfer units) method [26], Oil cooler efficiency can be calculated.

$$
N T U=\frac{U A_{s}}{C_{\text {min }}}
$$

Equation 51
$N T U=\frac{70.86\left(\mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right) * 0.628 \mathrm{~m}^{2}}{1704\left(\mathrm{~W} /{ }^{\circ} \mathrm{C}\right)}$
$N T U=0.026$

With $\mathrm{c}=0.815, \mathrm{NTU}=0.026$ and referring to Figure $38, \in$ is calculated to be 0.04

Therefore, actual heat transfer rate is:

$$
\dot{Q}=\in \dot{Q}_{\max }
$$

$$
\dot{Q}=Q_{\max }=0.04 * \dot{42.6}=1.704 \mathrm{KW}
$$

Finally, outlet Oil and Water temperature are as follows:

$$
T_{\text {water }, \text { out }}=T_{\text {water }, \text { in }}+\frac{\dot{Q}}{C_{\text {water }}}
$$

$T_{\text {water }, \text { out }}=35^{\circ} \mathrm{C}+\frac{1.704 \mathrm{KW}}{2.09 \mathrm{KW}}$
$T_{\text {water }, \text { out }}=35.81^{\circ} \mathrm{C}$

$$
T_{o i l, o u t}=T_{o i l, i n}-\frac{\dot{Q}}{C_{o i l}}
$$

$T_{\text {oil,out }}=60^{\circ} \mathrm{C}+\frac{1.704 \mathrm{KW}}{1.704 \mathrm{KW}}$
$T_{\text {oil,out }}=61^{\circ} \mathrm{C}$

Chapter 6 - Results and Discussions

6.1 Fuzzy Logic Vs PID Control

First case study investigated system parameters with and without fuzzy logic.
Simulation in (Simulink) was run with PID Controller for 60 secs. Results demonstrate system pressure did not settle for 60 secs.

Figure 42: Simulation results for conventional PID controller for $\mathbf{6 0}$ secs

To further understand results, PID Simulation was repeated for 150 secs with following results.

Figure 43: Simulation results for conventional PID controller for 120 secs to understand system stability

To compare results with fuzzy logic, simulation was repeated with similar scenario using Fuzzy logic driven PID controller for 60 secs with following results.

Figure 44: Simulation results for Fuzzy PID controller for 60 secs

Rise time	approx 6 sec (90\% of 620kpa $=558 \mathrm{kpa})$
Over-shoot	990 kpa
Settling time	130 sec
S-S error	0.907 (approx)

Table 9: Simulation results with simple PID controller

Rise time	approx $2.5 \mathrm{sec}(90 \%$ of $620 \mathrm{kpa}=558 \mathrm{kpa})$
Over-shoot	640 kpa
Settling time	50 sec
S-S error	0.907

Table 10: Simulation results for Fuzzy+PID controller

It is evident comparing Table $9 \& 10$ that fuzzy logic driven PID controller produces reduced rise-time, reduced overshoot and setting time compared against conventional PID controller.

It is also critical to note per procedures, anytime breathing air pressure inside reactor building (RB) reaches below 550 kpa , emergency alarm is initiated in control room and all personnel working inside RB building are directed to evaluate to restore system pressure back to 620 kpa (i.e. system design pressure). Evacuation of personnel also results in delay to maintenance activities (inside planned reactor shutdown schedule), which leads to cost of $\$ 60,000$ (approx) loss to the company.

To demonstrate results using Simulink, a comparator was implemented to calculate area of running model beneath 550 kpa . Both controllers were run for 150 sec to understand their cost relation with respect to model stability. Conventional PID Controller results were as follows:

Figure 45: Graph depicting area underneath 550kpa using PID controller

Total area underneath $550 \mathrm{kpa}=5750($ approx $)$

Judging by simulation graph, it is evident system pressure reached below 550 kpa after rise time at 20 sec . In Nuclear Power Plant, this would initiate breathing air pressure low emergency alarm and personnel will be directed to evacuate RB building. All critical work be stopped resulting in outage delay of approx 3 hrs (till system pressure restores and stabilizes).

Predicted outage delay cost with PID controller.

$$
3 h r \times \frac{\$ 20,000}{h r}=\$ 60,000(\text { Canadian dollars })
$$

Simulink was run again with Fuzzy+PID controller for 150secs are shown

Figure 46: Graph depicting area underneath 550kpa using Fuzzy + PID controller

Total area underneath $550 \mathrm{kpa}=428$ (approx).

Area calculated during the initial rise time is neglected since operators would not be sending personnel into RB building until system has reached pressure above 550 kpa (i.e. no alarms be initiated into the control room). Confirmed per Simulink simulation results, system pressure never reaches below 550 kpa after initial rise time (using fuzzy driven PID controller).

Therefore, there be no outage schedule delay and predicted delay cost using Fuzzy + PID controller be zero dollars.

$$
0 h r \times \frac{\$ 20,000}{h r}=\$ 0(\text { Canadian dollars })
$$

Results demonstrate fuzzy PID controller has superior control and precision in maintaining system design pressure with reduced rise-time, overshoot, settling time and steady-state error compared against conventional PID. Furthermore, using PID conventional controller will cost extra $\$ 60,000$ for losses incurred due to instability in the system (Table 11).

	PID Controller	Fuzzy PID Controller
Rise Time (sec)	6	2.5
Over-shoot (kpa)	990	640
Setting Time (sec)	130	50
Damage Cost (\$\$)	60,000	0

Table 11: PID Vs Fuzzy PID Controller

6.2 Performance Improvement Of Instrument Air Compressors

Simulink application was used again to compare results with and without fuzzy logic.

6.2.1 Simulation Without Safety Instrumented System (SIS)

Scenario considered for Air Compressor: Inlet water pressure at 80 kpa and SV stuck open \rightarrow worst case for Air Compressor. This represents compressors acquiring cooling capacity with solenoid valve failed at open position with water flow maintained at 80 kpa (pressure) flowing through compressors and analyzing its consequences without SIS.

As evident, Oil temperature of air compressor ONLY reduced from 72.8 C to 57.45 C with water temperature increased from 35C to 47.51 C . Fouling factor is 0.17 (Table 4) based on line pressure. An increasing fouling number is a sign of more silt/particulates to negatively impact heat transfer rate and degrade compressor performance.

In long run, re-circulating Oil temperature will continue to rise due to SV stuck in open position and Oil cooler will continue to plug up further decreasing heat transfer efficiency and will eventually trip the compressor.

Figure 47: Simulink model results without SIS

6.2.2 Simulation With Safety Instrumented System (SIS) using Fuzzy logic

Scenario considered for Air Compressor: Inlet water pressure at 80 kpa and SV stuck open \rightarrow worse case for Air Compressor. This represents compressors acquiring cooling capacity with solenoid valve failed at open position with water flow maintained at 80kpa (pressure) flowing through compressors and analyzing its consequences with SIS.

Figure 48: Simulink model results with SIS

Oil temperature of air compressor reduced from 59.4C to 49.37C

NOTE: inlet Oil Temp is lower compared to 72.8C (without SIS) since rule based Fuzzy logic has opened bypass line (reading 450 kpa) and line pressure feeding compressor is 530 kpa (80 kpa with SV plugged +450 kpa from bypass line).

In addition, annunciation 'URGENT. SV plugged. Open Bypass (by logic)' is also turned ON with an ALARM to notify operators that maintenance is needed to clean SV urgent before silt deposits are excessively fed to compressor heat exchangers (i.e. oil cooler, intercooler and aftercooler).

COMPARISION (No SIS Vs SIS):

No SIS:

Oil Temp (in) $\rightarrow 72.8 \mathrm{C}$ (bypass not open)
Oil Temp (out) \rightarrow 57.45C (bypass not open)
Water Temp (in) \rightarrow 35C (bypass not open)
Water Temp (out) \rightarrow 47.51C (bypass not open)

Therefore, with no SIS, Oil temperature saw reduction of 15.35 C and water temperature saw increase of 12.51C. Re-circulation of high temperature of Oil will eventually trip the compressor since the bypass line is not open and heat transfer efficiency will decrease.

With SIS (bypass line opened by fuzzy logic)

Oil Temp (in) \rightarrow 59.4C
Oil Temp (out) $\rightarrow 49.37 \mathrm{C}$
Water Temp (in) \rightarrow 35C
Water Temp (out) $\rightarrow 43.18 \mathrm{C}$
Therefore, with SIS installed, Oil temperature saw reduction of 10.03 C and water temperature saw increase of 8.18C. Re-circulation of Oil temperature will remain low and not trip the compressor as the bypass line is opened by fuzzy logic and extra mass flowrate of water will maintain effective heat transfer rate.

SIS results modeled in SIMULINK that acquire less cleaning resources than cleaning compressor

 internals.Cleaning SV requires fewer resources than cleaning compressor internals for which, more operation alignment is required and compressor is unavailable for service for longer duration reducing system redundancy (as only three compressors (out of four) be available to support station loads). Cleaning SV is few hours of work whereas cleaning compressor can take weeks.

In essence, using SIS with Fuzzy Logic results in reduced fouling factor, oil temperature and effective heat transfer rate to maintain high performance of air compressors.

6.2.3 Analysis Of Solenoid Valve (SV) Failures On Air Compressor Performance

Results of the case study demonstrated SV failure contributes to reduced air compressor performance (Modeled by SIMULINK) and require repetitive expensive repairs.

Based on OPEX, costs of repairs (without SIS) are as follows:

- Air compressor maintenance (approx)
- Labour + Parts \rightarrow Up to $\$ 105,000$
- Burden to service water (approx)
- Labour + Parts \rightarrow Up to $\$ 50,000$

NOTE: dollar values estimated at the discretion of System Engineers at PNGS.

Costs of repairs (with SIS) only involve proactive cleaning of Solenoid valves (to avoid long term compressor problems).

- Proactive SV cleaning (approx)
- Labour + Parts \rightarrow Up to $\$ 1000$

Performance target of reporting SV condition and annunciations is given 'Safety Integrity Level three (SIL 3) to improve risk reduction factor on timely basis and save huge cost incurs for the company. Using SIS with Fuzzy Logic results in reduced fouling factor, oil temperature and effective heat transfer rate to maintain high performance of air compressors. Installation of pressure transmitters with fuzzy logic will reduce maintenance burden, save company costs (in range of thousands of dollars) and improve system reliability by detecting proactive failures (via operator annunciation).

Please note pressure transmitter and associated logic will identify when silt collecting inside solenoid valve may potentially reduce flow of water below minimum required for compressor operation. Solution to this thesis is limited to prediction of early silt detection inside solenoid valve but not inside compressor internals.

Following principals of maintaining 'Value for Money and station safety, it is recommended that SIS (with fuzzy logic) be installed across Nuclear stations facing similar scenarios of silted water.

6.3 Discussions

Results discussed in Sec 6.1 demonstrate fuzzy PID controller has superior precision and control in maintaining system design pressure with reduced rise time (2.5 sec Vs 6 sec in PID controller), overshoot (640kpa Vs 990kpa in PID controller) and settling time (50 sec Vs 130 sec in PID controller). Fuzzy PID controller further saves up to $\$ 60,000$ (approx) losses, which be prevented due to system stability. In addition, better breathing air system control by implementing fuzzy driven PID controller will also improve safety of personnel in reactor building and operational performance of breathing air compressors. With proper control regulation in-place, compressor burden will reduce and help increase compressor equipment life, mean time between failures and system availability. It is recommended that fuzzy PID controller be implemented to breathing air systems at nuclear power stations in Ontario for optimized pressure control.

Results discussed in Sec 6.2 demonstrate fuzzy logic driven System instrumented system (SIS) results in reduced fouling factor (0.17 based on line pressure), oil temperature (reduction of 10.03 C Vs 15.35 C without SIS) and effective heat transfer rate (water temperature saw increase of 8.18C Vs 12.51 without SIS) to maintain high performance of instrument air compressors. Fuzzy logic driven SIS further demonstrates reduce maintenance burden, which results in savings up to $\$ 150,000$ (approx) cost incurs for the company by detecting proactive valve failures. In addition, better instrument air compressor operation by implementing fuzzy logic will improve Nuclear Safety with increased system availability and redundancy. With proper control detection system to initiate valve cleaning, compressor equipment life and mean time between failures will increase. Hence, it is recommended that fuzzy logic be implemented to instrument air system at nuclear power stations for optimized pressure control.

Aligned with principals of Nuclear Safety and Value for money, fuzzy logic is a must implementation for breathing air system and instrument air compressors at Nuclear Power Plants. Its installation should be further considered for other safety related systems to make use of logic output and performance.

Examples of critical systems for consideration could include:

- Reactivity Control Units
- Moderator Main and Helium Cover Gas System
- Moderator D2O Collection System
- Moderator Liquid Poison System
- Heat Transport System
- Emergency Coolant Injection System
- Liquid Zone Control System
- Boiler Steam and Water System
- Turbine Generator Governing System
- Boiler Feed System
- Common Water Supply System
- Condenser Cooling Water System
- Sediment Suction System
- Sewage System
- Powerhouse Ventilation System
- Screenhouse Heating and Ventilation System

Chapter 7 - Conclusions and Future Work

7.1 Conclusion

This thesis studied three objectives. Firstly, to design self-tuning control system applied on breathing air system to enhance its performance. Case study 1 concluded with self-tuning fuzzy logic driven PID controller design, which was applied on breathing air system and enhanced its performance by superior precision and control in maintaining system design pressure with reduced rise time (2.5 sec Vs 6 sec in PID controller), overshoot (640kpa Vs 990kpa in PID controller) and settling time (50 sec Vs 130 sec in PID controller). Fuzzy PID controller further saves up to $\$ 60,000$ (approx) losses, which be prevented due to system stability.

Second objective was to design fuzzy logic system to detect solenoid valve failures proactively to improve instrument air compressor performance. Case Study 2 concluded with safety integrated system designed to impact instrument air compressors which resulted in reduced fouling factor (0.17 based on line pressure), oil temperature (reduction of 10.03 C Vs 15.35 C without SIS) and effective heat transfer rate (water temperature saw increase of 8.18 C Vs 12.51 without SIS) to maintain high performance of instrument air compressors. Fuzzy logic driven SIS further demonstrated reducing maintenance burden and savings up to $\$ 150,000$ (approx) cost incurs for the company by detecting proactive solenoid valve failures early to prevent long term compressor failures and increase system reliability.

Third objective was to determine feasibility of fuzzy logic implementation. Based on results of two case studies studied on two safety related systems that provided logic applicability, improved system performance and operating costs, fuzzy logic is highly recommended for installation at other Nuclear
utilities. Examples of related systems would include Reactivity Control Units, Moderator Main and Helium Cover Gas System, Moderator D2O Collection System etc.

Furthermore, impact of fuzzy logic is also good consideration to justify how potential rule based scenarios can be used to control disasters like Chernobyl (1986), Three Mile Island (1979) and Fukushima Daiichi (2011) incidents. Machines cannot make mistakes and more enhanced rules (programmed into fuzzy logic) can further improve safety of Nuclear Power Plants in preventing accidents.

7.2 Contribution and Innovation

Successful research in studying fuzzy logic and its applicability also led to two successful journal publications as follows:

Deol, Harsh, and Hossam A. Gabbar. "Self-tuning Fuzzy Logic PID Controller, Applications in Nuclear Power Plants." IJISTA International Journal of Intelligent Systems Technologies and Applications 14.1 (2015): 70. Web.

Deol, Harsh, and Hossam A. Gabbar. "Fuzzy Logic-based Safety Design for High Performance Air Compressors." Progress in Nuclear Energy 80 (2015): 136-50. Web.

Operating Nuclear Power Plants around the world are highly encouraged to consider fuzzy logic for respective control systems to ensure better performance and precision. It is an opportunity to improve safety performance throughout the world with a known application that has proved consistently to produce great results (supported by research). Candu Owners Group (COG), Nuclear utilities (connected via OPEX program), International nuclear conferences, System Engineers, Vendors etc are encouraged to review applicability of fuzzy logic for related systems.

7.3 Future Work

Performance of fuzzy logic intelligent control system improves operation and operability costs of safety related systems in Nuclear power plant. But its functionality is not used widely in the Nuclear sector and needs attention. However, these days few plants are starting to take note of intelligent control and slowly making process transition to utilize its benefits. Ex: Pickering Nuclear is using robots to conduct radiation surveys and other related jobs inside reactor buildings. Darlington Nuclear is also reviewing usage of robotic application. Intelligent System applicability and usage is highly encouraged for review and consideration. To further keep sensitivity of Nuclear industry towards preciseness, it is recommended applicability of 'fuzzy' termed logic be replaced with word 'Rule-Based Learning algorithms' for better perception.

I would further like to continue this research for selection into PhD related thesis and would like to investigate how beyond design based events (such as Fukushima Daiichi (2011) incident) can be prevented using fuzzy logic. Severe Accident Mitigation guidelines (SAMGs) addresses steps to take involving accidents that are beyond design based and it is recommended that study and investigation be conducted to investigate preventing scenarios wherein, safe stating equipment is necessary to shut down reactor in emergencies with fuzzy logic.

Chapter 8 - SIMULINK Algorithms

8.1 - Algorithm for Fuzzy Logic Based Self-Tuning Control System for Breathing Air System

```
Model {
    Name "Closed_loop_Setup4_BA_wrkingaftercliff_rev5"
    Version 7.0
    MdlSubVersion 0
    GraphicalInterface {
        NumRootInports 0
        NumRootOutports 0
        ParameterArgumentNames ""
        ComputedModelVersion "1.43"
        NumModelReferences 0
        NumTestPointedSignals 0
    }
    SavedCharacterEncoding "windows-1252"
    SaveDefaultBlockParams on
    SampleTimeColors off
    LibraryLinkDisplay "none"
    WideLines off
    ShowLineDimensions off
    ShowPortDataTypes off
    ShowLoopsOnError on
    IgnoreBidirectionalLines off
    ShowStorageClass off
    ShowTestPointIcons on
    ShowViewerIcons on
    SortedOrder off
    ExecutionContextIcon off
    ShowLinearizationAnnotations on
    ScopeRefreshTime 0.035000
    OverrideScopeRefreshTime on
    DisableAllScopes off
    DataTypeOverride "UseLocalSettings"
    MinMaxOverflowLogging "UseLocalSettings"
    MinMaxOverflowArchiveMode "Overwrite"
    BlockNameDataTip off
    BlockParametersDataTip off
    BlockDescriptionStringDataTip off
    ToolBar on
    StatusBar on
    BrowserShowLibraryLinks off
    BrowserLookUnderMasks off
    Created "Tue Apr 03 12:34:39 2012"
    Creator "Owner"
    UpdateHistory "UpdateHistoryNever"
    ModifiedByFormat "%<Auto>"
    LastModifiedBy "Owner"
    ModifiedDateFormat "%<Auto>"
    LastModifiedDate "Sat Apr 28 15:32:48 2012"
    RTWModifiedTimeStamp 0
    ModelVersionFormat "1.%<AutoIncrement:43>"
    ConfigurationManager "None"
```

```
SimulationMode "normal"
LinearizationMsg "none"
Profile off
ParamWorkspaceSource "MATLABWorkspace"
AccelSystemTargetFile "accel.tlc"
AccelTemplateMakefile "accel_default_tmf"
AccelMakeCommand "make_rtw"
TryForcingSFcnDF off
RecordCoverage off
CovPath "/"
CovSaveName "covdata"
CovMetricSettings "dw"
CovNameIncrementing off
CovHtmlReporting on
covSaveCumulativeToWorkspaceVar on
CovSaveSingleToWorkspaceVar on
CovCumulativeVarName "covCumulativeData"
CovCumulativeReport off
CovReportOnPause on
ExtModeBatchMode off
ExtModeEnableFloating on
ExtModeTrigType "manual"
ExtModeTrigMode "normal"
ExtModeTrigPort "1"
ExtModeTrigElement "any"
ExtModeTrigDuration 1000
ExtModeTrigDurationFloating "auto"
ExtModeTrigHoldOff 0
ExtModeTrigDelay 0
ExtModeTrigDirection "rising"
ExtModeTrigLevel 0
ExtModeArchiveMode "off"
ExtModeAutoIncOneShot off
ExtModeIncDirWhenArm off
ExtModeAddSuffixToVar off
ExtModeWriteAllDataToWs off
ExtModeArmWhenConnect on
ExtModeSkipDownloadWhenConnect off
ExtModeLogAll on
ExtModeAutoUpdateStatusClock on
BufferReuse on
ShowModelReferenceBlockVersion off
ShowModelReferenceBlockIO off
Array {
    Type "Handle"
    Dimension 1
    Simulink.ConfigSet {
        $ObjectID 1
        Version "1.3.0"
        Array {
    Type "Handle"
    Dimension 8
    Simulink.SolverCC {
        $ObjectID 2
        Version "1.3.0"
        StartTime "0.0"
        StopTime "150"
```

```
    AbsTol "auto"
    FixedStep "auto"
    InitialStep "auto"
    MaxNumMinSteps "-1"
    MaxOrder 5
    ConsecutiveZCsStepRelTol "10*128*eps"
    MaxConsecutivezCs "1000"
    ExtrapolationOrder 4
    NumberNewtonIterations 1
    MaxStep "auto"
    MinStep "auto"
    MaxConsecutiveMinStep "1"
    RelTol "1e-3"
    SolverMode "Auto"
    Solver "ode45"
    SolverName "ode45"
    ZeroCrossControl "UseLocalSettings"
    AlgebraicLoopSolver "TrustRegion"
    SolverResetMethod "Fast"
    PositivePriorityOrder off
    AutoInsertRateTranBlk off
    SampleTimeConstraint "Unconstrained"
    RateTranMode "Deterministic"
}
Simulink.DataIOCC {
    $ObjectID 3
    Version "1.3.0"
    Decimation "1"
    ExternalInput "[t, u]"
    FinalStateName "xFinal"
    InitialState "xInitial"
    LimitDataPoints on
    MaxDataPoints "1000"
    LoadExternalInput off
    LoadInitialState off
    SaveFinalState off
    SaveFormat "Array"
    SaveOutput on
    SaveState off
    SignalLogging on
    InspectSignalLogs off
    SaveTime on
    StateSaveName "xout"
    TimeSaveName "tout"
    OutputSaveName "yout"
    SignalLoggingName "logsout"
    OutputOption "RefineOutputTimes"
    OutputTimes "[]"
    Refine "1"
}
Simulink.OptimizationCC {
    $ObjectID 4
    Array {
        Type "Cell"
        Dimension
        5
        Cell "ZeroExternalMemoryAtStartup"
        Cell "ZeroInternalMemoryAtStartup"
```

```
            Cell "InitFltsAndDblsToZero"
            Cell "OptimizeModelRefInitCode"
            Cell "NoFixptDivByZeroProtection"
            PropName "DisabledProps"
    }
    Version "1.3.0"
    BlockReduction on
    BooleanDataType on
    ConditionallyExecuteInputs on
    InlineParams off
    InlineInvariantSignals off
    OptimizeBlockIOStorage on
    BufferReuse on
    EnforceIntegerDowncast on
    ExpressionFolding on
    ExpressionDepthLimit 2147483647
    FoldNonRolledExpr on
    LocalBlockOutputs on
    RollThreshold 5
    SystemCodeInlineAuto off
    StateBitsets off
    DataBitsets off
    UseTempVars off
    ZeroExternalMemoryAtStartup on
    ZeroInternalMemoryAtStartup on
    InitFltsAndDblsToZero on
    NoFixptDivByZeroProtection off
    EfficientFloat2IntCast off
    OptimizeModelRefInitCode off
    LifeSpan "inf"
    BufferReusableBoundary on
    SimCompilerOptimization "Off"
    AccelVerboseBuild off
}
Simulink.DebuggingCC {
    $ObjectID 5
    Version "1.3.0"
    RTPrefix "error"
    ConsistencyChecking "none"
    ArrayBoundsChecking "none"
    SignalInfNanChecking "none"
    SignalRangeChecking "none"
    ReadBeforeWriteMsg "UseLocalSettings"
    WriteAfterWriteMsg "UseLocalSettings"
    WriteAfterReadMsg "UseLocalSettings"
    AlgebraicLoopMsg "warning"
    ArtificialAlgebraicLoopMsg "warning"
    SaveWithDisabledLinksMsg "warning"
    SaveWithParameterizedLinksMsg "warning"
    CheckSSInitialOutputMsg on
    CheckExecutionContextPreStartOutputMsg off
    CheckExecutionContextRuntimeOutputMsg off
    SignalResolutionControl "UseLocalSettings"
    BlockPriorityViolationMsg "warning"
    MinStepSizeMsg "warning"
    TimeAdjustmentMsg "none"
    MaxConsecutiveZCsMsg "error"
```

```
    SolverPrmCheckMsg "warning"
    InheritedTsInSrcMsg "warning"
    DiscreteInheritContinuousMsg "warning"
    MultiTaskDSMMsg "error"
    MultiTaskCondExecSysMsg "error"
    MultiTaskRateTransMsg "error"
    SingleTaskRateTransMsg "none"
    TasksWithSamePriorityMsg "warning"
    SigSpecEnsureSampleTimeMsg "warning"
    CheckMatrixSingularityMsg "none"
    IntegerOverflowMsg "warning"
    Int32ToFloatConvMsg "warning"
    ParameterDowncastMsg "error"
    ParameterOverflowMsg "error"
    ParameterUnderflowMsg "none"
    ParameterPrecisionLossMsg "warning"
    ParameterTunabilityLossMsg "warning"
    UnderSpecifiedDataTypeMsg "none"
    UnnecessaryDatatypeConvMsg "none"
    VectorMatrixConversionMsg "none"
    InvalidFcnCallConnMsg "error"
    FcnCallInpInsideContextMsg "Use local settings"
    SignalLabelMismatchMsg "none"
    UnconnectedInputMsg "warning"
    UnconnectedOutputMsg "warning"
    UnconnectedLineMsg "warning"
    SFcnCompatibilityMsg "none"
    UniqueDataStoreMsg "none"
    BusObjectLabelMismatch "warning"
    RootOutportRequireBusObject "warning"
    AssertControl "UseLocalSettings"
    EnableOverflowDetection off
    ModelReferenceIOMsg "none"
    ModelReferenceVersionMismatchMessage "none"
    ModelReferenceIOMismatchMessage "none"
    ModelReferenceCSMismatchMessage "none"
    ModelReferenceSimTargetVerbose off
    UnknownTsInhSupMsg "warning"
    ModelReferenceDataLoggingMessage "warning"
    ModelReferenceSymbolNameMessage "warning"
    ModelReferenceExtraNoncontSigs "error"
    StateNameClashWarn "warning"
    StrictBusMsg "Warning"
    LoggingUnavailableSignals "error"
}
Simulink.HardwareCC {
    $ObjectID 6
    Version "1.3.0"
    ProdBitPerChar 8
    ProdBitPerShort 16
    ProdBitPerInt 32
    ProdBitPerLong 32
    ProdIntDivRoundTo "Undefined"
    ProdEndianess "Unspecified"
    ProdWordSize 32
    ProdShiftRightIntArith on
    ProdHWDeviceType "32-bit Generic"
```

```
    TargetBitPerChar 8
    TargetBitPerShort 16
    TargetBitPerInt 32
    TargetBitPerLong 32
    TargetShiftRightIntArith on
    TargetIntDivRoundTo "Undefined"
    TargetEndianess "Unspecified"
    TargetWordSize 32
    TargetTypeEmulationWarnSuppressLevel 0
    TargetPreprocMaxBitsSint 32
    TargetPreprocMaxBitsUint 32
    TargetHWDeviceType "Specified"
    TargetUnknown off
    ProdEqTarget on
}
Simulink.ModelReferenceCC {
    $ObjectID 7
    Version "1.3.0"
    UpdateModelReferenceTargets "IfOutOfDateOrStructuralChange"
    CheckModelReferenceTargetMessage "error"
    ModelReferenceNumInstancesAllowed "Multi"
    ModelReferencePassRootInputsByReference on
    ModelReferenceMinAlgLoopOccurrences off
}
Simulink.RTWCC {
    $BackupClass "Simulink.RTWCC"
    $ObjectID 8
    Array {
        Type "Cell"
        Dimension 2
        Cell "IncludeHyperlinkInReport"
        Cell "GenerateTraceInfo"
        PropName "DisabledProps"
    }
    Version "1.3.0"
    SystemTargetFile "grt.tlc"
    GenCodeOnly
        off
    MakeCommand
        "make_rtw"
    GenerateMakefile on
    TemplateMakefile "grt_default_tmf"
    GenerateReport off
    SaveLog off
    RTWVerbose on
    RetainRTWFile off
    ProfileTLC off
    TLCDebug off
    TLCCoverage off
    TLCAssert off
    ProcessScriptMode "Default"
    ConfigurationMode "Optimized"
    ConfigAtBuild off
    IncludeHyperlinkInReport off
    LaunchReport off
    TargetLang "C"
    IncludeBusHierarchyInRTWFileBlockHierarchyMap off
    IncludeERTFirstTime off
    GenerateTraceInfo off
```

```
RTWCompilerOptimization "Off"
Array {
    Type "Handle"
    Dimension 2
    Simulink.CodeAppCC {
        $ObjectID 9
        Array {
    Type "Cell"
    Dimension 16
    Cell "IgnoreCustomStorageClasses"
    Cell "InsertBlockDesc"
    Cell "SFDataObjDesc"
    Cell "SimulinkDataObjDesc"
    Cell "DefineNamingRule"
    Cell "SignalNamingRule"
    Cell "ParamNamingRule"
    Cell "InlinedPrmAccess"
    Cell "CustomSymbolStr"
    Cell "CustomSymbolStrGlobalVar"
    Cell "CustomSymbolStrType"
    Cell "CustomSymbolStrField"
    Cell "CustomSymbolStrFcn"
    Cell "CustomSymbolStrBlkIO"
    Cell "CustomSymbolStrTmpVar"
    Cell "CustomSymbolStrMacro"
    PropName "DisabledProps"
        }
        Version "1.3.0"
        ForceParamTrailComments off
        GenerateComments on
        IgnoreCustomStorageClasses on
        IncHierarchyInIds off
        MaxIdLength 31
        PreserveName off
        PreserveNameWithParent off
        ShowEliminatedStatement off
        IncAutoGenComments off
        SimulinkDataObjDesc off
        SFDataObjDesc off
        IncDataTypeInIds off
    MangleLength 1
    CustomSymbolStrGlobalVar "$R$N$M"
    CustomSymbolStrType "$N$R$M"
    CustomSymbolStrField "$N$M"
    CustomSymbolStrFcn "$R$N$M$F"
    CustomSymbolStrBlkIO "rtb_$N$M"
    CustomSymbolStrTmpVar "$N$M"
    CustomSymbolStrMacro "$R$N$M"
    DefineNamingRule "None"
    ParamNamingRule "None"
    SignalNamingRule "None"
    InsertBlockDesc off
    SimulinkBlockComments on
    EnableCustomComments off
    InlinedPrmAccess "Literals"
    ReqsInCode off
}
```

```
Simulink.GRTTargetCC {
    $BackupClass "Simulink.TargetCC"
    $ObjectID 10
    Array {
Type "Cell"
Dimension 15
Cell "IncludeMdlTerminateFcn"
Cell "CombineOutputUpdateFcns"
Cell "SuppressErrorStatus"
Cell "ERTCustomFileBanners"
Cell "GenerateSampleERTMain"
Cell "GenerateTestInterfaces"
Cell "ModelStepFunctionPrototypeControlCompliant"
Cell "MultiInstanceERTCode"
Cell "PurelyIntegerCode"
Cell "SupportNonFinite"
Cell "SupportComplex"
Cell "SupportAbsoluteTime"
Cell "SupportContinuousTime"
Cell "SupportNonInlinedSFcns"
Cell "PortableWordSizes"
PropName "DisabledProps"
    }
Version "1.3.0"
TargetFcnLib "ansi_tfl_table_tmw.mat"
TargetLibSuffix
""
TargetPreCompLibLocation ""
GenFloatMathFcnCalls "ANSI C"
UtilityFuncGeneration "Auto"
GenerateFullHeader on
GenerateSampleERTMain off
GenerateTestInterfaces off
IsPILTarget off
ModelReferenceCompliant on
CompOptLevelCompliant on
IncludeMdlTerminateFcn on
CombineOutputUpdateFcns off
SuppressErrorStatus off
IncludeFileDelimiter "Auto"
ERTCustomFileBanners off
SupportAbsoluteTime on
LogVarNameModifier "rt_"
MatFileLogging on
MultiInstanceERTCode off
SupportNonFinite on
SupportComplex on
PurelyIntegerCode off
SupportContinuousTime on
SupportNonInlinedSFcns on
EnableShiftOperators on
ParenthesesLevel "Nominal"
PortableWordSizes off
ModelStepFunctionPrototypeControlCompliant off
ExtMode off
ExtModeStaticAlloc off
ExtModeTesting off
ExtModeStaticAllocSize 1000000
```

```
                ExtModeTransport 0
                ExtModeMexFile
                ExtModeIntrfLevel
                RTWCAPISignals
                "ext comm"
                            "Levē11"
                off
                RTWCAPIParams off
                RTWCAPIStates off
                GenerateASAP2 off
            }
            PropName "Components"
        }
    }
    hdlcoderui.hdlcc {
        $ObjectID 11
        Description "HDL Coder custom configuration component"
        Version "1.3.0"
        Name "HDL Coder"
        Array {
            Type "Cell"
            Dimension
            Cell
            PropName "HDLConfigFile"
        }
        HDLCActiveTab "0"
    }
    PropName "Components"
        }
        Name "Configuration"
        CurrentDlgPage "Solver"
    }
    PropName "ConfigurationSets"
}
Simulink.ConfigSet {
    $PropName "ActiveConfigurationSet"
    $ObjectID 1
}
BlockDefaults {
    Orientation "right"
    ForegroundColor "black"
    BackgroundColor "white"
    DropShadow off
    NamePlacement "normal"
    FontName "Arial"
    FontSize 10
    FontWeight "normal"
    FontAngle "normal"
    ShowName on
}
BlockParameterDefaults {
    Block {
        BlockType ActionPort
        InitializeStates "held"
        ActionType "unset"
    }
    Block {
        BlockType DataTypeConversion
        OutMin "[]"
        OutMax "[]"
```

```
    OutDataTypeMode "Inherit via back propagation"
    OutDataType
    "fixdt(1,16,0)"
    "[]"
    OutScaling
    LockScale
    ConvertRealWorld
    RndMeth
        "Real World Value (RWV)"
    RndMeth "Zero"
    SaturateOnIntegerOverflow on
    SampleTime "-1"
}
Block {
    BlockType Demux
    Outputs "4"
    DisplayOption "none"
    BusSelectionMode off
}
Block {
    BlockType Derivative
    LinearizePole "inf"
}
Block {
    BlockType Gain
    Gain "1"
    Multiplication "Element-wise(K.*u)"
    ParamMin "[]"
    ParamMax "[]"
    ParameterDataTypeMode "Same as input"
    ParameterDataType "fixdt(1,16,0)"
    ParameterScalingMode "Best Precision: Matrix-wise"
    ParameterScaling
    OutMin "[]"
    OutMax "[]"
    OutDataTypeMode "Same as input"
    OutDataType "fixdt(1,16,0)"
    OutScaling "[]"
    LockScale off
    RndMeth "Floor"
    SaturateOnIntegerOverflow on
    SampleTime "-1"
}
Block {
    BlockType If
    NumInputs "1"
    IfExpression "ul > 0"
    ShowElse on
    ZeroCross on
    SampleTime "-1"
}
Block {
    BlockType Inport
    Port "1"
    UseBusObject off
    BusObject "BusObject"
    BusOutputAsStruct off
    PortDimensions "-1"
    SampleTime "-1"
    OutMin "[]"
    OutMax "[]"
```

```
    DataType "auto"
    OutDataType "fixdt(1,16,0)"
    OutScaling "[]"
    SignalType "auto"
    SamplingMode "auto"
    LatchByDelayingOutsideSignal off
    LatchByCopyingInsideSignal off
    Interpolate on
}
Block {
    BlockType Integrator
    ExternalReset "none"
    InitialConditionSource "internal"
    InitialCondition "0"
    LimitOutput off
    UpperSaturationLimit "inf"
    LowerSaturationLimit "-inf"
    ShowSaturationPort off
    ShowStatePort off
    AbsoluteTolerance "auto"
    IgnoreLimit off
    ZeroCross on
    ContinuousStateAttributes "''"
}
Block {
    BlockType Math
    Operator "exp"
    OutputSignalType "auto"
    SampleTime "-1"
    OutMin "[]"
    OutMax "[]"
    OutDataTypeMode "Same as first input"
    OutDataType "fixdt(1,16,0)"
    OutScaling "[]"
    LockScale off
    RndMeth "Floor"
    SaturateOnIntegerOverflow on
}
Block {
    BlockType Mux
    Inputs "4"
    DisplayOption "none"
    UseBusObject off
    BusObject "BusObject"
    NonVirtualBus off
}
Block {
    BlockType Outport
    Port "1"
    UseBusObject off
    BusObject
    BusOutputAsStruct
    PortDimensions
    SampleTime "-1"
    OutMin "[]"
    OutMax "[]"
    DataType "auto"
```

```
    OutDataType "fixdt(1,16,0)"
    OutScaling "[]"
    SignalType "auto"
    SamplingMode "auto"
    OutputWhenDisabled "held"
    InitialOutput "[]"
}
Block {
    BlockType Product
    Inputs
    Multiplication
    CollapseMode
    CollapseDim
    InputSameDT
    OutMin
    OutMax
    OutDataTypeMode
    OutDataType
    OutScaling
    LockScale
    RndMeth "Zero"
    SaturateOnIntegerOverflow on
    SampleTime "-1"
}
Block {
    BlockType Scope
    ModelBased
    off
    "OneTimeTick"
        "on"
    ZoomMode
    Grid
    TimeRange
    YMin "-5"
    YMax "5"
    SaveToWorkspace
    SaveName
    LimitDataPoints
    MaxDataPoints
    Decimation
    SampleInput
    SampleTime "-1"
}
Block {
    BlockType "S-Function"
    FunctionName
    SFunctionModules
    PortCounts
    "system"
    "[]"
}
Block {
    BlockType Step
    Time "1"
    Before "0"
    After "1"
    SampleTime "-1"
    VectorParams1D on
    ZeroCross on
}
Block {
```

```
    BlockType SubSystem
    ShowPortLabels
    Permissions "ReadWrite"
    PermitHierarchicalResolution "All"
    TreatAsAtomicUnit off
    SystemSampleTime "-1"
    RTWFcnNameOpts
    RTWFileNameOpts
    RTWMemSecFuncInitTerm "Inherit from model"
    RTWMemSecFuncExecute "Inherit from model"
    RTWMemSecDataConstants "Inherit from model"
    RTWMemSecDataInternal "Inherit from model"
    RTWMemSecDataParameters "Inherit from model"
    SimViewingDevice off
    DataTypeOverride "UseLocalSettings"
    MinMaxOverflowLogging "UseLocalSettings"
}
Block {
    BlockType Sum
    IconShape "rectangular"
    Inputs "++"
    CollapseMode "All dimensions"
    CollapseDim "1"
    InputSameDT on
    OutMin "[]"
    OutMax "[]"
    OutDataTypeMode "Same as first input"
    OutDataType
    OutScaling "[]"
    LockScale off
    RndMeth "Floor"
    SaturateOnIntegerOverflow on
    SampleTime "-1"
}
Block {
    BlockType Switch
    Criteria "u2 >= Threshold"
    Threshold "0"
    InputSameDT on
    OutMin "[]"
    OutMax "[]"
    OutDataTypeMode "Inherit via internal rule"
    OutDataType "fixdt(1,16,0)"
    OutScaling "[]"
    LockScale off
    RndMeth "Floor"
    SaturateOnIntegerOverflow on
    ZeroCross on
    SampleTime "-1"
}
Block {
    BlockType Terminator
}
Block {
    BlockType TransferFcn
    Numerator "[1]"
    Denominator "[1 2 1]"
```

```
            AbsoluteTolerance "auto"
            ContinuousStateAttributes "''"
            Realization "auto"
        }
        Block {
            BlockType ZeroOrderHold
            SampleTime "1"
        }
        Block {
            BlockType Merge
            Inputs "2"
            InitialOutput "[]"
            AllowUnequalInputPortWidths off
            InputPortOffsets "[]"
        }
        Block {
            BlockType Constant
            Value "1"
            VectorParams1D on
            SamplingMode "Sample based"
            OutMin
            "[]"
                            "[]"
            OutDataTypeMode "Inherit from 'Constant value'"
            OutDataType
            "fixdt(1,16,0)"
            ConRadixGroup "Use specified scaling"
            OutScaling "[]"
            SampleTime "inf"
            FramePeriod "inf"
        }
        Block {
            BlockType MinMax
            Function "min"
            Inputs "1"
            InputSameDT on
            OutMin "[]"
            OutMax "[]"
            OutDataTypeMode "Inherit via internal rule"
            OutDataType "fixdt(1,16,0)"
            OutScaling "[]"
            LockScale off
            RndMeth "Floor"
            SaturateOnIntegerOverflow on
            ZeroCross on
            SampleTime "-1"
    }
    Block {
            BlockType RelationalOperator
            Operator ">="
            InputSameDT on
            LogicOutDataTypeMode "Logical (see Configuration Parameters:
Optimization)"
            LogicDataType "uint(8)"
            ZeroCross on
            SampleTime "-1"
    }
    }
    AnnotationDefaults {
```

```
        HorizontalAlignment "center"
        VerticalAlignment "middle"
        ForegroundColor "black"
        BackgroundColor "white"
        DropShadow off
        FontName "Arial"
        FontSize 10
        FontWeight "normal"
        FontAngle "normal"
    UseDisplayTextAsClickCallback off
}
    LineDefaults {
        FontName "Arial"
        FontSize 9
    FontWeight "normal"
    FontAngle "normal"
}
System {
    Name "Closed_loop_Setup4_BA_wrkingaftercliff_rev5"
    Location [2, 82, 1670, 1004]
    Open on
    ModelBrowserVisibility off
    ModelBrowserWidth 200
    ScreenColor "white"
    PaperOrientation "landscape"
    PaperPositionMode "auto"
    PaperType "usletter"
    PaperUnits "inches"
    TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
    TiledPageScale 1
    ShowPageBoundaries off
    ZoomFactor "100"
    ReportName "simulink-default.rpt"
    Block {
        BlockType TransferFcn
        Name "Breathing Air"
        Position [815, 517, 875, 553]
        Denominator "[1 0]"
    }
    Block {
        BlockType Reference
        Name "Compare\nTo Constant"
        Ports [1, 1]
        Position [970, 595, 1000, 625]
        SourceBlock "simulink/Logic and Bit\nOperations/Compare\nTo
Constant"
            SourceType "Compare To Constant"
            ShowPortLabels "FromPortIcon"
            SystemSampleTime "-1"
            FunctionWithSeparateData off
            RTWMemSecFuncInitTerm "Inherit from model"
            RTWMemSecFuncExecute "Inherit from model"
            RTWMemSecDataConstants "Inherit from model"
            RTWMemSecDataInternal "Inherit from model"
            RTWMemSecDataParameters "Inherit from model"
            relop "<"
            const "550"
```

```
    LogicOutDataTypeMode "boolean"
    ZeroCross off
    }
    Block {
    BlockType SubSystem
    Name "Fuzzy Logic Controller"
    Ports [1, 3]
    Position [175, 304, 275, 346]
    TreatAsAtomicUnit on
    MinAlgLoopOccurrences off
    RTWSystemCode "Auto"
    FunctionWithSeparateData off
    System {
    Name "Fuzzy Logic Controller"
    Location [209, 573, 715, 878]
    Open off
    ModelBrowserVisibility off
    ModelBrowserWidth 200
    ScreenColor "white"
    PaperOrientation "landscape"
    PaperPositionMode "auto"
    PaperType "usletter"
    PaperUnits "inches"
    TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
    TiledPageScale 1
    ShowPageBoundaries off
    ZoomFactor "100"
    Block {
        BlockType Inport
        Name "In1"
        Position [110, 118, 140, 132]
        IconDisplay "Port number"
        OutDataType "sfix(16)"
        OutScaling "2^0"
    }
    Block {
    BlockType Demux
    Name "Demux"
    Ports [1, 3]
    Position [305, 106, 310, 144]
    BackgroundColor "black"
    ShowName off
    Outputs "3"
    DisplayOption "bar"
    }
    Block {
    BlockType Reference
    Name "Fuzzy Logic \nController \nwith Ruleviewer"
    Ports [1, 1]
    Position [210, 100, 270, 150]
    SourceBlock "fuzblock/Fuzzy Logic \nController \nwith
Ruleviewer"
    SourceType "FIS"
    ShowPortLabels "FromPortIcon"
    SystemSampleTime "-1"
    FunctionWithSeparateData off
    RTWMemSecFuncInitTerm "Inherit from model"
```

```
    RTWMemSecFuncExecute "Inherit from model"
    RTWMemSecDataConstants "Inherit from model"
    RTWMemSecDataInternal "Inherit from model"
    RTWMemSecDataParameters "Inherit from model"
    fismatrix
    Ts
    "Fuzzytwo_corrected"
    "2"
}
Block {
    BlockType Scope
    Name
    Ports
    Position
    Floating
    Location
    Open
    NumInputPorts
    List {
        ListType
        axes1
    }
    SaveName
    DataFormat
    SampleTime
}
Block {
    BlockType Scope
    Name "Scope2"
    Ports [1]
    Position [425, 74, 455, 106]
    Floating off
    Location [1, 52, 1681, 1019]
    Open off
    NumInputPorts "1"
    List {
        ListType
        axes1
    }
    SaveName "ScopeData5"
    DataFormat
    SampleTime
}
Block {
    BlockType Scope
    Name
    Ports
    Position
    Floating
    Location [1, 52, 1681, 1019]
    Open
    NumInputPorts
    List {
        ListType
        axes1
    }
    SaveName "ScopeData6"
    DataFormat
    SampleTime
    "Scope3"
    [1]
    [415, 139, 445, 171]
    off
    off
            "1"
            AxesTitles
        "%<SignalLabel>"
        "StructureWithTime"
        "0"
```

```
}
Block {
    BlockType Scope
    Name
    Ports
    Position
    Floating
    Location
    Open
    NumInputPorts
    List {
            ListType
            axes1
    }
    SaveName
    DataFormat
    SampleTime
}
Block {
    BlockType
    Name
    Position
    IconDisplay
    OutDataType
    OutScaling
}
Block {
    BlockType Outport
    Name
    Position
    Port
    IconDisplay
    OutDataType
    OutScaling
}
Block {
    BlockType Outport
    Name
    Position
    Port
    IconDisplay
    OutDataType
    OutScaling
}
Line {
    SrcBlock
    SrcPort
    DstBlock
    DstPort
}
Line {
    SrcBlock "Demux"
    SrcPort 1
    Points
    Branch {
        DstBlock
        DstPort
"In1"
1
"Fuzzy Logic \nController \nwith Ruleviewer"
1
[15, 0; 0, -40; 15, 0]
    "kp_cal"
1
```

```
    }
    Branch {
        Points
        DstBlock
        DstPort
    }
}
Line {
    SrcBlock "Demux"
    SrcPort 2
    Points
    [0, 5; 30, 0]
    Branch {
        DstBlock
        DstPort
    }
    Branch {
        Points
        DstBlock
        DstPort
    }
}
Line {
    SrcBlock "Demux"
    SrcPort 3
    Points
[15, 0; 0, 60]
    Branch {
        Points
        DstBlock
        DstPort
    }
    Branch {
        Points
        DstBlock
        DstPort
    }
}
Line {
    SrcBlock
    SrcPort
    Points
    Branch {
        DstBlock
        DstPort
    }
    Branch {
        Points
        DstBlock
        DstPort
    }
}
    }
}
Block {
    BlockType Integrator
    Name
    Ports
    Position
Integrator'
[1, 1]
    [1160, 630, 1190, 660]
```

```
}
Block {
    BlockType Mux
    Name "Mux"
    Ports [2, 1]
    Position [925, 506, 930, 544]
    ShowName off
    Inputs "2"
    DisplayOption "bar"
}
Block {
    BlockType SubSystem
    Name "PID"
    Ports [4, 1]
    Position [400, 472, 505, 543]
    TreatAsAtomicUnit on
    MinAlgLoopOccurrences off
    RTWSystemCode "Auto"
    FunctionWithSeparateData off
    System {
Name "PID"
Location [650, 136, 1517, 468]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
TiledPageScale 1
ShowPageBoundaries off
ZoomFactor "100"
Block {
    BlockType Inport
    Name "kp"
    Position [65, 53, 95, 67]
    IconDisplay "Port number"
    OutDataType "sfix(16)"
    OutScaling "2^0"
}
Block {
    BlockType Inport
    Name "ki"
    Position [65, 123, 95, 137]
    Port "2"
    IconDisplay "Port number"
    OutDataType "sfix(16)"
    OutScaling "2^0"
}
Block {
    BlockType Inport
    Name "kd"
    Position [65, 193, 95, 207]
    Port "3"
    IconDisplay "Port number"
```

```
    OutDataType "sfix(16)"
    OutScaling "2^0"
}
Block {
    BlockType Inport
    Name "Error input"
    Position [65, 248, 95, 262]
    Port "4"
    IconDisplay
    OutDataType
    OutScaling
}
Block {
    BlockType Derivative
    Name "Derivative"
    Position [335, 185, 365, 215]
}
Block {
    BlockType Integrator
    Name "Integrator"
    Ports [1, 1]
    Position [335, 130, 365, 160]
}
Block {
    BlockType Product
    Name "Product"
    Ports [2, 1]
    Position [405, 192, 435, 223]
    CollapseMode "All dimensions"
    InputSameDT off
    OutDataTypeMode "Inherit via internal rule"
    OutDataType "sfix(16)"
    OutScaling "2^0"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType Product
    Name "Product1"
    Ports [2, 1]
    Position [390, 47, 420, 78]
    CollapseMode "All dimensions"
    InputSameDT off
    OutDataTypeMode "Inherit via internal rule"
    OutDataType "sfix(16)"
    OutScaling "2^0"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType Product
    Name "Product2"
    Ports [2, 1]
    Position [400, 127, 430, 158]
    CollapseMode
    InputSameDT
    OutDataTypeMode
    OutDataType
    OutScaling
    "sfix(16)"
    "2^0"
```

```
    SaturateOnIntegerOverflow off
}
Block {
    BlockType Sum
    Name
    "Sum"
    Ports
    Position [3,
    ShowName off
    IconShape "round"
    Inputs
    CollapseMode
    "+|+|+"
        "All dimensions"
        InputSameDT off
        OutDataTypeMode "Inherit via internal rule"
        OutDataType "sfix(16)"
        OutScaling "2^0"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType Outport
    Name "Out1"
    Position [805, 58, 835, 72]
    IconDisplay
    OutDataType
    OutScaling
}
Line {
    SrcBloc
    SrcPort
    Points
    DstBlock "Out1"
    DstPort 1
}
Line {
    SrcBlock "Error input"
    SrcPort 1
    Points [110, 0; 0, -55]
    Branch {
        DstBlock "Derivative"
        DstPort 1
    }
    Branch {
            Points [0, -55]
            Branch {
                DstBlock "Integrator"
                DstPort 1
        }
        Branch {
            Points [0, -75]
            DstBlock "Product1"
            DstPort 2
        }
    }
}
Line {
    SrcBlock "Derivative"
    SrcPort 1
    DstBlock "Product"
```

```
    DstPort
}
Line {
    SrcBlock "kd"
    SrcPort 1
    Points
    DstBlock
    DstPort
}
Line {
    SrcBlock
    SrcPort
    DstBlock
    DstPort
}
Line {
    SrcBlock
    SrcPort
    Points
    DstBlock
    DstPort
}
Line {
    SrcBlock
    SrcPort
    Points
    DstBlock
    DstPort
}
    }
}
Block {
    BlockType
    Name
    Ports
    Position
                Product
"Product"
[2, 1]
    [1065, 627, 1095, 658]
```

```
    CollapseMode "All dimensions"
    InputSameDT
    OutDataTypeMode
    OutDataType
    off
        "Inherit via internal rule"
    "sfix(16)"
    "2^0"
    OutScaling
    SaturateOnIntegerOverflow off
}
Block {
    BlockType
    Name
    Ports
    Position
    Floating
    Location
    Open
    NumInputPorts
    ZoomMode
    List {
ListType AxesTitles
axes1 "%<SignalLabel>"
    }
    TimeRange "150
    YMin "620"
    YMax "620.053"
    DataFormat "StructureWithTime"
    LimitDataPoints
    SampleTime
    off
    "0"
}
Block {
    BlockType
    Name
        "Scope1"
    Ports
    Position
        [1]
                            [585, 579, 615, 611]
    Floating
    off
    Location
    [5, 52, 1685, 1019]
    Open
off
        "1"
    NumInputPorts
    List {
ListType AxesTitles
axes1 "%<SignalLabel>"
    }
    YMin "696.951"
    YMax "696.951"
    SaveName
                            "ScopeData1"
    "StructureWithTime"
    DataFormat
    "0"
    SampleTime
}
Block {
    BlockType Scope
    Name
"Scope2"
    Ports
                                [1]
    Position
    [730, 444, 760, 476]
    off
    Floating
    Location
    [1, 52, 1681, 1019]
off
    Open
    NumInputPorts "1"
    List {
```

```
ListType AxesTitles
axes1 "%<SignalLabel>"
    }
    SaveName
    DataFormat
    "ScopeData2"
                            "StructureWithTime"
            "0"
}
Block {
    BlockType
    Name
    Ports
    Position
    Floating
    Location
    Open
    NumInputPorts
    List {
ListType AxesTitles
axes1 "%<SignalLabel>"
    }
    SaveName
    DataFormat
    "ScopeData3"
            "StructureWithTime"
            "0"
    SampleTime
}
Block {
    BlockType Scope
    BlockType Scope
    BlockType Scope
    Ports
    Position
        [1]
    Floating
            [945, 689, 975, 721]
            Off
    Location
    [5, 52, 1685, 1019]
    Open
    off
    NumInputPorts
        "Scope3"
        [1]
            [645, 449, 675, 481]
            off
            [5, 52, 1685, 1019]
        off
            "1"
            "1"
    ZoomMode
            "xonly"
    List {
ListType
axes1 "%<SignalLabel>"
    }
    TimeRange
    YMin
    YMax
    SaveName
    DataFormat
    LimitDataPoints
    SampleTime
AxesTitles
    "400"
    "696.943"
    "696.951"
                            "ScopeData8"
            "StructureWithTime"
                off
    "0"
}
Block {
    BlockType
    Name
    Ports
    Position
    Floating
    Scope
    "Scope5"
    [1]
        [835, 359, 865, 391]
            off
    Location
    [5, 52, 1685, 1019]
    Open
    off
    NumInputPorts
    ZoomMode
            "1"
            "xonly"
    List {
```

```
ListType AxesTitles
axes1 "%<SignalLabel>"
    }
    TimeRange "400"
    YMin "667.418"
    YMax "667.442"
    SaveName "ScopeData9"
    DataFormat "StructureWithTime"
    LimitDataPoints off
    SampleTime "0"
}
Block {
    BlockType Scope
    Name "Scope6"
    Ports [1]
    Position [1260, 629, 1290, 661]
    Floating off
    Location [305, 320, 1139, 888]
    Open
    NumInputPorts
    ZoomMode
            "1"
    "xonly"
    List {
ListType AxesTitles
axes1 "%<SignalLabel>"
    }
    TimeRange "400"
    YMin "140000"
    YMax "197500"
    SaveName "ScopeData10"
    DataFormat "StructureWithTime"
    LimitDataPoints off
    SampleTime "0"
}
Block {
    BlockType Scope
    Name "Scope7"
    Ports [1]
    Position [450, 374, 480, 406]
    Floating off
    Location [5, 52, 1685, 1019]
    Open
    NumInputPorts
    ZoomMode
    "1"
    "xonly"
    List {
ListType AxesTitles
axes1 "%<SignalLabel>"
    }
        TimeRange "400"
        YMin "667.418"
        YMax "667.442"
        SaveName
        DataFormat "StructureWithTime"
        LimitDataPoints
        SampleTime
        off
            "0"
}
Block {
    BlockType Scope
```

```
    Name "Scope8"
    Ports [1]
    Position [1075, 559, 1105, 591]
    Floating off
    Location [5, 52, 1685, 1019]
    Open
        off
    NumInputPorts
    ZoomMode
    List {
ListType AxesTitles
axes1 "%<SignalLabel>"
    }
    TimeRange "400"
    YMin "140000"
    YMax "197500"
    SaveName "ScopeData12"
    DataFormat "StructureWithTime"
    LimitDataPoints off
    SampleTime "0"
}
Block {
    BlockType TransferFcn
    Name
        "Sensor"
    Position
    Orientation
            [705, 712, 765, 748]
            "left"
    Denominator
            "[0 1]"
}
Block {
    BlockType Step
    Name "Step"
    Position [245, 520, 275, 550]
    Time
    "0"
    After "620"
    SampleTime "0.1"
}
Block {
    BlockType Sum
    Name "Sum"
    Ports [2, 1]
    Position [335, 525, 355, 545]
    ShowName off
    IconShape "round"
    Inputs
    "|+-"
    CollapseMode
    "All dimensions"
    InputSameDT
    OutDataTypeMode
    OutDataType
    OutScaling
    "2^0"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType
    Name
    Position
    Denominator
}
Line {
```

```
    SrcBlock "Step"
    SrcPort
    Points
    Branch {
DstBlock
DstPort
    }
    Branch {
Points
DstBlock
DstPort
    }
}
Line {
    SrcBlock
    SrcPort
    Points
    Branch {
DstBlock
DstPort
    }
    Branch {
Points
Branch {
    DstBlock
    DstPort
}
Branch {
    Points
    DstBlock
    DstPort
}
    }
}
Line {
    SrcBlock
    SrcPort
    DstBlock
    DstPort
}
Line {
    SrcBlock
    SrcPort
    Points
    Branch {
Points
DstBlock
DstPort
    }
    Branch {
Points
Branch {
    Points
    DstBlock
    DstPort
}
Branch {
```

```
    Points
                                [0, -30]
    DstBlock
        "Scope7"
    DstPort 1
}
    }
}
Line {
    SrcBlock
    SrcPort
    Points
        "PID"
        1
        [0, 10; 90, 0]
    Branch {
Points
DstBlock
DstPort
    }
    Branch {
Points
DstBlock
DstPort
    }
}
Line {
    SrcBlock
    SrcPort
    Points
    Branch {
DstBlock
    "Mux"
DstPort
2
    }
    Branch {
Points [0, 75]
Branch {
    DstBlock
    DstPort
}
Branch {
    Points [0, 40]
    Branch {
        Points
        [0, 50]
        Branch {
            Points
                                    [0, 30]
            DstBlock
            DstPort
        }
        Branch {
            Points
                [0, 5]
            DstBlock
            DstPort
        }
    }
    Branch {
        DstBlock "Product"
        DstPort 2
    }
}
    }
}
```

```
Line {
        SrcBlock
    SrcPort
    Points
    DstBlock
    DstPort
}
Line {
    Labels
    SrcBlock
    SrcPort
    Points
    DstBlock
    DstPort
}
Line {
    Labels
    SrcBlock
    SrcPort
    Points
    DstBlock
    DstPort
}
Line {
    SrcBlock
    SrcPort
    Points
    Branch {
Points
DstBlock
DstPort
    }
    Branch {
DstBlock
DstPort
    }
}
Line {
    SrcBlock
    SrcPort
    Points
    Branch {
Points
DstBlock
DstPort
    }
    Branch {
Points
DstBlock
DstPort
    }
}
Line {
    SrcBlock
    SrcPort
    DstBlock
    DstPort
"Product"
1
"Integrator"
1
```

```
        }
        Line {
            SrcBlock "Integrator"
            SrcPort
            DstBlock
            1
                            "Scope6"
            DstPort
    1
        }
    }
}
```


8.2 - Algorithm for Fuzzy Logic System to Detect Solenoid Valve Failures within Safety Related System

```
Model {
    Name "Experiment_6_matlab5"
    Version 7.0
    MdlSubVersion 0
    GraphicalInterface {
        NumRootInports 0
        NumRootOutports 0
        ParameterArgumentNames ""
        ComputedModelVersion "1.137"
        NumModelReferences 0
        NumTestPointedSignals 0
    }
    SavedCharacterEncoding "windows-1252"
    SaveDefaultBlockParams on
    SampleTimeColors off
    LibraryLinkDisplay "none"
    WideLines off
    ShowLineDimensions off
    ShowPortDataTypes off
    ShowLoopsOnError on
    IgnoreBidirectionalLines off
    ShowStorageClass off
    ShowTestPointIcons on
    ShowViewerIcons on
    SortedOrder off
    ExecutionContextIcon off
    ShowLinearizationAnnotations on
    ScopeRefreshTime 0.035000
    OverrideScopeRefreshTime on
    DisableAllScopes off
    DataTypeOverride "UseLocalSettings"
    MinMaxOverflowLogging "UseLocalSettings"
    MinMaxOverflowArchiveMode "Overwrite"
    BlockNameDataTip off
    BlockParametersDataTip off
    BlockDescriptionStringDataTip off
    ToolBar on
    StatusBar on
    BrowserShowLibraryLinks off
    BrowserLookUnderMasks off
    Created "Tue Apr 03 12:34:39 2012"
    Creator "Owner"
    UpdateHistory "UpdateHistoryNever"
    ModifiedByFormat "%<Auto>"
    LastModifiedBy "Owner"
    ModifiedDateFormat "%<Auto>"
    LastModifiedDate "Wed Nov 12 23:33:57 2014"
    RTWModifiedTimeStamp 0
    ModelVersionFormat "1.%<AutoIncrement:137>"
    ConfigurationManager "None"
    SimulationMode "normal"
    LinearizationMsg "none"
```

```
Profile off
ParamWorkspaceSource "MATLABWorkspace"
AccelSystemTargetFile "accel.tlc"
AccelTemplateMakefile "accel_default_tmf"
AccelMakeCommand "make_rtw"
TryForcingSFcnDF off
RecordCoverage off
CovPath "/"
CovSaveName "covdata"
CovMetricSettings "dw"
CovNameIncrementing off
CovHtmlReporting on
covSaveCumulativeToWorkspaceVar on
CovSaveSingleToWorkspaceVar on
CovCumulativeVarName "covCumulativeData"
CovCumulativeReport off
CovReportOnPause on
ExtModeBatchMode off
ExtModeEnableFloating on
ExtModeTrigType "manual"
ExtModeTrigMode "normal"
ExtModeTrigPort "1"
ExtModeTrigElement "any"
ExtModeTrigDuration 1000
ExtModeTrigDurationFloating "auto"
ExtModeTrigHoldOff 0
ExtModeTrigDelay 0
ExtModeTrigDirection "rising"
ExtModeTrigLevel 0
ExtModeArchiveMode "off"
ExtModeAutoIncOneShot off
ExtModeIncDirWhenArm off
ExtModeAddSuffixToVar off
ExtModeWriteAllDataToWs off
ExtModeArmWhenConnect on
ExtModeSkipDownloadWhenConnect off
ExtModeLogAll on
ExtModeAutoUpdateStatusClock on
BufferReuse on
ShowModelReferenceBlockVersion off
ShowModelReferenceBlockIO off
Array {
    Type "Handle"
    Dimension 1
    Simulink.ConfigSet {
        $ObjectID 1
        Version "1.3.0"
        Array {
    Type "Handle"
    Dimension 8
    Simulink.SolverCC {
        $ObjectID 2
        Version "1.3.0"
        StartTime "0.0"
        StopTime "500"
        AbsTol "auto"
        FixedStep "auto"
```

```
    InitialStep "auto"
    MaxNumMinSteps
    MaxOrder 5
    ConsecutiveZCsStepRelTol "10*128*eps"
    MaxConsecutiveZCs "1000"
    ExtrapolationOrder 4
    NumberNewtonIterations 1
    MaxStep "auto"
    MinStep "auto"
    MaxConsecutiveMinStep "1"
    RelTol "1e-3"
    SolverMode "Auto"
    Solver "ode45"
    SolverName "ode45"
    ZeroCrossControl "UseLocalSettings"
    AlgebraicLoopSolver "TrustRegion"
    SolverResetMethod "Fast"
    PositivePriorityOrder off
    AutoInsertRateTranBlk off
    SampleTimeConstraint "Unconstrained"
    RateTranMode "Deterministic"
}
Simulink.DataIOCC {
    $ObjectID 3
    Version "1.3.0"
    Decimation "1"
    ExternalInput "[t, u]"
    FinalStateName "xFinal"
    InitialState "xInitial"
    LimitDataPoints on
    MaxDataPoints "1000"
    LoadExternalInput off
    LoadInitialState off
    SaveFinalState off
    SaveFormat "Array"
    SaveOutput on
    SaveState off
    SignalLogging on
    InspectSignalLogs off
    SaveTime on
    StateSaveName "xout"
    TimeSaveName "tout"
    OutputSaveName "yout"
    SignalLoggingName "logsout"
    OutputOption "RefineOutputTimes"
    OutputTimes "[]"
    Refine "1"
}
Simulink.OptimizationCC {
    $ObjectID 4
    Array {
        Type
        Dimension 5
        Cell "ZeroExternalMemoryAtStartup"
        Cell "ZeroInternalMemoryAtStartup"
        Cell "InitFltsAndDblsToZero"
        Cell "OptimizeModelRefInitCode"
```

```
        Cell "NoFixptDivByZeroProtection"
        PropName "DisabledProps"
    }
    Version "1.3.0"
    BlockReduction on
    BooleanDataType on
    ConditionallyExecuteInputs on
    InlineParams off
    InlineInvariantSignals off
    OptimizeBlockIOStorage on
    BufferReuse on
    EnforceIntegerDowncast on
    ExpressionFolding on
    ExpressionDepthLimit 2147483647
    FoldNonRolledExpr on
    LocalBlockOutputs on
    RollThreshold 5
    SystemCodeInlineAuto off
    StateBitsets off
    DataBitsets off
    UseTempVars off
    ZeroExternalMemoryAtStartup on
    ZeroInternalMemoryAtStartup on
    InitFltsAndDblsToZero on
    NoFixptDivByZeroProtection off
    EfficientFloat2IntCast off
    OptimizeModelRefInitCode off
    LifeSpan "inf"
    BufferReusableBoundary on
    SimCompilerOptimization "Off"
    AccelVerboseBuild off
}
Simulink.DebuggingCC {
    $ObjectID 5
    Version "1.3.0"
    RTPrefix "error"
    ConsistencyChecking "none"
    ArrayBoundsChecking "none"
    SignalInfNanChecking "none"
    SignalRangeChecking "none"
    ReadBeforeWriteMsg "UseLocalSettings"
    WriteAfterWriteMsg "UseLocalSettings"
    WriteAfterReadMsg "UseLocalSettings"
    AlgebraicLoopMsg "warning"
    ArtificialAlgebraicLoopMsg "warning"
    SaveWithDisabledLinksMsg "warning"
    SaveWithParameterizedLinksMsg "warning"
    CheckSSInitialOutputMsg on
    CheckExecutionContextPreStartOutputMsg off
    CheckExecutionContextRuntimeOutputMsg off
    SignalResolutionControl "UseLocalSettings"
    BlockPriorityViolationMsg "warning"
    MinStepSizeMsg "warning"
    TimeAdjustmentMsg "none"
    MaxConsecutiveZCsMsg "error"
    SolverPrmCheckMsg "warning"
    InheritedTsInSrcMsg "warning"
```

```
    DiscreteInheritContinuousMsg "warning"
    MultiTaskDSMMsg "error"
    MultiTaskCondExecSysMsg "error"
    MultiTaskRateTransMsg "error"
    SingleTaskRateTransMsg "none"
    TasksWithSamePriorityMsg "warning"
    SigSpecEnsureSampleTimeMsg "warning"
    CheckMatrixSingularityMsg "none"
    IntegerOverflowMsg "warning"
    Int32ToFloatConvMsg "warning"
    ParameterDowncastMsg "error"
    ParameterOverflowMsg "error"
    ParameterUnderflowMsg "none"
    ParameterPrecisionLossMsg "warning"
    ParameterTunabilityLossMsg "warning"
    UnderSpecifiedDataTypeMsg "none"
    UnnecessaryDatatypeConvMsg "none"
    VectorMatrixConversionMsg "none"
    InvalidFcnCallConnMsg "error"
    FcnCallInpInsideContextMsg "Use local settings"
    SignalLabelMismatchMsg "none"
    UnconnectedInputMsg "warning"
    UnconnectedOutputMsg "warning"
    UnconnectedLineMsg "warning"
    SFcnCompatibilityMsg "none"
    UniqueDataStoreMsg "none"
    BusObjectLabelMismatch "warning"
    RootOutportRequireBusObject "warning"
    AssertControl "UseLocalSettings"
    EnableOverflowDetection off
    ModelReferenceIOMsg "none"
    ModelReferenceVersionMismatchMessage "none"
    ModelReferenceIOMismatchMessage "none"
    ModelReferenceCSMismatchMessage "none"
    ModelReferenceSimTargetVerbose off
    UnknownTsInhSupMsg "warning"
    ModelReferenceDataLoggingMessage "warning"
    ModelReferenceSymbolNameMessage "warning"
    ModelReferenceExtraNoncontSigs "error"
    StateNameClashWarn "warning"
    StrictBusMsg "Warning"
    LoggingUnavailableSignals "error"
}
Simulink.HardwareCC {
    $ObjectID 6
    Version "1.3.0"
    ProdBitPerChar 8
    ProdBitPerShort 16
    ProdBitPerInt 32
    ProdBitPerLong 32
    ProdIntDivRoundTo "Undefined"
    ProdEndianess "Unspecified"
    ProdWordSize 32
    ProdShiftRightIntArith on
    ProdHWDeviceType "32-bit Generic"
    TargetBitPerChar 8
    TargetBitPerShort 16
```

```
    TargetBitPerInt 32
    TargetBitPerLong 32
    TargetShiftRightIntArith on
    TargetIntDivRoundTo "Undefined"
    TargetEndianess "Unspecified"
    TargetWordSize 32
    TargetTypeEmulationWarnSuppressLevel 0
    TargetPreprocMaxBitsSint 32
    TargetPreprocMaxBitsUint 32
    TargetHWDeviceType "Specified"
    TargetUnknown off
    ProdEqTarget on
}
Simulink.ModelReferenceCC {
    $ObjectID 7
    Version "1.3.0"
    UpdateModelReferenceTargets "IfOutOfDateOrStructuralChange"
    CheckModelReferenceTargetMessage "error"
    ModelReferenceNumInstancesAllowed "Multi"
    ModelReferencePassRootInputsByReference on
    ModelReferenceMinAlgLoopOccurrences off
}
Simulink.RTWCC {
    $BackupClass "Simulink.RTWCC"
    $ObjectID 8
    Array {
        Type "Cell"
        Dimension 2
        Cell
        "IncludeHyperlinkInReport"
        Cell "GenerateTraceInfo"
        PropName "DisabledProps"
    }
    Version "1.3.0"
    SystemTargetFile "grt.tlc"
    GenCodeOnly off
    MakeCommand "make_rtw"
    GenerateMakefile on
    TemplateMakefile "grt_default_tmf"
    GenerateReport off
    SaveLog off
    RTWVerbose on
    RetainRTWFile off
    ProfileTLC off
    TLCDebug off
    TLCCoverage off
    TLCAssert off
    ProcessScriptMode "Default"
    ConfigurationMode "Optimized"
    ConfigAtBuild off
    IncludeHyperlinkInReport off
    LaunchReport off
    TargetLang "C"
    IncludeBusHierarchyInRTWFileBlockHierarchyMap off
    IncludeERTFirstTime off
    GenerateTraceInfo off
    RTWCompilerOptimization "Off"
    Array {
```

```
Type "Handle"
Dimension 2
Simulink.CodeAppCC {
    $ObjectID 9
    Array {
Type "Cell"
Dimension 16
Cell "IgnoreCustomStorageClasses"
Cell "InsertBlockDesc"
Cell "SFDataObjDesc"
Cell "SimulinkDataObjDesc"
Cell "DefineNamingRule"
Cell "SignalNamingRule"
Cell "ParamNamingRule"
Cell "InlinedPrmAccess"
Cell "CustomSymbolStr"
Cell "CustomSymbolStrGlobalVar"
Cell "CustomSymbolStrType"
Cell "CustomSymbolStrField"
Cell "CustomSymbolStrFcn"
Cell "CustomSymbolStrBlkIO"
Cell "CustomSymbolStrTmpVar"
Cell "CustomSymbolStrMacro"
PropName "DisabledProps"
    }
    Version "1.3.0"
    ForceParamTrailComments off
    GenerateComments on
    IgnoreCustomStorageClasses on
    IncHierarchyInIds off
    MaxIdLength 31
    PreserveName off
    PreserveNameWithParent off
    ShowEliminatedStatement off
    IncAutoGenComments off
    SimulinkDataObjDesc off
    SFDataObjDesc off
    IncDataTypeInIds off
    MangleLength 1
    CustomSymbolStrGlobalVar "$R$N$M"
    CustomSymbolStrType "$N$R$M"
    CustomSymbolStrField "$N$M"
    CustomSymbolStrFcn "$R$N$M$F"
    CustomSymbolStrBlkIO "rtb $N$M"
    CustomSymbolStrTmpVar "$N$M"
    CustomSymbolStrMacro "$R$N$M"
    DefineNamingRule "None"
    ParamNamingRule "None"
    SignalNamingRule "None"
    InsertBlockDesc off
    SimulinkBlockComments on
    EnableCustomComments off
    InlinedPrmAccess "Literals"
    ReqsInCode off
}
Simulink.GRTTargetCC {
    $BackupClass "Simulink.TargetCC"
```



```
                ExtModeIntrfLevel "Level1"
                RTWCAPISignals
                        off
                RTWCAPIParams off
                RTWCAPIStates off
                GenerateASAP2 off
            }
            PropName "Components"
        }
    }
    hdlcoderui.hdlcc {
        $ObjectID 11
        Description "HDL Coder custom configuration component"
        Version "1.3.0"
        Name "HDL Coder"
        Array {
            Type "Cell"
            Dimension
            Cell
            PropName "HDLConfigFile"
        }
        HDLCActiveTab "0"
    }
    PropName "Components"
        }
        Name "Configuration"
        CurrentDlgPage "Solver"
    }
    PropName "ConfigurationSets"
}
Simulink.ConfigSet {
    $PropName "ActiveConfigurationSet"
    $ObjectID
        1
}
BlockDefaults {
    Orientation "right"
    ForegroundColor "black"
    BackgroundColor "white"
    DropShadow off
    NamePlacement "normal"
    FontName "Arial"
    FontSize 10
    FontWeight "normal"
    FontAngle "normal"
    ShowName on
}
BlockParameterDefaults {
    Block {
        BlockType ActionPort
        InitializeStates "held"
        ActionType "unset"
    }
    Block {
        BlockType Backlash
        BacklashWidth "1"
        InitialOutput "0"
        ZeroCross on
        SampleTime "-1"
```

```
}
Block {
    BlockType DataTypeConversion
    OutMin "[]"
    OutMax "[]"
    OutDataTypeMode "Inherit via back propagation"
    OutDataType
    OutScaling
    LockScale
    ConvertRealWorld "Real World Value (RWV)"
    RndMeth "Zero"
    SaturateOnIntegerOverflow on
    SampleTime "-1"
}
Block {
    BlockType Demux
    Outputs "4"
    DisplayOption "none"
    BusSelectionMode off
}
Block {
    BlockType Display
    Format "short"
    Decimation "10"
    Floating off
    SampleTime "-1"
}
Block {
    BlockType Fcn
    Expr "sin(u[1])"
    SampleTime "-1"
}
Block {
    BlockType If
    NumInputs "1"
    IfExpression "u1 > 0"
    ShowElse on
    ZeroCross on
    SampleTime "-1"
}
Block {
    BlockType Inport
    Port "1"
    UseBusObject off
    BusObject "BusObject"
    BusOutputAsStruct off
    PortDimensions "-1"
    SampleTime "-1"
    OutMin "[]"
    OutMax "[]"
    DataType "auto"
    OutDataType "fixdt(1,16,0)"
    OutScaling "[]"
    SignalType "auto"
    SamplingMode "auto"
    LatchByDelayingOutsideSignal off
    LatchByCopyingInsideSignal off
```

```
    Interpolate on
}
Block {
    BlockType Integrator
    ExternalReset "none"
    InitialConditionSource "internal"
    InitialCondition "0"
    LimitOutput off
    UpperSaturationLimit "inf"
    LowerSaturationLimit "-inf"
    ShowSaturationPort off
    ShowStatePort off
    AbsoluteTolerance "auto"
    IgnoreLimit off
    ZeroCross on
    ContinuousStateAttributes "''"
}
Block {
    BlockType Lookup2D
    RowIndex "[0 1]"
    ColumnIndex "[0 1]"
    Table "[0 0;0 0]"
    LookUpMeth "Interpolation-Extrapolation"
    InputSameDT on
    OutMin "[]"
    OutMax "[]"
    OutDataTypeMode "Same as first input"
    OutDataType
    OutScaling
    LockScale off
    "[]"
    RndMeth "Floor"
    SaturateOnIntegerOverflow on
    SampleTime "-1"
    LUTDesignTableMode "Redesign Table"
    LUTDesignDataSource "Block Dialog"
    LUTDesignFunctionName "sqrt(x)"
    LUTDesignUseExistingBP on
    LUTDesignRelError "0.01"
    LUTDesignAbsError "1e-6"
}
Block {
    BlockType Math
    Operator "exp"
    OutputSignalType "auto"
    SampleTime "-1"
    OutMin "[]"
    OutMax "[]"
    OutDataTypeMode "Same as first input"
    OutDataType
    "fixdt(1,16,0)"
    "[]"
    OutScaling
    LockScale off
    RndMeth "Floor"
    SaturateOnIntegerOverflow on
}
Block {
    BlockType Mux
    Inputs "4"
```

```
    DisplayOption "none"
    UseBusObject off
    BusObject "BusObject"
    NonVirtualBus off
}
Block {
    BlockType Outport
    Port "1"
    UseBusObject off
    BusObject
    BusOutputAsStruct
    PortDimensions
    SampleTime "-1"
    OutMin "[]"
    OutMax "[]"
    DataType "auto"
    OutDataType "fixdt(1,16,0)"
    OutScaling "[]"
    SignalType "auto"
    SamplingMode "auto"
    OutputWhenDisabled "held"
    InitialOutput "[]"
}
Block {
    BlockType Product
    Inputs
    Multiplication
    CollapseMode
    CollapseDim
    InputSameDT
    OutMin
    OutMax
    OutDataTypeMode "Same as first input"
    OutDataType
    OutScaling "[]"
    LockScale off
    RndMeth "Zero"
    SaturateOnIntegerOverflow on
    SampleTime "-1"
}
Block {
    BlockType Scope
    ModelBased
    TickLabels
    ZoomMode
    Grid
    TimeRange
    YMin "-5"
    YMax "5"
    SaveToWorkspace
    SaveName
    LimitDataPoints
    MaxDataPoints
    Decimation
    SampleInput
    SampleTime
    off
    "OneTimeTick"
    "on"
"on"
    "auto"
    off
    "ScopeData"
        on
    "5000"
    "1"
    Off
    "-1"
}
```

```
Block {
    BlockType "S-Function"
    FunctionName "system"
    SFunctionModules "''"
    PortCounts "[]"
}
Block {
    BlockType Step
    Time "1"
    Before "0"
    After "1"
    SampleTime "-1"
    VectorParams1D on
    ZeroCross on
}
Block {
    BlockType SubSystem
    ShowPortLabels "FromPortIcon"
    Permissions "ReadWrite"
    PermitHierarchicalResolution "All"
    TreatAsAtomicUnit off
    SystemSampleTime "-1"
    RTWFcnNameOpts
    RTWFileNameOpts "Auto"
    "Auto"
    RTWMemSecFuncInitTerm "Inherit from model"
    RTWMemSecFuncExecute "Inherit from model"
    RTWMemSecDataConstants "Inherit from model"
    RTWMemSecDataInternal "Inherit from model"
    RTWMemSecDataParameters "Inherit from model"
    SimViewingDevice off
    DataTypeOverride "UseLocalSettings"
    MinMaxOverflowLogging "UseLocalSettings"
}
Block {
    BlockType Sum
    IconShape "rectangular"
    Inputs "++"
    CollapseMode "All dimensions"
    CollapseDim "1"
    InputSameDT on
    OutMin "[]"
    OutMax "[]"
    OutDataTypeMode "Same as first input"
    OutDataType "fixdt(1,16,0)"
    OutScaling "[]"
    LockScale off
    RndMeth "Floor"
    SaturateOnIntegerOverflow on
    SampleTime "-1"
}
Block {
    BlockType Switch
    Criteria "u2 >= Threshold"
    Threshold "0"
    InputSameDT on
    OutMin "[]"
    OutMax "[]"
```

```
    OutDataTypeMode "Inherit via internal rule"
    OutDataType "fixdt(1,16,0)"
    OutScaling "[]"
    LockScale off
    RndMeth "Floor"
    SaturateOnIntegerOverflow on
    ZeroCross on
    SampleTime "-1"
}
Block {
    BlockType Terminator
}
Block {
    BlockType TransferFcn
    Numerator "[1]"
    Denominator "[1 2 1]"
    AbsoluteTolerance "auto"
    ContinuousStateAttributes "''"
    Realization "auto"
}
Block {
    BlockType ZeroOrderHold
    SampleTime "1"
}
Block {
    BlockType Merge
    Inputs "2"
    InitialOutput "[]"
    AllowUnequalInputPortWidths off
    InputPortOffsets "[]"
}
Block {
    BlockType Constant
    Value
    VectorParams1D
    SamplingMode
    OutMin
    OutMax
    OutDataTypeMode
    OutDataType
    ConRadixGroup
    OutScaling
    SampleTime
    "inf"
    FramePeriod "inf"
}
Block {
    BlockType Lookup
    InputValues
    Table
    "[-4:5]"
" rand(1,10)-0.5"
    LookUpMeth
    OutMin
    OutMax
    OutDataTypeMode
    OutDataType
    OutScaling
    LockScale
    RndMeth
    "Interpolation-Extrapolation"
    "[]"
    "[]"
            "Same as input"
    "fixdt(1,16,0)"
    "[]"
    Off
    "Floor"
```

```
            SaturateOnIntegerOverflow on
            SampleTime "-1"
            LUTDesignTableMode "Redesign Table"
            LUTDesignDataSource "Block Dialog"
            LUTDesignFunctionName "sqrt(x)"
            LUTDesignUseExistingBP on
            LUTDesignRelError "0.01"
            LUTDesignAbsError "1e-6"
        }
    Block {
            BlockType MinMax
            Function "min"
            Inputs "1"
            InputSameDT on
            OutMin "[]"
            OutMax "[]"
            "Inherit via internal rule"
            OutDataType "fixdt(1,16,0)"
            OutScaling "[]"
            LockScale off
            RndMeth "Floor"
            SaturateOnIntegerOverflow on
            ZeroCross on
            SampleTime "-1"
    }
    Block {
            BlockType RelationalOperator
            Operator ">="
            InputSameDT on
            LogicOutDataTypeMode "Logical (see Configuration Parameters:
Optimization)"
            LogicDataType "uint(8)"
            ZeroCross
            on
            SampleTime "-1"
        }
    Block {
            BlockType Saturate
            UpperLimit "0.5"
            LowerLimit "-0.5"
            LinearizeAsGain on
            ZeroCross on
            SampleTime "-1"
            OutMin "[]"
            OutMax "[]"
            OutDataTypeMode
            OutDataType
            "Same as input"
                            "fixdt(1,16,0)"
                            "[]"
            LockScale off
            RndMeth "Floor"
        }
    }
    AnnotationDefaults {
        HorizontalAlignment "center"
        VerticalAlignment "middle"
        ForegroundColor "black"
        BackgroundColor "white"
        DropShadow off
```

```
    FontName "Arial"
    FontSize 10
    FontWeight "normal"
    FontAngle "normal"
    UseDisplayTextAsClickCallback off
}
LineDefaults {
    FontName "Arial"
    FontSize 9
    FontWeight "normal"
    FontAngle "normal"
}
System {
    Name "Experiment_6 matlab5"
    Location [2, 78, 1398, 1000]
    Open on
    ModelBrowserVisibility off
    ModelBrowserWidth 200
    ScreenColor
        "white"
    PaperOrientation "landscape"
    PaperPositionMode "auto"
    PaperType "usletter"
    PaperUnits "inches"
    TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
    TiledPageScale 1
    ShowPageBoundaries off
    ZoomFactor
        "100"
        "simulink-default.rpt"
    ReportNam
        BlockType SubSystem
        Ports [3, 2]
        Position [975, 57, 1130, 183]
        MinAlgLoopOccurrences off
        RTWSystemCode "Auto"
        FunctionWithSeparateData off
        System {
    Name "Air Compressor"
    Location [6, 82, 1274, 746]
    Open off
    ModelBrowserVisibility off
    ModelBrowserWidth 200
    ScreenColor "white"
    PaperOrientation "landscape"
    PaperPositionMode "auto"
    PaperType "usletter"
    PaperUnits "inches"
    TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
    TiledPageScale 1
    ShowPageBoundaries off
    ZoomFactor "100"
    Block {
        BlockType Inport
        Name "Water Flowrate"
        Position [40, 63, 70, 77]
        IconDisplay "Port number"
        OutDataType "sfix(16)"
```

```
    OutScaling "2^0"
}
Block {
    BlockType Inport
    Name "Fouling"
    Position [40, 123, 70, 137]
    Port "2"
    IconDisplay "Port number"
    OutDataType "sfix(16)"
    OutScaling "2^0"
}
Block {
    BlockType Inport
    Name "Oil Temp"
    Position [45, 318, 75, 332]
    Port
    IconDisplay
    OutDataType
    OutScaling
}
Block {
    BlockType Display
    Name "Display2"
    Ports [1]
    Position [615, 290, 705, 320]
    Decimation "1"
    Lockdown off
}
Block {
    BlockType Product
    Name "Divide1"
    Ports [2, 1]
    Position [780, 447, 810, 478]
    Inputs "*/"
    CollapseMode
    InputSameDT
    OutDataTypeMode
    OutDataType
    OutScaling
    RndMeth
        "Floor"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType Product
    Name "Divide2"
    Ports [2, 1]
    Position [775, 197, 805, 228]
    Inputs
    "*/"
    CollapseMode
    "All dimensions"
    InputSameDT
    OutDataTypeMode
    OutDataType
    OutScaling
    RndMeth
        "Floor"
    SaturateOnIntegerOverflow off
}
Block {
```

```
    BlockType Lookup2D
    Name "Lookup\nTable (2-D) 1"
    Position [465, 138, 520, 187]
    RowIndex "[1,2,3,4,5]"
    ColumnIndex "[0,0.25,0.5,0.75,1]"
    Table
"reshape([0.5,0.65,0.75,0.8,0.83,0.52,0.71,0.81,0.86,0.9,0.55,0.75,0.86,0.92,
0.94,0.6,0.81,0.91,0.96,0.97,0.65,0.85,0.94,0.97,0.99],5,5)"
    InputSameDT off
    OutDataType "sfix(16)"
    OutScaling "2^0"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType SubSystem
    Name "NTU value"
    Ports [2, 1]
    Position [110, 49, 300, 156]
    TreatAsAtomicUnit on
    MinAlgLoopOccurrences off
    RTWSystemCode "Auto"
    FunctionWithSeparateData off
    System {
        Name "NTU value" 
        Open off
        ModelBrowserVisibility off
        ModelBrowserWidth 200
        ScreenColor "white"
        PaperOrientation "landscape"
        PaperPositionMode "auto"
        PaperType
        PaperUnits
        "usletter"
        "inches"
        TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
        TiledPageScale
        1
        ShowPageBoundaries off
        ZoomFactor
        "100"
        Block {
            BlockType Inport
            Name
        "Water Flowrate"
            Position
            IconDisplay "Port number"
            23, 45, 37]
            OutDataType "sfix(16)"
            OutScaling "2^0"
        }
        Block {
            BlockType Inport
            Name "Fouling"
            Position [25, 563, 55, 577]
            Port "2"
            IconDisplay "Port number"
            OutDataType "sfix(16)"
            OutScaling "2^0"
        }
        Block {
            BlockType Constant
            Name "C_min"
```

```
    Position
    Value
    OutDataType
    OutScaling
}
Block {
    BlockType
    Name
    Ports
    Position
    Inputs
    CollapseMode
    InputSameDT
    OutDataTypeMode
    OutDataType
    OutScaling
    RndMeth
    SaturateOnIntegerOverflow off
}
Block {
    BlockType
    Name
    Ports
    Position
    Inputs
    CollapseMode
    InputSameDT
    OutDataTypeMode
    OutDataType
    OutScaling
    RndMeth "Floor"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType
    Name "Divide2"
    Ports
    Position
    Inputs
    CollapseMode
    InputSameDT
    OutDataTypeMode
    OutDataType
    OutScaling
    RndMeth
    SaturateOnIntegerOverflow off
}
Block {
    BlockType Product
    Name "Divide3"
    Ports
    [2, 1]
    Position
    [990, 297, 1020, 328]
    Inputs
    CollapseMode
    "*/"
    "All dimensions"
    InputSameDT
    OutDataTypeMode
    OutDataType
        off
        "Inherit via internal rule"
    "sfix(16)"
```

```
    OutScaling "2^-10"
    RndMeth "Floor"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType Display
    Name "NTU"
    Ports [1]
    Position
    Decimation
    "1"
    Lockdown
}
Block {
    BlockType Product
    Name "Product1"
    Ports [2, 1]
    Position
    CollapseMode
    InputSameDT
    OutDataTypeMode
    OutDataType
    OutScaling
    SaturateOnIntegerOverflow off
}
Block {
    BlockType Sum
    Name "Sum"
    Ports [3, 1]
    Position [550, 185, 590, 235]
    ShowName off
    IconShape "round"
    Inputs "|+++"
    CollapseMode "All dimensions"
    InputSameDT off
    OutDataTypeMode "Inherit via internal rule"
    OutDataType "sfix(16)"
    OutScaling "2^0"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType SubSystem
    Name "Surface Area"
    Ports [0, 1]
    Position [655, 269, 755, 311]
    MinAlgLoopOccurrences off
    RTWSystemCode "Auto"
    FunctionWithSeparateData off
    System {
Name "Surface Area"
Location [433, 403, 931, 703]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
```

```
PaperUnits "inches"
TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
TiledPageScale 1
ShowPageBoundaries off
ZoomFactor "100"
Block {
    BlockType Constant
    Name "D"
    Position [115, 121, 140, 149]
    Value "0.02"
    OutDataType "sfix(16)"
    OutScaling "2^0"
}
Block {
    BlockType Display
    Name "Display2"
    Ports [1]
    Position [310, 60, 400, 90]
    Decimation "1"
    Lockdown off
}
Block {
    BlockType Constant
    Name "L"
    Position [120, 186, 145, 214]
    Value "10"
    OutDataType "sfix(16)"
    OutScaling "2^0"
}
Block {
    BlockType Constant
    Name "Pi"
    Position [115, 61, 140, 89]
    Value "3.14"
    OutDataType "sfix(16)"
    OutScaling "2^0"
}
Block {
    BlockType Product
    Name "Product1"
    Ports [3, 1]
    Position [240, 112, 270, 148]
    Inputs "3"
    CollapseMode "All dimensions"
    InputSameDT off
    OutDataTypeMode "Inherit via internal rule"
    OutDataType "sfix(16)"
    OutScaling "2^0"
    SaturateOnIntegerOverflow off
}
Block {
    BlockType Outport
    Name "Out1"
    Position [355, 123, 385, 137]
    IconDisplay
    OutDataType
    OutScaling
    Port number"
    "sfix(16)"
    "2^0"
```

```
}
Line {
    SrcBlock "Pi"
    SrcPort 1
    Points
    DstBlock
    DstPort
}
Line {
    SrcBlock "D"
    SrcPort 1
    Points
    DstBlock
    DstPort
}
Line {
    SrcBlock "L"
    SrcPort 1
    Points
    DstBlock
    DstPort
}
Line {
    SrcBlock
    SrcPort
    Points
    Branch {
        DstBlock
        DstPort
    }
    Branch {
        DstBlock
        DstPort
    }
}
    }
}
Block {
    BlockType
    Name
    Position
    OutDataType
    OutScaling
}
Block {
    BlockType
    Name
    Position
    OutDataType
    OutScaling
}
Block {
    BlockType
    Name
    Position
    OutDataType
    OutScaling
    [40, 0; 0, 45]
    "Product1"
    1
1
    [40, 0; 0, -5]
    "Product1"
    2
    1
    [35, 0; 0, -60]
    "Product1"
1
[20, 0]
```

 Constant
    ```
```

 Constant
    ```
```

 Constant
    ```
    Constant
"const1"
"const1"
    [220, 321, 245, 349]
    [220, 321, 245, 349]
    "sfix(16)"
    "sfix(16)"
    "2^0"
    "2^0"
    1
        "Display2"
    1
            "Out1"
    "Product1"
    3
    L"
    Constant
    Constant
"const2"
"const2"
        [615, 106, 640, 134]
        [615, 106, 640, 134]
        "sfix(16)"
        "sfix(16)"
        "2^0"
        "2^0"
"const7"
"const7"
    [245, 46, 270, 74]
    [245, 46, 270, 74]
    "sfix(16)"
    "sfix(16)"
    "2^0"
```

 "2^0"
    ```
```

}
Block {
BlockType SubSystem
Name "hi"
Ports [1, 1]
Position [75, 141, 265, 249]
TreatAsAtomicUnit on
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
System {
Name "hi"
Location [6, 82, 1274, 746]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
TiledPageScale 1
ShowPageBoundaries off
ZoomFactor "100"
Block {
BlockType Inport
Name "In1"
Position [15, 68, 45, 82]
IconDisplay "Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Display
Name "Display1"
Ports [1]
Position [525, 155, 615, 185]
Decimation "1"
Lockdown off
}
Block {
BlockType Display
Name "Display2"
Ports [1]
Position [1025, 215, 1115, 245]
Decimation "1"
Lockdown off
}
Block {
BlockType Display
Name "Display3"
Ports [1]
Position [870, 170, 960, 200]
Decimation "1"
Lockdown off
}

```
```

Block {
BlockType Product
Name "Divide"
Ports [2, 1]
Position [325, 212, 355, 243]
Inputs "*/"
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^-10"
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Divide1"
Ports [2, 1]
Position [565, 237, 595, 268]
Inputs "*/"
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^-10"
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Divide2"
Ports [2, 1]
Position [840, 252, 870, 283]
Inputs "*/"
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^-10"
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType SubSystem
Name "Embedded\nMATLAB Function"
Ports [1, 1]
Position [1080, 14, 1120, 46]
PermitHierarchicalResolution "ExplicitOnly"
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
Array {
Type
Dimension 0
"Handle"
PropName "AvailSigsLoadSave"
}
MaskType "Stateflow"

```

```

 }
 Block {
 BlockType Outport
 Name "y"
 Position
 IconDisplay
 OutDataType
 OutScaling
 }
 Line {
 SrcBlock " SFunction "
 SrcPort
 Points
 DstBlock
 DstPort
 }
 Line {
 SrcBlock " Demux "
 SrcPort
 DstBlock
 DstPort
 }
 Line {
 SrcBlock "u"
 SrcPort 1
 DstBlock " SFunction "
 DstPort
 }
 Line {
 Name "y"
 Labels [0, 0]
 SrcBlock
 SrcPort
 DstBlock
 DstPort
 }
 }
 }
Block {
BlockType SubSystem
Name "Embedded\nMATLAB Function1"
Ports [1, 1]
Position [1175, 14, 1215, 46]
PermitHierarchicalResolution "ExplicitOnly"
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
Array {
Type "Handle"
Dimension 0
PropName "AvailSigsLoadSave"
}
MaskType "Stateflow"
MaskDescription "Embedded MATLAB block"
MaskDisplay
MaskSelfModifiable
MaskIconFrame
"disp('fcn');"
on
MaskiconFrame on

```
```

MaskIconOpaque
off
MaskIconRotate
MaskIconUnits
System {
Name "Embedded\nMATLAB Function1"
Location [257, 457, 812, 717]
Open
off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
TiledPageScale
1
ShowPageBoundaries off
ZoomFactor "100"
Block {
BlockType Inport
Name "u"
Position [20, 101, 40, 119]
IconDisplay "Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Demux
Name
" Demux "
Ports [1, 1]
Position [270, 160, 320, 200]
Outputs "1"
}
Block {
BlockType "S-Function"
Name " SFunction "
Tag "Stateflow S-Function Experiment_6_matlab5 3"
Ports
[1, 2]
Position
[180, 100, 230, 160]
FunctionName "sf_sfun"
PortCounts "[1-2]"
EnableBusSupport
Port {
PortNumber 2
Name "y"
RTWStorageClass "Auto"
DataLoggingNameMode "SignalName"
}
}
Block {
BlockType Terminator
Name
" Terminator "
Position
}
Block {
BlockType Outport
Name "y"

```
```

 Position
 IconDisplay
 OutDataType
 OutScaling
 }
 Line {
 SrcBlock
 SrcPort
 Points
 DstBlock
 DstPort
 }
 Line {
 SrcBlock
 SrcPort
 DstBlock
 DstPort
 }
 Line {
 SrcBlock
 SrcPort
 DstBlock
 DstPort
 }
 Line {
 Name
 Labels
 SrcBlock
 SrcPort
 DstBlock
 DstPort
 }
 }
 }
Block {
BlockType
Name
Ports
Position
Operator
OutDataType
OutScaling
}
Block {
BlockType
Name
Ports
Position
Operator
OutDataType
OutScaling
}
Block {
BlockType Product
Name
Ports
Position
"Product"
[4, 1]
[245, 253, 275, 287]

```
```

 Inputs "4"
 CollapseMode
 InputSameDT
 OutDataTypeMode
 OutDataType
 OutScaling
 SaturateOnIntegerOverflow off
 }
Block {
BlockType Product
Name "Product1"
Ports [2, 1]
Position [455, 215, 485, 250]
CollapseMode
"All dimensions"
InputSameDT
OutDataTypeMode
OutDataType
OutScaling
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Product2"
Ports [4, 1]
Position [745, 222, 775, 258]
Inputs "4"
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^0"
SaturateOnIntegerOverflow off
}
Block {
BlockType Constant
Name "const1"
Position [565, 296, 590, 324]
Value "0.8"
OutDataType
OutScaling
}
Block {
BlockType Constant
Name "const10"
Position [650, 300, 690, 330]
Value "0.623"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Constant
Name "const11"
Position [775, 316, 800, 344]
Value "0.02"
OutDataType
OutScaling
}

```
```

Block {
BlockType Constant
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockT
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType Constant
Name
Position
Value
OutDataType
OutScaling
}
Block {

```
```

 BlockType Constant
 Name "const8"
 Position [625, 177, 685, 203]
 Value
 OutDataType
 OutScaling
 }
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
IconDisplay
OutDataType
OutScaling
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock "const3"
SrcPort 1
Points
DstBlock
DstPort
}
Line {
SrcBlock "const4"
SrcPort 1
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
"const5"
1
[0, -75; -35, 0]
"Product"
4
"In1"
1
[195, 0; 0, 100; 30, 0; 0, 45]
"Divide"
1

```
```

}
Line {
SrcBlock "Product"
SrcPort 1
Points
DstBlock
DstPort
}
Line {
SrcBlock "Divide"
SrcPort 1
Points
DstBlock "Product1"
[40, 0; 0, -5]
DstPort 1
}
Line {
SrcBlock "const6"
SrcPort 1
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
Points Branch {
Points
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock "const7"
SrcPort 1
Points
DstBlock "Divide1"
DstPort 2
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
"const8"
1
[20, 0; 0, 35]
"Product2"
1
"const10"
1
[10, 0; 0, -70]
SrcBlock "const7"
SrcPort 1
[5, 0; 0, -45]
DstBlock "Divide1"
DstPort 2
*
"Product1"
1
[15, 0]
"Product2"
3

```
```

}
Line {
SrcBlock "Product2"
SrcPort 1
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock "const11"
SrcPort 1
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort 1
Points
SrcPort 1
Points
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
[20, 0; 0, 20; 10, 0]
"Divide2"
1
[10, 0; 0, -55]
"Divide2"
2
"Divide2"
"Divide1"
1
[5, 0; 0, -10]
"Math\nFunction"
1
"Math\nFunction"
"const1"
1
[10, 0; 0, -50]
"Math\nFunction"
2

```
```

 Line {
 SrcBlock "const9"
 SrcPort 1
 Points [5, 0; 0, -5]
 DstBlock "Math\nFunction1"
 DstPort 1
 }
 Line {
 SrcBlock "const12"
 SrcPort 1
 Points
 DstBlock "Math\nFunction1"
 DstPort 2
 }
 Line {
SrcBlock "Math\nFunction1"
SrcPort 1
Points [60, 0]
DstBlock "Product2"
DstPort 4
}
}
}
Block {
BlockType SubSystem
Name "ho"
Ports [0, 1]
Position [70, 406, 260, 514]
TreatAsAtomicUnit on
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
System {
Name "ho"
Location [2, 82, 1270, 754]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
TiledPageScale 1
ShowPageBoundaries off
ZoomFactor "100"
Block {
BlockType Reference
Name "Compare\nTo Constant"
Ports [1, 1]
Position [595, 195, 640, 235]
SourceBlock "simulink/Logic and Bit\nOperations/Compare\nTo
Constant"
SourceType "Compare To Constant"
ShowPortLabels "FromPortIcon"
SystemSampleTime "-1"

```
```

 FunctionWithSeparateData off
 RTWMemSecFuncInitTerm "Inherit from model"
 RTWMemSecFuncExecute "Inherit from model"
 RTWMemSecDataConstants "Inherit from model"
 RTWMemSecDataInternal "Inherit from model"
 RTWMemSecDataParameters "Inherit from model"
 relop "<"
 const "2300"
 LogicOutDataTypeMode "uint8"
 ZeroCross off
 }
Block {
BlockType Reference
Name "Compare\nTo Constant1"
Ports [1, 1]
Position [595, 285, 640, 325]
SourceBlock "simulink/Logic and Bit\nOperations/Compare\nTo
Constant"
SourceType "Compare To Constant"
ShowPortLabels "FromPortIcon"
SystemSampleTime
"-1"
FunctionWithSeparateData off
RTWMemSecFuncInitTerm "Inherit from model"
RTWMemSecFuncExecute "Inherit from model"
RTWMemSecDataConstants "Inherit from model"
RTWMemSecDataInternal "Inherit from model"
RTWMemSecDataParameters "Inherit from model"
relop ">"
const "2300"
LogicOutDataTypeMode "boolean"
ZeroCross off
}
Block {
BlockType Display
Name "Display1"
Ports [1]
Position [1125, 195, 1215, 225]
Decimation "1"
Lockdown off
}
Block {
BlockType Display
Name "Display2"
Ports [1]
Position [995, 475, 1085, 505]
Decimation "1"
Lockdown off
}
Block {
BlockType Display
Name "Display3"
Ports [1]
Position [970, 415, 1060, 445]
Decimation "1"
Lockdown off
}
Block {

```
```

 BlockType Display
 Name "Display4"
 Ports [1]
 Position [830, 120, 920, 150]
 Decimation "1"
 Lockdown off
 }
Block {
BlockType Product
Name "Divide"
Ports [2, 1]
Position [250, 162, 280, 193]
Inputs "*/"
CollapseMode "All dimensions"
InputSameDT
OutDataTypeMode
OutDataType
OutScaling
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Divide1"
Ports [2, 1]
Position [490, 187, 520, 218]
Inputs
"*/"
CollapseMode
"All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Divide2"
Ports [2, 1]
Position [930, 477, 960, 508]
Inputs "*/"
CollapseMode "All dimensions"
InputSameDT
OutDataTypeMode "Inherit via internal rule"
OutDataType
OutScaling "2^-10"
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Divide3"
Ports [2, 1]
Position [1065, 237, 1095, 268]
Inputs "*/"
CollapseMode "All dimensions"
InputSameDT off

```
```

 OutDataTypeMode "Inherit via internal rule"
 OutDataType "sfix(16)"
 OutScaling "2^-10"
 RndMeth "Floor"
 SaturateOnIntegerOverflow off
 }
Block {
BlockType SubSystem
Name "Embedded\nMATLAB Function"
Ports [1, 1]
Position [755, 324, 795, 356]
PermitHierarchicalResolution "ExplicitOnly"
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
Array {
Type "Handle"
Dimension 0
PropName "AvailSigsLoadSave"
}
MaskType "Stateflow"
MaskDescription "Embedded MATLAB block"
MaskDisplay
MaskSelfModifiable
MaskIconFrame on
MaskIconOpaque off
MaskIconRotate "none"
MaskIconUnits "autoscale"
System {
Name "Embedded\nMATLAB Function"
Location [257, 457, 812, 717]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
TiledPageScale 1
ShowPageBoundaries off
ZoomFactor "100"
Block {
BlockType Inport
Name "u"
Position [20, 101, 40, 119]
IconDisplay "Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Demux
Name " Demux "
Ports [1, 1]
Position [270, 160, 320, 200]
Outputs "1"

```
```

}
Block {
BlockType "S-Function"
Name " SFunction "
Tag "Stateflow S-Function Experiment_6_matlab5 1"
Ports [1, 2]
Position
FunctionName "sf_sfun"
[180, 100, 230, 160]
PortCounts "[1-2]"
EnableBusSupport on
Port {
PortNumber 2
Name "y"
RTWStorageClass "Auto"
DataLoggingNameMode "SignalName"
}
}
Block {
BlockType Terminator
Name
Position
}
Block {
BlockType Outport
Name "y"
Position
IconDisplay
OutDataType
OutScaling
}
Line {
SrcBlock " SFunction "
SrcPort
Points [0, 65]
DstBlock
DstPort
}
Line {
SrcBlock " Demux "
SrcPort 1
DstBlock " Terminator "
DstPort 1
}
Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
Line {
Name "Y"
Labels [0, 0]
SrcBlock " SFunction "
SrcPort 2
DstBlock "Y"
DstPort 1
}

```
```

 }
 }
Block {
BlockType SubSystem
Name "Embedded\nMATLAB Function1"
Ports [1, 1]
Position [760, 434, 800, 466]
PermitHierarchicalResolution "ExplicitOnly"
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
Array {
Type "Handle"
Dimension 0
PropName "AvailSigsLoadSave"
}
MaskType "Stateflow"
MaskDescription "Embedded MATLAB block"
MaskDisplay
MaskSelfModifiable on
"disp('fcn');"
MaskIconFrame on
MaskIconOpaque off
MaskIconRotate "none"
MaskIconUnits "autoscale"
System {
Name "Embedded\nMATLAB Function1"
Location [257, 457, 812, 717]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
TiledPageScale 1
ShowPageBoundaries off
ZoomFactor "100"
Block {
BlockType Inport
Name "u"
Position [20, 101, 40, 119]
IconDisplay "Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Demux
Name " Demux "
Ports [1, 1]
Position [270, 160, 320, 200]
Outputs "1"
}
Block {
BlockType "S-Function"
Name " SFunction "

```
```

 Tag "Stateflow S-Function Experiment_6_matlab5 4"
 Ports [1, 2]
 Position
 [180, 100, 230, 160]
 "sf_sfun"
 FunctionName
 "[1 2]"
 PortCounts
 EnableBusSupport
 on
 Port {
 PortNumber 2
 Name
 RTWStorageClass "Auto"
 DataLoggingNameMode "SignalName"
 }
 }
 Block {
 BlockType Terminator
 Name
Position
}
Block {
BlockType Outport
Name "Y"
Position
IconDisplay
OutDataType
OutScaling
}
Line {
SrcBlock " SFunction "
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock " Demux "
SrcPort 1
DstBlock
DstPort
}
Line {
SrcBlock "u"
SrcPort 1
DstBlock " SFunction "
DstPort
}
Line {
Name "y"
Labels
SrcBlock
SrcPort
DstBlock
DstPort
}
}
}
Block {
BlockType Lookup

```
```

 Name "Lookup Table"
 Position [835, 185, 885, 235]
 InputValues "[0,0.05,0.1,0.25,0.5,1]"
 Table
 OutDataType "sfix(16)"
 OutScaling "2^0"
 SaturateOnIntegerOverflow off
 }
Block {
BlockType Product
Name "Product"
Ports [4, 1]
Position [170, 203, 200, 237]
Inputs "4"
CollapseMode
InputSameDT
OutDataTypeMode
OutDataType
OutScaling
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Product1"
Ports [2, 1]
Position [380, 165, 410, 200]
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^0"
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Product2"
Ports [4, 1]
Position [855, 312, 885, 348]
Inputs "4"
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^0"
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Product3"
Ports [2, 1]
Position [735, 200, 765, 235]
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^0"
SaturateOnIntegerOverflow off

```
```

}
Block {
BlockType Product
Name "Product4"
Ports [2, 1]
Position [670, 322, 700, 353]
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^0"
SaturateOnIntegerOverflow off
}
Block {
BlockType Product
Name "Product5"
Ports [2, 1]
Position [965, 200, 995, 235]
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^0"
SaturateOnIntegerOverflow off
}
Block {
BlockType Constant
Name "const1"
Position [140, 111, 165, 139]
Value "0.8"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Constant
Name "const10"
Position [775, 386, 800, 414]
Value "0.62"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Constant
Name "const11"
Position [865, 541, 890, 569]
Value "0.02"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Constant
Name "const13"
Position [660, 251, 685, 279]
Value "0.667"
OutDataType "sfix(16)"
OutScaling "2^0"
}

```
```

Block {
BlockType Constant
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType Constant
Name
Position
Value
OutDataType
OutScaling
}
Block {
"const14"
[905, 231, 930, 259]
"0.1404"
"sfix(16)"
"2^0"
Constant
"const15"
[985, 286, 1010, 314]
Constant
"const2"
[65, 181, 90, 209]
"863.9"
"sfix(16)"
"2^0"
Constant
Constant
"const4"
[55, 291, 80, 319]
"3.14"
"sfix(16)"
"2^0"
Constant
"const5"
[140, 276, 165, 304]
"const6"
"const3"
[60, 236, 85, 264]
"0.25"
"sfix(16)"
"2^0"
"sfix(16)"
"2^0"
"0.01"
"0.0005"
"sfix(16)"
"2^0"
[300, 201, 325, 229]
"0.01"
"sfix(16)"
"2^0"

```
```

 BlockType
    ```
    BlockType
    Name
    Name
    Position
    Position
    Value
    Value
    OutDataType
    OutDataType
    OutScaling
    OutScaling
}
}
Block {
Block {
    BlockType
    BlockType
    Name
    Name
    Position
    Position
    Value
    Value
    OutDataType
    OutDataType
    OutScaling
    OutScaling
}
}
Block {
Block {
    BlockType
    BlockType
    Name
    Name
    Position
    Position
    Value
    Value
    OutDataType
    OutDataType
    OutScaling
    OutScaling
}
}
Block {
Block {
    BlockType
    BlockType
    Name
    Name
    Position
    Position
    IconDisplay
    IconDisplay
    OutDataType
    OutDataType
    OutScaling
    OutScaling
}
}
Line {
Line {
    SrcBlock "const2"
    SrcBlock "const2"
    SrcPort 1
    SrcPort 1
    Points
    Points
    DstBlock
    DstBlock
    DstPort
    DstPort
}
}
Line {
Line {
    SrcBlock "const3"
    SrcBlock "const3"
    SrcPort 1
    SrcPort 1
    Points
    Points
    DstBlock
    DstBlock
    DstPort
    DstPort
}
}
Line {
Line {
    SrcBlock
    SrcBlock
    SrcPort
    SrcPort
    Points
    Points
    DstBlock
    DstBlock
    DstPort
    DstPort
}
}
Line {
Line {
    SrcBlock "const5"
    SrcBlock "const5"
    SrcPort
    SrcPort
    Points
    Points
    DstBlock
    DstBlock
    Constant
    Constant
    "const7"
    "const7"
    [390, 241, 415, 269]
    [390, 241, 415, 269]
    "0.00008565"
    "0.00008565"
        "sfix(16)"
        "sfix(16)"
        "2^0"
        "2^0"
    Constant
    Constant
    "const8"
    "const8"
    [770, 266, 795, 294]
    [770, 266, 795, 294]
    "0.023"
    "0.023"
        "sfix(16)"
        "sfix(16)"
        "2^0"
        "2^0"
Constant
Constant
"const9"
"const9"
    [675, 446, 700, 474]
    [675, 446, 700, 474]
    "4.83"
    "4.83"
        "sfix(16)"
        "sfix(16)"
        "2^0"
        "2^0"
Outport
Outport
"Out1"
"Out1"
[1130, 248, 1160, 262]
[1130, 248, 1160, 262]
        "Port number"
        "Port number"
        "sfix(16)"
        "sfix(16)"
        "2^0"
        "2^0"
[30, 0; 0, 10]
[30, 0; 0, 10]
"Product"
"Product"
1
1
[30, 0; 0, -35]
[30, 0; 0, -35]
"Product"
"Product"
2
2
"const4"
"const4"
1
1
[45, 0; 0, -80]
[45, 0; 0, -80]
"Product"
"Product"
3
3
1
1
[0, -35; -15, 0]
[0, -35; -15, 0]
"Product"
```

"Product"

```
```

 DstPort 4
 DstPort 4
 }
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort 1
}
Line {
SrcBlock "Product"
SrcPort
Points
DstBlock
DstBlock
}
Line {
SrcBlock
SrcPort
Points
Points [40, 0; 0,
DstPort
}
Line {
SrcBlock
SrcBlock
Points
DstBlock
DstPort
}
Line {
SrcBlock "Product1"
SrcPort 1
Points
DstBlock "Divide1"
DstPort
}
Line {
SrcBlock
SrcPort
Points
Points
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
"const8"
1
"Product2"
1
"const10"
1
[35, 0]
DstPort
"const6"
1
[15, 0; 0, -25]
"Product1"
1
[30, 0; 0, 10]
DstBlock "Divide1"
1
"const7"
1
[25, 0; 0, -45]
"Divide1"
2
"Divide"
"const1"
1
[30, 0; 0, 45]
" "Divide"
SrcBlock "Product"
1
[30, 0]
[30, 0]
"Divide"
1
[40, 0; 0, -5]
"Product1"
1
1
*
1
2
2
"Product1"
"Product2"
3

```
```

}
Line {
SrcBlock "Embedded\nMATLAB Function1"
SrcPort 1
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock "const11"
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
Branch {
DstBlock
DstPort
"Divide1"
1
[25, 0; 0, 10; 5, 0]
"Compare\nTo Constant"

```
```

 }
 Branch {
 Points
 Branch {
 DstBlock
 DstPort
 }
 Branch {
 Points [0, 40]
 DstBlock
 DstPort
 }
 }
 }
Line {
SrcBlock "Compare\nTo Constant"
SrcPort 1
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
Line {
SrcBlock "Lookup Table"

```
```

 SrcPort
 DstBlock
 DstPort
 }
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
}
}
Block {
BlockType
Name
Position
IconDisplay
OutDataType
OutScaling
}
Line {
SrcBlock "const7"
SrcPort
Points
DstBlock
DstPort
}
Line {
1
"Product5"
1

```
```

 SrcBlock "hi"
 SrcPort
 Points
 DstBlock
 DstPort
 }
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
1
[25, 0; 0, -85]
"Divide"
2
"ho"
1
[20, 0; 0, -100]
"Divide1"
2
"const1"
1
[25, 0; 0, 10]
"Divide1"
1
"Divide"
1
[169, 0]
"Sum"
1
"Divide1"
1
[90, 0; 0, -130]
"Sum"
2
"Fouling"
1
[430, 0; 0, -155; 80, 0]
"Sum"
3
"const2"
1
[20, 0; 0, 55]
"Divide2"
1
"Sum"
1
[45, 0; 0, -20]
"Divide2"
2
"Divide2"

```
```

 SrcPort 1
 Points
 DstBlock
 DstPort
 }
 Line {
 SrcBlock
 SrcPort
 Points
 Branch {
 DstBlock
 DstPort
 }
 Branch {
 Points
 DstBlock
 DstPort
 }
 }
 Line {
 SrcBlock
 SrcPort
 Points
 DstBlock
 DstPort
 }
 }
 }
Block {
BlockType Product
Name
Ports
Position
CollapseMode
InputSameDT
OutDataTypeMode
"Product1"
[2, 1]
[635, 171, 675, 229]
"All dimensions"
off
"Inherit via internal rule"

```
```

 OutDataType "sfix(16)"
 OutScaling "2^0"
 SaturateOnIntegerOverflow off
 }
Block {
BlockType SubSystem
Name "Q_max"
Ports [2, 1]
Position [390, 303, 520, 367]
TreatAsAtomicUnit on
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
System {
Name "Q_max"
Location [2, 82, 1270, 754]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor
"white"
PaperOrientation
PaperPositionMode
PaperType
PaperUnits
TiledPaperMargins
TiledPageScale
ShowPageBoundaries
ZoomFactor "100"
Block {
BlockType Inport
Name
Position
IconDisplay
OutDataType
OutScaling
}
Block {
BlockType Inport
Name "T_Water_in"
Position - [325, 328, 355, 342]
Port "2"
IconDisplay
OutDataType
OutScaling
}
Block {
BlockType Constant
Name
"C_min"
[370, 141, 395, 169]
Position
Value
OutDataType
OutScaling
"1.704"
"sfix(16)"
"2^0"
}
Block {
BlockType Display
Name "Max_Q"
Ports [1]

```
```

 Position [700, 95, 790, 125]
 Decimation "1"
 Lockdown off
 }
Block {
BlockType Product
Name "Product1"
Ports [2, 1]
Position
[580, 151, 620, 209]
"All dimensions"
off
"Inherit via internal rule"
"sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Sum
Name "Sum"
Ports [2, 1]
Position [475, 245, 515, 295]
ShowName off
IconShape "round"
Inputs
CollapseMode "All dimensions"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"
OutDataType "sfix(16)"
OutScaling "2^0"
SaturateOnIntegerOverflow off
}
Block {
BlockType Outport
Name "Out1"
Position [690, 173, 720, 187]
IconDisplay "Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Line {
SrcBlock "C_min"
SrcPort 1
Points
[15, 0; 0, 10]
DstBlock "Product1"
DstPort 1
}
Line {
SrcBlock "Sum"
SrcPort 1
Points [20, 0; 0, -75]
DstBlock "Product1"
DstPort 2
}
Line {
SrcBlock "Product1"
SrcPort 1
Points [25, 0]

```
```

 Branch {
 DstBlock "Out1"
 DstPort 1
 }
 Branch {
 Points [0, -70]
 DstBlock
 "Max_Q"
 DstPort
 }
 }
 Line {
 SrcBlock
 SrcPort
 Points
 DstBlock
 DstPort
 }
 Line {
 SrcBlock
 "T_Water_in"
 SrcPort
 Points
 DstBlock
 DstPort
 }
 }
 }
Block {
BlockType Sum
Name
Ports
Position
ShowName
Inputs
CollapseMode
InputSameDT
OutDataTypeMode
OutDataType
OutScaling
"Sum"
[2, 1]
[840, 202, 880, 258]
off
"|+"
"All dimensions"
off
"Inherit via internal rule"
"sfix(16)"
"2^0"
SaturateOnIntegerOverflow off
}
Block {
BlockType Sum
Name "Sum1"
Ports [2, 1]
Position [855, 467, 895, 523]
ShowName off
Inputs "|-+"
CollapseMode
InputSameDT
"All dimensions"
off
OutDataTypeMode
"Inherit via internal rule"
"sfix(16)"
"2^0"
OutDataType
OutScaling
SaturateOnIntegerOverflow off
}
Block {
BlockType Constant
Name "T_Water_in"

```
```

 Position
 Value
 OutDataType
 OutScaling
 }
Block {
BlockType
Name
Ports
Position
Decimation
Lockdown
}
Block {
BlockType
Name
Ports
Position
Decimation
Lockdown
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Value
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
IconDisplay
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Outport
"Temp Water Out"
[1025, 458, 1055, 472]

```
```

 Port
 IconDisplay
 OutDataType
 OutScaling
 }
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock "Q_max"
SrcPort 1
Points
[45, 0; 0, -35]
Branch {
Points
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
Points
Branch {
Points
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
"2"
"Port number"
"sfix(16)"
"2^0"
"c2"
1
[20, 0; 0, -35]
"Lookup\nTable (2-D)1"
2
"NTU value"
1
[35, 0; 0, 45]
"Lookup\nTable (2-D) 1"
1
"Lookup\nTable (2-D) 1"
1
[45, 0; 0, 20]
"Product1"
1
[0, -85]
"Product1"
2
[0, 5]
"Display2"
1

```
```

 SrcBlock
 SrcPort
 Points
 "T Water in"
 1
 [40, 0; 0, -5]
 Branch {
 Points
 DstBlock
 DstPort
 }
 Branch {
 Points
 DstBlock
 DstPort
 }
 }
Line {
SrcBlock
SrcPort
Points
Branch {
Points
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock "c1"
SrcPort 1
Points
DstBlock "Divide2"
DstPort 2
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
"Product1"
1
[25, 0]
[15, 0; 0, 5]
[5, 0; 0, -15]
"c3"
1
[0, -45]
"Divide1"
2
"Divide1"
1
[10, 0; 0, 30]
"Sum1"
1

```
```

Line {
SrcBlock "Water Flowrate"
SrcPort 1
Points [10, 0; 0, 5]
DstBlock "NTU value"
DstPort 1
}
Line {
SrcBlock "Fouling"
SrcPort 1
DstBlock "NTU value"
DstPort 2
}
Line {
SrcBlock "Sum1"
SrcPort 1
Points [60, 0; 0, -265]
Branch {
Points [0, -60]
DstBlock "Temp Oil Out"
DstPort 1
}
Branch {
DstBlock "Temp_Oil_Out"
DstPort 1
}
}
Line {
SrcBlock "Sum"
SrcPort 1
Points [30, 0; 0, 235; 70, 0]
Branch {
DstBlock "Temp Water Out"
DstPort 1
}
Branch {
Points [0, 70]
DstBlock "Temp_Water_Out"
DstPort 1
}
}
}
}
Block {
BlockType SubSystem
Name
"Bypass"
Ports
Position
[2, 1]
[870, 353, 920, 397]
ShowPortLabels "none"
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
MaskType "Valve"
MaskDescription
"Valve"
"Initial position [0=closed 1=open]:"
"edit"
MaskStyleString
"on"

```
```

 MaskEnableString "on"
 MaskVisibilityString "on"
 MaskToolTipString "on"
 MaskInitialization "InitialPosition = @1;"
 MaskDisplay "disp('VALVE')"
 MaskIconFrame on
 MaskIconOpaque on
 MaskIconRotate "none"
 MaskIconUnits "autoscale"
 MaskValueString "0"
 System {
 Name "Bypass"
 Location [408, 498, 736, 676]
 Open off
 ModelBrowserVisibility off
 ModelBrowserWidth 200
 ScreenColor "white"
 PaperOrientation "landscape"
 PaperPositionMode "auto"
 PaperType "usletter"
 PaperUnits "inches"
 TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
 TiledPageScale 1
 ShowPageBoundaries off
 ZoomFactor "100"
 Block {
 BlockType Inport
 Name "control"
 Position [20, 20, 40, 40]
 IconDisplay "Port number"
 OutDataType "sfix(16)"
 OutScaling "2^0"
 }
 Block {
 BlockType Inport
 Name "source flow"
 Position [20, 110, 40, 130]
 Port "2"
 IconDisplay "Port number"
 OutDataType "sfix(16)"
 OutScaling "2^0"
 }
 Block {
BlockType SubSystem
Name "Limited Integrator"
Ports [1, 1]
Position [80, 9, 130, 51]
ShowPortLabels "none"
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
MaskType "Limited integrator."
MaskDescription "Limited integrator"
MaskHelp "Implements a limited integrator with
nan expression
of the form:
n
nif(x<=lb and u<0) or (x>=ub and
u>0)
n
txdot=0
nelse
n
txdot=u."
MaskPromptString "Lower bound:|Upper bound:|Initial condition"

```
```

 MaskStyleString "edit,edit,edit"
 MaskTunableValueString "on,on,on"
 MaskCallbackString "||"
 MaskEnableString "on,on,on"
 MaskVisibilityString "on,on,on"
 MaskToolTipString "on,on,on"
 MaskVarAliasString ",,"
 MaskInitialization "lb = @1; ub = @2; xi = @3;"
 MaskDisplay "plot(-1,-
 0.2,3.5,1.2,[0.05,1,2,2.9],[0,0,1,1]);disp(' 1/s ')"
MaskIconFrame on
MaskIconOpaque on
MaskIconRotate "none"
MaskIconUnits "autoscale"
MaskValueString "0|1|InitialPosition"
MaskTabNameString ",,"
System {
Name "Limited Integrator"
Location [0, 82, 791, 315]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType
PaperUnits
TiledPaperMargins
TiledPageScale
ShowPageBoundaries off
ZoomFactor
"100"
Block {
BlockType Inport
Name "In 1"
Position
IconDisplay
"Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Fcn
Name
"Fcn"
Position [150, 116, 520, 154]
Expr "u[2]*((((u[1]>lb)+(u[2]>=0))>0) *
(((u[1]<ub)+(u[2]<=0))>0))"
}
Block {
BlockType Integrator
Name "Integrator"
Ports [1, 1]
Position [540, 126, 585, 144]
InitialCondition "xi"
}
Block {
BlockType Mux
Name "Mux"
Ports [2, 1]

```
```

 Position
 Inputs
 }
Block {
BlockType
Name
Position
UpperLimit
LowerLimit
}
Block {
BlockType
Name
Position
IconDisplay
OutDataType
OutScaling
InitialOutput
}
Line {
SrcBlock
SrcPort
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
Line {
SrcBlock
"Mux"
SrcPort
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
DstBlock
DstPort 2
}
Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
"Fcn"
1
"Integrator"
1
1
"Fcn"
1
0, -100; -545, 0; 0, 90]
"Mux"
1
"Integrator"
1
[10, 0]
"Saturation"
1
Outport
"Out 1"
[720, 125, 740, 145]
"Port number"
"sfix(16)"
"2^0"
"0"
"Saturation"
[630, 121, 675, 149]
"ub"
"lb"
"In_1"
1
"Mux"
"Saturation"
1
"Out_1"

```
```

 }
 }
Block {
BlockType Product
Name "Product"
Ports [2, 1]
Position [180, 76, 215, 134]
CollapseMode "All dimensions"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Outport
Name "out flow"
Position [250, 95, 270, 115]
IconDisplay "Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
InitialOutput "0"
}
Line {
SrcBlock "source flow"
SrcPort 1
DstBlock "Product"
DstPort 2
}
Line {
SrcBlock "Product"
SrcPort 1
DstBlock "out flow"
DstPort 1
}
Line {
SrcBlock "control"
SrcPort 1
DstBlock "Limited Integrator"
DstPort 1
}
Line {
SrcBlock "Limited Integrator"
SrcPort 1
Points [25, 0; 0, 60]
DstBlock "Product"
DstPort 1
}
}
}
Block {
BlockType Reference
Name
Ports
Position
UserDataPersistent
UserData
"gaugeslibv2/ActiveX\nControl"
SourceBlock
SourceType
"ActiveX Block"
progid
"mwtoggle.togglectrl.1"

```
```

 connect "input"
 input "Value"
 init "hActx.configuration='Toggle Switch\\Bitmap
 Toggles
Light Bulb';"
inblock on
border on
updateParam "0"
}
Block {
BlockType Step
Name
"Clean bypass line"
[80, 375, 110, 405]
Position
Time
"0"
After "450"
SampleTime "0.1"
}
Block {
BlockType Reference
Name "Compare\nTo Constant"
Ports [1, 1]
Position [865, 815, 895, 845]
SourceBlock "simulink/Logic and Bit\nOperations/Compare\nTo
Constant"
SourceType "Compare To Constant"
ShowPortLabels "FromPortIcon"
SystemSampleTime "-1"
FunctionWithSeparateData off
RTWMemSecFuncInitTerm "Inherit from model"
RTWMemSecFuncExecute "Inherit from model"
RTWMemSecDataConstants "Inherit from model"
RTWMemSecDataInternal "Inherit from model"
RTWMemSecDataParameters "Inherit from model"
relop ">"
const "100"
LogicOutDataTypeMode "boolean"
ZeroCross off
}
Block {
BlockType TransferFcn
Name "Compressor"
Position [1030, 272, 1090, 308]
Denominator "[1 0]"
}
Block {
BlockType DataTypeConversion
Name "Data Type Conversion"
Position [970, 838, 1045, 872]
OutDataTypeMode "double"
OutDataType "sfix(16)"
OutScaling "2^0"
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType DataTypeConversion
Name
Position [850, 448, 925, 482]

```
```

 OutDataTypeMode
 RndMeth
 "Fl"Specify via dialog"
 "Floor"
 SaturateOnIntegerOverflow off
 }
Block {
BlockType DataTypeConversion
Name
"Data Type Conversion2"
Position
OutDataTypeMode
OutDataType
OutScaling
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType DataTypeConversion
Name "Data Type Conversion3"
Position [1000, 593, 1075, 627]
OutDataTypeMode
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType DataTypeConversion
Name "Data Type Conversion4"
Position [1005, 678, 1080, 712]
OutDataTypeMode "double"
OutDataType "sfix(16)"
OutScaling "2^0"
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType DataTypeConversion
Name "Data Type Conversion5"
Position [860, 678, 935, 712]
OutDataTypeMode "Specify via dialog"
SaturateOnIntegerOverflow off
}
Block {
BlockType DataTypeConversion
Name "Data Type Conversion7"
Position [970, 448, 1045, 482]
OutDataTypeMode
OutDataType
OutScaling "2^0"
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType DataTypeConversion
Name "Data Type Conversion8"
Position [865, 603, 940, 637]
OutDataTypeMode "Specify via dialog"
RndMeth "Floor"
SaturateOnIntegerOverflow off
}

```
```

Block {
BlockType DataTypeConversion
Name "Data Type Conversion9"
Position [860, 523, 935, 557]
OutDataTypeMode "Specify via dialog"
RndMeth "Floor"
SaturateOnIntegerOverflow off
}
Block {
BlockType Display
Name
"Display"
[1]
Position
Decimation
Lockdown
f
}
Block {
BlockType Display
Name "Display1"
Ports [1]
Position
Decimation "1"
[680, 415, 770, 445]
Lockdown off
}
Block {
BlockType Display
Name
"Display2"
Ports
Position
Decimation
Lockdown off
}
Block {
BlockType Display
Name "Display4"
Ports [1]
Position
Decimation "1"
[765, 15, 855, 45]
Lockdown off
}
Block {
BlockType Display
Name
"Fouling"
Ports
Position
Decimation
Lockdown
}
Block {
BlockType Lookup
Name
Position
InputValues
Table
OutDataType
OutScaling
[1]
[715, 330, 805, 360]
"1"
[1000, 15, 1090, 45]
"1"
off
"Fouling Lookup"
[820, 135, 870, 185]
"[150,200,250,300,400,500]"
"[0.1,0.05,0.01,0.005,0.001,0.0009]"
"sfix(16)"
"2^0"
SaturateOnIntegerOverflow off

```
```

 }
 Block {
 BlockType SubSystem
 Name "Fuzzy Logic "
 Ports [1, 5]
 Position [680, 589, 785, 671]
 TreatAsAtomicUnit on
 MinAlgLoopOccurrences off
 RTWSystemCode "Auto"
 FunctionWithSeparateData off
 System {
 Name "Fuzzy Logic "
 Location [177, 212, 1205, 779]
 Open on
 ModelBrowserVisibility off
 ModelBrowserWidth 200
 ScreenColor "white"
 PaperOrientation "landscape"
 PaperPositionMode "auto"
 PaperType "usletter"
 PaperUnits "inches"
 TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
 TiledPageScale 1
 ShowPageBoundaries off
 ZoomFactor "100"
 Block {
 BlockType Inport
 Name "Line Pressure"
 Position [110, 118, 140, 132]
 IconDisplay "Port number"
 OutDataType "sfix(16)"
 OutScaling "2^0"
 }
 Block {
 BlockType Demux
 Name "Demux"
 Ports [1, 5]
 Position [405, 22, 415, 228]
 BackgroundColor "black"
 ShowName off
 Outputs "5"
 DisplayOption "bar"
 }
 Block {
 BlockType Reference
 Name "Fuzzy Logic \nController \nwith Ruleviewer"
 Ports [1, 1]
 Position [210, 100, 270, 150]
 SourceBlock "fuzblock/Fuzzy Logic \nController \nwith
 Ruleviewer"
SourceType "FIS"
ShowPortLabels "FromPortIcon"
SystemSampleTime "-1"
FunctionWithSeparateData off
RTWMemSecFuncInitTerm "Inherit from model"
RTWMemSecFuncExecute "Inherit from model"
RTWMemSecDataConstants "Inherit from model"

```
```

 RTWMemSecDataInternal "Inherit from model"
 RTWMemSecDataParameters "Inherit from model"
 fismatrix "Experiment_3_Fis"
 Ts
 }
Block {
BlockType Scope
Name
Ports
Position
Floating
Location [5, 52, 1285, 769]
Open
NumInputPorts
List {
ListType
axes1
}
SaveName
DataFormat
SampleTime
}
Block {
BlockType
Name
Ports
Position
Floating
Location
Open
NumInputPorts
List {
ListType
axes1
}
SaveName
DataFormat
SampleTime
}
Block {
BlockType
Name
Position
IconDisplay
OutDataType
OutScaling
}
Block {
BlockType Outport
Name
Position
Port
IconDisplay
OutDataType
OutScaling
}
Block {

```
```

 BlockType Outport
 Name
 Position
 Port
 IconDisplay
 OutDataType
 OutScaling
 }
Block {
BlockType
Name
Position
Port
IconDisplay
OutDataType
OutScaling
}
Block {
BlockType
Name
Position
Port
IconDisplay
OutDataType
OutScaling
}
Line {
SrcBlock
SrcPort
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
"Demux"
1

```
```

 Points [50, 0; 0, -15]
 DstBlock "Output 1"
 DstPort 1
 }
Line {
SrcBlock "Demux"
SrcPort 2
Points
DstBlock
DstPort
}
Line {
SrcBlock "Demux"
SrcPort 3
Points [50, 0; 0, -15]
DstBlock "Output 3"
DstPort 1
}
Line {
SrcBlock "Demux"
SrcPort 4
Points
[50, 0; 0, -5]
DstBlock "Output 4"
DstPort 1
}
Line {
SrcBlock "Demux"
SrcPort 5
DstBlock "Output 5"
DstPort 1
}
}
}
Block {
BlockType Display
Name "Oil Temp in"
Ports
Position
Decimation
Lockdown
}
Block {
BlockType Lookup
Name
"Oil temp lookup"
[820, 210, 870, 260]
"[150,200,250,300,400,500]"
InputValues
Table
OutDataType
OutScaling
[1]
"1"
off
"[70,68,66,64,62,60]"
"sfix(16)"
"2^0"
SaturateOnIntegerOverflow off
}
Block {
BlockType
Name
"Pressure Sensor"
Position
580, 505, 610, 535]
BacklashWidth
"0.01"
}

```
```

Block {
BlockType SubSystem
Name "SV"
Ports [2, 1]
Position [545, 128, 595, 172]
ShowPortLabels "none"
MinAlgLoopOccurrences off
RTWSystemCode "Auto"
FunctionWithSeparateData off
MaskType "Valve"
MaskDescription "Valve"
MaskPromptString "Initial position [0=closed 1=open]:"
MaskStyleString "edit"
MaskTunableValueString "on"
MaskEnableString "on"
MaskVisibilityString "on"
MaskToolTipString "on"
MaskInitialization "InitialPosition = @1;"
MaskDisplay "disp('VALVE')"
MaskIconFrame on
MaskIconOpaque on
MaskIconRotate "none"
MaskIconUnits "autoscale"
MaskValueString "0"
System {
Name "SV"
Location [406, 466, 738, 696]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]
TiledPageScale 1
ShowPageBoundaries off
ZoomFactor "100"
Block {
BlockType Inport
Name "control"
Position [20, 20, 40, 40]
IconDisplay "Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {
BlockType Inport
Name "source flow"
Position [20, 110, 40, 130]
Port "2"
IconDisplay "Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
}
Block {

```
```

 BlockType SubSystem
 Name "Limited Integrator"
 Ports [1, 1]
 Position [80, 9, 130, 51]
 ShowPortLabels "none"
 MinAlgLoopOccurrences off
 RTWSystemCode "Auto"
 FunctionWithSeparateData off
 MaskType "Limited integrator."
 MaskDescription "Limited integrator"
 MaskHelp "Implements a limited integrator with \\nan expression
 of the form:
n
nif(x<=lb and u<0) or (x>=ub and
u>0)
n
txdot=0
nelse
n
txdot=u."
MaskPromptString "Lower bound:|Upper bound:|Initial condition"
MaskStyleString "edit,edit,edit"
MaskTunableValueString "on,on,on"
MaskCallbackString "||"
MaskEnableString "on,on,on"
MaskVisibilityString "on,on,on"
MaskToolTipString "on,on,on"
MaskVarAliasString ",,"
MaskInitialization "lb = @1; ub = @2; xi = @3;"
MaskDisplay "plot(-1,-
0.2,3.5,1.2,[0.05,1,2,2.9],[0,0,1,1]);disp(' 1/s ')"
MaskIconFrame on
MaskIconOpaque on
MaskIconRotate "none"
MaskIconUnits "autoscale"
MaskValueString "0|1|InitialPosition"
MaskTabNameString ",,"
System {
Name "Limited Integrator"
Location [0, 82, 791, 315]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits
TiledPaperMargins
TiledPageScale
1
ShowPageBoundaries off
ZoomFactor "100"
Block {
BlockType Inport
Name
"In_1"
Position
IconDisplay "Port number"
OutDataType "sfix(16)"
OutScaling "2^0"
"inches"
[0.500000, 0.500000, 0.500000, 0.500000]
[20, 130, 40, 150]
}
Block {
BlockType Fcn
Name "Fcn"
Position [150, 116, 520, 154]

```
```

 Expr
 (((u[1]<ub)+(u[2]<=0))>0))"
}
Block {
BlockType Integrator
Name "Integrator"
Ports [1, 1]
Position [540, 126, 585, 144]
InitialCondition "xi"
}
Block {
BlockType Mux
Name "Mux"
Ports [2, 1]
Position [85, 116, 115, 149]
Inputs "2"
}
Block {
BlockType Saturate
Name "Saturation"
Position [630, 121, 675, 149]
UpperLimit "ub"
LowerLimit "lb"
}
Block {
BlockType Outport
Name "Out 1"
Position
IconDisplay
OutDataType
OutScaling
InitialOutput
}
Line {
SrcBlock "Integrator"
SrcPort 1
Points [10, 0]
Branch {
DstBlock "Saturation"
DstPort 1
}
Branch {
Points
[0, -100; -545, 0; 0, 90]
DstBlock "Mux"
DstPort 1
}
}
Line {
SrcBlock "Fcn"
SrcPort 1
DstBlock "Integrator"
DstPort 1
}
Line {
SrcBlock "Mux"
SrcPort 1
DstBlock "Fcn"

```
```

 DstPort
 }
 Line {
 SrcBlock
 SrcPort
 DstBlock
 DstPort
 }
 Line {
 SrcBlock "Saturation"
 SrcPort
 DstBlock
 DstPort
 }
 }
 }
Block {
BlockType Product
Name
Ports
Position
CollapseMode
OutDataType
OutScaling
}
Block {
BlockType Outport
Name
Position
IconDisplay
OutDataType
OutScaling
InitialOutput
}
Line {
SrcBlock "source flow"
SrcPort 1
DstBlock "Product"
DstPort 2
}
Line {
SrcBlock "Product"
SrcPort 1
DstBlock "out flow"
DstPort 1
}
Line {
SrcBlock "control"
SrcPort 1
DstBlock "Limited Integrator"
DstPort 1
}
Line {
SrcBlock "Limited Integrator"
SrcPort 1
Points
DstBlock
[25, 0; 0, 60]
"Product"

```
```

 DstPort 1
 }
 }
 }
 Block {
 BlockType Reference
 Name
 Ports
 Position [1180, 420, 1240, 480]
 UserDataPersistent
 UserData
 "DataTag1"
 SourceBlock "gaugeslibv2/ActiveX\nControl"
 SourceType "ActiveX Block"
 progid "mwtoggle.togglectrl.1"
 connect "input"
 input "Value"
 init "hActx.configuration='Toggle Switch\\Bitmap
 Toggles
Light Bulb';"
inblock on
border on
updateParam "0"
}
Block {
BlockType Reference
Name "SV likely plugged. Open Bypass"
Ports [1]
Position
[1180, 660, 1240, 720]
UserDataPersistent on
UserData "DataTag2"
SourceBlock "gaugeslibv2/ActiveX\nControl"
SourceType "ActiveX Block"
progid "mwtoggle.togglectrl.1"
connect "input"
input "Value"
init "hActx.configuration='Toggle Switch
Bitmap
Toggles
Light Bulb';"
inblock on
border on
updateParam "0"
}
Block {
BlockType Reference
Name "SV needs proactive cleaning"
Ports
[1]
Position
UserDataPersistent
UserData "DataTag3"
on
SourceBlock "gaugeslibv2/ActiveX\nControl"
SourceType "ActiveX Block"
progid "mwtoggle.togglectrl.1"
connect "input"
input "Value"
init "hActx.configuration='Toggle Switch
Bitmap
Toggles
Light Bulb';"
inblock on
border on
updateParam "0"

```
```

}
Block {
BlockType Scope
Name
Ports
Position
Floating
Location [5, 52, 1285, 769]
Open
NumInputPorts
ZoomMode
List {
ListType AxesTitles
axes1 "%<SignalLabel>"
}
TimeRange "150 "
YMin "620"
YMax "620.053"
DataFormat "StructureWithTime"
LimitDataPoints off
SampleTime "0"
}
Block {
BlockType Scope
Name "Scope1"
Ports [1]
Position [200, 89, 230, 121]
Floating off
Location [5, 52, 1285, 769]
Open
NumInputPorts
ZoomMode
"1"
"xonly"
List {
ListType AxesTitles
axes1 "%<SignalLabel>"
}
TimeRange "150 "
YMin "620"
YMax "620.053"
SaveName "ScopeData1"
DataFormat "StructureWithTime"
LimitDataPoints off
SampleTime "0"
}
Block {
BlockType
Name
Ports
Position
Floating
Location
Open
NumInputPorts
ZoomMode
"xonly"
List {
ListType AxesTitles
axes1 "%<SignalLabel>"

```
```

 }
 TimeRange "150
 YMin "620"
 YMax "620.053"
 SaveName "ScopeData12"
 DataFormat
 LimitDataPoints
 SampleTime
 }
Block {
BlockType Step
Name "Service Water Pressure"
Position [75, 140, 105, 170]
Time "0"
After "80"
SampleTime "0.1"
}
Block {
BlockType
Name "Sum2"
Ports [2, 1]
Position [715, 125, 735, 165]
CollapseMode
OutDataTypeMode
}
Block {
BlockType
Name
Position
Threshold
}
Block {
BlockType
Name
Position
Threshold
}
Block {
BlockType
Name
Ports
Position
Decimation
Lockdown
}
Block {
BlockType
Name
Ports
Position
Decimation
Lockdown
}
Block {
BlockType
Name
Ports
Display
"Temp Water Out"
[1]
[1150, 140, 1240, 170]
"1"
off
"Temp Oil Out"
[1]
[1150, 75, 1240, 105]
"1"
off
Switch
"Switch2"
[825, 382, 845, 438]
"1"
Display
"Switch1"
[460, 187, 480, 243]
"200"
"StructureWithTime"
off
"0"
Sum
*
"All dimensions"
"
"Inherit via internal rule"
Switch

```
```

 Position [1190, 819, 1245, 871]
 DialogController
 DialogControllerArgs
 SourceBlock "dspsnks4/To Audio\nDevice"
 SourceType "To Audio Device"
 deviceName "Default"
 inheritSampleRate off
 sampleRate "8000"
 deviceDatatype "Determine from input data type"
 autoBufferSize on
 bufferSize "4096"
 queueDuration "4"
 }
 Block {
 BlockType Reference
 Name "URGENT: SV plugged. Open Bypass (by logic)"
 Ports [1]
 Position
 [1180, 735, 1240, 795]
 UserDataPersistent
 UserData "DataTag5"
 SourceBlock "gaugeslibv2/ActiveX\nControl"
 SourceType "ActiveX Block"
 progid "mwtoggle.togglectrl.1"
 connect "input"
 input "Value"
 init "hActx.configuration='Toggle Switch\\Bitmap
 Toggles
Light Bulb';"
inblock on
border on
updateParam "0"
}
Block {
BlockType Display
Name "Water Flow Rate in"
Ports [1]
Position [890, 15, 980, 45]
Decimation "1"
Lockdown off
}
Block {
BlockType Lookup
Name "Water flowrate lookup"
Position [825, 60, 875, 110]
InputValues "[150,200,250,300,400,500]"
Table "[0.05,0.1,0.2,0.3,0.4,0.5]"
OutDataType "sfix(16)"
OutScaling "2^0"
SaturateOnIntegerOverflow off
}
Block {
BlockType Constant
Name "const1"
Position [350, 206, 375, 234]
Value "600"
OutDataType "sfix(16)"
OutScaling "2^0"
}

```
```

Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
Branch {
Points
Branch {
Points
Branch {
DstBlock
DstPort 2
}
Branch {
Points
DstBlock
DstPort
}
}
Branch {
Points
DstBlock
0, -20]
"SV"
DstPort
}
}
Branch {
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
"Fuzzy Logic "
5
[10, 0; 0, 170]
"Compare\nTo Constant"
1

```
```

Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
Branch {
Points
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
Points
Branch {
Points
DstBlock
DstPort
}
Branch {
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
1
"Service Water Pressure"
[-5, 0; 0, 35]
[-30, 0; 0, -155]
"Sum2"
"Bypass"
1
[40, 0; 0, -65; -265, 0]
2
"Display2"
1
1
[55, 0]
[0, -50]
"Compare\nTo Constant"
1
[0, 65; 130, 0]
[110, 0; 0, 40; 40, 0]
"Scope1"
1
"Switch1"
1
"Switch1"
3
"SV"
[40, 0; 0, -15]
"Sum2"
1
[0, 25]
"Data Type Conversion"
1
"Fuzzy Logic "
1
[45, 0]
"Data Type Conversion1"
1

```
```

}
Line {
SrcBlock "Switch2"
SrcPort 1
Points
[0, -25]
Branch {
Points
DstBlock
DstPort
}
Branch {
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
Points
Branch {
Points
Branch {
Points
DstBlock
DstPort
}
Branch {
Points
Branch {
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
[0, -55]
DstBlock
"Switch2"
DstPort
}
}
Branch {
Points
DstBlock
DstPort
}
}
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
Points
[0, -115]
"URGENT: SV plugged. Open Bypass (by logic)"
1
"Fuzzy Logic "
4
[25, 0; 0, 50]

```
```

 DstBlock
 DstPort
 }
Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
"Data Type Conversion5"
1
"Data Type Conversion5"
1
"Data Type Conversion4"
1
"Data Type Conversion4"
1
[0, -5]
"SV likely plugged. Open Bypass"
1
"Data Type Conversion1"
1
"Data Type Conversion7"
1
"Data Type Conversion7"
1
[115, 0]
"SV good"
1
"Fuzzy Logic "
3
[60, 0]
"Data Type Conversion8"
1
"Data Type Conversion8"
1
[40, 0]
"Data Type Conversion3"
1
"Data Type Conversion3"
1
"Clean SV. Equipment can fail Anytime"
1
"Fuzzy Logic "
2
[55, 0]
"Data Type Conversion9"
1

```
```

 SrcBlock
 SrcPort
 Points
 DstBlock
 DstPort
 }
Line {
SrcBlock
SrcPort
Points
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
DstBlock
DstPort
}
Line {
SrcBlock
SrcPort
Points
Branch {
Points
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort
Points
Branch {
DstBlock
DstPort
}
Branch {
Points
DstBlock
DstPort
}
}
Line {
SrcBlock
SrcPort

```
[0, -90]
```

```
[0, -90]
```

```
                                "Data Type Conversion9"
```

 "Data Type Conversion9"
 1
 1
 [20, 0]
 [20, 0]
 "Data Type Conversion2"
 "Data Type Conversion2"
 1
 1
 "Data Type Conversion2"
 "Data Type Conversion2"
 1
 1
 [115, 0]
 [115, 0]
 "SV needs proactive cleaning"
 "SV needs proactive cleaning"
 1
 1
 "Air Compressor"
 "Air Compressor"
 1
 1
 "Temp Oil Out"
 "Temp Oil Out"
 1
 1
 "Air Compressor"
 "Air Compressor"
 2
 2
 "Temp Water Out"
 "Temp Water Out"
 1
 1
 "Water flowrate lookup"
 "Water flowrate lookup"
 1
 1
 [20, 0]
 [20, 0]
 [20, 0; 0, -5]
[20, 0; 0, -5]
"Air Compressor"
"Air Compressor"
1
1
[-25, 0]
[-25, 0]
"Water Flow Rate in"
"Water Flow Rate in"
1
1
"Fouling Lookup"
"Fouling Lookup"
1
1
[40, 0; 0, -40; 35, 0]
[40, 0; 0, -40; 35, 0]
"Air Compressor"
"Air Compressor"
2
2
"Fouling"
"Fouling"
1

```
1
```

```
```

 Points
    ```
```

 Points
 [85, 0; 0, -20]
 [85, 0; 0, -20]
 Branch {
 Branch {
 DstBlock
DstBlock
DstPort
DstPort
}
}
Branch {
Branch {
Points
Points
DstBlock
DstBlock
DstPort
DstPort
}
}
}
}
Line {
Line {
SrcBlock
SrcBlock
SrcPort
SrcPort
Points
Points
Branch {
Branch {
Points
Points
Branch {
Branch {
Points
Points
DstBlock
DstBlock
DstPort
DstPort
}
}
Branch {
Branch {
Points
Points
[0, 15]
[0, 15]
Branch {
Branch {
DstBlock
DstBlock
DstPort
DstPort
}
}
Branch {
Branch {
Points
Points
DstBlock
DstBlock
DstPort
DstPort
}
}
}
}
Branch {
Branch {
Points
Points
DstBlock
DstBlock
DstPort
DstPort
}
}
}
}
Branch {
Branch {
Points
Points
DstBlock
DstBlock
DstPort
DstPort
}
}
}
}
Line {
Line {
SrcBlock
SrcBlock
SrcPort
SrcPort
Points
Points
DstBlock
DstBlock
DstPort
DstPort
}
}
Line {
Line {
SrcBlock
SrcBlock
SrcPort
SrcPort
DstBlock

```
    DstBlock
```

```
    "Air Compressor"
```

 "Air Compressor"
 3
 3
 [360, 0; 0, -210; -205, 0]
[360, 0; 0, -210; -205, 0]
"Oil Temp in"
"Oil Temp in"
1
1
"Sum2"
"Sum2"
1
1
[5, 0]
[5, 0]
[50, 0]
[50, 0]
[15, 0]
[15, 0]
"Water flowrate lookup"
"Water flowrate lookup"
1
1
"Fouling Lookup"
"Fouling Lookup"
1
1
[0, 145]
[0, 145]
"Compressor"
"Compressor"
"Pressure Sensor"
"Pressure Sensor"
1
1
[50, 0]
[50, 0]
"Fuzzy Logic "
"Fuzzy Logic "
1
1
"Clean bypass line"
"Clean bypass line"
1
1
"Switch2"

```
"Switch2"
```

```
                DstPort
                        1
        }
    }
}
# Finite State Machines
#
# Stateflow Version 6.7 (R2007b) dated Aug 7 2007, 16:48:14
Stateflow {
    machine {
        id 1
        name "Experiment_6_matlab5"
        created "19-Apr-201\overline{3 16:20:55"}
        isLibrary 0
        firstTarget 30
        sfVersion 67014000.000001
    }
    chart {
        id 2
        name "Air Compressor/NTU value/ho/Embedded\nMATLAB Function"
        windowPosition [341.813 294 200.25 189.75]
        viewLimits [0 156.75 0 153.75]
        screen [1 1 1280 800 1.333333333333333]
        treeNode [0 3 0 0]
        firstTransition 5
        firstJunction 4
        viewObj 2
        machine 1
        decomposition CLUSTER_CHART
        type
        EML_CHART
        firstData -6
        chartFileNumber 1
        disableImplicitCasting 1
        eml {
            name "fcn"
        }
    }
    state {
        id 3
        labelString "eML_blk_kernel()"
        position [18 \overline{64.5}118 66]
        fontSize 12
        chart
        treeNode [2 0 0 0}
        superState SUBCHART
        subviewer
        type
        decomposition
        eml {
            isEML 1
            script "function y = fcn(u)\n% This block supports the
Embedded MATLAB subset.\n% See the help menu for details. \n\ny = u^.8;"
            editorLayout "100 M4x1[146 214 671 364]"
```

```
    }
}
junction {
    id
    position
    chart
    linkNode
    subviewer
    type
}
transition {
    id
    labelString
    labelPosition
    fontSize
    src {
        intersection [ lllllllll
    }
    dst {
        id
        intersection
    }
    midPoint
    chart
    linkNode
    dataLimits
    subviewer
    drawStyle
    executionOrder
}
data {
    id 6
    name
    linkNode
    scope
    machine
    props {
        array {
    size
        }
        type {
    method
        }
        complexity
    }
    dataType
    fixptType {
        slope
        baseType
    }
    complexity
}
data {
    id 7
    name "y"
    linkNode
    scope
        [23.5747 49.5747 7]
2
        [2 0 0]
        2
    CONNECTIVE_JUNCTION
5
        "{eML blk_kernel();}"
        [32.125 19.875 102.544 14.964]
        12
        4
            [\begin{array}{lllllllll}{7}&{0}&{-1}&{-1}&{23.5747}&{42.5747}&{0}&{0}\end{array}]
        [23.5747 24.9468]
2
            [2 0 0)
            [23.575 23.575 14.625 34.575]
            2
            SMART
            1
            6
    "u"
        [2 0 7
        INPUT_DATA
    1
"-1"
SF_INHERITED_TYPE
            SF_COMPLEX_INHERITED
            "inherited"
            1
            SF_INT16_TYPE
        SF_COMPLEX_INHERITED
            7
            [2 6 0
OUTPUT_DATA
```

```
    machine
    1
    props {
        array {
    size "-1"
        }
        type {
    method SF_INHERITED_TYPE
        }
        complexity SF_COMPLEX_INHERITED
        frame SF_FRAME_NO
    }
    dataType "inherited"
    fixptType {
        slope
        1
        baseType
    }
    complexity SF_COMPLEX_INHERITED
}
instance {
    id 8
    name "Air Compressor/NTU value/ho/Embedded\nMATLAB Function"
    machine 1
    chart 2
}
chart {
    id
    name
    windowPosition
    viewLimits
    screen
    treeNode
    firstTransition
    firstJunction
    viewObj
    machine
    decomposition
    type
    firstData
    chartFileNumber
    disableImplicitCasting 1
    eml {
        name "fcn"
    }
}
state {
    id
    labelString
    position
    fontSize
    chart
    treeNode
    superState
    subviewer
    type
    decomposition
    eml {
        isEML
    1 0
        "eML_blk_kernel()"
        [18 64.5 118 66]
9
    CLUSTER_CHART
EML_CHART
    13
    2
```

id
labelString
position
chart
treeNode
superState
subviewer
type
eml \{
isEML

```
1
props \{
array \{
size "-1"
\}
method SF_INHERITED_TYPE
complexity SF_COMPLEX_INHERITED
SF_FRAME_NO
"inherited"
1
SF_INT16_TYPE
SF_COMPLEX_INHERITED
\}
instance \{
id 8
"Air Compressor/NTU value/ho/Embedded\nMATLAB Function"
1
2
\}
chart \{
id 9
windowPosition
"Air Compressor/NTU value/hi/Embedded\nMATLAB Function" \(\left[\begin{array}{lll}341.813 & 294 & 200.25 \\ 189.75\end{array}\right]\)
[0 156.75 0 153.75]
\(\left[\begin{array}{lllll}1 & 1 & 1280 & 800 & 1.333333333333333\end{array}\right]\)
\(\left[\begin{array}{llll}0 & 10 & 0 & 0\end{array}\right]\)
12
11
9
1
EML_CHART
13
2
 1
fen"
```



```
                                    *
```

```
        script "function y = fcn(u)\n% This block supports the
Embedded MATLAB subset.\n% See the help menu for details. \n\ny = u^.8;"
            editorLayout "100 M4x1[146 214 671 364]"
    }
}
junction {
    id
    position
    chart
    linkNode
    subviewer
    type
}
transition {
    id
    labelString
    labelPosition
    fontSize
    src {
        intersection
    }
    dst {
        id
        intersection
    }
    midPoint
    chart
    linkNode
    dataLimits
    subviewer
    drawStyle
    executionOrder
}
data {
    id
    name
    linkNode
    scope
    machine
    props {
        array {
    size
        }
        type {
    method
        }
        complexity
    }
    dataType
            "inherited"
    fixptType {
        slope
        baseType
    }
    complexity
}
data {
    id
    1 1
        [23.5747 49.5747 7]
    9
        [9 0 0]
        9
    CONNECTIVE_JUNCTION
    1 2
        "{eML_blk_kernel();}"
        [32.1\overline{2}5 1\overline{9}.875 102.544 14.964]
        12
            [0}0
        1 1
            [[\begin{array}{llllllll}{7}&{0}&{-1}&{-1}&{23.5747}&{42.5747}&{0}&{0}\end{array}]
        [23.5747 24.9468]
9
        [9 0 0]
        [23.575 23.575 14.625 34.575]
        9
        SMART
        1
    1 3
    "u"
        [9 0 14]
    INPUT_DATA
1
"-1"
SF_INHERITED_TYPE
            SF_COMPLEX_INHERITED
        1
        SF_INT16_TYPE
        SF_COMPLEX_INHERITED
1 4
```

```
    name "y"
    linkNode [9 13 0]
    scope OUTPUT_DATA
    machine 1
    props {
        array {
    size "-1"
        }
        type {
    method SF_INHERITED_TYPE
        }
        complexity SF_COMPLEX_INHERITED
        frame
    }
    dataType "inherited"
    fixptType {
        slope
        baseType
    }
    complexity
}
instance {
    id 15
    name "Air Compressor/NTU value/hi/Embedded\nMATLAB Function"
    machine 1
    chart 9
}
chart {
    id 16
    name "Air Compressor/NTU value/hi/Embedded\nMATLAB Function1"
    windowPosition [356.813 279 200.25 189.75]
    viewLimits
    screen
    treeNode
    firstTransition
    firstJunction
    viewObj
    machine
    decomposition CLUSTER_CHART
    type
    firstData -20
    chartFileNumber
    disableImplicitCasting 1
    eml {
        name "fcn"
    }
}
state {
    id
    labelString
    position
    fontSize
    chart
    treeNode
    superState
    subviewer
    type
    1 7
        "eML blk kernel()"
        [18 无4.5
        12
        1 6
            [16 0 0 0]
            SUBCHART
            1 6
    FUNC_STATE
```

```
        decomposition
        eml {
            isEML 1
            script "function y = fcn(u)\n% This block supports the
Embedded MATLAB subset.\n% See the help menu for details. \n\ny = u^.4;"
            editorLayout "100 M4x1[146 214 671 364]"
        }
    }
    junction {
        id
        position
        chart
        linkNode
        subviewer
        type
    }
    transition {
    id
    labelString
    labelPosition
    fontSize
    src {
        intersection [ [\begin{array}{llllllll}{0}&{0}&{1}&{0}&{23.5747}&{14.625}&{0}&{0}\end{array}]
        }
        dst {
            id 18
            intersection
        }
    midPoint
    chart
    linkNode
    dataLimits
    subviewer
    drawStyle
    executionOrder
    }
data {
    id 20
    name
    linkNode
    scope
    machine
    props {
        array {
    size
        }
        type {
    method SF_INHERITED_TYPE
        }
        complexity
    }
    dataType
    fixptType {
        slope
        baseType
    }
    complexity
\[
18
\]
\[
16
\]
\[
\left[\begin{array}{lll}
23.5747 & 49.5747 & 7
\end{array}\right]
\]
        [16 0 0}
        16
    CONNECTIVE_JUNCTION
    1 9
        "{eML_blk_kernel();}"
        [32.125 19.875 102.544 14.964]
        12
            [[llllllll}
        [23.5747 24.9468]
    1 6
        [16 0 0]
        [23.575 23.575 14.625 34.575]
        16
        SMART
        1
        SF_COMPLEX_INHERITED
        "inherited"
    1
        SF_INT16_TYPE
    SF_COMPLEX_INHERITED
```

```
}
data {
    id
    name
    linkNode
    scope
    machine
    props {
            array {
    size "-1"
        }
        type {
    method SF_INHERITED_TYPE
        }
            complexity SF_COMPLEX_INHERITED
            frame SF_FRAME_NO
    }
    dataType "inherited"
    fixptType {
        slope
        1
        baseType
    }
    complexity
}
instance {
    id 22
    name "Air Compressor/NTU value/hi/Embedded\nMATLAB Function1"
    machine 1
    chart 16
}
chart {
    id
    name
    windowPosition
    viewLimits
    screen
    treeNode
    firstTransition
    23
    "Air Compressor/NTU value/ho/Embedded\nMATLAB Function1"
        [356.813 279 200.25 189.75]
        [0 156.75 0 153.75]
    [1 1 1280 800 1.333333333333333]
        [0}224 0 0] 
        26
    firstJunction 25
    viewObj
    23
    machine
    1
    decomposition
    type
        CLUSTER_CHART
    EML_CHART
    firstData
        27
    chartFileNumber 4
    disableImplicitCasting 1
    eml {
        name "fcn"
    }
}
state {
    id
    labelString
    position
    fontSize
    chart
    treeNode [23 0 0 0 ]
    2 4
        "eML_blk_kernel()"
        [18 64.5 118 66]
        1 2
    2 3
```

```
        superState SUBCHART
        subviewer
        type
        decomposition
    eml {
        isEML
        script "function y = fcn(u)\n% This block supports the
Embedded MATLAB subset.\n% See the help menu for details. \n\ny = u^.4;"
        editorLayout "100 M4x1[146 214 671 364]"
        }
}
junction {
    id
    position
    chart
    linkNode
    subviewer
    type
}
transition {
    id
    labelString
    labelPosition
    fontSize
    src {
        intersection
    }
    dst {
        id
        intersection
    }
    midPoint
    chart
    linkNode
    dataLimits
    subviewer
    drawStyle
    executionOrder
}
data {
    id
    name
    linkNode
    scope
    machine
    props {
    array {
    size "-1"
        }
        type {
        method SF_INHERITED_TYPE
        }
        complexity
    }
    dataType
    fixptType {
        slope
25
    [23.5747 49.5747 7]
    23
        [23 0 0]
        23
    CONNECTIVE_JUNCTION
    26
            "{eML_blk_kernel();}"
        [32.1\overline{2}5 199.875 102.544 14.964]
        12
            [0}0001~[\mp@code{23.5747 14.625 0}00
        2 5
            [[llllllll
        [23.5747 24.9468]
    2 3
        [23 0 0]
        [23.575 23.575 14.625 34.575]
        23
        SMART
        1
    27
    "u"
        [23 0 28]
    INPUT_DATA
    1
            SF_COMPLEX_INHERITED
            "inherited"
    1
```

```
            baseType SF_INT16_TYPE
        }
        complexity
    }
    data {
        id 28
        name "y"
        linkNode [23 27 0]
        scope
        machine
        machine
            array {
        size
        "-1"
            }
            type {
            type
            }
            complexity
            frame
        }
        dataType
        SF_INHERITED_TYPE
        OUTPUT_DATA
        1
        fixptType {
            slope
            baseType
        }
        complexity
    }
    instance {
        id
        name - ,
        machine 1
        chart 23
    }
    target {
        id 30
        name "sfun"
        description
        machine
        linkNode
    }
}
```


References

[1] 'Breathing Air System Design Manual'. NK30-75140.Pickering B Nuclear Generation Station. Pickering: Ontario Power Generation, 1989. Print
[2] 'Breathing Air System Flowsheet'. 30-058-O-75140-FS-01.Pickering B Nuclear Generation Station. Pickering: Ontario Power Generation. Print
[3] "The System Assessment - Comprehensive Compressor Air Audits - 5 Step Process." Compressed Air Best Practices. Atlas Copco Compressors LLC, Dec. 2011. Web. 22 Jan. 2012.
http://www.airbestpractices.com/sites/default/files/CABP_2011_12December_LR3.pdf.
[4] Beitao, Guo, Liu Hongyi, Jiang Yang, Yang Cao, and TianHonghai. "Fuzzy Immune PID Control in VVVF Hydraulic System." School of Mechanical Engineering \& Automation, Northeastern University/Shenyang Institute Of Chemical Technology. Web.
[5] LU, Zhihong, Zhiyong TANG, Hao LI, and Zhongcai PEI. "Fuzzy PID Control of Intelligent Pump."School of Automation Science and Electrical Engineering.Web.
[6] Zulfatman, and M. F. Rahmat. "APPLICATION OF SELF-TUNING FUZZY PID CONTROLLER ON INDUSTRIAL HYDRAULIC ACTUATOR USING SYSTEM IDENTIFICATION APPROACH."Faculty of Electrical Engineering.Web. 01 Apr. 2012.
[7] He, Lan, and Lepeng Song. "The Pump House Constant Pressure Fuzzy Selftuning PID Control System Simulation." School of Electronic and Information Engineering, Chongqing University of Science and Technology.Web. 29 Mar. 2012.
[8] Jialiang, Lu, Chen Guanrong, and Ying Hao. "Predictive Fuzzy PID Control: Theory, Design and Simulation." Department of Electrical and Computer Engineering, University of Houston.Web. 15 Mar. 2012.
[9] "Instrumentation and Control (I\&C) Systems in Nuclear Power Plants: A Time of Transition."
Instrumentation and Control (I\&C) Systems in Nuclear Power Plants: A Time of Transition. IAEA. Web. 21 Jan. 2012. http://www.iaea.org/About/Policy/GC/GC52/GC52InfDocuments/English/gc52inf-3att5_en.pdf.
[10] Fakhreddine O. Karray and Clarence de Silva, Soft Computing and Intelligent Systems DesignTheory, Tools and Applications, Pearson Education Limited Edinburgh Gate Harlow Essex, CM20 2JE, England, First published 2004.
[11] ONE, Team. "Pickering NGS: BUIA, SG \& Silting Condition Assessment." Ontario Power Generation (n.d.): n. pag. Web.
[12] D, Raun. "Safety Regulations and Fuzzy- Logic Control to Nuclear Reactors." (n.d.): n. pag. Print.
[13] "Control (Wet) Storage - A misunderstood concept." Compressed Air Best Practices. Atlas Copco Compressors LLC, Dec. 2011. Web. 22 Jan. 2012.
http://www.airbestpractices.com/sites/default/files/CABP_2011_12December_LR3.pdf.
[14] Zhong, Jinghua. "PID Controller Tuning: A Short Tutorial." Purdue University, 2006.Web. 3 Apr. 2012. http://wwwdsa.uqac.ca/~rbeguena/Systemes_Asservis/PID.pdf
[15] 'AUTHORIZATION TRAINING - INSTRUMENT AIR - PART A \& B'. N-OVH-24461-00001.
Pickering B Nuclear Generation Station. Pickering: Ontario Power Generation, 2008.
[16] Ali Tarique1, Hossam A. Gabbar2*Tarique, Ali, and Hossam A. Gabbar. "Particle Swarm Optimization (PSO) Based Turbine Control." ICA Intelligent Control and Automation 04.02 (2013): 126-37. Web.
[17] 'Instrument Air Design Manual'. NK30-DM-75120-00001. Pickering B Nuclear Generation Station. Pickering: Ontario Power Generation, 2010.
[18] 'Instrument Air Compressor Flowsheet'. 30-5-O-75120-FS-01. Pickering B Nuclear Generation Station. Pickering: Ontario Power Generation.
[19] 'Instrument Air Design Manual'. NK38-DM-75120. Darlington Nuclear Generation Station.
Darlington: Ontario Power Generation, 1991.
[20] Rastogi, Achint, and Hossam A. Gabbar. "Fuzzy-Logic-Based Safety Verification Framework for Nuclear Power Plants." Risk Analysis 33.6 (2012): 1128-145. Web.
[21] Hsu, Yin-Sung, Chi-Ma Wei, Yuan-Chi Ting, Shih-Yi Yuan, Chia-Ling Chang, and Kao-Chung Chang. "Capacitive Sensing Technique for Silt Suspended Sediment Concentration Monitoring." International Journal of Sediment Research 25.2 (2010): 175-84. Web.
[22] Chander, R. Modification Process [N-PROC-MP-0090]. Vol. 8. N.p.: Ontario Power Generation, 2012.
[23] Modification Outline [N-FORM-10958]. Vol. 12. N.p.: Ontario Power Generation, 2012.
[24] Deol, H. "System Performance Monitoring Plan Instrument Air System (P-SPM-75120-0443254)." Ontario Power Generation (2013)
[25] Smith, Michael, and Sukumar Kamalasadan. "Method for Improved Pressurizer System Knowledge Enabling Enhanced Pressure Control." (n.d.): n. pag. Web. 1 Feb. 2016.
[26] Cengel, Yunus A. Heat and Mass Transfer: A Practical Approach. 3rd ed. New York, NY 10020: McGraw-Hill, 2007.
[27] Gabbar, Dr. Hossam A. NUCL 5275G: Safety Instrumented Systems, Lec 1-9.
[28] Jiang, Dr Jin, and Jianping Ma. "Applications of Fault Detection and Diagnosis Methods in Nuclear Power Plants: A Review." ScienceDirect (2010): 255-64. Web. 15 Feb. 2013. <www.sciencedirect.com>.
[29] Gratton, Mary Ann. "Road Salt and Cars Produce Extreme Water Contamination in Frenchman's Bay." Road Salt and Cars Produce Extreme Water Contamination in Frenchman's Bay. N.p., 1 Mar. 2010. Web. 28 Apr. 2013. https://ose.utsc.utoronto.ca/ose/story.php?id=2036.
[30] Patwary, Masum A., William Thomas O’Hare, and Mosharraf H. Sarker. "Assessment of Occupational and Environmental Safety Associated with Medical Waste Disposal in Developing Countries: A Qualitative Approach." ScienceDirect (2011): 1200-205. Web. 20 Apr. 2013. <www.sciencedirect.com>.
[31] "Nuclear Power." Ontario Power Generation. Ontario Power Generation, n.d. Web. 21 Feb. 2015.
[32] Mark, O., C. Wennberg, T. Van Kalken, F. Rabbi, and B. Albinsson. "Risk Analyses for Sewer Systems Based on Numerical Modelling and GIS." Safety Science (1998): 99-106. ScienceDirect. Web. 28 Mar. 2013. 〈www.sciencedirect.com>.
[33] Mundra, Sanjay. "Advantages and Disadvantages of Predictive/Condition Based Maintenance." Advantages and Disadvantages of Predictive/Condition Based Maintenance. Preserve Articles, n.d. Web. 2 Apr. 2013. http://www.preservearticles.com/2012020822922/advantages-and-disadvantages-of-predictivecondition-based-maintenance.html.
[34] Deol, H. "Instrument Air System Health Report." Ontario Power Generation (2013)
[35] MathWorks. MATLAB [SIMULINK]: The Language of Technical Computing. Computer software. Vers. 7.5.0.342 (R2007b). The MathWorks Inc., n.d. Web. 16 Jan. 2013.
[36] Boon C, Hwang. "Intelligent Control for a Nuclear Power Plant Using Artificial Neural Networks." (n.d.): n. pag. Web.
[37] (Kramer, B.j. "A Case Study in Developing Complex Safety Critical Systems." Proceedings of the Thirtieth Hawaii International Conference on System Sciences (n.d.): n. pag. Web.)
[38] (Wang, Lin, Yurong Zeng, Yanhui Li, and Hong Wang. "An Intelligent Decision Support System for Spare Parts Joint Replenishment." 2006 International Conference on Hybrid Information Technology (2006): n. pag. Web.)
[39] (Andone, Daniela G., Ioana I. Fagarasan, and Matei R. Dobrescu. "Advanced Control of a Steam Generator." 2006 3rd International IEEE Conference Intelligent Systems (2006): n. pag. Web.)
[40] (Shrikhande, S. V., V. K. Patil, G. Ganesh, B. B. Biswas, and R. K. Patil. "Hardware Reliability Prediction of Computer Based Safety Systems of Indian Nuclear Plants." 2010 2nd International Conference on Reliability, Safety and Hazard - Risk-Based Technologies and Physics-of-Failure Methods (ICRESH) (2010): n. pag. Web.)
[41] (Guan, Da, Lei Yan, Yibo Yang, and Wenfu Xu. "A Small Climbing Robot for the Intelligent Inspection of Nuclear Power Plants." 2014 4th IEEE International Conference on Information Science and Technology(2014): n. pag. Web)
[42] (Pan, Erzhen, Da Guan, Wenfu Xu, and Bingshan Hu. "Control System of a Small Intelligent Inspection Robot for Nuclear Power Plant Use." 2015 IEEE International Conference on Information and Automation (2015): n. pag. Web.)
[43] (Kumar, Neeraj, I. Koley, P.r. Krishnamurthy, and S.n. Rao. "Regulatory Review of Computer Based Systems: Indian Perspectives." 2010 2nd International Conference on Reliability, Safety and Hazard -Risk-Based Technologies and Physics-of-Failure Methods (ICRESH) (2010): n. pag. Web.)
[44] (Rodrigues, A. P., M. Correia, A. Batista, J. Sousa, B. Goncalves, C. M. B. Correia, and C. A. F. Varandas. "Intelligent Platform Management Controller for Nuclear Fusion Fast Plant System Controllers." IEEE Trans. Nucl. Sci. IEEE Transactions on Nuclear Science 58.4 (2011): 1733-737. Web.)
[45] Smith, Bax. ""Classical vs Intelligent Control."" (n.d.): n. pag. Print.
[46] Deol, Harsh, and Hossam A. Gabbar. "Self-tuning Fuzzy Logic PID Controller, Applications in Nuclear Power Plants." IJISTA International Journal of Intelligent Systems Technologies and Applications 14.1 (2015): 70. Web.
[47] Deol, Harsh, and Hossam A. Gabbar. "Fuzzy Logic-based Safety Design for High Performance Air Compressors." Progress in Nuclear Energy 80 (2015): 136-50. Web.

