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Abstract  

Introduction: Data streams are produced by sensors that sample an external system at a periodic 

interval. As the cost of developing sensors continues to fall, an increasing number of data stream 

acquisition systems have been deployed to take advantage of the volume and velocity of data 

streams. An overabundance of information in complex environments have been attributed to 

information overload, a state of exposure to overwhelming and excessive information. The use of 

visual analytics provides leverage over potential information overload challenges. Apart from 

automated online analysis, interactive visual tools provide significant leverage for human-driven 

trend analysis and pattern recognition. To facilitate analysis and knowledge discovery in the space of 

multidimensional big data, research is warranted for an online visual analytic framework that 

supports human-driven exploration and consumption of complex data streams.  

Method: A novel framework was developed called the temporal Tri-event parameter based Dynamic 

Visual Analytics (TDVA). The TDVA framework was instantiated in two case studies, namely, a case 

study involving a hypothesis generation scenario, and a second case study involving a cohort-based 

hypothesis testing scenario. Two evaluations were conducted for each case study involving expert 

participants. This framework is demonstrated in a neonatal intensive care unit case study. The 

hypothesis generation phase of the pipeline is conducted through a multidimensional and in-depth 

one subject study using PhysioEx, a novel visual analytic tool for physiologic data stream analysis. 

The cohort-based hypothesis testing component of the analytic pipeline is validated through CoRAD, 

a visual analytic tool for performing case-controlled studies. 

Results: The results of both evaluations show improved task performance, and subjective satisfaction 
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with the use of PhysioEx and CoRAD. Results from the evaluation of PhysioEx reveals insight about 

current limitations for supporting single subject studies in complex environments, and areas for 

future research in that space. Results from CoRAD also support the need for additional research to 

explore complex multi-dimensional patterns across multiple observations. From an information 

systems approach, the efficacy and feasibility of the TDVA framework is demonstrated by the 

instantiation and evaluation of PhysioEx and CoRAD. 

Conclusion: This research, introduces the TDVA framework and provides results to validate the 

deployment of online dynamic visual analytics in complex environments. The TDVA framework was 

instantiated in two case studies derived from an environment where dynamic and complex data 

streams were available. The first instantiation enabled the end-user to rapidly extract information 

from complex data streams to conduct in-depth analysis. The second allowed the end-user to test 

emerging patterns across multiple observations. To both ends, this thesis provides knowledge that 

can be used to improve the visual analytic pipeline in dynamic and complex environments.  
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1.  Introduction 

Unprecedented growth in networked sensors in recent years has generated large repositories 

of heterogeneous data streams in applications across many domains, from intelligence analysis 

to market research. This is also true in the neonatal intensive care unit (NICU), where clinical 

researchers need to identify patterns that extend across multiple high frequency physiologic 

data streams and clinical observations [1]. Identifying events of interest in such an environment 

is a challenging and common problem [2]. Patterns identified in the data stream, along with 

clinical information generated by humans are converted to knowledge. The insight generated 

from this knowledge can be utilised to support the care of critically ill infants. Insight is 

perceived knowledge that may be novel and surprising, thus allowing the user to enhance their 

cognitive understanding [3].  

 In the NICU, physiologic signals change over time as infants grow and mature, and new 

normal ranges are established week-by-week [4]. A single physiologic data stream can contain 

a variety of complex events that collectively represent real-world conditions in critically ill 

patients. One of the aims of a clinical researcher is to identify precursors in the data stream 

that may be applied in models predicting to the onset of adverse clinical conditions. In order to 

enhance this task, the researcher requires the ability to visually explore multi-faceted patterns 

in a single patient [5], and by using that insight, perform an observational research method, 

such as case-controlled analysis against patient cohorts [6]. Supporting that requirement 

necessitates novel visual solutions that can reduce the cognitive burden of clinical researchers, 

while also involving the human in the analysis pipeline [7]. 
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 This thesis presents extensions to the traditional data warehouse architecture by 

introducing the temporal Tri-event parameter Dynamic Visual Analytic (TDVA) framework. The 

TDVA framework, as output, generates instantiated dynamic visual analytic marts. These marts 

serve as the visual interface allowing researchers to interactively explore heterogeneous data 

streams. TDVA combines consumption and exploratory (research) requirements for dynamic 

and complex environments using heterogeneous data streams. This thesis contributes to the 

later requirement through two major instantiations, namely the Physiologic Explorer (PhysioEx) 

and the Cohort Relative Alignment Display (CoRAD). While presented as a proof-of-concept 

(Heart Rate Variability graph) in this thesis, the consumption requirement is left for future work. 

1.1  Researcher and Consumer 

There are two prevailing groups of users that perform frequent analysis of heterogeneous data 

streams. The first group seeks to actively explore or passively discover new knowledge that may 

be useful in achieving a business objective. Active exploration involves the user utilising one of 

several direct manipulation tools, while a user performing passive discovery may suddenly 

identify novel insight using means such as serendipity [8], [9]. The second group, in contrast, is 

interested in the consumption of that data, in order to gain insight given limited cognitive 

resources [10], [11]. These two groups of analysts will hereafter be addressed as researchers 

and consumers respectively. The researcher seeks to discover knowledge using data and 

information, while the consumer uses knowledge to accomplish a task.  

 According to Davenport and Prusak, data, within an organizational context is defined as: 

‘a set of discrete, objective facts about events’ [12]. Information as defined by Oppenheim and 
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Stenson, may largely be based on data, and in some cases expressed as an identifiable and 

communicated entity, which encapsulates both the intention of the sender and the expectation 

of the receiver [13]. Knowledge is defined as: ‘large structures of related information’ [14]. 

Oppenheim and Stenson, propose a pathway for the transformation of information to 

knowledge through comparison, consequence, connections, and conversation [13]. 

Comparison involves identifying how a particular set of information compare to other known 

sets, consequence acknowledges the implication of this new set with respect to business 

decisions and actions. Connections identify relationships to existing knowledge, and 

conversation places an emphasis on what other people think about this particular set of 

information. Through careful completion of each of the four transformation processes, a user 

arrives at actionable knowledge, that is, knowledge which can be applied in the context of real-

world situations. Visual systems act as a medium, which aids the human in producing actionable 

knowledge by means of interactive and efficient displays [15]. 

 The consumer, with knowledge requirements, may be a critical care physician in an 

intensive care unit, or an operator in a nuclear power plant. In the case of the former, the critical 

care physician achieves situational awareness by exploiting visual perception abilities to 

consume knowledge from numerous information systems in a timely manner to support a 

critically ill patient.  To support that form of instantaneous knowledge delivery, systems must 

be capable of consuming, analysing, and visually communicating insight. A component of the 

TDVA framework may be extended to support this workflow.  
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 Meanwhile, the researcher, such as in the case of a network security analyst, uses highly 

interactive tools to explore large volumes of data to identify security breaches [16]. Moreover, 

in complex real-world settings, the researcher has an additional requirement to perform in-

depth and multi-dimensional exploration of complex information belonging to an individual 

system. These activities are commonly referred to as the N-of-1 analysis, and commonly used 

in psychiatry [17], [18], education [19], and individualized medicine [20], [21]. N-of-1 analysis 

has been used to support generation of hypothesis in complex environments [5], [22], [23]. 

Once a hypothesis has been generated in a single subject, an attempt is made to compare these 

patterns across similar population cohorts. This study design is referred to as the case-

controlled analysis, this design is commonly used in epidemiology [24].  In this thesis I focus on 

the researcher to support both N-of-1 and case-controlled methodologies, while allowing for 

extendibility to support the consumer. 

Researcher: The researcher requires highly interactive functionalities to support N-of-1 tasks, 

such as multi-faceted and in-depth analysis of heterogeneous data streams for the purpose of 

hypothesis generation. To that end, the researcher requires appropriate interactions 

techniques for selecting, filtering and retrieving relevant details while conducting hypothesis 

generation. Subsequently, to test that hypothesis the researcher requires tools that support 

case-controlled analysis tasks across multiple observations.  

Consumer: The consumer requires rapid access to knowledge. This involves the communication 

of key temporal parameters of dynamic events. Moreover, the level of interactivity must be 
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reduced as to remove complexities in the interface. The emphasis is placed on communicating 

salient deviations as determined by online algorithms processing the data stream.  

1.2  Hierarchy of Events 

One of the key distinctions that will be carried throughout this thesis, is the notion of 

heterogeneous data streams. In many domains, such as in network surveillance, for instance, a 

single data stream of intrusions at a firewall can be replicated across multiple nodes, thereby 

producing a collection of heterogeneous intrusion streams. In contrast, in sensor networks, 

such as in smart homes that use smart water, electric meters, weather sensors, represent 

unique views of a single system. Each data stream generated from those sensors are then 

analysed in part or collectively to identify anomalies. In this thesis, the latter of the two 

heterogeneous data streams assumes the subject of interest. Similar to home sensors, patient 

sensors sample data that generate information about independent physiological systems. 

Collectively, these streams form a heterogeneous physiologic collections that can be analysed 

for identifying and preventing pathological clinical conditions. 

 The availability of high density data streams continues to motivate research in the areas 

of acquisition, event processing and visualization. A data stream is defined as a real-time, 

continuous, ordered sequences of events [25]. An event is defined as an occurrence of interest 

in time, and can be reduced to either primitive or complex, which will be defined below [26]. 

While that distinction generalize occurrences within a single stream, additional hierarchies are 

required when developing visual representations of salient occurrences between and outside 

of data streams.  
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 This thesis further introduces a hierarchy of events to expose the depth of analytic 

complexity, and also to motivate tools that support these distinctions. The hierarchy is 

illustrated in Figure 1. Events fall into one of four classes, including primitive, complex, 

multidimensional, and physical. A primitive event is an atomic occurrence of interest, observed 

in a data stream at a point in time. This may include abrupt changes in the signal baseline, such 

as asynchronous acceleration or deceleration to an abnormal state. A primitive event includes 

a start and stop time, and the duration of that event may itself contain salient information.  

A complex event includes a series or a unique sequence of primitive events in a single data 

stream over a period of time. The genesis of an abrupt acceleration followed by a prolonged 

 

 

Figure 1: Hierarchy of Events: The primitive event is a single observance of interest in 
a data stream. A complex event contains primitive events over a period of time. A 
multidimensional event involves salient co-occurrences across data streams. A physical 
event manifest in the environment can generate the lower three events.  
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Sensor1
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t0 tn-1
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deceleration is an example of a complex event that includes two primitive events. A 

multidimensional event is the observance of two or more complex or primitive events across 

multiple data streams over a period of time. A multidimensional event may come from 

significant external disturbances on the system. Finally, a physical event is the manifestation of 

a real-world condition that acts as a cause for the disturbance. An example of a physical event 

may be a disturbance induced by an earth quake impacting a network of environmental 

sensors. A clear delineation of events allows for extensibility of the TDVA framework into other 

domains that share similar analysis and consumption requirements with data streams. 

1.3  Temporal Tri-Event Parameters 

This thesis introduces the concept of critical temporal variables, namely: trajectory, frequency, 

and duration. Researchers assessing events produced in dynamic and complex data streams 

rely on those temporal critical variables to identify meaningful insight [27]. These critical 

temporal variables have been extensively explored in the temporal data mining literature and 

often implicitly identified in the intensive care environment [28]. The I-Pass system, for 

instance, consists of a minimal list of medical event information that can support the transfer 

of patient care (handover) between clinical shifts [29]. Much of these handover processes 

contain common variables, such as those that capture the number of observed events, the time 

and duration of the condition, and the presence of a positive or negative trend [30].  

 In this thesis, trajectory, frequency, and duration are collectively identified as the tri-

event parameters. The details of these metrics are discussed below. 
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 To identify the significance of any event, the most commonly utilized variable is the 

event’s trajectory pathway [31]. Trajectory of events can alert the domain expert of abnormal 

deviations from a normal baseline. The second variable is the frequency of an event within an 

epoch, such as the start and end of a monitoring period. Identifying the frequency of abnormal 

events can help communicate appropriate knowledge about the stability and health of the 

system.  For instance, the frequency of pauses in breath over an hour can inform the clinician 

of potential pathology such as apnoea, or the need to modify some ongoing intervention [32]. 

The third variable is the total duration of any event. Duration of an event can be enumerated 

in seconds to several hours or days. Together these metrics are presented in this thesis, to 

convey important information of multidimensional events that can then be used within a 

dynamic visual analytic framework to support hypothesis generation and testing. 

1.4  Clinical Challenge – Case Study Context  

Critically ill premature infants admitted to the neonatal intensive care unit face a series of 

medical challenges that require ongoing monitoring and intervention. Most of the high 

frequency physiological and other medical device data are not used beyond the operational 

instantaneous vital organ monitoring [33]. More recently, researchers have begun to analyse 

and explore this dataset in order to generate new knowledge that can improve care at the bed-

side [34]–[36]. There is great potential for real-time analytics techniques coupled with visual 

analytics techniques to service this need. 

 McGregor et al. developed the Artemis platform [37]; this platform provides advanced 

real-time health analytics for multiple patients, watching for the onset of multiple conditions 
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using multiple physiological and other medical device data streams. The Artemis platform, is 

currently being used to progress research studies relating to the diagnosis of nosocomial 

infection [38], neonatal apnoea [39], and retinopathy of prematurity [1]. Nosocomial infection, 

also known as sepsis, is a common hospital-borne infection for babies receiving care in the unit 

[40]. Neonatal apnoea, on the other hand is a state in which the infant ceases to breathe for 

longer than 20 seconds, and the cause can be identified as belonging to one of several muscular 

or neurological conditions [39]. Traditionally these conditions have been identified by text in 

clinical notes, or aggregated by frequency with minimal information of the individual events. 

Through the instantiation of the TDVA framework, a series of visual mediums can be generated 

and used to provide support context-sensitive consumption and knowledge discovery activities.  

 In this thesis, two unique scenarios, one each for hypothesis generation and hypothesis 

testing, are used to instantiate the TDVA framework. PhysioEx, an N-of-1 hypothesis generation 

visual analytic tool is detailed in chapter seven, and CoRAD, a case-controlled hypothesis testing 

visual analytic tool is presented in chapter eight. An early support for contextual deployment is 

also contributed using the Exploration-Consumption continuum in §6.3. 

1.5  Contributions 

The contributions presented in this thesis cross multiple domains. There are four areas where 

knowledge is contributed. Three of these are disciplines within computer science and 

informatics, while the fourth is within a subspecialty of medicine called neonatology. The three 

disciplines within computer science are, health informatics, information systems, and visual 

analytics.  
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 To the discipline of health informatics, this thesis makes five contributions, namely a 

systematic review of physiological visualizations, and development of four visual analytic tools: 

Heart Rate Variability Graph, Sequence of Events (SeqEvent), Physiologic Explorer (PhysioEx), 

and Cohort Relative Aligned Dashboard (CoRAD). These tools address health informatics 

challenges. For instance, the Heart Rate Variability Graph allow consumers to rapidly associate 

heart rate variability scores to pathologic states and verified using two domain experts. 

SeqEvent, allows researchers to identify novel sequence pathways in output generated by 

event stream processing algorithms and was verified using a single clinical researcher. PhysioEx 

allows researchers to identify salient features within a single patient to perform hypothesis 

generation tasks and was validated in a preliminary expert evaluation study. Finally, CoRAD 

allows researchers to test hypotheses across population cohorts to validate physiologic markers 

and was validated in an expert evaluation study.  

 Within information systems, four contributions are made. The contributions include: a 

theoretical Exploration-Consumption Continuum, a TDVA framework proposing novel methods 

of generating visual marts within an event stream processing environment, a TDVA 

methodology outlining an instantiation process, and a TDVA platform design for deploying the 

TDVA framework. These contributions are validated with applications deployed in the context 

of neonatal intensive care. 

 Three novel contributions are made to the discipline of visual analytics. All of the 

contributions to the domain are visual methods utilized in the PhysioEx and CoRAD. These visual 

techniques are: the temporal intensity map, SequenceGraph a bubble-like display, and the 
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cohort-based relatively aligned dashboard which is a combination of a heatmap representation 

and a contextual bar that supplements data using an interactive technique. These contributions 

can be applied in complex domains where analysis of the temporal tri-event parameters may 

provide meaningful insight for the end-user. 

 To the discipline of neonatology, knowledge is contributed from evaluations that were 

conducted using PhysioEx and CoRAD. This knowledge advances the understanding of 

physiologic behaviours, and the relationships between neonatal spells & neonatal sepsis, and 

heart rate variability & increased bradycardias. While initial evidence is presented with the 

evaluations presented in this thesis, additional work is required to validate the findings with 

larger patient cohorts and domain experts. 

1.6  Thesis Structure 

In chapter 1, I provide an overview of three key concepts that underlie the TDVA framework, 

namely, distinctions between an explorer and a consumer, hierarchy of events, salient temporal 

properties in complex and critical settings, clinical challenges and the contributions of this 

thesis. Chapter 2 details the clinical environment and the nature of challenges introduced in 

the previous chapter. The clinical challenge serves as a motivation for this research, however 

the challenges outlined in the clinical context contain numerous properties that allow the tools 

to be generalizable to other domains. This generalizability will be made explicit in chapter 3 

where I present related works. Chapter 3, contains results from a systematic review of 

physiologic visual interfaces, and the contents are interpolated from a publication that is 

currently under review [41]. 
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 Chapter 5 presents results from a qualitative explorative study that motivates the 

proposed framework. That chapter also contains materials interpolated from two publications 

[42], [43].  Chapter 6 introduces the Tri-event Parameter Dynamic Visual Analytic (TDVA) 

framework, TDVA methodology and TDVA platform design, which serves as the foundational 

contribution of this thesis. The prototypes of TDVA marts: Heart Rate Variability Graph and 

SeqEvent, are presented in §6.5.1, and §6.5.2 respectively. Chapters 7 and 8 presents two 

validated instantiations, PhysioEx [44] and CoRAD [45] respectively. PhysioEx and CoRAD are 

instantiations of a TDVA mart, and were created by following the TDVA framework and 

methodology. These TDVA marts are within the TDVA platform which instantiates the TDVA 

framework.  PhysioEx has been published, while CoRAD under print. Chapter 9, summarizes this 

thesis and provide some future research directions. 
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2. Neonatal Intensive Care  

About 10% of the world’s babies are born premature [46]. In the developed world, premature 

babies are usually admitted to the neonatal intensive care unit (NICU). Babies within the NICU, 

have continuous monitoring of their heart rate, blood oxygen saturations, breathing and blood 

pressure levels. A critically ill infant admitted to the NICU may produce several gigabytes of 

complex physiological, neurological and pharmaceutical data every day.  

 The electrocardiograph (ECG) sensor samples data at 1000 hertz (Hz) to produce 

waveform signals of the infant’s real-time heart rhythm, along with 1 Hz readings of derived 

heart rate (HR). Breathing is detected using respiratory impedance wave plethysmography 

(IRW) sampled at 65.8 Hz. Blood oxygen saturation (SpO2) is gathered as a 1 Hz value along with 

a plethysmography wave at 65.8 Hz. This has the potential to produce upwards of 390 million 

data points per patient per week [1]. These multidimensional signals are actively consumed in 

the critical care environment and serve as an indication of patients’ vital statues. Nurses record 

these vital signals in hourly or half-hourly intervals to derive longitudinal temporal trends. 

Concretely, the amount of data collected for each patient, in a typical 40 – 60 patient unit, can 

be overwhelming. To that end, graphical displays in medicine have long been used to support 

bed-side decision making and clinical research [47].  

Patient monitors, including the ECG, SpO2, and similar modules at the bed-side have 

long displayed a series of critical physiological variables in real time, using a combination of 

waveform and numerical formats. These patient monitors were initially designed to support 

monitoring needs of the consumer. Hence, the design was intentionally minimal, with a focus 
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on instantaneous values. One of the earliest designs of the modern bed-side physiologic 

monitor is the Siemens Sirecust 404-1 [48] ( Figure 2a) introduced in the early 1980s. Since then, 

very little physical changes have been made. The Phillips MP70 displayed in  Figure 2b shows 

only minor differences, specifically the introduction of colour and varying size of text. The 

modern patient monitor however, can list up to 36 critical physiological variables in real time 

following the same SSSI paradigm [49]. These systems have not converted low level data to 

information and knowledge as required at the point of care. 

 

 While bed-side devices were introduced as a means of managing the overwhelming 

throughput, they do not sufficiently serve the need of a researcher. For instance, the data 

presentation and analytic faculties provided by the manual charts they replace were found to 

be superior when compared to the patient monitors [50]. Hence, the practise became norm to 

transcribe physiologic values from the monitor onto manual charts, or electronic patient charts.  

 

(a)                                            (b) 
 Figure 2: Medical Monitors retain the same interface design. (a) A Drager Serie 

SIRECUST monitor displaying demo data [48]. (b) A Phillips MP70 monitor displaying demo 
data [306]. 
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Shabot et al. [51] recognizing the need for better graphics and clinician driven visual 

representation of critical data, introduced a platform for non-programmers to enhance data 

presentation in the generated reports. The system displayed in Figure 3 shows an early form of 

graphical displays containing patients’ cardiovascular history.  These graphical systems were 

more useful for researchers to identify abnormal conditions and trajectories over longer 

durations. 

 

 The goal of clinical graphical interface designers in the past decade has been to create 

novel methods for presenting integrated and multidimensional information on a single screen. 

Yet, current graphical display, have been designed to be strictly consumption driven, and 

thereby, support only minimal interaction and limit any manipulation of that data. These 

displays do not offer clinicians the ability to explore the physiological data space to extract 

novel information about salient physiological behaviours. Analysts in this domain seek simple 

and intuitive graphical displays so as to elicit rapid knowledge from multidimensional and multi-

 

Figure 3: Hemodynamic Profile Display [51] 
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modal network sensor data to confirm hypotheses about clinical conditions and their 

associations [52].  

2.1  Contextual Challenge 

The monitoring period of an ill patient can greatly vary. An anaesthesiologist may attend to a 

patient for several continuous hours [53], while a critical care team may care for a patient over 

several days, weeks or even months as usual in the case of a premature infant. Moreover, while 

a patient is receiving care in the critical care unit, they may also develop new conditions that 

were not present at admission. Two of these conditions are apnoea of prematurity, and the 

onset of nosocomial sepsis. 

2.1.1  Apnoea of Prematurity 

Premature infants, who are born at less than 35 weeks’ gestation have neonatal spells, which 

are episodes of cardiorespiratory events denoted by a breathing pause [54]. The breathing 

pause is a consequence of the infant’s immature brain and its inability to maintain respiratory 

control [54]. An increase in the frequency of spells may be associated with other serious 

conditions such as a blood stream infection, lung collapse or a seizure. The term neonatal spells 

is commonly used in NICUs for cardiorespiratory events that include pauses in breathing, fall in 

heart rate, or fall in blood oxygen saturation [39]. The reason for this term is that no raw signal 

and no monitor can cope with the complex definition of apnoea. Infants cannot be observed by 

bed-side staffs continuously, it is not always possible to visually assess what happens when a 

monitoring alarm was initiated. Hence, the term spell has come into common usage to mitigate 

the uncertainty. 
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 Apnoea is defined as a pause in breathing for 20 seconds or more or a pause in breathing 

that is associated with a change in heart rate, colour or muscular tone. A temporal pause in 

breathing is relatively easy to detect from a single stream of data. The second portion of the 

definition is more complex. This relies on the temporal integration of the three physiological 

streams of heart rate, breathing, and blood oxygen saturation, which serves as surrogate of 

colour. Clearly, this omits one of the portions of the definition, which is muscular tone. 

However, clinically, this is the least consequential as it rarely occurs in isolation from changes 

in heart rate or blood oxygen saturation [39]. 

 Thommandram et al. developed three distinct sets of algorithms to accurately identify 

various types of neonatal spells [39]. By combining these three algorithms and looking for 

temporal patterns in the raw data, it is possible to accurately identify the various types of 

neonatal spells. Moreover, this algorithm produces significant secondary data, such as, the start 

and end times of an event, duration, and percentage from baseline of events across each raw 

data stream. Typically this information is hidden from the user to avoid information overload, 

however, in the proposed visual analytic framework, large volumes of secondary data will be 

shown to support the end-user in identifying contextual detail, and higher level insight.  

The proposed framework will be used to demonstrate both the active and exploratory 

detection of large volumes of features extracted from this algorithm. 

2.1.2  Late Onset Nosocomial Sepsis 

Late onset neonatal sepsis (LONS) is a major health problem, in which the infant is faced with 

severe sepsis, a form of hospital acquired infection, requiring antibiotic therapy [35]. It is 

typically defined as sepsis acquired as early as four days before, or up to 28 days after birth. 
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Studies have shown that heart rate variability may be used as an early indication of the onset 

of sepsis [55]. Currently it is very difficult to detect using non-invasive methods, such as by bed-

side monitoring. Clinicians rely on qualitative observational methods for identifying signs on 

this illness. When LONS is suspected, blood samples are drawn and required to confirm any 

diagnosis. However, neither methods have been found to be reliable [56].  

 McGregor et al. developed an algorithm that produces real-time heart rate variability 

scoring for neonatal infants [57]. This scoring can be used to identify temporal areas where 

there is reduced heart rate variability that indicates some sign of illness. Flower et al. [58], find 

that there may also be increased instances of periodic deceleration of heart rate when heart 

rate variability is reduced. Buchman [59] previously demonstrate that the presence of clusters 

of decelerations are correlated to neonatal sepsis. 

 In this doctoral research, the TDVA framework will be used to identify novel means of 

displaying heart rate variability and decelerations in heart rate information to support rapid 

detection of low heart rate variability areas, and within them, areas that may be indicative of 

sepsis across a cohort population. The visual analytic tool enables interactive exploration of 

cohort patient populations to perform hypothesis testing.  

2.2  Clinical Contributions 

The proposed research contributes key outcomes that advance information visualization and 

analysis in the neonatal intensive care environment. Firstly, the proposed framework supports 

the notion of coordinated exploration of temporal tri-event parameters to perform explanatory 

and exploratory research. By inheriting a strong temporal event-based approach, the proposed 

framework is able to highlight key metrics including frequency, duration, and trajectory of 
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event features and event classifications. This approach allows the clinical researchers and 

domain experts to see past, present and anticipate future direction of events as they are 

relatively aligned to clinical events that manifest at the bed-side.  

 Secondly, the proposed framework has access to three types of data, namely, secondary 

and meta-data from the online analysis engine, the algorithmic event features and event 

classifications, and human-generated input. Graphical representation of these low-level and 

high-level datasets has not been previously demonstrated with clinical data streams.   

 The last contribution of the framework is tied to the visual design that displays 

information and knowledge to the end-user. The use of novel visual designs employing tri-event 

parameters, such as the Temporal Intensity Map, Sequence Graph, and other coordinated 

graphs, contribute unique approaches to addressing the clinical analyst’s information overload 

and situational awareness in the intensive care environment. While the Cohort Relatively 

Aligned Dashboard contributes a visual analytic tool for performing cohort studies involving 

physiologic data. 

2.3  Chapter Summary 

This chapter presents an overview of the context in which the research of this thesis is applied. 

In modern intensive care units, physiological data is generated for instantaneous consumption, 

and after some time, it is flushed from the device. This limits the ability of the analyst to perform 

any exploratory analysis or hypothesis testing. A visual analytic framework for complex and 

critical environments can enhance the ability of the user in analysing large volumes of data 

streams from a single patient or consisting of data from multiple patients. The design 

considerations for such framework, must additionally incorporate important temporal 
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properties of streaming data, such as the trajectory of the signal, prior trends, and adopt 

effective modalities to highlight regions of interest.  

 The next chapter presents the literature review of computer science research that forms 

the basis of this thesis. Chapter 4 presents prior work in the space of physiological visual 

representations, and from Chapter 5 – 8, this thesis contributes knowledge that can address 

some aspects of the contextual challenges identified in §2.1.   
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3.  Literature Review 

The design of analytic systems have a rich history dating to the early 1950s, one of the seminal 

works in management decision support, titled “The New Science of Management Decision” by 

Simon (1977) [60] introduced a structured approach to the development of usable decision 

support systems. Simon proposes a methodology involving four major phases: intelligence, 

design, choice and implementation. The intelligence phase allows the designer to identify 

constraints, the design phase involves formulating a model of the system and setting criteria 

for choice, the choice phase includes active selection of alternatives and finally the 

implementation of the system occurs. However that approach does not consider salience of 

high-throughput sensor data systems. Much of the processes are manual and human-driven, 

and the methodology inherently assumes static nature of the data. In order to extend that work 

into the sensor data analytic domain, a framework and methodology are proposed. The 

framework incorporates several aspects of Simon’s processes, but also extends areas where 

data-driven automation can occur.  

 This chapter presents details that support the development of the TDVA framework, 

methodology, and platform. The chapter is structured as follows: §3.1 presents unique 

requirements of sensor data, §3.2 introduces the concept of complex data, §3.3 identifies prior 

data warehouse approaches, §3.4 introduces information visualization, §3.5 presents several 

related works in visual analytics that support interactive analysis of a large variety of data 

formats, §3.6 presents work in dynamic visual analytics and identifies open research in that 

space. §3.7 concludes this chapter with a summary. 
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3.1  Sensor Network Data Streams 

Sensor networks are a collection of sensors that produce streaming data [61]. Streaming data 

is a collection of synchronous data elements that provide a continuous and detailed snapshot 

of a system’s current state. Multiple data streams can be generated from a system by sampling 

various components using networks of sensors, such as their health parameters and respective 

states. With every ‘movement’ of the data objects, greater duration and specificity of the 

systems states are captured by those network sensors [62]. Continued movement of this data 

stream allows trends to be captured, which may be used to discover the temporal stability or 

instability of that system. The aggregation of significant volumes of data streams that strains 

traditional search, filter, and analysis methods is collectively defined as big data [63].  

 Advances in information management have produced novel methods for collecting and 

analysing network streaming information [64], [65]. Location sensors are used to map episodic 

movement of multiple devices between points in an area map. The movement may be captured 

using information retrieved from static sensors, during a transaction, or using mobile sensors 

carried by the user [66]. In each scenario, streaming data must be associated temporally and 

identified to physical locations. In prior work, bio sensors have been used to explore motion 

and other physical parameters for monitoring health statuses of critically ill patients [67]. While 

advances have also other sensor data environments, such as in automated and visual analysis 

of location [66], [68] and social-media based streaming data [69]–[72]. Further contributions 

are required in areas where subtle behaviours in data streams require analysis to discover new 

patterns and generate hypotheses. 
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 An example of complex big data may involve a single residual data stream integrated from 

variability features extracted from a stream of heart rate, oxygen saturation and respiration. 

Individually, these base streams may provide clues of their individual organ, but when 

integrated that residual allows for a high-level appreciation of the cardiorespiratory 

compensatory system. However, the results of that data are then used to infer the condition of 

organs, tissues, and prepare prognosis for future states and trajectories. Another example of 

complex big data is the efforts by Electronic Medical Record and Genomics (eMERGE) 

consortium to integrate with the Pharmacogenomics Research Network to support clinician 

practice [73]. Pharmacogenomics data provides significant volumes of casual and inferential 

data which provides knowledge in form of definitive diagnosis and potential treatment 

pathways [74], [75]. 

 Continuous monitoring of multi-modal and multidimensional physiological data is an 

integral aspect of evidence-informed care and is largely composed of complex big data. After 

acquired through numerous invasive and non-invasive medical sensors attached directly to the 

patient, this complex data is reduced to modest periodic samples for the purpose of cognitive 

ease. However, the machine sampling frequency for these sensors can be in excess of several 

kilohertz [37]. Clinicians attempt to gain situational awareness at the cost of dimensional 

reduction, that is, kilohertz frequency is reduced to hourly or daily values [76]. Persistent 

generation and consumption of continuously monitored physiological data consequently, 

presents challenges to the clinician who must comprehend short and longer term trends to 

makes appropriate decisions in line with accurate interventions. The next sections present 

related work in the area of complex big data, supporting decision-making in complex 
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environments, and concludes with visual analytic as an emerging field in knowledge discovery 

and information gathering. 

3.2  Complex Big Data 

The previous subsection introduced large volumes of data streams and their accumulated pool 

as big data. In this section, the concept of complexity will be introduced, and Complex Big Data 

will be discussed.  

 A large group of complex big data sets are scientific in nature; these sets are gained from 

simulations of physical phenomenon like climate change, biological interactions, chemical 

composition, and medical scanners [77]–[79]. They contain hidden underlying associations or 

compositions which are difficult to ascertain by simply looking at their raw data. However, 

when integrated across multiple modes or data streams, interesting features can be identified 

[77]. However, before these features are observed by the user, complex data undergoes several 

stages of pre-processing such as signal processing, artifact filtration, and model projections 

[28], [80]. 

 Pedersen & Jensen propose nine requirements as discrete signatures of complex 

multidimensional data [81]. These requirements were then evaluated against existing data 

models to assert that none of the data models could support all nine requirements. Three of 

the primary requirements proposed by the authors were attributed to the absence of 

visualizing hierarchy of each multidimensional data, along with displaying uncertainty and 

granularity in the low level data. Keim, further separates transactional and analytics aspects of 

data. He proposed that the dimensionality and type of the data be used in identifying usage 
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and potential [82]. He illustrates examples to show data can exist in one of many basic types, 

for instance: one-dimensional, two-dimensional or multidimensional.  

 One-dimensional data are those which form a sequence of analog or digital signals 

existing in a single dimension. A prominent group of one dimensional data is temporal data, 

which includes: audio, video, or location tracking information [83]. Two-dimensional data 

include mapping information such as geo-spatial information and diagnostic images [84]. 

Multidimensional and multi-modal complex data are those in which several one-dimensional 

complex or homogenous data objects are aggregated to produce multidimensional associations 

from multiple unique sources [85]. Physiological data, in particular those involving network of 

biomedical and imaging sensors can be seen as multidimensional. 

 Karasti, Baker & Halkola, 2006, present several additional characteristics of data. The 

authors differentiate between deep-simple, wide-complex, and deep-complex data volumes 

[86]. Data variations are unique to individual disciplines of basic and translational research. 

Genomics consist of deep volumes of data yet the data themselves are sequential and non-

complex [73]. Field observations are examples of wide-complex data, in which many 

independent observations contain enriched information and contain pre-filtered data. Deep-

complex data, such as those generated from multi-modal and multi-run 3D simulations of 

computed tomography imaging, contains significant intrinsic complexity and involve large data 

volumes that can extend to petabytes in volume [87], [88]. Physiologic data resides in between 

wide-complex and deep-complex. While the sheer volume may not extend to those generated 
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from diagnostic imaging, it demonstrates deep-complex potential when considered over long 

period of time, including the lifetime of a human. 

 An extreme example to illustrate the differences between big data and complex big data 

is to consider the discovery of the Higgs boson, in which approximately 200 petabytes (2 x 1017 

bytes) were collected and analysed [89]. Although significant amounts of data were captured, 

the data sampled just three parameters measuring the mass, direction and energy of the 

particles. Hence, as illustrated in that scenario, by volume alone, complexity can be introduced. 

With complex big data, volume is just an aspect of the environment, these data sources also 

include attributes such as hidden variables, and complex linked graphs [90].  

3.3  Traditional Data Warehouse Model 

Traditional data warehouses provide the analyst with fast and convenient access to data 

gathered from a variety of operational data sources to support decision making by analysts 

[91]. A traditional approach to data warehouse function is illustrated in Figure 4. 

The traditional data warehousing model collects data from several operational source 

systems, such as sales, customer interactions, marketing, and finance for the purpose of 

enabling rapid querying and analysis. The frequency of extraction from these data sources are 

highly variable, while some data marts are updated once a week, others such as the customer 

relationship management applications retrieve data when a customer calls in for support [91]. 

Therefore, the traditional data warehouse does not support near real-time or instantaneous 

response as required by users in complex environments [92]. 



27 
 

 

Figure 4: Traditional Data warehouse model by Kimball & Ross, 2011 [91] 

 The traditional data warehouse model, according to Kimball & Ross [91] begins by (1) 

retrieving source data from operational systems, (2) cleaning and standardizing the operational 

data at the data staging layer, (3) storing this data in a standardized data marts in the 

presentation layer, and for improved efficiency and speed when querying specialized sets of 

data by providing (4) dedicated portals for ad hoc data queries. Once the data marts are ready, 

the traditional models accept connections from a suite of applications grossly simplified at the 

presentation layer [93], [94]. This often involves reducing front-end function to browsing and 

shifting between pre-determined views.  

 That approach can be seen as following an explanatory analytic approach, wherein, 

knowledge pertaining to data modeling in included a priori. Concretely, this a priori knowledge 

is kept within online analysis process (OLAP) cubes by pre-specified dimensions augmented 

against a static dataset [95]. These OLAP cubes containing arrays of data are then used by 
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business intelligence suites as dashboards or reports for analysts to view and analyse largely 

static data. 

3.3.1  Pre-built OLAP Reports 

OLAP generated reports and streamlined graphical dashboards that are used to extract 

knowledge from low level data are limited in their ability to support explorative analysis of 

relationships and behaviours in complex data [96]. For instance, much of the currently 

deployed custom-reports in medicine have limited temporal and human-factor considerations 

to support dynamic analytics [97]. A large number of systems supporting analysis of physiologic 

data use dashboards and methods that were transformed from displays developed for the 

enterprise [98]. Still, much of business dashboard data are abstract and oriented towards 

retrospective reports. Hence, this method presents challenges for gaining insight or performing 

deep analysis of multidimensional temporal behaviour observed throughout the course of 

intensive care [99].  

 Another complex data intensive domain is network management, where  some notable 

visual analysis tools have recently been contributed [16], [100]. In this domain, the dynamic 

analyst captures real-time events as they occur across local or wide area computer networks. 

Numerous hosts are monitored in real-time to identify compromised hosts as well as to prevent 

precipitous attacks. The network data stream itself, however, is not as complex as physiological 

data streams. Data streams in the network management systems contain events are captured 

by performing edge detection on binary streams [101], and usually captured at longer intervals 

[16]. Similar to the clinical domain, network management systems have used static custom 
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reports using pre-built queries [16]. As in the clinical domain, these custom and pre-built query 

reports limit the ability of the dynamic analyst in this domain to compare across epochs and 

perform basic functions such as aggregation. 

 Moreover, these pre-built and custom reporting interfaces suffer from poor 

representations of sequences, and trajectory of multidimensional events [16]. In the clinical 

domain for instance, changes in blood pressure and the residual influence on bodily fluids are 

not intuitively represented in the custom reports due to the interface’s visual segmentation by 

unique organ systems [102]. In the case of network management, traditionally dynamic 

analysts needed to manually siphon for salient features amidst an average of thousands of 

events that are presented over a typical shift [16], [100]. These method of 

compartmentalisation, and tabular presentation are derived from the division of functional 

units of the enterprise, and hence, appear obtuse when applied to dynamic environments  

[103]. Ultimately, this limits the holistic view required by researchers and analysts to 

adequately appreciate dynamic behaviours occurring across complex heterogeneous data from 

network physiological sensors and human-derived data [104]. 

3.3.2  Reusable Online Analytic Systems 

Online analytics system present modular components designed to process large volumes of 

data. Figure 5 presents the Solution Manager Service (SMS) [105] architecture for an event-

based data warehouse that sources data from network of electronic sensors and traditional 

data source systems. In that architecture, data streams are collected in the web service 
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interfaces layer where all necessary data staging occurs (Figure 5). Following this, data streams 

are sent to the event stream processor for near real-time analysis and trend detection.  

 

After the analytics has been performed, information is integrated and stored via ELT in a 

data warehouse, post analytics, the SMS model then allows reporting software and other front-

end business intelligence tools to access data for presenting the data to the analyst. The 

presentation layer is seen as an external service that must access data using traditional query 

and ELT methods. While the SMS architecture, as opposed to the traditional data warehouse 

model, allow for near real-time response rates, the SMS model does not support session based 

data modeling.  

 

Figure 5: Solution Manager Service Architecture [105] 
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 Unstructured Information Management (UIM) applications are software systems that 

allow for the analysis of large volumes of unstructured data [106]. Similar to the SMS 

architecture, the UIM system supports interoperability based on a common data structure, and 

loosely coupled components known as annotators. These annotators are used to analyse 

unstructured data, largely text based to produce assertions about the data. The UIM system 

has gone on to support other specialized analytic systems, such as the IBM Watson system 

[107]. The key advantage of UIM is the decoupling of data storage, visualization and analytics. 

The modular and reusable approaches utilized by UIM applications afford great flexibility and 

scalability. The UIM framework places emphasis on a large section of unstructured datasets, 

such as text, audio and video, however it does not support data streams from dynamic sensors 

streams. 

 Event stream processing engines, such as IBM InfoSphere Streams [37] and Apache Storm 

[108] ingest data streams in real-time to extract event information. While the definition of 

events are loosely defined, these systems enable the use of temporal windows to perform 

event alignments, and compare sequences.  The event stream processor can identify events 

according to the temporal behaviour exhibited by the data stream. In contrast to OLAP cubes 

which operates on static data, event stream processors apply instantaneous transformations 

on dynamic data, and include several layers of fault tolerance in order to guarantee each tuple 

is processed [109]. The results of that analysis can produce any one of the primitive, complex, 

multidimensional events to make predictions about the onset of a physical event. An event 

stream processing engine is utilized in the TDVA framework to support dynamic and static 

processing of physiologic data in this thesis to generate a collection of primitive, complex and 
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multidimensional events. This information is provided to a user who discerns whether a 

physical event, such as the presence of infection can be predicted using the event stream 

processors output.   

 The traditional data warehouse model contains four major limitations that prevent 

dynamic visual analysis. Firstly, OLAP cube based analytic model provides limited access to 

dynamic real-time analysis of streaming data [93]. The cube based design assumes buckets of 

data are available for subsequent cubes to be created. Secondly, in the dynamic real-time 

environment, the life of data is measured in minutes and hours, unlike the traditional business 

case wherein life is measured across days and weeks [94],[110]. Thirdly, to enable dynamic 

analysis, the presentation layer cannot be restricted to simply ingesting data. Interactive and 

direct manipulation of visual interfaces driven by the human should allow for analysis to be 

performed on demand, and, data dimensions to be remodelled according to the requirements 

of the individual analyst.  

 Finally, unlike in a traditional business use case, domains where real-world data is 

captured require an additional level of pre-processing and temporal emphasis [111]. This 

includes individualized supporting components that convey meaningful changes in event 

features and highlight abnormal distance measures. In dynamic and complex environments 

where temporal interactions in data streams assume significance, visual analytic systems 

employing multi-dimensional temporal representations, such as trajectory, frequency, and 

duration may be useful for supporting the analytic requirement of the user [42].  This final 

constraint requires systems that are flexible, support functions such as dimensional 
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aggregation, and, provide a dynamic link between the event stream processor and visual 

analysis interface for interactive exploration of the analytic space [95].  

3.3.3  Artemis Platform 

Artemis, illustrated in Figure 6 is an online health analytic platform that was developed, to 

source, analyze, and perform real-time feature detection on multiple physiological data 

streams, for multiple conditions in multiple patients [37]. Artemis supports clinical researchers 

in identifying and demonstrating evidence for new earlier onset detection features in 

physiological data to help identify clinical conditions earlier and create evidence for new care 

practices in NICUs.  

 Artemis supports the deployment of real-time event stream processing algorithms. In this 

thesis, an algorithm for neonatal spells was executed to detect and classify neonatal spells into 

10 broad event classifications. The details of the neonatal spells algorithm have been previously 

published [32].  Results from the online analysis are then sent to a database and also available 

for real-time streaming. The output are then processed and sent to a visualization framework 

that produces visual marts, such as PhysioEx and CoRAD. Chapters seven and eight demonstrate 

PhysioEx and CoRAD in the context of supporting neonatal research by presenting trends and 

pattern information in neonatal physiological data detected by Artemis. 
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 This thesis extends the Artemis platform through the TDVA platform that instantiations 

dynamic visual analytic visual marts. These instantiated components then interface the event 

stream processing engine to provide an analysis pipeline to support data stream driven complex 

research. The next two parts of this chapter from §3.4 ─ §3.5 introduce prior work in the area 

of information visualization and visual analytics. The final section in this chapter, §3.6 

introduces the dynamic visual analytic paradigm which serves as a link between the content 

discussed earlier in §3.1 ─ §3.3 and §3.4 ─ §3.5. The TDVA framework, integrates the paradigm 

of dynamic visual analytics within the online analytic environment described in this section 

(§3.3.3). 

 

 

 

Figure 6: The Artemis Framework [37] 
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3.4  Information Visualization  

For millennia, humans have relied on graphical representation to make tractable very complex 

and critical information [112]. The human visual perception potentially supports higher 

bandwidth of information than any of the other senses [113].  

 The human visual system has remarkable capacity to capture fine and coarse changes, 

while rapidly distinguish between various form, colour and shape of objects [112]. 

Furthermore, the human can recall objects seen during an earlier exposure, and compare that 

pattern with current observations to glean knowledge [113]. These capacities of the human 

visual system have been exploited in several classic graphical representations of complex 

problems. Examples of these techniques include the Pythagorean Theorem, Cartography, and 

William Playfair’s demonstration of graphical statistics [114]. Information visualization 

continues to provide a means to enable rapid communication of information and knowledge.  

3.4.1  Visualizing Temporal Data 

Time is a unique measure, apart from acting in itself as a variable; it also conveys the initiation, 

evolution, and termination of other parameters [83]. The primary objective of information 

visualization in the time domain is to recognize and compare data points located in two 

separate positions on the time axis.  Extending from this, are other objectives to gain further 

insight through various trend analysis and subsequent transforms. Endsley [11], tightly 

incorporates the concept of time in situational awareness. Endsley’s model is seen to be a 

continuum existing across three levels of knowledge, wherein the consumer (1) sources, (2) 

synthesizes, and finally (3) imposes contextual meaning to predict future trends or states. 
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Information visualization research has provided numerous tools to support users who exist in 

the temporal domain, and require one of the three aspects of Endsley’s situational awareness. 

These tools are described below. 

 A method that provides an aesthetic view of time-series is the method called Flocking 

boids by Vande Moere [115]. Here, Vande `Moere demonstrates a method to visualize the 

progression of stock market prices using simulation and animation of flocking behaviour. This 

provides a simple and convenient method to track each ticker and its trajectory. The movement 

of the ticker is governed by behaviour rules in which each boid follows the trajectory of earlier 

time points, notably with animations presented in 3D. This method however is prominently 

univariant which presents considerable limitations.  

 TimeWheel is another method introduced by Tominski et al. [116]. In this method, the 

approach is to convey information simultaneously in several axis to perform multi-variant and 

multidimensional analysis without compromising the aesthetics of the view. It is however a 

static model, which feeds information from a predefined data set and would not be used to 

convey any dynamic real-time temporal information. However, by positioning the time axis in 

the centre and then defining additional interdependent axis around the circumference, the 

aesthetics of the graph is greatly enhanced.  

 While traditional time-slices have been represented using histograms, Havre et al.  

introduce an innovative temporal chart called ThemeRiver (Figure 7) [117]. This representation 

allows continuous representation of discrete values over a timeline without interruptions 

between each node. Coloured currents flow within this ‘river’ and express strength or weakness 

by the thickening of their width.  



37 
 

The goal of this method is to convey patterns rapidly. Hence, when a current flowing through 

the river suddenly widens, the user can appreciate its strength or significance has increased. 

 CircleView (Figure 8) [118], introduces another novel method for exposing temporal 

information. In this representation, each layer represents an additional segment of time, and 

colour is used to encode a severity value between low, high and above threshold. This 

representation displays a modifiable evolution of temporal trends the user can identify by 

following each layer, from the innermost to the outer or vice versa. 

 Techniques like ThemeRiver and CloudView, as well as other techniques which will be 

discussed in the following section provide a means for rapid knowledge dissemination, which 

was previously difficult to conduct and required time-consuming methods.  

 

Figure 7: ThemeRiver [117], identifying patterns over time. 
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Graphical tools, apart from enabling knowledge discovery, also foster new insight. These tools 

enable domain experts to formulate rich collaborative discussions around a display and 

generate new hypothesises reflecting observed patterns. 

3.4.2  Information Visualization in the ICU 

Health visualizations have seen a growing body of work with several novel representations 

proposed in the area of physiologic analysis [119]–[123],[124]. Health visualizations can be 

broadly classed into three groups, tabular, graph, and metaphoric. Many legacy visualizations 

have adopted a tabular display, such as flowsheets [125]. Integrated graph-based physiologic 

tools such as CareCruiser [119], and those presented by Anders et al. [4], and Koch et al. [6], 

illustrate methods to identify signal changes in waveform. These three visualizations are utilized 

 
Figure 8: CircleView [118]: Showing evolution of multiple attributes over time.  
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in monitoring use-cases where the aim is to detect abrupt changes from baseline, a task 

commonly performed at the bed-side.  

 Albert et al. [121], Wachter et al. [123], and Zhang et al. [76] all present metaphoric 

visualizations to convey abstract principles derived from the real-world. Albert et al. [121] 

present the graphical cardiovascular display, a pipe-like visualization that presents up to 12 

hemodynamic variables, including stroke volume, central venous pressure, pulmonary vascular 

resistance, heart rate, mean arterial blood pressure, ST segment depression of the ECG 

waveform among others [121]. Wachter et al. [123] isolate a sizable list of variables from the 

ventilator and develop an anatomical display, utilizing the abstract metaphoric principles. 

Finally, Zhang et al. [76] develop a balloon metaphor display for hemodynamic monitoring that 

shows the balloon expanding and constricting as pressure and volume change. These visual 

designs highlight the diversity of representations that exist in the medical domain. 

 While many methods have been developed, existing health visualization methods are 

limited in the analytic facilities, along with limited interaction with the visual interfaces. Much 

of the work has gone into designing real-time systems for surgery, in which the time duration 

is limited to immediate past and present [53], [126]–[128]. Novel methods to display clinical 

information using simplified and integrated displays have been proposed but have not be 

implemented in the clinical environment [28], [129]–[132].  

 Case-control studies (cohort) remain an important aspect of clinical research [133]. A 

case-control study involves retrospective analysis that separates patients based on the 

presence of a condition [134]. Differences are studied and hypotheses are generated based on 
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the analysis that support future more rigorous research. However visualizations that support 

these efforts in physiologic data remain elusive. A major contribution of this thesis is a novel 

cohort-based relatively aligned dashboard for comparing physiologic variation within patient 

populations. 

 In the general space of health-based cohort analytics, some recent work has resulted in 

high fidelity visualizations. TimeSpan [135], provides an interactive dashboard for identifying 

door-to-needle time for stroke patients at a large tertiary hospital in Calgary. LifeLines presents 

graphical summaries of patients [136]. The Cohort Comparison (CoCo) tool, illustrated in Figure 

9 provides a simple interface for exploring statistical correlations across multiple clinical 

datasets [137].  

 

 

Figure 9: Cohort Comparison of Event Sequences [137], an exploratory interface for 
clinical data 
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 DecisionFlow presents graphical summaries of patients who developed heart failure 

relative to a population [138]. VISITORS is a dashboard for analysing clinical temporal 

abstractions in oncology patients [139]. EventFlow presents a method to simplify event 

sequence information to rapidly identify abnormalities [140]. While all of these visualizations 

introduce cohort analysis of patients using clinical information, there is a need for research in 

representing temporal abstractions of physiologic data across cohorts due to the lack of 

contributions in that space. The visualization should allow for temporal alignment, enabling the 

user to gain contextual awareness using low and higher-level summarizations of data.  

 A systematic survey was conducted as part of the research program to investigate 

attributes of existing physiologic displays. The survey also sought to identify common elements 

used in the visual displays, along with their support for the tri-event temporal parameters and 

case-controlled studies. The methodology and results from the systematic review are 

presented in the subsequent chapter.  

3.4.3  Methods to Evaluate Visualizations 

The primary goal of visualization research is to study the ability of a user to discover insight, 

through directed task, or serendipitously [3]. To determine the level of insight that is generated 

by a visualization, four thematic areas of evaluations exist, namely, controlled experiments; 

formative usability testing; metrics, heuristics, and models; and longitudinal, case, and field 

studies in realistic settings [141], [142]. Of the four, longitudinal case, and field studies in 

realistic settings have been noted to come closest to examining the open-ended usage of 

visualization to derive insight [143]. The challenge of evaluating visualizations for their ability 

to generate insight has been long understood [144].  
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 In order to provide knowledge in meaningful and insightful visualizations, a variety of 

visualization research methods have been introduced [145]. One such method proposed by 

Isenberg et al. is grounded evaluation [146]. In grounded evaluation, an increased emphasis is 

placed on qualitative inquiry early in the visualization development life cycle. The goal is to 

collect data that describe meaning and rich contextual information such as subjective 

experiences. Observations, interviews, documents (written artifacts), and audio-visual 

materials are four basic sources of qualitative data [147]. The grounded methodology begins 

with identifying the problems, tasks, and pre-existing visualization tools. It is standard to use a 

small cohort of domain experts for gathering requirements and then going back to those 

experts to present novel visualizations. This practise has been called human-centric 

visualization design in the literature [148], [149]. The understanding gained from the pre-design 

study are then used as evaluation criteria. Sample size are often lower than for quantitative 

studies, and continually sourced until no new data can be gained [150]. There isn’t currently a 

method to identify when that saturation has occurred [151]. The qualitative data is then 

analysed using the thematic analysis approach, where themes are identified through the review 

of observational data and coded. Open-coding is often used to draw conclusions from the raw 

data [147]. Finally, as in qualitative research, the grounded evaluation methodology 

acknowledges the researcher’s views, research context, and interpretations are a key part of 

the research process such that it is grounded in the collected data [146]. The grounded 

evaluation methodology is used in an exploratory study presented in this thesis (§5.1). 

 Problem-driven work, also known as a design study in the visualization literature, aims to 

work with real users to solve real-world problems [149], [152]. Sedlmair et al. identify three 



43 
 

classes of contributions in that space [148].  The first-class contribution is identified as “problem 

characterization and abstraction”, in which a domain problem is characterized through an 

abstraction into tasks and data elements. Knowledge from a problem characterization and 

abstraction can be used by other researchers to develop fully automated approaches. The 

second-class contribution is a validated contribution, in which a tool is evaluated and evidence 

is presented. The last form of contribution is a reflection about lessons learned to improve 

future designs. In this thesis, the visual analytics contributions, namely the PhysioEx, and CoRAD 

fall within the first two classes of contributions.  

  Characterizing insight is a challenge problem. To address that challenge, a novel insight 

coding methodology was proposed [142]. That methodology introduced a series of general 

insight characteristics that can be used to better distinguish the nature and depth of insight. 

Insights can be characterized as, observation: any single finding about the data; time: the 

amount of time taken to reach the insight; domain value: perceived importance and 

significance of the insight; hypotheses: the ability of an insight to generate new hypotheses; 

correctness of the insight, breadth vs depth: the depth of the insight that was generated; a 

categorization of insight based on one of four types (overview, patterns, groups, and details). 

Those insight characteristics can be used as a code for assisting evaluators in determining the 

degree of insight generated by the user [149], [153]. In this thesis, the insight-based 

methodology is used to report the nature and depth of insight that was generated while using 

both PhysioEx and CoRAD. 
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3.5  Visual Analytics  

The benefits of involving a human as part of an automated chain of analysis appear to be a 

rewarding and highly efficient practice [154]. While algorithms process quantitative data, the 

human applies qualitative expertise. This two-step analytics adds value to existing analytical 

practices by providing easy access to manipulating complex data and directly executing 

arithmetic functions on interesting subsets [83]. 

 High densities of data, have been a challenge for traditional methods of information 

visualization, particularly to communicate changing temporal events [155]. Thomas and Cook, 

2005 in a book titled Illuminating the path: The research and development agenda for visual 

analytics, introduce a method of human-driven visual exploration of data to discover pattern, 

trends, and knowledge. They call this method visual analytics and define it as the science of 

analytical reasoning facilitated by interactive visual interfaces [15].  

 Keim et al. refine this definition by proposing visual analytics as the combination of 

automated analysis techniques with interactive visualization for effective understanding, 

reasoning and decision making for big data [156]. Keim further states that the overarching 

vision for visual analytics is to turn the information overload problem into an opportunity, that 

is, to make the method by which data and information is processed more transparent for 

analytical discourse. This involves (1) synthesizing information and deriving insight from 

massive data; (2) detecting expected and discovering unexpected events; (3) provide timely, 

defensible, and understandable assessments; and finally (4) communicate assessment 

effectively for action [156].  
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3.5.1  Visual Analytics Process 

The Visual Information Seeking Mantra “Overview first, Zoom/Filter, Details on demand” for 

information visualization was proposed by Shneiderman to assist in explorative activities [157]. 

Keim expanded  that definition to include user interactivity and automation as key elements of 

the exploration paradigm, and thus, formed the Visual Analytic Mantra “Analyze First - Show 

the Important - Zoom, Filter, and Analyze Further - Details on Demand” [158]. 

 A researcher performs two basic functions; first she actively searches through the 

information space to identify relevant data objects. After aggregation, she attempts to identify 

trends, or features within that data set.  If she is not satisfied with the existent view, she 

modifies the analytical space to produce new views that may have further potential for gaining 

insight. This process is continuous and cyclic until she has satisfied her objective. While 

information visualization assists in the first aspect of information seeking, the two latter and 

mainly analytical components are challenging when using traditional visual methods. In order 

to derive some hidden knowledge the user, in addition to being able to see the data, also 

requires tools to manually search, compare, and query the data in an interactive user-computer 

interface.  

 The visual analytic pathway proposed by Keim et al. is illustrated in Figure 10 [159]. Data 

transformation occurs followed by either a simple visualization of the data, or a pathway 

leading to the generation of data mining driven models.  These models are subsequently 

visualized to produce knowledge. 
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 Visual analytics is built around the principle of improving both the presentation and 

allowing direct manipulation of big data. Several methods have been developed by the 

community to execute queries entered by some combination of graphical sketches or gestures 

that act directly and manipulate data objects to perform functions defined by the user [160], 

[161]. Traditionally, physical and biological sciences have championed the collection and visual 

analysis of data [68], [162], [163]. Astronomy and genomics are examples of rapid data 

gathering and meticulous post-collection analytics. Limited applications of visual analytics has 

been adopted in those fields, these tools allow researchers to perform exploratory analysis on 

large volumes of data [89].  

 

Figure 10: Visual model driven data mining for interactive decision-making [159] 
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3.5.2  Visual Analytic Techniques 

A number of prior works has focused on techniques for visual analysis of temporal big data, 

these works have relied on techniques such as hierarchical clustering [164], temporal nesting 

[165], alpha blending, sampling [71], and interactive brushing using parallel coordinates [166]. 

These techniques allow for significant number of shapes to be drawn on top of each other 

without hiding underlying shapes.  

3.5.2.1 Techniques for Representing Density  

 Heatmaps have been widely used in visual analytics community to represent density or 

clustering of parameters from large volume data sources [167]–[170]. The use of a two-

dimension matrix and intuitive temperature colour scales, have made heatmaps usable with 

minimal learning [171]. Not only are these displays effective at summarizing large volumes of 

information, but they also effectively allow the user to see the “big picture” [170]. Frequently, 

this technique has been implemented using two dimensional matrix of colour-shaded cubes, 

however, heatmaps can also been created along a single dimensions [172], and three 

dimensions as illustrated in Figure 11 [173]. Heatmaps are commonly utilized for gene 

expression and across scientific domains where large volumes of data must be reduced to 

manageable visual dimensions [167]. 
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 GScope [174] uses heatmaps to display biological microarray data, a domain where 

heatmaps are prevalently used. To generate the heatmap, they use hierarchical clustering 

based on up-regulated and down-regulated genes. The weakness with this representation is 

that the visualization is devoid of multisource and multidimensional attributes, and largely 

relies on Boolean aggregation of higher levels. In the example of reconstructing voxels [173], 

Velten et al. use novel 3D heatmap representations with shadowing to confer additional 

meaning. That representation however requires a degree of discretization, hence poses 

limitations when applied in the continuous temporal space. Krstajić et al. [175], introduce a 

visualization for tracking news streams using heatmaps. They introduce a timeline visualization 

which effectively allows the user to track changing trends over time. The timeline approach 

presents unique opportunities to highlight events across data streams. This approach can be 

further investigated within the space of heatmaps to contribute novel designs tailored for 

streaming events.  

 

Figure 11: 3D heatmap of voxels [173] with depth controlled using colour scales 
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3.5.2.2 Temporal Event Flows  

A large number of visual analytic software seeks to expose temporal changes in data. One 

example of a social media visual analysis tool is EvoRiver [176] illustrated in Figure 12. This 

technique visualizes analysis performed on a flow of numerous text streams to determine 

positive or negative collaboration within a social media case study. The technique itself, while 

retaining some features of ThemeRiver [117], provides the ability to interactively isolate single 

trends of discussion and follow them through their duration. As with ThemeRiver, this 

representation requires some level of cognitive attention to follow events; this can be a luxury 

in some critical domains. 

 

 CloudVista (Figure 13) uses an interactive-video based method of displaying large 

quantities of data, however, since this only offers a single snapshot at one time, this technique 

does not allow for the identification of periodic and atypical patterns across time [177].  

 

Figure 12: EvoRiver [176] a time-based social media visual analytic tool. 
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 Over-plotting effects of time series data are a common problem, particularly in 

representing high frequency data streams. This challenge has been, to some extent, reduced 

by novel methods of sampling and clustering. For instance, hierarchical clustering have been 

used to allow the user to appreciate low level trends across multiple clusters [164]. Incremental 

sampling has been used at the data atomic level  to render the visualization even before the 

full dataset is retrieved [71]. These techniques have their limitations, specifically in that they 

assume strong linearity in the data and a parametric distribution. When non-linear and non-

parametric data is processed these techniques can hide potentially consequential details.  

 

Figure 13: CloudVista [177] client-side interface 
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 MotionExplorer (Figure 14) [67] is an example of an exploratory and analytical tool which 

was developed for assisting in domain experts in mapping and associating human movement. 

This platform presents the domain expert with interactive dendrogram visualizations to exploit 

hierarchical associations in the data, as well as visually search for related sequences. A 

significant aspect of this application is its ability to aggregate data by their temporal relevance. 

Event Visualizer [178], provides a user interfaces and tools for visual analysis against real-time 

or retrospective data streams. Multiple timelines are provided for integration and analysis of 

different streams of data. The authors have also provided the ability to semantically zoom in 

on regions of interest, as well as the ability to rank and filter through associated events. The 

interface can potentially overwhelm users with multiple runs of timelines, presenting usability 

concerns. 

 Much of visual analytic techniques for real-time deployment are developed by the time-

series community, which the goal is to represent wavelets and univariant data. Techniques that 

have been used for exploratory time-series data are TimeSearcher, TimeSeer, RankExplorer, 

and ChronoLenses. TimeSearcher [179] also allows for exploration and pattern recognition in 

the static time-series data using an early visual analytic object called ‘timebox’. The 

disadvantage of both these systems is that they offer poor graphical representations for 

communicating information. While ideal for wavelet monitoring, it lacks aggregated views to 

present summaries or predictive trends.  
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 ChronoLenses (Figure 15) [180], allows the user to discover interesting regions in the 

univariate time-series data using the concept of lenses. The lenses allow the user to perform 

analytical tasks in sequence. TimeSeer [181] allows for automated modeling of high-

dimensional temporal data, using a series of metrics called scagnostics to model the data. The 

display then represents estimated scagnostic values using a combination of line charts and 

scatterplot matrix.  

  RankExplorer [182] illustrated in Figure 16 is a visual analysis technique that combines 

the layered view of ThemeRiver, color bar, and glyph. RankExplorer introduces a novel method 

to identify changing ranks among multiple time-series data streams. Using traditional rank 

switching by controlling vertical order leads to visual clutter if the data stream contains dynamic 

and periodic systems which compete in rank frequently over a given time.  

 

Figure 14: MotionExplorer [67], visual analytic tool for human motion 
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Figure 15: ChronoLenses [180], a visual analytic tool for signals. 

 

Figure 16: RankExplorer visualizes emerging ranks in data streams [182]. 
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 RankExplorer allows the user to appreciate rank changes within a data stream, and also 

across multiple streams. However this system has a limit of ten categories per view, and 

contributes to visual clutter when presented several categories of highly turbulent data 

streams.  

 Domain specific temporal visualizations have been shown to perform more advance 

functions in communicating anomalies to the end user. The VisAlert system [183], for example, 

provides situational awareness for network security analysts. It presents real-time information 

about the level at which an alert occurred, how long its duration was, as well as the alerts type. 

Since this system was developed as a means to communicate network attacks, there are limited 

analysis functionalities. Another system in the same domain is LiveRAC [16], this system 

supports additional exploratory features such as semantic zoom to search through the data set, 

and allows for side-by-side comparisons between different clusters. However, this system 

works on static data sets, and presents a complicated user interface with a greater amount of 

visual clutter.  

 Visual analysis techniques for explorations have also been extended to terabyte data. For 

instance, in visualizing particle-based simulation techniques such as smoothed particle 

hydrodynamics, an image covering continuous fields of particles needs to be reconstructed 

from data captured from all discrete particles. To accomplish this Reichl et al. [184], use octree 

grid and volume ray-casting to render each particle. The result is a considerably faster rendering 

time at high quality with a modest increase in memory compared to the raw set. Since the 

rendering is performed a priori, this technique does not support real-time interactions. Novel 
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techniques for scientific temporal visual analytics recently introduced attempt to address issues 

of scalability and over-plotting, i.e. the issue of unreadable visualization.  

 

 Some prior work has been conducted to minimize over plotting errors using kernel density 

estimation (KDE). CloudLines [185] illustrated in Figure 17, introduces an incremental event 

visual analytic tool using KDE  to amplify signals from highly dense areas and minimize low 

density areas. Lampe and Hauser, 2011 [186] extend the normal KDE method by introducing a 

weight factor to incorporate absolute densities, thereby allowing for single but significant 

events to gain prominence in the distribution. 

 Very limited prior work exists with considerations for workflows and interactions that are 

discontinuous and irregular [187]. The focus on continuity involves not only novel interactions 

to aid continuity, but also supporting basic actions such as initiating, pausing and resuming 

processes through visual cues and metaphors [158]. Some aspect of this requirement can be 

 

 

Figure 17: CloudLines [185], a tool for visualizing temporal flows. 
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seen in collaborative interaction techniques. Isenberg and Fisher [188] introduce features that 

highlight actions performed by collaborators in the area of document analysis. Features such 

as, identifying who has read the document, time and frequency of its access allow a user to 

access rich information to support workflow continuity.  

3.5.3 Visual Analytic and Sensemaking 

 Stasko et al. introduce Jigsaw [189] illustrated in Figure 18, as one of the earliest visual 

analytic tools to assist in exploration and sense-making. The theory of sense-making is a 

continuous self-motivated process that occurs when a user attempts to understand 

connections in order to anticipate their trajectory and act effectively [190]. 

  Jigsaw allows for several interconnected data elements to be viewed interactively and 

automatically, providing the user with multiple perspectives on the connections between each 

node [189]. Jigsaw has been demonstrated as a useful tool for text and document analysis, 

allowing entities which appear in multiple documents to be tracked. There are some areas 

which are not supported by Jigsaw, including the ability to retrieve information in real-time, 

support for unpredictable data, support for multiple clusters of heterogeneous data, and finally 

complex inter-related semantics must be user-imposed.  

 When presented with sense-making in the scientific domain, there are several other 

dimensions which must be considered. One of the prominent challenges is to show evolution 

of scientific data or domain [191]. Chen et al. [191] present an approach to addressing the 

challenge through integration and streamlines of techniques such as spectral clustering and 

feature selection algorithms. The benefit of streamlining allows semantic strengths held 
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between nodes to be reflected in their spatial arrangement, thereby, allowing the analyst to 

rapidly make sense of current and potential states. Underlying principles which support this 

theory is the Gestalt principle [192], wherein the author notes the importance of proximity 

between two objects as how humans perceive relationships and groups. However this system 

is also limited to static data and support for interactions is limited to the graph. 

 

Figure 18: JigSaw [189], a document analysis tool. 
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 The role of sense-making [190] and Gestalt’s principles [192] have provided a roadmap for 

past and present interaction techniques to address. However, there are several aspects of both 

principles which have yet to appear in one concerted visual analytics tool. The aforementioned 

papers provide a glimpse of major tools which integrate some requirements, but omit some 

critical aspects. For instance, in sense-making temporal continuity is important; yet most of the 

techniques only provide a snapshot of past events.  

 Gestalt’s principle reinforces spatial arrangements as relative size as important visual cues 

for the human, yet one of the challenges of large graph visualization is the dilution of 

comparatively or complicated clutter introduced by over-plotting of nodes. To expect that a 

single visual analytic tool would address all challenges may be naïve, both principles 

metamorphoses in elaborate ways across distinct problem domains. In acknowledgement, 

many tools have been developed for specialized niches, for instance, LiveRAC [16], Jigsaw [189],  

and MotionExplorer [67] are three tools designed for computer network security, intelligence 

and text analysts, and human motion analysts respectively. A domain which has yet to be 

sufficiently exploited by the visual analytics community is critical care medicine.  

3.6  Dynamic Visual Analytics 

Real-time visual analytics is an ongoing research challenge [193]–[196].  Keim et al. [197] state 

one of the prominent challenges in visual analytics is data streams. Thomas et al. [15] also 

identify data streams as a difficult problem, especially in the area of data integration, data 

modeling, and supporting situational awareness. In typical data stream environments, the user 

faces an additional task of consuming large volumes of information to achieve situational 
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awareness [11], by supporting basic functions such as monitoring and distributed knowledge 

sharing in complex real-time environments [198]. Rohrdantz et al. [195] identifies several open 

research challenges in this space. Much of these challenges can be separated into data stream 

management and building dynamic visualizations to support them. To that end Mannsman et 

al. [7] introduces a dynamic visual analytic pipeline (Figure 19)  with dynamic data models and 

interactive visualizations. 

The dynamic visual analytic pipeline [7], illustrated in Figure 19, identifies real-time 

users as requiring unique consumption and exploration tools that augment traditional 

exploratory visual analytic methods. That paper serves as an impetus for further research in 

the area of dynamic visual analytics to address unique requirements as exposed by real-time 

applications.  

 

 

 

Figure 19: The Dynamic Visual Analytic Pipeline [7] 
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Further research in the area of dynamic visual analysis is necessary on account of real-

time environments being frequently exposed to rapidly changing situations that directly impact 

the workflow and dynamics of the analyst. To approach the dynamic visual analytic challenge, 

several key works have produced novel methods to mitigating one or both of the underlying 

challenges [199]. The first of these involve approaches to supporting temporal data modeling 

and preparation for visualization. 

imMens (Figure 20) [200] introduces a parallelized data management method to 

retrieve large volumes of data for the purpose of real-time visualization. The visual tool itself 

uses a combination of numerical, ordinal, temporal and geographic binning to achieve rapid 

data transmission.  

 

However, the disadvantage of this technique is that it does not support multi-

dimensional alignment between distributed data sources, due to the pre-cubing that is 

performed at the underlying level. This presents challenges when utilized in unpredictable real-

time environments. To demonstrate the underlying model, the authors show rapid data 

 

Figure 20: imMens [200] a real-time visual query tool 
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visualization of multiple graphs, such as heatmap and histogram to represent both cluster 

density and temporal change. 

The second set of approaches resulted in the development of novel visual analytic user-

facing systems that provide rich interactive mediums for users to engage with real-time data. 

The most prevalent examples of real-time dynamic visual analytics are found in the text event 

stream community. One example of this include News Stream Monitoring (Figure 21) [201] 

presented by Krstajić et al. In this system, news is automatically captured and visualized in real-

time using a similarity algorithm.  

 

However in its first incarnation, this system does not support exploratory interaction. 

The authors build on this principle to develop Story Tracker (Figure 22) [175] which supports 

 

Figure 21: Real-Time News Stream Analysis [201] 
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rich exploration of topics as discovered in the event stream. The authors employ text mining 

principles to extract weakly or strongly related topics and either merge or split them over time. 

This creates a flow of topics that is visualized and can be interactively filtered by their duration 

and connectivity to explore the topics evolution.  

 

Apart from text event streams, the majority of applications in real-time environments 

are reliant on temporal sensor data streams. Temporal characteristics are often expressed and 

represented using a combination of symbolic, waveform, or symbolic-waveform visualization 

methods [83]. There are a wide number of examples of non-interactive and interactive 

waveform visualizations. Non-interactive representations such as Density Maps [202], display 

data streams through controlling the colour of pixels on a display and sliding the window as 

new data is populated.  

 

Figure 22: Story Tracker [175] a visual analytic tool for exploring topics in news. 
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 VizTree, an example of an interactive waveform representation (Figure 23) [203] allows 

the user to scan through large chunks of time-series data to identify patterns over the global 

or local set. It supports functions such as motif discovery, anomaly detection, and query by 

content. The time-series data is also visualized using a pattern frequency tree, enabling rapid 

monitoring of anomalies. VizTree uses a combination of symbolic and waveform displays.  

Symbolic methods attempt to reduce the volume of data by converting real number values to 

symbols that can be easily categorized by a visual tool and discerned by the analyst. Examples 

symbolic approaches include time-series bitmaps [204], and Symbolic Aggregate 

Approximation (SAX) [205].  

 

 Gschwandtner et al. introduce a visual analysis tool utilizing heatmap functionalities 

called CareCruiser [119], illustrated in Figure 24. CareCruiser is a visual analytic tool for 

exploration of clinical temporal data. CareCruiser allows clinical users to visualize effects of 

treatment plans on patients’ health status.  The tool utilizes heatmap like shading to convey 

 

 

Figure 23: VizTree [307], anomaly detection in time-series. 
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metrics such as progress from initial value, distance to intended value, and slope of a 

parameter. Users can interactively select sections of clinical data to compare the trajectory 

over a time window. However a limitation identified by the authors was the lack of relative 

alignment of events to the grid, as is commonly performed in the clinical environment [119].  

 

 

 LiveRAC (Figure 25) demonstrates real-time visual analytic system with a matrix of re-

orderable charts that provides necessary functionality to explore, and perform correlation 

between high density multidimensional time-series data. Yet a disadvantage is the depreciated 

aesthetic due to visual clutter, which may add to information overload. Moreover, this system 

does not perform complex operations across multi-dimensional data to produce higher level 

classifications. In addition, some views of this screen (Figure 25) has the potential for visual 

clutter when a large number of nodes are monitored. 

 

Figure 24: CareCruiser [119], a tool for visual analysis of clinical temporal data. 
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 BANKSAFE, illustrated in Figure 26 is a visual analytic tool built to address the VAST 2012 

challenge case study of large scale computer-network monitoring [100]. The tool demonstrates 

several visualization modules, which employs treemaps, coloured matrix map, circular clock 

glyph and temporal timelines. The authors demonstrate the tool to detect network stress from 

intrusions, infections, and network stress. However, due to the nature of the hierarchical 

method of visualizing network data, BANKSAFE has limitations when the user attempts to 

identify meaningful data from individual hosts. Temporal trends are demonstrated at high level 

using the coloured matrix map, yet, this higher level aggregation of data may inadequate for 

domains where lower level event parameters may have prominence and consequence.  

 
 

Figure 25: LiveRac Network Visualization [16] 
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 While these methods have produced novel representations of temporal data streams, 

these representations do not represent temporal relationships and influence between and 

across multi-dimensional data streams. These methods also do not present an ability to analyse 

distinct data across multi-dimensional data streams. The ability to conduct relative temporal 

alignment to perform advanced multi-dimensional associations is also not supported.  

Several aspects of dynamic visual analytics remain open research areas [156]. Among 

the open areas that require further research include the extension of the pipeline to include 

network sensors that integrate trends and patterns across different data streams. The 

 

Figure 26: BANKSAFE: visual analytic tool for network monitoring [100]. 
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requirements are further discussed in chapters 5, where a collection of temporal parameters 

called the temporal tri-event parameters are introduced. 

3.7  Chapter Summary 

This chapter started with an overview of sensor network generated data streams in §3.1. The 

following sections introduced key literature in the space of data warehouse architecture (§3.2), 

specifically highlighting modular information system designs that support analytics, it was 

noted that support for wide-complex and deep-complex data are still within the traditional data 

warehouse architecture. The Artemis platform, an online event analytics system utilized in this 

thesis is introduced in §3.3.3. 

 The subsequent sections introduced seminal work in information visualization (§3.4), 

health visualizations (§3.4.2), and visual analytics (§3.5). The final section introduced dynamic 

visual analytics (§3.6), and highlighted open areas for research in that space. Subsequent 

sections will introduce concepts meant to address some of these open areas, including the 

temporal tri-event parameters, and Exploration-Consumption continuum both of which are 

detailed in §5.2. The next section presents results from a systematic review of physiologic data 

visualizations. The systematic review provides important motivation for the works contributed 

through the instantiation of the TDVA framework.  
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4.  A Review of Visual Representations of Physiologic Data 

This chapter presents material from a publication currently under review [41].  The publication 

was co-authored with Carolyn McGregor. 

4.1  Introduction 

Two less formal reviews and one systematic review were published in the last decade observing 

positive impact of visual representations in the critical care setting. Sanderson et al. provides a 

forward looking analysis relating to representation of physiological data in anesthesiology 

[206]. Drews and Westenskow., reviews several graphical displays that facilitates rapid 

translation of physiological event knowledge for anesthesiologists [207]. Finally, a systematic 

review was published in 2007 by Görges and Staggers which surveys general physiologic data 

displays, with greater emphasis on surgical and anesthesiology specialities [103].  

 While those reviews provide important knowledge about the state of the art in 

physiologic data, they present only partial aggregation of results, and limited knowledge that 

could be used to enhance health visualizations. Furthermore, key elements such as the nature 

of visual encodings, support for interactivity, and particular visual elements of these 

representations are also not discussed. Moreover, all reviews focused on short-term patient 

monitoring. Visualizations supporting longitudinal monitoring and interactive visual analytics of 

physiological data were not sufficiently addressed.  

 There is also a need to better understand how temporal tri-event parameters are 

expressed by existing health visualizations. The support for these tri-event parameters gauges 

the ability of the visual representation to convey historical information, summarize duration of 
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events, or present novel visualization techniques to illustrate trends. Temporal events while 

frequently synthesized from physiologic data, are rarely identified in existing reviews of 

physiologic displays.  

 To that end, this chapter presents an analysis of a broad spectrum of physiological 

graphical displays utilized at the bed-side, in the surgical ward, and for clinical research. We 

investigate the target problems, design approach, and implications of these representations 

and evaluate their support of tri-event temporal parameters, namely the display of trajectory, 

frequency and duration of events. Thereafter, a discussion of results gathered from the review 

is presented, including aspects which were promising and those that are still inconclusive.  

The chapter is divided as follows: the second section presents methodology and reproducible 

search techniques, section three present results and provides comprehensive matrices 

summarizing survey results, section four presents discussion, and section five ends with 

conclusions. 

4.2  Methods 

4.2.1  Paper identification 

We have adhered to the Cochrane Methodology for Systematic Reviews [208]. The 

identification of studies involved a pilot utilizing a single and subsequent search that used six 

prominent sources, including, one formal review [103], two informal reviews of physiological 

monitoring techniques [206], [207] and online search of several databases including IEEE 

Explore, ACM Digital Library, MEDLINE, EMBASE, ISI Web of Science, and Google Scholar. The 

first phase was a pilot of generic keywords applied to Google Scholar, which exposed great 
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variability in self-identified keywords. From the pilot, 25 papers were found to be relevant and 

important citations from those papers were further evaluated to add to our list of important 

keywords. The pilot search was limited to the last 15 years and used a combination of keywords 

that were known to the author, such as, “(physiologic* OR clinical OR hemodynamic) AND 

(visual* OR graphic*) AND (interface OR display)”.  

 Following the pilot, a systematic review was initiated to ensure catchment of as many 

relevant literature as possible across clinical, engineering, and computing domains. Novel visual 

representations of physiological data can be highly diverse, yet still difficult to isolate as was 

evident from the pilot search. This was due to many novel displays being packaged as part of a 

clinical decision support system, or larger hospital system. Therefore to broaden the search to 

include as many displays as were possible, index terms were used to filter articles and included, 

“Data Display*”, “Diagnosis, Computer-Assisted”, “Monitoring, Physiologic/methods*”, 

“*Computer Graphics”, “user-computer interface”, “data display”, “interview* or discussion* 

or questionnaire* or “focus group*” or qualitative or ethnograph* or fieldwork or “field work” 

or “key informant”, “task performance and analysis”, “graphic* adj2 display*”.    

 Thereafter, a rigorous inclusion criteria was used that classified visualizations across three 

groups. The groups were (1) tabular displays, (2) waveform displays, (3) object displays and 

ecological displays. Inclusion criteria relating to outcome measures are divided into three sets 

of measures. They include, temporal and duration, human and qualitative factors, and 

quantitative measures.  
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 We placed a restriction in years from January, 1, 1983 to August 1, 2014 limited to human 

studies in critical care, surgery, and anesthesia. We included snowballing of references and 

manual searching on Google Scholar and PubMed. This resulted in a total of 4,330 titles 

generated for review. Titles were classified as relevant or not using a rigorous inclusion criteria 

(Table 1). 620 titles were then designated for abstract review. Following that, 112 abstracts 

were selected for full review, and 38 papers were selected for inclusion in the analysis. 

Table 1: Inclusion Criteria 

Types of studies: 

 Randomized controlled trials, cohort, case-control, and design studies.  

 The review placed increasing preference for randomized control trials, followed by cohort, case-control, and 
finally design studies. Design studies are popular in the visualization community and were included to study 
results pertaining to user-evaluations. 

Types of participants: 

 Critical care nurses and physicians.  

 Several studies have only tested interventions on physicians and excluded nurses, while other studies have 
used naive participants usually by recruiting undergraduates. 

Types of interventions: 

 Novel knowledge representations, numeric, waveform or metaphor-based displays.  

 We focus on the intervention in which physiological display is not represented exclusively in waveform and/or 
static numerical forms.  

Physiological parameters tested: 

Central venous pressure (mm Hg)  Mean arterial blood pressure (mm Hg)  

Mean left arterial pressure (mm Hg) Pulmonary vascular resistance  

Systemic vascular resistance  Cardiac output (mL/min)   

ST segment depression of the ECG (mm)  Stroke volume (mL)  

Arterial oxygen saturation (%)  Peripheral oxygen saturation (%)  

Heart rate (bpm)  Respiratory Rate (rpm) 
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Respiratory Wave (impedance) Pulse rate 

End-tidal CO2 Mean pulmonary artery pressure (mm Hg) 
 

Types of outcome measures* 

Temporal metrics  Human-factors Clinical relevance 

Time to detection of adverse 
event (s) 

NASA-TLX task load index score Accuracy of diagnoses 

Time to diagnose event (s) Satisfaction of intervention 
(Likert scales) 

Accuracy of treatment 

Time to initiate treatment (s) Number of participants  

 Clinical expertise of participants  

 Setting in which the trials were 
conducted 

 

 Noise level of the environment  

 Age of the participants  

 Caffeine intake  
 

  

 Following the creation of the inclusion criteria, an online questionnaire was built using 

Google forms and used to evaluate all studies. The questionnaire consisted of six sections that 

were all identified as potential areas of interest for analysis. 74 questions were screened for 

each full paper reviewed by a single reviewer. Where value is significant, the data is charted. 

Questions to be included in the questionnaires were selected from themes identified in the 

pilot study. In particular, questions were generated to elicit detail about the study, design, and 

results from any human experiment or evaluations. 
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 The details of the questionnaire are as follows: 

1. Study Background: Questions 1 – 7 included information about author, year of 

publication, setting in which the study took place, the number of samples, and the 

provisioning of the data.  

2. Scenarios: Questions 8 – 14 prompted for details of the scenarios developed for testing. 

3. Study Design: Questions 15 – 19 prompted for details of study design. Question 20 – 22 

was related to the expertise of the participants. 

4. Data Properties: Question 23 – 28 were related to the data type and prototype. 

5. Design Properties: Question 29 – 33 pertained to the prototype design. 

i. Functional level of Prototype: Question 34 – 36 prompted for details of the 

prototypes function. 

ii. High level Findings: Questions 37 – 42, specific findings were discussed relating 

to performance. 

iii. Situational Awareness: Questions 43 – 51 elicit prototype’s accuracy and 

detection abilities. 

iv. Time: Questions 52 – 61, if time was collected as a measure, details are 

extracted here 

v. Significance values: Question 62 – 68, Specific significance values are presented 

if they are found. 

vi. Cognitive Errors: Question 68 – 73 collects details of workload and their 

perception. 

vii. Task goal and summary: Question 74 asks for output items and goal of the 

prototype.  

Where appropriate the questions were marked as either not reported if data was missing, or 

not applicable if the question was a follow-up of a prior conditional question.  
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Figure 27: Analysis Methodology 

4.2.2  Analysis Methodology 

All papers included in the analysis were passed through the questionnaire, and resulted in an 

initial comprehensive matrix of results. Of 74 questions that were initially probed questions 

that yielded over 75% not reported, or not applicable across all papers analysed were removed. 

39 variables were then selected for inclusion in the initial matrix. The analysis was conducted 

in two phases as illustrated in Figure 27.  

 Phase one results are summarized in the Comprehensive Matrix of Design Properties 

(Appendix 1) and phase two results summarized in the Comprehensive Matrix of Study Results 

(Appendix 2). The Matrix of Design properties contain 10 variables, in order they are,  

“Specialty”, “Year”, “Clinical Context”, “Number of Variables”, “Display Type”, “Colour Used”, 

“Pre-attentive processing”, “Gestalts”, “Interactive Controls”, and “Iterative Design”,. 

“Specialty” relates to the clinical specialty, such as critical care or anesthesiology, and “Year” 

refers to the approximate date the prototype was developed and tested, due to the difference 

Selected for analysis (n=38) 

First Phase: Full analysis of data and design 
properties (n=38) 

Second Phase: Detailed Analysis of Study Results 
(n=38) 

Initial list of full 
papers (n=112) 

Removed thematic outliers (n=74) 

No quantitative results (n=8) 
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between publication and evaluation dates this value was approximated based on the 

submission date of the article. “Clinical context” refers to the facility provided by the display to 

integrate clinical information, and “number of variables” refers to the total number of 

physiological or clinical variables that were visible in a single screen.  

 “Display type” refers to the four distinct groups of displays such as tabular, object, or 

metaphoric, and “colour used” identifies the particular use of hue where available. “Pre-

attentive processing” identifies particular visual variables that were utilized such as, shape, size, 

and dimension. “Gestalts” refers to the grouping laws identified by Gestalt’s laws of perception, 

particularly, the use of proximity, similarity, closure, symmetry, and continuity as a means of 

discerning visual objects presented in the display [192].  Finally “interactive controls” refers to 

the ability for the display to support direct manipulation of one or more properties and 

“iterative design” identifies displays that were build using user-centred design approaches that 

include users into key decision making processes prior to the development of the display. 

4.3  Results 

A total of 38 papers were included in a dual phased analysis methodology (Figure 27). A 

questionnaire of survey questions were assessed for each paper and key thematic questions 

were chosen for further analysis. This resulted in two initial matrixes, the Comprehensive 

Matrix of Design Properties (Appendix 1) and Comprehensive Matrix of Study Results (Appendix 

2).  This section details results from both matrices and highlights key findings from the analysis 

of each matrix.  
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4.3.1  Comprehensive Matrix of Design Properties 

The goal of the Comprehensive Matrix of Design Properties is to present design decisions that 

were followed to develop prototypes across all 38 papers analysed. Visual representations were 

found across mainly anesthesiology (n=17), critical care (n=19), and in some multi-discipline 

(n=2) environments. Only one display was developed as a tool for intensive nurses [209]. Multi-

discipline environments consist of two or more speciality, such as integrated in-patient and out-

patient systems. Visual displays started to become actively contributed from the early 1990s, 

then increasing every 10 years, 2014 – 2005 (n=15), 2004 – 1995 (n=14), 1994 – 1985 (n=8), and 

earlier than 1984 (n=1). Integrate clinical data was also found across some displays (n=15), 

while even greater number of displays were devoted to the display of physiological waveforms 

(n=23). Number of variables presented in a single screen was wide-ranging, most displays 

contained greater than 20 variables per screen (n=15), followed by 11 – 20 variables (n=11), 

while the remaining displays contained 0 – 4 (n=7), and 11-20 (n=5) variables per screen.  

 Surveyed visual representations included a mix of multiple display formats, such as 

tabular displays (TB) with waveform displays (WF) (n=5), waveform with metaphoric display 

(MT) (n=4), or a waveform with an object display (OB) (n=16). Metaphoric displays were most 

popular (n=19), followed by waveform displays (n=18), and object displays (n=9). One paper did 

not present any illustrations of the display or discuss the format of the graphical interface in 

their system [210]. Visual representations utilized at least two of the primary colours, red, blue 

or green (n=21), while colours yellow (n=11) and, teal (n=4) were also popular options. A 

number of papers did not specify the type of colour that was used (n=10). Pre-attentive 



77 
 

processing of items were popularly exploited through manipulating visual variables such as, 

colour (n=23) and size (n=11), followed by dimension (n=6), and shape (n=5).  

 Visual representations also exploited some aspect of Gestalt’s law of groupings, such as 

continuity (n=17) with waveform displays, closure (n=16) when identifying boundaries, 

symmetry (n=13) with visual metaphors and object-based displays, and proximity (n=6) to aid 

in higher level detection of abnormal events. The most popular interaction method that was 

supported was selection (n=13). Selection allows the user to select visual objects directly to 

reveal greater details. This was followed by interactive filtering (n=7) to select partial ranges 

such as short durations of time. Finally, in many cases designs were proposed without following 

user-centred design approaches (n=28). Seven papers reported using user-centred design 

processes, while three papers described a structured approach used in developing the 

proposed visual design [123], [211], [212].  The next subsection presents results from studies 

conducted using the proposed visual representations. 

4.3.2  Comprehensive Matrix of Study Design 

The Comprehensive Matrix of Study Design (Appendix 1) presents results that were reported 

by authors for any evaluation or experiment. While the search strategy yielded 38 full papers 

that were identified for analysis, only 28 of these papers contained primary study results from 

a case study, evaluation, or human experiment. Furthermore, those studies employed one of 

naïve, novice, or expert participants in the evaluation method. Naïve participants were 

generally undergraduate students with little or no prior clinical knowledge. Novice participants 
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ranged from undergraduate nursing students to newly graduated clinical staff. Expert 

participants had at least 10 years of experience.  

 The number of participants exposed to test conditions were highly varied, however a 

majority of studies employed at least 15 participants. Six studies used a sample size greater 

than 20 to test for detection, diagnostic and treatment accuracy, with the minimum being 4 

and maximum being 32 participants. Most displays integrated these systems in a single display 

using live or static representations (n=14), while displays that were presented as case studies 

(in situ) were connected to central monitoring systems. Some displays supported views of 

clinical information that integrated data from other clinical and laboratory systems (n=15) 

[213]. Most prototypes that were evaluated used more than one data streams, with exception 

of the studies that contained low-frequency updates (n=9). Most evaluation or experiment 

studies utilized more than one condition to test each display, yet some experiment, evaluation, 

and design studies, did not have any scenarios or patient conditions (n=9). A large number of 

studies also did not utilize data from more than one patient-source (n=26).  

 Most of the studies were conducted in laboratory environments (n=22), followed by 

evaluations or experiments in the intensive care unit (n=11). Some studies were evaluated over 

multiple specialities (n=2). Majority of studies used some form of experimentation to validate 

their designs (n=20), followed by case studies with clinicians (n=10), or evaluation using a subset 

of clinical staffs (n=6). Two studies were design papers without any validation methodology. Of 

the papers that reported results (n=28), most reported positive findings (n=24). One paper that 

employed a between-group design, yielded results that were site-dependent and skewed 
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towards the site that produced the visual representation. For evaluations or experiments the 

source of data to support realism was spread across live simulations (n=18), live patient-origin 

data (n=11), or static patient-generated data (n=8). Much of the studies did not test for 

cognitive overload using ad hoc methods or traditional workload score metrics such as the 

NASA Task Load Index (NASA-TLX) (n=31). Where cognitive workload was reported (n=7), most 

were reported to have reduced cognitive overload (n=5) while others reported no change or 

mixed results (n=2).  

 Long-term historical values, specifically ranges exceeding 5 minutes of monitoring were 

not included in majority of the displays (n=28). Tri-event parameters, namely, trajectory, 

frequency, and duration, were seldom supported by visual representations, where these 

parameters were identified, trajectory was most frequently found (n=26). Temporal trajectory 

was encoded using either curves (n=23) or glyphs (n=3). In terms of duration, the second tri-

event parameter was seen across nine displays, of which, glyphs (n=5) or text (n=4) 

representations were utilized. Duration, the last tri-event parameter was also seen in some 

visual representations encoded by glyph (n=5) or text (n=4) where supported. Where displays 

were validated through experimentation, both the display and scenarios were more often 

counterbalanced (n=10), while some experiments counterbalanced only the scenario (n=6) and 

others only the display (n=4). Finally, clinical scenarios were utilized across many studies 

utilizing experimentation or evaluation methodologies (n=17). 
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4.4  Discussion 

A total of 18 novel visual representations were identified from the analysis of the literature. 

Novel displays were seen across four main groups, including tabular, waveform (graph-based), 

object, and metaphors. The latter two are aggregated together as ecologic displays. 

4.4.1  Tabular Displays 

The early-1990’s saw growing interest in converting large-volumes of paper patient charts to 

‘virtual’ records [214], [210], [215]–[217]. Initial representations adopted by these virtual 

patient records were largely tabular and text-dominant, and sometimes seen to contribute 

negatively to information overload [217].  Figure 28 presents an example of a traditional virtual 

patient chart that mimics a traditional paper flow chart. This review identified 14 such 

representations in papers that were published between 1952 till 1997.   

 The adoption of visual representations was identified with improvements in the general 

accessibility and usability of hospital [218].  Intensive care unit systems were seen as the 

primary speciality to promulgate integrate graphical electrocardiogram tracing [219] and 

diagnostic images [220] into hospital systems, now incarnated as a larger and more integrated 

electronic health record (EHR) system. These systems remained dominated by text and 

incrementally improved user engagement activities using the popular desktop-oriented, 

Windows-Icon-Mouse-Pointer (WIMP) interaction paradigm. Additional levels of interactions, 

such as multiple mouse clicks, were required to access disparate health data. Paper copies of 

data stored in the EHR remain prevalent, in part due to the simplicity and ease of reading paper 



81 
 

charts, for instance, many intensive care units continue to utilize paper copies of EHR-based 

patient summaries [221].  

  

4.4.2  Waveform Displays 

The intensive care environment utilizes significant waveform data, due to the presence of a 

plethora of real-time single-sensor-single-indicator (SSSI) monitoring apparatus. To support a 

limited scope of situational awareness, the SSSI paradigm assign each sensor output to its 

 

Figure 28: A tabular display that mimics traditional clinical flow-sheets. [308] 
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independent display space. Evidently, allowing for numerous isolated displays to proliferate. 

The SSSI method of displaying data utilizes wave-form graphs or aggregated numeric, with the 

former frequently exposed to artefacts and artificial smoothing [222]. The SIMON dashboard 

illustrated in Figure 29 shows a WIMP interface developed for accessing patient information in 

the intensive care unit [223]. SIMON, is developed for complex information environment, yet 

demonstrates significant visual influence from enterprise web systems. 

 

  The review analysis revealed more than 25% of studies utilized some form of live 

physiologic streams to display largely identical waveform representations. It was also noted 

that much of these waveform displays were integrated with other tabular and text 

 

Figure 29: Snapshot of the Simon Clinical Graphical Interface [223]. 
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representations. Three papers that presented waveform displays, also supported interactive 

capabilities including the ability to select regions of interest, filter based on patients, and 

generate screen captures [124], [224], [225]. Stylianides et al. present an engine for producing 

waveform graphics [226], their system however, serves the purpose of animating historic 

physiologic data streams.  

 Notwithstanding their ability to communicate acute time-sensitive events [227], 

waveform representations have numerous limitations [103], [212], [228].  One prime 

disadvantage of waveform displays is the potential to negatively impact cognitive load, that is, 

they require humans to monitor and consume large number of data point as they are produced 

to derive trends and higher level knowledge  [229], [124], [129]. These waveforms display can 

convey several features in one frame, therefore easily disturb limited resources of the working 

memory capabilities [230]. The challenge of managing large volumes of data have been 

extensive studied in several domains, such as, information-overload [231], visual data mining 

[80], and addressing cognitive challenges related to interruptions, task performance, and 

decision making [11], [231]–[233].  

 Integrated methods of representing critical physiological information have been actively 

studied to reduce the internal mental processing requirement [129], [227], [234]–[237]. These 

integrated displays use a combination of text [238], [239], graphic [28], [103], [207], and 

waveform [219], [240] representations to summarize low-level information. Two such 

integrated displays were identified in the review, including Engelman et al. [225] illustrated in 

Figure 30, as well as Anders and colleague (2011) [124] who present a modern interactive 
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waveform interface that allows clinicians to interactively select regions of interest while 

monitoring other forms of slow-changing clinical data. Other studies, seeking alternatives to 

the waveform visual encoding, propose novel and ecological methods to improve knowledge 

discovery and minimize cognitive overload. 

 

4.4.3  Ecological Displays 

Ecologic displays attempt to integrate relationships existing across both workflows and 

semantics [131].  Among the primary goals of ecologic displays is to convey both the means-

end relation, answering the particular means of arriving at that state and its ultimate 

consequence. From our review, two large classes of visual representations were identified that 

approach these objectives. Object-oriented displays, and metaphoric displays were seen to 

extend typical limitations found in text, tabular, and waveform displays by introducing novel 

information, such as spatial and temporal arrangements of closely related information. 

 

Figure 30: A modern dashboard utilizing waveform displays [225]. 
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 Displays that utilize and manipulate 2-dimensional graphical objects, limited to basic 

shapes, and symmetries to produce emergent properties have been classed as object-oriented 

displays [206], [128], [241]. These displays follow demonstrated efficacy of graphical displays 

over traditional numeric displays observed in nuclear power station control stations [242]. 

Studies have shown a positive relationship with integrated displays and an overall improvement 

in diagnosis ability as well as a reduction in time to initiate treatment [132].  

Blike et al.  [243] show that subjects exposed to emergent features using novel graphics 

recognized a problem more rapidly, but their accuracy had not improved in comparison to the 

numeric display. Moreover, they show that the shape of the graphic, illustrated in Figure 31, 

improved detection of etiology compared to the numeric and control displays. While Blike et 

al. state an improved reaction and fewer errors when using the object-oriented display, the 

display was found to have been confusing and not ecological to naïve participants. Blike et al. 

also omit to study cognitive workload and the post-exposure effects on participants. 

 

 

Figure 31: Advanced graphical display for hemodynamic monitoring [128]. 
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 Zhang et al. [76] reproduce the designs introduced by Blike et al. [243], and found that 

anesthesiologists were able to detect simple deviations faster, however no change was seen 

with detection times of more complex cardiovascular events. Jungk et al. [244] report on two 

ecological object displays that may have properties influencing the gaze fixation of individual 

systems, often at the expense of other key compartments. 

 A redesigned interface, illustrated in Figure 32, however, showed further improvements 

in the detection of complex events when the display was integrated with supporting alarms and 

contained improved graphics. Researchers have arrived at similar conclusions [127], [128], 

[132], [211], [245], showing a clear link between detection and reactionary time to the format 

 

Figure 32: A refined anaesthesia workspace involving ecological design [244] 
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and features of the graphical display, exact mechanisms for these links have not been 

thoroughly studied and remain open investigation areas. 

 Not all studies have shown convincing evidence, for instance, some have shown negative 

links when presented object-oriented displays [246], [247].  The etiological potential display 

illustrated in Figure 33 by Effken et al. attempt to extract specific features of object displays 

that improve detection and diagnosis [248]. In that study, Effken et al. find no significance in 

the detection or diagnostic times, even when three abstract displays were tested. Two of these 

displays, not illustrated in Figure 33, required that features of the full prototype either be 

reorganized or removed.   

 

 

Figure 33: The etiological potential display moves an object across four 
quadrants of heart strength and resistance. The object in the top right quadrant is 
distorted to show relative depressions. [246] 
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 Metaphoric displays, conversely, isolate semantic relationships existing in biological 

systems to invoke a sense of familiarity and associations to changing physiologic states. Visual 

metaphors have been presented extensively across multiple domains [67], [117], [249]–[251]. 

These visual metaphors often exploit salient aspects of physical systems to communicate 

underlying system states. For instance, extensive representation of a particular theme may 

result in greater areas for particular layers in a ThemeRiver graph [117]. The use of visual 

metaphors to address clinical problems has resulted in a handful of novel and practical 

representations. A total of 20 representations, representing over half of all visual 

representations analysed belonged to the metaphoric display group. 

 Most clinical metaphoric displays illustrate physiologic data in terms of organ-systems 

[76], [121], [123], [227]. Five papers presented metaphors that involved dynamic objects that 

exhibited behaviours similar to organ systems [120], [227], [246], [252], [211]. Cole and Stewart 

(1994) [252], introduce a visual representation (Figure 34) that consists of two volume 

rectangles that compress or expand similar to the respiratory system. This design was further 

improved in the work of Horn et al. [120]. Effken, Kim and Shaw present an integrated balloon 

display also resembling the respiratory system [246]. Agutter et al. introduced the Graphical 

Cardiovascular Display (Figure 35) that appends a pipe-like metaphor of the cardiovascular 

system, including representing high and low volumes across various arteries [211]. 
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 Wachter et al. utilize an iterative design approach to develop a pulmonary graphical 

respiratory display (Figure 36) by exploiting knowledge about the anatomy and physiology of 

the human respiratory system. [123]. In that display, clinically relevant anatomic 

representations are used to highlight clinical conditions that are typically expressed in verbal 

handoff or transcribed notes [29]. 

 

 

Figure 34: Volume triangles represent multivariate clinical data using a lung-
expansion metaphor [308]. 

 

Figure 35: Graphical Cardiovascular Display [211], a metaphor of a pipes with volume and 
pressure. 
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 Other forms of visual metaphors however, rely on abstract principles to convey more 

abstract and general metaphors. Gorges et al., also from the department of anesthesiology at 

the University of Utah, introduce a series of visual metaphors to communicate visual signs to 

bed-side clinicians [253]. These displays adopt a clock metaphor illustrated in Figure 37 to 

convey salient features, such as temporal trends over the past 12-hours. There also exists a 

syringe metaphor to show information about current medication. Gorges et al. compare this 

visual metaphor with a traditional monitoring, along with another univariate bar display that 

plots histograms and line-charts to convey the same 12-h linear trends. They find however that 

the bar display outperformed both the visual metaphor and the control.   

 

 

Figure 36: Pulmonary Graphical Display, an integrative visual metaphor for respiratory 
monitoring [123]. 
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 Charabati et al. from the Montreal General Hospital’s depart of anesthesiology introduce 

a gauge metaphor to highlight normal and abnormal ranges, and conduct an evaluation across 

two-sites [229]. They find a combination of numeric and visual metaphors achieved the 

strongest advantage in detection, accuracy and workload. Tappan et al. evaluate visual 

metaphors by appending visual objects to traditional medical monitors [254]. They report 

significant improvements in detection of adverse events, with the visual metaphor having a 

14.4 second advantage over traditional physiologic monitors. The visual metaphor was also 

found to reduce the number of missed events. However, these results, like previous studies 

were conducted in controlled environments. 

 Not all visual metaphors, however have seen similar success. Zhang et al. [76] introduce 

an integrated 3-dimensional balloon metaphor, building on the work of Blike et al. [243] with 

object displays. Zhang et al. find mix results after evaluations, with only 63% of scenarios have 

 

Figure 37: Far-view visual metaphors for triaging vital signs [253]. 
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shorter detection than scenarios, and situational awareness being improved in one of four 

scenarios. Moreover, van Amsterdam et al. utilize customization features offered by vendor-

based medical monitors to construct and evaluate a metaphoric display presented in Figure 38. 

The find however, that visual metaphors did not improve detection or accuracy of 

anesthesiologists [255]. Albeit, the visual metaphors developed by van Amsterdam et al. were 

modest and elementary, with limited design expressiveness and ecologic considerations.  

 

 Visual metaphors in medicine have a long history dating back over two decades. However, 

much of the explored modalities have been restricted to laboratory experiments, and even 

when utilized in real-world scenarios lasted only for short experimental phases. Studies have 

shown an overall positive association of visual metaphors for monitoring purposes, additional 

research is needed to evaluate the same to support analytic functions away from the bed-side. 

Finally, evaluation methodologies need to consider iterative design paradigms, and support 

 

   (a)       (b) 

Figure 38: (a) Metaphorical anaesthesia interface and (b) Metaphorical interface with trend 
information (tMAI) [255]. 
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several phased evaluations, or longer term case studies as potential means of understanding 

the usability and usefulness of visual metaphors in medicine.  

 Measurements incorporating situational awareness remains limited, and results from a 

lack of consideration during the development of the visual representation. However, some 

papers have produced insight that may prove useful in improving situational awareness in the 

clinical, including integrating multi-dimensional physiologic data to create novel visual 

representations [123], [211], [225], [227], [256], enabling greater visual interactivity to expose 

details [236], [212], [214], and eliminating silo views to prevent the user from having to perform 

the manual task of accessing critical information [124], [225]. 

 Finally while ecologic representations were evaluated for diagnostic accuracy and speed, 

the challenges surrounding cognitive errors remain only a secondary concern in research 

involving visual representations. Less than 21% of papers analysed were identified to have 

measured for cognitive workload [76], [124], [129], [211], [229], [239], [254], [257]. Of the eight 

papers that measured for cognitive workload, four papers used a quantitative measure such as 

the NASA-TLX score [124], [129], [211], [239]. There are also limitations with the use of NASA-

TLX, largely because it is a self-reported method of identifying perceived workload. Three of 

the eight papers were evaluated with critical care clinicians, however. Consequently, 

incorporating cognitive workload as a passive measure of potential cognitive error remains 

limited across visual representation research for clinical environments. 
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4.4.4  Hierarchies of Tasks 

The analysis of papers included in the review also introduced a hierarchy of tasks. The identified 

tasks were (1) data gathering; (2) data cognition; (3) information retrieval; (4) information 

dissemination; (5) knowledge gathering; and (6) knowledge dissemination. Tabular displays, 

including those that were integrated into legacy hospital systems support the transformation 

and organization of data [210], [215]–[217]. Those displays format largely numeric data values 

into spreadsheets, and occasionally encode them with text decorations  [223], [257], [258]. 

Data cognition was seemingly the implied goal of representations that adopted graphical trends 

and novel object displays. Effken’s etiologic potential display is an example of a display that 

uses dimensional manipulation to convey abnormal physiology to a clinician [246]. The goal of 

that display is to alert the clinician and convey salience about the present physiologic state for 

implicit decision support.  Information retrieval and information dissemination were tasks that 

emerged from integrated applications to support explicit decision support activities [124], 

[209], [238]. Those integrated systems utilize tabular representations that organize raw data, 

as well as present waveform, object or metaphor representations convey visual summaries of 

data. Finally, a group of visual representations were identified that required the user to perform 

actions based on explicit knowledge that was synthesized by online algorithms. For instance, 

Syroid et al. [259] present a waveform trend display for drug concentrations, an algorithm is 

used to generate predictive curves that inform future trends. The intent of these 

representations can be seen as requiring some action on the part of the clinician-- in cases 

where the abnormal trajectory needs to be averted—and that feedback loop encourages active 

interactions with the physical world in response to visuals appearing on the screen.  
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4.4.5  Limitations of the review 

Ambiguity exists over the use of the term “visual representation”, traditional indexes have used 

a variety of index terms to classify studies involving visual representation. Due to that 

ambiguity, the definition of the term used in the review was purposefully inclusive. The original 

review design anticipated the use of two reviewers to perform the initial paper screening. Yet 

the withdrawal of the second reviewer meant that the initial screen could not be cross 

validated.  

 The review was limited by the quality of the included studies and a lack of randomized 

control trials. This represents the disadvantage of using technology as an intervention in 

medical research. Within the studies analysed, there was heterogeneity in the methods and 

metrics used to evaluate visual representations. For instance, some studies used the NASA-TLX 

after an observational study for reporting cognitive workload, while others used subjective 

feedback in a semi-qualitative study. Moreover, where objective results were produced, there 

was heterogeneity in the participants, including exclusive experts or naïve participants.  For 

that reason, it was not possible to conduct robust analysis of the accuracy, and usefulness of 

physiologic visual representations. Finally, the lack of good evidence from real-world 

evaluations presents limitations to generalizability. 

4.5  Conclusion 

Visual representations of physiological data have been attempted several times as witnessed 

by the sheer size of prior work discussed in this chapter. Many have shown their potential to 

improve clinical care, while largely positive results have been released, there are still concerns 

as to efficacy both in reproducibility as well as translatability to the unit [206]. In particular, 
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methods to identify the accuracy of actions post-treatment to the display remains a concern 

and an open area for further exploration [76].  

 Few clinical visualization papers studied associations of the treatment condition to the 

accuracy or accrued insight by the user [76], [206], [255]. It was also seen that most studies 

included detailed study of the time to diagnosis and its accuracy, however many of these 

studies included highly controlled scenarios with highly visible graphical distortions [211], [246], 

[254]. Additionally, few studies used real patient data to evaluate their prototypes. Hence, the 

frequency of events with clear and distinctive graphical patterns existing across real patient 

data remains untested.  Detection was also another area where studies frequently report 

positive findings, however, in many cases these differences were marginal and found in narrow 

statistical ranges. It has yet to be proven whether these statistical significances are relevant in 

the clinical domain. Exact mechanisms inducing positive effect have yet to be explored within 

the prototypes studied [28], [260]. 

 Visual representations show promise, however this review exposes several challenges 

relating to user-preference and interaction challenges. Results spanning two decades continue 

to show positive influence of graphical representations when they are used in simulated studies 

[103]. However, many of these studies have not used standardized metrics to test distinct 

controlled variables, or provide evidence of precisely which features of the graphical displays 

afford greater comprehension to the consumer. Questions still remain as to its efficacy in 

clinical practice, where, the availability of all data required by the representations may be 
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limited. There are also the limitation of graphical representation failing to maintain 

interpretable coherence, when provided incorrect data [206].  

 Some studies have also demonstrated user involvement as an important factor which may 

have influenced results, in the design and development of the clinical system [213]. Future 

studies should focus on clinical validation as a means to identify real-life relevance. Clinical 

experiments are difficult in lieu of several considerations and their limitations. However, one 

study by Wachter, et al [245], demonstrates that observational studies although somewhat 

intrusive may produce some significant qualitative results. These studies need to be expanded, 

and clinical trials must ultimately demonstrate their efficacy. Cognitive errors also require 

additional research effort, specifically by including evaluation methodologies such as the NASA-

TLX score [261] to allow end-users to self-report perceived workloads.  

 Finally, research in visual representations should include tri-event parameters as 

important design considerations for design development that communicate episodic 

information. These visual representations can then be used to better assess the influence of tri-

event parameters on higher level workflows as well as in the progression of conditions. The 

inclusion of such parameters may address open challenges relating to consumption 

(monitoring) and exploration (analysis) activities in visualizations of physiologic data. 

4.6  Chapter Summary 

This chapter presented results from a systematic review that was undertaken to expose novel 

visual representations of physiologic data. While text-based tabular displays have been popular 

for several decades, some novel tabular representations have likewise demonstrated an ability 
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to improve situational awareness [262], these displays were discussed in section §4.4.1. Similar 

to text-based displays, physiologic data has long been represented using waveform 

visualizations. These waveform displays were presented in §4.4.2. 

 Graphical interfaces utilizing visual objects or metaphors are frequently identified as 

ecological displays, they were discussed in §4.4.3. Ecological displays seek to make identified 

constraints in the real world, also visible in the interface [246]. Visual representations were 

further categorized by a hierarchy of tasks in §4.4.4, this hierarchy motivates codes that were 

used in the analysis of qualitative data presented in the next chapter. In this thesis, concepts 

extracted from ecologic displays are used to support the development of PhysioEx and CoRAD, 

both of which are presented in chapters seven and eight respectively.   
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5.  Qualitative Study of the Neonatal Intensive Care Unit 

This chapter presents a grounded qualitative study that was performed to identify general 

processes involved in information analysis in the neonatal intensive care unit [43]. The study 

consists of three phases. The first and second phase inform results that contribute a theoretic 

model called the Exploration-Consumption Continuum that is presented in §5.2.1. The third 

phase contributes knowledge that informs novel visual designs for clinical researchers with 

exploratory requirements. The study received approval of the UOIT Research Ethics Board (file 

10-017). This chapter concludes with a discussion of the continuum’s influence on the TDVA 

framework. 

5.1  Methodology for General Information Analysis Processes 

The association of human factors, analysis skill, and the visualization character can make 

studying information visualization scenarios difficult [144]. Traditional methods to gather 

empirical evidence have largely focused on controlled studies to evaluate visualization tools 

[263]. Due to the nature of those controlled studies, which often occur far from the actual 

workplace and the intended user, it is difficult to evaluate the generalizability of their results 

[144]. An alternative methodology was presented in §3.4.3 called grounded evaluation. That 

methodology seeks to use semi-structured qualitative studies to expose early design concepts 

that can be used to develop visualizations. The grounded methodology presents an opportunity 

to uncover insight early in the design phase, using a mix of observations and semi-structured 

interviews to develop targeted and potentially useful visualizations for real-world use. 
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 The grounded evaluation methodology was used in exploring domain challenges and 

opportunities for dynamic visual analytic research in the neonatal intensive care unit. The aim 

of the qualitative study presented in this chapter, is to understand the general processes that 

occur during interactions between clinical staffs and technology in the neonatal intensive care 

unit. In addition to computers, patient monitors, and clinical information systems, physical 

worksheets that were printed from computer generated reports were also included as a form 

of technology. The initial phase contributed codes that would be used to code confirmatory 

qualitative data in the second phase. The literature was used as an additional data source to 

compare emerging categories in the third phase [264].  

 The remaining sections being with a discussion of the observation setting and participants 

for all phases (§5.1.1 & §5.1.2). The details of the initial phase is found in §5.1.3.1, the second 

phase study design is described in §5.1.3.2, and the third phase is described in §5.1.3.3.  

5.1.1  Observational Setting 

There were four main observational settings included in the qualitative study, and include: a 

large teaching room (morning handover); fellows’ room (evening handover and radiology 

rounds); physician’s office (think-aloud sessions); and the neonatal intensive care unit (bed-side 

rounds). Among many opportunities available to observe the critical care environment, the 

morning handover round serves as an ideal setting because it allows for observing rich 

interactions between clinicians and their artifacts (computers, paper worksheets, and personal 

notes). During this time, clinicians gather to discuss unanticipated events that occurred during 

the evening shift and plan care management strategies for the day. From a knowledge transfer 
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perspective, this setting provided unique ethnographic insight into the heuristics of medical 

decision making.  

 At the study hospital, a large room, capable of seating up to 50 persons serves as the 

primary handover location. Two computers are always available in the room, and each 

computer serves as a designated terminal for retrieving diagnostic images or clinical 

information to support their analysis. A large projector screen was affixed to the wall, and six 

large rectangular tables were arranged in an open-ended “U” shape. Seats were arranged along 

table and the edges of the wall. Senior clinicians usually sat near the projector screen, while the 

leading clinical fellow, a senior trainee, took control of the presentation. A second location 

included the fellows’ room, where six computers were stationed on tables around the edge of 

the room. A dedicated radiology computer was available for viewing x-rays and other diagnostic 

imaging. The room was adjacent to the neonatal intensive care unit, so clinicians can quickly 

move to the unit should a critically ill infant require them.  

 The third location was the neonatal intensive care unit. There are 11 large rooms in the 

unit, of which 8 are used for actual patient care. The remaining rooms are used for storing 

medical devices. On average, a total of 38 patients may be in the unit, each room can support 

up to six infants (three along opposite walls). At least two nurses are present in each room, and 

medical residents, fellows, and staff physicians enter and exit each room as required. The final 

location is the physician’s personal office space, this location was secluded from the unit and 

was quiet. Semi-structured interviews, as well as the think-aloud sessions were held in the 

personal office space. 
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5.1.2  Participants 

This section presents the distribution and characteristics of the participants that were involved 

in the initial, second and third phase of the qualitative study. Two different sets of participants 

were recruited to the initial and secondary phases of the qualitative study. A span of six months 

was used between the initial and secondary phases to capture participants across two academic 

calendars. The location remained the same, and clinical artefacts (computers, worksheet 

format, and medical devices) remained consistent. 

5.1.2.1  Initial Phase 

Due to the use of naturalistic observations, it was only possible to observe 15 – 20 participants 

at a time during morning handover and bed-side rounds, since participants were free to enter 

and exit throughout the duration of the handover to attend to urgent patient care. The range 

of experience was highly diverse, with some participants having less than one year of 

experience to 36 years for the lead physician. Participants were not excluded based on age, 

gender, or length of experience. The participant sample was restricted to residents, fellows, 

and staff physicians. Participants were sampled by convenience, and consisted of different staff 

physicians (selected using the clinical service roster) who were on duty for that day. 

5.1.2.2  Second Phase 

The second phase used the same setting and types of participants to confirm initial findings. A 

sample of convenience was also selected based on the availability of staff in the unit and their 

willingness to participate. Data from non-consenting participants were not logged. The directed 

observation involved between 30 -- 40 clinicians over the duration of the entire study. These 

participants were observed several times over a period of five weeks. The second phase 

included additional clinicians, such as nurse practitioners, dietitians, respiratory therapists, and 
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nurses. Due to the dynamic nature of the unit, participants were free to enter and exit the 

meeting room to attend to the urgent care of their patients. A total of 185 hours were devoted 

to observing interactions with technology, and summarized verbal statements (Table 2). Data 

was collected until at least 1000 sample observations had been recorded to represent a 

statistically significant dataset. The data collection was not terminated until the end of the shift, 

and hence the total codes amounted to 1127, of which 1055 were used in the analysis. The 

remaining 72 codes were identified to be too context specific and hence was not included in 

the categorization of themes. 

Table 2: Observation of the Domain 

5.1.2.3  Third Phase 

Eight participants were recruited from the neonatal intensive care unit for the semi-structured 

interviews that produced knowledge about effective visual displays for exploratory tasks. 

Participants consisted of experienced staff physicians, clinical researchers, and trainees that 

were selected from the participant pool identified in the second phase. Semi-structured 

interviews were also conducted using convenience sample, of participants with time availability 

Observation Type Amount Hours Total Hours Codes 

Morning Handover 15 2 30 204 

Morning Bedside Rounds  28 4 112 247 

Evening Handover 15 2 30 588 

Weekly Radiology and Neurology Rounds 5 2.5 13 88 

Grand Total   185 1127 
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during the day of the study, to elicit more knowledge about the participant’s methods to 

accessing and analysing information (n=8).  Participants self-reported as being a clinician or a 

clinical researcher based on the nature of their roles and their involvement in clinical research. 

The sample size was informed by emerging results, new samples were recruited until redundant 

data began to appear [146]. All consenting participants were included in the analysis.  

5.1.3  Procedure 

This section presents details about the procedure used in each of the three phases. The initial 

phase produced knowledge that was confirmed in the second phase. While rich knowledge was 

gained from those two studies, there was still a need to understand how novel visual designs 

can address some of the challenges identified in the observations. To that end, a third phase 

was conducted, where think-aloud sessions were held with paper prototypes. The procedure 

of the initial phase is presented next, followed by the second phase (§5.1.3.2) and finally the 

third phase (§5.1.3.3). 

5.1.3.1  Initial Phase 

A total of two morning handovers were observed in the initial participatory observations, 

followed by two bed-side rounds, two evening handover and one weekly radiology consultation 

rounds (different participants in each) totalling 16 hours. The observation was transcribed by 

two researchers (author of this dissertation and another research team member). Observations 

were performed across these four different types of clinical rounds, as opposed to a single type 

of clinical round to capture frequent high-level and holistic processes that involved interactions 

with technology. Observations were informed by emerging themes following the coding of the 

qualitative data after each session and terminated after consistent patterns emerged. Each 
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observation was coded using qualitative coding methods to identify emerging categories in the 

information requirement of the participants. In this initial phase, short transcriptions were 

hand recorded, sensitive patient information were not included in the transcription. 

5.1.3.2  Second Phase 

The initial phase provided knowledge about how participants interacted with technology and 

their peers to gather, synthesize and share information. The second phase of the study focused 

on interactions involving technology, in order to gain more data on specifically the use of 

technology in their daily workflow. Using the initial phase as a base, the second phase expanded 

the number of observations and utilised the coding structure (presented in the next section) to 

confirm themes identified in the previous phase, as well as to identify new themes [265]. The 

second phase was carried out by a single researcher (the author of the dissertation), who 

transcribed comprehensive statement summaries of interactions that were observed in real 

time. These comprehensive statements reduce the level of detail captured, but focused the 

data collection on general processes, which serves as the main objective of the qualitative 

study. Comprehensive statements were created describing situations, explicit quotes, as well 

as the length of time to interact with clinical information systems and whether the result was 

successful. Successful tasks were quantified when the user is able to identify elements of 

interest in the clinical information system, and use those results to continue their conversation.  

5.1.3.3  Third Phase  

Following the observation of the environment, a semi-structured interview was conducted (by 

the author of the dissertation) to better understand effects of novel visual designs on the 

participant’s ability to gain insight. Several visual designs representing clinical information were 

presented to participants (Figure 39). A list of visual designs used in the think-aloud study is 
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included in Appendix 3. They were then asked to partake in think-aloud sessions of paper 

prototypes that were shown to the clinician using the Microsoft PowerPoint software. 

Participants were encouraged to use the visual designs to explore patterns and identify new 

insight. Participants were asked to verbalize when they believed that an insight had been 

identified. Statements where the participants did not explicitly verbalize an insight, but 

resembled an insight, such as using statements of “I find this interesting”, and “Oh look here!” 

were also coded as insights identified in the visual display. 

 

 The think-aloud of the evaluations were also coded using codes that emerged in the initial 

phase and concepts were compared to initial findings, the list of codes are presented in 

§5.1.4.2. The visual designs presented to the participants include traditional method (line 

graphs), and more novel metaphoric representations that utilized asymmetric shapes and 

 

Figure 39: An illustration of a paper prototype presented in the secondary phase. Each 
prototype was evaluated using think-aloud sessions. 
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colour shades to highlight abnormal ranges or events. The visual designs were selected due to 

their ability to communicate insight in the literature. The aim of each session was to gain 

qualitative feedback from domain experts about their ability to understand and verbalize 

clinical information across several visual designs.  

5.1.4  Data Collection and Analysis 

The literature review of visual representations using physiologic data informed the coding 

strategy of this study. A hierarchy of tasks was identified in §4.4.4, that hierarchy was then used 

to code the qualitative data in the initial and second phase of the qualitative study. While these 

six codes are not comprehensive, they provide early knowledge about current practises in the 

neonatal unit. Definition of the codes as used in the study are described in Table 3. 

Table 3:  Description of Codes 

Code Description 

Data Gathering 
Directly interfacing technology in order to retrieve facts, such as 
monitoring vital signs on the patient monitor 

Data Cognition 
Reflecting on the significance (or mumbling) of a fact collected from a 
technology source, or collaboratively brainstorming possible reasons for 
the retrieved fact with another person in the group 

Information 
Retrieval 

Actions where the participant actively seeks previously synthesized facts 
(abnormal results or nursing notes) from a technology source 

Information 
dissemination 

Explicitly sharing synthesized facts with another group member or 
collectively discussing the results of a particular information retrieval task 
using technology sources 

Knowledge 
gathering 

Directed browsing activities in search of an actionable explicit or implicit 
knowledge, such as a confirmed report, or a plan of action 

Knowledge 
Dissemination 

Sharing actionable explicit facts retrieved from technology sources with 
other members of the group 
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5.1.4.1  Methods used in the initial and second phases 

The initial phase collected direct transcriptions and used codes in the analysis. Additional codes 

emerged during the coding of the transcript, but they were not used in the secondary phase, 

because they were identified to be too context specific. Themes were clustered using an 

informal affinity diagram method, using Microsoft Excel spreadsheets and presented in 

Appendix 4. Codes were organized into groups with similar themes. For instance, in Table A4-1 

(page 270), five theme groups were identified. In the second phase, data on general processes 

in information analysis involving technology were studied using clinical artefacts; these 

artefacts included worksheets, and interaction with the clinical information management 

system. Worksheets were included because they were computer-generated reports that were 

printed each morning and made available for each clinician to use.  

 Traditional methods in group scenarios use video and audio records to capture verbal 

statements [147], however in the observed setting, video and audio records were not 

permitted due to policies surrounding the protection of patient privacy. In the absence of video-

audio recorded transcripts, summaries of directed interactions with technology were hand 

recorded as activities. Furthermore, while comprehensive verbal statements were hand 

recorded in the initial phase, the second phase recorded only comprehensive statements about 

the interactions involved between clinicians and technology (computers, patient monitors, 

printed worksheets, and telephones). This was performed to enhance the focus of the field 

notes on general processes involved in the information analysis pipeline.  

 Codes were clustered using an informal affinity diagram method to generate themes. The 

affinity diagram was created using Microsoft Excel spreadsheets. Affinity diagram topics for the 
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first phase included groups such as: Analysis—Exploration Activities; Consumption—

monitoring; Temporal Parameter—Trajectory; Temporal Parameter—Frequency; and 

Temporal Parameter—Duration. Examples of the classification is presented in Table 4. 

Table 4:  Examples of Themes 

Comprehensive Note Code Theme 

Fellow identifies three patients with similar 
fluid output values after exploring many 
patients using CIMs, and thinks aloud about 
potential correlations.   

knowledge 
gathering; data 
cognition 

Analysis—
Exploration 
Activities 

In room three, one of the patient monitors 
begins to alarm and then stops, nurse quickly 
glances at the screen from across the room. 

data gathering; data 
cognition;  

Consumption—
monitoring 

Resident describes issues they’ve had with the 
care of an infant, shows circled values on the 
printed worksheet, remarks values getting 
worse. 

information 
retrieval; 
information 
dissemination 

Temporal 
Parameter-- 
Trajectory 

Staff asks resident to find out how many spells 
the nurse has observed over the evening shift, 
resident looks over the nursing notes on CIMs. 

information 
retrieval; knowledge 
gathering 

Temporal 
Parameter-- 
Frequency 

Fellow observes from the patient monitor that 
an infant has been persistently desaturating for 
several minutes, and mumbles out loud if there 
is need for re-intubation due to the extended 
length of desaturation. 

data gathering; data 
cognition;  

Temporal 
Parameter—
Duration 

5.1.4.2  Methods used in the third phase 

While the initial and second phases provided insight about information analysis processes that 

occur in the neonatal intensive care unit, additional efforts were required to gain knowledge 
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about heuristics for visual designs that are most effective for that specialized population. 

Therefore the third phase explores effective visual designs using think-aloud sessions followed 

by semi-structured interviews. In the third phase, visualizations were presented to the 

participant, therefore, in addition to the codes that emerged during the initial and second 

phase observations, additional codes were used from the literature to measure insights 

generated from the scenarios presented via those Microsoft PowerPoint illustrations. 

Moreover, in order to move the focus from group interactions to individual observations, codes 

generated from the initial and secondary phases were modified as presented in Table 5. The 

characteristics of insights were measured using the coding themes contributed by Saraiya et al. 

[142].  The codes were clustered using an informal affinity diagram method, and emerging 

themes were identified. 

5.1.4.3  Validation of the coding 

Two researchers performed independent coding in the initial phase, and a third researcher was 

included when differences in coding occurred. Data from the second and third phase was coded 

by a single researcher (author of the dissertation), and the coding method was peer-reviewed 

by an independent team member who was not part of the research [266]. 
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5.1.5  Limitations  

Although directed observation can be used to rapidly gather different types of information, 

there are limitations [267]–[269]. Due to the limited sample size in the observations, and the 

convenience sampling method used in this study, the transcription that was collected may be 

relevant to that particular subset. Transcription errors are concerns in paper recorded field 

Table 5:  List of codes used in the third phase 

Code Description 

Data gathering 
An activity where the user actively searches for data, i.e. a piece of 
information that can support their understanding of the current 
scenario 

Data cognition 
A state in which the user processes the information through a series 
of cognitive tasks and classifies that data as a potentially useful 
information 

Information 
retrieval 

An activity where the user uses an information displayed on the 
visualization to make a decision 

Information 
dissemination 

An activity where the user transfers information that can be helpful 
for others to make a decision 

Knowledge 
gathering 

User performs task to find meaning and relevance in the information 
presented 

Knowledge 
dissemination 

An activity where the user shares their insight and thoughts with 
others who can potentially benefit 

Trajectory User performs task to identify a trend or trajectory of an event 

Frequency User performs task to count of events of interest 

Duration 
User performs task to identify the temporal duration of an event of 
interest 

Insight generation 
A realization that the knowledge available from the information 
presented can be useful and meaningful 

Hypothesis User generates new hypothesises about a scenario 
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notes, however, due to patient privacy concerns audio-video records were not possible to 

obtain [148], [268]. Previous interaction with the researcher may have influenced the verbal 

statements made during observations. Due to the limited time available to complete the study, 

salient observations may have been missed from the transcription record. Due to a non-

continuous observation timeline, the days selected by the researcher for observation may have 

been atypical and skewed the results. 

 Further, the observational studies and the interviews were conducted on one clinical site. 

Hence there are limitations on how far it can be extended across other hospitals both 

domestically and internationally. Clinicians at the teaching hospital represent a segment of the 

population who may not be privy to modern clinical information systems, or monitoring 

facilities. However, the benefit of using a highly specialized and international centre as The 

Hospital for Sick Children, Toronto, is the presence of a great amount of diversity in experiences 

and background found across staff and visiting fellows in the unit. Finally, some clinicians were 

asked to evaluate visual designs in the form of paper prototypes at the end of their 12 hour 

shift. This may have influence their alertness and ability to extract information from the 

presented displays. This may have also influenced their ability to provide detailed response on 

its usability. That being said, the effects may indeed provide valuable knowledge as it is routine 

for clinicians to spend up to 24 hours on the unit during their rotations. Moreover, due to 

memory recall limitations, interviews performed at close proximity to the event can be 

advantageous for recall from episodic memory [263], [270]. In that case the immediate 

proximity to their clinical service may have allowed participants to provide rich episodic 

anecdotes during the think-aloud sessions.  
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5.2  Results  

This section presents results from the analysis of all three phases of study. This section begins 

with results obtained from the observations performed in the initial and second phases. A 

theoretical continuum is presented arising from the analysis of themes from those phases in 

§5.2.2. Finally results from the third phase are presented in §5.2.3.  

5.2.1  Observational Results from Initial and Second Phases 

A total of 158 codes appeared in the transcript collected in the initial phase, of which 122 

represented codes identified in the literature, 36 codes were classified as other. In the second 

phase a total of 1313 codes were identified, of which 1055 were represented by the codes from 

the literature and 258 codes belonged to the other category. These other codes, from both 

phases, represented activities identified as supportive tasks, and included: “Gets Number of 

Episodes”, “Makes Future Projections”, and “Asks Time-based Queries”. While these codes are 

important for analysis of the temporal tri-event parameter, in this section we present results 

relating to the six codes identified in the literature (Table 3). 

5.2.1.1 Codes from the Literature 

 In the initial phase, 46 codes appeared in the transcripts collected during the bed-side rounds. 

35 codes appeared during the evening rounds transcription, 22 codes appeared in the morning 

round transcripts and 19 appeared during the neurologic rounds. The remaining codes are 

presented in the next subsection. Among the codes identified in the literature, the most 

common code was knowledge dissemination, however this code was significantly more likely 

to appear during the evening rounds. The second and third most codes were information 

retrieval, and information dissemination.  
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 The second phase produced similar distribution of codes, with 1055 codes identified over 

the 185 hour duration. While it was information retrieval and information dissemination that 

were second most frequently recorded in the initial phase, in the second phase, data gathering 

was observed more frequently. This may be due to an increased focus on the transcription of 

the second phase on directed interventions that involved technology in the unit. An illustration 

of the distribution is presented in Figure 40. Knowledge dissemination activities dominated the 

conversation throughout evening rounds, where the emphasis is on transferring actionable 

insight about patients to the clinician responsible for the evening shift (Figure 41). Data 

gathering and data cognition tasks were however more dominant during the bed-side rounds. 

This may be due to the fact that the bed-side rounds often included a computer trolley that 

accompanied clinicians as they saw each patient in the ward. 
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Figure 40: A series of graphs illustrating the distribution of codes collected using observational data gathered in the initial 
and second phase of the qualitative study. Graphs (a) and (c) illustrate the number of codes identified across each observation 
setting in both phases, while graphs (b) and (d) describe the absolute frequency distribution in both phases. 
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      (a) 

 

(b) 

Figure 41: Graph (a) illustrates the distribution of codes across each observed setting   
in the initial phase, while (b) illustrates the same distribution in the second phase. 
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5.2.1.2 Codes Relating to Clinical Event Parameters 

In addition to codes from the literature, three additional codes emerged. These codes were: 

“Gets Number of Episodes”, “Makes Future Projections”, and “Asks Time-based Queries”. The 

first code appeared a total of 58% in the first phase and 78% in the second phase. The “Makes 

Future Projections” code appeared 19% in the first phase, and 24% in the second phase. The 

“Asks Time-based Questions” appeared 22% in the first phase and 30% in the second phase.  

5.2.1.3 Themes from clustering both groups of codes 

The coded transcripts were clustered using an informal affinity diagram method and five 

emerging themes were identified (Appendix 4). The first theme is trajectory, participants 

contemplated on the current trajectory of the patient. Questions such as “I feel like this patient 

is getting worse”, highlighted the “Makes Future Projections” based comments that were 

observed. The second theme is frequency, participants would think-aloud about the 

distribution and frequency of clinical events, and was coded as “Gets Number of Episodes”. This 

metric was important when patients were considered to be ‘very sick’. Duration was the third 

theme that was identified arising primarily from the code “Asks Time-based Queries”, 

participants requested clarification on the duration of events. Two participants expressed that 

due to the lack of tracking duration of events using current technology, they were not able to 

provide an answer.  The final two themes were consumption of facts and exploration tasks for 

knowledge gathering. Additional themes that emerged during the qualitative analysis were 

challenges in data gathering and cognition, and the lack of technology to support information 

and knowledge generation at the point of care.  

 Clinicians who wished to express behaviours occurring in a span of seconds faced the most 

difficulty communicating with their peers, i.e. data gathering and data cognition. This was 
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performed with minimal aid from clinical information systems as: (1) the data was unavailable 

for the time the event occurred or (2) there was a lack of analytic facility. Information was easily 

verbalized but the verbalization of specific clinical statuses pertaining to a patient was often 

ambiguous and required additional follow-up between clinicians and bed-side nurses.  

 After the analysis of artefacts and tasks, it was recognized that very few systems exist to 

support the clinician through analytic activities performed using retrospectively stored 

physiologic data. However, when discussions were initiated about physiologic behaviour of a 

patient, the discussion was often times delivered as anecdotes at the bedside. Common 

phrases such as “I am not concerned”, or “The baby looks sick” were often used to convey 

clinical knowledge that may affect a patient’s management strategy in the absence of 

quantitative means for identifying apnoea or sepsis. 

 These results pointed to an early theory involving the diverse tasks that can be supported 

in the neonatal intensive care unit. A second analysis of the codes revealed a tendency to shift 

towards monitoring and exploration activities. This lead to the construction of a continuum, 

which is presented in the following subsection. 

5.2.2  Exploration-Consumption Continuum 

During the observation, it was noted that clinicians frequently fluctuate between different 

knowledge seeking dimensions. This observation, along with the semi-structured interviews 

with clinicians and clinical researchers resulted in the creation of the Exploration-Consumption 

continuum illustrated in Figure 42.  
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 Two prominent themes emerged during the analysis of the qualitative data, they were: 

Analysis—Exploration Activities and Consumption—monitoring (Table 4). Transcripts from both 

themes were studied and the six codes used for analysis of the transcripts were grouped into 

Exploration and Consumption categories. Within each of those groups, several activities 

emerged. These activities ranged from hypothesis generation (exploratory research), to active 

perceptual data gathering (focal monitoring). It was also noted that these activities differed in 

the context of the urgency of the situation and the engagement level of the person involved. 

These emergent activities were compared with the findings of Sanderson’s study on focal and 

peripheral attention of anesthesiologists [28]. The focal and peripheral attention activities 

showed similar behaviour to the activities identified in the analysis of the qualitative data from 

this study. For instance, a responsible physician within a highly urgent situation was likely to 

exist in the focal monitoring phase, whereas a clinical observer (without involvement in the 

care management) in the same situation with less engagement may be involved in peripheral 

monitoring, in which data is observed through peripheral attention [28]. These findings were 

integrated within a theoretical model that forms the basis of the Exploration-Consumption 

continuum. 
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Figure 42: Knowledge exploration and consumption continuum.  
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 The first dimension is the knowledge consumption domain illustrated in the right side of 

Figure 42. In this dimension the user is predominantly interested in focal monitoring of clinical 

events. This includes events such as breathing patterns, skin tone, or data gained from the 

clinical information system. In other complex domains, a dynamic consumer may be interested 

in rapidly identifying events such as network intrusions, or power-system failure. Therefore the 

consumption dimension exists for those who require situational analysis within very short 

durations. 

 The second dimension is the knowledge exploration dimension illustrated in the left side 

of Figure 42. In this dimension the clinician is often asking questions about conditions that may 

be hidden or untapped due to lack of information. As noted in the results obtained from the 

think-aloud sessions, clinician in the explorative dimension spent upwards of four minutes on 

each display, carefully identifying elements and predicting future trends without verbal cues 

from the researcher. In similar complex domains, dynamic analysts existing in this dimension 

perform detailed exploratory tasks to uncover trends and patterns that may indicate an 

abnormal condition. The dynamic analyst is not constraint by time and therefore can perform 

deep insight activities such as, research, sense-making, and spend time to arrive at knowledge 

via serendipity.  

 The axes of the continuum represents the urgency of the environment and the 

engagement capacity of the human. As the urgency (horizontal axis) and engagement (vertical 

axis) increased, the participant pivots towards the acute focal monitoring (top right, Figure 42), 

a phase in which the user discerns critical temporal events. Conversely, when the participant 



 

122 
 

operated in a less urgent (left, Figure 42) environment, such as their office, and their 

engagement levels are increased, there were increased instances of exploratory research 

activities. The continuum identifies other activities that can occur as both axes are controlled.  

 The presence of the endogenous and exogenous terminals are relevant for the maximum 

amount of information that can be processed at any point in time. It was identified in the 

observation, that significant transfer of data was discouraged in the consumption oriented task, 

while encouraged in the exploratory activities. Participants expressed desires for synthesis, 

using statements such as “Is the infant unwell?” to request summarization of events. When 

tasks such as browsing, and data gathering were the prime focus, statements such as “How 

does this value compare over to that over the weekend?” and “Can you bring up all the results 

on screen?” were noted. The actual extent of this terminal may well be influenced by the 

individual, hence further research is needed to understand specifically which tasks can be 

considered bordering the terminal on the continuum. 

 Due to the lack of information systems that consider both dimensions identified in the 

Exploration-Consumption continuum, existing clinical systems were seen to provide minimal 

facilities and complicate previously trivial tasks, based on the feedback received throughout 

the study. Moreover, the participants’ feedback suggests that existing displays also were 

identified to have poor consumption facilities. For instance, to retrieve information about blood 

glucose over the past 24 hours, a series of menus needed to be access along with multiple 

selections. Participants verbalized anecdotal evidence to suggest this challenge is seen in 

numerous instances. 
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5.2.3  Results from the third phase 

The third phase exposed clinicians to novel visual designs that were presented as paper 

prototypes (Appendix 3, Figures A3-1 to A3-6). Clinicians were asked to perform think-aloud 

sessions to elicit knowledge about effective displays. 127 codes were collected from the 

analysis of the transcript of which 11 were excluded because they were too context specific. 

Information Retrieval (n=27), Knowledge Gathering (n=15), Trajectory (n=13), Data Cognition 

(n=12) and Insight Generation (n=11) were dominate codes that appeared in the transcript 

(Figure 43). Codes were then grouped using the informal affinity diagram method, and this 

process involved the author grouping each code item into five affinity groups using Microsoft 

Excel Spreadsheet. Those emerging themes include: reactions to existing systems, reactions to 

novel representations, engagement levels, perception of usefulness, and analysis of cohorts. 

These themes are discussed in the remaining parts of this section. 

 

 

Figure 43: Distribution of codes from the third phase. 

0%

5%

10%

15%

20%

25%

%
 o

f 
D

is
tr

ib
u

ti
o

n

Third Phase: Frequency of Codes



 

124 
 

 During the think-aloud sessions, clinicians associated current clinical information systems 

with negative emotions, and complained of their limitations when analysis workflows were 

required. It is to be noted however, that a distinct group of clinicians with highly observant skills 

(clustered by time spent on each case, cursor movements, and number of questions asked) 

expressed greater dissatisfaction with the current information systems and their abilities to 

expose more data for clinician-driven analysis. These clinicians were also clinical researchers 

and hence, routinely performed in-depth analysis of physiological data.  

 Generally clinicians responded with interest in the novelty of the metaphoric displays, but 

preferred standard line charts. They stated familiarity as the reason for choosing tables and line 

charts to visualize clinical information. The heatmap representation (Figure A3-1, page 264) 

was identified to be the most revealing visual representation, and was found to the easiest to 

understand. Novel visual representations were identified with greater interest among 

department fellows and medical residents. Specifically the ability to interact with visuals on the 

screen to reveal additional details on demand were associated with positive emotions (Figure 

A3-3, page 266). 

 Within participants recruited for this study, there existed a set of clinicians who were 

much more involved in understanding the details of the visual display. These participants were 

found to have more frequent analysis related codes (data gathering, data cognition, 

information gathering, information dissemination, hypothesis generation, and insight 

characteristics) than their peers. This set included one fourth year medical undergraduate 

student, one neonatal program fellow and two neonatal department fellows. These ‘observant’ 
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clinicians utilized the paper prototypes to predict the next cycle of events and spent generally 

a greater amount of time with each display. The average time spent by the ‘observant’ clinicians 

before making initial verbal comments exceeded 4 minutes per display, while the overall 

average for all eight participants was under 1 minute. These observant clinicians, as well as the 

general population of clinicians eluded to a new category of ‘information consumers’ that have 

limited exposure in the literature. This discovery leads to the creation of an exploration-

consumption continuum which is discussed in the next section. 

 The novel metaphoric displays were verbalized as useful and usable with that set of 

clinicians. Specifically, the DxRadar (Figure A3-2, page 265) representation and the star-plot 

(Figure A3-4, page 267) was identified to be very useful for monitoring clinical conditions by 

four participants. They had positively responded to using these displays in their workflow to 

improve their understanding of complex physiological data at the bedside.  

 Clinical researchers while progressing through the think-aloud session frequently voiced 

intent for extracting features from a single patient and evaluating that across a patient 

population. Although the tree-map (Figure A3-5, page 268) was not intended to be used for 

such, but one participant found it to be a potentially useful representation to support analysis 

of patient cohorts. However, explicitly, this function was not available in the paper prototypes 

and presented an opportunity that was not anticipated prior to participant exposure. 

5.3  Discussion 

 Analysis of observations conducted in a dynamic complex environment show that experts 

exist along a continuum that spans strictly exploratory analysis to strict analytic consumption. 
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The observation results provide insight into the day-to-day activities of those complex domain 

experts existing in both dynamic dimensions. In particular, the initial and secondary phase 

feedback and anecdotal evidences, shows that there is a need to enhance currently available 

clinical information systems with dynamic components that support each of the requirements 

for both the consumer and the researcher. For instance, results from the secondary phase 

revealed that clinical information systems do not provide consumers with the ability integrate 

heterogeneous data streams with events of interest.  

 Moreover, those clinical systems (electronic medical records, order-entry, and clinical 

narratives) as observed in each of the qualitative studies were found to lack even high-levels of 

analysis of physiological data streams. Much of the physiological displays were summaries of 

data samples abstracted at a predefined interval.  It was also found that during bed-side rounds 

for instance, clinicians spent a larger portion of their time gathering facts, and fewer time was 

dedicated to knowledge dissemination activities.  

 The initial and secondary phases provided results that were used in a requirement 

analysis. Four functional requirements were elicited from limitations observed in the setting: 

R.1. Dynamic visual analytic: Applying visual analytics to physiologic event stream 

processing algorithms that produce complex association and classifications from 

multi-stream analysis of raw data. This requirement supports the need for user-

driven explorative and explanatory tasks. 
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R.2. Monitoring relatively aligned temporal events: Using temporal relative alignment 

techniques to visually expose for analysis real-time and retrospective events 

across multiple data streams to support exploratory research.  

R.3. Coordinated streams visual analytics: Supporting dynamic coordinated 

interaction on multi-dimensional temporal data streams to allow the analyst to 

elicit information on event features and classifications. 

R.4. Analysing across cohorts: Hypothesis testing performed on one subset, needs to 

be applied across cohorts or populations to observe similar patterns has not been 

demonstrated in real-time visual analytic systems. 

 Research is warranted in the space identified above in R.1, where system plays a proactive 

role by performing low-level data processing tasks, and generates features for interactive 

exploration by the analyst at the visual analytic layer. Novel relative alignment of temporal 

streams, complex associations and conditions can be exposed for further pattern analysis, this 

approach addresses requirements stated in R.2. R.3 further implements on requirements 

established in R.2, with the addition of coordinated interactive analysis views. These 

coordinated views support the analyst in performing exploratory and explanatory research. 

Finally, the need to support case-controlled studies for extending results of a single analysis to 

other unique systems is stated by R.4. Applying hypothesis generated from a single case, to 

similar populations enables the domain expert to generate new knowledge.  
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5.4  Research Directions in Novel Physiological Displays 

 This study exposes constraints in technology developed for the neonatal intensive care 

unit, specifically with respect to the representation of physiological data. It was noted in the 

analysis of the qualitative study that physiological displays can be designed and developed 

using three temporal metrics identified as the tri-event temporal parameters namely, 

trajectory, frequency, and duration of salient events.  

 It can be further noted that clinicians, as well as general complex and dynamic domain 

analysts, can exist across either the exploration or the consumption dimension with respect to 

the urgency of the situation and their particular level of engagement, this is referred to as the 

Exploration-Consumption continuum [42] and was introduced in this chapter. The tri-event 

parameters and the exploration-consumption continuum encapsulate critical temporal 

properties along with higher-level processes that may be critical in supporting practices 

essential for evidence-informed care [207], [42].   

 In the systematic survey presented in the previous chapter, trajectory, among the tri-

event parameters, was found to be the most popularly expressed. 31 studies were found to 

incorporate some form of trajectory information. However, longitudinal trajectory was found 

in only nine studies, moreover seen rare among displays that were found in anesthesiology but 

more common in critical care.  Displays that incorporated an aspect of the tri-event temporal 

parameters exclusively adopted trajectory. Nine visual representations were found to have 

included the duration and frequency metrics.  
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 Most of the representations that included duration and frequency used glyphs (n=5) or 

text (n=4) to communicate episodic information.  Glyphs among one of the most popular 

methods in information visualization to communicate episodes and their properties [249]. 

Hence, it is not surprising to see many authors exploit the discrete property of glyphs to 

communicate information such as duration and frequency. Text also remains a popular method 

for communicating discrete events. Law et al., found text to be superior to waveform and 

numeric displays when communicating clinical episodes, even while clinicians reported a 

preference for graphical displays [271]. 

 While the exposure of tri-event parameters remain limited, they have become 

increasingly prevalent in visual representations developed over the past decade. Gorges et al., 

for instance, introduce novel glyph based far-view display that discretizes events into hourly 

summaries [129], resulting a 26% improvement in decision accuracy. However the utilization of 

all three tri-event parameter have seldom appeared in design considerations of the papers 

analysed. Further research is required to investigate the influence of these tri-event parameters 

in clinical workflows and ultimately their potential impact on situational awareness and 

cognitive errors. Where multiple views were presented, only one representations utilized 

interactive coordination between independent views [225]. Finally, it was noted that none of 

the visualizations that were surveyed supported the function to identify case-control groups.  

 The results presented in this and the previous chapter demonstrate the need for further 

research in novel visual representations developed for the complex medical domain. The visual 

representation should at minimum support the tri-event temporal parameters, and enable new 
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tasks such as hypothesis generation and testing. The contribution of this thesis is centered on 

addressing some of these limitations through the introduction of a framework for developing 

consumption, and interactive exploratory dynamic visual analytic tools. 

5.5  Threats to Validity 

This section details threats to validity-- including external, internal and conclusion validities for 

the grounded qualitative study that was presented in this chapter. Due to the use of naturalistic 

observation design, there is a high degree of external validity presented in this research. 

However, due to the use of a single site, even when it is composed of a highly diverse participant 

set, the naturalistic observation may not translate to all similar hospital environments. The use 

of the semi-structured interviews, and the think-aloud sessions strengthen the internal validity 

of the research.  

 Conversely, due to the influence of the ‘Hawthorne Effect’, participants may have 

changed their internal disposition within the context of the research study. Finally, due to the 

limited set of visualizations that were shown to the user, there may be threats to conclusions. 

The conclusions of this research may pertain only to the types of visualizations (density, 

metaphoric, and traditional) that were used.  

5.6  Chapter Summary 

The chapter begins with a detail of the methodology used in the observation study. The 

qualitative results are presented in §5.2. Two major findings were introduced, the first 

finding exposed the tri-event temporal parameters as critical elements of discussion between 

clinicians in the intensive care environment. It also motivates the need to investigate the extent 
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to which health visualizations support these parameters. The second finding revealed two 

dimensions, exploration and consumption existing along a common ‘urgency’ axis. A secondary 

axis, ‘engagement’ was also observed. These two axis forms the 2-dimensional plane called the 

Exploration-Consumption continuum.   

 The next chapter presents detailed walkthrough of the traditional data warehouse 

architecture, followed by introducing the components of the TDVA framework, along with the 

TDVA methodology. That chapter concludes with the presentation of an architectural 

representation of the TDVA framework, as instantiated to support clinical research activities. 
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6. Tri-event Parameter Dynamic Visual Analytic Framework 

This chapter introduces the Tri-event Parameter Dynamic Visual Analytic (TDVA) framework, 

TDVA methodology and TDVA platform design. The literature review as detailed in chapter 

three demonstrated open research opportunities in the broad areas of dynamic visual analytics, 

and data warehouse frameworks to support dynamic environments. The traditional data 

warehouse is presented, then the TDVA framework, followed by details of the TDVA 

methodology and TDVA platform design. This chapter concludes with examples of two 

prototype visual analytic tools developed using the TDVA framework called the Heart Rate 

Variability Graph and the SeqEvent graph in §6.5. 

6.1  Traditional Data Warehouse Design 

The traditional data warehouse architecture (Figure 4, §3.3) [91] loads data from operational 

data systems which are typically databases that support organization operation systems. The 

limitations of that approach include: the use of restrictive OLAP cubes for analysing fixed arrays 

of data, overemphasis of longitudinal normalized data, unidirectional data flow paradigm, and 

the lack of continuous feedback between the OLAP engine and front-end user interactions [94], 

[95], [105], [110].  

 To address the limitations presented above, a new approach is needed that integrates 

multi-dimensional temporal features while supporting interactive dynamic visual analysis for 

analysts in complex domains. This separation of the presentation layer, therefore, presents 

limitations to enable dynamic visual analytics as discussed in § 3.3. 
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6.2  TDVA Framework 

There are numerous reasons for which sensors are deployed, including to support fault 

detection and avoid costly interventions. Sensor networks can be found in a variety of 

environments including, flight recorders on airplanes [272], network traffic monitoring [273], 

and also in the intensive care unit [37]. The proposed Tri-event Dynamic Visual Analytic 

Framework (TDVA) incorporates real-time sensor network processing to enable dynamic visual 

analytics.  

 The key insight introduced by the TDVA framework is the instantiation of a dynamic visual 

analytics publishing interface between the Data Presentation Area and the Data Access Tool of 

the traditional data warehouse architecture [91]. Figure 44 illustrates the Dynamic Visual 

Analytics (DVA) Mart Publisher (mPub) engine that receives data from the data warehouse. 

After performing a series of pre-processing steps, the mPub engine produces independent and 

loosely coupled Dynamic Visual Analytic Marts (DVAM). These DVAMs exist as a toolkit of visual 

interfaces that are available to support dynamic requirements of the analyst. DVAMs can be 

instantiated as exploration or consumption instances. Exploration instances support analysis 

tasks such as explanatory and exploratory research. Consumption instances present dynamic 

content by assigning visual representations that contain limited interactions. 

 The TDVA framework, use components from the traditional data warehouse architecture, 

and extends components where interactive exploratory analysis is unsupported. The 

introduced concepts extend beyond the traditional data warehouse data mart by intrinsically 

coupling unique consumption or exploration requirements with an appropriate visual analytics 
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approach to adaptably explore the data. The user is able to customize their analytic space by 

submitting requests to mPub, which creates a personalized DVAM with unique views that are 

interactive and independent. Each instantiated DVAM allows the user to interactively explore 

the analytic space. The user performs interactive controls on visual toolkits made available by 

the mPub engine to perform a series of basic direct manipulation functions such as zooming in 

on lower levels of information, and hovering over visual objects to get details on demand. 

Furthermore, an interconnected Event Stream Processor (ESP) replaces the silo processing 

component of the data staging area presented by Kimball and Ross in (Figure 4, page 27). This 

allows deployed DVAMs to have rich data processing routines that are required on-demand by 

dynamic and responsive visual interfaces. Hence, in contrast to the unidirectional ingestion of 

data via traditional data warehouse architectures, DVAMs are tightly integrated bi-directionally 

with the ESP. The presentation area is replaced by the mPub engine, and the Data Access Tools 

are replaced by DVAMs. Details of each component of the framework are described in §6.2.1, 

and §6.3 presents details of a novel methodology that makes instantiation of DVAMs feasible 

in complex environments.  

  

  



 

135 
 

 

 

 

 

 

 

 

Figure 44: Extensions to the data warehouse architecture adapted from Kimball & Ross, 2011 [91] 
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6.2.1  TDVA Framework Components 

There are four key components of the TDVA framework that is illustrated in Figure 45; they are 

the (1) Event Stream Processor (ESP), (2) Persistent Data Store, (3) Dynamic Visual Analytic Mart 

Publisher (mPub), and finally the (4) Dynamic Visual Analytic Marts (DVAM). 

(1) Event Stream Processing (ESP): The ESP is the first component of the framework, 

and sources real-time and retrospective data streams from sensors and event 

stream databases. In this component multiple secondary data streams are 

generated belonging to one of four classes. Namely the output streams are: (a) 

event features, (b) variability, (c) trending, and (d) event classifications.  

ESP.a. Event Feature streams are the most basic of the four complex 

streams generated by the ESP; these streams provide rapid 

asynchronous view of the dynamic environment relating to the 

state of sensors and the health of the monitored system.  

ESP.b. Variability streams are generated for synchronous data streams 

that exhibit measurable changes in variability of the underlying 

data stream. Variability streams are synchronous and independent 

to the trending and classification streams. Variability is calculated 

as a delta that is measured against a moving average and 

recalibrated upon incremental or rapid stabilization of the source 

signal. 
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ESP.c. Trending streams are generated as a trajectory metric between two 

features within a single stream or between one or more streams 

that exhibit coordinated behaviour. Trending streams are 

transmitted as synchronously bursts even before the event can be 

classified. 

ESP.d. Event Classifications are generated as ordinal outputs that are 

transmitted after events have been classified as belonging to one 

or several conditions. These streams are asynchronously generated 

based on conditions established in algorithms running in the ESP 

engine. 

(2) Persistent Data Store: In this component, data streams from the source, as well 

as the secondary streams generated by the ESP engine are stored persistently. The 

data store also stores system generated actions, such as the tertiary data 

generated by the mPub engine. Analyst generated streams, such as interactions, 

click streams, and analysis session data are stored for providing analytic 

provenance, such as the ability to revert to a previous analysis pathway.



 

138 
 

 

 

Figure 45: The Tri-event Parameter Dynamic Visual Analytic Framework 
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(3) Dynamic Visual Analytic Mart Publisher (mPub): This component serves as the 

backbone for enabling dynamic visual analysis in the critical and complex 

environment. It receives input from the dynamic analyst, ESP engine and the 

persistent data store components. The end product is an instantiation of one of 

many visual analytic toolkits existing in this interface.  

 The mPub also allows the researcher to balance exploratory and 

explanatory research. By using retrospective analysis the dynamic analyst may 

perform iterative exploratory research by exploring various views provided by the 

mPub component. Once the dynamic analyst is satisfied with a view, they can 

replicate these instantiations for new data streams, without querying 

retrospective data. Hence, dynamic consumers may be able to utilize the view 

with minimal configuration to perform tasks existing in the consumption 

dimension. 

 Initially, the dynamic analyst submits a request for one or more visual 

analysis mart(s), using necessary parameters such as, the data identification, 

analysis epoch, relative alignment of other events, and the specific temporal 

views. To arrive at the dynamic visual analytic mart, the mPub component must 

first check the source stream for sufficient data quality to identify missing data, or 

void regions. Once sufficient data quality has been met, the mPub component 

creates a wireframe mart with all components and socket addresses of the 

respective source streams.  Using information gathered from the analyst, the 

mPub component creates DVAMs using one of six customizable visual toolkits 
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(VT). Additional VTs can be developed in future work to expand the collection of 

VTs available for use. Each VT supports the representation of one or all of the 

temporal tri-event parameters. 

VT.1 Linear Plot Graph: Plotting of event feature streams in linear time against 

duration, one of the key tri-event parameter. This graph also exposes 

frequency by controlling opacity and trajectory using time along the x axis. 

VT.2 SeqEvent Parallel Coordinates: An extension of parallel coordinates [274] 

designed for highlighting sequence patterns in temporal datasets. 

VT.3 Sequence Graph: Plotting of classification events by aggregating frequency 

over an epoch. The default view of this graph shows Day x Hour.  In which, 

hourly intervals are expressed across the x-axis, and day across the y-axis. 

If the analyst has submitted the Hour x Minute request, the x-axis would 

contain one minute interval and the y-axis would contain one-hour 

intervals. 

VT.4 Streams Graph: A stacked area plotting of frequency of events calculated 

at one minute intervals against frequency. The area is determined by the 

frequency of the event. The x-axis is measured in one minute intervals.  

VT.5 Temporal Intensity Map: A unique heatmap representing frequency and 

duration of events along time in the x-axis.  Frequency is controlled by 

stacking and duration is plotted along the vertical axis. Trajectory is 

implicitly expressed by change over time. 
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VT.6 Cohort Relative Alignment Map: A collection of heatmaps representing a 

common event feature stream. The event feature trajectory, frequency 

and duration can be identified for a population. 

VT.7 Contextual Bar: A small heatmap that can be associated to a linear graph 

(VT.1) or a Cohort Relative Alignment Map (VT.6). This contextual bar can 

be made visible on demand using a selection interaction. 

 Once all of the above mentioned processes are completed, and necessary data 

quality prerequisites are met, the mPub instantiates the DVAM. Once instantiated, 

the DVAM exists independent to the mPub component until the session is 

terminated, after which the mart is deactivated.  

(4) Dynamic Visual Analytics Mart (DVAM): The instantiation is activated by the 

mPub component using parameters provided by a designer, and immediately 

upon activation the mart ingests real-time data streams. Hereafter the dynamic 

visual analytic mart independently sources, and remodels the data as the analyst 

begins to interact directly with the interactive component of the mart. The 

independent mart can then request for raw or secondary data from the event 

stream processing engine, and if required access historical sensor data from the 

data store.  

Event Loop: A unique feature of the mart, as opposed to traditional marts in data 

warehousing architecture, is the dynamic nature by which it accepts 
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interactive controls and submits instructions to the event stream 

processor for retrospective analysis.  

In this subsection, the components of the TDVA framework were detailed. The 

subsequent subsection presents the methodology used to generate DVAM using 

the TDVA framework.  

6.3  TDVA Methodology 

The instantiation of the TDVA framework follows a series of phases collectively identified as the 

TDVA Methodology, and begins with phase one: finding the right person, phase two: 

categorization and data modelling, phase three: deployment of DVAMs, and phase four: 

evaluation of the DVAM. The TDVA Methodology is illustrated in Figure 46. 

 

 

Figure 46: Tri-event Parameter Dynamic Visual Analytic Methodology 
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6.3.1  Finding the Right Person 

Apart from instances where knowledge about the domain is well documented, there are cases 

in which the domain needs to be better understood. To support the generalization of the TDVA 

framework, the TDVA methodology includes an important initial step called ‘Finding the Right 

Person’. In this first phase of the methodology, important information about the context and 

the user are isolated prior to the instantiation of DVAMs. To that end, a series of requirement 

gathering methods are available, including ethnographic observations and surveys such as the 

one performed in the previous chapter relating to clinical handover. The users are primarily 

observed to identify the extent to which the user requires exploratory or consumption displays. 

These observations help inform task requirements, as well as design goals that are required 

modules for the dynamic visual analytic marts.  

 Following that step is the case characterization, in which the domain itself is carefully 

studied, and their related workflows observed. Completing both steps result in a list of design 

requirements. Information requirements are then analysed from prior observations. The 

produced list of information requirement is made available for subsequent visual encoding that 

will transform information into visual representations. Moreover, observations may also reveal 

individual user preferences, which can provide additional knowledge about deploying the 

appropriate VTs effectively for analysts with varying needs for detail. 

6.3.2  Categorization and Data Modeling 

 The second phase is to extract appropriate data as defined in the case characterization to input 

as design requirements to the mPub engine. In domains where data streams are analysed in 

real-time, this step may also involves making available secondary-data from existing online 
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algorithms. These algorithms have been modified as to extract key secondary-data regarding 

the temporal parameters relating to the identification and detection of features. This 

secondary-data is made available to the mPub engine so the appropriate feature scaling 

density, and data transformation algorithms can be executed to match the selected VT.  

Secondary-data from the algorithms also provides unique trajectory information. For 

instance, every occurrences of an event produced by the online algorithm can be used to 

determine potential trajectories. This involves identifying data that populates the tri-event 

parameters. Specific data transformation and statistical analysis techniques such as kernel 

density estimation (KDE) and non-linear non-parametric estimation are used by the mPub 

engine to strengthen and enhance the dynamic visual analytic mart’s ability to communicate 

inferences on existing and potential trajectories. 

Moreover, depending on the requirement analysis conducted in the first phase, the user 

may require an exploratory or explanatory analytic environment. Before the DVAM is deployed, 

the mPub engine produces event alignment in data. Generally, event alignment is an important 

aspect in explanatory research, as the user intends to study sequences, and patterns exhibited 

by low-level event features that precede certain high-level contextual events.   

The final component of this phase will be to reveal temporal relative alignment of raw, 

variability, event and classifications. In data intensive sensor networks, this means temporal 

relative alignment of events must exist across multiple data streams. The temporal domain of 

data can exist over multiple hierarchies, such as, detection of spells in seconds, calculation of 

heart rate variability in hours, and gestational age in days and weeks. Event alignment and 
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depth of overview as required in the operation of the dynamic visual analytic mart may result 

in creative development of visual displays, and also result in novel method for conveying 

sequences of events using coordinated visual displays. In cases where frequency and duration 

require emphasis, the use of novel methods such as combinatory logistic and KDE modeling can 

be used to expose kernel centres in data points and produce anchor points for the relative 

alignment. Following the completion of this phase, a DVAM is created and ready for 

deployment. 

6.3.3  Deployment of the DVAM 

Once both phases are complete, the DVAM can be deployed as an exploratory or consumption 

tool. The DVAM is generated through design goals and criteria that are gathered and 

documented by the designer in the first phase. The difference between the exploration and 

consumption instances lies in the degree of exploration and manipulation the user can perform. 

The resulting DVAM allows the researcher to partake in knowledge discovery, and to modify 

the underlying data model to produce new views. This phase of the TDVA methodology may 

require several iterations until the optimal DVAM is produced. An optimal DVAM is met when 

a DVAM satisfies all requirements established in the first phase of the methodology. This phase 

of the methodology provides flexibility on part of the designer to develop multiple instances of 

the DVAM to evaluate each instantiation based on criteria developed in the first phase. For 

instance, if among the criteria of the first phase was improving detection time, then the DVAMs 

will be iterated until an instance has been developed which improves detection time against 

tools used in the existing workflow. 
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6.3.4  Evaluation of the DVAM 

The final phase of the TDVA methodology is the evaluation of the DVAM utilising domain 

experts to validate its utility with a complex domain problem. This phase is typically performed 

when the DVAM is developed and instantiated in the domain by a usability researcher. Task 

requirements identified in the first phase server as the evaluation criteria. Using the generated 

criteria, a list of evaluation tasks can be devised to identify key outcome metrics as appropriate 

to the environment where the DVAM will be used. These outcome metrics can be used to 

identify limitations in the DVAM. Should limitations prevent the successful completion of the 

task, the results obtained in this phase can be used as input in a subsequent iteration of the 

DVAM creation (arrow to phase 3). Subsequent iterations result in a DVAM that addresses the 

requirements of the complex domain expert. 

The four phase methodology presented in this section provides a means of instantiating 

DVAMs within the context of a specific use case. The next subsection describes components of 

a platform design that can be used to support the DVAM instantiation. 

6.4  TDVA Platform  

This section details an instantiation of the TDVA framework as a platform known as the TDVA 

platform illustrated in Figure 47. The entry point of new data within the TDVA platform begins 

with integrating data streams collected by sensors, and parallel multi-dimensional feature 

extraction and classification algorithms deployed in the ESP engine (second from left, Figure 

47) and this function aligns with the ESP engine of the TDVA Framework.  
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 Once features are generated, the Dynamic Visual Analytic mPub engine (middle, Figure 

47), subsumes the responsibility of the mPub engine described in the TDVA framework. This 

engine runs at compile time for every unique instance of a DVAM created by the user (right, 

Figure 47). A user can create multiple instances and use them for hypothesis generation or for 

hypothesis testing between the same or different system. In this way the platform allows the 

user to perform both exploratory and explanatory research. The DVAM is tightly bound to the 

ESP engine, hence, if a user requests to see retrospective analysis of data streams the 

instruction is sent to the ESP engine to dynamically remodel the dataset using new parameters 

determined by the analyst. Each component is described in detail below. 
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Figure 47: TDVA Application Platform  
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6.4.1  Event Stream Processing Engine 

The first container labelled “Event Stream Processing Engine” found on the left in Figure 47 

performs basic data analytic and event stream processing functions thereby, producing one of 

four essential algorithmic outputs. These algorithmic outputs are determined by the underlying 

event stream processing algorithm and align with the output of the ESP engine in the TDVA 

framework. The outputs generated by the ESP engine in the platform are: 

O.1. Rapid Event Feature Extraction: Consisting of high velocity asynchronous output 

streams that describe low-level characteristics of the streaming data. Examples 

include, data quality streams measuring the quality of data received from sensors, 

intermediate event streams produced before a classification can be determined, 

and finally system environment parameters such as the health of the engine.  

O.2. Trending: Consisting of synchronous streams describing temporal trends that 

occur within or between multi-stream classifications, such as a single data stream 

describing a real-world system that has breached absolute or relative thresholds 

thereby signalling abnormal conditions.  

O.3. Variability: Consisting of synchronous streams that describe the degree of 

variability that exists within single or multiple series of data streams of critical 

systems. 

O.4. Event Classifications: Consisting of asynchronous streams that output 

classifications pertaining to real-world conditions through real-time event stream 

processing. The output is often delivered as a single ordinal value, such as the 

name of condition detected. 
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The engine also accepts two inputs. 

I.1. System Feedback: The dynamic visual analytic engine, the next component in the 

architecture can provide requests for the execution of algorithms required for the 

generation of specific visual analytic templates. 

I.2. User Initiated Action: The instantiated dynamic visual analytic mart can 

independently request the event stream processing engine for re-execution of 

algorithms with user defined parameters. The output from the engine is delivered 

directly to the respective template. This supports the ‘Explanatory Loop’ of the 

TDVA framework. The explanatory loop, and the user initiated action are both 

used to support continuous hypothesis generation tasks. 

6.4.2  Dynamic Visual Analytic mPub Engine  

Once the ESP has started generating features, the mPub engine, (Figure 47, middle) begins to 

prepare a DVAM instantiation. Each mart is allowed to be flexible in order to accommodate 

dynamic data ranges, baselines, and frequency of events. For instance, if the frequency of one 

class of events overwhelms all other events then a non-parametric normalization is performed 

to enable the analyst to see those events.  In addition to this custom data dimension modelling, 

the mPub component also: 

P.1. Prepares the mart for instantiation by customizing the visual encoding of the 

visual analytic unit, such as accommodating for users screen width and height, 

thus preventing obstructed views. 
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P.2. Performs independent instantiation and establishing uninterrupted session 

with the ESP for the mart to receive data streams and enable the user to 

perform dynamic visual analytics. 

6.4.3  Dynamic Visual Analytic Mart 

Each dynamic visual analytic mart instantiation (Figure 47, right), once it has been deployed, 

has direct access to the ESP from where all sensor data and retrospective data are retrieved. 

The mart is an independent instance, which means that the mart exists within its own local 

scope, therefore the analyst can dynamically interact with the mart to elicit novel features and 

visually analyse the data without imparting changes on other active sessions. This feature 

enables the user to perform dynamic hypothesis generation actively across one or more 

instances of the same analysis.   

6.5  Sample Applications: Prototype Instantiations of the TDVA Framework 

within the TDVA Platform 

Using the TDVA platform, two early prototypes of visual analytic tools were developed and 

integrated to the platform. These prototypes include the Heart Rate Variability Graph [275], 

and the Neonatal Spells Explorer [276]. These prototypes at minimum, received data from the 

ESP engine or data warehouse, provided interactive functionality to the end user, supported 

expression of the tri-event parameters, applied degree of interaction based on the 

requirements for exploration, and supported automated data modelling tasks. The sample 

applications are described with a walk-through of the framework. These prototypes served as 
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a proof-of-concept demonstration for the full implementation that resulted in PhysioEx and Co-

Rad which are detailed further in the following two chapters.  

 

6.5.1  Heart Rate Variability Graph 

The first prototype DVAM that was instantiated using the mPub engine of the TDVA platform, 

was the heart rate variability graph [275]. In order to visualize heart rate variability previously, 

the user had to perform numerous manual processes, including retrieving the data from the 

data warehouse, populating it to Microsoft Excel or IBM SPSS before a visual can be made 

available. The goal of this instantiation is to make heart rate variability available in real-time to 

support the workflow of a consumer. The prototype DVAM, illustrated in Figure 48, was 

developed to support a consumer with real-time knowledge requirements. Each heart rate 

variability score is represented by a circle and visually encoded using colours. A yellow colour 

 

Figure 48: The Heart Rate Variability Graph- real-time visual analytics for the consumer  
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signifies low scores, while a red colour denotes acceptable regions, and finally the blue circles 

represent consistent variability. 

 The entire technical architecture, including the software utilized in the prototype is 

illustrated in Figure 49. IBM InfoSphere Streams was used as the ESP, and physiologic data was 

streamed into the ESP from the patient monitor using CapsuleTech’s DataCaptor software. The 

ESP would then stream data to a node.js application that served as the mPub engine. The mPub 

engine could also retrieve retrospective data from the persistent data store using the ibm_db 

library. The mPub engine was coded in JavaScript. The mPub engine would then generate a 

visual representation that was coded using the d3.js library [277].  

 

 

Figure 49: Components of the TDVA platform used to provide real-time analysis feeds.  
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Once the requirements were established, and the supporting platform identified, the process 

of identifying the correct visual toolkit for the DVAM that would best support visual 

consumption of heart rate variability trends was initiated. Using the TDVA methodology, the 

design processes were organized into four phases. The sequence of steps followed are 

described below. 

P1: Finding the right person 

The first phase involves processes soliciting design requirement that identified specific needs 

of the end-user. Two domain experts were identified with a minimum of 10 years of 

neonatology expertise as the subject of study. The tasks they performed were then noted, 

which included (1) performing heart-rate variability temporal abstractions on raw heart rate 

data; (2) extracting the temporal abstractions to a file; (3) importing the file to Microsoft Excel 

or IBM SPSS to visualize the data.  

P2: Categorization & Data Modelling  

The second phase of the TDVA methodology involves categorization and data modelling. In this 

phase the data modelling was performed by an event stream processing algorithm enacted in 

the ESP engine. That algorithm consumed real time streams of heart rate values and generated 

a variability score between 0 and 60, every hour. The score represented the actual number of 

minutes of high variability. The zero value represented no minute in that hour that had periods 

of high variability, while 60 represented full variability. 

P3: Deployment of DVAM(s) 

In this step, the user is initially presented with a prompt that involves selection of a 

consumption or exploration display type, here the user selects consumption. In a subsequent 
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prompt presenting a list of data sources, the user selects heart rate variability. Following the 

enactment of the heart rate variability algorithm in the ESP engine, the mPub uses the meta-

data retrieved from the user prompt to instantiate a DVAM called the heart rate variability 

graph. The heart rate variability graph contains several interactive options, including the ability 

to click on a circle to reveal raw data. Since consumption display type was selected, only the 

selection and zoom interactions were enabled.  

 The Linear Plot Graph (VT.1, page 140) was selected as the visual toolkit in this 

deployment. Four additional visual encoding strategies were applied to the visual toolkit to 

support the specific tasks identified in phase one.  The first strategy included the ordinal 

categorization of heart rate variability abstraction scores based three levels of risk: low, 

medium, or high [278]. Scores that belonged to the medium risk were marked with a red fill. 

Scores above that mark were filled blue, and low risk, filled yellow. The medium threshold was 

double encoded as a ‘safe zone’ by appending a red rectangle to the canvas. Circles appearing 

in that region were marked as safe, and hence noncritical. An absolute opacity score of 0.8 to 

highlight regions where multiple circles were overlapping was applied. Finally, all invalid 

abstractions, were marked i.e. without at least 90% of the data with a black fill.   

P4: Evaluation of the DVAM  

The final phase of the TDVA methodology was the evaluation of the DVAM. The mPub engine, 

after receiving instructions from the user generates the visual displays and directs the user to 

the d3.js render. The heart rate variability graph was verified as a prototype using two mutually 

exclusive domain experts with at least 10 years of experience in neonatology. Participants 

provided anecdotal evidence, including improved satisfaction and reduced task completion 
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times with the display over alternatives. However the prototype had limitations, due to the 

slow changing nature of the visualization, it may be difficult for consumers to identify any slow 

developing abnormal reading.  Moreover, the yellow colour for low heart rate variability can be 

difficult to discern against a white background. Hence, using the knowledge gained in the first 

deployment, a secondary deployment can be pursued to correct those limitations. 

6.5.2  Neonatal Spells: Sequence of Events  

The TDVA methodology was further utilised to instantiate a second DVAM, called Sequence of 

Events (SeqEvent), for exploring primitive event sequences found in multidimensional neonatal 

spells events. The TDVA platform components used in SeqEvent are illustrated in Figure 50. 

Components in this figure demonstrate much greater communication with the front-end tool. 

In contrast to the Heart Rate Variability Graph, the SeqEvent graph used Redis [279], an in-

memory NoSQL database for rapid recovery of short term data. The communication is 

supported by a web socket connection from express.js, part of the mPub engine, to the visual 

analytics tool for dynamic and responsive interaction functionality. The processes completed 

as defined by the TDVA methodology are described below. 

P1: Finding the right person 

Three clinical researchers, with at least five years of experience using physiologic data were 

consulted through semi-structured interviews. The researchers identified difficulties in 

analysing large volumes of cardiorespiratory sequences that was produced by an algorithm 

developed to analyse neonatal spells throughout an infant’s care [32]. The analysis had to be 

performed manually, often using Microsoft Excel spreadsheets. Identifying specific sequences 

were difficult, as the manual process often meant key data was mis-entered or mis-analysed. 
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An opportunity was identified to instantiate a DVAM that can address the exploratory needs of 

the researchers. 

P2: Categorization & Data Modelling 

The second step involved passing parameters to the mPub engine to initiate the categorization 

and data modelling for a prototype DVAM, with rich interactive support. A large part of the 

categorization and data modelling phase involved connecting to the Persistent Data Storage 

(lower, Figure 50), to collect retrospective data as required for each patient recruited in the 

analysis. The dataset selected for this display was the neonatal spells - event sequences dataset.   

The mPub engine after processing the request from the user, generates an instance of SeqEvent 

 

Figure 50: The TDVA platform components supporting the SeqEvent visual analytic tool 
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and makes it available for the user. The SeqEvent tool allowed clinical researchers to identify 

all potential pathways that was detected by the algorithm. The algorithm produced up to six 

multidimensional event classifications (O.4, §6.4.1): central, vagal, obstructive, obstructive-

central, central-obstructive, and unclassified; and two primitive trending streams (O.2, §6.4.1): 

bradycardia and desaturation.  

P3: Deployment of DVAM(s) 

The SeqEvent DVAM uses the SeqEvent visual toolkit (VT.2, page 140), which extends concepts 

from a visual analytic representation called Parallel Coordinates, where each axis becomes an 

selection object that can be used to highlight a subset of the dataset. The Neonatal Spells 

algorithm was executed in Artemis, which produced a collection of event classifications [280]. 

These event classifications describe a sequence of primitive events. However, the algorithm 

outputs only a string of the multidimensional event classification. Analysts are able to access 

the primitive event sequences, however, this data is unavailable without accessing meta-data, 

stored as text. The SeqEvent DVAM, illustrated in Figure 51, was instantiated to simply these 

tasks and to support exploration of primitive sequences in multidimensional events detected 

by the neonatal spells algorithm. Each output of the algorithm contained up to three sequences 

that were observed across various physiologic streams. The coordinate stream1 in (middle, 

Figure 51) represents the first primitive event, followed by up to two additional sequences 

across different physiologic streams. A duration coordinate is provided to give additional 

context about the duration tri-event parameter. Opacity is controlled to highlight frequency. 

Trajectory is implicitly observed using the “starttime” coordinate and duration together. 
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The NA coordinate acts as a null event, hence informing the researcher that the sequence had 

terminated. 

 

P4: Evaluation of the DVAM  

Once the DVAM was instantiated, the final phase of the TDVA methodology commenced. In the 

verification of the prototype, a clinical researcher used the SeqEvent DVAM to analyse 7828 

primitive events that were extracted from 3248 instances of the six potential multidimensional 

event classifications. While the sequence of all events were generally well understood, the 

unclassified output was much more ambiguous. Hence, SeqEvent provided the researcher a 

novel method of exploring unknown sequence pathways in the unclassified output. Figure 52 

illustrates a clinical researcher using SeqEvent to explore all potential sequence paths that led 

to an unclassified output. The researcher performs this simply by brushing over the 

‘Unclassified’ coordinate in the ‘CLASS’ axis (Figure 52- far right). Immediately all other 

 

Figure 51: SeqEvent- analysis of primitive sequences in multidimensional events 

 



 

160 
 

classifications are removed from the canvas and three unique sequence pathways emerge. The 

researcher refers to the starttime and duration coordinates, and finds that longer 

duration events (>100 seconds) reflect a two stream sequence, with primitive events are 

observed in the oxygen saturation stream (SpO2) before breathing (IRW). 

 

 SeqEvent DVAM presents a unique use case of the parallel coordinate visual 

representation that was applied to sequences in data streams. The visual analytic tool is shown 

to support the tri-event parameters, and deliver interactive exploratory functionalities to a 

researcher while employing the TDVA framework. 

6.6  Chapter Summary 

This chapter outlined the limitations of the data warehouse paradigm in §6.2 and then 

presented as alternatives, the TDVA framework (§6.2), methodology (§6.3), and a platform 

 

Figure 52: SeqEvent- a researcher exploring three unique sequences in unclassified.  
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design (§6.4). The TDVA framework offers an alternate means of creating interactive visual 

analytic toolkits, referred to as visual marts. The TDVA methodology presented a four phased 

approach to instantiate dynamic visual analytic toolkits for the researcher or the consumer. The 

TDVA platform presented an architecture that supports both a real-time implementation and a 

retrospective implementation of the TDVA framework. The chapter ends with a demonstration 

of two prototypes that were developed through the application of the TDVA framework and 

methodology.  

 The subsequent chapters will further expand the designs introduced in this chapter 

through full implementation and evaluation of visual analytics solutions addressing the clinical 

challenges identified earlier in this thesis (§2.1). 
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7.  PhysioEx: A coordinated visual analytic tool for physiologic data 

streams 

This chapter presents material interpolated from a publication that was accepted and in press 

[44].  The publication was co-authored by Christopher Collins, Carolyn McGregor and Andrew 

James. The author of this dissertation designed, developed, and evaluated PhysioEx. 

Christopher Collins, Carolyn McGregor, and Andrew James provided input on the design of 

PhysioEx and write-up of the publication. An additional content, §7.3, does not appear in the 

publication, and is presented in this chapter to aid the reader in details involving the 

instantiation of PhysioEx. 

7.1  Introduction 

This chapter presents the creation and evaluation of PhysioEx which is an instantiation of a 

TDVA mart to support hypothesis generation. The creation and evaluation of PhysioEx followed 

the TDVA framework and methodology. Before a hypothesis can be generated, clinical 

researchers elicit knowledge from multidimensional streams of physiologic data by isolating 

features and analysing behaviours that may predict the early onset of clinical conditions. 

Conducting a hypothesis generation task in large volumes of physiologic data is a complex 

undertaking and require manual siphoning of raw waveform data. To address some of these 

challenges, a novel visualization technique called the Temporal Intensity Map (TIM) was 

developed. TIM reveals critical information about the frequency, duration and trajectory of 

streaming events generated by real-time event stream algorithms. A event-stream algorithm 

was developed by Thommandram et al. [32] that produces event features and classifications in 

real-time. The visualizations utilize these output to highlight salient temporal features that may 
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assist the user in generating hypotheses about physiologic behaviour. A unique representation 

of the bubble chart, named the Sequence Graph for identifying high level periodic patterns is 

also contributed. Finally, methods are presented to highlight three salient temporal properties 

called the temporal tri-event parameters that include frequency, duration, and trajectory.  

 In a preliminary study of domain experts using PhysioEx, participants detected 

correlations between low-level event features and high-level event classifications, identified 

salient features in the physiologic data streams that illustrate the infant's cardiorespiratory 

health, and deliberated over the presence of infection by carefully studying physiological 

trends. These findings are valuable in the face of a current lack of tools available to perform 

deep insight analysis of physiological data as identified in chapter 4. The study was approved 

by the Research Ethics Board at our institutional REB, and all patient data was de-identified. 

One of the goals of that study was to determine whether neonatal sepsis was present at the 

time of suspicion of infection at the bedside. 

The research contributions of PhysioEx are as follows: 

I. The Temporal Intensity Map (TIM) visualization technique for frequency, 

duration and trajectory of events. 

II. The PhysioEx dashboard of coordinated views including TIMs, sequence graph, 

linear graph, and streams graph. 

III. A case study of PhysioEx with NICU clinical researchers. 
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In the remainder of this chapter, the background of the specific problem domain will be 

presented, followed by related work, design requirements, design of PhysioEx, preliminary user 

study, discussions and ending with conclusion. 

7.2  Problem Characterization 

Neonatal sepsis, a form of nosocomial infection, is a life threatening condition that is difficult 

to detect and for which early detection significantly improves mortality [281]. Apnoea is 

condition that is defined as a pause in breathing for 20 seconds or more [282]. The term 

neonatal spells is commonly used in NICUs for cardiorespiratory events that may include pauses 

in breathing, fall in heart rate, or fall in blood oxygen saturation [32]. An increase in frequency 

of spells may be associated with neonatal sepsis. A research study by Moorman et al. [283] 

reported a potential association between reduced heart rate variability and increased 

bradycardia in the hours prior to the clinical suspicion of neonatal sepsis. Other studies have 

also linked the presence of sepsis with heart rate characteristics, especially reduced heart rate 

variability and bradycardia [35], [58]. 

 PhysioEx is contributed as a tool enabling the end-user to explore neonatal spells event 

classifications produced by the real-time data stream algorithm around the time of suspicion 

of neonatal sepsis. By exposing novel neonatal spells event classification information, 

juxtaposed with the relatively aligned time of suspicion of neonatal sepsis, we provide clinical 

researchers with an expressive tool to support their analysis and hypothesis generation. 
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7.3  Instantiation of the TDVA Framework  

The PhysioEx DVAM serves as an instantiation of the TDVA framework applied to Artemis. 

Artemis, an online analytic platform for physiologic data streams, produces numerous 

physiologic events (PEs) in real-time, a PEs can include one or more primitive, complex and 

multi-dimensional events. Each PE describes one of several features, such as instantaneous 

drifts from a baseline, or in the case of multidimensional PE a temporal sequence across 

different physiologic streams [32]. PhysioEx primarily supports the researcher operating in a 

high engagement, and low urgency environment within the Exploration-Consumption 

Continuum (Figure 42). The researcher uses a coordinated dashboard, along with a backend 

database system to interactively analyse PE details on demand.  

 The instantiation of TDVA framework begins with the output of multi-dimensional 

physiological event classifications generated by Artemis to the Dynamic Visual Analytic Mart 

Publisher (mPub) engine (Figure 53). The mPub menu in Figure 53 illustrates an options list 

based on a request submitted by a researcher. The researcher has identified the requirement 

for an interactive view, this is denoted by the filled box next to the ‘Researcher’ option. This 

satisfies the first requirement of the TDVA methodology, “Finding the Right Person”. Once the 

researcher option has been selected, the mPub component is made aware of the need for 

interactive functions, such as selection, filtration, and detail on demand to be made available 

to the user. In Figure 53, the researcher has selected the options for a coordinated view, and 

to generate views that contain exploratory functions, including the ability to select and zoom 

into areas of interest, highlight, and expose details on demand. The second step in the TDVA 

methodology is categorization and data modelling. To initiate this task, the mPub prompts an 
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additional menu that solicits details about the required data source, visual representations 

(TIMs, {sequence, linear, streams} graphs, standard heatmap, and context bar) for the analysis 

task. 

 

 

 Once the request has been submitted by the researcher, mPub assumes the responsibility 

of performing necessary checks on the data for sufficient data quality and performs data 

modelling to create relative temporal alignments. In this component additional PE features are 

generated to support each of the TIM and event classifications views. Once the data processing 

 

 

Figure 53: Instantiation of PhysioEx using the Dynamic Visual Analytic Mart Publisher (mPub) 
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stage has been completed, an array of views, including three TIM views, and three event 

classification views are generated, satisfying the final step of the TDVA methodology 

“Deployment of the DVAM”.  

 The neonatal spells algorithm was executed against the retrospectively stored raw data 

for a total of 47 patients who had sufficient data quality and clinical data, which generated PEs 

that were saved to a database in real-time and used in this work. All output physiological event 

features and event classifications were saved to a database in real-time. All algorithm 

generated secondary data were stored to a common table and labelled by the type of 

abstraction. All instances of each abstraction type included duration of a sequence; duration 

was measured as the total time since the onset of abnormal shift in the first signal until the 

recovery or stabilization of all signals in that sequence. 

7.4  Task Analysis 

We asked three domain experts to describe specific tasks they currently perform to predict 

physiological behaviours prior to the point of suspicion of infection (PSI). The common tasks 

were: 

T.1. Identify the PSI: The researcher uses the PSI as an anchor for subsequent 

analysis.  

T.2. Identify PEs in the respiratory physiologic signal before PSI: PEs having 

breathing pauses greater than 20 seconds were noted and associated with 

neighbouring clusters. 
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T.3. Analyse PEs across heart rate and SpO2 data streams: Heart rate signals and 

blood oxygen saturation signals are analysed to determine downwards shifts 

before the PSI.  

T.4. Identify abnormal PEs: Abnormal PEs are flagged and sometimes investigated 

to verify algorithm accuracy. 

T.5. Create mental temporal map of underlying physiology: Information gathered 

from all previous steps were used determine a hypothesis about the presence 

of infection.  

Supporting these tasks was the primary design goal of PhysioEx. 

7.5  Design of PhysioEx 

PhysioEx is illustrated in Figure 54, and consists of three groups of views: three TIM views; the 

sequence graph, linear graph, and streams graph; and three raw data views. The interface was 

developed using D3 [277]. In this section we explain each component in detail. 

The first group of views, namely the Respiratory Pause TIM, Heart Rate Flux TIM, and the SpO2 

TIM provide the user with the ability to rapidly analyse behaviours in event features stream. 

The second group of displays assist with analysing event classification data. A third view, when 

activated, provides the user with deeper contextualization by providing raw data that would be 

observed at the bedside. We mark the canvas with a red cross. This red-cross indicates that a 

blood result was obtained after a physician suspected the infant of having infection. We do not 

show whether it was positive or negative to allow the researcher to use this position marker to 

conduct explanatory research for generating hypothesis about the onset of infection. 
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Figure 54: PhysioEx is a visual analysis tool for event stream analysis of multiple streams. Several Temporal Intensity Maps 
(left), in the coordinated dashboard reveal the duration, frequency, and intensity of physiologic data over time, alongside a 
selected raw data display (middle), and three visualizations (right, top to bottom): a sequence, linear, and stream graph. 

 

 



 

170 
 

7.5.1  Temporal Intensity Map View 

Each TIM provides users the ability to rapidly discern subtle behaviour in streaming data. We 

employ a novel use of the heatmap visual encoding, where positions along the vertical axis 

represents an aspect of an event's nonlinear critical distance interval, such as duration of 

breathing pause. It is termed a critical distance interval, because it helps determine the PE's 

severity. PEs are aggregated into critical distance interval bins as determined by the density 

estimation function. Hence, durations with smaller values are represented at the bottom of the 

graph while larger durations appear near the top. The horizontal axis represents temporal 

range of the dataset. A red cross is placed where a nominal clinical event (e.g. PSI) exists, to 

support task T1. 

 

 

Figure 55: The four-step method of constructing the Temporal Intensity Map 
beginning with identifying kernels. 
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 In order to support task T2 and T3, we contribute a combined adaptive bandwidth method 

of vertical binning, using the KDE generated probability density function (pdf) as illustrated in 

Figure 55. We began the process by calculating the KDE pdf for the entire dataset (Step 1). We 

utilized the scikit-learn to implement the density estimation [284]. The top-hat kernel 

form, an alternative to Gaussian, was selected as this kernel form involved less smoothing 

which produced more kernels. The width was also made narrow, and set to a value of 0.2. These 

two modelling decisions increased the likelihood of kernels identified in the heavy-tail of the 

distribution. All PEs were then aggregated into hourly sets (Step 2) and reduced to produce 

sample frequencies for each kernel (Step 3). The binning produces a two-dimensional array of 

PE critical distance interval sums ranging from 0 to N, where N is the furthest critical distance 

interval. The value of each element in the array are used to encode opacity.  

 The visual encoding of the TIM is a heatmap controlled for hue and opacity. The hue 

indicates the PE classification and is metaphoric: red for heart rate which evokes the colour of 

blood, and blue for desaturation of oxygen, due to blue-like colour of the skin when oxygen 

levels fall. The hue selection supports T2--T4, in which one must rapidly associate PE type. The 

opacity is controlled by the frequency value. The width is controlled by available space of the 

canvas, divided by the temporal range.  

 Where there are significant number of samples found in a particular kernel, the opacity 

score of each is reduced, and where the frequency is low the opacity is increased (Step 4). 

Thereby, events appearing in low-frequency kernels, such as in the heavy-tailed portions, are 

represented with increased visibility. These heavy-tail events, such as an extended breathing 
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pause lasting several minutes are clinically significant and warrant increased visibility. 

Moreover, this method effectively addresses the requirement of highlighting outliers involved 

in the task T2 and T3, where a constant opacity score would have otherwise excluded them 

from view. The temporal trajectory of the health status is visually elicited from observations 

made on each distinct view generated by the encoding. As rectangles with varying hue are 

appended along the horizontal temporal axis, the user is able to visually glean information 

about ongoing changes in the physiologic signal. Finally, we considered the use of bar graphs 

as an alternative design, due to their familiarity.  However, that encoding was not appropriate 

for illustrating all three temporal properties without creating visual clutter. Due to the nature 

of our dataset, the TIM encoding was more appropriate for identifying both frequency (dense 

areas) and duration (vertical dimension) along a temporal axis. 

 Figure 56  illustrates three uses of TIM, beginning with the respiratory pause map (Figure 

56a), displaying data in the form of duration of breathing pauses between 0--80 seconds. In this 

dataset intermittent clusters of breathing pauses are seen throughout the entire duration. 

 

 

Figure 56: Temporal Intensity Maps, compact visualizations for gaining rapid situational 
awareness of low-level behaviours in data streams. 
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Breathing pause durations are also seen extending to pathological ranges above 21 seconds. 

The heart rate flux (Figure 56b) illustrates a measure between zero variability (0%) to high 

variability (100%) in heartrate. A sliding window sampling approach is used to compare the 

instantaneous heart rate every second against the average of the previous 30 seconds. The 

percent change is calculated and a block is added to the TIM at the appropriate height, if the 

heart rate reduced (bradycardia). In this chart, clinical researchers would be looking for 

repeated occurrences of severe bradycardia (high percentage change), or periods of low overall 

variability (high density low on the TIM). Both are indicative of pathological status.  

 Figure 56b shows a region of reduced variability (three columns of lighter blocks) after 12 

p.m. on Monday, and then a period of high variability with more density (darker red blocks) 

from 3 p.m.  There is high oscillatory behaviour observed in this patient, potentially due to the 

influence of drugs or other systemic influences. Finally Figure 56c illustrates the oxygen flux. 

The data for this visualization is measured using the same metric as heart rate flux, however 

oxygen flux data is gathered each time a desaturation occurs in the SpO2 signal. Observing 

Figure 56c, one sees a period of low variability initially, followed by a region of higher variability 

between 12 p.m. on the Tuesday and lasting 24 hours. Blocks at the 100% level in the flux TIMs 

likely indicate data errors (such as when a sensor disconnected) but are left in the chart as they 

may be clinically relevant and should be investigated. To differentiate zero data from missing 

data requires further research and improvements in data collection. 

 The researcher can use the interactive brushing functionality to highlight a region on any 

one of the TIM views, all other views are immediately updated to highlight that section. Figure 



 

174 
 

54 illustrates how each of the TIM views appear when a region is brushed. Here the researcher 

is interested in 48 hours prior and 24 hours post an infection event. Highlighting this region also 

triggers coordinated updates across the linear and the streams graph for more detailed analysis 

of event classifications. 

7.5.2  Physiologic Event Classification Views 

We developed three coordinated views to show PE classifications, coming from Artemis, 

including the sequence graph, linear graph and streams graph. We use similar hues with varying 

saturation to highlight complementary PE classifications of varying severity. For instance, an 

isolated bradycardia receives a more saturated pink than a possible isolated bradycardia. 

Oxygen desaturation events are blue. 

7.5.2.1  Sequence Graph View 

The first PE classification view found on the top right of Figure 54 is the sequence graph 

(highlighted in Figure 57). This view supports T5, in which the user requires a rapid means of 

understanding temporal discontinuous event data. The advantage of this representation is that 

it reveals events occurring during the same hour across multiple days. This can be useful in 

associating the influence of routine events, such as bed-side interventions to changes in 

physiologic data. Each vertical position represents the same hour over multiple days. 

Specifically, the horizontal x-axis shows progression over 24 hours, and the vertical y-axis shows 

progression of events over days of the month. The axes can be configured to express seconds 

(x) by minutes (y), or days (x) by months (y), each producing a periodic view of high-level event 

classifications.  
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 In order to control the size of circle in this view, we calculate the sample frequency for 

every hourly epoch. Less significant PE classifications receive a lower opacity, while more 

significant PE classifications have higher opacity. This allows the user to visually discern areas 

where greatest clinically significant PEs exist. The radius encodes for the log transform of the 

total duration in the hour (default view, Figure 57). The transformed values are then sorted in 

descending order and painted largest to smallest, producing a layered view. The fill hue is 

determined by the event classification type. The user can hover over the circle to reveal details 

of each inner circle. An alternative to this design was to use a stacked bar representation, which 

summarized the frequency of each event over the hour. However that representation does not 

convey periodic events that occurred over the same time-period spanning multiple days. 

 Figure 57 illustrates a vagal PE (green) at 1 a.m., followed by central apnoea PE (purple), 

at 3 a.m., 4 a.m., and 6 a.m. (horizontal) on 29th day of April (vertical). Possible isolated 

bradycardia (pink) and possible isolated bradycardia (light blue) are sustained over the next 

several hours. The researcher notices that a red cross, denoting a PSI, is visible at 9 a.m. that 

day. The researcher notes that till that period, the salient and clinically relevant PEs have 

become more prevalent by integrating the observed frequencies of vagal, central and possible 

isolated bradycardia and desaturation PEs.  
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7.5.2.2  Linear Graph View 

The linear graph, Figure 58, supports T4 and T5, in which the user identifies abnormal PEs as 

well as requiring detailed temporal view of all PEs over time. The y-axis represents a log 

transform of PE duration and x-axis the linear timeline view. PEs are plotted as circles where 

hue is determined by the classification type. The radius is double encoded with the log 

transform of the duration value. Reduced opacity is applied to PEs that are less important, while 

PEs with higher clinical significance maintain full opacity. Smaller bubbles are of low durations, 

while high duration events are larger and have more prominence at the top of the graph. A 

tooltip is available for additional information about each PE. Selecting a PE launches an overlay 

view of the associated raw data graphs. Figure 58 illustrates several prominent vagal apnoea 

(green) PE appearing before 12 p.m. and continuing till 6 a.m. the following day. Intermittent 

 

 

Figure 57: The Sequence Graph, illustrating a matrix of hours by days (truncated to 10 
hours). Each bubble's radius encodes the total duration of episodes within that hour, and 
smaller bubbles are drawn on top.  
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central apnoea events (purple), along with possible isolated desaturations (pink) and possible 

isolated bradycardias (light blue), are observed throughout the night. Event classifications are 

rendered according to their frequency, and severity. Low severity events like possible isolated 

bradycardia and desaturation are rendered first, followed by the more significant PEs. 

 

7.5.2.3  Streams Graph View 

The third event classification view, illustrated in Figure 59, is the streams graph, revealing 

continuous event classification frequency over time, with the data summed to a count per hour 

and supports tasks T3--T5. Each stack is coloured with the event classification hues shared 

across all event classification views. A tooltip is available to explore details about the event 

classification. Brushing a stack causes all other stacks to fade, giving visual prominence to the 

hovered stack and reducing clutter. Figure 59 illustrates relatively high frequencies of possible 

isolated bradycardia (pink) lasting from the 12 p.m. mark, along with possible isolated 

 

Figure 58: The Linear Graph shows a log-transformed duration of each event 
classification in a linear temporal view. 
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desaturations (light blue), until 12 a.m.. Following that, possible isolated desaturation events 

diminish, only to return again in the late afternoon of the 6th. Between this range, there are 

also several other PE classifications identified, such as intermittent central apnoea episodes 

(purple), and vagal apnoea (green). An alternative to this design was to use line graphs, while 

commonly utilized in electronic medical records, the line graph encoding fared poorly when 

compared to the streams graph. The streams graph, through the use of filled area, allowed the 

user to rapidly elicit information about the most frequent event within one or more time 

windows. 

 

7.5.2.4  Raw Data View 

The final user interface component, designed to primarily support T5, which serves as a critical 

step in confirming whether a patient is believed to be positive for sepsis, is the raw data display 

that illustrated in Figure 60. In this view the respiratory impedance graph is displayed at the 

top, followed by the heart rate trace, and finally the oxygen saturation graph at the bottom.  

 

 

Figure 59: The Stream Graph illustrates the flow of event classification frequency over 
the analysis duration. 
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Figure 60: The Raw Data View displays sensor data using 
3 line graphs. The highlighted region corresponds to a PE 
classification, and the white region is a 30 second buffer. 

 

 

Figure 61:  PhysioEx provides coordinated interactive focus 
for enabling analysis of segments of the timeline across 
multiple temporal views. In this figure a central obstructive 
event classification was selected by the user to examine 
underlying physiological signals. 
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This view is activated when the user performs a selection on one of the PE classifications in the 

linear graph view. In this view the analyst can immediately access low-level sensor data that 

lead up to the PE classification. This line-graph method is a familiar design for displaying sensor 

data. A background band is appended to the chart, representing the actual duration for the 

event classification. 

7.5.2.5  Coordinated Analysis 

When an analyst selects a portion of a graph using interactive brushing, all other graphs 

immediately update to highlight that section. For instance, in Figure 61, the highlighted region 

appears prominent in colour on each of the TIM displays, and is also highlighted the streams 

chart. The linear chart is zoomed in to show the selected time period in detail, from 6 a.m. of 

the 26th to 6 a.m. of the 28th. Due to its design as a summary graph, the sequence graph 

maintains its view to provide high level details.  

7.6  Expert Evaluation 

We conducted an expert evaluation to gain a better understanding of the utility of PhysioEx for 

clinical researchers. The primary condition in this study was the visualization technique, with 

two levels. PhysioEx was compared to a stacked bar view (illustrated in the next section) that is 

currently used to perform clinical research of neonatal spells behaviour [38]. Due to the 

difficulty in recruiting a large number of highly specialized domain experts, we adopt a primarily 

qualitative evaluation approach, engaging the available experts in real analysis tasks and both 

observing their experience and requesting their feedback, to build a holistic understanding of 

the potential for PhysioEx.  
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7.6.1  Methodology 

Participants: We engaged four domain experts with experience working with neonatal 

physiologic data on a day-to-day basis ranging from five to 35 years. Three of the experts were 

males and one was a female. All four experts report using the computer at least once a work 

day for analytic purposes. Both visualization techniques used in the study were unknown to all 

participants. 

Dataset: The study dataset consists of 29 patients who were suspected of infection and for 

whom we had truth data about the presence of infection. Suspicion of infection was defined by 

the presence a blood draw for a laboratory test for infection. The results of the laboratory test 

provided the truth data for this study. The apnoea event classification algorithm was run over 

seven days' worth of data for each patient: 120 hours before and 48 hours after the time the 

blood culture results were received. Prior research suggests that neonatal sepsis may be 

detected in physiological data several days before current practices suspect it at the bedside. 

We decided to use this case study as it provides an exploratory means by which the domain 

experts can investigate and potentially arrive at novel findings.  

Task and measures: The task of the domain experts was to use each visualization to determine 

whether the patient has an infection (sepsis) and state any additional insights they had about 

the data. We measured the accuracy of determination of infection and the time taken in 

analysis. In addition, we engaged participants in a semi-structured interview about their 

analysis process, preferences, and usability issues which arose. The transcript was coded using 

open-coding, and themes were generated by clustering codes into their respective categories. 
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The themes were analysed and reported as research findings.  The codes and clustering method 

was validated by another researcher. Screen and voice recording was used to allow for detailed 

analysis as well as easy transcription of the collected data. 

 

Control: We compare PhysioEx against a stacked bar graph, illustrated in Figure 62, which has 

been used by clinical researchers to understand trends in neonatal spells (PEs relevant to the 

neonatal domain) preceding a point of suspicion of infection. This view provides a higher level 

and non-interactive view on the physiologic data by counting event classifications every second 

and summarizing them on an hourly basis. In the stacked bar graph the levels refer to event 

classifications (in order): all normal, heart rate variance changes, respiratory pauses, oxygen 

desaturation, and blood pressure drop. The stacked bar view is aligned with the time of the 

suspicion of infection (red cross on PhysioEx) at the zeroth hour, then all the preceding events 

sorted by hour to the left. An analyst would start at the zeroth hour to analyse the spells 

behaviour. Figure 62 shows that beginning at the -12th hour up to the -4th hour there are 

 

Figure 62: Stacked Bar Chart used as control against PhysioEx 

 



 

183 
 

sustained fluctuations in the infant's cardiorespiratory status. The infant seems to be improving 

as it approaches the zeroth mark (more times classified as normal). Note that there is missing 

data in hour -7, perhaps due to infant movement or sensor malfunction. 

Procedure: Each session began with a brief introduction to the study and a semi-structured 

interview to assess participant prior knowledge about the domain of neonatal care and spells. 

This was followed by a series of 7 training trials, 11 timed experimental trials, and a brief 

questionnaire eliciting feedback on the interface design, repeated for each visualization 

technique. Due to data availability, the same dataset of 7 samples (in random order) were used 

for the training trials in both conditions.  For the experimental trials, two different datasets of 

11 samples each was used, one for each condition. The ordering of technique and experimental 

datasets was counterbalanced.  There was a total 2 techniques × 11 trials × 4 participants = 88 

trials. The analysis task was repeated for each training and experimental trial. Feedback about 

the correctness of determination of infection was provided for training trials only. Participants 

were asked describe the spells activity around the point of suspicion of infection and to state 

whether an infection was present. At the end of the experiment, a brief questionnaire was 

administered to collect participant preference between techniques. Experimental sessions 

lasted two hours and participants were able to take breaks as needed. 

7.7  Results 

In this section we report the results of the study comparing PhysioEx and the stacked bar 

representation of physiologic data. The accuracy of determination of sepsis was uniformly 

distributed and below 50%, for the dataset containing 7 sepsis and 22 non-sepsis patients for 
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both conditions, thus we did not investigate further. We instead focus our analysis on the 

quality and depth of insights expressed during the analysis process, and the subjective expert 

feedback. 

7.7.1  Identification of Physiological Behaviours 

Experts provided a range of comments the stacked bar method of representation when trying 

to elicit physiological behaviour. Although it was a simple way of seeing how much of the hour 

was attributed to one physiological measure, it did not provide additional and more salient 

information about what was going on in the hour. Experts found it difficult to decide whether 

a bulk of events occurred uniformly in the hour, the breadth of their intensity, and durations. 

The time to analysis was rapid, with a majority of the analysis being completed within ten 

seconds. 

 Meanwhile PhysioEx allowed them to rapidly elicit physiological behaviour, frequency 

within an hour, the duration of all event classifications aggregated in an hour in addition to 

duration of single classifications. When asked to describe the physiological status of the infant, 

experts often spent several minutes describing the intricate behaviour, frequency, duration and 

sequences of events seen in TIMs and also on the sequence and streams graph. This was seen 

consistently, with analysis time ranging from 2-10 minutes per patient. One expert comments 

about the Respiratory TIM:  “I see a burst of activity here, on this Friday starting before 11 p.m., 

and going through to about noon, then I see a trivial amount of activity about 24 hours later, 

and then I see another burst of activity starting about midnight starting about the 28th, which 

seems to be of the same intensity as the first burst I observed but has a longer duration. In the 



 

185 
 

middle, I see very little variation.'' The stream graph was also noted to be a unique tool in the 

domain of physiological research. Experts had not encountered this representation and 

therefore required some time to adapt to it. One expert found that he was relying on it as a 

final 'truth' indicator, after having analysed all other representations. 

7.7.2  Hypothesis generation 

Using the stacked bar view, experts found it difficult to generate hypotheses unless there was 

a clear and distinguishable trend. Where events occurred without any clear trend, all experts 

stated difficulty with determining whether these events had any relationship with the point of 

interest at the zeroth hour. All experts described the colour scheme to be very favourable when 

determining patterns and trends. One expert mentioned “I'm looking for the stacks with a lot 

of yellow, the red is distracting for me, but the yellow is interesting''. Another expert physician 

stated that “[the stacked bar] is too simple, it doesn't work for me”. 

 Experts described PhysioEx as useful, and powerful when generating hypotheses, they 

also mentioned that the coordinated interactive brushing was most useful when they wanted 

to reaffirm incremental patterns. They found the coordinated brushing and highlighting across 

all TIMs provided the most benefit in terms of closely analysing neonatal spells preceding the 

infection suspicion point. The ability to select the event classifications to reveal low-level sensor 

data was appreciated by all experts and heavily utilized by one expert. Two experts were able 

to derive bed-side intervention information from the patterns exposed on the Respiratory 

Pause TIM. They revealed information about potential respiration modality of the infant. Some 

quotes received from experts include:  
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“Oh wow look at that… look at that… this is a baby that got intubated… a fully manually 

intubated baby. Well this child cannot apnoea… if you look at the respiratory pauses they 

are all so uniform.” 

“Look at the heart rate variability, it swings everywhere and then it comes back. […] It 

looks like they had a ventilator mode change, maybe to biphasic, but they've also taken a 

culture at the same time, this is an odd practise, we tend to do things one at a time.” 

7.7.3  Satisfaction of Use 

Domain experts who used both the stacked bar view and PhysioEx reported greater satisfaction 

with the simplicity of the former, but expressed concern over excessive simplicity and hiding of 

potentially useful data. When analysing trends on the stacked bar view experts found that while 

they were able to verbalize trends of high-level event classifications more easily, they were 

unable to provide detailed descriptions. Moreover, the stacked bar also provided the domain 

experts with a familiar format. This familiarity factor was seen as favourable for immediate use 

without much training. 

 Experts were positive about the additional detail available for analysis in PhysioEx. In 

particular, the TIM representations were favourably received by all. They paid keen attention 

to the behaviours expressed in heart rate and SpO2 TIMs, and stated that it was helpful when 

conceptualizing the infant's status over many hours. The sequence graph was used by three 

experts for determining sequences of events prior to the suspicion of infection, the fourth 

expert did not use the display at all. On the simplicity of PhysioEx, the responses were mixed. 

While domain experts greatly appreciated the increased level of detail, it also proved to be 
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cognitively demanding task, requiring learning new interaction methods for selecting, filtering, 

and retrieving information about physiological signals. The experts attributed the cognitive load 

due to the overwhelming number of possible events that had prominence in almost all patients. 

Moreover, experts also noted the usefulness and utility of PhysioEx could be even further 

improved with the addition of contextual information, such as the infant's gestational age, 

gender, method of respiration, and other comorbidities. 

7.7.4  General Comments 

Experts provided numerous comments on the usability and potential utility of PhysioEx. Two 

experts, also physicians, mentioned that TIMs may contribute additional means of gaining 

insight on subtle physiological behaviours of the infant that are currently unavailable for 

bedside decision makers. Six coordinated views, as currently instantiated in PhysioEx, were 

found to be useful for research but likely too complex for use at the bedside. All experts using 

the TIMs representation were immediately cognizant of the data quality available for analysis. 

Data quality is an ongoing challenge in the neonatal intensive care environment. However, 

obtaining consistent and continuous data samples is very difficult, due to the dynamic nature 

of the environment where the sensors attached to the infant often disconnect or have to be 

removed for transport. 

7.8  Discussion and Future Work 

We used an expert evaluation consisting of four domain experts analysing neonatal spells 

behaviour in an attempt to predict the likelihood of neonatal sepsis. Although the results of 

determination of sepsis in our dataset was inconclusive, our study revealed that PhysioEx 
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deeply involved clinical researchers in the analytic pipeline. Experts using PhysioEx were able 

to verbalize subtle physiologic behaviour spanning numerous days and for numerous patients. 

Many of the insights discovered with PhysioEx were hidden by the standard stacked bar 

representation. While the time for using PhysioEx was much longer, this may be explained by 

the richer interface, interactivity, and novelty of the visualization. Rapid analysis is needed in 

bedside situations, but for retrospective research, such as analysing the relationship of 

physiologic measures, spells, and neonatal sepsis, depth of insight is more important than 

speed. 

 The analytic tool gave experts the first opportunity to interactively explore physiological 

event features and event classifications. To our knowledge, there are currently no other tools 

that provide interactive exploration of detailed physiological changes of neonatal spells. 

However, introducing such a novel tool does have limitations. Some experts experienced 

fatigue after enduring a long training phase and then analysing a total of 18 patients on 

PhysioEx. Contributing to the fatigue was the significant cognitive load imposed by using novel 

tool in detail to perform a difficult task. The TIM views provided experts with a simple and rapid 

method of appreciating physiologic behaviour. Most experts relied on the TIMs to base their 

decisions on whether the infant was experiencing normal or abnormal changes in physiology. 

Dense and low density regions were rapidly identified by all experts. This information was then 

augmented by the event classification display. Experts, especially practitioners, also used the 

TIMs to characterise the data quality for that particular patient. Since this is a commonly faced 

issue in NICUs, the ability to see drops in data quality gave more insight about the infant and 

their management.  
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 The sequence graph was heavily utilized by some to track incremental hourly changes 

leading up to the point of suspicion. One expert commented that the bubble matrix provided a 

unique ability to recognize patterns that commonly occur at various times of the day. Events 

such as blood draw occurring in the afternoon, loss of data for short durations, and transfer of 

the infant to other units, were speculated. While this information was provided to the experts, 

the ability for the experts to augment clinical expertise provides an opportunity as future work 

for automated annotation capabilities for PhysioEx. The automated annotation of events would 

further supplement researchers with much needed context to explore the event space in more 

detail.  

 PhysioEx was found to provide a greater advantage to explain neonatal spells behaviour 

than the alternative. One expert physician with extensive involvement in neonatal spells 

research, had mentioned that they are now inclined to invest a day in training a neonatal fellow 

so they would be better able to describe physiological behaviour of spells.  

 There are however, limitations with PhysioEx and our preliminary study. We only tested 

PhysioEx with four expert participants drawn from the larger clinical researcher population. 

Moreover, there are no established clinical links yet between neonatal spells and infection. 

Therefore, the experts participating in the study were not looking for known associations. Many 

experts noted that lack of contextual information (patient metadata) as a limitation of both 

techniques. We had developed PhysioEx to cater to exploring physiological data, however in 

future work incorporating clinical information would certainly be highly advantageous for 

supporting analytic activities. To address the cognitive overload from analysing several patients 
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independently, in the next chapter, we present a visual analytic tool called CoRAD that assist in 

analysing population cohorts in a single view. 

7.9  Chapter Summary 

In this chapter, a novel visualization technique, the Temporal Intensity Map was presented, and 

PhysioEx, a visual analytic tool for complex multidimensional sensor data exploration was also 

introduced. We present a task analysis for designing visualization displays for the complex and 

heterogeneous sensor network environment in neonatal care and draw on this analysis to 

inspire design. Our preliminary study supports further investigation into PhysioEx as an 

important addition to the tools available for clinical researchers. In future work we aim to 

deploy PhysioEx to support additional use cases, such as exploring physiological behaviours for 

other clinical conditions. Moreover, we aim to integrate more contextual information such as 

clinical histories into PhysioEx for the development a more tightly integrated physiological 

clinical research system. 
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8.  CoRAD: Cohort Relatively Aligned Dashboard 

This chapter presents material from a publication currently under review [45].  The publication 

was co-authored by Christopher Collins, Carolyn McGregor and Andrew James. The author of 

this dissertation designed, developed, and evaluated CoRAD. Christopher Collins, Carolyn 

McGregor, and Andrew James provided input for the design of CoRAD and write-up of the 

publication.  An additional content, §8.4, does not appear in the publication, and is presented 

in this chapter to aid the reader in details involving the instantiation of CoRAD. 

8.1  Introduction 

This chapter presents the creation and evaluation of CoRAD, which is an instantiation of a TDVA 

mart to support hypothesis testing. The creation and evaluation of CoRAD followed the TDVA 

framework and methodology. 

 Case-control studies are among the most utilized research methodologies in clinical 

research [5]. A case-control study involves isolating retrospective data for patients with a 

condition of interest, and comparing those features of interest to a sample of individuals 

without the condition [133], [134]. The goal is to explore correlations across relevant clinical 

variables. In most cases, cohorts must be relatively aligned to an epoch. The alignment may be 

a time period when a test result was received, such as a blood result confirming or rejecting a 

possible infection. The relatively alignment process typically involves a large number of manual 

data cleansing and data preparation activities to align clinical data of each patient to a single 

and representative time. Most case-controlled studies use clinical data stored in databases and 

electronic medical records. Furthermore, performing case-controlled studies using physiologic 
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data is a challenging task. Physiologic data is often collected at a consistent sample frequency, 

and appear in their raw form, as a list of values. This is in contrast to a limited set of discrete 

clinical variables, such as lab reports, or physical observations. 

 This chapter introduces a novel dynamic visual analytic tool called the Cohort Relative 

Aligned Dashboard (CoRAD). The CoRAD tool represents an instantiation of the dynamic visual 

analytic publisher component of a larger framework called the temporal tri-event parameter 

based Dynamic Visual Analytic (TDVA) framework. CoRAD supports the integration of relatively 

aligned algorithm-generated output to visual interface, to automate and enhance the analysis 

workflow. In addition, CoRAD allows the user to drill through multiple hierarchies of data, from 

quality of signals, to abstractions and ultimately classifications of clinically relevant events.  

 To validate the effectiveness of CoRAD against a separate visualization, an expert 

evaluation was conducted at Neonatal Intensive Care Unit at The Hospital for Sick Children, 

Toronto. The subsequent sections details related works, problem characterization, task 

analysis, CoRAD design, evaluation methods and the results of the evaluation. 

8.2  Related Works   

A case-control study involves retrospective analysis that separates patients based on the 

presence of a condition [134]. Case-control studies, among many observational research 

methods, remain an important aspect of clinical research [133]. Differences are studied and 

hypotheses are generated based on the analysis, to motivate deeper investigation and more 

rigorous research. However visualizations that support these efforts in physiologic data remain 

elusive. 
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A. Artemis Platform 

Artemis is an online analytic platform that was developed to source, analyze, and perform real-

time feature detection on multiple physiological data streams, for multiple conditions in 

multiple patients [37]. Artemis supports the deployment of real-time event stream processing 

algorithms. In this research, we use data generated by an algorithm running in the Artemis 

platform for neonatal sepsis that was executed to detect and classify Heart Rate Variability 

(HRV) scores between 0 and 60, where zero signifies no variability and 60 demonstrated that 

the patient’s heart rate varied consistently in the hour. The details of the neonatal sepsis 

algorithm have been previously published [57].  Results from the analysis are then sent to a 

database and also available for real-time streaming for visualization. The output are then 

processed and sent to a platform that was developed using the TDVA framework.  That platform 

produces instantiations called dynamic visual analytic marts, such as the CoRAD.  

B. Cohort health visual representations 

In the general space of health-based cohort analytics, some recent work has resulted in high 

fidelity visualizations with a time component. TimeSpan [135] provides an interactive 

dashboard for identifying door-to-needle time for stroke patients at a large tertiary hospital. 

LifeLines presents graphical summaries of patient journey [136]. The Cohort Comparison (CoCo) 

tool, provides a simple interface for exploring statistical correlations across multiple clinical 

datasets [137]. DecisionFlow presents graphical summaries of patients who developed heart 

failure relative to a population [138]. VISITORS is a dashboard for analysing clinical temporal 

abstractions in oncology patients [139]. EventFlow presents a method to simplify event 

sequence information to rapidly identify abnormalities [140].  
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 While all of these visualizations introduce cohort analysis of patients using clinical 

information, there is a need for research in representing temporal abstractions of physiologic 

data across cohorts, and supporting automated temporal relative alignment, while allowing the 

user to gain contextual awareness using low and higher-level summarizations of data.  

C. Visual analytics of temporal data 

Domain specific dynamic visual analytic tools have been shown to perform well in 

communicating anomalies to the end user. The VisAlert system [183], for example, provides 

situational awareness for network security analysts. Another system in the same domain is 

LiveRAC [16], which supports additional exploratory features such as semantic zoom to search 

through the data set, and allows for side-by-side comparisons between different clusters. 

However, this system presents a complicated user interface with potential for visual clutter. 

 Director [285] is a visual analytic tool for computer network simulations. It provides a 

heatmap-based timeline visualization to identify the health of multiple nodes, along with a 

temporal view of their health deterioration. CloudLines [185] introduces an incremental event 

visual analytic tool using kernel density estimation (KDE) to amplify signals from highly dense 

areas and minimize low density areas. The technique is applied to online news stream analytics, 

and multiple time-series data are used to highlight topic emergence, and when the topic is no 

longer emerging, a visual decay function is applied to emphasize more popular topics. 

 While most visual displays are temporally aligned to the most recent epoch, in this 

research we present a novel visual analytic tool that uses relative alignment to a real-world 
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independent event. Two heatmap timelines are presented in the main display to allow clinical 

researchers the ability to visually explore patterns in HRV across multiple patients.  

8.3  Problem Contextualization 

Sepsis is a form of hospital acquired infection, and remains a serious health problem requiring 

antibiotic therapy [35]. Currently it is very difficult to detect using non-invasive methods, such 

as by bed-side monitoring. Clinicians rely on qualitative observational methods for identifying 

signs on this illness. When sepsis is suspected, blood samples are drawn and required to confirm 

any diagnosis. However, neither method has been found to be reliable [56]. There is growing 

body of evidence that shows new pathophysiologic behaviours can be identified earlier using 

physiologic data. One such case involves the study of reduced HRV as a potential indicator of 

sepsis [286], [287]. In addition, Flower et al [58], present results that indicate periodic cycles of 

heart rate decelerations, or bradycardias, are common and seen to be clinically correlated with 

sepsis in addition to reduced HRV and they propose heart rate characteristics as a means to 

correlate the occurrence of the two together. 

 McGregor et al., developed an algorithm that produces real-time HRV scoring for neonatal 

infants [57]. This scoring can be used to identify temporal areas where there is reduced HRV 

that indicates some sign of illness. A dataset containing HRV information and algorithm-

generated classifications of bradycardia as part of McGregor’s neonatal spell research are 

available from a prior study [44].  Data from a total of 47 patients are available in that dataset, 

of which 33 patients have sufficient data quality. The goal of this study is to investigate the 

hypothesis exposed in Flower et al. [58] that periodic cycles of heart rate decelerations together 
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with reduced HRV are common and clinically correlated with neonatal sepsis. This information 

is presented in CoRAD and we performed an evaluation to test participants’ ability to determine 

sepsis based on Flower’s hypothesis. The study was approved by the Research Ethics Boards at 

The Hospital for Sick Children and at UOIT. 

8.4  Instantiation of the TDVA Framework  

CoRAD is the second instantiation of the TDVA visual mart within the TDVA platform which has 

been created by extending the Artemis Platform [37]. The instantiation process is illustrated in 

Figure 63. Bradycardia primitive events were gathered through the execution of the neonatal 

spells algorithm [280]. Heart-rate variability was calculated using a scoring system identified by 

McGregor et al. [278]. CoRAD supports the researcher existing in a high engagement, and low 

urgency environment typical of retrospective clinical research case-control studies.  

P1: Finding the Right Person 

The first step of the TDVA methodology is a requirement gathering phase. A task analysis was 

performed using domain experts. The details of the task analysis are described in §8.5. In this 

instance, the researcher requests mPub to generate views using the “Researcher” context 

(middle, Figure 63). This informs the mPub engine to generate views that are interactive, 

including the support for selections, filtration, and detail on demand functions.  

P2: Categorization and Data Modelling 

The second step of the TDVA methodology requires information about the data source and 

modelling requirements. To gain that information the mPub engine prompts the user with a 

secondary menu that solicits information about the required data source and visual toolkits 
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(VT.1-7, page 140). Once the user has selected the appropriate data source and visual toolkits 

(in this case VT.6 and VT.7), the mPub engine performs the necessary data modelling activities. 

Details of the design is described in §8.5. Since the user has selected the intent for a case-

controlled methodology, data is pulled from its appropriate source and relatively aligned to the 

comparator variable. In this instance, the user selects “blood culture” to be the comparator 

variable. Hence, all patients having that data are particularly identified and divided into positive 

and negative cases. All cases are aligned to the comparator’s time, in this instance the 

timestamp associated to the blood draw is used.  

 

 

 

Figure 63: Instantiation of CoRAD using the Dynamic Visual Analytic Mart Publisher (mPub) 
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P3: Deployment of DVAM(s) 

The third step of the TDVA methodology, requiring the instantiation of the DVAM is initiated. 

The publisher generates a visual mart that contains three unique visual toolkits including a 

heatmap (VT.6), context bar (VT.7), and a detail view (VT.1).  The specific set of VT’s that are 

selected is determined by the user. The DVAM serves as an independent analytic sandbox, the 

DVAM is independent of other instantiations and allows the analyst to perform directed 

exploration. The researcher then interactively analyses the dataset to extract correlations 

between case cohorts. The CoRAD DVAM allows the researcher to scan for areas of reduced 

heart rate variability using an interactive brushing tool. The brush tool highlights temporal 

regions that can be viewed in the details view (illustrated in §8.8.4).  

P4: Evaluation of the DVAM 

The final step to complete the TDVA methodology is to enlist five domain experts to evaluate 

the DVAM and assess its overall utility. This evaluation is described in §8.6. 

8.5  Task Analysis 

Two domain experts, who were representative of the population, were asked to describe 

specific tasks they currently perform to conduct hypothesis testing using physiologic data 

across a cohort of patients. The common tasks were: 

T1 Relatively aligned temporal abstractions: Relevant HRV values are filtered and 

manually aligned to an anchor point. The relative alignment performed manually, can 

introduces errors, and can be time consuming. 
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T2 Import relatively aligned abstractions to a spreadsheet: Each HRV value is then sorted 

by the relative aligned time and imported to a spreadsheet manually, this also 

introduces scope for potential error. 

T3 Graph abstractions: Once the HRV values were imported into the spreadsheet, line 

charts and stacked bar graphs were frequently used to visualize the data. 

T4 Identify correlations: The domain expert would find associations by comparing HRVs 

before and after the anchor point. Further, the domain expert might highlight multiple 

patients of interest and investigate patterns between the selections. 

These tasks were performed manually, and was stated to be time-consuming and error prone. 

These tasks informed the design of CoRAD and serve as a guide for future research in similar 

application domains.  

8.6  Design of CoRAD  

We describe CoRAD with its design goals that were informed from the observations and task 

analysis with domain experts. 

DG1 Integrate heterogeneous data: The first task, the relative alignment of physiologic 

data to clinical data, can involve a mix of numeric, continuous, or ordinal data 

types. Our design goal is to unify the representation of these data types for 

extendibility of CoRAD. 

DG2 Single holistic view: Currently most of the current tasks performed are manual, 

however, the ultimate goal is to collect all important disparate data into a single 
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environment. Patient clinical data is closely associated with the patient’s 

physiology, which is correlated to the device measuring that data. Therefore the 

goal is to provide an integrated view of all direct and indirect patient data. 

DG3 Details on demand: The user requires access to details, however current tasks 

limit the degree of data that can be accessed in a timely manner. Moreover, access 

to details can be useful in determining the salience of an observation. Our goal is 

to provide the user convenient access to details on demand. 

DG4 Access to statistical tools: Many of the activities performed are by nature, 

statistical. So our goal is to provide the user with a simple statistical view of the 

data to assist potential discovery of salient features. 

CoRAD is illustrated in Figure 64, and consists of four components: the main view (Figure 64a), 

detail view (Figure 64b), properties view (Figure 64c), and the context bar (Figure 65). The 

interface was developed using D3 [277]. In this section each component is described in detail. 

8.6.1  Main View 

The main view, illustrated in Figure 64a, consists of several patient bars that utilize an opaque 

controlled colour scale to present heart rate variability (HRV) information to the user. The 

darker bars reflect higher HRV and the lighter shades denote lower scores. Each patient bar is 

painted from left to right, where the left most region shows -120 hours, about five days prior 

for 48 hours after the aligned pivot. The zeroth hour is marked by a grid line that extends from 

the top of the main view and repeat every 20 hours. This method of relative alignment supports 

tasks T1 – T3 and DG1 and DG2. Each patient is stacked from bottom up, with the bottom being 
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the population bar. This vertical arrangement provides a convenient means of comparing HRV 

patterns within their respective relatively aligned epoch. An anonymized patient identification 

is appended to the left vertical axis. 
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Figure 64: CoRAD provides interactive focus supporting analysis related to event relatively 
aligned at the zero hour (0h) mark. (a) In this figure all patients are aligned to the y-axis, and the 
relative-time is marked across the top horizontal position. All patients are coloured using a red 
scale (lighter means reduced HRV, darker means more variable heart rate), unless the ‘Show 
Positive’ control is active. The normalization of all results were used to produce the population 
map coloured in blue. The detailed view on the bottom (b) provides a line-chart view of details 
including the raw-data, heart rate variability for selected datasets, or high-level classifications. A 
histogram is also available and highlights the distribution of HRVs over the entire duration. (c) 
Provides a view of the properties control, functions are provided to manipulate the dashboard 
view interactively. 
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8.6.2  Detail View 

The detail view provides an alternative view for selected data from either of the other two 

views. It consists of a line graph and a histogram. The line graph is a plot of HRV values for an 

interval selection in the main view. A line graph was previously used to display HRV values [278]. 

If there are no selections in the main view, the line graph displays HRV values for the entire 

duration. The user is also able to display the line plot of the average HRV of the population. 

Having access to this raw data can be helpful in associating discrete values to observations. The 

line graph supports DG2. For instance, Figure 64b, shows the HRV line graph for patient 

N41492_3 and the population pinned to the same canvas, while all other lines are set to be 

transparent. The line graph can be configured to show interpolation, should missing data be 

present in the dataset. The default option is to avoid interpolation, and make the line 

transparent when there are missing data. 

 The detail view also contains a histogram that displays the distribution of HRV values for 

each selection in the main view. The distribution is a Gaussian plot derived from the mean, and 

standard deviation of the HRV data for each sample. Should the user select the population, a 

population mean and standard deviations of HRV’s are used based on the values of all 33 

patients in the dataset. The availability of the histogram fulfils DG4.The detail view can be 

altered to higher-level classifications, such as the temporal presence of bradycardia. This view 

also exposes details about the HRV value and the associated patient when the user selects a 

single line on the screen. The detail view more specifically supports T4, as it allows the user to 

directly compare two or more patients within a window of time. The interactive details tooltip 

allows CoRAD to provide the domain expert details on demand, thus supporting DG3. 
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8.6.3  Properties View 

The particular methods by which information is presented in the main and detail views are 

controlled by the properties view presented in Figure 64c. The first checkbox allows the user to 

highlight patients that were tested positive, and alternatively to turn the highlighting off if the 

user did not want to make positive cases explicit. The subsequent selection buttons are grouped 

according to the views they manipulate. The data quality and classifications button in the 

context bar group control the data being represented in that view. The raw data, abstraction 

and classification selection buttons controls the information visible in the details view. 

8.6.4  Context Bar View 

The context bar resides immediately under the patient bar and can represent one of two types 

of information. Figure 65a, shows the context bar illustrating regions of poor data quality. For 

instance, patient N43738_1 is shown to have compromised data quality just before the 20th 

hour and continues until the 48th hour. Meanwhile, N43941_2 is shown to have comparatively 

better quality throughout the entire duration. The second type of data the context bar can 

represent is classifications data. Figure 65b, illustrates the presence of bradycardia episodes 

during an hour by affixing a green box under the appropriate relative time period. The user can 

interactively control the data represented in this layer, hence, providing information on 

demand. 
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      (a) 

 

      (b) 

Figure 65: Context Bar View, allows the user to select one of two potential data being 
represented, (a) shows the data quality, the darker lines being times when the data quality 
was compromised, and (b) representing bradycardia events. 
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8.6.5  Design Alternatives 

Prior to finalizing the visual components of CoRAD, two alternatives were investigated. Among 

the most prominent alternatives was a radial graph that consisted of two views: a distribution 

and temporal view. The distribution view illustrated in Figure 66a, consists of a central arc that 

describes the average distribution of heart rate variability scores for the population, and the 

each ring representing a separate patient. The arc begins as zero at the top of the ring and 

extends to the 60th mark. Zero represents no variability, while 60 represents variability in each 

minute of the hour. For the distribution illustrated in Figure 66a four patients are compared to 

the average of the population. The average of the population has a mean around the 21 mark. 

However for the patients the first and third ring, a mean for the distribution is observed around 

36 mark. Significantly, these patients have had a higher than average heart rate variability 

scoring recorded during the monitored period.  

 A temporal radial graph was also constructed to support the identification of abnormal 

trajectories of heart rate variability values in cohort populations using an average of the 

population as a baseline. The temporal radial graph illustrated in Figure 66b presents seven 

patients who are aligned to population average as separated rings at fixed radii from the centre. 

Opacity is controlled to show regions of higher and lower heart rate variability values. For 

instance, the first and third patient from the population are seen to have very dark blue rings, 

signifying higher heart rate variability scores. While the patients in the outer ring have lighter 

blue rings, signifying reduced heart rate variability. 
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 While there has been many forms of radial graphs produced [288], there have been some 

concerns that have emerged about the interpretation of radial graphs [289], [290]. However, 

other instances of radial graphs were shown to be successful in identifying trends [291]. The 

radial visual representations were evaluated in a preliminary involving two clinical researchers.   

Both displays required longer training time to understand, and, the temporal radial graph 

presented a challenge when interpreting the tail-ends of the monitoring duration. Evaluators 

had a difficult time observing patterns only in the -120th hour without being influenced by the 

+48th hour that was within its immediate vicinity. 

 For these reasons the radial graphs were not selected for the full evaluation. While these 

challenges show that radial graphs may involve more training, more research needs to be done 

to further enhance the visual representation to address those shortcomings. In future work, 

both radial graphs will be evaluated using similar multidimensional datasets.
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     (a)                     (b) 

Figure 66: Alternative designs for a cohort based relatively aligned dashboard. (a) A radial graph representing the distribution of heart rate 
variability scores over 120 hours for each patient. The population is represented as the large arc in the centre of the circle, while each patient is a 
ring extending at fixed radius from the population. (b) A radial graph representing the temporal trajectory of heart rate variability scores for 
patients. Similar to the former representation, the temporal radial graph has the population at the centre and each patient as separated rings. A 
red mark is annotated to determine the zeroth hour, as well as the 48th hour. 
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8.7  Expert Evaluation 

To determine the usability and usefulness of CoRAD, we conducted an expert evaluation. An 

expert is defined as an individual with at least five years of experience in neonatology and 

physiologic data. Two key quantitative values that were measured were accuracy of the verbal 

statements and task completion. 

8.7.1  Methodology 

The evaluation of CoRAD was conducted with five experts including, clinicians and clinical 

researchers. A single factor, technique, was varied, with two levels: CoRAD (Figure 64), and 

stacked bar display (Figure 67). The stacked bar representation is inspired from an alternate 

design used in the neonatal spells research, however this research involves only the bradycardia 

episodes [292]. Seven key measures were collected including, demographic information, 

completion rate, accuracy of response, usability problems verbalized, errors made during the 

evaluation, posture, and the subjective satisfaction.  

 The experimental task was to determine and verbalize suspicion of infection for a single 

patient (a row in CoRAD, a bar in stacked bars). When the participant began the new task they 

were asked to state “I’m moving to the next patient”, this statement served to mark the end of 

the former task and the start of a new task. Following exposure to a technique, they were asked 

to provide feedback on the usability and acceptability of the user interface. The participants 

were directed to provide their honest opinion of the presented display and to participate in a 

post-session subjective questionnaire involving a 5 point Likert scale. All verbal discussions, as 

well as the cursor movements were recorded and transcribed.  
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 Participants received an overview of CoRAD and the stacked bar graph at the start of the 

experiment, along with the test procedure, and equipment. There was one training scenario 

consisting of 10 patient datasets. Training consisted of the experimenter reading aloud 

interpretations of three patient datasets, taking 5 – 10 minutes. Then the participant was 

provided time to explore the interface and familiarize themselves with the functionality. The 

10 patients used in the training set were not included in the evaluation set.  

 Each evaluation scenario consisted of 10 tasks. Two evaluation scenarios were carried out 

for each technique, and repeated for the other technique (data order was randomized). Due to 

data availability, the same datasets (in random order) were used for the training tasks in both 

techniques across all participants. The ordering of technique was counterbalanced to limit 

learning effects. In summary, from the original 33 datasets, 10 were used for training, and of 

the remaining 23, 20 were randomly selected and used in evaluation scenarios.  

 Nine personnel with research interests in physiologic data were initially identified. Five 

were identified to meet all conditions of the inclusion criteria, which included at least five years 

of expertise in neonatology. The sample was chosen purposefully to represent the local 

demographics with respect to age, sex, years of experience, and involvement in physiologic 

research. Trainees and fellows were excluded from this study. There were a total of 5 

(participants) x 2 (evaluation scenarios) x 2 (techniques) x 10 (datasets) = 200 evaluation tasks. 

Study sessions lasted an average of 45 minutes.  
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3.7.2  Procedure 

A laptop computer with Web site/Web application and supporting software was used in a 

typical office environment. The participant’s completion of the task was video recorded for 

aiding transcription and analysis of time to completion. The evaluation was initiated with a brief 

description of the CoRAD application, and the participant was made aware that the facilitator 

would be evaluating the application, rather than the diagnostic abilities of the participant. 

Participants were then prompted to sign an informed consent sheet that acknowledges: the 

 

Figure 67: Stacked bar representation used to stack all patients above a population 
average (bottom). The zeroth mark represents the point of suspicion of infection, and 
negative numbers illustrate heart rate variability scores in each preceding hours, while 
positive numbers signify heart rate variability scores in the hours after the event. 
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participation is voluntary, that participation can cease at any time, and that the session will be 

videotaped but their privacy of identification will be safeguarded.  

 The participant was then asked to complete a demographic and background 

questionnaire. Once the demographic questionnaire was completed, the participant was 

introduced to one of the two techniques. In both the training and experiment phases, the 

participant was frequently asked to think aloud, describing their analysis process. The 

participant body posture was observed and entries were made to the observation diary. After 

each the second exposure to each technique, the participant was asked to complete the post-

task questionnaire and elaborate on the task session with the facilitator. After all evaluation 

scenarios were attempted, the participant completed the post-test satisfaction questionnaire.  

3.7.3  Analysis 

Each session was video recorded and transcribed (with field notes). Using the open-coding 

method, sentences were classified using the cluster method of similar codes to generate 

themes. Themes were identified using informal affinity diagrams. These themes are discussed 

further in §8.7.4. This iterative approach of integrating more sentence derived themes to adjust 

the clusters was ongoing throughout the fieldwork to allow emergent themes to be included 

into the data collection process. The associated themes and distinctions formed the basis of 

the coding strategy. Review of the evolving themes contributed to the data synthesis and 

interpretation. To analyse the accuracy of detection the sensitivity-specificity binary 

classification method was used. This method is a popular clinical measure for determining the 

efficacy of an intervention [293]. In addition, this method was chosen, as detailed in section 
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3.4.3 of the literature review because of its depth of use in visual analytics. Average timing was 

manually determined from the video recording and rounded to the nearest second. Bias was 

mitigated through independent peer-review of the coding.  

8.8  Results 

The study yielded data from a total of 200 tasks performed across both conditions (10 datasets 

× 4 evaluation scenarios × 5 participants). This section highlights the main differences in 

demographics, accuracy of detection of sepsis, task completion, and subjective feedback 

received from expert participants. 

8.8.1  Demographic Differences 

Five clinical researcher participants were recruited in the study and all participants completed 

each component to completion. All participants had at least ten years of practise in critical care 

medicine. Two females and three males were recruited. The average age of the sample was 40 

– 50 years of age. The average length of total clinical experience was 18 years. All but one 

subject reported using the computer multiple times a day for analysis purposes. All participants 

had at least 15 years of experience working with physiologic data. The average reported score 

of participants’ familiarity with physiologic data was 4 out of 5, where 1 represented minimal 

familiarity and 5 represented expert proficiency. On the same scale, participants reported their 

familiarity with heart rate variability as 2.5 out of 5 and knowledge of neonatal sepsis as 3.5 out 

of 5. Two of the five participants were aware of the hypothesis exploring the link between heart 

rate variability and neonatal sepsis. The years of experience also did statistically differ in the 
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clinical researcher’s familiarity with the relationship between heart rate variability and 

neonatal sepsis. 

8.8.2  Accuracy of Detection 

Table 6 summarizes the results of the display condition, true positive, true negative, false 

positive, false negative, and sensitivity and specificity for all tasks performed. True positive 

refers to the number of true sepsis patients that were correctly identified to be septic. True 

negative to the correct identification of negative cases as non-septic. False positive refers to 

the number of patients who were incorrectly identified as positive, and false negative the 

number of patients who were incorrectly identified as negative. The sensitivity and specificity 

scores were collected for each condition and an average specificity and sensitivity score was 

generated. 

8.8.3  Task Completion 

Table 7 summarizes results of the tasks successfully completed, errors, average time in seconds, 

as well as the standard deviation in seconds. Non-crucial errors occurred in the CoRAD 

condition that did not obstruct task completion. The error was a result of using an external 

monitor that did not reproduce colour saturations, hence the normal distribution histograms 

were less visible. This error was fixed after the first trial by reverting to the laptop monitor. 

8.8.4  Subjective feedback 

As a result of the utilisation of the open-coding method for this research, three themes 

emerged namely: the usefulness and utility; visual encoding; and ultimate choice of preferred 

visualisation. Each of these themes are further detailed below.  
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Clinical researchers provided rich subject feedback about the usefulness and utility of both 

conditions. On the stacked bar representations, clinical researchers noted that as they 

progressed through each it became progressively difficult to analyse the patient’s HRV scoring 

due to the non-aligned vertical height. The stacked representation was seen to lack the ability 

to allow the expert to compare a certain temporal range against the rest of the data set. Clinical 

researchers also noted that using the stacked bar representation required manual scrolling to 

get a perception of the entire duration of the dataset. The lack of contextual information was 

noted to be a significant negative of the stacked bar display. 

 When compared to the stacked bar, CoRAD was perceptually simpler and easier for the 

experts to use, from expert feedback gained in the post-test survey. The heatmap 

representation was unanimously noted as being very helpful for analysis. All clinical researchers 

appreciated having a single view of the dataset. One of the clinical researchers expressed 

having been confused with the red colour coding, they identified the darker red regions as being 

more severe. Interactive zooming was frequently used and noted as a positive component. 

While many experts found the detail view important to their analysis, two experts voiced having 

options to have the normal distribution appearing as a histogram on a separate display.  

 CoRAD generated more thoughtful responses, such as: “I like that I can select a region of 

interest without the rest of the graph obstructing my view. This function makes me focus my 

attention on the task I want to complete.” The stacked bar display drew negative emotions on 

that topic, one researcher mentioned: “I am not able to see the patient I want to look at. This 

makes completing the task challenging”.  
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Table 6: Sensitivity and Specificity of both conditions 
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1 CoRAD 2 9 4 5 29% 69% 

1 Stacked 3 7 6 4 43% 54% 

2 CoRAD 2 11 3 4 33% 79% 

2 Stacked 0 15 1 4 0% 94% 

3 CoRAD 1 13 4 2 33% 76% 

3 Stacked 0 13 3 4 0% 81% 

4 CoRAD 0 12 5 3 0% 71% 

4 Stacked 2 12 2 4 33% 86% 

5 CoRAD 2 13 3 2 50% 81% 

5 Stacked 1 9 6 4 20% 60% 

Average CoRAD - - - - 29% 75% 

Average Stacked - - - - 19% 75% 

 

Table 7: Task Completion measures for both conditions 
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3 CoRAD 20 0 20 7 
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Figure 68: Interactive selection and filtering functions on CoRAD  allow the clinical researchers 
to isolate patients of interest. In this figure, the ‘Show Positives’ function is selected, which filters 
patients based on a positive clinical result for neonatal sepsis. The clinical researcher is shown here 
highlighting -40 hour to +10 hour two positive cases N44412_1 and N41492_3 in the detail view. 
The average of the population is also highlighted (in blue), to assist the clinical researcher in 
identifying potential correlations. 
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 The contextual bar was heavily utilized, however three of the five clinical researchers 

requested to see both bradycardia and data quality at the same time. One clinical researcher 

found the CoRAD display too cluttered and overwhelming, however that clinician did not use 

any of the interactive selection and filtering functions. Moreover, that clinical researcher 

preferred to see a summary graph showing only the most deviant patient. Other clinicians 

reported high satisfaction with the availability of the interactive selection and filter functions, 

and stated it helped to reduce excess information. When interactive selections were used, most 

clinical researchers also utilized the filter to display key patients of interest in the detail view. 

A typical workflow is illustrated in Figure 68, where two patients of interest are compared to 

the population mean in the detail view. In the main view, the user has highlighted an interval 

of interest. All clinical researchers stated the highlight function to be useful for determining 

changes in HRV across multiple patients at the same time, within salient temporal windows. 

One clinical researcher started the analysis by immediately highlighting a temporal window, 

and maintained that same window throughout the entire duration of the analysis. That 

researcher stated that they did not view data in other durations to be relevant. 

 One clinical researcher stated a desire to see distributions over only a fixed temporal 

range. That clinical researcher found the display of the average distribution across the entire 

duration not significantly helpful for completing their task. Researchers used the detail view to 

confirm their visual suspicions, one subject verbalized: “I am not sure (whether I am correct) 

visually about these subsets of patients, I want to see them statistically using the detail view. 

Ah, I see that my visual interpretations were correct”.  
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 After both conditions were tested, clinical researchers were asked to state their 

preference for one display. All experts preferred CoRAD over the stacked bar display. All clinical 

researchers stated they would utilize CoRAD as one of the applications in their analytic toolkit. 

Three clinical researchers with significant bed-side research interests expressed an inclination 

to use CoRAD as a tool as part of their bed-side rounds. One clinical researcher mentioned that 

after some suggested modifications, such as including a dynamic histogram for the normal 

distribution, they would see themselves actively using CoRAD. 

8.9  Discussions and Future Work 

An expert evaluation consisting of five domain experts analysing HRV and bradycardia events 

was conducted in an attempt to predict the infant’s neonatal sepsis status. Results from the 

expert evaluation revealed several key insights. The demographic differences in this study 

reveal broad coverage in age, sex, and years of experience. Based on the results that were 

observed, there seems to be little differences between age, gender, and years of experience to 

both the accuracy and task completion (p > 0.05). The relative low score attributed to familiarity 

of HRV is significant as this measure has yet to be established as a routine clinical indicator in 

practice [294]. One clinical researcher mentioned that, while they did not use HRV actively, they 

had knowledge of its potential relevance. 

 Accuracy of sepsis detection was reported with sensitivity appearing below 50% for both 

conditions (Table 1). CoRAD allowed for a 10% increase in sensitivity, however it was not 

statistically significant (p > 0.05). With respect to the specificity, both the stacked bar and 

CoRAD displays indicate an identical score at 75% (p > 0.05). The low sensitivity score across 
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both displays may support the notion of a weak link between HRV, bradycardia and neonatal 

sepsis, thereby providing counter evidence against the initial hypothesis for the dataset used 

by this evaluation [58], [286], [287]. Since the commencement of this research another 

independent study has also reported low accuracy results for the detection of late onset 

neonatal sepsis using these two physiological behaviours as part of the heart rate 

characteristics approach in a three year observational  study [295].  

 Task completion (Table 7) was significantly higher on CoRAD than on the stacked bar 

display (p < 0.05). All instances of unsuccessful task completion occurred when these clinical 

researchers failed to analyse one of the required patients in the display. The omitted tasks were 

not subsequently identified by the clinical researcher in most cases (8 out of 10), in one instance 

the researcher spoke aloud to confirm whether they may have missed a patient in their analysis. 

Analysis of the video screen recording, revealed that most of the omitted tasks appear as 

patients stacked in the middle or upper region of the representation. 

 Non-crucial errors were seen early in the evaluation with CoRAD, in particular with colour 

accuracy with the external display utilized in a single experiment. The CoRAD display was 

subsequently shown on another display which produced accurate colour representation. An 

additional error were encountered with subject 3 and 7 where the database communication 

was temporarily timed-out. A refresh of the web page allowed the evaluation to continue. The 

average time for task completion was not statistically significant between the two conditions 

(17 vs 18 seconds). Even with the additional number of interactive manipulations that were 

performed by clinical researchers, CoRAD still allowed the user to perform their task in the 
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same amount of time. The greater functionality afforded by CoRAD, along with the general 

interest in the tool was not seen to have contributed to longer task completion times.  

 The general subjective feedback shows greater interest in the CoRAD display. A 

unanimous agreement was present on the integration of CoRAD as an informatics tool that 

should be deployed as a tool in the hospital analytics suite. In particular, clinical researchers 

found having the ability to interactively select, filter, and expose details on demand to be 

helpful to their analysis workflow. Some researchers report using the tool, however with other 

forms of data, such as electroencephalogram, or an oxygen saturation dataset. The clinical 

researchers also suggested two major areas for future work. Including having the option to 

manually change the colour scheme, allow the context bar to represent both data quality and 

bradycardia at the same time, and separate the histogram view from the details graph. Future 

work with CoRAD will address the identified limitations.  

 CoRAD has shown positive effects in supporting clinical researchers explore patterns 

across multiple modes of physiologic data using an interactive cohort based visual analytic tool. 

The CoRAD display was tested in the context of an application by conducting an expert 

evaluation and experimentation against a control stacked bar display. Exposure to CoRAD 

within this limited case study, resulted in interest on the part of the clinical researchers to use 

this tool in other scenarios, such as electrocardiography and oxygen saturation variability. The 

relatively aligned heatmap allowed each researcher to rapidly identify event details, which was 

more difficult on the control display. However, open challenges remain in studying alternative 
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visualizations that can be used to display multiple features, such as data quality, and 

bradycardia without producing visual clutter. 

8.10  Limitations 

There are limitations with the presented research. The use of a single site to conduct the 

research has limited external generalizability. However, the use of randomization within the 

pool of experienced participants allowed us to mitigate external validity. Moreover, as 

exploratory research, results produced in this study allow for subsequent research to study 

generalizations to other sites. Secondly, due to the limited dataset that was available, the 

training dataset was shared by all participants, this may have exposed participants to a limited 

set of features that were only visible within the training dataset. The questionnaire relied in 

several self-reported quantitative values (years of experience, expertise, etc.). There may have 

been biases introduced from the self-reporting of those measures [296]. 

8.11  Chapter Summary 

This chapter introduces CoRAD a visual analytic tool for exploring patterns across cohort 

populations, and to conduct case-controlled studies. CoRAD is demonstrated as a DVAM 

instance within the TDVA framework that has been created in the TDVA platform and was 

developed using the TDVA methodology.  The CoRAD display was evaluated by clinical 

researchers and results were presented in §8.7. Future versions of CoRAD display will address 

limitations identified in this chapter, including the need to make multiple contextual 

information visible without contributing to visual clutter. 
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9.  Conclusion and Future Work 

This thesis has presented the TDVA framework for supporting dynamic visual analytics in 

complex environments. The key insight of the TDVA framework is a novel publisher software 

called mPub, which allows users in complex domains to generate multiple instances of DVAMs. 

These DVAMs are developed following the TDVA methodology proposed in this thesis, and 

using the TDVA platform as a physical environment supporting the deployment. Multiple 

DVAMs were instantiated, including two as a prototype application, and two others as full 

instantiations in chapters seven and eight. This chapter concludes the dissertation. In §9.1 a 

summary of the major work and contributions presented in this thesis are outlined. Future work 

is discussed in §9.2, followed by concluding remarks in §9.3. 

9.1  Summary and Contributions 

Sensors have become cheaper to manufacture, and the storage required to capture all 

generated data continues to expand.  Organizations ranging from agriculture to intelligence, 

now actively seek insight from their large collections of data. One of the methods to providing 

that insight, has been to create visual representations of historical data. However, the limitation 

with that approach, is that those visuals were often static and query-based. This implied a silo 

approach to hypothesis generation.  

 Modern approaches now adapt interactive functionalities applied to visual interfaces to 

support visual analysis, the methods supporting that workflow termed as visual analytics. A 

specialized, but growing field of interest is in visual analytics applied to the temporal domain, 
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called dynamic visual analytics. To that end, this dissertation presents a novel framework, called 

the Tri-event parameter based Dynamic Visual Analytics.  

 The focus of this dissertation has been on designing a framework, establishing a 

methodology to support the use of the framework for the creation of a physical platform that 

effectively allows users existing in the dynamic domain to access highly interactive visual 

interfaces to perform analysis tasks. Two analytic tasks were addressed: hypothesis generation 

and hypothesis testing using case-controlled studies. In order to arrive at requirements for the 

framework, a systematic review was conducted and presented in chapter four. This was 

followed by a qualitative study presented in chapter five, that elicited two novel concepts 

namely the tri-event parameters (§5.2), and the Exploration-Consumption continuum (§5.2.1). 

Both tasks resulted in the development of the TDVA framework (§6.2), which motivated the 

development of a TDVA methodology (§6.3), and a template TDVA platform (§6.4) that can be 

deployed in a real-time environment through an extension to the Artemis platform.  

 The feasibility of the proposed framework was examined by providing two prototype 

DVAMs instantiations within the TDVA platform, namely the Heart Rate Variability Graph 

(§6.5.1) and SeqEvent (§6.5.2). Heart Rate Variability Graph addressed the consumption 

requirements of complex users, while SeqEvent DVAM addressed the need for exploring 

temporal sequence of primitive events for hypothesis generation purposes. These 

instantiations were followed by two full instantiations, the first being PhysioEx presented in 

chapter seven and the second is CoRAD in chapter eight. PhysioEx also addressed the 
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hypothesis generation requirement, while CoRAD addressed the requirement for effective 

physiologic visual analytic tools supporting case-controlled hypothesis testing. 

 The key insight in the proposed framework, is that by employing temporal tri-event 

parameters, along with considerations for the unique requirements of the end-user, we can 

develop effective visual mediums to support analysis of complex data. The key component in 

that framework that supports such tasks is the Dynamic Visual Analytic Mart Publisher. The 

publisher serves as an intelligent agent, providing the user with tools that directly support 

analysis tasks. In this dissertation, the publisher was presented supporting researcher-oriented 

tasks across three DVAMs including SeqEvent, PhysioEx, and CoRAD. A DVAM was illustrated 

using the Heart Rate Variability Graph to support consumers.  

 In summary, the framework, methodology, platform, and techniques presented in this 

dissertation present a viable solution to address challenges of supporting dynamic visual 

analytic workflows in complex data environments. 

9.2  Future Work 

The contributions proposed in this dissertation are made to specific challenges within a larger 

open research area. In addition to the future work presented in §7.8 and §8.9, this section 

presents the following avenues for future work. 

9.2.1 Automated Context Awareness 

The instantiations of PhysioEx and CoRAD were performed manually. The mPub engine, 

introduced in §6.2.1 currently makes distinctions between consumer and researcher using 

input provided directly by the user. This can be a cumbersome and tedious process, moreover, 
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it may be an additional workflow introduced into an existing intricate environment. What is 

needed, therefore, is a level of intelligence applied to the mPub engine that allows it to 

automatically detect the context based on events produced in the data stream, or physical 

location. For instance, if potentially pathologic complex and multidimensional events were 

observed for a particular patient or system, the event stream processor should alert the mPub 

engine to modify its context to provide visual representations suitable for the new condition.  

 Alternatively, if the mPub engine detects that a physical location has changed, for 

instance, if a clinician is removed from the bed-side, then the visual representations are 

adapted from consumption displays to support more research tasks. To effectively apply these 

adaptions, there needs to be extensive post-instantiation studies that are conducted. These 

studies should evaluate the impact of such awareness functionality on domain experts, and 

arrive at evidence justifying its adoption.   

9.2.2  Instantiation in Real-time 

The TDVA framework proposed in this dissertation supports many functionalities that ingest 

real-time streaming data to support consumers and researchers. The particular instantiations 

provided in this dissertation, however, directly support the researcher. The effects this 

framework would have on a consumer in a complex real-time environment where not 

investigated in this research. Hence that presents a unique opportunity as future work, to 

develop instantiations for the complex real-time user. Those instantiations however, need to 

consider the salience of balancing interactivity with the needs of the user as determined by 

their immediate context and level of engagement.  
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 This Exploration-Consumption continuum proposed in chapter five presents a conceptual 

template that can be used to advance this work. For instance, by using urgency and 

engagement as metrics, an automated engine can be developed to support very specific focal 

monitoring tasks. The framework, methodology, and platform presented in this thesis can be 

used to advance such a task. 

9.2.3  Scaling out to the cloud 

The TDVA platform currently assumes all components exist in a local cluster. Moreover, a key 

aspect of the TDVA framework is to support isolated independent dynamic visual analytic 

marts. However as number of instantiations increase, and the dataset expands, there is a need 

to modify the platform to support horizontal scalability. This involves modifying the mPub 

engine to support parallelized and distributed instantiations. 

9.2.4  Extending to non-domain experts 

The case study applications demonstrated in this thesis were evaluated using domain experts, 

who were familiar with concepts that were important in maximizing the utility of the DVAMs. 

In future studies, the framework will be demonstrated for non-domain experts using visual cues 

to aid decision making when key concepts are unfamiliar. 

9.3  Concluding Statements 

Large volumes of sensor data continue to be collected across all major industries, however tools 

that allow end-users to analyse those datasets are limited.  Most dynamic visual analytic tools 

are developed to support a standalone workflow, where each application follows a unique 

development pipeline. Besides, they do not support the temporal tri-event parameters: 

trajectory, frequency, and duration, which are persistently observed in complex domains. I 
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provide an alternate instantiation strategy by introducing a framework, methodology and 

platform design that integrates the tri-event parameter and used to construct dynamic visual 

analytic applications. The framework allows flexibility to produce instantiations that support 

unique workflows of consumers and researchers. The introduction of such framework, not only 

addresses the challenge of supporting visual analysis of complex data, but also provides a 

blueprint for future advancement of intelligent context-aware systems. 
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Appendix 1:  Comprehensive Matrix of Design Properties 
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[225] Intensivists 2014 Yes >20 WF Red, 
Yellow, 
Orange, 

Blue, 
Green 

Colour Continuity Selection No 

[229] Anesthesia 2009 No 0-4 WF Red, 
Yellow, 
Blue, 

Green, 
Black 

Shape, 
Colour 

Continuity No No 

[211] Anesthesia 2003 No 11-
20 

MT Blue, Red Colour, 
Shape, 
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No Yes 

[124] Intensivists 2012 Yes >20 WF, 
MT 

Red, 
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Filter, 

Overview 
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[245] Intensivists 2004 No 5-10 MT Green, 
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No Yes 
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[301] Intensivists 1997 Yes >20 MT Not 
Reported 
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Value, 
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Proximity 

No Yes 

[254] Anesthesia 2009 No 5-10 MT Grey, 
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Proximity 

No Yes 
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[226] Intensivists 2011 Yes >20 WF Red, 
Green 

Colour, 
Dimension 

Continuity Selection, 
Filter, 

Overview 

No 

[214] Intensivists 1992 Yes >20 WF, 
MT 

Grey Dimension, 
Value, Shape 

Proximity, 
Continuity, 
Symmetry 

Selection No 

[218] Multi 1996 Yes >20 WF, 
MT 

Not 
Reported 

Value, 
Dimension, 
Shape, Size 

Proximity, 
Continuity, 

Closure 

Selection, 
Filter, 

Overview 

No 

[120] Intensivists 2001 Yes 11-
20 

MT Continuit
y, 

Similarity
, Closure 

Continuity, 
Similarity, 

Closure 

Continuity, 
Similarity, 

Closure 

No Yes 

[302] Intensivists 1994 Yes >20 WF Not 
Reported 

Colour, 
Dimensions, 

Size 

Proximity, 
Continuity 

Selection No 
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[223] Intensivists 2002 Yes >20 WF, 
TB 

Blue, 
Purple, 

Red, 
Teal, 

Green, 
Orange 

Colour, 
Dimensions 

Proximity, 
Continuity, 

Closure 

Selection, 
Filter, 

Overview 

No 

[303] Intensivists 1952 No 0-4 WF Grey Shape, Size, 
Dimension 

Continuity, 
Closure 

None No 

[304] Intensivists 2011 Yes 0-4 WF Green, 
Red, 

Yellow, 
Blue, 
Teal, 

White, 
Purple 

Shape, 
Dimension 

Continuity, 
Closure 

None No 

[212] Intensivists 2009 Yes >20 WF, 
TB, 
OB 

Green, 
Red, 

Yellow, 
Blue, 
Teal, 

White, 
Purple 

Shape, 
Dimension 

Continuity, 
Similarity, 

Closure 

Selection, 
Overview, 

Filter 

Yes 
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[236] Anesthesia 2011 Yes 11-
20 

MT Green, 
Red, 

Yellow, 
Orange 

Shape, 
Dimension 

Proximity, 
Similarity, 

Closure 

Selection, 
Overview 

No 

[238] Intensivists 2004 No 5-10 TB, 
WF 

Not 
Reported 

Shape, 
Dimension 

Similarity, 
Closure 

None No 

[239] Intensivists 2011 Yes >20 TB Black Dimension Proximity Selection, 
Overview 

No 

[241] Anesthesia 1993 No 11-
20 

OB, 
WF 

Grey Value, 
Dimension, 
Shape, Size 

Continuity, 
Closure 

None No 

[76] Anesthesia 2002 No 5-10 OB, 
MT 

Red, 
Green 

Value, 
Dimension, 
Shape, Size 

Continuity, 
Proximity, 
Similarity 

None No 

[247] Anesthesia 2008 No 0-4 WF Red, 
Green, 
Blue, 
Black 

Dimension Continuity None No 
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[305] Anesthesia 2001 No 0-4 OB Red, 
Blue, 
Teal, 

Yellow 

Colour, Size, 
Value, 

Dimension 

Continuity, 
Similarity 

None No 

[258] Intensivists 2004 No 0-4 TB, 
WF 

Red, 
Blue, 
Green 

Colour, 
Dimension 

Continuity None No 

[51] Anesthesia 1986 No >20 TB, 
MT 

Grey Dimension, 
Size, Value 

Continuity, 
Proximity, 
Symmetry 

None No 

[257] Anesthesia 2006 Yes >20 WF, 
OB, 
TB 

Not 
Reported 

Dimension, 
Size, Value 

Continuity Selection, 
Filter 

No 

 

[209] Nurses 2013 Yes >20 WF, 
TB, 

MF 

Red, 
Green, 
Yellow, 
Blue, 
Black 

Value, 
Dimension, 
Shape, Size 

Continuity, 
Symmetry 

Selection Yes 

Acronyms: MT: Metaphoric Display, OB: Object-based display, TB: Tabular display, and WF is waveform display. Multi: Multidisciplinary  
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Appendix 2:  Comprehensive Matrix of Study Results 
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[225] ICU Eval. + Live NI C C NI NI No Yes No 

[229] Lab Exp. + Static - NI C NI NI Display Yes No 

[211] Lab Exp. + Sim. - NI NI NI NI Display Yes No 

[124] ICU Exp. Mix Static 0 C C NI NI Yes Yes No 

[245] ICU Eval. + Live NI NI G NI NI NI No No 

[255] Lab Exp. - Static NI NI O NI NI Display Yes No 

[297] Lab Exp. + Sim. NI NI O NI NI Display No No 

[298] Lab Exp. + Sim. NI NI NI NI NI Yes Yes No 

[128] Lab Exp. + Sim. NI NI NI NI NI Scenario Yes No 
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[252] Lab Exp. + Static NI NI G G G Yes Yes No 

[299] Lab Exp. + Sim. NI NI NI NI NI Yes Yes No 

[244] Lab Exp. + Sim. NI NI C NI NI Scenario Yes No 

[300] Lab Exp. + Sim. NI NI C NI NI Scenario Yes No 

[301] Lab Eval. + Static NI NI C, G NI NI NI No No 

[254] Lab Exp. + Sim. - NI C, G NI NI Yes Yes No 

[227] Lab Exp. + Sim. NI NI NI NI NI Yes Yes No 

[246] Lab Exp. + Sim. NI NI NI NI NI Scenario Yes No 

[129] ICU Exp. + Sim. 0 NI G G G Scenario Yes No 

[226] ICU Eval. + Live NI C C NI NI NI No No 



 

261 
 

P
ap

er 

Settin
g 

Stu
d

y Typ
e 

R
esu

lts R
ep

o
rted

 

R
ealism

 

C
o

gn
itive W

o
rklo

ad
 

H
isto

ric Tren
d

s 

V
isu

al en
co

d
in

g  fo
r 

Tem
p

o
ral traje

cto
ry 

V
isu

al en
co

d
in

g fo
r 

d
u

ratio
n

 

V
isu

al en
co

d
in

g fo
r 

freq
u

en
cy 

C
o

u
n

ter-b
alan

ced
 

C
lin

ical Scen
ario

 

C
ase 

C
o

n
tro

lled
 

Fu
n

ctio
n

s 

[214] Lab App. NA Static NI C C G G NI No No 

[218] Hospital App. NA Live NI C C, 

G 

G G NI No No 

[120] ICU Eval. + Static NI C G G NI NI No No 

[302] ICU App. NA Live NI NI C NI NI NI No No 

[223] ICU App. + Live NI C C NI NI NI No No 

[303] ICU Eval. NA Static NI NI C NI NI NI No No 

[304] ICU App. NA Sim. NI NI C NI NI NI No No 

[212] ICU Exp. + Static NI NI C T T Yes Yes No 

[236] Surgery App. NA Live NI NI G T T NI No No 
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[238] Lab Exp. – Static NI NI C, T T T Yes Yes No 

[239] Lab Exp. + Sim. - NI T T T Yes Yes No 

[241] Surgery Eval. + Live NI NI C NI NI NI No No 

[76] Lab Exp. Mix Sim. Mix NI C, 

G 

G G Scenario Yes No 

[247] Lab Exp. + Sim. NI NI C NI NI Yes No No 

[305] Lab App. + Sim. NI NI C NI NI NI No No 

[258] Lab Design NA Sim. NI NI C NI NI NI No No 

[51] Lab Design NA Sim. NI C C NI NI NI No No 
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[257] Surgery App. + Live - C C NI NI NI No No 

[209] ICU Exp. + Sim. - C C NI NI Yes Yes No 

Acronyms: +: Positive; -: Negative, 0: No Change; Mix: Mixed results; Exp: Experiment; Eval: Evaluation; App: Application; Sim: 

Simulated; T: Text, O: Object, C: Curves, G: Glyph, NI: None Included; 
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Appendix 3:  Visual Interfaces used in the think-aloud sessions 

 

Figure A3-1 Top-left figure presents a heatmap display of oxygen saturations over 24 
hours. The bottom-left figure presents hourly distribution of oxygen values that were 
above target (red), below target (blue) and within target (yellow). The top-right figure 
presents a Sparkline representation of oxygen values. The bottom-right figure illustrates 
above and below values of oxygen saturation over several hours. 



 

265 
 

 

Figure A3-2: The top-left figure illustrates a novel DxRadar representation, where 
conditions that manifested in each of the hours displayed. Circles, which act as 
metaphors for physiological events, appear from the middle when they are detected at 
the bed-side and migrate outwards towards the edges as time progresses. Circles can 
appear in each of the four quadrants, or monitoring windows. A circle appearing in the 
Spells window for instance signifies an algorithm detected spell. The circles 
progressively get larger if the severity during that particular event epoch increases. 
This view allows the user to perceive conditions as they manifest at the bed-side. The 
bottom-left figure illustrates a theme-river like metaphor, however, in this graphics, 
physiologic conditions are constantly re-assessed and a probability score is 
presented. The top-right figure is an indicator display of four common conditions in the 
neonatal intensive care unit. The conditions are spells, retinopathy of prematurity, 
hypoglycaemia, and late onset nosocomial infection (sepsis). Colours change from 
white (no change), to yellow (mild risk), and to a dark shade of red (high risk), as an 
algorithm generates risks based on the analysis of physiologic data. The bottom-right 
display illustrates a stacked histogram view of a patient, who has several conditions 
that are marked for monitoring. A white colour represents no data, blue represents no 
change, yellow represents mild risk, and red represents high risk for that condition. 
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Figure A3-3: This figure illustrates a graph-based visualization of physiologic 
conditions, along with an area chart (right). Each circle represents a physiologic 
condition, the colour red signifies a high risk event, while yellow signifies a mild risk and 
white denotes low risk. In this figure, a high risk physiologic condition ‘Low HRV’ is 
shown using a bright red circle. Clicking on the circle buttons reveals their history in form 
of an area chart (right). 
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Figure A3-4: This figure illustrates a star-plot representation of five potential neonatal 
spells. A template star-plot diagram is shown in the left, and begins with an Obs-Central 
(obstructive then central); Vagal; Obstructive; Central-Ob (central then obstructive); and 
finally a central spell. When data is populated a yellow highlight appears over each 
edge, when the highlight protrudes away from the edge, it can be used to convey an 
increased activity of that particular spell. In this figure for instance, it can be observed 
that the patient being illustrated had an increased number of vagal and central-
obstructive spells. 
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Figure A3-5: This figure illustrates a treemap diagram of various physiologic conditions 
for a single patient over several hours. Each larger box represents an hour of monitoring. 
The box represented at the top left shows that during that hour, there was an increased 
amount of spells, and HRV alerts. Meanwhile in the most recent hour (bottom-right), 
only HRV is observed, while other conditions are not in alarm state. 
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Figure A3-6: This figure illustrates a vector representation of raw physiologic data. Each 
converging edge of the vector falls along one of four potential axis. Colour is used as 
an indicator of severity. Blue represents normal ranges, yellow a low risk, and red a high 
risk. In this figure, SpO2 reading is shown to be at 70%, which signifies a low oxygen 
saturation, and hence coloured red.  
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Appendix 4:  Informal Affinity Diagrams for Grouping Themes 
 

Table A4-1: Affinity diagram categories from the initial phase 

Trajectory Frequency Duration Consumption Exploration 

Makes Future 
Projections 

Gets Number of  
Episodes 

Asks Time-based 
Queries 

Knowledge 
Dissemination 

Knowledge 
Gathering 

Information 
Retrieval 

Information 
Retrieval 

Information 
Retrieval 

Information 
Dissemination 

Data Gathering 

   Information 
Retrieval 

Data Cognition 

 

Table A4-2: Affinity diagram categories from the second phase 

Trajectory Frequency Duration Consumption Exploration 

Questions about 
severity 

Gets Number of  
Episodes 

Asks Time-based 
Queries 

Knowledge 
Dissemination 

Knowledge 
Gathering 

Makes Future 
Projections 

Data Cognition Data Cognition Information 
Dissemination 

Data Gathering 

Information 
Dissemination 

Data Gathering Data Gathering Information 
Retrieval 

Data Cognition 

Information 
Gathering 

    

 

Table A4-3: Affinity diagram categories from the third phase 

Reactions to 
existing systems 

Reactions to 
novel 
representations 

Engagement 
levels 

Perception of 
usefulness 

Analysis of cohorts 

Anecdotes on 
existing systems 

Queries about 
functionality 

Directed 
actions 

Positive emotions on 
utility 

Queries about 
multiple patients 

Negative 
emotions of CIMs 

Positive 
emotions about 
metaphors 

Undirected 
actions 

Things learnt from the 
representations 

Queries about 
segmenting patients 
into groups 

Limitations of 
existing systems 

Queries about  
integration with  
existing systems 

 Comments on 
individual views 

 

 


