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Abstract

Software development and software maintenance require a large amount of source

code changes to be made to a software repositories. Any change to a repository can

introduce new resource needs which will cost more time and money to the repository

owners. Therefore it is useful to predict future code changes in an effort to help

determine and allocate resources. We are proposing a technique that will predict

whether elements within a repository will change in the near future given the devel-

opment history of the repository. The development history is collected from source

code management tools such as GitHub and stored local in a PostgreSQL. The predic-

tions are developed using the machine learning approaches Support Vector Machine

and Random Forest. Furthermore, we will investigate what factors have the most

impact on the performance of predicting using either Support Vector Machines or

Random Forest with future code changes using commit history. Visualizations were

used as part of the approach to gain a deeper understanding of each repository prior

to making predictions. To validate the results we analyzed open source Java software

repositories including; acra, storm, fresco, dagger, and deeplearning4j.
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Chapter 1

Introduction

Software has become pervasive and integrated with numerous platforms and appli-

cations such as mobile devices, web sites, embedded systems, safety critical systems.

Creating and managing a software application can be time consuming and resource

intensive. The development of software applications commonly integrate the usage

of Version Control System (VCS) to manage the application by storing the current

version as well as previous versions in a repository. The development of a repository

is limited by the resources available to the team developing the application. Effective

allocation of these limited resources could be the deciding factor in whether repository

will be successful or not. Furthermore, a VCS manager such as GitHub could lever-

age repository resource allocation for managing the resources provided to repositories

hosted by them.

Previous works in change prediction include Bantelay, Zanjani and Kagdiw who

studied evolutionary coupling to create predictions of commit and interactions within

a repository [3]. Giger, Pinzger and Gall analyze an approach for predicting the type

of change that will occur [14]. Hassan and Holt predict change propitiation of a

purposed change [21]. Kagdi and Maletic outline an approach for predicting software
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changes through a dependency analysis of the repository history [25]. Ying, Murphy,

Ng and Chu-Carroll create a method for predicting source code changes given a change

within the repository [45]. The predictions are made by identifying elements within

the repository that are associated through frequent co-changes. We hope to build on

previous research to provide change predictions to help improve resource allocation

for both repository developers as well as VCS managers.

1.1 Objective & Methodology

The mining of open source software repositories is widely used to help research into

various software topics relating to software development and quality assurance. Re-

search can provide improvements to the development process of software repositories.

With an improved development process, more repositories may succeed in accom-

plishing their outlined goal. The process of developing a repository will of course

take time to complete. The time for a repository to be completed relies on numerous

factors including scope, man power, experience. Over the course of development,

changes will be made to repository. Changes can be made to almost any part of

the repository including design, number of developers and type of developers. These

changes will in most cases have a measurable impact on the repository. In case of

adding more developers, the intended result may be to increase functional capabilities

within a shorter span of time. Even with an intended result, the actual result may

differ and should be measured to determine the effectiveness of a given change.

Development of a software application will attempt to solve any number of prob-

lems. A few examples of typical software problems are; video games, telecommuni-

cation or financial. The success of an application however does not rely on a single

factor. Software applications may fail in many different ways affecting the scope,
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cost, or timeliness of the project. Furthermore, software development often continues

long after the product is delivered to clients. Managers or developers may decide

to increase the resources available for the development in an attempt to solve the

problem. Without clear understanding or knowledge of what resources are necessary

can exacerbate the problem. For example, allocating more developers to work on a

project will also require more coordination between developers which can increase

overhead. Providing predictions of upcoming code changes can provide developers

and managers insight into the development schedule of their application and help

them make more informed decisions regarding future resource allocation.

The developers of the repository should manage the growth of the repository to

ensure that the changes that are made result in an expected outcome. Keeping track

of every change to a repository can be difficult because of external changes which

are beyond the control of the developers. However, for the majority of the changes

within the repository they are kept track through VCS. With proper use of a VCS,

the important changes made to the repository available. This can help keep previous

releases of the software available or even help resolve a bug that was introduced in a

recent change. Furthermore, developers have control over what is stored in the VCS

allowing for granularity based on developer preferences. With numerous developers,

a VCS can also help improve how these developers interact and share the changes

they made. Some commonly used VCS include Git 1, Apache Subversion (SVN)2 and

Mercurial3.

The impact of changes can be measured and provides insights into how the repos-

itory changes. However first the data must be collected, processed and stored. While

changes may occur in various forms, a more accessible one would be the source code

1https://git-scm.com/
2https://subversion.apache.org/
3https://www.mercurial-scm.org/
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changes in the software repository. These changes are very fine grain since they will

account for almost all functionality changes with the repository. The only function-

ality changes not accounted by source code would be external changes (e.g. library

changes). Changes will map to functionality changes that provide fixes, new func-

tionality, or removal of functionality. The source code changes will provide a large

amount of noise since every change is included. This excessive granularity can make

tracking the desired changes more difficult. Visualization of the data collected allows

for a more accessible look at the data to provide potential insights.

As discussed earlier, there are two main types of software repositories that are

developed, either closed source or open source. Open Source Software (OSS) reposi-

tories will generally provide access to the source code, the ability to change and finally

redistribute the changes. OSS is widely used in developing software repositories of

various sizes and scope. In these repositories developers are able to contribute to-

wards the a repository that is often used by a wider audience. While smaller OSS

repositories may have a small number of developers, larger repositories can contain

developers from numerous locations around the world contributing at different times.

The development of OSS is often the focus of research related to software development

since the repositories are open and freely available. The authors are able to publish

and use the data as they wish since it is publicly available. There are also countless

OSS repositories to study and investigate.

The collection of data is done through data mining. Data mining is the act of

collecting data from one or more sources to use for another goal. Often data mining

will use a data source not traditionally used, since the goal of data mining is to extract

and use information. The actual use of the data once collected can vary greatly

from visualizing to modeling. Data can also be collected in several forms including

continuous streams of data, sporadic data and one time collection. Depending on
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what type of data is being collected and the purpose of the collection the means

of collection may also vary. Another concern related to data mining is that of Big

Data. If a source provides a wealth of data, then extra measures should be taken

to manage the size of the data set. Without diligent management, a data set can

become unwieldy with massive overhead that are entirely avoidable.

The goal of the approach is to predict changes that will occur within the repository

using the commit history. In this case machine learning techniques are leveraged to

create a model based on the data collected through mining GitHub to predict changes.

Machine learning techniques are widely used to support the completion of difficult

tasks that involve patterns. A machine learning algorithm is generally an algorithm

that attempts to detect and mimic patterns within a data set. There are many

different types machine learning algorithms including:

1. Support Vector Machine (SVM)

2. Random Forest (RF)

3. Artificial Neural Network (ANN)

4. Deeplearning Artificial Neural Network (ANN)

5. Regressors

6. Bayes Näıve Classifiers (BNC)

Each technique provides advantages and disadvantages depending on the purpose

and the data set in use. The primary focus will be on Support Vector Machine (SVM)

and Random Forest (RF) since they are used as part of the proposed work. These

two machine learning algorithms were selected because of their wide use in existing

works. Specifically, research related to data mining often employed these techniques
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to make use of the collected data. Regardless of the predictive model, the training

and testing layout is the same, by sampling a subset from the data source to use

towards training of the model. To test the model a second subset that is distinct

from the first is retrieved to permit the performance of the model to be measure.

SVM is an algorithm that attempts to classify data into two distinct categories.

This algorithm is a supervised learning technique that requires a training data set to

build the categorization model. The training set will consist of data samples from

each classification as well as which classification the data sample belongs to. After

creating the model for a SVM new data vectors can be provided to the model and be

classified into one of the two categories. The model will be constructed by attempting

to linearly separate the data into two distinct groups. If the data cannot be separated

linearly, then the data is mapped to a higher dimension to allow for proper separation.

During the separation of data points into two groups, the model may reclassify data

points in an attempt to fix errors within the data set. This feature allows for some

error to be present within the training set without causing further errors. In the case

that points which are valid are detected as errors then the separation has generated

errors and the features or data used may not be useful towards making a prediction.

RF is another supervised learning technique that requires a training data set to

create an prediction model. The origin of random forests is the decision tree learning

method. A single decision tree creates a tree structure where each internal node in the

tree represents a decision where in the final destination is the outcome. RF extends

decision trees to address the tendency for a decision tree to overfit the data. A RF

uses numerous decision trees as well as a modified version of bootstrap aggregation

to get more robust predictions.

The machine learning algorithm makes use of the training data to create a model

for predicting the classification of a given value. An analysis of change data can help
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Figure 1.1: Approach Overview

in the selection of useful information for creating the predictive model. The data

is collected from the repository’s historical data that can provide a large data set

to work with. Managing the data and selecting ideal samples for training must be

considered to provide a strong predictive model.

We propose a tool that assists in managing the development of software reposi-

tories by predicting changes that are likely to occur. This work explores leveraging

change prediction of the source code using the commit history to assist in the de-

velopment of OSS scale repositories. The key factors; sampling size, feature set and

data balancing are investigated using the tool to provide a deeper understanding the

feasibility of the tool. Several OSS repositories were selected to conduct experiments

to determine the impact of each of the factors.
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1.2 Contributions

Our contributions are in mining of OSS, visualization of a repository’s change history,

machine learning change prediction, data collect which can be used and extended.

Providing clear and accessible visualizations allows for the development data to be

inspected more thoroughly. Likewise, strong predictions of change can assist in the

development of more robust, efficient and less costly software programs. Finally, the

collection of historical data for use of predicting future changes is presented as a

possible option when predicting future changes within a repository.

There are several different areas where this work can be applied and provide

improvements. The main area which this research is applicable would be that of

software development by providing support during the development process. The

prediction of future changes within a repository are made available to developers to

support them when choosing tasks or making new changes to the repository. With

the knowledge of where changes are likely to occur within the repository developers

may be more prepared in making such changes. This is especially true if this work was

extended to provide more specific change information about future changes. Another

potential use for this approach would be in resource allocation for software repository

development. A larger repository with numerous developers contributing will require

each developer to work on various task an attempt to limit conflicting contributions.

With the ability to predict where future changes will likely occur developers can

coordinate more effectively with other developers mange interactions and overlap.

Finally, the approach could help with resource allocation for a VCS provider, such as

GitHub. A VCS could use the repository data to efficiently allocate resources based

change predictions for each repository. If a repository is likely of have near future

changes then more resources are necessary for that repository compared to one that
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is less likely to receive changes in the near future. With strong predictions a system

could be more effectively managed and offer savings to the company.

1.3 Organization

The remainder of the thesis is organized into 5 more chapters.

1. Literature Review which provides more details related to the foundation of this

work. Primarily this chapter will cover the data that is collected for the analysis.

2. Visualization of Commit Data discusses how the data is collected, stored and

visualized.

3. Prediction of Commit Data outlines the data and methods that are used to

predict change within a repository.

4. Experiments reports the experiments conducted and their results.

5. Conclusion summarizes the results and contributions and proposes future work

to build of the thesis.
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Chapter 2

Literature Review

In pursue of creating an approach for predicting change within a software repository

several areas of research were leveraged. These areas include: Open Source Software

(OSS) Repositories, Prediction of Change within Software Repositories and Analysis

of Software Repositories. The remainder of this chapter discusses each of these topics

in detail and notes the current state of the art as related to each topic.

2.1 Open Source Software

Open Source Software (OSS) generally includes software that provides the ability to

access the source code and make modifications to the source code under an open

source license. A few examples of open source licenses are: Apache License 2.01,

GNU General Public License v3.02 and MIT License3. While certain licenses provide

some restrictions on the ability to redistribute the software the main point is that all

OSS licenses allow the source code of the software to be freely available. The scope

and capability of OSS projects vary greatly and several very popular OSS projects

1http://www.apache.org/licenses/LICENSE-2.0
2https://www.gnu.org/licenses/gpl-3.0.en.html
3https://opensource.org/licenses/MIT
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are listed in Table 2.1.

Owner Project Description
Mozilla Firefox4 Internet Browser
Linux Linux Kernel5 Operation System Kernel
VideoLAN VLC6 Media Player
PostgreSQL PostgreSQL7 Object-Relational Database Management System
git git8 Version Control System

Table 2.1: Open Source Software Projects

2.1.1 Managing Open Source Software Repositories

The development of large software repositories (whether OSS or not) often make use

of Version Control System (VCS). A Version Control System (VCS) helps developers

manage repository changes and facilitates collaboration. A VCS will keep a current

version of the project and track historical changes (i.e., previous versions) as well.

This may be done through keeping a copy of every version of each file in a project or

by keeping track of every change made to each file in a project.

2.1.1.1 Version Control System

Apache Subversion (SVN)9 and git8 would be two examples of VCS. Git is a Dis-

tributed Version Control System (DVCS) and differs greatly from SVN which is a

centralized VCS. Git provides the user with a complete local copy of the repository

that is available independent of network connectivity. The independence of each

user’s local repository copy also allows for a application to be developed without a

4https://www.mozilla.org/en-US/firefox/desktop/
5https://www.kernel.org/
6http://www.videolan.org/vlc/index.html
7http://www.postgresql.org/
8https://git-scm.com/
9https://subversion.apache.org/
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centralized server. The one main issue with a DVCS is that while decentralization is

useful, developers will require some method to collaborate and communicate changes

made to the repository. Therefore typically one centralized server is used to maintain

communication between all interested parties.

Git provides a simple interface to manage the repository regardless of which site

is the central server. Therefore regardless if the project is on GitHub, BitBucket an

internal server users can easily interact with the project as long as they know the

Git interface. Git in essences is a file storage for the project that keeps track of

changes made to the project. A commit is a set of changes that a developer makes

at a certain time. The developer has full control over what gets committed, when it

gets committed.

A branch in a Git repository is a series of commits that are often related. In

Figure 2.1, each dot would represent a commit and a set of dots connected by the same

colored lines are a branch. Branches can be considered different paths or deviations

in the development from each other allowing for different versions of the project to be

maintained and developed. The master branch is the main branch, represented with

black, from which all branches usually stem from and is generally where projects are

developed on. On a similar note, a tag is a branch that is frozen to allow for future

reference. Tags are often uses to mark a significant point in the development history

such as a project release. Finally, when two differently branches converge into a single

dot then the two branches have been merged. A merge indicates that the differences

between the two branches are consolidated based on the developer’s discretion.

A commit consists of files that have been changed, more specifically a list of patch

files which each outline the changes made to their corresponding file. The patch file

consists of a series of differences between the previous version of the file and this new

version of the file. These patch files are key since they contain the actual changes
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Figure 2.1: Network diagrams

made to the project and thus are the major point of interest.

2.1.1.2 Version Control Management

Git has grown in popularity since it was created and is at the core of several Version

Control Management (VCM) sites such as GitHub 10, BitBucket 11 and GitLab 12.

These platforms tend to be fairly supportive of OSS projects through providing their

services free of charge. For example, GitHub provides unlimited public repositories

completely free. While projects on these sites do not have to be licensed with an open

source license they are mostly publicly visible.

GitHub is the most popular of the VCM websites and hosts numerous popular

OSS projects including the Linus Kernel13, Swift14 and React15. GitHub also provides

a public Application Programming Interface (API) to allow for data access project

repositories (discussed further below). Given the developer popularity of GitHub

and the availability of the repository data, GitHub is an ideal choice for data min-

ing repository. All publicly visible GitHub repositories are also publicly accessible

10https://github.com/
11https://bitbucket.org/
12https://gitlab.com/
13https://www.kernel.org/
14https://swift.org/
15https://facebook.github.io/react/
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through the API.

2.2 Understanding and Predicting Software Repos-

itory Change

The development and maintenance of large scale projects can take years or even

decades and involve a huge investment of time and resources. Throughout devel-

opment of a project developers will make changes to a project. When a developer

creates a change to apply to the project it can introduce new functionality or fix bugs.

A change may also contain unintentional bugs and require them to be address in the

future. Tracing and monitoring changes made by developers can insure that after

changes are made the project maintains the correct course and aligns closely with the

desired direction of the project. Change predictions are an attempt to potentially

know what changes will occur prior to the changes taking place. With the knowledge

of what changes will occur the changes can be more informed. For example if a sec-

tion of the source code is identified as likely to change the necessary resources can

be allocated such as a developer who works on that section the most can be tasked

with changing it. Similarly, knowing which changes are likely to happen can help

developers prioritize their resources according to the importance of each change.

Software development prediction contains numerous areas of study which gener-

ally attempt to improve individual projects by focusing on their development and

providing feedback and recommendations to developers. Some examples of this work

includes: fault prediction [34, 36, 41, 43], mutation score prediction [24], software

changes prediction [3, 8, 14, 21, 25, 45]. While there may be a large overlap in the

objective for these studies often they will vary in the repository data and prediction

method utilized.
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2.2.1 Change Analysis

Changes occur within a repository to achieve a specific goal or task. The task can be

high-level, such as implement a new features for the program, or lower-level, like fix

a syntactical bug. Investigations into how changes are made or used can help provide

a better understanding for making a better changes or better use of the changes.

Bieman, Andrews and Yang study the change-proneness of different entities within

a software project [5]. In order to provide a deeper understanding visualizations were

also used. Koru and Liu studied and describe change-prone classes found within open

source projects. Providing further details into characteristics of different changes

that are made to a software project throughout development. Similarly Wilkerson

attempts to classify different types of changes that occur to a project throughout

development. The classification can then be used to identify the impact that a given

change will have on other aspects of the project. Snipes, Robinson and Murphy-Hill

provide a tool that attempts to locate areas within the source code that have a large

amount of changes [42]. These areas could be classified as under development and

are likely to be very unstable given the amount of change occurring within them.

2.2.2 Software Development Prediction

Predicting faults and changes within a software repository can allow for the developers

or managers create strategies to counter act the negative impact of both faults and

changes. Intuitively, finding a fault within a repository earlier can help reduce the

cost of repair and number of bugs present in the shipped software version. With a

less bug prone software application the end users are less likely to encounter a bug

and are able to use the application as intended. The benefits of predicting change are

more related to the development process allowing for developers to devise strategies
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and effectively implement changes functioning as expected with less faults.

2.2.2.1 Fault Prediction

Fault prediction is a key area of study for software development since the goal is to

provide insight into where issues within the project’s source code are located. Iden-

tifying these areas can be very beneficial by in saving debugging time and efforts.

That saved time can be used instead on fixing those issues. Therefore accurate iden-

tification of faulty code improves both development efficiency and software product

quality. In order to predict these faults, existing approaches used one or more of

the following data sources: change metrics [34, 36, 41], code metrics [34, 43], defect

history [41], software dependencies [36].

Fault predictions using static and change metrics are studied by Moser, Pedrycz

and Succi [34]. The change metrics used outperformed the static metrics in accuracy,

and recall. Sisman and Kak alternatively look specifically at change metrics using

Information Retrieval (IR) framework to provide the predictions. The prediction

framework also uses a time sensitive factor to bias towards more recent changes for

predictions. Nagappan and Ball attempted to predict post release project failures

for commercial projects. These predictions were done using a software dependency

analysis as well as using churn metrics from the project’s development. Their method

proved to be capable in predicting these failures providing an ability to mitigate these

failures from occurring.

2.2.2.2 Change Prediction

The ability to analyze and predict changes within a project could give deep insights

into the development of a project. A large amount of research as focused on predic-

tions of changes based on changes [3, 8, 14,21,25,45].
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Ying, Murphy, Ng and Chu-Carroll present a method that predicts which parts

of the system will change given a set of changes or change propagation [45]. The

prediction is done using the project’s change history. The results of the prediction

method were mixed with some projects recording a stronger precision and recall and

others recording a far lower results. Kagdi and Maletic also leverage version history

changes to perform software change predictions. The actually analysis applied is two

fold, through the dependency analysis of the current version and the change analysis

of the version history. The data is collected through Mining Software Repositories

(MSR) which is a popular field of study. In a similar work, Hassan and Holt, worked

towards predicting change propagation of a given initial change. The main question

was to determine given a change to an entity (e.g. function or variable) will propagate

to changes in other entities. This work is very related since it tests various methods

and leverages presents the best one. Bantelay, Zanjani and Kagdi propose a method

that mines the file and method level evolutionary couplings to attempt to predict

commits and other interactions within the project [3]. Both methods were used in

isolation as well to determine whether the attributes were more helpful when used

together. Giger, Pinzger and Gall attempt to build off of previous work in change

proneness by providing predictions relating to more refined entities [14]. While typi-

cal change analysis will involve the use of syntactic changes. Giger, Pinzger and Gall

suggest that extracting and tracking semantic change could prove to be more help-

ful and accessible for developers for predicting future changes within a project [14].

Chaturvedi, Kapur, Anand and Singh attempt to predict the complexity of code

changes to a project [8]. The project’s change history is analyzed and the entropy is

calculated. The future amount of changes necessary, the complexity of code changes,

is then predicted.
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2.3 Technologies for Analyzing Open Source Soft-

ware Repositories

Various technologies are available to help with the analysis of OSS repositories. These

technologies include: data mining, visualizations, and machine learning algorithms.

Each of these technologies is leveraged in the approach and therefore the previous

work is outlined for each technology. The related work primarily focuses on works

that are related to software development within a repository environment.

2.3.1 Data Mining

Many data source exist in states that are not convenient or feasible for use without

leveraging data mining techniques to transform the data to a more accessible state.

These sources of data can vary greatly based on the interests for the individual(s)

collecting the data. Examples of data mining techniques have focused both on single

source mining and mining of multiple data sources. One application area for data

mining is on data collection from software repositories which can be either single or

multiple source [11,20,22,25,31,48].

Hemmati, Nadi, Baysal, Kononenko, Wang, Holmes and Godfrey take a com-

prehensive review at the research related to MSR [22]. Several best practices are

proposed and areas of future work are identified. Best practices are divided into 4

categories and summarized below.

The first category relates to the data mining which outlines several key points.

Firstly, any assumptions or heuristics used in the data collection process require

testing to ensure collection is valid. Secondly, the code extraction process is should be

chosen based on needs of method as well as available resources. Thirdly, text based

data can be expensive to use because of the need to pre-process the data through
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methods such as splitting, stemming, normalization and smoothing. Finally, any

analysis applied to the data requires verification to ensure the outcome is accurate.

The second category is related to use of the mined data in machine learning

algorithms. Firstly, carefully tune parameters and perform sensitivity analyses to

improve modeling. Secondly, a more complex objective will likely be less successful

than a more simpler objective. Finally a good understanding of the assumptions

made by the machine learning algorithm is important to overcoming particular issues

within the data set.

The third category outlines best practices related analysis of the data. Firstly,

applying a correlation analysis can help determine the validity of the hypotheses prior

to a full commitment. Second, use of other characteristics beyond precision and recall

may be appropriate. Finally, ensure that research results, data, tools and techniques

are shared to community to allow for stronger scientific work in the future

Hassan discusses the value of data mining from software repositories. The possible

uses of the data collected can be used towards are assisting developers or managers.

Zimmermann, Weißgerber, Diehl and Zeller collect the change history of a software

project to predict changes that should be made in relation to an initial set of changes

[48]. The recommendations their tool provides helps point the developer to make

changes that are more common within the project. As well their approach can be

used to detect which changes may be missed by a developer when making changes to

a project.

Maletic and Collard investigated source code changes during a software project’s

development cycle [31]. The changes are extracted, processed and stored to be more

easily analyzed. Canfora, Cerulo and Di Penta propose a method for extracting and

refining the changes made throughout the life a project to be used in more effective

analyses [7]. The changes made to a project are refined through linking lines of source
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code that are related.

A benchmark data set of software project development change history is provided

by Dit, Holtzhauer, Poshyvanyk and Kagdi [11]. The data set is processed to provide

change request description and tracing, where changes that are requested are able

to be traced to where they were implemented within the source code. The data set

also provides a corpus of various key aspects of the project including files, classes and

methods. The data set is targeted to be used for providing a benchmark for tools

attempting to improve software maintenance tasks.

2.3.2 Visualization

Visualization techniques are often used of changing the way the data is represented

to help with comprehension and ease of use [5, 13, 26]. Visualizations is a common

technique used in combination with data mining. It can often used to represent

data to be more accessible to appealing for use. Rather than view large amounts of

complex data a visualization can restrict the amount of information shown to prevent

the user from being overwhelmed. Alternatively, a well designed visual representation

of the data can retain underlying information and represent it in a way that is more

convenient. Visualizations are widely used throughout software engineering research

to represent software evolution [5, 9, 13, 17, 26, 38] and developer interactions [10, 15,

17,38,39].

Some of the visualizations attempt to focus on a particular aspect of a dataset.

Gall and Lanza discuss uses of project traits including the source code changes, release

information and quality metrics to provide the necessary data for powerful visualiza-

tions [13]. Similarly, Collberg, Kobourov, Nagra, Pitts and Wampler use CSV version

control systems to visualize software evolution [9]. A visualization is produced which

provides a temporal element for development data. Another approach studied visual-
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ization a change-proneness within the software project [5]. Lanza, Ducasse, Gall and

Pinzger present a high level visualization tool for object-oriented projects [30]. Ogawa

and Ma create a story view visualization for software projects with an summary of

changes for each commit [39]. The visualization can have issues with large amount of

information available.

Ogawa and Ma provide a expansive visualization which includes developer and

source code interactions [38]. Gonzalez, Theron, Telea and Garcia visualize a combi-

nation of software project metric and structural changes. Four designs are proposed

to provide unique and complementary views.

2.3.3 Machine Learning

Machine learning is a complex method for software algorithms to attempt to deter-

mine patterns within the data. One such problem example would be an algorithm

to detect certain people within an image. For an individual such a task may seem

trivial however for a software system to detect it is far more difficult. Algorithms

that can determine patterns and mimic them from abstract set of data is useful when

such patterns are extremely complex. There are numerous algorithms which apply

machine learning approaches. Each approach has both advantages or disadvantages.

Some examples of machine learning algorithms are Support Vector Machine (SVM)16,

Random Forest (RF)17 and Artificial Neural Networks (ANN)18. The three provided

examples are also commonly used for data mining [1,4,18,23,24,46]. Bhattacharyya,

Jha, Tharakunnel and Westland provide a detailed description of Random Forest

(RF) and Support Vector Machine (SVM) [4].

16http://www.support-vector-machines.org/
17http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
18https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
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2.3.3.1 Support Vector Machines

A SVM is used to predict what type of change will occur based on a set of features

provided. A feature is a data extracted from the project represented as a floating point

number. In order to be useful a feature must in some way characterize the the category

that it is assigned to. The feature must also not rely on the category that it belongs to

in order to be calculated. For example, given a category of the method change within

the next 5 commits or not, then the features must not rely on knowledge of future

changes to the project. If the features fail to effectively characterize the category they

are assigned to then the SVM may have poor predictions. It is also necessary for the

features to independent of each other to not negatively affect the categorization.

SVM requires all feature data be encoded as floating point numbers. For any

numerical data the conversion to floating point is trivial. However, for more complex

data the conversion is a little more difficult. Categorical data can be mapped into

a unique vector entry per category. For example, if a feature can be 1 of 3 options:

0, 1 or 2 then it can be converted into three entries in the feature vector. Encoding

the value 2 the sub-vector of the feature set would be {0, 0, 1} where 1 indicates a

field that feature is present in the data for this vector, and 0 indicates the feature is

not present. Data that is in the form of a string can be converted to a floating point

number by assigning a unique number for each string (similar to hashing). The one

downside to this method is that the numbers corresponding to each string maintain

no numerical properties. In essence the data becomes categorical, such that if bob

is mapped to 1 and sally is mapped to 2 there is no relationship between 1 and

2. Ideally, this data would then be further converted using the previously described

method however if the set of possible strings is large then it may be unreasonable to

convert it. For example, if there are 100 possible strings then that would add 100

new entries to a single vector.
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The categorization is used for the prediction, where each value of the category

relates to a unique prediction type. For example, a simple binary categorization

could simply 1 or 0 where 1 predicts the event will occur and 0 predicts that the

event will not occur. In essence an SVM is tasked with separating a dataset into

two different categories given a sample set of data that has already been categorized

into two subsets. Given the categorization of the sample dataset the SVM model

is trained to allow for categorization of new data. The categorization of any new

vectors (that were not used for training) is called a prediction and is made by the

SVM model created through the training. More specifically, the sample dataset is a

dataset extracted from the target dataset. The sample dataset is then categorized

based on the predetermined criteria (the prediction goal). This dataset along with

the categorization for each vector in the dataset is the training dataset, and is then

used to train the SVM model. Once the model has been trained, the SVM model

is ready to be used for making classification predictions. The data for each feature

can be extracted from the new dataset, allowing for the model to classify each new

vector. Given that the SVM model is accurate and reliable the results can then be

used towards making predictions about the dataset. For example if the classification

is that of predicting change to occur within the next six commits the developer may

wish to be careful with the use of the method or assess the method’s quality and

determine if any issues within the method need to be addressed.

A lower prediction score often relates to the data from the feature set poorly

characterizing the categories. Similarly a warning will be given if the dataset is in-

separate. In this case, the dataset for each category may be too similar and cannot be

properly split into the two category subsets. In both cases a change to the feature set

may help, whether that is a decrease or increase of features in the set. Some features

are detrimental to the model, especially two features related to one another.
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More details about the specific features used will be given a little later on. Fea-

tures are descriptive aspects of the dataset that are classified into the predetermined

categories. Since these features relate directly to the category understanding of the

classification critical and can help determine which features should be used. For ex-

ample for a classification of whether a change will occur within the next few commits,

a useful feature may be the frequency by which a method changes within the project.

Picking a descriptive feature set is paramount to providing a strong prediction of

future data.

SVM has been widely used for making predictions for various aspects including

predicting battery charge state [2], pharmaceutical data [6], software faults [12, 16,

29, 32, 33, 37], bug localization [35, 37], software mutation testing score [24], financial

stocks [28], credit score [23], credit card fraud [4], solar power output [47].

Malhotra reviews numerous machine learning techniques, including SVM and RF,

used by various studies [32]. The results of which outline where each approaches

succeed and falls short. When using a machine learning algorithm it is imperative to

use a suitable algorithm for current situation. Kim, Whitehead and Zhang outline a

approach that uses a SVM to predict changes that will occur within the project [29].

By identifying these changes the a project developer can potentially locate a bug

within a change and fix it prior to being reported. Erturk and Sezer compare the

performance of their proposed method, an Adaptive Neuro Fuzzy Inference System,

to that of an SVM for predicting software faults [12]. The models are trained using

project metrics as well as the project’s historical fault data. Zeng and Qiao use a SVM

to provide short-term predict solar power output [47]. The SVM model outperformed

both an autoregressive and a neural network model. Antón, Nieto, Viejo and Vilán

propose a method for predicting the state of charge of a battery using SVM model [2].

Neuhaus, Zimmermann, Holler and Zeller mine vulnerability databases and version
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archives to determine components within the software that were vulnerable [37]. A

SVM was then used to predict other component that were also vulnerable. Several

feature selection techniques have been assessed by Shivaji, Whitehead, Akella and

Kim for bug prediction methods [40]. Features which are less useful to the prediction

are removed to reduce the set to only the essential features. Kim investigates the

possible use of SVM as a prediction model for financial forecasting. The model

was used to predict whether the stock price would go up or down for the next day.

Bhattacharyya, Jha, Tharakunnel and Westland uses RF, SVM, logistic regression to

detect credit card fraud [4]. Both RF and SVM are able to predict a large number of

fraudulent credit card transactions.

2.3.3.2 Random Forests

RF are a popular machine learning algorithm and is used in numerous areas including

predictions for software fault [19,32,33], software development effort [33], credit card

fraud [4], database indexing [46], malware detection [1].

Malhotra provides an extensive review of studies involving machine learning to

predict software faults [32]. The results showed that RF tended to preform better

than other machine learning algorithms studied. Moeyersoms, Fortuny, Dejaeger,

Baesens and Martens made use of RF and SVM as well as a few other data mining

approaches to predict software faults and effort estimation [33]. The data mining

techniques are used as part of another model, ALPA rule extraction, to improve the

predictions and increase traceability. Guo, Ma, Cukic and Singh attempt use RF

to predict the fault proneness of modules within a project [19]. The RF prediction

results for the five sample projects prove more accurate to that of a logistic regression.

Yu, Yaun and Liu attempt to use RF to determine a more effective database indexing

for video data [46]. The database index are used to provide faster searching of the
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database for action detection.

RFs are commonly used to make predictions on data that has been mined from

some source [1], [18], [46]. A RF leverages numerous decision trees to provide at-

tempt to improve prediction capabilities. Therefore to fully understand a RF first

an understanding of decision trees is necessary. A decision tree is a technique which

will create a tree based on a data set that has been classified. Once the decision tree

model is created it can be used to predict or categorize data that has not yet to be

classified. In the tree model the leafs will be categorizations where as the connections

between inner nodes are the decisions by which the categorizations are made.

One issue with decisions trees and more generally machine learning techniques in

general is imbalanced data sets for training the model [27]. The data set used rarely

provided even sample sizes of each set therefore without taking necessary pro-cautions

the algorithm will bias the results. In the worse case the model will classify any input

data as the larger data classification.

In case of imbalanced datasets there are several methods to help provide stronger

predictions [27]. The most obvious and easiest to attempt would be to sample more

data. However if the dataset in general follows this trend then some more advanced

techniques can used to improve the model.

The first method would be to undersample larger category this will even out both

of the categories. This will remove some of the input values within the dataset to

reduce the set size. However if there are very few samples of the smaller category

the performance will suffer as well. A second method of oversampling is useful in

the case were the data samples are small. The input data from the smaller category

is selected to be duplicated in the set to increase the size of the set. This helpful

since it will increase the size of the dataset but could lead to bias based on the data

selected from the smaller dataset. The selection method for which input vectors to
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over or under sample can be based off on the data’s statistical distribution or made

by random choice. Another advantage of these over and under sampling is that they

can also be used together to in the case of a large disparity between the category’s

set size.

Another feature of RF which helps provide more reliable predictions is Bootstrap

Aggregation [4]. Similar to normal sampling methods it will start with the initial

dataset. However, rather than using the dataset as is the dataset will be uniformly

sampled n times and repeated m times to create m datasets of n values. These newly

created datasets will then be used to train m models. Finally, when attempting

to categorize a new input data it will be given to every model and the prediction

result will be aggregated to provide a more accurate results. For some other machine

learning methods, such as SVM, this method will improve the results and help with

imbalanced datasets.

A RF is a collection of decisions trees trained on random samples of the initial

dataset. So the RF will take an input dataset and then train m decisions trees

using m randomly sampled sub-datasets of the initial dataset. This helps improve

the model created and makes RFs far easier to use. As well RFs have a feature

that determines the importance of each feature is assessed during the training of

the model [4]. The importance outlines the quality of each feature in providing the

prediction [44]. Therefore in order to properly understand the feature importance the

accuracy, precision and recall of the model should be determined by running a test

dataset to determine the quality of the model.
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Chapter 3

Visualizating Commit Data

The proposed research focuses on predicting changes within a software project. This

is accomplished through mining of software data, analysis of collected data, candidate

feature analysis. After the raw data has been collected a further analysis is used to

extract key features. As part of this analysis, custom visualizations are used to help

to provide insights into the data set.

3.1 Data Mining

Before we can predict changes within a repository (see Chapter 4), we must first

collect data. The data collection is targeted towards Open Source Software (OSS)

projects that are predominately written in Java1 and hosted on GitHub. Some of the

these repositories, especially larger ones may be multilingual and include other pro-

gramming languages for purposes such as a database schema outline. The purposed

data collection approach is not language specific, however in order to simplify the

implementation, the approach was restricted to only collect Java repositories. Gener-

alizing our implementation for other languages may require a redesign especially with

1A project would be predominately written in Java if it has over 75% of the source code in Java.
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respect to collecting the prediction model features. The data collection process sim-

ply data mines the complete development history of the project through the commits

stored in GitHub. The commit data includes:

1. Developers related.

2. Source files.

3. Changes made in the commit.

4. Project release information in the form of tags.

The raw data is kept unprocessed and stored directly in a relational database

(MySQL) that allows the data to be used and manipulated without requiring further

access to GitHub. The collection process can be lengthy and depends largely on the

size of the repository. For example, smaller repositories such as acra or tempto can

take a matter of minutes to collect. However, repositories that are far larger like

deeplearning and storm can take several hours to complete. In the case of an incom-

plete or interrupted collection, the process can be resumed to collect the remaining

data at a later time. Similarly, a repository that was previously collected can be

mined a second time to collect any new commits made since the previous collection.

These maintenance collections will often be much smaller and require less time.

Our collection method for mining data from GitHub repositories utilized GitHub’s

web Application Programming Interface (API)2. The GitHub web API allows auto-

matic access to the complete data set of publicly available repositories. The collection

process requires both the developer and repository names in order to work. To ac-

tually collect the data from GitHub a Ruby script, built around a Ruby library,

github api3, was used as a convenient wrapper for GitHub’s web API. The script sys-

2https://developer.github.com/v3/
3https://github.com/piotrmurach/github
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tematically collects all of the desired data related from a given developer’s GitHub

repository.

Some unnecessary aspects of a GitHub repository’s dataset are not collected but

could be with a minor extension to the collection script. Aspects not collected include:

1. The issues data outlines the problems reported in the project by users or de-

velopers of that project. GitHub allows for issues to be optional and thus some

projects do not offer issue reporting through GitHub.

2. Branches are also directly related to the repository and they are essentially dif-

ferent workspaces for the developers. They allow for development of different

versions (such as a development version compared to a stable version). For sim-

plicities sake, the approach assumes that the main branch (the master branch) is

the development branch and the target of the analysis. Therefore the branches

are ignored at least for the scope of this work and could be included in future

work. Of course other branches could be analyzed however the perspective of

the other branches typically originates from the master branch.

3. Forks are more peripheral than branches but follow a similar scheme. A repos-

itory fork can be created another develop who does not own the current repos-

itory. The fork in essence is a branch that is owned and controlled by the

developer who created the fork. A fork is therefore outside of the scope for this

approach since it outside both the main repository workspace.

4. Pull requests are created by developers to request the owner or collaborators

accept changes to the project. This mechanism facilitates developers who are

not affiliated with the repository owners to change the project. The owner

can accept, reject or request further changes of the pull request to manage the

developer’s contribution.
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A similar subset of data not collected or used for this approach is any forks of

the repository. In GitHub a fork is an externally created branch of the project. The

major differences between a fork and a branch are that a fork is owned by another

developer and a fork is in fact a project onto itself. This allows for a developer who are

not contributors to make a copy of the project and work on it without affecting the

original. Forks typically denote a deviation from the original project that is unlikely

to be reconciled. Finally, pull requests facilitate external developers making small

changes which tend to be fixes to problems found or desired feature implementation.

The owner of the original repository can then decide to integrate the changes made

the original repository.

3.2 Storage

As mentioned above the raw commit data is stored in a MySQL relational database

which leverages the Structured Query Language (SQL). There are three databases

used for the collection and the analysis of commit data. The first stores the raw mined

data, whereas the second stores the analyzed data in a more convenient layout to be

used later. Finally, the third database stores the same data as the second however

uses a different relational database implementation because of some limitations within

MySQL. This third database uses PostgreSQL, which has a more advanced set of

features than MySQL and is simply a clone of the data stored in the second database.

The specific limitations that were encountered will be discussed more fully later in

this section.

The first database, github data, stores the semi-raw data collected from GitHub’s

API. This database contains 8 tables which store various aspects about the projects

considered potentially important for the analysis later on. The tables of primary
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Figure 3.1: GitHub Data Schema

concern are repositories, commits, users, files and tags tables. The complete schema

is outlined in Figure 3.1. Other aspects are available from the API and if needed

the database could be extended to store more elements as necessary. In some cases,

data from the API is not available for one reason or another (usually inaccessible
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files or such) these are simply removed or a note is made of them depending on their

importance. For example, non Java source files that are missing are not essential and if

inaccessible are ignored. If a Java file is inaccessible, a note is made as this is a greater

concern. These files can be retrieved if enough information is available (previous

version and corresponding patch file). In the case that insufficient information is

available, the analysis can still be applied but will likely adversely effect the result.

After storing the data in the github data database, the analysis process is done.

The parsing script is run next and discussed further in the Section 3.3. The results

are then stored in the project stats database that is very similar in layout to the

first database except some extra tables have been added and a few data items have

been removed. Mostly the storage expansions are designed to hold change informa-

tion calculated from the analysis of the data. The complete schema is outlined in

Figure 3.2.

The third and final database uses PostgreSQL because of limitations within the

MySQL implementation. The calculation of the candidate features, discussed in fur-

ther detail in Section 5.1, required a more versatile partitioning function and the

ability to perform multiple inner queries. The first of which is more difficult to

implement and the second is not available at all MySQL. Therefore the data was

transferred over to PostgreSQL, using simple program called pgloader 4. Only one

difficulty was encountered during the transferring process. One of the tables in the

MySQL database was called user, however in PostgreSQL, this is a reserved table

name and therefore the table cannot be interacted with properly. The work around

was to simply rename the table in MySQL prior to transferring to avoid any issues

with the database. After transferring the data over to PostgreSQL, the data change

predictions are ready to be preformed.

4http://pgloader.io/
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Figure 3.2: Project Stats Schema

3.3 Processing

The raw commit data collected from GitHub is stored and undergoes an analysis to

extract more refined details. The process first requires the changes from a commit,

the patches, to be merged into their corresponding full file. A patch is simply a stub

file which summarizes the changes that occurred within a source file. Once the patch

is merged with the raw source file, a full file is formed that contains every change as

well as the source code that did not change. Within a patch file and a full source

file, three different types of changes are present; additions, deletions and no change.

These are represented as a plus sign, minus sign and space respective. An example
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is outlined of each of these changes in Figures 3.3, 3.4, 3.5, 3.6. The coloring used

within these images is purely for visual effect and not present in raw patch files.

Figure 3.3: Newly added method

The process of reconstructing a full file using a patch file requires modifying the

original source file. Since the source file used is the product of the patch file, the patch

must be applied in reverse. Therefore lines with a plus sign, additions, are assumed

to be within the file and lines with minus signs, deletions, are assumed to not be

present within the file. The lines previous removed from the source file are added

back to their original location with a minus sign to preserve the original meaning of

the line. The lines that were added to the source file are perpended with a plus sign

to identify that the line is an addition.

This full source file is then analyzed to extract each method to identify the type
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Figure 3.4: Removed method

of change as well as other method metrics. The type of change that occurred to

a method is identified as one of four possible changes. First, a method may be

completely new and is thus classified as a new method shown in Figure 3.3. The

second method closely, related to the first would be an entirely removed method that

is classified as a deleted method shown in Figure 3.4. The third classification that is

more difficult method to identify is a modified method. Simply a modified method

is one that contains at least two of following three change types; added, removed or

unchanged lines. An example of a method that contains all three change types is

shown in Figure 3.5. In the event that a method consists entirely of additions and

deletions then the method is classified as both a new method and deleted method.

A deleted and added classification is used over a modified classification because if
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Figure 3.5: Mixed changed method

all lines are deleted and re-added then the method is change far more drastic than a

simple modification. The final change type is that of no change, where the method

does not contain any changes and is shown in Figure 3.6.

For each commit, this information is stored to allow for easier access and save time

since the analysis of larger datasets can be time intensive. In order to maintain the

integrity of the initial dataset, this information is stored in a new database. There

are several other features available in the data set from the extraction process beyond

the ones outlined here in detail. A few of those features include: the commit author,

the commit message and the method length per commit. This data is stored in the
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Figure 3.6: Unchanged method

database to help create the prediction model later on.

3.4 Visualization

3.4.1 Line Change

The key features are extracted from the data set after performing the collection

and analysis. Visualizations were used in order to to better understand resulting

data. The first visualization in Figure 3.7 simply showed the changes recorded on a

per line basis. These changes were divided into several closely related subcategories

of additions, deletions and modifications. Additions identify changes that are new

and do not have a corresponding set of deleted code. Similarly, deletions refer to
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changes that remove lines of code without a corre sponding set of additions. Finally

modifications are a set of changes which contain a set of additions and deletions that

are related.

The relationship between two sets of additions and deletions is determined through

the Levenshtein Distance (LD) formula5 shown in Equation 3.1. The LD calculation

will determine the edit distance between two strings, where edit distance is defined

as the number of characters difference between two different strings. For example,

the LD for happy and mapper would be 3, since h would be changed to m, y to e and

r would be added at the end. Normalization is used to allow for more general use

of LD for comparing strings of different length. To calculate Normalized Levenshtein

Distance (NLD) the LD would be divided by the larger of the two strings sizes shown

in Equation 3.1.

NLD(ai, dj) =
LD(ai, dj)

max(|ai|, |dj|)
(3.1)

Line modifications are assumed to only take place in a series of line changes

that involved both additions and deletions shown in Figure 3.5. In this example,

3 line modifications take place each containing 1 addition and 1 deletion. A line

modification can also have an |a| to |d| relationship. That is to say more generally,

|a| lines of addition may relate to |d| lines of deletion where both |a|, |d| > 0. In order

to determine whether two lines are closely related enough, a threshold ∆m is defined.

As outlined in Equation 3.2, when the NLD is below the threshold ∆m then the two

lines are related.

m(ai, dj) = NLD(ai, dj) < ∆m (3.2)

5http://www.levenshtein.net/

39

http://www.levenshtein.net/


Normalizing the LD calculation accounts for the differences in line sizes when be-

ing compared. With shorter lines, the change of a variable name could change a large

portion. Therefore with smaller lines likely modifications result in a dramatically

higher distance between lines. Likewise, longer lines can contain more text modifica-

tions and still result in a low score because of the length of the line. This resulted

in the creation of the a threshold α to separate small and large line changes. The

Equation 3.2 is updated accordingly shown in Equation 3.3.

m(ai, dj) =

NLD(ai, dj) < ∆s if max(|ai|, |dj|) < α

NLD(ai, dj) < ∆l otherwise
(3.3)

Only lines that are part of the same block of additions and deletions are selected

for the similarity check to determine whether they can be classified as a modification.

As noted before, line modifications will consist of one to many addition lines mapped

to one to many lines of deletion. Therefore a modification is more easily referred to

as a modification set. For addition lines that do not meet the threshold of similarity

with all deletion line in the change block are classified as additions. Similarly, deletion

lines that fail to meet the similarity threshold for all addition lines will be classified

as deletions. A block of changes will therefore contain a set of added and deleted

lines, some of which may be related.

While creating the parsing method, both code and comments were considered

separate entities. However each was analyzed with the same method. Therefore for

the visualization below, the changes are separated into source code and comments.

The comments were never used towards the prediction method presented later on in

Chapter 4 and will therefore not be covered as deeply. The comments however are

available for use and could be used to extend the approach.

The visualizations are interactive providing a more rich experience when used. The
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visualizations are available online with some example repositories6. The interactions

include:

1. Supplemental information on hover over.

2. Adjustable data range through either set windows or manually adjusted win-

dows.

3. Customizable legend that allows for data sets to be set to hidden or shown.

A snap shot is presented to outline and summarize their overall capabilities. The line

change data is visualized in Figure 3.7. The number of changes lines of source code

added, deleted and modifications are all shown aggregated per month. A per commit

view is available but is very cluttered because of the excess of data with in a project.

The bottom half of the visualization shows the sum of changes up till the given point.

Tags for the project are shown at the bottom of the graph to provide some context

of the release cycle. Tags often mark points of significance within the project and

therefore can be thought as road signs. The visualization also provides some options

to refine or generalize the view. For all of the views, the user is allowed to select the

project, package path, and the committers as desired. Specifically for the line level

graph, a further option is provided to condense the data based on a monthly, weekly

and commit summary. The commit message and a link to the commit on GitHub

are provided when viewing either the commit view, method level or statement level.

This information allows for a direct link to the project and can be a handy tool for

referring back to the software repository.

6http://sqrlab.ca/gitview/
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3.4.2 Method Change

The visualization of line changes was very noisy and proved difficult to use. Instead

of viewing every line of change separately, the changes are grouped together based

on the method from which they originate from. Similar classifications are used for

method changes however their definitions vary slightly and are outlined in more detail

in Section 3.3. There are three types of method level changes that can occur:

1. a method is classified as newly added when that method had not existed in the

previous version, consisting only of additions.

2. a deleted method implies that the method is completely removed from the

current version, consisting only of deletions.

3. a method is classified as modified if it contains two or more types of changes,

either additions, deletions or no change.

The method level change visualization, shown in Figure 3.8, presents the amount of

method changes that occurs in the project development over time for acra. The low

level changes details are ignored in this view, instead the focus is placed on that of the

three types of changes. The visualization for the method level uses a bar graph since

it provided a more clear picture of the relationship between commits. Compared to

the first visualization which implied that a relationship between different commits of

the same type of changes. The contrast in granularity between each type of change

and each commit is also more clear and defines the visualization. The amount of

change occurring over time is clearly visible and the amount of data available is not

as overwhelming as the line change visualization.
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Figure 3.9: Method Statement Categories

3.4.3 Method Statement Change

The method statement level visualization is a more granular view of the method level

view. By building on top of the method level view, the method statement level view

provides more details similar to that of the line level view. The classifications are

kept from the method level view for changes but are broken down into line changes

made to comments and code. Therefore both methods consist of two parts, the

comments and the code that are added, deleted and modified based on the previous

classification and are divided into new categories. Added and deleted methods are

divided into two new categories each; added code, added comment, deleted code and

deleted comment respectively. The list of classifications are outlined in Figure 3.9,

where the second tier is the new classifications of statement changes. In Figure 3.10,

the added and removed method data is shown. The modifications are disabled in the

example visualization to simplify the view.

In Figure 3.11 the modifications for method statement changes are shown for acra.

Modifications are divided into four categories instead of two. The first two categories

relate to modification of comments, and the second two relate to modifications of code.

The comments changes are classified as either modified added or deleted comments.

Likewise for source code modifications, the classification is either modified added or

deleted code. Each line classified under modification is based on the change type of
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the method. Therefore if a line of source code is part of a method that is modified then

it will fall into one of the four modification classifications. For example in Figure 3.5,

there would be 5 lines classified as a modified deleted code, 5 lines of modified added

code and 0 lines of modified added or deleted comments.
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3.4.4 Repository Summary Statistics

For all of the visualizations a summary view was provided which outlines key statistics

for the project. In Figure 3.12 the project stats are outlined for acra.

• The ratio of comments to code for the history of the project is shown in a pie

chart.

• Several table entries outline several top performers metrics are outlined with

the top five for each category. The value is shown with the developer’s name in

square brackets.

1. top contributers for adding source code

2. top contributers for deleting source code

3. top contributers for modifying source code

4. top contributers for adding comments

5. top contributers for deleting comments

6. top contributers for modifying comments

7. top overall contributers (
∑
code+ −

∑
code− +

∑
doc+ −

∑
doc−)

8. top overall committers

• Customizable legend that allows for data sets to be set to hidden or shown.
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Figure 3.12: Project Summary Statistics for acra



3.4.5 Method Change Type

In order to provide a more in depth view of the changes that are applied to a repository

was created. Unlike the previous three visualizations that showed count of each type

of change changes that occurred per commit, this view presents the type of changes

that occurred is per method per commit. Method level changes are the primary aspect

feature shown similar to the Method Change View in Figure 3.8.

The method change type defines what type of change that occurred for that

method, whether newly added, removed or modified. Each of these are defined in

Section 3.4.2. The method change type view is shown for acra in Figure 3.13. The

view has a table structure where each line is a new row. The graph is divided into two

columns with the vertical dashed line dividing these two columns. The first column,

the series of numbers is the method unique identifier. The second column is the list

of changes the method received per commit. In the example a snapshot of the view

was taken and for spacing reasons full length of the second column was cut out. The

list present in the second column is very long because it will contain one character

per commit. Therefore in the case of acra which has 404 commits, the full column

length would be 404.

As noted one character is assigned per commit to identify what type of change

was made on that method. The character mappings are as follows:

• empty space denotes that the given method not existing in the corresponding

commit. This may mean the method has not been created yet or was removed

from the repository in the current or a previous commit.

• + A plus sign denotes that the given method was created in the corresponding

commit.

• = A equal sign denotes that the given method was unchanged in the corre-
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sponding commit.

• - A minus sign denotes that the given method was not involved but still exists

in the repository for the given commit.

• # A hash sign denotes that the given method was modified in the corresponding

commit.

An example of the data presented in Figure 3.13 would be the row with amethod id

of 9. The changes made to this method starts in the first commit where the method

is added. In the second commit the method was then changed. The following com-

mit the method was not within the commit but still existing within the repository.

Finally later on the method experienced either no change in the commit or was not

present in the commit until the 104th commit which contained the methods deletion.

The view is quite detailed and allows for the comparison of the different changes

made to a repository over the course of development. The list presented was sorted

based on the first commit the method was added to. Therefore methods that were

added at the same time will be closer together and available for more direct compar-

ison.

This view is less sophisticated compared to the previous ones the amount of data

available and the potential for use. Currently, the view is presented in a textual form

with only one sorting method. More work could be done to include a interactive user

interface as well as sorting, group and filter features to help improve accessibility of

the data.
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Figure 3.13: Method Change Type for acra



3.5 Visualization Summary

The approach requires repository data to create the prediction model for future

changes. The data is extracted from GitHub and stored in a local database. Af-

ter the collection is complete the data is processed to extract key features and again

stored in a local database. This data was explored through several visualizations that

all focus on different aspects. The creation and use of these visualizations helped in

the definition and selection of the candidate feature (in Table 4.2) used to train the

prediction model.
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Chapter 4

Prediction with Commit Data

The visualizations, presented in Chapter 3, for the repository data collected provides

several insights which can be used to help with the creation of a prediction scheme.

With the data visualized, a more general look of the data collected is available. While

creating the method for predicting change within the repository, the visualizations

provide a helpful resource. The visualization can also help identify relationships be-

tween variables and general trends. The actual data used for training the prediction

model is outlined in Section 4.1. After that the prediction model is detailed in Sec-

tion 4.2.

The data presented in the visualization is used towards creating an approach to

predict whether a method will change within the next five commits. The

machine learning algorithms used in the approach are Support Vector Machine (SVM)

and Random Forest (RF). We also assess the performance of two prediction methods,

SVM and RF with respect to: the size of the sample, the features used for training

and balancing of the data set.
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4.1 Prediction Data

The data used to predict changes within a repository is the same data used in the

visualizations. For more information about the specific information collected see:

Sections 3.1 – 3.3. The commit data collected from the target Open Source Software

(OSS) repository is used to make predictions. The goal is to predict whether a method

within a repository will change in the short term (within the next five commits). By

predicting short term changes developers can focus on impending changes rather

than changes that may happen in the more distant future. As outlined in Section 3.3,

the different types of changes can be either additions, deletions, modifications or no

change at all.

4.1.1 Data Training Range

The machine learning model requires data set samples to train from which allows

for predictions of new elements. The training samples taken need to be categorized

manually and then provided to the machine learning algorithm. This allows for

machine learning algorithm to train based on the manual classifications to make

future categorizations based on new input data. Since the categorization is whether a

method will change, all methods sampled need to be able to collect data the next five

commits following the current commit. This requirement provides some restrictions

on which values can be included in the sampling. Therefore method changes that are

within the last five commits of the training sample window are not included in the

training set for the data model, they are instead used to automatically categorize the

training data.

As noted above, one of the key factors in the performance of the prediction ap-

proach is the size of the sample set. The sample set size is restricted by a variable
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Project 1 2 5 10
acra 0.43 0.57 0.73 0.73
arquillian-core 0.06 0.1 0.16 0.16
blockly-android 0.4 0.48 0.6 0.6
brave 0.32 0.38 0.47 0.47
cardslib 0.17 0.26 0.39 0.39
dagger 0.51 0.58 0.68 0.68
deeplearning4j 0.29 0.41 0.56 0.56
fresco 0.04 0.07 0.14 0.14
governator 0.34 0.47 0.61 0.61
greenDAO 0.23 0.33 0.45 0.45
http-request 0.73 0.83 0.93 0.93
ion 0.34 0.46 0.67 0.67
jadx 0.15 0.21 0.37 0.37
mapstruct 0.17 0.26 0.38 0.38
nettosphere 0.31 0.44 0.65 0.65
parceler 0.3 0.39 0.53 0.53
retrolambda 0.35 0.46 0.62 0.62
ShowcaseView 0.6 0.74 0.86 0.86
smile 0.13 0.15 0.26 0.26
spark 0.26 0.36 0.53 0.53
storm 0.12 0.22 0.39 0.39
tempto 0.12 0.2 0.35 0.35
yardstick 0.23 0.39 0.62 0.62

Table 4.1: Likelihood of a Method changing in N commits
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Figure 4.1: Training Sampling Layout

value Sample Window Range (SWR) which controls the number of commits consid-

ered to sample from. The data will only be sampled within a limited range of commits

as outlined in Figure 4.1. In this case, the SWR is 30 commits and the prediction

gap is 5 commits. This 5 commits gap was used for the remainder of our experiments

for two reasons:

1. It balanced the sample categories and improves the ability to train the prediction

model.

2. It was consistent with our goal of predicting changes that would occur ”in the

near future.

A larger value l would increase the number of samples likely to change within l

commits. Conversely a smaller value, s, would decrease the number of samples likely

to change within the next s commits. This is illustrated in Table 4.1. Picking a

gap value below 5 would prove difficult to train the model as the number of samples

would be drastically unbalanced and require either undersampling or oversampling.

Alternatively, picking a gap value above 5 had little impact on the number of samples

that contained changes.

58



4.1.2 Data Distribution

Another consideration when sampling the data is the distribution of the categories.

Most of the time, our data set will contain more samples in one category than the

other. For example, a sample may contain 80% methods with no change and 20%

methods with change in the next five commits. Ideally for training the number of

methods with and without changes in the next five commits would be 50%. A bias

training data set can adversely affect the model by biasing the predictions towards

the over represented category. This is more apparent when the data set category

distribution changes drastically between the training set and the testing set. As

with our data, this can cause the model to be bias towards one data category and

lead to low performance. However in cases where the data is highly skewed to one

classification over the other, the model will often predict the larger classification. This

can be addressed by using one of the two techniques:

1. Oversampling which will re-samples from the smaller classification to reduce

the size difference with the larger classification. Oversampling increases the

number of samples by calculating the number of samples in each category and

expanding the smaller category by re-sampling values from the data set until

both categories are equal in size. Both approaches can be used together so that

the smaller category is expanded to at most twice its original size. If the initially

smaller category is still smaller, the larger category set will be reduced to the

size of the smaller category. When selecting values for re-sampling or removal,

a randomized selection process is used to ensure the distribution of the data is

preserved.

2. Undersampling which will remove samples from the larger classification to re-

duce the difference in size with the smaller classification. Undersampling is
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applied to a data set by measuring the number of samples in each category.

The larger of the two is reduced by discarding samples at random until the

data set is the same size as the smaller data set. This will reduce the number of

samples used to train the model and may reduce the performance of the model

based on the decreased number of samples. In cases where there are a limited

number of samples for the smaller category, undersampling may not be ideal.

For example, if category a, with |a| = 100 and category b with |b| = 1000. Over-

sampling will be applied to category a since |a| < |b|. Therefore a will apply random

re-sampled until |an| = |a| × 2 or |an| = |b|. Once one of the conditions is met,

oversampling is complete. Next undersampling is applied to the larger category b,

where samples are randomly removed from b until |bn| = |an|.

Once the categories are balanced then the model is trained on the data. However

with large sample sizes, a reduction of the sample set may be necessary. The variable

sampler is the percentage of samples taken from the range. Instead of picking an

arbitrary number of samples, we used a ratio to scale based on the number of available

samples. When sampling, if the ratio is at 50% then only half of the values retrieved

will be used to train or test. For some of the larger data sets sampling 100% of the

data from the range would take a lot longer. Therefore sampling a percentage of

the data set is commonly used to decrease the training time. In order to provide a

more stable model, a random sample of the range is used so that each data entry

in the sample has the same chance to be within the training or test data set. With

a random selection, each entry in the training sampling space is just as likely to be

picked to be included. Therefore at least some useful data entries will be picked.

This is ideal compared to a more expensive selection process to attempt to identify

useful data entries for selection. Using the example from above, a and b have been

oversampled and undersampled such that their new sizes are represented by |an| and
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|bn| respectively. Given that a sample ratio of 50% is used then both sets a and b

would be reduced by the ratio by randomly sampling from each set to create new

sets. The size of each set would be |an| × r where r is the ratio value.

The Table 4.2 outlines each of the considered features used for training the pre-

diction model on. An example of each feature is also provided. As stated in the

Section 2.3.3.1, the values need to be processed into a usable format for SVM or RF.

First the data is extracted from the database as raw values as shown in the Data

column. Text values are mapped to a integer value. For example the Name value,

“Main.java” will be mapped to the value 3. The reason the value is 3 is because 2

other methods have already been mapped and therefore method name is mapped to

the next available mapping. Similarly both Com and Sig will be mapped from their

respective values “void getValue()” and “bob” to 46 and 5. Numerical values are

converted by casting the value to a floating point value if the value is not that type

already. For spacing reasons, all the values in the table that have no decimal value

are shown without a “.0” following.

Several experiments were conducted to investigate the benefit of each of the can-

didate features. The 17 candidate features were narrowed down from this initial list

into a smaller set of 7 training features. These feature sets were constructed to deter-

mine potential ideal feature sets. The complete list of feature sets used are shown in

Table 4.3. This list is not listed by execution order but rather the first five are kept

consistent with the numbering used in Chapter 5. Some of the feature sets are not

full explained in the table for spacing reasons. Feature sets 16, 17, 18 and 27 all use

the last five previous changes or durations. Each are marked similarly to those that

only use the most recent previous change or duration except for a footnote marker.

Likewise feature set 29 is also different since the previous change used is only the

change made five commits ago.
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Feature Description Data Example
Vector

Com The individual who committed the
change

bob 5

Sig The method signature related to the
change details

void getValue() 46

Name The name of the file Main.java 3
∆i Whether the method changed or not in

the current commit
3 1

m+ Whether the is newly added 3 0
m− Whether the method was deleted 3 0
mc Whether the is a modification 3 1
mx Whether the received no change 3 0
∆i−j Whether the method changed in a pre-

vious commit
0 0

type∆i−j
Type of method changed in a previous
commit

2 2

f∆ The frequency that the method is
changed within the SWR

0.0464 0.0464

sf∆ The frequency that the method is
changed within the last 10 commits.

0.1 0.1

t∆ The time between the current commit
ci and the previous commit ci−1

2148 2148

t∆i−j
The time difference between a sequence
of two previous commits

453 453

Length The length of the method in this commit 10 10
changet−1 Whether a change has occurred in the

previous 5 commits
{3, 0, 0, 3, 0} 1

changet Identifies whether a change occurred
within the next 5 commits for the given
method

0 0

Table 4.2: Candidate features for SVM model
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Each of these feature sets are tested on the repository acra and the results are

shown in Figure 4.2. Clearly feature sets 1, 2, 4 and 5 all perform better overall with

high performance for the three measures:

• Precision

• Recall

• Accuracy

Feature set 3 did not perform as well as the other selected feature sets but did have

a high recall value. The goal was to select a feature set that did not perform as well

for acra but still had fairly high performance to potentially perform better for other

projects. For a number of cases the feature set performed well for one or two of the

three performance measure but performed poorly in the rest. Therefore the first five
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Feature Com Sig Name ∆i m+ m− mc mx ∆i−j type∆i−j
f∆ sf∆ t∆ t∆i−j

Length changet−1

Sets
1 • • • • • • •
2 • • • • • • •
3 • • • • • •
4 • • • • •
5 • • • • •
6 • • • • • •
7 • • • • • •
8 • • • • • •
9 • • • • • •
10 • • • • • •
11 • • • • • • •
12 • • • • • • •
13 • • • • • •
14 • • • • • •
15∗ • • • • • •
16† • • • • • •
17‡ • • • • • •
18∗‡ • • • • • • •
19 • • • • • • • •
20 • • • • • • •
21 • • • • • • •
22 • • • •
23 • • •
24 • • • •
25 • • • •
26 • • • • •
27† • • • • •
28 • • • • •
29§ • • • • •

Table 4.3: Training Features



Figure 4.2: Feature Sets Analysis using RF

were selected for experimentation of the effect of feature sets on various projects using

SVM and RF.

Another small change made to the data to create a vector for the prediction model

was to convert the change type into a change indicator vector using Equation 4.1. The

vector is converted into a single value which indicates whether a change has occurred

in the previous five commits. This process is done through calculating the sum of

the change vector using Equation 4.2. Finally, the change indicator, changei−1, is

identified using Equation 4.3.

ci =

1 if ∆i > 0

0 otherwise
(4.1)

∗t∆i−j denotes the use of the 5 previous change duration for this feature set.
†∆i−j denotes the use of the 5 previous changes for this feature set.
‡type∆i−j

denotes the use of the 5 previous change types for this feature set.
§∆i−j denotes whether change occurs at the fifth previous commit for this feature set.
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reduce =
t∑

i=t−5

ci (4.2)

P =

1 if reduce > 0

0 otherwise
(4.3)

f∆ is calculated by taking the number commits in which involve changes to the

current method (ci) within the SWR divided by the current number of commits (ccur)

since the start of the SWR. This is formalized in Equation 4.4. A frequency of change

is available for the duration of the SWR.

f∆ =
|ci|
|ccur|

(4.4)

sf∆ is calculated by reducing the range sampled to s. Then counting the number

of times the method changes within the last s commits and dividing it by s. The size

of the short frequency can be any value that is less than the size of the SWR. For use

in the rest of the paper s = 10 which means that the sf∆ is for the last 10 commits.

t∆ is the difference between the current commit time (t(ci)) and the previous com-

mit time (t(ci−1)) calculated in Equation 4.5. Both time values are provided as time

stamps and the result is calculated in seconds. Only the difference in time between

the current commit and the previous one is calculated therefore, in Equation 4.5, i

denotes the current commit.

∆ti = t(ci)− t(ci−1), i > 1 (4.5)
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4.2 Prediction Method

For our prediction problem, a machine learning algorithm is used to create a predic-

tion model. The data used to train the model is collected as shown in Section 4.1.

The machine learning algorithms that can be used are either SVM or RF (see Sec-

tion 2.3.3.1 and Section 2.3.3.2 for more details). Each of these method are widely

used for data mining techniques and are easy to use. Figure 1.1 outlines the overall

structure of the approach for how changes are predicted.

The SVM model was created through the use of a libsvm1 binding for Ruby, rb-

libsvm2. This library was a good fit since the data was collected using a Ruby script.

The rb-libsvm library facilitated the creation, training and testing of the model. For

the RF model, a Python library scikit-learn3 was used. Python was used instead

of Ruby because of a lack of a mature RF library in Ruby. The scikit-learn library

provided creation, training, testing and feature importance weight. Both libraries

have explicit and implicit restrictions on the data. The explicit restrictions related to

data format which is deemed unacceptable. Implicit restrictions are expected to be in

forced and failure to do so leads to poor prediction results. Further information about

the preprocessing of the data can be found in Section 4.1.2. After processing the data,

the respective libraries were given the data. In the case of RF the feature importance

weights are calculated throughout the model training and allow for introspection on

the training features.

Use of the approach requires a few steps in total before predictions can begin.

Firstly, the data related to the project must be collected from GitHub. Once the

data is collected, the prediction model can be created by providing training set built

1https://www.csie.ntu.edu.tw/~cjlin/libsvm/
2https://github.com/febeling/rb-libsvm
3http://scikit-learn.org/stable/
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from sampling the data set. After training the model, predictions can be made using

the model on new data. The next chapter analysis the approach by training and

testing the model using subsets of the project data sets.
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Chapter 5

Experiments

Experiments were conducted in order to validate for the proposed approaches. The

goal of these experiments is to determine whether data from an Open Source Software

(OSS) repository can predict changes that occur within the next 5 commits. These

experiments are based on the approach outlined in the previous chapter, Chapter 4.

The experiment was conducted through measuring the performance of each core fac-

tors varied in isolation. Specifically the Sample Window Range (SWR), the feature

set and categorization balancing using oversampling. These three factors are explored

for both machine learning algorithms.

5.1 Experimental Repository Data

The complete list of repositories used in the experiment data are found in Table 5.1.

Commit data from each repository was collected from the creation date for the repos-

itory till the data collection date. The commit data excludes any commit that lacked

a change to a file containing Java code. Since the primary interest was to parse Java

code, files containing Java code were used while all other files are ignored. These
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measures provide a more accurate description of the repository in terms of the anal-

ysis and predictions made on it. Secondly, the number of developers does not map

effectively to what git uses as committers and authors. Instead, the number of de-

velopers includes all individuals (removing duplicates) who committed or authored

commits to the current repository.

Owner Repository Start Date End Date # of # of
Commits Developers

ACRA acra 2010-04-18 2015-06-05 404 32
arquillian arquillian-core 2009-11-13 2016-03-16 473 49

google blockly-android 2015-07-23 2016-06-23 691 8
openzipkin brave 2013-04-07 2016-06-21 337 32

gabrielemariotti cardslib 2013-09-20 2015-05-12 327 13
square dagger 2012-06-25 2016-01-30 496 38

deeplearning4j deeplearning4j 2013-11-27 2016-02-13 3523 61
facebook fresco 2015-03-26 2015-10-30 313 45
Netflix governator 2012-03-18 2016-06-23 621 31

greenrobot greenDAO 2011-07-28 2016-05-23 415 4
kevinsawicki http-request 2011-10-21 2015-01-21 273 14

koush ion 2013-05-22 2016-06-14 520 29
skylot jadx 2013-03-18 2016-03-27 480 11

mapstruct mapstruct 2012-05-28 2016-06-15 604 22
Atmosphere nettosphere 2012-02-09 2016-04-11 336 12
johncarl81 parceler 2013-07-03 2016-06-22 228 12
orfjackal retrolambda 2013-07-20 2016-04-30 275 11

amlcurran ShowcaseView 2012-08-14 2016-05-30 332 39
haifengl smile 2014-11-20 2016-06-24 237 14

perwendel spark 2011-05-05 2016-06-19 551 86
apache storm 2011-09-16 2015-12-28 2445 260

prestodb tempto 2015-03-06 2016-06-20 298 19
gridgain yardstick 2014-04-11 2015-10-12 213 12

Table 5.1: OSS Repositories used in Experiments

1. acra1 is an Android bug logging tool used with Android applications to capture

information related to bugs or crashes. The information is sent to the developers

1https://github.com/ACRA/acra
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to help them address the issues that their clients encounter while using there

application.

2. arquillian-core2 is a platform for creating automated integration, functional

and acceptance tests for Java middleware products.

3. blockly-android3 provides a native implementation of the blockly library for

drag and drop development on Android.

4. brave4 provides a Java distributed tracing tool for troubleshooting latency

problems and is compatible with Zipkin.

5. cardslib5 is an Android library for creating UI Cards in an Android application.

6. dagger6 from square is a Java application used to satisfy dependencies for

classes to replace the factory model of development.

7. deeplearning4j7 is a distributed neural network library that integrates Hadoop

and Spark. This application is the largest of the all the repositories and provides

a large wealth of data to analyze.

8. fresco8 from facebook is the smallest repository with the shortest development

period. This repository provides a library for using images on Android to at-

tempt to solve limited memory issues with mobile devices.

9. governator9 is a library of extensions and utilities that enhances Google’s

Guice to provide injector life-cycle and object life-cycle.

2https://github.com/arquillian/arquillian-core
3https://github.com/google/blockly-android
4https://github.com/openzipkin/brave
5https://github.com/gabrielemariotti/cardslib
6https://github.com/square/dagger
7https://github.com/deeplearning4j/deeplearning4j
8https://github.com/facebook/fresco
9https://github.com/Netflix/governator
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10. greenDAO10 provides an Android based light and fast object relational map-

ping to SQLite database entries.

11. http-request11 is a library accessing the httpURLConnection to make requests

and then access the response.

12. ion12 provides asynchronous networking and image loading for Android.

13. jadx13 is a Java decompiler for Android Dex and Apk files.

14. mapstruct14 is an annotation processor for generating type-safe bean mapping

classes.

15. nettosphere15 provides a WebSocket/HTTP server based on Atmosphere and

Netty Framework.

16. parceler16 is a library for creating serialize code.

17. retrolambda17 provides a backport for lambda expressions implemented in

Java 8 to Java 7, 6 and 5.

18. ShowcaseView18 is a library for Android that can highlight and showcase

components within the UI of a application.

19. smile19 stands for Statistical Machine Intelligence and Learning Engine and is

a machine learning library for Java.

10https://github.com/greenrobot/greenDAO
11https://github.com/kevinsawicki/http-request
12https://github.com/koush/ion
13https://github.com/skylot/jadx
14https://github.com/mapstruct/mapstruct
15https://github.com/Atmosphere/nettosphere
16https://github.com/johncarl81/parceler
17https://github.com/orfjackal/retrolambda
18https://github.com/amlcurran/ShowcaseView
19https://github.com/haifengl/smile
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20. spark20 a tiny web framework for Java 8.

21. storm21 from apache real time computational system for continuous streams of

data. This repository is one of the larger repositories and has a large develop-

ment community.

22. tempto22 A testing framework for SQL databases running on Hadoop.

23. yardstick23 is a framework for creating benchmarks specifically for clustered

or distributed systems.

Given the large number of repositories, a categorization system was established to

group repositories based on similar attributes. Four repository measures were selected

for comparing the repositories and are outlined in Table 5.2. The measures are:

• Repository length in years.

• Repository size in number of methods.

• Number of developers.

• The rate of commits made in commits per year.

The repository length represents the number of years the repository has been under

development for. The size of the repository is measured in the number of method

signatures within the repository since created. The number of developers is tallied

from the beginning of the repository for this measure. Finally, the rate of commits

is the number of commits contributed to the repository per year. A yearly rate of

commits was sufficient since the majority of the repositories had more than one year

of development history.

20https://github.com/perwendel/spark
21https://github.com/apache/storm
22https://github.com/prestodb/tempto
23https://github.com/gridgain/yardstick
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Repo Duration Repo Size # Devs Commit Rate

short (t < 1) small (m < 2000) small (d < 30) low (r < 100)
medium medium medium medium

(1 ≤ t < 3) (2000 ≤ m < 10000) (30 ≤ d < 100) (100 ≤ r < 300)
long (t ≥ 3) large (m ≥ 10000) large (d ≥ 100) high (300 ≤ r < 600)

very high (r ≥ 600)

Table 5.2: Experiment Repository Summary

Using the classifications outline in Table 5.2, the repositories are grouped and

organized with similar repositories. In Table 5.3 the repositories are sorted by their

classification and have dividing lines around similar repositories. For example four

repositories; http-request, nettosphere, parceler and retrolambda are all classified in

the same group. Some repositories like ion or storm are not grouped in with another

repository and thus are in a group of their own.

Each of the repositories are selected from GitHub using the list of Java repositories

with a large amount of development. OSS repositories were targeted to simplify any

usage concerns. Specifically, OSS repositories are open and freely available immedi-

ately and can be discussed without restriction. Therefore in order to be selected the

program had to clearly use an OSS license. Secondly, the repository also needed to

have at least a 6 months worth of development and at least 300 commits to provide

a large enough dataset to analyze. An effort was also made to pick repositories of

different sizes to provide better tests of various conditions.

In order to get a more detailed understand of the selected repositories, numerous

measures were taken. These measures also allow for each repositories to be compared

to each other in terms of the development of each of the repositories. For example the

size of the repository is represented through several measures including: number of

commits, methods and developers. Several averages are calculated to help establish

how the development occurred within a repository during the development. A few
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Repo Name Repo Duration Repo Size # Devs Commit Rate

yardstick medium small small medium
tempto medium medium small medium

blockly-android medium medium small high
fresco medium medium medium high

http-request long small small low
nettosphere long small small low

parceler long small small low
retrolambda long small small low

ion long small small medium
acra long small medium low

dagger long small medium low
ShowcaseView long small medium low

greenDAO long medium small low
smile long medium small low

cardslib long medium small medium
jadx long medium small medium

mapstruct long medium small medium
arquillian-core long medium medium low

brave long medium medium low
spark long medium medium low

governator long medium medium medium
deeplearning4j long large medium very high

storm long large large high

Table 5.3: Experiment Repository Summary
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Repository # of # of Avg # of Avg # of
Methods Methods Commits Methods Change

Changes / Year / Commit
acra 1309 3605 67.33 9.51

arquillian-core 5563 6657 59.13 15.2
blockly-android 3608 9679 345.5 14.82

brave 4204 7823 84.25 26.98
cardslib 3940 5122 109.0 16.68
dagger 1827 6314 99.2 13.7

deeplearning4j 29896 82198 880.75 24.33
fresco 3463 4139 313.0 14.73

governator 4229 10946 124.2 19.04
greenDAO 4089 8625 69.17 21.84

http-request 726 1740 54.6 6.72
ion 1678 4347 130.0 8.82

jadx 6012 9322 120.0 19.63
mapstruct 7885 10185 120.8 19.04

nettosphere 1112 2857 67.2 9.01
parceler 1619 3076 57.0 14.72

retrolambda 1111 2588 68.75 9.95
ShowcaseView 927 2672 66.4 8.62

smile 3885 3879 79.0 18.47
spark 3117 9154 91.83 18.27
storm 14599 50037 489.0 24.03

tempto 2422 3386 149.0 11.96
yardstick 512 1216 106.5 6.37

Table 5.4: Repository Change Statistics I

76



Repository Avg # of Avg # of Avg # of Max Min
Methods Changes Commits / Commits Commits
Change / Method Developer / Year / Year
/ Year

acra 600.83 4.52 13.93 119 33
arquillian-core 832.13 2.03 36.38 175 6
blockly-android 4839.5 4.68 98.71 690 1

brave 1955.75 4.24 14.65 108 56
cardslib 1707.33 3.28 46.71 223 3
dagger 1578.5 5.64 16.0 236 4

deeplearning4j 20549.5 5.69 65.24 2018 65
fresco 4139.0 1.49 156.5 313 313

governator 2189.2 4.11 24.84 159 75
greenDAO 1437.5 3.94 138.33 137 5

http-request 348.0 2.56 39.0 108 5
ion 1086.75 3.31 40.0 253 7
jadx 2330.5 2.41 43.64 208 11

mapstruct 2037.0 2.04 54.91 288 7
nettosphere 571.4 4.37 37.33 118 5

parceler 769.0 2.43 45.6 76 41
retrolambda 647.0 3.06 25.0 133 24

ShowcaseView 534.4 5.9 10.71 141 6
smile 1293.0 1.86 19.75 121 6
spark 1525.67 3.92 7.25 171 22
storm 10007.4 5.93 15.47 948 118

tempto 1693.0 1.88 16.56 253 45
yardstick 608.0 3.65 23.67 208 5

Table 5.5: Repository Change Statistics II

examples of average measurements are the number of commits per year, changes per

method.

Several average measures were also taken which detail the amount of change that

occurs within the repository. The average number of commits per repository coupled

with the average number of changes per commit clearly indicates the amount of

changes that are occurring with in the repository. The rate at which methods are

change provides good insight into the growth of a repository. While some changes
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may involve the addition of new methods, others may include the removal of methods

or the modification of methods. The other measures relating to the amount of change

occurring with a repository on average are the number of methods changed per year

and the number of changes per method. Each of these further outline how the changes

are being made to the repository on average.

A few of the measures are related to the number of developers. These while

provided are not the primary focus. The information provided by tracking developer

interactions with each other or the repository could be integrated into future work.

While the purposed method was being developed ACRA’s acra repository was

primarily used for exploring and initial testing of the approach. After experimenting

on acra a few of the potential candidate feature sets were distinguished based on

their superior performance. Experiments were then run on other repositories using

the feature sets that performed better.

5.2 Experimental Setup

The experimental setup defines numerous parameters of different importance to con-

duct experiments. The majority of these parameters will remain constant to help

observe the impact differences in the independent variable will have on the three de-

pendent variables; precision, recall and accuracy. Each experiments will use one of

the parameters as the independent variable. The three independent variables used in

the experiments are outlined below. An experiment consists of a set of trails where

the independent variable is modified to measure the resulting dependent variables.

The results of a single trial or of the set of trails for a repository will be referred

to as the performance of the approach. In order to reduce specific repository con-

founding factors numerous repositories were tested on. This will be discussed further
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Repository Max # of Min # of Max # of Max # of Min # of
Methods Methods Change / Commits / Commits /
Changed Changed Method Developer Developer
/ Year / Year

acra 1503 183 52 229 1
arquillian-core 3421 55 110 420 1
blockly-android 9543 136 90 538 1

brave 3300 1038 83 225 1
cardslib 3340 19 95 285 1
dagger 3374 171 65 157 1

deeplearning4j 35869 4377 345 1987 1
fresco 4139 4139 33 269 44

governator 3324 1066 263 316 1
greenDAO 2971 34 63 367 1

http-request 752 14 50 267 1
ion 2315 24 161 492 1
jadx 3915 248 197 436 1

mapstruct 4462 201 81 334 1
nettosphere 1074 10 46 322 1

parceler 1151 516 31 217 1
retrolambda 1501 212 83 237 1

ShowcaseView 1156 74 70 215 1
smile 1918 872 24 155 1
spark 2818 277 72 277 1
storm 26526 2152 314 622 1

tempto 3073 313 44 66 1
yardstick 1163 53 62 137 1

Table 5.6: Repository Change Statistics III
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in the discussions section. The experiments section only includes a small sample of

the repositories that were experimented on. The repositories shown are ones that

exhibited interesting patterns or results. The complete set of performance figures for

every repository are shown in Appendix A.

This thesis works to determine whether Support Vector Machine (SVM) or Ran-

dom Forest (RF) can be used to effectively predict changes that will occur within

the repository. To potentially provide an answer to this question the factors that are

used for the prediction method are studied. The experiments attempt to determine

what impact the different factors will have on the purposed methods. These factors

include:

1. The SWR which is the size of range which the samples are taken from.

2. The set of features used to train the machine learning model.

3. The distribution of the data through use of oversampling.

Through investigating these factors a more clear picture of the performance of

the approach will be be provided. Without such a investigation the method contains

could produce capable solution just as likely as poor solutions. Worse still, the setup

may produce poor solutions more often than capable solutions. Once a more concrete

understanding is developed of the different factors and the performance of the algo-

rithm accordingly the research question can be answered as to whether it is possible

to predict changes within a repository using the commit data.

5.2.1 Prediction Features

The experimental design to allow for the predictions made on historical data to be

tested with available data. Therefore within the data collected for the repository the
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predictions must be made for values that are already known to allow for verification.

Therefore the experimental sampling would build off of the prediction sampling out-

lined in Section 4.1. A second region defined as the prediction sample range. The

Figure 5.1 outlines the updated layout. The size of the training range (|st|) and the

size of the prediction (|sp|) are able to be different sizes, however for each experiment

they remain the same (|st| = |sp|).

The sample range is taken from the current commit ci to ci−g−m in the case that

i > m. m denotes the size of SWR in commits and g is the number of commits

the change is predicted within. For example if the model is predict a change that

occurs within the next 5 commits (g = 5) and m = 30 then Figure 5.1 shows how

the data would be sampled. The training sample would be where data would be

collected from to train the model. The prediction gap is to account for the data

sampling calculating whether methods at commit 40 will have a change within the

next 5 commits. Therefore to properly test it on data that is not used as part of the

testing model the offset is needed. The SWR for the testing data set is labeled as the

Testing Sampling.

The sliding window factor is one of core aspects related to extracting samples from

the data set. When using the sliding window to sample the data the data is divided

as shown in Figure 5.1. The training sample is where the training data set is sampled

from. The testing sample is where the testing data is sampled from.

A data set with an extended sampling range will extend the sampling range beyond

the original size for either the training sample or the testing sample. The training

range can be expanded to include earlier samples to increase the sample space.

The training and testing sampling range are defined as the number of commits

from which the samples can be taken. In Figure 5.1, both the training and testing

sample ranges are set to 30 commits. These two values can differ from one another
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Figure 5.1: Sampling Window Layout

but tend to be kept the same for most of the experiments.

As discussed in Section 4.1, sample biasing can cause the distribution to favor the

selection of one category over another. Undersampling and oversampling can prevent

the model from simply classifying all samples as one category or the other.

For each repository data set there are numerous windows that be can be used.

The window number is setting which window is used broadly mapping to the position

within the data set that the model will be trained on and then predicted on. In Fig-

ure 5.1 the current commit is located at 45. This is the point from which predictions

will be made after. The gap preceding the starting point is is 5 commits long and is

followed by the sample window for the training data which is 30 commits long. To

calculate the window offset simply using the starting position (ps), the gap length (g),

and the SWR can be calculated in Equation 5.1. Therefore in this case the window

offset would be 45− 5− 30 which is 10.

wo = ps − g − swr (5.1)

Finally, the last factor of note is the parameters used to configure each prediction

method. RF use a single parameter, the size of the forest. SVM meanwhile uses two

parameters; C and gamma. Picking the most suitable parameters is ideal to achieve
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good performance from the prediction model. For SVM a grid search technique is

provided by the developers of the libsvm source24 for optimizing the parameters. For

RF, the size of the forest will have an impact but is far more manageable since it is a

single parameter. A larger number of trees in the forest will generally provide better

results, but will cause the algorithm to take longer to train.

5.2.2 Prediction Performance

For each experiment where the used random sampling the experiment was performed

5 times to account for variations in the random sample. Therefore if the initial

results using the first sample set were not characteristic of the full dataset then

running the experiment with more random samples is more likely to represent the

true characteristics of the dataset. This required taking five random samples from

each quarter, training the model and running the tests on the model to then determine

the average prediction score.

The goal of the prediction methods are to provide a good prediction of whether the

a given vector will fit in one category or the other. A model’s prediction performance

can be rated using three measures of accuracy, precision and recall. Accuracy is

measured as how often predictions pi are classified correctly where ai represents vector

vi correct classification. The prediction accuracy (Paccuracy) can then be calculated

using Equation 5.6. This simply sums up the accuracy for each vector and then

divides it by the total number of vectors (where n = |v|).

tp =
n∑

i=0

1 if pi = ai & ai = 1

0 otherwise
(5.2)

24https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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tn =
n∑

i=0

1 if pi = ai & ai = 0

0 otherwise
(5.3)

fp =
n∑

i=0

1 if pi 6= ai & ai = 0

0 otherwise
(5.4)

fn =
n∑

i=0

1 if pi 6= ai & ai = 1

0 otherwise
(5.5)

Paccuracy =
tp+ tn

tp+ tn+ fp+ fn
× 100 (5.6)

The precision of a model is the measure of how correct the model predicts that a

change will occur when it predicts that a change will occur. Given the true positives

tp, represents the number of predictions that the model correctly identified as having a

change and the false positives fp is the number of times the model incorrect predicted

a change to occur when it in fact did not. The equation for calculating precision is

show in Equation 5.7.

Pprecision =
tp

tp+ fp
(5.7)

The recall of the model is the measure of how correct the model predicts that

change will occur out of all the times changes really occurred. Again using tp as the

number of true positives, and false negatives fn which is the number of times the

model fails to predict that a change will occur. The recall can be calculated using

the Equation 5.8.

Precall =
tp

tp+ fn
(5.8)
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5.3 Experimental Results

For each experiment all of the data used to train and test the model is collected using

a Ruby script to query a PostgreSQL database. The PostgreSQL database provides

the raw data which is then processed into data vectors in an acceptable form for SVM

or RF. The data processing method is outlined more completely in Section 4.2.

5.3.1 SVM Experiments

For this set of experiments the machine learning algorithm SVM is used to provide

the change predictions. As noted in Section 4.2, the implementation for SVM is a

Ruby binding of the original library. The parameters used for all of the experiments

with SVM are C = 10 and gamma = 8.

5.3.1.1 Window Range Experiments

In this experiment the independent variable is the size of the SWR in commits. For

each variation of the SWR the performance is measured. In Table 5.7, the features

used by the prediction model are outlined. Features with a mark, •, are used while

those without are not. In this experiment only the sf∆ is not used while all the rest

are. Each of these features is outlined in further detail in Table 4.2.

Com Sig Name f∆ sf∆ t∆ Length changet−1

• • • • • • •

Table 5.7: SWR Experiment Features

As noted above the independent variable for this experiment is the SWR. The

remaining parameters for the experiment are constant for each test. These parameters

for this experiment are outlined in Table 5.8.
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Extended Over Under Sample Window SVM
Window Sampling Sampling Rate Offset C gamma

No No Yes 100% 5 10 8

Table 5.8: SWR Experiment Setup

Each repository was tested on using these outlined parameters for an SWR varying

from 60 to 130 by intervals of 10. The results for the experiments are shown with

the precision, recall and accuracy. For each graph the independent variable is the

number of commits in the SWR. Y-axis is the percentage for either the precision,

recall or accuracy. The complete set of experimental performance results are found

in subsection A.1.1. For some repositories did not have enough data to complete the

entirety of this experiment. For example, smile did not have enough data to complete

the trials with SWR for 120 or 130. These repositories were still included and show

how the method works with smaller amount of data available.

The majority of the repositories using SVM did not perform well with accuracy

and precision typically between 0.4 and 0.6. This repositories as well as others have

very poor results and show the difficulty of this problem. Similarly, Figure 5.3 shows

low precision and accuracy while very high recall. The independent variable, SWR

has very little impact on the performance for this repositories in particular.

Some of the repositories like http-request in Figure 5.4 had a large amount of

variation with the changes to the SWR. In one case http-request moderately well in

SWR 80 while at 60 and 120 the accuracy and recall are 0.

In Figure 5.5, the repositories acra is shown with the best result for SVM. When

the SWR is at 70-100 the performance is high, for the other cases the performance

is lower but not by a large margin. The point of interest is that recall performs well

for an SWR of 100 or lower but performs worse than the accuracy and precision after

100.
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Figure 5.2: SWR for tempto using SVM

Figure 5.3: SWR for blockly-android using SVM
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Figure 5.4: SWR for http-request using SVM

Figure 5.5: SWR for acra using SVM
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Figure 5.6: SWR for smile using SVM

Figure 5.7: SWR for spark using SVM
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Repository AI SWR Precision Recall Accuracy
acra SVM 100 0.74 0.92 0.8

arquillian-core SVM 70 0.55 0.71 0.57
blockly-android SVM 60 0.51 1.0 0.51

brave SVM 90 0.52 0.58 0.52
cardslib SVM 90 0.58 0.5 0.57
dagger SVM 60 0.65 0.68 0.66

deeplearning4j SVM 120 0.58 0.55 0.58
fresco SVM 130 0.57 0.67 0.58

governator SVM 110 0.62 0.5 0.6
greenDAO SVM 60 0.5 1.0 0.5

http-request SVM 80 0.59 0.93 0.65
ion SVM 70 0.56 0.62 0.57

jadx SVM 130 0.55 0.82 0.58
mapstruct SVM 70 0.6 0.88 0.65

nettosphere SVM 100 0.57 0.64 0.58
parceler SVM 70 0.66 0.54 0.63

retrolambda SVM 80 0.52 0.96 0.53
ShowcaseView SVM 120 0.59 0.85 0.63

smile SVM 100 0.58 0.67 0.6
spark SVM 130 0.56 0.86 0.6
storm SVM 100 0.51 0.7 0.52

tempto SVM 120 0.66 0.5 0.62
yardstick SVM 70 0.55 0.79 0.57

Table 5.9: SWR Repository Best Performance using SVM

Both smile in Figure 5.6 and spark in Figure 5.7 performed poorly each with

performance measure below 0.5. In two cases (90 and 110) smile and 0 recall and

undefined precision.

The best results for each repositories are outlined in Table 5.9. Overall there

was no clear value for the SWR which held consistent positive results. Reposito-

ries from similar groups tended to perform similarly. For example acra, dagger and

ShowcaseView all tended to perform well for similar parameters.

Repositories that were influenced more by SWR thus having a larger variation

between values proved to have better results more often however this was not guar-
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anteed. No value of SWR works across repositories and even for repositories that

worked the correct value had to be found in order to obtain good results.

5.3.1.2 Feature Set Experiments

Extended Over Under Sample Window SWR SVM
Window Sampling Sampling Rate Offset C gamma

No No Yes 100% 5 90 10 8

Table 5.10: Feature Experiment Setup

This experiment uses different sets of candidate feature to test to explore the avail-

able features. The remaining variables were kept constant to allow for the candidate

feature sets to be viewed in isolation. These constants are provided in Table 5.10.

The value of 90 was selected for the SWR based on the value being in the middle of

the range experimented on for the previous experiment. The remaining variables are

kept the same as the previous experiment in Section 5.3.1.1.

Feature Com Sig Name f∆ sf∆ t∆ Length changet−1

1 • • • • • • •
2 • • • • • • •
3 • • • • • •
4 • • • • •
5 • • • • •

Table 5.11: Candidate Feature Sets

The candidate feature sets are outlined in Table 5.11. These feature sets were

selected from a larger set of features outlined in Section 4.1. Each set is assigned an

index value to allow for easier reference later on. For the remainder of this section

the experiment sets will be referenced using the assigned index. Therefore if feature

set 3 is referenced then that refers to the candidate feature set in the third row. Some
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Figure 5.8: Feature for ShowcaseView using SVM

of the repositories results are shown in figures below. The rest of this experiments

performance results can be found in subsection A.2.1.

The repositories ShowcaseView, deeplearning4j and ion were all greatly impacted

by the different feature sets. ShowcaseView in Figure 5.8 performed well for feature

set 1 and 5 and terribly for feature set 3. Similarly for ion in Figure 5.10, feature sets

1 and 5 performed well with the rest of the feature sets performing poorly. Finally for

deeplearning4j in Figure 5.9, the best performance was for feature set 3 where as the

remaining trails were not as good. There were a few repositories like these ones were

one or two of the feature sets would perform well. One that performed well for certain

feature sets tended to share similar repository classifications like ShowcaseView and

ion do.

A lot of repositories did not vary greatly for different feature sets providing similar

to results to that of nettosphere in Figure 5.11. All three performance measures
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Repository AI Feature Precision Recall Accuracy
Set

acra SVM 4 0.77 0.78 0.77
arquillian-core SVM 4 0.55 0.83 0.57
blockly-android SVM 2, 3, 4 0.5 1.0 0.5

brave SVM 3, 4 0.6 0.51 0.58
cardslib SVM 5 0.51 0.88 0.52
dagger SVM 1 0.51 0.9 0.52

deeplearning4j SVM 3 0.61 0.84 0.65
fresco SVM 3 0.5 0.99 0.5

governator SVM 1 0.65 0.57 0.63
greenDAO SVM 3, 4 0.5 1.0 0.5

http-request SVM 1 0.66 0.7 0.67
ion SVM 5 0.58 0.83 0.61

jadx SVM 3, 4 0.52 0.84 0.53
mapstruct SVM 3 0.57 0.9 0.61

nettosphere SVM 2 0.56 0.64 0.57
parceler SVM 1 0.57 0.92 0.61

retrolambda SVM 1 0.57 0.7 0.59
ShowcaseView SVM 1 0.73 0.89 0.78

smile SVM 5 0.53 0.96 0.55
spark SVM 2, 4 0.5 1.0 0.5
storm SVM 2 0.5 0.67 0.5

tempto SVM 5 0.53 0.5 0.53
yardstick SVM 3 0.53 0.68 0.54

Table 5.12: Feature Repository Best Performance using SVM
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Figure 5.9: Feature for deeplearning4j using SVM

Figure 5.10: Feature for ion using SVM
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Figure 5.11: Feature for nettosphere using SVM

Figure 5.12: Feature for mapstruct using SVM
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show little variance and only small chances are present between repositories. Other

repositories performed poorly for all the feature sets such as mapstruct in Figure 5.12

which had 3 of the 5 trails score lower than 0.5 in all performance measures. In

Table 5.12 each repository is outlined with the best performance for this experiment.

The feature sets are shown to be an influencing factor on the performance of the

model however no single feature set found to stand out as the ideal candidate for all

repositories.

5.3.1.3 SVM Oversampling Experiment

Extended Under Sample Window SVM
Window Sampling Rate Offset C gamma

No Yes 100% 5 10 8

Table 5.13: Feature Experiment Setup

Oversampling is a balancing technique used to increase the amount of samples

available. Samples from the smaller data set are re-sampled to increase the size of

the data set. While this does introduce duplicates into the model it also counter acts

biasing that is present when one classification is more common then the other by a

large margin. Under sampling is also used to remove excess elements from the larger

set of classification. Oversampling This is especially useful for data sets that contain

a small number of samples for a particular category. In that case under sampling may

limit the performance of a model by removing nearly all of the elements in the data

set.

The experiment below took the best and worst trials from the previous two ex-

periments and used oversampling when sampling the data. The variables that change

per repository are based on the previous best performance and worst performance.
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Repository Best Worst
Feature Set SWR Feature Set SWR

acra 2 80 3 90
arquillian-core 4 90 2 90
blockly-android 2 60 2 90

brave 2 130 3 90
cardslib 2 120 4 90
dagger 5 90 2 70

deeplearning4j 3 90 2 130
fresco 3 90 2 90

governator 1 90 3 90
greenDAO 4 90 1 90

http-request 2 80 3 90
ion 5 90 2 90

jadx 2 130 2 100
mapstruct 2 70 1 90

nettosphere 2 120 3 90
parceler 1 90 2 90

retrolambda 2 130 4 90
ShowcaseView 1 90 2 80

smile 2 70 2 90
spark 4 90 3 90
storm 2 100 2 110

tempto 2 120 2 130
yardstick 2 70 2 100

Table 5.14: Best And Worst Results From experiments 1 and 2 for SVM

In Table 5.14, the best and worst SWR and feature set are provided for each repos-

itory. Since each repository will likely have different values of SWR and feature set

the comparesion should only be made between the difference in performance for the

best/worst result and their corresponding oversampling trail Best-O/Worst-O.

In some cases the best performing experiment may not have been entirely clear.

For example with some repositories having very high recall (≥ 0.9) while having lower

precision and accuracy. The best trail was picked based on having the all a weighted

summation algorithm outlined in Equation 5.9. Since precision and accuracy are very
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Figure 5.13: Oversampling for fresco using SVM

closely related the weight for each was 0.5 while recall was set to 1.0.

Figure 5.14: Oversampling for blockly-android using SVM
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Figure 5.15: Oversampling for deeplearning4j using SVM

Figure 5.16: Oversampling for acra using SVM
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Some repositories such as fresco Figure 5.13 performed a little better for precision

and accuracy while a little worse for precision. Unlike most repositories however

blockly-android in Figure 5.14 experienced very little change with the introduction

of oversampling. Finally, the majority of the experiments showed oversampling to

provide a negative impact of the performance of the model. Both deeplearning4j in

Figure 5.15 and acra in Figure 5.16 performed worse for all measures for both trails.

The overall impact of using oversampling for training the model proved detri-

mental with the vast majority of repositories performing worse with the use of over-

sampling. While some repositories experience increases in individual performance

measures, other measures fall. Also, any performance seen by a repository is minimal

at best while the loss of performance tends to be substantial.

5.3.1.4 SVM Discussion

The three different experiments attempted to determine the impact of the different

factors on the prediction method. The three factors that were tested are:

1. SWR

2. Model features

3. Sampling balancing

The results of the repositories did not follow any common trends between reposi-

tories. Similar repository groups outlined in Table 5.2 do not perform similarly for the

most part with the exception of the group for acra, dagger and ShowcaseView which

all had an okay but for different values of SWR. The only similarity that can be found

is for groups of repository that performed poorly which still was inconsistent. For

most repositories at the very least the recall was variable. The only really exception

would be blockly-android which experienced little to no variation in for each trial.
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Some repositories saw more variation in the precision and accuracy and often had at

least trail which performed moderately well.

For the second experiment, the performance results were a lot lower than the

first generally. This appears to be directly related to the impact that each of these

variables has on the performance of the model. Therefore the focus is placed on the

best feature set for all repositories or for groups of repositories. For some of the

groups of repositories, a certain feature set or pair of feature sets performed well

for all repositories in the group. For example, acra, dagger and ShowcaseView all

performed well when using feature set 1 or 5. Not all of the repositories performed

their best using that those feature sets. However, they did perform close to their best

performance. While this trend occurred for some repositories it was not consistent for

all repositories. Similarly there was no best performing feature set for all repository.

Finally of the third experiment was found to have a variable impact on the repos-

itories when sample balancing through oversampling was applied. In terms of per-

formance impact, oversampling provide a negative impact on most of the repositories

experimented on. Some trials saw now change and a very small number of trails

saw slight improvements to one performance measure while decreasing another per-

formance measure. The slight improvements found from using oversampling were

insignificant compared to the drop in performance typically experienced.

Overall SWR had the greatest impact on the performance of the prediction method.

The model feature set had less of an impact and balancing the sample through over-

sampling provided a primarily negative impact. The SWR while having a larger

impact on most repositories, some repositories were less affected. Generally varia-

tions of SWR could produce a positive results, a negative results were also present.

Furthermore, no clear pattern was discovered to allow for simple configuration of the

parameters to provide positive results. Therefore use of the approach with a SVM
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model can be beneficial but also incurs a risk associated with poor predictions.

5.3.2 Random Forest Experiments

The machine learning algorithm RF is used for the second set of experiments. RF

was selected as an alternative to SVM for it’s success in various data mining related

tools. The implementation of RF is in a python library scikit-learn which is outlined

in Section 4.2. Only one parameter is used for RF, the forest size, which is set to

10000 all of these experiments.

5.3.2.1 Window Range Experiments

Com Sig Name f∆ sf∆ t∆ Length changet−1

• • • • • • •

Table 5.15: SWR Experiment Features

Extended Over Under Sample Window RF
Window Sampling Sampling Rate Offset Size

No No Yes 100% 5 10000

Table 5.16: SWR Experiment Setup

The independent variable for this set of experiments is the sample window size

measured in commits. The feature set are outlined in Table 5.15. The features used

for this experiment is the same as the first SVM experiment feature set.

The parameters for this experiment are outlined in Table 5.16. The only difference

between the parameters used in this experiment and the parameters used in the

SVM experiment one is the RF specific parameters. This allows for a fairly clear

comparison between these two methods with the given independent variable, the
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SWR. The experiment was conducted on all 23 repositories collected and examples

were are discussed in more detail in this section. The remainder of the repositories

performance results are outlined in subsection A.1.2.

Each repositories experimental results are accompanied with a second figure that

outlines the importance for each feature set variable in the creation of the prediction

model. The importance of a feature only identifies how influential that feature was to

the prediction and therefore necessitates the context of the results. So if a repository

performs poorly in predicting the most influential features are more likely to not as

useful for predictions with the repository. Likewise, if a repository performs well the

corresponding feature importance can indicate highly influential features that helped

produce positive results.

Even in the case of where a repository performs well the feature set used may

not be generalizable to other repositories. For example http-request in Figure 5.18

performs well with a SWR of 70 - 90 and places high importance on Sig, Name, time

and length. Alternatively, dagger in Figure 5.20 performs moderately well with an

SWR of 60 and 100-110 while placing a higher importance on Com and time. Even

more interesting is that http-request placed nearly 0 importance on Com while the

same feature ranked second for dagger.

The performance of each repository varied, with a few repositories performing

well for some SWR like http-request in Figure 5.17, dagger in Figure 5.19 and Show-

caseView in Figure 5.21. The impact of the changes to SWR is clearly visible as

some trails perform poorly, while others perform a lot better. For example in Show-

caseView, use of a SWR of 100 or higher provides good performance but below the

performance is a lot lower. For some repositories such as jadx in Figure 5.23 the SWR

had less of an impact causing little variation between precision and accuracy while

offering only slight changes with the recall.
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Repository AI SWR Precision Recall Accuracy
acra RF 90 0.78 0.75 0.77

arquillian-core RF 90 0.52 0.98 0.54
blockly-android RF 70 0.59 0.65 0.6

brave RF 90 0.6 0.95 0.65
cardslib RF 100 0.65 0.74 0.67
dagger RF 110 0.72 0.69 0.71

deeplearning4j RF 120 0.57 0.93 0.61
fresco RF 60 0.52 1.0 0.53

governator RF 60 0.57 0.81 0.6
greenDAO RF 120 0.54 0.54 0.54

http-request RF 80 0.87 0.79 0.84
ion RF 90 0.71 0.73 0.72
jadx RF 130 0.55 0.75 0.56

mapstruct RF 110 0.58 0.88 0.62
nettosphere RF 110 0.63 0.67 0.63

parceler RF 100 0.77 0.63 0.72
retrolambda RF 70 0.56 0.73 0.58

ShowcaseView RF 130 0.78 0.83 0.8
smile RF 100 0.53 0.84 0.54
spark RF 110 0.54 0.91 0.57
storm RF 60 0.61 0.89 0.66

tempto RF 70 0.58 0.65 0.59
yardstick RF 70 0.54 0.67 0.55

Table 5.17: SWR Repository Best Performance using RF
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Figure 5.17: SWR for http-request using RF

Figure 5.18: Feature Importance SWR for http-request using RF

105



Figure 5.19: SWR for dagger using RF

Figure 5.20: Feature Importance SWR for dagger using RF
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Figure 5.21: SWR for ShowcaseView using RF

Figure 5.22: Feature Importance SWR for ShowcaseView using RF
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Figure 5.23: SWR for jadx using RF

Figure 5.24: Feature Importance SWR for jadx using RF
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Figure 5.25: SWR for storm using RF

Figure 5.26: Feature Importance SWR for storm using RF
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Figure 5.27: SWR for parceler using RF

Figure 5.28: Feature Importance SWR for parceler using RF
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In Table 5.17, the best performance is shown for each repository for this experi-

ment. Some repositories experienced very little impact from variations of the SWR

for the performance. For example, storm in Figure 5.25 had higher recall but lower

precision and accuracy. Other factors may provide more influence such smaller or

larger values of SWR however those were outside the scope of the experiment. Fi-

nally, other repositories did not perform as well but experienced some variation to

precision, recall and accuracy. One such repository would be Figure 5.27 which had

all three measures fairly close together for most trails but because of the size of the

repository could not supply sufficient data for a SWR of 120 or 130. The impor-

tance of both storm and parceler was similar to that of http-request however as noted

neither managed to perform as well as the best performance from http-request.

5.3.2.2 Feature Set Experiments

Extended Over Under Sample Window SWR RF
Window Sampling Sampling Rate Offset Size

No No Yes 100% 5 90 10000

Table 5.18: Candidate Feature Experiment Setup

Feature Com Sig Name f∆ sf∆ t∆ Length changet−1

1 • • • • • • •
2 • • • • • • •
3 • • • • • •
4 • • • • •
5 • • • • •

Table 5.19: Candidate Feature Sets

Similar to the experiment using a SVM in Section 5.3.1.2. The experiment pa-

rameters are outlined in Table 5.18. The candidate features are likewise outlined in
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Table 5.19. Each set is assigned an index value to allow for easier reference later on in

this section. The candidate feature set will be referenced by the index assigned in the

plots and discussions related. The candidate feature sets were used experimented on

with each repository which are discussed below. The following results are highlights

of the larger set of experiments conducted on each repository. The remainder of the

results for this experiment are outlined in subsection A.2.2.

Figure 5.29: Feature for ShowcaseView using RF

The repository to perform the best in this experiment was ShowcaseView in Fig-

ure 5.29 which performed best for feature sets 1 and 5 and had minimal difference

between the performance of feature sets 2, 3 and 4. Typically most repositories

performed well with two feature sets or more which most likely is related to the sim-

ilarity in the feature sets tested. A few of the successful repositories, such as ion

in Figure 5.30, performed well consistently for each feature set. Finally, other more

successful repositories saw dramatic variations between the different feature sets. For
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Figure 5.30: Feature for ion using RF

Figure 5.31: Feature for dagger using RF
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example, dagger in Figure 5.31, performs well in the second feature set and poorly in

the rest. The recall is especially volatile at dropping below 0.5 for feature set 4.

Figure 5.32: Feature for cardslib using RF

The majority of the repositories experimented on saw little difference for each

feature set. The best performance for each repository is outlined in Table 5.20. For

cardslib in Figure A.97, the precision and accuracy stay right above 0.5 while the

recall dips below 0.5 for feature set 4. The performance is not great and overall the

impact of the different feature sets appears quite low for this repository. Alternatively,

governator in Figure A.101, is one of the few repositories to perform well for precision

while low for accuracy and very low for recall. Each feature set again has only a small

impact on the performance with the repository performing very poorly for every trial.

Overall the results for this experiment were mixed since the impact of the feature set

at least of these three features is less significant that the SWR.
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Repository AI Feature Precision Recall Accuracy
Set

acra RF 4 0.77 0.78 0.77
arquillian-core RF 5 0.53 0.97 0.56
blockly-android RF 2 0.56 0.73 0.58

brave RF 2 0.53 0.92 0.55
cardslib RF 5 0.53 0.68 0.54
dagger RF 2 0.63 0.76 0.66

deeplearning4j RF 3 0.54 0.91 0.56
fresco RF 3 0.5 1.0 0.5

governator RF 3 0.83 0.25 0.6
greenDAO RF 3 0.52 0.47 0.52

http-request RF 1 0.67 0.7 0.68
ion RF 2 0.72 0.73 0.72

jadx RF 3 0.51 0.67 0.52
mapstruct RF 1 0.54 0.95 0.57

nettosphere RF 5 0.76 0.42 0.64
parceler RF 3 0.68 0.7 0.69

retrolambda RF 1 0.59 0.17 0.53
ShowcaseView RF 5 0.79 0.72 0.77

smile RF 4 0.51 0.85 0.52
spark RF 1 0.52 0.72 0.52
storm RF 5 0.54 0.85 0.57

tempto RF 4 0.51 0.67 0.52
yardstick RF 2 0.62 0.24 0.55

Table 5.20: Feature Repository Best Performance using RF
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Figure 5.33: Feature for governator using RF

5.3.2.3 Oversampling Experiment

Extended Under Sample Window RF
Window Sampling Rate Offset Size

No Yes 100% 5 10000

Table 5.21: Oversampling Experiment Setup

This experiment builds on top of the previous two experiments and shares a very

similar setup to those experiments.The experiment parameters are outlined in Ta-

ble 5.21. The best and worst trails for each repository are taken from the previous

two experiments. The value for SWR and the feature set used were recorded in Ta-

ble 5.22 for each repository for the best and worst performance of the RF model. The

experiment applies oversampling the best and worst trials to compare the performance

of the model with and without the use of oversampling.

The result of a trail with oversampling are represented in the figures by either
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Repository Best Worst
Feature Set SWR Feature Set SWR

acra 2 60 5 90
arquillian-core 3 90 4 90
blockly-android 2 90 1 90

brave 2 110 4 90
cardslib 2 100 4 90
dagger 3 90 2 80

deeplearning4j 2 70 2 80
fresco 2 60 2 90

governator 2 60 2 90
greenDAO 2 60 2 100

http-request 2 80 4 90
ion 2 90 1 90

jadx 2 130 2 70
mapstruct 1 90 5 90

nettosphere 2 110 2 90
parceler 3 90 1 90

retrolambda 2 120 2 90
ShowcaseView 2 130 2 90

smile 5 90 2 100
spark 2 110 2 80
storm 2 60 2 90

tempto 2 120 2 130
yardstick 2 70 2 60

Table 5.22: Best And Worst Results From Experiments 1 and 2 for RF

best-O or worst-O. The results without oversampling from the previous experiment

are represented with best and worst.

The results for the use of oversampling on the best and worst trails from each

repository provide to have little effect on the results. In rare cases such as dagger

in Figure 5.34, the performance marginally improved for the some measures while

decreasing for others. However dagger also performed worse when oversampling was

used on the worst trial. Similarly yardstick in Figure 5.35, performed slightly better

for best-O and dramatically worse for worst-O.
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Figure 5.34: Oversampling for dagger using RF

Figure 5.35: Oversampling for yardstick using RF
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Figure 5.36: Oversampling for arquillian-core using RF

Figure 5.37: Oversampling for greenDAO using RF
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The majority of the repositories however saw no improvement or a slight decrease

in performance. For example arquillian-core in Figure 5.36 performed around the

same for best-O and slightly worse for worst-O. Generally the differences if any were

very small for most. Finally, some repositories performed a lot worse for their worst-O

trial including greenDAO in Figure 5.37. Overall the use of oversampling on either

the best or worst case cause little difference. The only major difference was for

worst-O which typically performed poor in compared to the trial without the use of

oversampling.

5.3.2.4 Random Forest Discussion

The approach was experimented on using the machine learning algorithm RF. The

three factors; SWR, feature set and oversampling were investigated. The first factor,

SWR, achieved positive results for some of the repositories and appeared to have the

largest impact on the performance. While the impact of the SWR was larger often the

best result for a repository would of accuracy and precision at 0.5 and recall at 1.0.

The impact of the feature set should also not be overshadowed as some repositories

performed better in the third experiment than the first. Finally, the impact of sample

balancing on the data set proved primarily negative with both the best and worst

trails performing worse when oversampling was used.

The first experimental results did not show a pattern for present for all the repos-

itories. Some repositories performed better while a lot performed mediocre at just

above 0.5 precision, accuracy. A few of the repositories had poor performances with

measures dropping below 0.5. Most of the groups yielded positive similar results,

with acra, dagger and ShowcaseView all performing well and having fairly large vari-

ations for different trials. Likewise, aqruillian-core, brave and spark all performed

similarly. While the results for these three repository were not particularly good they
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still showed similar trends of performance.

For the second experiment no particular feature set was found to work for all

repositories. Some repositories performed well for some while others performed well

for others. Generally though, repositories tended not perform well for all feature sets.

One repository such repository to perform poorly was governator which performed

well for precision, okay for accuracy and terribly for recall. However in terms of

repository groupings, the grouping of acra, dagger and ShowcaseView all performed

well but varied in which feature set they performed well with. Overall groups tended

to perform differently and had success with different feature sets. A feature set that

worked well for one repository in the group could just as easily work poorly for an-

other. This is highlighted best in the group consisting of http-request, nettosphere,

parceler and retrolamdba. Both http-request and parceler perform well and netto-

sphere and retrolamdba perform for badly all feature sets.

Of course the final experiment with oversampling performed similar to the SVM

experiments. For most repositories the use of oversampling in balancing the sample

data provided no difference in model performance. The second most common outcome

was for trails that used oversampling to result in lower performance than without.

Finally in some rare cases, 2 of the 23 repositories saw a one of their trials perform

slightly better with the use of oversampling. The results were not consistent for

these repositories since the first repository was dagger saw the other corresponding

trail decrease in performance. However the second repository, smile, recorded no

difference in result for the corresponding trail.

Overall for the experiments using RF, the variable with the greatest impact was

the SWR. However these variables were not consistent across repositories. Even for

repositories that performed well the variable values differed. Repositories that worked

tended to be repositories that were long, small in size, with a small to medium number
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of developers and a low to medium rate of commits. This outcome is similar to the

experiments conducted with SVM.

5.3.3 Experiment Discussions

The best performance for each repository with respect to predictive method and fac-

tors are out of the experiments conducted are shown in Table 5.23. Therefore the best

parameters are outlined for each repository. The best result was calculated through

multi-variable optimization. Since the performance measure consisted of three vari-

ables the best result would be one that maintained higher results for each. While not

the most ideal, a weighted sum was taken of the precision, recall and accuracy outlined

in Equation 5.9. The weight of precision (wp) and accuracy (wa) are closely related

both were assigned a weight of 0.25 while the weight for recall (wr) was assigned

0.5. The vectors; p, r and a consist of the precision, recall and accuracy respectively

for each experimental trial. The higher the resultant summation of the performance

measures the higher the ranking of the given performance. Therefore the trails that

had the highest performance weighted sum were considered to have performed the

best. The rankx,i is calculated per repository trial and the best performance (bestx)

per repository is calculated.

rankx,i = wpi × pi + wri × ri + wai × ai

bestx = max(rankx)
(5.9)

While the weighted sum did optimize each value, a common issue was that often

a repository would have one or two parameter perform well while the remaining

performed poorly. For example blockly-android had the maximum value for recall

but 0.51 for precision and accuracy. The weighted sum of this vector would be

0.51 × 0.25 + 1.0 × 0.5 + 0.51 × 0.25 = 0.755. However in the event that another
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Repository AI Feature SWR Setup Precision Recall Accuracy
Set

acra SVM 2 80 exp 1 0.74 0.92 0.8
arquillian-core RF 3 90 exp 2 0.53 0.98 0.55
blockly-android SVM 2 60 exp 1 0.51 1.0 0.51

brave RF 2 110 exp 1 0.59 0.97 0.65
cardslib SVM 2 120 exp 1 0.5 1.0 0.5
dagger RF 3 90 exp 2 0.5 1.0 0.5

deeplearning4j RF 2 70 exp 1 0.55 0.96 0.58
fresco RF 2 60 exp 1 0.52 1.0 0.53

governator RF 2 60 exp 1 0.57 0.81 0.6
greenDAO SVM 4 90 exp 2 0.5 1.0 0.5

http-request RF 2 80 exp 1 0.87 0.79 0.84
ion RF 2 90 exp 2 0.72 0.73 0.72
jadx SVM 2 130 exp 1 0.55 0.82 0.58

mapstruct SVM 2 70 exp 1 0.6 0.88 0.65
nettosphere RF 2 110 exp 1 0.63 0.67 0.63

parceler SVM 1 90 exp 2 0.57 0.92 0.61
retrolambda SVM 2 130 exp 1 0.5 1.0 0.5

ShowcaseView SVM 1 90 exp 2 0.73 0.89 0.78
smile SVM 2 70 exp 1 0.5 1.0 0.5
spark SVM 4 90 exp 2 0.5 1.0 0.5
storm RF 2 60 exp 1 0.61 0.89 0.66

tempto RF 2 120 exp 1 0.53 0.73 0.55
yardstick SVM 2 70 exp 1 0.55 0.79 0.57

Table 5.23: Repository Best Performance

performance scored 0.7 for each measure, the weighted sum would be 0.7 × 0.25 +

0.7× 0.5 + 0.7× 0.25 = 0.7. Since the goal is for multi-variable optimization a model

that is generally good on each measure is better than a model performs well with one

or two but terribly for the rest. Regardless though, some generally performed poorly

and that is reflected in the table with a best performance that is quite low or very

bias.

The number of repositories that perform the best with SVM and RF are 11 and

12 respectively. As noted above some of the performance results are still quite low
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for some of the repositories because of a lack of success for that repository for all of

the trials run. All repositories did perform better than 50% which is quite a poor

result since it is about as good as a coin toss. Out of the best performances, only 6 of

the 23 repositories have a trial that performs better than 60% for all three measures.

Of those 6 only 4 of those perform better than 70% for each performance measure.

Of the top 4, http-request performed the best followed by acra, ShowcaseView and

ion in descending order. Both acra and ShowcaseView performed best with use of

SVM while http-request and ion perform best with RF. For both http-request and

ShowcaseView the overall performance is better for RF over SVM. Likewise, ion

performed better for SVM over RF. The results were more consistent between RF

and SVM. The second feature set used for acra, http-request and ion to gain the best

performance while for ShowcaseView the first feature set performed the best. On a

final note, each of these 4 repositories are classified as long in length, small in size,

small to medium in number of developers and low to medium in commit rate.

The parameters setup for each experiment proved to vary in results. In order to

determine which set of parameters are the most ideal the trails for each experimental

parameters are ranked. In Equation 5.10 the ranked score is calculated similar to

that in Equation 5.9. However for Equation 5.10, the ranks are ordered in based on

the parameter set (s) used for the trial. Therefore the weighted summation, ranks,i is

taken for each repository with the same parameter set up s. The average, avgranks,i ,

is taken for each parameter set. The best ranked parameter is set is then selected by

taking the maximum avgranks .

ranks,i = wpi × pi + wri × ri + wai × ai

avgranks =
∑n

i ranks,i
|ranks|

bestranks = max(avgranks)

(5.10)
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AI Feature Set SWR Setup Rank Average
rf 2 100 exp-1 0.65065
rf 2 110 exp-1 0.63835
rf 2 60 exp-1 0.6324
rf 2 70 exp-1 0.6291
rf 2 120 exp-1 0.62895
rf 3 90 exp-2 0.62255
rf 2 130 exp-1 0.62115
rf 2 90 exp-2 0.6127
rf 2 90 exp-1 0.61165
rf 5 90 exp-2 0.60555
rf 2 80 exp-1 0.6041
rf 1 90 exp-2 0.6033

svm 5 90 exp-2 0.596
rf 4 90 exp-2 0.5922

svm 4 90 exp-2 0.58345
svm 2 70 exp-1 0.5788
svm 2 120 exp-1 0.57755
svm 2 130 exp-1 0.57645
svm 1 90 exp-2 0.57385
svm 2 60 exp-1 0.5481
svm 3 90 exp-2 0.5428
svm 2 90 exp-1 0.538
svm 2 100 exp-1 0.5344
svm 2 90 exp-2 0.53265
svm 2 80 exp-1 0.51825
svm 2 110 exp-1 0.50445

Table 5.24: Best Parameter Performance

The complete order list of the ranked parameter sets are shown in Table 5.24.

Out of all the parameter setups, RF ranked higher for all setups except for one

which ranked lower than the best parameter setup for SVM. This ranked list can be

considered as a guide to identify the best performing parameter setup. Also the best

parameter set can be used for any new repositories collected to attempt to get the

best results.
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5.4 Threats to Validity

Sampling a larger set of repositories was more beneficial for the analysis of the method

since performance was not consistent across all repositories. As done with the groups

of repositories, more repositories allows for trends to be examined between reposito-

ries. A concerted effort was made to contrast positive results for one repository with

negative results for other repositories. Such a contrast may mitigate the impact of

the positive results, however provides the full context and help direct future work in

this area.

Each experiment was designed to attempt to provide a robust setup to measure

accurately the performance of the approach given the changes to the current factor.

The setup was designed to attempt to preventing the influence of other variables

beyond the independent variable. The factors that may have had an influence on the

experimental results are the third experiment only sampling the extremes (best and

worst).

A major concern with the final experiment was that of the sampling of the best and

worst results from the previous experiments to test the use of oversampling. While

the results of the use of oversampling should not be discounted, only the sampling

the extremes of the previous experiment may have limited the measurable impact

of the use of oversampling. This experiment could be extended to test the middle

performance or even test each trail from the previous experiments.

The differences between the repositories prevented a more direct comparison be-

tween the repositories. Furthermore, as shown through the experiments, some repos-

itories (e.g. ShowcaseView) generally performed better than other repositories (e.g.

governator). This leads to the conclusion that certain repository related factors have

a large impact on the performance of the approach. Further investigation into these
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repository specific factors could lead to improved results for the approach.

The repositories sampled may also not be representative of OSS repositories more

generally as we first restricted the repositories in two respects:

1. Repositories contained a majority Java source code.

2. Repositories contained c commits where 300 < c < 4000.

Therefore while the experimentation was applied to several projects a large number of

repositories do not meet these requirements. Furthermore, only OSS where considered

and experimented on and therefore these experiments may be unrepresentative of

closed source repositories as well. The major mitigating factor in both of these cases

is that each repository prediction model is self contained and not reliant on any other

repository for training.
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Chapter 6

Conclusions

6.1 Summary

We proposed a method that leverages the commit history to predict future changes

within the repository. The data used for predictions was collected from Open Source

Software (OSS) repositories on GitHub. The data was then visualized through several

techniques to help identify key features for use in the prediction model. The features

were selected and a model was created to predict whether change will occur in the

short term of 5 commits. Three experiments were conducted on the approach using

23 different OSS repositories developed in Java. The experiments investigated the

three different factors; sampling range, model features and data set balancing to

identify measure the impact on the performance of the approach. The results of

the experiments show that while the Sample Window Range (SWR) had a strong

impact on the performance, the repositories themselves often had internal factors

which caused differences in performance.
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6.2 Contributions

The contributions of this work are:

1. Determined which factors more strongly influence the performance of the pre-

dictions approach.

2. Out of the three factors investigated, the SWR proved to have the greatest

impact for both Support Vector Machine (SVM) and Random Forest (RF).

3. Providing an approach that with some success can predict future changes within

a repository using the commit data. Both SVM and RF are viable for a few

repositories such as acra, http-request and ShowcaseView.

6.3 Limitations

The limitations placed on this approach often are divided into two categories; limi-

tations used to simplify the approach and limitations inherent to the approach. The

limitations used to simplify the approach are:

• Repositories are required to have a commit size of 300 < c < 4000. The

lower bound helped prevent experimentation on very small repositories which

would not have had enough data. Likewise the upper bound helped restrict

experimentation on huge repositories which will take longer to train and provide

a more difficult challenge when modeling change.

• Repositories must consist of at least 75% Java source code. The prediction

model feature collection process required identifying language specific details

and would require a reimplementation for any new language.
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• Repositories had to be developed on GitHub and openly available. Since the goal

was to extract the data from an entire repository the availability was essential.

GitHub provides an easy to use interface for collecting repository data and used

to collect the data. Another method for collection or another source could

be devised as long as the method collects the necessary data and the source

provides the necessary data.

While some of these restrictions are easily circumvented some are also inherent to

the implementation. For example the second two would require fairly substantial

reimplementation to overcome these limitations. These are however possible since

creating a method for collecting from different sources would open the approach to

more repositories and allow for further use. Likewise, implementations done in other

languages would allow for more repositories to make use this approach.

The other set of limitations outlines ones that are internal to the approach and

are only discovered through experimentation. These limitations are:

• Repository internal factors play a large role in how well the repository performs.

The experimental results showed that while some repositories may perform well

others classified similarly will perform very differently. These factors were not

effectively controlled by the parameters and therefore the results are unpre-

dictable.

• The prediction model is very sensitive to differences within a given repository

which is easily shown in the variation between repository results for a given set

of parameters. Therefore the ideal parameters for a given repository are only

ideal for the current section of the data set investigated.

• Finding the optimal set of parameters for creating the prediction model is very

difficult since these parameters will vary per repository. The extend of the
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impact of the parameters while investigated was not fully quantified. Therefore

in order to find a better solution for a given repository tunning of the parameters

is necessary. Finally, while a good solution may be found better solutions may

be available but difficult to find.

The issues outlined here are more difficult to overcome and may require a redesign of

the approach to address. Specifically, the first two limitations are relate to impact of

repository specific characteristics on the performance. Mitigating these characteristics

with parameters would help allow for easier configuration of the method that achieves

better results. Finally, achieving an optimal solution is very difficult because of how

long it takes to train the model and a general rule is difficult to find with such

differences between repositories.

6.4 Future Work

This work provided a starting point for predicting future code changes within a source

code repository based on change history. In the future this work could be extended

in the following directions:

• Language – Our approach focused primarily on Java OSS repositories found on

GitHub. The approach could be extended to predict changes in other languages

and also multi-language repositories. We observed that repositories that shared

similar characteristics tended to perform similarly (e.g. ShowcaseView, http-

request and ion).

• Training Feature Weighting – The experiments used the same weighting for

all features used to train the model. The use of different weighting could help

fine tune the approach and improve the results.
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• Multi-Classification – Both SVM and RF relied on making a simple binary

classification and could be extended to make multi-classifications to provide

more refined results. One such multi-classifications would be the size of change

predicted to occur in the five commits.

• Predictive Model – Use of different machine learning or Artificial Intelligence

(AI) techniques to perform the predictions could influence the performance of a

given project. Experimenting with a wider variety of techniques could achieve

better results and is an avenue for further research. Specifically, use of deep

learning algorithms could prove useful, given this approach looks at a single

repository. However in the case of larger projects, such as storm and deeplearn-

ing4j, the machine learning techniques tended to perform poorly. Using a re-

gressors to train on a larger data set could allow for stronger results, given that

a regressor tends to require a larger data sample to train on to be more effective.

• Data Sources – The approach could be extended to integrate source code

metrics to help improve the model.

A more expansive experimental result could be conducted by sampling from a

larger number of repositories. This could help provide more insights into the predic-

tion model and best practices with respect to training a new repository. Finally a

more extensive look at the other factors that were involved in the approach would be

useful in further improving the performance of the approach and predicting changes

within the development of a application.
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Appendix A

Experimental Data

A.1 Experiment 1

A.1.1 Support Vector Machine
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Figure A.1: Sample Window Range (SWR) for acra using Support Vector Machine
(SVM)

Figure A.2: SWR for arquillian-core using SVM
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Figure A.3: SWR for blockly-android using SVM

Figure A.4: SWR for brave using SVM
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Figure A.5: SWR for cardslib using SVM

Figure A.6: SWR for dagger using SVM
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Figure A.7: SWR for deeplearning4j using SVM

Figure A.8: SWR for fresco using SVM
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Figure A.9: SWR for governator using SVM

Figure A.10: SWR for greenDAO using SVM
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Figure A.11: SWR for http-request using SVM
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Figure A.12: SWR for ion using SVM

Figure A.13: SWR for jadx using SVM
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Figure A.14: SWR for mapstruct using SVM

Figure A.15: SWR for nettosphere using SVM
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Figure A.16: SWR for parceler using SVM

Figure A.17: SWR for retrolambda using SVM
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Figure A.18: SWR for ShowcaseView using SVM

Figure A.19: SWR for smile using SVM
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Figure A.20: SWR for spark using SVM

Figure A.21: SWR for storm using SVM
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Figure A.22: SWR for tempto using SVM

Figure A.23: SWR for yardstick using SVM
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A.1.2 Random Forest
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Figure A.24: SWR for acra using Random Forest (RF)

Figure A.25: Feature Importance SWR for acra using RF
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Figure A.26: SWR for arquillian-core using RF

Figure A.27: Feature Importance SWR for arquillian-core using RF
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Figure A.28: SWR for blockly-android using RF

Figure A.29: Feature Importance SWR for blockly-android using RF
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Figure A.30: SWR for brave using RF

Figure A.31: Feature Importance SWR for brave using RF
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Figure A.32: SWR for cardslib using RF

Figure A.33: Feature Importance SWR for cardslib using RF
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Figure A.34: SWR for dagger using RF

Figure A.35: Feature Importance SWR for dagger using RF

159



Figure A.36: SWR for deeplearning4j using RF

Figure A.37: Feature Importance SWR for deeplearning4j using RF
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Figure A.38: SWR for fresco using RF

Figure A.39: Feature Importance SWR for fresco using RF
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Figure A.40: SWR for governator using RF

Figure A.41: Feature Importance SWR for governator using RF
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Figure A.42: SWR for greenDAO using RF

Figure A.43: Feature Importance SWR for greenDAO using RF
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Figure A.44: SWR for http-request using RF

Figure A.45: Feature Importance SWR for http-request using RF
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Figure A.46: SWR for ion using RF

Figure A.47: Feature Importance SWR for ion using RF
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Figure A.48: SWR for jadx using RF

Figure A.49: Feature Importance SWR for jadx using RF
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Figure A.50: SWR for mapstruct using RF

Figure A.51: Feature Importance SWR for mapstruct using RF
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Figure A.52: SWR for nettosphere using RF

Figure A.53: Feature Importance SWR for nettosphere using RF
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Figure A.54: SWR for parceler using RF

Figure A.55: Feature Importance SWR for parceler using RF
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Figure A.56: SWR for retrolambda using RF

Figure A.57: Feature Importance SWR for retrolambda using RF
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Figure A.58: SWR for ShowcaseView using RF

Figure A.59: Feature Importance SWR for ShowcaseView using RF
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Figure A.60: SWR for smile using RF

Figure A.61: Feature Importance SWR for smile using RF
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Figure A.62: SWR for spark using RF

Figure A.63: Feature Importance SWR for spark using RF
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Figure A.64: SWR for storm using RF

Figure A.65: Feature Importance SWR for storm using RF
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Figure A.66: SWR for tempto using RF

Figure A.67: Feature Importance SWR for tempto using RF
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Figure A.68: SWR for yardstick using RF

Figure A.69: Feature Importance SWR for yardstick using RF
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A.2 Experiment 2

A.2.1 Support Vector Machine
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Figure A.70: Feature for acra using SVM

Figure A.71: Feature for arquillian-core using SVM
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Figure A.72: Feature for blockly-android using SVM

Figure A.73: Feature for brave using SVM
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Figure A.74: Feature for cardslib using SVM

Figure A.75: Feature for dagger using SVM
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Figure A.76: Feature for deeplearning4j using SVM

Figure A.77: Feature for fresco using SVM
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Figure A.78: Feature for governator using SVM

Figure A.79: Feature for greenDAO using SVM
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Figure A.80: Feature for http-request using SVM
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Figure A.81: Feature for ion using SVM

Figure A.82: Feature for jadx using SVM
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Figure A.83: Feature for mapstruct using SVM

Figure A.84: Feature for nettosphere using SVM
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Figure A.85: Feature for parceler using SVM

Figure A.86: Feature for retrolambda using SVM
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Figure A.87: Feature for ShowcaseView using SVM

Figure A.88: Feature for smile using SVM
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Figure A.89: Feature for spark using SVM

Figure A.90: Feature for storm using SVM
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Figure A.91: Feature for tempto using SVM

Figure A.92: Feature for yardstick using SVM
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A.2.2 Random Forest
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Figure A.93: Feature for acra using RF

Figure A.94: Feature for arquillian-core using RF
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Figure A.95: Feature for blockly-android using RF

Figure A.96: Feature for brave using RF
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Figure A.97: Feature for cardslib using RF

Figure A.98: Feature for dagger using RF
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Figure A.99: Feature for deeplearning4j using RF

Figure A.100: Feature for fresco using RF
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Figure A.101: Feature for governator using RF

Figure A.102: Feature for greenDAO using RF
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Figure A.103: Feature for http-request using RF
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Figure A.104: Feature for ion using RF

Figure A.105: Feature for jadx using RF
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Figure A.106: Feature for mapstruct using RF

Figure A.107: Feature for nettosphere using RF
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Figure A.108: Feature for parceler using RF

Figure A.109: Feature for retrolambda using RF

199



Figure A.110: Feature for ShowcaseView using RF

Figure A.111: Feature for smile using RF
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Figure A.112: Feature for spark using RF

Figure A.113: Feature for storm using RF
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Figure A.114: Feature for tempto using RF

Figure A.115: Feature for yardstick using RF
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A.3 Experiment 3

A.3.1 Support Vector Machine
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Figure A.116: Oversampling for acra using SVM

Figure A.117: Oversampling for arquillian-core using SVM
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Figure A.118: Oversampling for blockly-android using SVM

Figure A.119: Oversampling for brave using SVM
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Figure A.120: Oversampling for cardslib using SVM

Figure A.121: Oversampling for dagger using SVM
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Figure A.122: Oversampling for deeplearning4j using SVM

Figure A.123: Oversampling for fresco using SVM
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Figure A.124: Oversampling for governator using SVM

Figure A.125: Oversampling for greenDAO using SVM
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Figure A.126: Oversampling for http-request using SVM
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Figure A.127: Oversampling for ion using SVM

Figure A.128: Oversampling for jadx using SVM
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Figure A.129: Oversampling for mapstruct using SVM

Figure A.130: Oversampling for nettosphere using SVM
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Figure A.131: Oversampling for parceler using SVM

Figure A.132: Oversampling for retrolambda using SVM
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Figure A.133: Oversampling for ShowcaseView using SVM

Figure A.134: Oversampling for smile using SVM
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Figure A.135: Oversampling for spark using SVM

Figure A.136: Oversampling for storm using SVM
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Figure A.137: Oversampling for tempto using SVM

Figure A.138: Oversampling for yardstick using SVM
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A.3.2 Random Forest
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Figure A.139: Oversampling for acra using RF

Figure A.140: Oversampling for arquillian-core using RF
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Figure A.141: Oversampling for blockly-android using RF

Figure A.142: Oversampling for brave using RF
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Figure A.143: Oversampling for cardslib using RF

Figure A.144: Oversampling for dagger using RF
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Figure A.145: Oversampling for deeplearning4j using RF

Figure A.146: Oversampling for fresco using RF
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Figure A.147: Oversampling for governator using RF

Figure A.148: Oversampling for greenDAO using RF
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Figure A.149: Oversampling for http-request using RF
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Figure A.150: Oversampling for ion using RF

Figure A.151: Oversampling for jadx using RF
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Figure A.152: Oversampling for mapstruct using RF

Figure A.153: Oversampling for nettosphere using RF
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Figure A.154: Oversampling for parceler using RF

Figure A.155: Oversampling for retrolambda using RF
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Figure A.156: Oversampling for ShowcaseView using RF

Figure A.157: Oversampling for smile using RF
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Figure A.158: Oversampling for spark using RF

Figure A.159: Oversampling for storm using RF

227



Figure A.160: Oversampling for tempto using RF

Figure A.161: Oversampling for yardstick using RF
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