

Claims-Aware Middleware for Securing IoT Services

by

Vathalloor Merin George

A Thesis submitted to

University of Ontario Institute of Technology

in partial fulfillment of requirements

for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Oshawa, Ontario, Canada

 © Vathalloor George, April, 2016

i

ABSTRACT

Claims-Aware Middleware for Secure IoT Services

Vathalloor Merin George Advisor:

University of Ontario Institute of Technology, 2016 Professor Qusay H. Mahmoud

Take a look at the world around us. There has been tremendous change in the way of

living. With the world around us getting smart, Internet of Things is gaining ground in

our life. Applications like smart home and eHealth are so user friendly that any person

with zero programming background is able to use it. But for the developer, due to the

ubiquitous nature and distributed architecture of IoT which includes devices, applications

and humans, it presents a complex structure. Also, the incorporation of thousands of

heterogeneous things with different configurations into a single network creates the risk

of threat against security and privacy. These challenges make the significance of a

middleware important. Middleware is a software layer that provides the platform for

various devices with different protocols to communicate with ease and provides all the

functions intended for a particular task. Hosting these tasks as microservices simplifies

the job of an application developer. In this thesis work, we introduce a claims-aware

middleware to address one of the major challenges in IoT which is security. A proof of

concept has been developed by implementing a prototype of our framework. The

evaluation results of the prototype show the feasibility and the stability of the security

framework.

ii

Dedication

To my father for he has been my backbone since the day I was born.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr. Qusay Mahmoud, for

his continuous support and encouragement right from the beginning of this research

work. Without his guidance, I would have never been able to complete this work. He has

been extremely patient and supported me when I was struggling with the work and

directed me towards the right track. I will always be thankful for the times that he had let

me postpone the due dates in several phases of my research and let me work at my slow

pace. I will always remember the generous funding he provided and the fact that he

always had the faith in my research ability.

I would like to thank my friend, Orane Cole, for his boundless help throughout

this research period. The motivation he gave me when I felt helpless is commendable. I

wish him and his family all the very best and may God bless you. Also, I thank my

friend, Jortin Mathew, for his support and help.

I cannot go further without expressing ma sincere gratitude to my friend Subin

Ben for his moral support and motivation. His words were really inspirational and kept

me going forward.

 I would like to thank my family members, especially my father, as without the

continuous encouragement from him I might never have completed this work. He is my

role model as his continuous effort and hard work to complete any given task, has always

inspired me. I thank all my friends for all the love and prayers.

iv

Table of Contents

Abstract .. i

Acknowledgements ... iii

Acronyms and Abbreviations ... vii

List of Figures .. ix

List of Tables ... x

Chapter 1 Introduction ... 1

1.1 Internet of Things .. 1

1.2 Motivation ... 3

1.3 Research Statement ... 4

1.4 Thesis Contributions ... 4

1.5 Thesis Outline ... 5

Chapter 2 Background and Related Work ... 7

2.1 Middleware ... 7

 2.1.1. Middleware for Internet of Things .. 8

2.2 Related Work ... 12

2.3 Summary .. 16

Chapter 3 Proposed Solution .. 17

3.1. Overview... 17

3.2. Middleware Architecture .. 18

3.3. Middleware Components .. 19

3.4. Claims-Aware Identity for Securing IoT Services ... 22

3.5. Microservices Architecture ... 25

3.6. Summary ... 27

v

Chapter 4 Prototype Implementation .. 28

4.1. Implementation of Microservices ... 28

4.2. Database Selection .. 29

4.3. Implementation of Claims Identity ... 30

 4.3.1. SAML Token Provider .. 31

 4.3.2. SAML SOAP Message .. 33

4.4. Implementation of Device Management .. 34

4.5. Interoperability between Platforms... 35

4.6. Summary ... 36

Chapter 5 Evaluation and Results .. 37

5.1. Background .. 37

5.2. Simulation Scenario ... 38

5.3. Evaluation Criteria ... 38

5.4. Experimental Methodology ... 39

5.5. Experimental Setup .. 40

 5.5.1. IoT Device Simulation .. 40

 5.5.2. Device Registration ... 40

 5.5.3. Claims-Aware IoT Middleware .. 41

 5.5.4. Client Website ... 41

 5.5.5. Tracking Metrics ... 41

 5.5.6. JMeter Tool ... 41

5.6. Evaluation in LAN ... 42

 5.6.1. Performance Evaluation of IoT Services in LAN 42

 5.6.1.1. Performance without Claims .. 42

 5.6.1.2. Architecture of LAN Setup without Claims 43

 5.6.1.3. Experiment Results in LAN without Claims 43

 5.6.1.4. Performance with Claims ... 45

 5.6.1.5. Architecture of LAN Setup with Claims 46

 5.6.1.6. Experiment Results in LAN with Claims 46

 5.6.2. Comparison Results in LAN .. 48

5.7. Evaluation in the Cloud ... 50

 5.7.1. Performance Evaluation of IoT Services in the Cloud 52

 5.7.1.1. Performance without Claims in the Cloud 52

 5.7.1.2. Architecture of the Cloud Setup without Claims 52

 5.7.1.3. Evaluation Results without Claims in the Cloud 53

 5.7.1.4. Performance with Claims in the Cloud 55

 5.7.1.5. Architecture of the Cloud Setup with Claims 55

vi

 5.7.1.6. Evaluation Results with Claims in the Cloud 56

 5.7.2. Comparison Results in the Cloud .. 57

5.8. Comparison of LAN vs Cloud ... 58

5.9. Performance Evaluation of Claims Security Model .. 59

5.10. Summary ... 62

Chapter 6 Case Study: Smart Home Automation ... 63

6.1. Overview... 63

6.2. Physical Components of Home Automation .. 64

 6.2.1. Belkin WeMo Switch ... 65

 6.2.2. Lamp ... 66

 6.2.3. D-LINK Wireless Router .. 66

6.3. Home Automation Architecture ... 66

6.4. The Process Flow .. 70

6.5. Performance Evaluation.. 71

6.6 Summary .. 74

Chapter 7 Conclusions and Future Work ... 75

7.1. Contributions .. 75

7.2. Future work ... 76

Appendix A Source Code .. 78

Appendix B Log Files ... 92

Bibliography .. 95

.

vii

ACRONYMS AND ABBREVIATIONS

IoT Internet of Things

IERC European Research Cluster on the Internet of Things

WSN Wireless Sensor Networks

SQL Structured Query Language

NoSQL Not Only SQL

M2M Machine-to-Machine

WCF Windows Communication Foundation

API Application Programming Interface

HTTP HyperText Transfer Protocol

DBMS Database Management System

REST REpresentational State Transfer

RPC Remote Procedure Call

OS Operating System

MQTT Message Queuing telemetry Transport

URI Uniform Resource Identifier

XMPP Extensible Messaging and Presence Protocol

SASL Simple Authentication and Security Layer

TLS Transport Layer Security

SIoT Social driven IoT

STS Security Token Service

QoS Quality of Service

RPi

JDK

JRE

JSON

Raspberry Pi

Java Development Kit

Java Runtime Environment

Java Script Object Notation

viii

SAML

IdP

TCP

UPnP

IP

OTP

BLE

Security Assertion Markup Language

Identity Provider

Transport Control Protocol

Universal Plug and Play

Internet Protocol

One Time Password

Bluetooth

PoE Power over Ethernet

LAN Local Area Network

AES Advanced Encryption Standards

CBC Cipher Block Chaining

ix

LIST OF FIGURES

Figure 2.1: Architecture of IoT middleware (adapted from [7])... 9

Figure 2.2: High level architecture of IoT .. 12

Figure 3.1: Proposed middleware architecture for securing IoT services......................... 18

Figure 3.2: Generationa nd processing of claims .. 23

Figure 3.3: Claims issuing scenario .. 24

Figure 3.4: Microservices architecture based IoT services ... 26

Figure 4.1: Screenshot of network discovery setup .. 36

Figure 4.2 Screenshot of devices being detected in our system.. 37

Figure 4.3: Screenshot of device webpage.. 37

Figure 5.1: Graph showing the performance in LAN ... 49

Figure 5.2: Graph showing the performance in cloud .. 59

Figure 5.3: Graph showing the performance of claims in LAN vs cloud 60

Figure 5.4: Security features of using claims .. 61

Figure 5.5: Security features of not using claims.. 63

Figure 6.1: Belkin WeMo smart switch .. 66

Figure 6.2: Architecture for the home automation .. 68

Figure 6.3: Web client showing IoT services in home automation application 69

Figure 6.4: UML sequence diagram of communication process in smart home 71

Figure 6.5: Graph showing the performance of case study .. 74

x

LIST OF TABLES

Table 5.1 Performance results without claims in LAN ... 46

Table 5.2 Performance results with claims in LAN .. 48

Table 5.3: Performance results without claims using cloud ... 55

Table 5.4: Performance results with claims using cloud .. 57

1

Chapter 1

Introduction

This chapter gives a brief introduction about the topics that are present in our research

work. An overview of Internet of Things and its security challenges are also introduced.

A short detailing about our motivation to select this research area along with the research

statement has been presented. The main contributions of our thesis have been pointed out

in this chapter.

1.1. Internet of Things

Most of the devices in our daily life perform some sort of operations or services. It was

found out to be so productive if those devices such as mobile phones, televisions or even

a sensor could communicate with each other. Such a system where objects (things) could

be recognized uniquely and obtain intelligence by analysis of an event and reacting

accordingly to produce a smart reaction, could be called Internet of Things. Each such

object may access information from other entities and may contribute a small part of

service within the whole system. The strong pillars of IoT are cloud computing and the

transition of Internet towards IPv6 with almost unlimited addressing capacity [1].

IERC (European Research Cluster on the Internet of Things) along with ITU-T

(International Telecommunication Union) Study Group 13 has been working together on

standards for future generation networks. They formulated a definition [2] for Internet of

Things which explains the system in a highly technical manner with additional

2

information on border perspective of IoT applications and services. But the definition

given by IERC [1] is more simple and it states that IoT is “A dynamic global network

infrastructure with self-configuring capabilities based on standard and interoperable

communication protocols where physical and virtual “things” have identities, physical

attributes, and virtual personalities and use intelligent interfaces, and are seamlessly

integrated into the information network.”.

Healthcare, automotive, smart grid and home automation are just few applications

which use IoT. With the help of wireless sensor networks (WSN), control and monitoring

of dumb nodes are made much more efficient [3]. Unlike the machine-to-machine (M2M)

communication, IoT includes man in the loop, either to control the things or to react with

the result produced from the things. There are various areas like transportation, logistics,

field service and so on, in which coupling of information and things may create highly

efficient services [1]. The things not only obtain information from the surrounding but

also interact with each other to either produce a command or to control a situation [4].

The applications that use the idea of IoT range from entertainment programs to security

applications. With the increased dependency of people on the Internet, keeping every

single data secure is also important.

One of the major challenges in Internet of Things is security. The attacks against

security and privacy are considered challenging because things are low power objects

with low memory capacity. Thus complex cryptographic algorithms may not be

supported and the fact that most of them will be wirelessly connected makes it more

3

vulnerable to attacks. In an application like wireless sensor networks for healthcare,

security and privacy threats could affect the person in a very bad manner-if the data is

leaked as it is very sensitive and any information regarding the patient can be used by the

adversary which put patient’s life at risk. Another scenario could be home automation in

which the energy is managed efficiently with the help of monitoring sensors. The data

collected from those devices could be used by an attacker to retrieve the information

whether the home is empty and utilize it for compromising the security system. Thus,

security at both the edge (device/things) level and network level is required in IoT [5].

1.2. Motivation

Protection of data has always been a problem that existed in communication between two

parties. So in a network of things where millions of nodes will be communicating,

securing the data is a nontrivial task. Also, the heterogeneous nature of the different

devices, sensors or applications that have to communicate with each other to produce

meaningful result or reaction according to an event, also demands for a mechanism to

support interoperability between different protocols.

In the past few years, the demand of IoT applications has been increased and the

world is becoming smart. An interesting yet serious question that has to be answered is

that whether the IoT services are secure. The catastrophe that may happen if the personal

data of the user falls into a wrong hand would be irrevocable. Thus the basic problem is

to provide secure IoT services without causing any degradation in the performance of the

IoT applications and services.

4

1.3. Research Statement

To achieve a secure middleware for Internet of Things, first of all, we need to study the

existing frameworks for IoT and learn the basic functionalities of the middleware. Also, it

is important for us to learn the drawbacks of the existing solutions so that we can come

up with a better framework that is secure by design. There is a need to analyze the

security attacks in IoT so as to come up with a secure and reliable architecture to enable

the services to interact with each other in a more secure manner. The heterogeneity in

things is another problem and interoperability between these devices or applications

should be made smooth enough to achieve good performance. So our solution is to come

up with a framework for Internet of Things that is secure and sound. Implementing the

IoT services as Microservices is another task to achieve. The security achieved in our

framework is then evaluated to verify its performance and see that our goal has been

achieved.

1.4. Thesis Contributions

In this thesis, we introduce a framework for securing services in Internet of Things. The

security issues associated with the Internet of Things and the existing solutions are

presented along with an overview of our solution. In this research work, we built a

prototype implementation of our solution as a proof of concept and the challenges that we

came across in our work are also presented in detail. The system is evaluated to find out

the overhead of using claims and the results obtained are presented along with the

performance level.

The main contributions of this research are:

5

 A secure IoT middleware: A framework for IoT is proposed in this thesis and

a sound solution to the security threat associated with the Internet of Things is

established based on the Claims- identity [6].

 Prototype implementation: The prototype of the claims-aware framework is

implemented using Windows Communication Foundation (WCF) [7]. It

provides security tokens that are used to provide the claims identity to the

network. Thus the IoT devices are authenticated by the services before actually

performing the services.

 Implementation of IoT services as Microservices: In this system of large

number of connected components, decentralization is very important to ensure

reliable services. Such a way of programming architecture is Microservices

architecture that totally eliminates the need of centralized management of

system. In short, these are independent services that communicate using REST

(Representational State Transfer) APIs.

 Cloud-based evaluation of the prototype: To test the feasibility of the

framework, we have evaluated the prototype implementation in the cloud.

1.5. Thesis Outline

The rest of the thesis is structured as follows. Chapter 2 provides an overview of the

related works about the existing middleware for IoT and its challenges. In Chapter 3,

detailed description about our proposed solution is given which explains the claims-aware

security model and Microservices. The implementation details are provided in Chapter 4

6

in which the comparisons of tools are done. Evaluation results of the framework are

presented in Chapter 5 together with the obtained results. A brief explanation on the case

study of smart home is given in Chapter 6. Chapter 7 concludes the thesis with an

emphasis on the future works.

7

Chapter 2

Background and Related Work

This chapter presents an overview of the related topics and relevant works done in this

research area which include, middleware for Internet of Things, challenges related to IoT,

security threats and existing solutions and microservices. The background work helps in

gaining basic knowledge about the IoT middleware and its functionalities.

2.1. Middleware

Middleware is a software layer that sits between the operating system and the

applications, to simplify the integration of heterogeneous applications. The different

types of middleware are [4]:

 Message oriented middleware: This type of middleware enables the disparate

processes to communicate using message passing. This is a simple and easy way

of achieving less complicated distributed applications.

 Object oriented middleware: Unlike the message passing in the above type, this

middleware infrastructure supports the communication between applications in

the form of objects and follows an object oriented architecture.

 Remote Procedure Call (RPC) middleware: As the name indicates, it calls the

remote procedures between systems for interaction.

 Database middleware: There are different types of software or drivers that let us

connect to various databases. This kind of middleware provides connectivity and

accessibility to databases.

8

 Transaction middleware: This is mainly for web-application servers dealing with

the transactional procedures.

 Portals: The enterprise portal servers are regarded as middleware because it

serves as a piece of software that enables the integration between the front-end

user interface and the back-end server.

 Embedded middleware: It stands as a medium of integration between the real-time

OS and the user application of the embedded systems or it can be integrated along

with the operating system.

 Enterprise service bus [8]: It is a software architecture model used to achieve

communication between services that follow Service Oriented Architecture

(SOA).

2.1.1. Middleware for Internet of Things

IoT middleware is a software layer that holds all the heterogeneous devices, applications

and users together. Middleware provides the platform for various devices with different

protocols to communicate with ease and provides all the functions intended for a

particular task. There are various services that have to be provided by IoT middleware.

The simplified diagram of general IoT middleware is shown in Figure 2.1 and a detailed

version is presented in [9]. These are the basic services that have to be delivered by the

IoT middleware and each of them is explained in detail.

9

Figure 2.1: Architecture of IoT middleware (adapted from [9])

The major functional components of IoT are:

 Interoperability: Interoperations are performed by API gateways. The main

functional operation done by API Gateway is protocol translation. There are

mainly three kinds of interoperations like, network, semantics and syntactic [9].

Embedded control gateways provide intelligence along with interoperability.

Transferring the tasks to gateways from nodes will reduce the complexity and

cost of end nodes [10]. It converts the different protocols into a common one and

enables the exchange of information among different networks. Things could be

any kind of devices or applications with different protocols like Bluetooth,

10

ZigBee, Wi-Fi etc. For example, in home automation system, things could be

smart TV, light sensors, temperature sensors, security cameras, smart phone and

so on. The user could either control it from smart phone or the sensors detect

context and perform the services. Thus it is the role of middleware to perform the

protocol translation in to a single protocol for further processing.

Multiple devices can be connected to a single gateway depending upon the

load of the network and capacity of the Gateway device. Thus there could be more

than one Gateway for large network with large number of nodes. The two of the

most commonly used protocols in Internet of Things are REST and MQTT

(Message Queuing Telemetry Transport). While Web Sockets encapsulate the

identity between the client and the server, REST comes as a powerful way of

providing Unique Resource Identifier (URI) for each resource. REST style

consists of any HTTP methods along with a particular resource for manipulating

that resource. For example, a GET request at /resource will provide the data stored

in the resource. Message Queuing Telemetry Transport (MQTT) is a lightweight

binary protocol [11] which is power efficient. It works on the principle of

publish/subscribe (pub/sub) in which each client publishes the updates or

subscribe for updates from others regarding a particular topic with a central

broker. The subscribers connect using a CONNECT message and the publishers

needs to acknowledge it. The clients can either use PUBLISH or SUBSCRIBE

message as per the situation. It differs from REST as MQTT is a stateless protocol

and also it does not have any discovery mechanism [12].

11

 Device Abstraction: IoT middleware should enable any device to communicate

to the neighboring devices without any hindrance. Not only should they be

discovered automatically, but also they should be registered to the network with

no trouble. The other devices should be notified about the new device being

added. It is not always essential that each device should communicate to every

other device. Access control may be exercised to restrict the invalid interference

of applications. Thus we can maintain a systematic order or hierarchy of

communication within the network.

 Big Data Control: The fact that the network consists of not just one but many

(hundreds or thousands or even trillions) devices points to need of managing

enormous volume of data being produced every second. Various challenges that

have to be addressed by the middleware in this component are: querying,

processing and modelling [9]. Thus it is essential to control the huge amount of

data being produced, exchanged between devices or application and being stored.

 Context Detection: This functional component collects the data being generated

by the IoT devices and analyzes the data to derive a meaningful situation from it.

It is the responsibility of the middleware to make a decision based on the context

detection and analysis and produce the result. Data mining techniques may be

required to get the valid information out of the raw data.

12

The high level architecture is shown in Figure 2.2. In an embedded system, the

middleware either sits on the device drivers or on top of the operating system. In general,

the middleware acts as an abstraction layer that mediates different application software

that intend to provide scalability, security, flexibility and intercommunication between

applications [24].

Figure 2.2: High level architecture of IoT

2.2 Related Work

Various kinds of middleware with different frameworks have been developed so far and

noticeable work has been done in the field of Internet of Things. An overall view of the

significance of middleware in IoT is given in [9] and an analysis of existing IoT-

middleware is made. The authors point out the various reasons for the need for a

middleware such as to enforce a common standard between heterogeneous devices and

13

the ability to provide APIs. The various functional components and basic services that

have to be offered by an IoT middleware are detailed in brief. Proper context detection

and data management are considered as an open issue in IoT.

Some of the existing middleware include HYDRA [13] which was the project to

develop middleware for networked embedded systems. It is based on Service Oriented

Architecture in which devices are loosely coupled for scalability and supports all the

functionalities mentioned in [9]. It follows the semantics way of designing the structure

and the security is taken care of in the application layer.

The authors of [14] have achieved the feature of self-management of devices for

interoperability in the middleware named UBIWARE with the help of Semantic

technologies and Agents are used to manage the complex system. Every agent in this

system is self-aware and self-manageable entity which allows extension at operation

time.

Though [14] does not include any security features, the authors of [15] have come

up with a secure framework for embedded peer-to-peer network which provides security

at group level using challenge-answer protocol and at device level using cryptographic

symmetric encryption techniques. The authors of [15] enabled the IoT paradigm to the e-

health with the help of VIRTUS middleware. Rather than taking the normal approach of

SOA, the authors employed publish-subscribe paradigm using dynamic XMPP accounts.

Security is achieved using SASL (Simple Authentication and Security Layer) and TLS

14

(Transport Layer Security) [15]. Secure event- driven communications are obtained with

the help of the cryptographical functions mentioned above.

The authors of [16] have done a great job in analyzing the research areas

associated with IoT and they strongly believed that IoT will change the face of the world

in the coming future. Various challenges include Big Data management, Openness of the

system and thus the Security and Privacy threats associated with it, Robustness and the

role of Humans in the loop.

While a detailed description of each case is explained by the authors of [16], the

authors of [17] classified the challenges into IoT specific and generic. They mainly focus

on Interoperability and People Centric Design which also takes into account the Security

threats. The authors have provided a brief summary of how M2M solutions have

migrated to open IoT solutions.

The authors of [18] examined the effect of associating IoT with the social

networks to improve the human-to-device [18] interactions. They also did some research

to find out the challenges in Social driven IoT (SIoT). Two of such challenges were social

aware services and location aware services in IoT. The scalability factor associated with

the IoT is explained well by the author of paper [19] in which IoT is depicted as a tree-

structure and as the branches grow, so does the devices and services.

15

There are various commercial platforms available today in the market that are

built for Internet of Things. One of those industrial platforms is Blackberry IoT Platform

[20] which is a flexible cloud based framework allowing users to connect devices and

applications. The design principles were documented in a systematic manner. Another

good platform is the Amrita [21] middleware for IoT in which the key feature is the

secured REST APIs to create user dashboards. It supports protocols such as ZigBee, Wifi,

Bluetooth, UPnP, IPv6 and 6loWPAN. Another remarkable platform is MuleSoft [22]

with the support of Anypoint Platform [22]. It provides a complete integration platform

for connecting any kind of applications, data source and APIs with the edge devices at

user end. API designing and management is the main highlight of this platform.

The existing solutions mostly present frameworks to support the semantics of the

IoT middleware and only a few have considered the security of the middleware for

Internet of Things. One of the architectures that support security incorporate SASL

abstraction layer to achieve authentication and channel encryption [15]. There are also

solutions put forward to have the security features to be added in the application layer

[13]. Also, many of them achieve security by opting secure communication protocol like

SSL/TLS [15]. The fundamental problem that we are trying to solve is to prevent the

intrusion of a third party into the network and gain access to the IoT services along with

ensuring the privacy of data. As a solution, we introduce a Claims-aware middleware for

securing IoT services in which trust between servers are protected using Claims. Thus it

identifies the server trying to access the IoT services by verifying the Claims. Also, the

existing solutions followed either Service Oriented Architecture [13] or Publish-

16

Subscribe [15] model in their framework and in our solution we followed a new

architecture of modelling services, that is, Microservices architecture.

2.3 Summary

This chapter presented an overview of different types of Middleware, especially,

Middleware for Internet of Things and discussed about the components present in it. A

detailed study on the related works is also presented along with its limitations. In next

chapter, we present our proposed framework to address the limitations of the existing

framework.

17

Chapter 3

Proposed Solution

In this chapter, we present our proposed framework and discuss about the main

components present in our middleware. This chapter provides a brief overview about the

middleware for Internet of Things and also a detailed description about our proposed

framework. The functional components present in our framework are explained briefly.

The key components of thesis such as Claims-identity as well as Microservices

architecture have been presented here.

3.1. Overview

Middleware is now a part of every embedded device. It bridges the gap between the low-

level entities and the high level applications. The things constituting the IoT differ in their

nature and working environments. All the devices operate upon different set of sensors

and produce a wide variety of outputs. It is the middleware layer that stands as a platform

for all the disparate devices to communicate in the most reliable manner.

IoT middleware is the glue that holds together the operating system, the hardware

devices, the software application as well as the back-end databases. In fact, it could be

said that the whole software part which is in between the edge-level entities and the user

level application forms the middleware. A fully functional system of middleware should

have a runtime environment [23] and supports multiple applications and handles various

services offered in Internet of Things.

18

3.2. Middleware Architecture

The IoT framework is not just between machines but it includes humans too. The roles of

humans in the loop either could be to control the system or to get monitored by the

system so as to take necessary control measures. This part of human interaction makes

IoT different than M2M (Machine-to-Machine) communication.

Figure 3.1: Proposed middleware architecture for securing IoT services

In general, IoT middleware is a service that lies between the applications and the

platforms [25]. The middleware is usually a general purpose service that in other words

can be called as platform service. In our framework as shown in Figure 3.1, the IoT

19

middleware sits on top of the operating system. The claims-aware IoT middleware has

four main services. The security service is the module responsible for the authentication

of the servers. The other three IoT services such as device management, data

management and event management services are implemented as microservices. The call

to the IoT services are allowed based on the authenticity of the server generating the

request. Thus every call to the IoT services goes through the security service which

actually checks the claims associated with the intermediary server.

3.3. Middleware Components

The functional services offered by our solution are:

 Device Management: This service layer includes two main categories namely,

Device Discovery and Registration processes. Self- discovery of services is one of

the main highlights of IoT middleware. Self-management is an essential feature

that has to be present in a fully functional middleware. Self-configuration can be

maintained by modelling the framework as generic without having to be specific

for a particular home or region [26] in which relationships between objects are

defined using properties and follows hierarchy. Device registration would add the

devices to the network and provides all the details of the devices present in the

network. This service handles the CURD (create, update, read, delete) function of

all the devices within the network. This layer provides the details of all the

devices connected within the network to the user interacting through the

application.

20

 Data Management: The enormous volume of real time data that is being

produced from the devices that might be used in different ways in different

applications calls for an efficient way of managing this Big Data. Cloud is an

intelligent choice for storing the huge volume of data. It has changed the

landscape of storage, communication infrastructure, computing and other services.

The choice of database is crucial and should be done in such a way so as to

provide the maximum efficiency and utility with minimum speed of querying.

Also, to eliminate the huge chunk of raw data being processed and stored every

moment, a standard approach would be to pre-process the data and store only

those which are necessary. API gateways could be useful in such intelligent

decision making techniques.

 Event Management: This service layer performs the context detection and

analyzes during the occurrence of an event. The situation of an entity has to be

processed in which the entity can be devices, applications or even users. The

fundamental blocks associated with this service are Context Detection and

Context Processing [9]. It is the function of the IoT system to respond to a

particular situation with best possible intelligent solution to that event. This task is

achieved by collecting data from the sensors or devices and performing analyzes

techniques to produce meaningful information out of the event which results in

sensible response. The context model may need to detect the context, process the

context and break it down in to meaningful data [27]. Such information has to be

stored in Databases for processing needs.

21

 Security Service: One of the fundamental problems that has always been present

in the internet is security attacks [16]. Security and privacy of the things and data

ensures confidentiality, availability and reliability of the whole system. Security

can be achieved in two ways; a) securing topology management by proper

authentication and authorization of devices and user; b) securing the

communication within and out of the network, by the implementing secure

transfer protocols there by ensuring the protection of sensitive data [9]. In

situations in which an adversary is trying to take control of the device or tries to

manipulate the data, the system must come up with a quick response for Self-

healing in the real time environment. Such responses have to be transmitted

securely to the appropriate nodes and the measures may include encryption,

authentication and authorization which could be computationally complex in

nature.

Though the cloud enables resource pooling and cost-effective

management, outsourcing the data or product to a third party can cause security

and privacy issues. The fact that there is a virtual entity representing the actual

real world entities in IoT such as services, user, devices etc., also add to the threat

to the security of the IoT network [28].The security in our framework ensures that

no service or user without proper authentication and authorization can be added in

the network. Once the things are properly identified and registered, every request

for a particular service must produce the claims assigned to it and only valid

request from a valid user will be sanctioned and others will be denied of the

22

services. Thus no adversary can spoof in to the network and play with the IoT

services or impersonate a valid user. This level of protection is possible with the

help of claims for identifying each and every entity in the IoT network.

3.4. Claims-Aware Identity for Securing IoT Services

A claim is a statement which basically tells what the object is or is not. The trust between

the disparate entities in IoT can be established by enabling the trusted exchange of

arbitrary claims with random values [6]. The claims contain the identity about the entities

which could be either user or device or application that are being connected together. The

main advantage of claims aware objects is that it simplifies the authentication where

multiple signing processes are avoided.

 In our framework, we use the SAML [29] tokens as claims. Security Assertion

Markup Language (SAML) is an XML based, open standard data format for exchanging

authentication and authorization data between entities. It contains mainly three

components [30]:

 Assertion: This component reveals the identity of the entity and holds the

important information about the user. It is based on these assertions that the

system decides what the entity is authorized to do.

 Protocol: It defines how the assertions are being passed. The different protocols

supported by SAML are Hypertext Transfer Protocol (HTTP), Simple Mail

Transfer Protocol (SMTP), and File Transfer Protocol (FTP) etc.

 Binding: It defines how the SAML (request-response) message exchanges are

mapped into Simple Object Access Protocol (SOAP) exchanges.

23

 The main components [31] in the claims middleware in our architecture are as

follows:

 SAML Token Provider: This component implements a custom SAML token

provider which actually creates and returns a custom claim as per the SAML

assertion given. A sample claim is provided in Appendix A.6.

 SAML Token Manager: This component returns the token provider if the client

token requirements matches the SAML token.

 SAML Token Validator: This component checks and validates the claims

provided by the intermediary server.

A sequence diagram of the interactions between an intermediary server and our

middleware is shown in Figure 3.2:

Intermediary
Server

Claims
Middleware

Define access
 control rules

1: Request claims

Security
Token

Manager

2: Request input claims

Security
Token

Provider

3: Send input token and identity

4: Return output token (claims)

5: Send the claims + request

Security
Token

Validator

6: Get response

Figure 3.2: Generation and processing of claims

24

A complete scenario of how claims are issued by the middleware is demonstrated in

Figure 3.3. The main steps involved can be pointed out as:

1- Client communicates with the web server

2- Web server then requests for the claims to the middleware

3- The web server is then authenticated by the middleware

4- Once authenticated, it can pass the message to the things

Figure 3.3: Claims issuing scenario

Our framework authenticates the web servers to prevent any clients from directly

using the middleware to access the device end. The security token provider issues the

appropriate credentials to the web server so that they can transmit the message securely.

The most prevailing problem associated with the security token service is the single

point of failure. In order to make the system more efficient, the system could have

distributed servers as issuers. The claims or Tokens issued by one is agreed by others and

25

all mutual trust is established between them. Thus a complete decentralized system

improves the Quality of Service (QoS) of the entire system.

 The QoS for each object can be achieved with minimal possible overhead even if

the needs of each object would be different, for example, one entity may need

confidentiality and the other may not really need secrecy as the data is public. So our

approach enables the entity to register their security policies with the issuer at the time of

registration and it can also reveal the behavior of the object, i.e., what type of objects can

use its data, from which type of devices can it accept the data, under what conditions. A

more concrete discussion on these security policies is presented in the implementation

chapter.

3.5. Microservices Architecture

Microservices Architecture has been a buzzword around recent years in the world of

software architecture. The main intention of such an approach is to eliminate the need of

a centralized management of applications. Microservices architectural style [32] is a

method of developing a software application as a suite of small independent services

running in its own process. These services can be deployed independently and they

communicate with others using HTTP resource API like lightweight mechanism [32].

The advantages of this approach rather than traditional monolithic means of

development in which the whole application runs in a single process are [33, 34]:

 Easier to develop and understand as each microservice is comparatively small.

 Easier to deploy new versions as each service is independently deployed.

26

 Easier to debug errors and faults are more isolated within each service

Figure 3.4: Microservices architecture based IoT services

Each service offered by IoT middleware is implemented as microservices as

shown in Figure 3.4, which is fully independent of each other. Decentralization [32] is the

main feature associated with such architecture and decentralized governance divides the

burden of managing applications and services into multiple streams. The decentralization

of data management too demands the need of persistent database storage. This was one of

the reasons why the enterprises used monolithic approach with single database for a

particular application. In microservices oriented approach, we could either use

completely different database systems or different instances of a single database system

[32]. Maintaining consistency between the data storages is the key task of decentralized

databases and we selected the database that supports maximum consistency.

27

3.6. Summary

In this chapter, we presented the proposed solution to address one of the main challenges

in the area of Internet of Things, Security. A detailed description of each components

present in the middleware is given. We also discussed claims and how they are issued and

used in our system. The merits of implementing the architecture as microservices are also

discussed in this chapter.

The implementation details of our prototype are explained in the following

chapter. The work is explained in the order of our different implementation phases. We

also will see the challenges that we encountered in the implementation stage of our

prototype.

28

Chapter 4

Prototype Implementation

In this chapter we discuss the implementation details of our prototype for securing the

IoT services. The implementation of IoT services as microservices has been explained

along with a brief discussion on the tools and the database used. The details of the

implementation of the security service based on claims authentication are also presented

in this chapter.

4.1. Implementation of Microservices

Implementing the IoT services as Microservices really helped us especially in the phases

of updating of code or error debugging and it outweighed the extra efforts in the initial

setup of different independent projects. Our initial research on tools led us to use Java as

the programing language. Microservices are single responsibility services which can be

easily understood as it does only one thing in each service [35].

There were a number of tools in Java supporting microservices architecture.

Spring Boot from Spring Tool Suite and RestExpress [36, 37] are open source resources

for building microservices based REST APIs. Both are very powerful frameworks for

Java and provide stand-alone REST APIs. Though both provides Maven archetype,

Spring Boot allows us to choose the parts of the framework that are only needed rather

than adding the whole run time dependencies. Additionally, Spring Boot comes with an

embedded Tomcat container which could be bootstrapped easily. This prevents the

29

programmer from configuring the server explicitly. From all the above mentioned facts,

we chose Spring Boot as the framework for Microservices based RESTful APIs. The

decomposition of monolithic components into individual unit of independent components

is done efficiently by Spring Boot. Thus testing of the services is made much easier by

streaming the documentation in to small deployable components. In other words, each of

these services holds a single responsibility and to test a particular service, we only need

to check that service module rather than going through the entire project which has all the

services in it. Another feature of Spring Boot that highly supports the microservices is

incorporation of all the necessary resources to build it into a readily runnable deployable.

It enables the use of Maven and Gradle for dependency management. But one thing to

point out is that in the POM file of each project we have to add the same dependencies

for each of the services and they are assigned with different port number to run locally in

the machine.

4.2. Database Selection

SQL databases [38] are very persistent and consistent as compared to NoSQL databases.

SQL databases are Relational Databases (RDMS) which is table based storage while

NoSQL databases are mainly distributed ones without any particular schema which are

based on documents, key-value pairs, etc. The best choice for the distributed nature of our

heterogeneous system is NoSQL databases.

There are several NoSQL databases available in which MongoDB and CouchDB

[39] are the most popular and easy to use data storages. The time taken to query is much

less in MongoDB as compared to the MySQL database [40]. MongoDB is mainly

30

concerned with consistency of data while availability is mostly favored by CouchDB. The

former follows Strict Consistency while the latter supports Eventual Consistency. In IoT

applications, the consistency is a non-trivial need that has to be met and for our

middleware, MongoDB will place the updates better as compared to CouchDB for

constantly changing real time data and so we use it for our implementation. MongoDB is

document based database which is highly scalable and highly available. It supports JSON

(JavaScript Object Notation) document format and also has lots of features that are

available in traditional RDMS [41]. The high speed access to mass data using MongoDB

makes it highly preferred NoSQL database for many applications [42]. The scaling is

achieved by adding more machines or servers.

4.3. Implementation of Claims Identity

The implementation of claims-based identity resolution is very well supported in .NET

compared to Java with the help of windows identity foundation or ADFS. Microsoft

provides claims-aware applications [6] in which the claims associated with a security

token is validated before allowing access to various web applications. In our framework,

the request to a particular service is allowed or denied as per the validity of the claim

provided by the server.

The username and password once verified, the client communicates with the web

server. Once the client is authenticated on the web server, the server requests the

middleware to provide it with claims. The token provider after examining the target

infrastructure, issues the appropriate claims to the server. The web server then uses the

claims to pass the message securely to the device end so, our system ensures that the

31

server is authorized to communicate with other servers in the system. The access control

policies limit the interference of a service as per the defined rules. Thus the claims-aware

authentication and authorization ensure that the whole system is secure because a third

party service or an invalid user will have to authorize to the server first before accessing

the middleware. The communication channel is secured using TLS/SSL thus making the

system more safe and sound.

4.3.1. SAML Token Provider

In our prototype we used the SAML Token provider supported by Windows

Communication Foundation (WCF). In Security Assertion Markup Language (SAML),

Claims for authorization and authentication is in XML format. The basic entities

identified by SAML consist of a) user or principal entity, b) the Identity Provider (IdP)

and, c) the service provider (SP) [43]. Briefly, how the scenario works is that, the

principal requests for a service from the service provider and it then requests the Claims

or assertion of that principal from the identity provider. If the Claims are valid, then the

service provider responds to the user entity request as per the access control decision

specified within the Claims.

 In our framework, the claims middleware implements a custom SAML token

provider and it merges the two components such as identity provider and the service

provider into one. Thus our middleware itself issues claims and validates them.

32

The WCF SAML tokens have cryptographic operations performed on them so that the

identity of the issuer and the integrity of the client entity are verified at the server level.

The procedures can be briefly explained as the following steps [31]:

1. Client requests the SAML claims from the Security Token Service (STS) using a

valid username and password (Windows credentials).

2. The token provider then issues the claim and encrypts the certificate with a proof

key.

3. A copy of the poof key is received by the Client and the token along with the

message encrypted using the proof key is sent to the service provider.

4. The server can validate the issuer using the signature on the SAML tokens and the

principal entity as message is signed using the same key.

In our framework, we used custom token provider to create our own token and then

transformed it to a WCF supported client format. The above mentioned procedures are

implemented using our custom token provider which include configuration of client using

the provider, passing the claims over to the client as well as the WCF client framework

and finally the authentication of server using its X.509 certificate [44]. In our service

configuration, we have two endpoints for communication. Each endpoint lets the client

present the claims and authenticate using symmetric and asymmetric proof keys. An

endpoint is what the service exposes and is the portal for the process or service to

communicate to outside. The WCF endpoint is composed of an Address that specifies the

address (URI) where it can be located, a Binding that specifies how the client can pass a

33

message to the server using this endpoint including protocol (HTTP), message security

(SSL) and the data format.

4.3.2 SAML SOAP Message

In SAML security token [45], the assertions that defines the identity and access rights are

signed using an X.509 certificate. This signature acts as an evelop signature that binds the

assertions to the issuing SAML authority. In our implementation the X.509 certificate

used for this purpose is named “localhost”. This certificate is used to verify the signature

and then decides if the assertions are from a trusted SAML authority. Next, the entire

SOAP message is signed using the private key and the signature has a KeyInfo element.

This element tells the receiver of this message to decrypt it using the public key mentined

in the assertion. This certificate used in our implementation is named “Alice”. This

signature binds the body of the message to its subject (entity sending the token). Thus the

integrity of the message and the sender’s authenticity is verified.

 The WCF security policies [46] can be used to secure a web service. The

WSHttpBinding are used in our implementation to secure the services. The behaviors also

provide information about the service. Theses are defined in the Web. Config file of the

service (Appendix A.1). A sample SAML token used in our implementation as claims, is

shown in Appendix A.6.

To sum up, we have the Claims middleware that lies between the IoT services and

the intermediary server and the calls from the client are passed to the microservices only

if the server is verified to be a trusted party by presenting valid Claims.

34

4.4. Implementation of Device Management

The framework was completed by adding a device to the network. Because of the fact

that every device will be assigned with an IP address over the internet, we tried to get the

IP address of the smart device using the router so as to assign it a static one for

communication. After hours of trial, we came to know that it does not use TCP

(Transmission Control Protocol) but UPnP (Universal Plug and Play) networking

protocol. It enables the networked devices to discover each other and communicate over

the network [47]. But the device was not being detected in the network. The popular

solution was to Turn on Network Discovery in the Network and Sharing option in the

control panel as in Figure 4.2.

Figure 4.2: Screenshot of network discovery setup

But even after that, there was no such device visible and took some time to find

the solution. The smart device named WeMo was visible under the View network

computers and devices options in Windows operating system.

35

Figure 4.3 shows all the computers and the devices that are visible and our smart

device WeMo is detected under other devices option in that window.

Figure 4.3: Screenshot of device being detected in our system

Finally the device was visible and the IP address and the port number are obtained

from its webpage as shown in Figure 4.4. Thus using this IP address and the port number,

which is basically the end points for the smart device, we could now communicate to the

device programmatically.

Figure 4.4: Screenshot of device webpage

4.5. Interoperability between Platforms

The fact that the IoT middleware should be independent of the platform used, we wanted

to do the interoperability between at least two programming platforms. So, the security

part of the middleware is implemented using .NET and the rest of the IoT microservices

36

in Java. To ensure that security is maintained in Java services, we used the idea of one

time password (OTP). It serves as a token of security to the services which are finally

verified at the server. The background research works on this topic showed us a method

to do the object passing; Remote Procedure Calls (RPC) between .NET and Java using

TCP [19]. This suits our case where our client application is in Java and our service

application is in .NET. Another method that was much more efficient and simple was to

use the REST communication in which data is passed in the form of JSON objects. The

usage of MongoDB database which stores the document data in JSON made our work

much easier.

4.6. Summary

This chapter presents the implementation details of our prototype and the order in which

we have done our implementation explaining each step. It includes the initial trial with

Raspberry Pi and then implementing the Microservices. A detailed description of how we

achieved the implementation of Claims-aware middleware is also presented. In the next

chapter, we will see the performance evaluation done on our system along with the results

obtained out of the experiment.

37

Chapter 5

Evaluation and Results

In this chapter, we evaluate our system based on certain criteria that will be discussed in

one of the following sections and present the produced result of the performance of our

framework. The experimental setup for each evaluation scenario is explained along with

the reflection on how the results support our claims-aware middleware.

5.1. Background

As we have explained in Chapter 4, implementation of the prototype, we currently have

the provision to complete the prototype using a smart device. The case study using one

smart device is presented in Chapter 6. The performance of our framework cannot be

evaluated with just one device. In real world applications, there would be many devices

connected to the network and thus we need to do the evaluation with more devices and

services. We decided to simulate multiple devices that use our IoT services and thus

validate the Claims on every service call.

The current setup of our framework makes sure that the IoT device authenticates

to the local network using the wireless authentication standards. Once the device is

registered to the network, we can manually register the device to our middleware. It also

requires authentication to take place between the intermediary server and the middleware

before the client request is forwarded to the IoT device by the middleware.

38

5.2. Simulation Scenario

To simulate multiple smart devices, we created multiple IoT endpoints. The endpoints are

the URLs that we would connect to communicate with the smart device via the device’s

API. We can track the calls being made to these endpoints, which represent smart

devices, to track the performance of our framework. This basically shows the number of

calls that are sent to the endpoints. The fact that each smart device in the IoT network has

an IP address makes it easier to track the API calls made within a specific period.

Therefore in our framework, we enable the clients to make calls using the web client, we

need to track the time taken for each call that is made within a specified period from the

web client end. This gives the time based performance evaluation of our framework.

5.3. Evaluation Criteria

The criteria upon which the framework would be tested are as follows:

 Time based performance evaluation of IoT Services with and without Claims

The IoT services should provide good performance to large number of users. Thus

we measure the time taken to deliver the services by simulating sets of different

number of devices. First we will do the evaluation of the services without adding

the security factor, that is, the claims and we will note the time taken to finish the

tasks. Next, we will find out the overhead of our claims-based security model by

measuring the time taken to process the service requests after enabling the claims.

 Performance evaluation of the Security Model

To evaluate our security model of the middleware, we will make calls to the

middleware with and without claims enabled at the client. The calls that are made

39

without claims should be denied of the IoT services. The calls that are made from

the claims enabled client should have access to the IoT services.

5.4. Experimental Methodology

The applications of Internet of Things can vary from simple smart home to smart grid.

The number of devices and services in each domain may be different in each scenario.

Thus it is necessary to test the prototype in scenario which only requires LAN and the

other scenario in which they are accessed or controlled remotely over the internet. In our

evaluation method, we have two sets of scenarios in which the claims middleware is

tested: 1) LAN network in which everything is running in local machine; 2) Cloud

network in which the client and the intermediary server are deployed. We tested the

performance of our framework in both cases and found out the overhead of using the

claims.

To log the time taken to perform the entire task, we created two log files to track the

time taken to perform end to end service. We have basically two stages of calls which are

as follows:

 Web service – The service that comes in the client part where the call from the

web client is forwarded to the middleware for authentication. The time taken to

make calls right from the web end side until it reached the middleware part is

present in this log file.

 Claims service – This is the part of the framework where the authentication using

claims are being done. In this log file we get the timestamp of each iteration

40

which is then used to find out the time taken in the middleware part to place the

calls to the IoT services. This would give us the actual overhead of using claims

for authenticating the intermediary web servers.

5.5. Experimental Setup

In this section, we present the details of experimental setup used to do the performance

evaluation of our framework by simulating multiple smart devices. Each components of

this experiment is explained in brief.

5.5.1. IoT Device Simulation

This was the first step to setup since it is the main part of the process. To simulate the

different endpoints of the IoT smart devices, we built a microservice that can generate

different URLs to simulate the device API URL. Thus we can generate thousands of

independent endpoints that can be accessed by the client.

5.5.2. Device Registration

The different IoT URLs that simulated IoT devices is then registered in the database as in

the similar manner of manually registering the devices. The device is registered to the

network with the help of the device management IoT service. The device details are

stored in the database which is then retrieved at the service end.

41

5.5.3. Claims-Aware IoT Middleware

The middleware performs the functional services that are present in the framework. It

will validate the caller (server) and if verified to be authenticated, routes the requests. If it

is validated to be unauthenticated, then it is denied of the services and the requests are not

processed.

5.5.4. Client Website

In the client side, we automated the code to make calls to each registered IoT endpoint.

For example, if we have simulated 500 device endpoints using URL simulation and are

registered to the particular client, we will make the calls to all the endpoints. The code is

modified to make calls to different device endpoints.

5.5.5. Tracking Metrics

In order to come up with results, we needed to log each data at each node so that we can

track all the activity so as to summarize the data and present the findings of our

experiment. The two different log files used in our setup are web service and the claims

service log files. The total time taken by a request to be processed by the middleware is

calculated from these two log files.

5.5.6. JMeter Tool

Apache JMeter is a Java application [48] that is mainly designed to measure the

performance of a system and load test the application. It is efficient software to generate

multiple calls to a web application and produce the performance results of that http

42

request. Thus we have used it to generate multiple calls for different sets of requests to

our framework.

5.6. Evaluation in LAN

In this section, we present the evaluation done on our local system based on the criteria

mentioned in Section 5.3. In this setup, we have every service and the clients being

presented in the local area network (LAN). We also explain the experimental setup done

for each criterion and also present the architectural diagrams. The results obtained from

each evaluation are presented after the brief description of architecture.

5.6.1 Performance Evaluation of IoT Services in LAN

To measure the overhead of using the claims in the IoT framework we did the time based

performance evaluation of our system. The overhead can be found out by measuring the

time taken to deliver the calls or requests to the IoT services with and without the claims.

The time difference is calculated and that time period gives the overhead of using claims

identity. The feasibility of our claims-aware prototype is tested with a different number of

requests.

5.6.1.1. Performance without Claims

In this experimental setup, we invoked the IoT services without the claims, that is,

without enabling any security feature in it. The calls to the IoT services are made for each

set of requests. We changed the setup of JMeter for each set of requests and recorded the

43

time taken by each server to process the requests. Essentially, the total time to process the

requests right from the client side till it is forwarded to the IoT services is measured.

5.6.1.2. Architecture of LAN Setup without Claims

The structure of the framework remains the same as in Figure 3.1 except that the security

feature of claims is not activated and we have simulated devices rather than a real smart

device. We varied the number of calls being made to the device end and measured the

time taken to place the call from the web client to the device end. The total time taken to

perform the action is calculated by adding the time delays in the two log files as

mentioned in the methodology.

5.6.1.3. Experiment Results in LAN without Claims

We tested the performance of requests generated using the event management web client

in LAN without claims. We used the JMeter to make different sets of calls to the event

management service which are directed to the device endpoints. To generate 1 request,

the number of threads (users) was set to one. To generate 10 calls we used five

users/threads generating two requests in sequence. Similarly, for 50, 100, 500 and 1000

requests we have 25, 50, 250 and 500 users generating 2 requests respectively. Each

request was directed to different device endpoints. For instance, for the request set of 100,

we had 100 microservices simulation 100 device endpoints.

We tested the performance of the middleware for six different sets of user

requests which are 1, 10, 50, 100, 500 and 1000. Each test case is tested for ten times and

44

then we took the average value to best suit the more accurate value. The results obtained

are presented in Table 5.1 for the request sets of 1, 10, 50, 100, 500 and 1000. The

minimum and the maximum value obtained in the ten iterations are also presented.

Table 5.1 Performance result without claims in LAN

Without Claims in LAN

No. of

Requests

Average Time per

Request

(seconds)

Minimum

Value

Maximum

Value

Variance

1 0.11
0.01 0.33 0.01

10 0.33
0.24 0.48 0.01

50 0.22
0.13 0.31 0.003

100 0.19
0.16 0.20 0.0003

500 0.20
0.16 0.22 0.0006

1000 0.17
0.15 0.19 0.0002

A request in our setup is a roundtrip command to control the device. For instance,

the request goes to the device end when generated from the client end, then the response

is returned to the client. In Table 5.1, the average time per request means the time taken

to process one request and it is found out by calculating the mean time of the total set.

The average value is obtained by calculating the mean of each iteration. Each test case is

tested for 10 times and the minimum and the maximum value obtained in that iteration is

also given in the table.

In the test case of 1 request, the lowest value obtained in that iteration is 0.01

second whereas, the highest value is 0.33. In this setup, all the IoT services and the client

were on the local machine. There server may get busy processing any pending tasks and

may affect the response time. In all the six request sets, the time taken to process them are

45

different for some of the iterations out of 10 iterations. The local machine performance

and the tasks running on the system could also affect the processing time of each

iterations.

The variance, which is the measurement of the spread between the data in a

particular request set is also presented in Table 5.1. The variance is comparatively large

for the small number of request such as 1 and 10. This implies that the data obtained in

cases with small variance does not vary much in range for the 10 iterations.

There is a sudden increase in the average time to process a request in the test

cases of 10, 50, 100, 500 and 1000 requests compared to the case of 1 request. The

response time can be delayed as the number of requests increase. Also, the performance

of the system in which the services are running, will also affect the performance. In

essence, the fluctuation in the processing time is because of the increased load to be

processed by the server.

5.6.1.4 Performance with Claims

In this experimental setup, we did the performance evaluation of the framework by

activating the security feature of claims-based authentication in our middleware setup in

LAN. This setup produces the results that reveal the overhead of adding claims identity.

It was expected that there will be overhead due to the time taken for the cryptography

computations like encryption, decryption etc. The certificates that are used to provide

claims are installed in our local machine. How the communication flow goes is that the

46

client makes a call from the client side which is forwarded to the middleware and verifies

the authenticity of the intermediary server by validating the claims. If the server is

verified to be trusted by presenting the SAML tokens to the security service, the calls are

routed to the device end to process the request.

5.6.1.5. Architecture of LAN Setup with Claims

The components of the architecture are almost same as that of the proposed framework

except that instead of actual devices, we have simulated devices. The end point URLs

represent different device APIs that are called in the program from the client side. The

procedure to find the total delays is the same as that of without claims. The difference in

the setup is the presence of the Claims middleware which authenticates the web server

that the clients use to call the IoT services.

5.6.1.6. Experimental Results in LAN with Claims

The performance for the claims middleware was conducted with the same set of requests

as in the setup for without claims using the event management service. We did the test for

1, 10, 50, 100, 500 and 1000 requests and used JMeter to change the number of requests.

The average time to process one request is shown in Table 5.2 for the different sets of

requests.

47

Table 5.2 Performance results with claims in LAN

With Claims in LAN

No. of

Requests

Average Time

per Request

(seconds)

Minimum

Value

Maximum

Value

Variance

1 0.26 0.02 1.45 0.33

10 0.43 0.37 0.50 0.002

50 0.39 0.30 0.54 0.010

100 0.37 0.28 0.49 0.006

500 0.31 0.22 0.38 0.0002

1000 0.36 0.28 0.72 0.03

 Each of the test case is repeated 10 times and the mean of the 10 values are taken

as the average time per request for that particular test case. The minimum and the

maximum value obtained in that iterations are also presented in Table 5.2. These

measurements show the worst case and the best cases in each data sets. The spread of

each data from the mean value (average) is represented by variance.

The average time taken per request is calculated and presented in Table 5.2 for the

same test cases of 1, 10, 50, 100, 500 and 1000 requests. Evidently, there is an increase in

the processing time for all the test cases of 10, 50, 100, 500 and 1000 requests. The

increase in the time consumed is because of the increase in the load to be processed by

the server due to the increased number of requests. Network latency limits the maximum

speed with which the requests are transmitted.

48

5.6.2 Comparison Results in LAN

The time taken to process the different sets of requests without the claims and with the

claims will give us the actual overhead of adding the security factor of claims in the

system. The comparison is represented in the form of graph in Figure 5.1. The minimum

and the maximum value obtained in the 10 iterations of each request set is also presented

in the performance graph.

Figure 5.1: Graph showing the performance in LAN

From the above graph, the overhead of using claims to achieve secure

communication from the client end to the device end is only few milli seconds. The time

taken to process a number of 1000 requests is only 368 seconds which gives the average

time taken to process single request as 0.36 seconds.

0.01

0.24
0.13 0.16 0.16 0.15

0

0.33
0.48

0.31 0.2 0.22 0.19

0

0.02

0.37

0.3
0.28 0.32

0.28

0

1.45
0.5

0.54
0.49

0.28

0.72

00

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 10 50 100 500 1000

A
ve

ra
ge

 T
im

e
p

er
 R

eq
u

es
t

in

se
co

n
d

s

No. of Requests

Performance in LAN

Without Claims With Claims
Min Without Claims Max Without Claims
Min With Claims Max With Claims

49

There is an increase in the processing time of request set of 10 as compared to the

rest of the values. The IIS hosted WCF service uses managed I/O threads and as the time

to execute a request increase as the load increases, it spans for new threads using Thread

Pool. That is why the processing time for large set of requests are less since the calls are

executed in parallel by the WCF framework. Thus the overall processing of the requests

is done parallel by the WCF service.

Though the calls are made sequentially by the client, it cannot be confirmed that

the average time per request will always be the correct time taken to process a single

request. For example, in the test case of 1000 requests with claims, the total average time

taken to process 1000 requests is 360 seconds which is 6 minutes. The assumption that if

1000 requests take 360 seconds, time per request will be the average value, 0.36 may not

be the exact case in different situation.

 Worst case scenario: The worst case scenario could be the case in which the first

request is processed after processing all other requests. In that case, the time per

request would be the total time taken for the entire set of requests. For example, in

the test of 1000 requests, the worst case would be the situation in which the first

request is processed after the rest of 999 request. In that case, the worst case

average time per request is 360 seconds (6 minutes).

 Best case scenario: The best case scenario would be the case that in which the first

request has been processed first and the rest of the requests, as per the order they

are called. This is the case that favors our assumption that if 1000 requests take

50

360 seconds, then a single request would take the average time of 0.36 seconds to

be processed.

 The processing time is a bit higher for all the sets except in which number of

request is one. The processing time for requests is higher for all the request set except for

the test case of 1 request. The performance of the server can be affected as the load

increases and also if the system is processing some other tasks, the response time can be

delayed too. The longer response time for 10 requests is because the WCF service use

asynchronous thread pooling as the concurrent calls to the service is increased. Thus for a

large set of requests like 50, 100, 500 and 1000, the execution time is less.

5.7. Evaluation in the Cloud

The Cloud provides an environment to share the resources that are provided by the

service providers. The main features of the cloud are resource sharing, scalability, pay per

use, faster access. They include infrastructures, software, storage locations, applications

etc. The services provided by the cloud can be of three types mainly [49]:

 Infrastructure resource: It includes the services such as storage, computing

power, and machine provisioning. For example, Amazon EC2 and Windows

Azure provides web service interface to configure capacity online. Microsoft

Skydrive is used for online storage and provides free storage services to users. In

terms of computing power, grid computing uses clustering and parallel computing

technologies

51

 Software resources: It includes middleware and development resources. The

middleware resources consist of cloud centric operating systems, application

servers and databases, whereas the development resources include design

platforms, development, testing and deployment tools.

 Application resources: Information industry is moving application data to the

Internet. For example: Google uses Cloud computing platform for web

applications needed for communication and collaboration.

 Business processes: It is business driven application supporting reuse,

composition and provisioning.

In a cloud computing environment, there are multi-domains in which each domain

can have different security, privacy and requirements to run various mechanisms,

interfaces and semantics [50]. Most start-up companies, small, medium and large

enterprises are now interested in the cloud computing. Therefore these users should be

highly interested in the cloud computing security. It is important to identify the current

risks that exist within the cloud computing to formulate solutions. Some specific threats

to security includes: Flops in Provider security, attacks by other customers, convenience

and consistency issues and legal and regulatory issues. These days the trust between the

user and the service provider is a matter of security that is concerned with the end user

[51].

52

5.7.1. Performance Evaluation of IoT Services in the Cloud

In this experimental setup, we evaluated the performance of our framework by deploying

the client and the intermediary server in to the cloud. This case holds the scenario in

which the user or the person accessing the service is not the local network, but

somewhere out in the internet. In a nutshell, we have the middleware and the IoT services

in the LAN and the client and the intermediary web server deployed in the cloud.

5.7.1.1. Performance without Claims in the Cloud

The procedure of evaluation remains the same in which requests are sent using JMeter to

the client hosted in the cloud and the log files give the time taken to process the requests.

The claims verification part is disabled in this setup and the calls are directed straight

towards the IoT services without going through the security process.

5.7.1.2. Architecture of the Cloud Setup without Claims

The architecture mainly consists of two parts, the LAN and the Cloud. We have the web

client and the web server in the cloud and the IoT middleware and the services in the

LAN.

One of the challenges that we faced in this setup is to expose the localhost to the

internet. Our research leads to setting up secure tunnels to the localhost for exposing a

local server which is behind the firewall. The tool that helped us achieve this connection

is ngrok [52] that gave us a public address to access the localhost.

53

5.7.1.3. Evaluation Results without Claims in the Cloud

The cloud computing platform that we chose was Windows Azure [53] and it provides a

wide range of resources that are very helpful. The Java client was deployed using the

Eclipse plugin for Azure and it was a straightforward and simple procedure. One of the

biggest challenges in deploying the intermediary web server was to setup the certificates

in the windows virtual machine which will act as the claims of the server. In our setup we

had the intermediary server as IIS (Internet Information Services) hosted service in the

local network setup and we deployed that service from the visual studio .NET framework

into the cloud.

 We tested the performance on the same set of requests which are 1, 10, 50, 100,

500 and 1000 requests using JMeter. The request was to communicate to the device end

using the event management service. The request sets of 10, 50, 100, 500 and 1000 are

generated by using 5, 25, 50, 250 and 500 users/threads with 2 requests respectively. In

this setup, we disabled the claims and directed the request straight to the IoT Services

without checking the authenticity of the server that is accessing the services. The average

time to process one request for each set of requests is presented in the Table 5.3. The time

taken by the request is the round trip time to reach the device end and get the response

back to the client.

54

Table 5.3: Performance results without claims in the cloud

Without Claims in the Cloud

No. of

Requests

Average time per

request

(seconds)

Minimum

Value

Maximum

Value

Variance

1 0.36 0.18 0.39 0.02

10 0.42 0.83 1.43 0.015

50 0.31 0.72 1.28 0.003

100 0.25 0.61 1.38 0.0005

500 0.20 0.59 1.26 0.003

1000 0.25 0.4 1.17 0.018

The minimum and the maximum value of the average time obtained in the 10

iterations of each request set is presented in Table 5.3. These values show the largest

(Maximum value) and the lowest (Minimum value) time taken to process the requests.

The measure by which the data are distributed in each set is represented by the variance.

It gives the spread of the values in that set. The difference in the processing time could be

due to the changes in the network performance. If other users access the Internet to

perform other tasks, the network may become slower which can may increase the

execution time.

As seen in the Table 5.3, there is a slight increase in the average time per request

in the test case for 1 request as compared to the test of 10 requests due the latency of the

network. Evidently, the average time consumed per request is decreased for the rest of the

samples. This is because the service uses thread pooling to serve the large number of

55

concurrent requests. Thus the execution time per request is feasible for large number of

requests.

The requests are made by the client sequentially. But the requests are

asynchronously processed by the WCF framework. Thus the overall execution is in

parallel threads. Thus the system makes sure that if the number of requests are increased,

the performance of the system is improved with the help of thread pooling.

5.7.1.4. Performance with Claims in the Cloud

In this experimental setup, we make the calls to the IoT services from the client which is

hosted in the cloud. The client then communicates to the web server which is deployed in

the cloud. The call is then directed to the claims middleware which is running in the local

machine. So in short, this setup represents the case if the IoT services are accessed over

the internet from outside the local network.

5.7.1.5. Architecture of the Cloud Setup with Claims

The architecture of this setup consists of the same two main parts as that explained in the

previous setup using the Cloud. In this evaluation setup we have the claims enabled in the

LAN which actually checks whether the server using the IoT services is actually

authenticated. Thus the client request is passed to the web server and then it is forwarded

to the Claims middleware. If it is verified to be a valid request, then the call to the IoT

service is processed.

56

5.7.1.6. Evaluation Results with Claims in the Cloud

By calculating the total time taken from the two timestamps in the two log files we

obtained the time to transfer the call from the client ends to the IoT service end. The

JMeter is configured for each set of requests like 1, 10, 50, 100, 500 and 1000 requests.

The experimental results are presented in Table 5.4.

Table 5.4: Performance results with claims in the cloud

With Claims in the Cloud

No. of

Requests

Average time

per request

(seconds)

Minimum

Value

Maximum

Value

Variance

1 0.90 0.81 1.61 0.04

10 1.98 1.23 2.34 0.003

50 1.35 0.69 1.93 0.001

100 1.66 0.94 1.81 0.0003

500 1.36 0.73 1.52 0.0006

1000 1.76 0.99 1.89 0.003

Evidently, the increase in the processing time per request is visible here as we go

from test case of 1 to 10 requests. Also, there is a decrease in the latency for 50 requests

when compared to 10 requests. This is because the service uses thread pooling in the

large set of concurrent calls. Thus the overall execution time is less in case of 50, 100,

500 and 1000 requests.

57

5.7.2. Comparison Results in the Cloud

The overhead of using our claims enabled middleware is found out by comparing the

time taken to deliver the requests in the setup with and without claims. The obtained

results are presented in the form of graph as shown in Figure 5.2.

Figure 5.2: Graph showing the performance in the cloud

 The average time per request in the Figure 5.6 is obtained using the assumption

that the first request is executed first and the rest of the requests are being executed in the

order as the calls are made. But this may not be the case every time.

 Worst case scenario: the worst case scenario would be in which the first request is

getting processed at the last. For example, in the test case of 1000 requests, the

total average time to process 1000 requests with claims is 1760 seconds (28

minutes approximately). The worst case would be the situation where the first

0.18

0.83 0.72

0.61 0.59
0.4

0.39

1.43
1.28

1.38
1.26 1.17

0.81

1.23

0.69

0.94
0.73

0.99

1.61

2.34

1.93
1.81

1.52

1.89

0

0.5

1

1.5

2

2.5

1 10 50 100 500 1000A
ve

ra
ge

 T
im

e
 p

e
r

R
e

q
u

e
st

 in

se
co

n
d

s

No.of Requests

Performance in the Cloud
Without Claims With Claims
Min Without Claims Max Without Claims
Min With Claims Max With Claims

58

request is executed after the rest of 999 requests. Thus in such a scenario, the

worst case time per request would be 1760 seconds.

 Best case scenario: The best case scenario would be the situation as per our

assumption. For example, the test case of 1000 requests take 1760 seconds to

finish the whole set of requests. If the requests are processed in the same order as

they are made, then the first request will be processed first and the last request

would be process last. Thus the best case average time per request, for the test

case of 1000 requests would be 0.17 seconds.

The increase in the response time as the load increases can be due to many factors

such as the network latency, the performance of the server, the condition of the network,

etc. the overall execution of the requests are in parallel and the requests are asynchrously

processed by the service.

5.8. Comparison of LAN vs Cloud

After obtaining the set of results in both LAN and the Cloud, we compared the

performance of our Claims enabled middleware in local area network and using the

Cloud services. The scenario in which the calls are made over the internet is found to

have more overhead than the LAN. This overhead is expected as the requests are made

remotely over the internet rather than using local network in which the IoT middleware

and services are hosted. The results obtained are presented in the graph format in Figure

5.3.

59

Figure 5.3: Graph showing the performance of claims in LAN vs the cloud

 The increase in the average time to process a single request is slightly large for the

request sets of 10 and above. It is because the network is loaded with multiple calls and

the server is busy processing the queue of requests. The performance of our system in

both LAN and in the cloud is tested to be feasible in processing large number of requests.

5.9. Performance Evaluation of Claims Security Model

The framework is tested to see if the intended function of the claims middleware is

performed for the requests or calls being made. Since the middleware service is hosted as

a local windows service using WCF and IIS, we were able to look at the messages being

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2

1 10 50 100 500 1000

Ti
m

e
 p

e
r

R
e

q
u

e
st

 in
 s

e
co

n
d

s

No. of Requests

Claims performance in LAN vs Cloud

LAN

CLOUD

60

passed and view every details of the security features of that message.

 Figure 5.4: Security features of using claims

The screen shots of the Microsoft Service Trace Viewer are shown in Figure 5.4

shows one of the commands being processed by the Claims service. This screen was

obtained when we ran the command with Claims enabled. It shows the encryption

algorithm used for the message, the cipher text and the endpoint URL.

 In the message presented in Figure 5.4, the encryption technique used is AES 256-

CBC. AES stands for Advanced Encryption Standards and CBC stands for Cipher Block

Chaining. It is a mode of operation of encryption and the cipher text after the encryption

technique can also be seen in Figure 5.4.

61

We also tested the framework without enabling the claims. As shown in Figure

5.5, there were no cryptographical operations being done on the command being passed.

The screenshot of the WCF trace viewer for no claims is shown in Figure 5.5.

In Figure 5.5, the message is just passed without any encryption by the

middleware. The encryption technique or the cipher text would have been visible of it

was encrypted. Thus it is evident that the security model using claims is delivering the

intended security function if enabled. If the system could not find the intended claims in

the intermediary web server, it does not call the IoT services.

Figure 5.5: Security features of not using claims

62

5.10. Summary

The evaluation of our framework is made and the overhead of using the claims are

obtained in two scenarios, one in which everything is running locally and the other where

the calls are made remotely over the internet. Our framework produced satisfactory

results as expected and thus it reveals the efficiency of our system.

We also implemented a case study and its evaluation using a smart device, which

is presented in the next chapter. The implementation details and the performance results

are presented in brief.

63

Chapter 6

Case Study: Smart Home Automation

In this chapter we will talk about the case study in which we applied the prototype into a

home automation system. A detailed description of how a third party device is integrated

into the prototype is also presented in this chapter. The architecture of the case study

using an IoT smart switch and the sequence in which the communication flows among

the user and the services are also explained.

6.1. Overview

Internet of Things has various applications such as eHealth smart system, smart grid,

smart city, smart home and so on. The reason behind choosing home automation system

as case system is that it is cost effective and can be even applied to normal users. Security

is one of the biggest factors not only to the corporate societies but also to everyday

society. The proof is the increasing consumption of smart security cameras and

appliances. People want to go out without worrying about the safety of their houses.

There were days when people lived in the fear of someone breaking into their houses

stealing documents and personal identity. It is because home is the place to look at if we

want to know about a person. But with the enhancement of technologies, this fear has

been eliminated by smart devices and applications. Securing the private data is also

important because the knowledge of the location of a user could be used to decide that no

one is at home. Also, the leakage of personal data like bank details and health related data

64

can put the person’s life at risk. Thus securing the services or the applications being used

is also important.

In our system, the servers that are trying to access the IoT services are verified by the

claims-aware middleware before granting the permission. Therefore, in this case study,

the server that tries to access the IoT services to control the smart device is verified by the

claims-aware middleware. Once the claims produced by the intermediary server is

validated by the security service, the request is forwarded to the device end.

The advantages of using our system in home automation are:

1) It restricts the access of home automation services to invalid servers as they will

be denied of the service if they could not produce valid claims.

2) User can add more devices into the network using our system that will be

registered into our system.

3) Our system also shows the list of devices that are present in the network and gives

the user the authority to add, update, search and remove a device.

4) User can control the device from anywhere if they have access to internet.

5) It logs all the activities of a particular device into the database and could be used

by the client to see the activities or to determine the energy consumption by the

device.

6.2. Physical Components of Home Automation

To do the case study of home automation system, we used one smart device and

performed the IoT services presented in the functional components of IoT middleware as

discussed in Chapter 3.

65

6.2.1. Belkin WeMo Switch

Belkin WeMo is a family of many smart appliances that could be controlled using the

mobile network [54]. It is very cost effective and lets the users to control the device

connected to the switch anywhere over Wi-Fi, 3G or 4G networks. WeMo has an

application that is supported in Android as well as in Apple operating systems and this

app is used to normally control the device.

Figure 6.1: Belkin WeMo smart switch

It also works with IFTT which stands for “if this then that” [55]. IFTT is a simple web-

oriented service which is used to create ‘recipes’ that connect several other web

applications. What it basically does is that, it creates conditional statements that trigger

our services on the basis of an event output from other applications such as e-mail, text

messages, etc.

66

6.2.2. Lamp

The simplest device in case of home automation is a lamp that has the functions to be

turned on/off. The lamp is made smart by connecting it with the WeMo smart switch that

can be set to turn on/off as per the need of the user

6.2.3. D-LINK Wireless Router

The smart switch is connected using the wireless router named D-LINK (dlink) DIR-505

router [56]. It is very handy and multipurpose router too. The key features of this router

are as follows:

 It is a portable plug-in router

 It also acts as a repeater

 It can be used as a Wi-Fi hotspot

 It functions as a USB with the help of SharePort Mobile App and can access our

files wirelessly from tablets or phones.

 It also has a provision to function as Mobile charger.

The specifications of the lamp and the D-LINK device can be found in [56, 57].

6.3. Home Automation Architecture

The architecture of our case study scenario is presented in this section. The structure of

architecture is formed out of the implementation flow of the system. The communication

and the configuration details of each component will be explained in the following part of

the section. Figure 6.2 shows the architecture of the home automation setup using WeMo

smart switch. The case study is conducted in local area network and each of the services

is running in the local machine.

67

Figure 6.2: Architecture for the home automation

The main components of the architecture as shown in Figure 6.2 are:

 Client: It represents the valid user who accesses his network devices. Our

framework provides a user friendly interface to the client and the services are

made simple to the client so that a person even without any programming

background will be able to use it. The user is asked to authenticate themselves by

providing valid claims such as Username and Password. Once the user is

authenticated, the web client passes the requests from the user to the intermediary

server. The server then forwards the requests along with its claims to the claims-

middleware.

68

 IoT Middleware: IoT middleware consists of four functional components such as

security service, device management service, data management service and event

management service. The security service (claims-aware middleware) stands as a

gateway between the intermediary server and the IoT services. The key feature

that distinguishes our solution is the claims-identity based security service. The

rest of the services are also secured using one time password (OTP). Each time

when the user logs in, independent OTP is created and used for the session. Each

of these microservices, as shown in Figure 6.3, is an independent service.

Figure 6.3: Web client showing IoT services in home automation application

69

When a command is passed to control the lamp using event management service,

the system checks for valid claims from the server that produce the request. If it is

verified to be correct, the access is granted and in the other case, we assume that

an invalid third- party is trying to access the services to gain access to the user’s

IoT device. In such a case, the request is invalid and the security service deny the

access and throws an exception. In our system, we have used two certificates

which are stored in our local machine and are used to encrypt and sign the claims

as explained in the implementation chapter.

 Router, Switch and Lamp: The smart switch (WeMo) uses UPnP network

protocol and the communication was achieved using a wireless router. In order to

do the initial setup of the WeMo switch, we had to download the WeMo app and

connect to WeMo Wi-Fi network. Since we wanted to create our own interface

rather than using the app, the network connection is changed to the D-LINK

network in the WeMo app.

To integrate the smart WeMo smart switch into our prototype, we used an

API [58] that could be used to control the switch and incorporated that API into

our framework. To make the communication possible, the local machine was also

connected to the D-LINK router and the WeMo device was visible under the

connected devices. Thus we were able to control the lamp connected to the smart

switch that communicates via the router. Thus a third party service has been

70

integrated into our framework which also indicates the scalability of our

middleware.

6.4. The Process Flow

The sequence in which the communication flows in the smart home setup is illustrated in

Figure 6.4. The request generated from the web client by the user is directed to the web

server. The server passes the request along with its claims to the claims middleware. The

middleware verify the validity of the server and forwards the requests to the different IoT

services such as device management, event management and data management.

Web Client Web Server Claims
Middleware

Device
Management

Event Management
Event

Management
Data

Management
Smart
Switch

Controlled
Lamp

User

1: Click [Device
 Management] 2: WeMo details 3: Request+Claims

4: Request to add
 device

5: Click
 [Event Management]

6: Turn on WeMo 7: Request+Claims

8: Request to Tun On WeMo switch

9: Turn ON

10: Status: ON
11: Click

[Data Management]

12: WeMo activity
 Data 13: Request+Claims

14: Request to get the WeMo activity

15: Returns the WeMo activity

Figure 6.4: UML sequence diagram of communication process in smart home

 At first, the user registers the WeMo smart device in the network using the IP

address contained in the WeMo details using the device management service. Once the

device is added, it can be controlled using event management service to turn the lamp on /

off. Whenever the status of the switch is changed, the data is logged using the data

71

management service and the activities of the device can be obtained using this IoT

service.

6.5. Performance Evaluation

This section presents the evaluation done on the case study of home automation system

using our framework. After setting up the components as shown in the architecture, we

tried to access the end device using the web client.

As a user, an account was created and logged into the user account. Once the

client is authenticated, he/she has the access to our IoT services specially designed for

this case, Home Automation. For other applications, all components except the event

management will be the same. Since the situation occurring at each event is different, to

provide a proof of concept, we worked only on the scenario of an event in home

automation. The results of such an event may not work for another kind of situation like

eHealth system.

As a client, after getting access to the services, we evaluated the performance of each

of the IoT services and see if the services are being delivered correctly. When a request is

passed from the client via an intermediary web server, the claims-middleware checks for

the claims that are presented by the intermediary web server. If the claims are verified to

be valid, the call to the end device is sanctioned. In case the claims are invalid or if it

does not have any claims, the system throws an exception and are not allowed to make

the call to the device end. The functionalities of each of the IoT services are tried as

follows:

72

 Device Management: This service lets the user register a device to his network.

Using the user interface, we clicked on the link to add a new device. There we had

the options to enter the details of a particular device. In our case, the device name

was WeMo smart lamp. The IP address of the smart switch was assigned

dynamically by the network initially. So we had to configure the IP address of the

WeMo switch in the web page of the router and assigned a static address, and we

entered the device ID, IP address and location of the device. There were

provisions to view all the devices in the network, search for a device using the ID,

update and remove the device using the same ID.

 Data Management: This service deals with the data output from the device. In

our case, we retrieve the status data of the device and stored it in the database in

case of future analysis by the user. Also it presents the current status of the device

to the end user.

 Event Management: Using this service, we could control the device remotely

using the interface provided. As it is a lamp, we can either turn that on or off only

after validating the claims.

So we tried all the functional components of the IoT and tested if they are delivering

the services efficiently. Using these IoT services, the WeMo smart switch has been added

73

to the network, status of each event has been logged to see its activities and the lamp can

be controlled (turn on/ turn off) remotely.

The performance of our system in this case study is evaluated on the basis of time

taken by the middleware to process the requests with and without Claims. To find out the

average overhead of claims, we used the event management service to generate the

requests to control the lamp connected to the WeMo switch. The evaluation results

obtained are presented in Figure 6.5.

Figure 6.5: Graph showing the performance of case study

The multiple requests are generated using the JMeter tool. There are three sets of

requests such as 1, 10 and 100. The average overhead of using claims to validate the

server in the test case of one request to turn on the WeMo switch was 0.06 seconds. The

test case of 100 requests consists of 5 turn on requests and 5 turn off requests being

processed alternatively. The test case of 100 requests consists of 50 turn on and 50 turn

off requests being processed alternatively. These requests are processed in parallel by the

middleware.

0

0.5

1

1.5

2

2.5

1 10 100A
ve

ra
ge

 T
im

e
 p

e
r

R
e

q
u

e
st

 in

se
co

n
d

s

No. of Requests

Performance using WeMo

Without Claims

With Claims

74

The average overhead of using claims in the real world scenario of smart home

using the WeMo switch is 1.47 seconds. The time taken to process the 100 requests are

less compared to 10 requests. This is because of the fact that the Thread Pool will span

new threads in order to serve the incoming requests in case of an increased load. That

makes the performance of the system feasible even with the increased number of

requests.

6.6. Summary

In this chapter, we discussed the implementation details about setting up a home

automation system which is used in our case study. The way in which the communication

is achieved from the user end to the device end is explained in brief. Also, the evaluation

setup and the results obtained in our case study are presented. We will conclude our

Thesis in the next section along with the future works.

75

Chapter 7

Conclusions and Future Work

In this thesis, we introduced a middleware for Internet of Things services. The need of

such a software layer and the basic functions of an IoT middleware are presented. One of

the major challenges associated with IoT, security, is analyzed in detail and Claims-

aware approach for securing IoT services is introduced. Implementing these services as

microservices makes the system more scalable and distributed in nature. A brief

discussion about the existing IoT middleware and the challenges faced by each

framework has been presented. All those related works were very helpful in

understanding the functionalities of IoT middleware layer and paved our way to the

proposed solution.

7.1. Contributions

The contributions of this thesis are:

 A claims-aware framework for IoT services has been introduced to add security to

the IoT services. Claims-based identity provides the valid claims for each service

in the network and maintains the secrecy of the network efficiently.

 The IoT services are implemented as Microservices architecture. Rather than

following the monolithic approach in which every services comes under one

server, implementing IoT services as Microservices eliminated the threat of single

point of failure. Splitting up of a large task into smaller modules has always been

76

the best practice for error debugging. This approach enables new services to be

added to the network without affecting the existing services.

 A prototype of the proposed solution has been developed as the proof of concept.

 The prototype is used to evaluate the performance of our framework and obtained

satisfactory results that support the feasibility of our prototype. The evaluation is

done in LAN as well as in the Cloud.

 A home automation system is implemented and used as the case study for our

prototype of IoT middleware.

7.2. Future work

The research area in the field of IoT middleware is very vast. It is not that easy to have

answered all the challenges answered in this thesis. Some of the remaining research

topics are:

 Security is just one of the major challenges among many other threats like Big

Data, openness, etc., and a complete system will be formed only when all the

challenges are answered. Since it is not possible within the scope, we would like

to go through other challenges in the future.

 Based on the background works done, we believed that the implementation of IoT

services as Microservices is an efficient method that totally supports

decentralization and independency. But we have not made any evaluation of

Microservices architecture and that is another area of interest that can be done in

future work.

77

 Since our main focus is on security, we implemented the IoT services that are

essential to support our framework rather than adding all the services. In our

prototype, we have not done the functional component interoperability which does

the protocol conversion. Interoperability itself is a wide area that could be studied

and researched on.

 The fact that Raspberry Pi (RPi) does not support the Windows Communication

Foundation made us shift the gateway into the local machine. In the future, we

could host the gateway in the RPi itself by finding some other ways to do the

Claims by researching on it.

 Data Mining is a vast area that should be given special care in case of a large

volume of data. In the future, we could implement some sort of data analysis and

mining techniques.

78

Appendix A

Source Code
Selected snippets of the source code that are relavant to the implementation and

evaluation of the prototype are presented in this section.

A.1 Intermediary Server Web.config

The web bindings that configures the SAML tokens are presented in here. The bindings

for the two endpoints for the symmetric and the assymetric call is shown along with the

token type issued, which is SAML.

1 <bindings>

2 <wsFederationHttpBinding>

3 <binding name="Symmetric" closeTimeout="00:2:00"

4 openTimeout="00:2:00"

5 receiveTimeout="00:2:00" sendTimeout="00:2:00"

6 maxReceivedMessageSize="2147483647">

7 <security mode="Message">

8 <message issuedTokenType=

9 "http://docs.oasis-open.org/wss/

10 oasis-wss-saml-token-profile-1.1#SAMLV1.1"

11 negotiateServiceCredential="false" />

12 </security>

13 </binding>

14 <binding name="Assymetric" closeTimeout="00:2:00"

15 openTimeout="00:2:00"

16 receiveTimeout="00:2:00" sendTimeout="00:2:00"

17 maxReceivedMessageSize="2147483647">

18 <security>

19 <message issuedKeyType="AsymmetricKey"

20 issuedTokenType="http://docs.oasis-open.org/wss/

21 oasis-wss-saml-token-profile-1.1#SAMLV1.1"

22 negotiateServiceCredential="false" />

23 </security>

24 </binding>

25 </wsFederationHttpBinding>

26 </bindings>

27

79

The client endpoint of Intermediary server points towards the Claims middleware

running in the local machine using the localhost URL. The encoded value of the

certificates used for symmetric as well as assymetric binding is shown in the

web.config file.

1 <client>

2 <endpoint

address="http://localhost/SamlTokenIISService/IoTService.svc/calc/symm"

3 binding="wsFederationHttpBinding" bindingConfiguration="Symmetric"

4 contract="DeviceControllerClient.IIoTService" name="Symmetric">

5 <identity>

6 <certificate

encodedValue="AwAAAAEAAAAUAAAApDyI78FhbVWR+OxltL+Uqg04hCogAAAAAQAAADkCAAAwggI1MII

B46ADAgECAhA3K2wdfTBTt0/ctdFGvAGJMAkGBSsOAwIdBQAwFjEUMBIGA1UEAxMLUm9vdCBBZ2VuY3kw

HhcNMTUwOTA0MjM1MTU5WhcNMzkxMjMxMjM1OTU5WjAUMRIwEAYDVQQDEwlsb2NhbGhvc3QwggEiMA0GC

SqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCe2Q9ODtVPjFed1ttf6zFzr7tYSJZHuw63Fde2rkwA/+/qQc

A80QTjpPKb5tzgQLW27uOG/8tQysk9B6pUcggXgcaEQonWmJFPzsjs70n4NL8Qiuuv6VylbwAtvWXlt+y

tyZLGxmRX0hKLwkVwwck7HM1qw/L8aISpKASK8pqIqUlsDZI1KrfVgfgqqXRnxt47InGVIk4aIXXoMjId

rlyAIzmx/H3fd8Q1m23/jtdUYFKSZPFoVLg/+YvELlFQdulZRCSyN8csaFQBTa8nnUVLKKIw36TijTl9s

uszl5LQ3oSHhdyqbJG0SkCEgoTj1hwbeUBFsK4+aYqlGcETP01HAgMBAAGjSzBJMEcGA1UdAQRAMD6AEB

LkCS0GHR1PAI1hIdwWZGOhGDAWMRQwEgYDVQQDEwtSb290IEFnZW5jeYIQBjdsAKoAZIoRz7jUqlw19DA

JBgUrDgMCHQUAA0EAFlF00X7mPsbhOrRCb3oj03MW2zZXVUnbkITWztH1akSvHcLRI0AQ/6kwod9CF1QP

C3CATq61fcDePX/GuwLWTA==" />

7 </identity>

8 </endpoint>

9 <endpoint

address="http://localhost/SamlTokenIISService/IoTService.svc/calc/asymm"

10 binding="wsFederationHttpBinding" bindingConfiguration="Assymetric"

11 contract="DeviceControllerClient.IIoTService" name="Assymetric">

12 <identity>

13 <certificate

encodedValue="AwAAAAEAAAAUAAAApDyI78FhbVWR+OxltL+Uqg04hCogAAAAAQAAADkCAAAwggI1MII

B46ADAgECAhA3K2wdfTBTt0/ctdFGvAGJMAkGBSsOAwIdBQAwFjEUMBIGA1UEAxMLUm9vdCBBZ2VuY3kw

HhcNMTUwOTA0MjM1MTU5WhcNMzkxMjMxMjM1OTU5WjAUMRIwEAYDVQQDEwlsb2NhbGhvc3QwggEiMA0GC

SqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCe2Q9ODtVPjFed1ttf6zFzr7tYSJZHuw63Fde2rkwA/+/qQc

A80QTjpPKb5tzgQLW27uOG/8tQysk9B6pUcggXgcaEQonWmJFPzsjs70n4NL8Qiuuv6VylbwAtvWXlt+y

tyZLGxmRX0hKLwkVwwck7HM1qw/L8aISpKASK8pqIqUlsDZI1KrfVgfgqqXRnxt47InGVIk4aIXXoMjId

rlyAIzmx/H3fd8Q1m23/jtdUYFKSZPFoVLg/+YvELlFQdulZRCSyN8csaFQBTa8nnUVLKKIw36TijTl9s

uszl5LQ3oSHhdyqbJG0SkCEgoTj1hwbeUBFsK4+aYqlGcETP01HAgMBAAGjSzBJMEcGA1UdAQRAMD6AEB

LkCS0GHR1PAI1hIdwWZGOhGDAWMRQwEgYDVQQDEwtSb290IEFnZW5jeYIQBjdsAKoAZIoRz7jUqlw19DA

JBgUrDgMCHQUAA0EAFlF00X7mPsbhOrRCb3oj03MW2zZXVUnbkITWztH1akSvHcLRI0AQ/6kwod9CF1QP

C3CATq61fcDePX/GuwLWTA==" />

14 </identity>

15 </endpoint>

16 </client>

17

80

The endpoint URL is different from the one in LAN when the Claims middleware is

accessed from the Cloud over the internet. The tool named ngrok [47] produce a

secure tunnel into the localhost and provided a public URL to access our local

machine from the Cloud.

1 <!--client>

2 <endpoint

address="http://03ae8de2.ngrok.io/SamlTokenIISServicev2/IoTService.svc/calc/sym

m"

3 binding="wsFederationHttpBinding" bindingConfiguration="Symmetric"

4 contract="DeviceControllerClient.IIoTService" name="Symmetric">

5 <identity>

6 <certificate

encodedValue="AwAAAAEAAAAUAAAApDyI78FhbVWR+OxltL+Uqg04hCogAAAAAQAAADkCAAAwggI1M

IIB46ADAgECAhA3K2wdfTBTt0/ctdFGvAGJMAkGBSsOAwIdBQAwFjEUMBIGA1UEAxMLUm9vdCBBZ2Vu

Y3kwHhcNMTUwOTA0MjM1MTU5WhcNMzkxMjMxMjM1OTU5WjAUMRIwEAYDVQQDEwlsb2NhbGhvc3QwggE

iMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCe2Q9ODtVPjFed1ttf6zFzr7tYSJZHuw63Fde2rk

wA/+/qQcA80QTjpPKb5tzgQLW27uOG/8tQysk9B6pUcggXgcaEQonWmJFPzsjs70n4NL8Qiuuv6Vylb

wAtvWXlt+ytyZLGxmRX0hKLwkVwwck7HM1qw/L8aISpKASK8pqIqUlsDZI1KrfVgfgqqXRnxt47InGV

Ik4aIXXoMjIdrlyAIzmx/H3fd8Q1m23/jtdUYFKSZPFoVLg/+YvELlFQdulZRCSyN8csaFQBTa8nnUV

LKKIw36TijTl9suszl5LQ3oSHhdyqbJG0SkCEgoTj1hwbeUBFsK4+aYqlGcETP01HAgMBAAGjSzBJME

cGA1UdAQRAMD6AEBLkCS0GHR1PAI1hIdwWZGOhGDAWMRQwEgYDVQQDEwtSb290IEFnZW5jeYIQBjdsA

KoAZIoRz7jUqlw19DAJBgUrDgMCHQUAA0EAFlF00X7mPsbhOrRCb3oj03MW2zZXVUnbkITWztH1akSv

HcLRI0AQ/6kwod9CF1QPC3CATq61fcDePX/GuwLWTA==" />

7 </identity>

8 </endpoint>

9 <endpoint

address="http://03ae8de2.ngrok.io/SamlTokenIISServicev2/IoTService.svc/calc/asy

mm"

10 binding="wsFederationHttpBinding" bindingConfiguration="Assymetric"

11 contract="DeviceControllerClient.IIoTService" name="Assymetric">

12 <identity>

13 <certificate

encodedValue="AwAAAAEAAAAUAAAApDyI78FhbVWR+OxltL+Uqg04hCogAAAAAQAAADkCAAAwggI1M

IIB46ADAgECAhA3K2wdfTBTt0/ctdFGvAGJMAkGBSsOAwIdBQAwFjEUMBIGA1UEAxMLUm9vdCBBZ2Vu

Y3kwHhcNMTUwOTA0MjM1MTU5WhcNMzkxMjMxMjM1OTU5WjAUMRIwEAYDVQQDEwlsb2NhbGhvc3QwggE

iMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCe2Q9ODtVPjFed1ttf6zFzr7tYSJZHuw63Fde2rk

wA/+/qQcA80QTjpPKb5tzgQLW27uOG/8tQysk9B6pUcggXgcaEQonWmJFPzsjs70n4NL8Qiuuv6Vylb

wAtvWXlt+ytyZLGxmRX0hKLwkVwwck7HM1qw/L8aISpKASK8pqIqUlsDZI1KrfVgfgqqXRnxt47InGV

Ik4aIXXoMjIdrlyAIzmx/H3fd8Q1m23/jtdUYFKSZPFoVLg/+YvELlFQdulZRCSyN8csaFQBTa8nnUV

LKKIw36TijTl9suszl5LQ3oSHhdyqbJG0SkCEgoTj1hwbeUBFsK4+aYqlGcETP01HAgMBAAGjSzBJME

cGA1UdAQRAMD6AEBLkCS0GHR1PAI1hIdwWZGOhGDAWMRQwEgYDVQQDEwtSb290IEFnZW5jeYIQBjdsA

KoAZIoRz7jUqlw19DAJBgUrDgMCHQUAA0EAFlF00X7mPsbhOrRCb3oj03MW2zZXVUnbkITWztH1akSv

HcLRI0AQ/6kwod9CF1QPC3CATq61fcDePX/GuwLWTA==" />

14 </identity>

15 </endpoint>

16 </client-->

17

81

 A.2. Service Contract of Intermediary Server
The services are basically the operations that has to be performed and the contract

determines how the operation is performed. Usually in service contract there can be

muliple operations with different sets of arguments. The contract that is shown here

represents the WebGet attribute that can be used to get the information from the

service pointed out by the URI.

A.3 Intermediary Server calling Claims middleware [32]

The code snippet shows the function used to call the Claims middleware and pass on

the arguments which contains the data to communicate to the smart device. It also

shows how to create a SAMl client and use the certificates for Claims.

1 namespace Event

2 {

3 [ServiceContract]

4 public interface IIotRestMethods

5 {

6 [OperationContract]

7 // [WebGet(UriTemplate =

"/Invoke?deviceID={deviceID}&action={action}&userID={userID}&otp={otp}")]

8 [WebInvoke(UriTemplate = "/Invoke", Method = "POST", ResponseFormat =

WebMessageFormat.Json

9 , RequestFormat = WebMessageFormat.Json)]

10 bool ControlDevice(IoTParamsparam);

11 }

12}

1 void CreateSAMLAndCallModule(string action, string ID, string token, string IoTIP)

2 {

3 bool success = false;

4 DeviceControllerClient.IoTServiceClient client = null;

5 try

6 {

7 // Create a client with given client endpoint configuration

8 client =new DeviceControllerClient.IoTServiceClient("Assymetric");

9 client.ClientCredentials.SupportInteractive = false;

10 // client.ChannelFactory.Credentials.UseIdentityConfiguration=true;

11 // Create new credentials class

12 SamlClientCredentialssamlCC = new SamlClientCredentials();

82

1 // Set the client certificate. This is the cert that will be

used to sign the SAML token in the symmetric proof key case0c c1 11 4c c7 24 04

8c 56 65 1f 80 f6 9c 8d 9d e8 61 b4 ed

2

samlCC.ClientCertificate.SetCertificate(StoreLocation.CurrentUser,

StoreName.TrustedPeople, X509FindType.FindByThumbprint,

"0cc1114cc724048c56651f80f69c8d9de861b4ed"); //Alice

3 // Set the service certificate. This is the cert that will be

used to encrypt the proof key in the symmetric proof key case

4

samlCC.ServiceCertificate.SetDefaultCertificate(StoreLocation.LocalMachine,

StoreName.My, X509FindType.FindByThumbprint,

"a43c88efc1616d5591f8ec65b4bf94aa0d38842a"); //localhost

5 // Create some claims to put in the SAML assertion

6 IList<Claim> claims = new List<Claim>();

7 var s = samlCC.ClientCertificate.Certificate.Subject;

8

claims.Add(Claim.CreateNameClaim(samlCC.ClientCertificate.Certificate.Subject));

9 ClaimSetclaimset = new DefaultClaimSet(claims);

10 samlCC.Claims = claimset;

11 // set new credentials

12

client.ChannelFactory.Endpoint.Behaviors.Remove(typeof(ClientCredentials));

13 client.ChannelFactory.Endpoint.Behaviors.Add(samlCC);

14 if (action.Equals("on"))

15 {

16

17 varuserAuth = client.TurnOn(ID, token, IoTIP); //Claims

logs here

18 if (userAuth) //If call to claims service validated then

proceed to turn on device

19 {

20 _logger.Info("Wemo device: {0} turned ON.", ID);

//WebServer logs here

21 }

22 else

23 {

24 _logger.Info("Error validating user for device: {0}",

ID);

25 }

26 }

27 if (action.Equals("off"))

28 {

29 varuserAuth = client.TurnOff(ID, token, IoTIP);

30

31 if (userAuth)

32 {

33 _logger.Info("Wemo device: {0} turned OFF.", ID);

34 }

35 else

36 {

37 _logger.Info("Error validating user for device: {0}",

ID);

38 }

39 }

40 }

41 }

83

A.4. Claims Middleware Web.config

The web.config file of our Claims middleware shows the service behaviors and their

corresponding endpoints. The two service behavior configurations set to do the

evaluation with and without claims can also be seen. They are

NoSecurityServiceBehavior and CalculatorServiceBehavior.

1 <services>

2 <!--NO CLAIMS: ENABLED BELOW, once uncommented,

3 comment the other section out, then Publish to IIS-->

4

5 <service behaviorConfiguration="NoSecurityServiceBehavior"

6 name="SamlTokenIISService.IoTService">

7 <endpoint address="mex" binding="mexHttpBinding" name="Metadata"

8 contract="IMetadataExchange" />

9 <endpoint address="calc/symm" binding="basicHttpBinding"

10 bindingConfiguration="NewBinding0" name="Symmetric"

11 contract="SamlTokenIISService.IIoTService" />

12 <endpoint address="calc/asymm" binding="basicHttpBinding"

13 bindingConfiguration="NewBinding0" name="Assymetric"

14 contract="SamlTokenIISService.IIoTService" />

15 </service>

16

17 <!--CLAIMS: ENABLED BELOW, once uncommented, comment

18 the other section out, then Publish to IIS-->

19

20 <service behaviorConfiguration="CalculatorServiceBehavior"

21 name="SamlTokenIISService.IoTService">

22 <endpoint address="mex" binding="mexHttpBinding" name="Metadata"

23 contract="IMetadataExchange" />

24 <endpoint address="calc/symm" binding="wsFederationHttpBinding"

25 bindingConfiguration="Binding1" name="Symmetric.OLD"

26 contract="SamlTokenIISService.IIoTService" />

27 <endpoint address="calc/asymm" binding="wsFederationHttpBinding"

28 bindingConfiguration="Binding2" name="Assymetric.OLD"

29 contract="SamlTokenIISService.IIoTService" />

30 </service>

31</services>

32

84

1 <bindings>

2 <basicHttpBinding>

3

4 <binding name="NewBinding0" closeTimeout="00:2:00" openTimeout="00:2:00"

receiveTimeout="00:2:00" sendTimeout="00:2:00" maxReceivedMessageSize="2147483647"

/>

5 <binding name="BasicServiceBinding" />

6 </basicHttpBinding>

7 <wsFederationHttpBinding>

8 <binding name="Binding1" closeTimeout="00:2:00" openTimeout="00:2:00"

receiveTimeout="00:2:00" sendTimeout="00:2:00"

maxReceivedMessageSize="2147483647">

9 <security mode="Message">

10 <message issuedKeyType="SymmetricKey"

issuedTokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-

1.1#SAMLV1.1"

11 negotiateServiceCredential="false" />

12 </security>

13 </binding>

14

15 <binding name="Binding2" closeTimeout="00:2:00" openTimeout="00:2:00"

receiveTimeout="00:2:00" sendTimeout="00:2:00"

maxReceivedMessageSize="2147483647">

16 <security mode="Message">

17 <message issuedKeyType="AsymmetricKey"

issuedTokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-

1.1#SAMLV1.1"

18 negotiateServiceCredential="false" />

19 </security>

20 </binding>

21 </wsFederationHttpBinding>

22</bindings>

23

24<behaviors>

25 <serviceBehaviors>

26 <behavior name="NoSecurityServiceBehavior">

27 <dataContractSerializermaxItemsInObjectGraph="6553500"/>

28 <serviceMetadatahttpGetEnabled="true"/>

29 <serviceDebugincludeExceptionDetailInFaults="true"/>

30 </behavior>

31

85

1 <behavior name="CalculatorServiceBehavior">

2 <dataContractSerializermaxItemsInObjectGraph="6553500"/>

3 <serviceMetadatahttpGetEnabled="true"/>

4 <serviceDebugincludeExceptionDetailInFaults="true"/>

5 <!--

6 The serviceCredentials behavior allows one to define a

7 service certificate.

8 A service certificate is used by a client to

9 authenticate the service and provide message protection.

10 This configuration references the "localhost"

11 certificate installed during the setup instructions.

12 -->

13

14 <serviceCredentials>

15

16 <!-- Set allowUntrustedRsaIssuers to true to allow

17 self-signed, asymmetric key based SAML tokens -->

18

19 <issuedTokenAuthenticationcertificateValidationMode="PeerTrust"

20 audienceUriMode="Never" allowUntrustedRsaIssuers="true">

21 <allowedAudienceUris>

22 <add allowedAudienceUri="IoTService.svc"/>

23 </allowedAudienceUris>

24 <!-- Add Alice to the list of certs trusted to issue SAML tokens

-->

25

26 <knownCertificates>

27 <add storeLocation="LocalMachine" storeName="TrustedPeople"

28 x509FindType="FindBySubjectName" findValue="Alice"/>

29

30 </knownCertificates>

31 </issuedTokenAuthentication>

32 <serviceCertificatestoreLocation="LocalMachine" storeName="My"

33 x509FindType="FindByThumbprint"

34 findValue="a43c88efc1616d5591f8ec65b4bf94aa0d38842a"/>

35 </serviceCredentials>

36

37</behavior>

38

86

A.5. Calling the IIS Web Server from the Java

To have the interoperability between Java and the .NET servers, we directed the call

from the Tomcat server to the IIS server. the communication is achieved using JSON

objects. The end URL will be different for LAN and the Cloud configurations.

A.6. Accessing MongoDB

1

2 public class NetworkService {

3 public static void CallIotService(String action, int simulation){

4 //http://localhost:55037/IoTRestService/

5 {DEVICEID}/{ACTION}/{USERID}/{OTP}

6 try{

7 String actionUpdate="on";

8 for(inti=1;i<=simulation;i++){

9 HttpClient client = HttpClients.createDefault();

10 HttpPost post = new HttpPost("http://iotintservice.

11 cloudapp.net/IoTEvent/IoTRestService/Invoke");

12 //HttpPost post = new HttpPost("http://localhost/

13 Event/IoTRestService/Invoke");

14

15 String deviceID="1";

16 String userID="1";

17 String otp="01234567-89ab-cdef-0123-456789abcdef";

18 String iotIP="127.0.0.1:8080";

19 StringBuildersb = new StringBuilder();

20 sb.append("{\"deviceID\":\"").append(iotIP).append("\",")

21 .append("\"userID\":\"").append(userID).append("\"}")

22 .append("\"action\":\"").append(actionUpdate).append("\"}")

23 .append("\"IoTIP\":\"").append(iotIP).append("\"}")

24 .append("\"otp\":\"").append(otp).append("\"}");

25

26

27 StringEntity input = new StringEntity(sb.toString());

28 input.setContentType("application/json");

29 post.setHeader("Content-Type", "application/json");

30 post.setHeader("Accept", "application/json");

31 post.setEntity(input);

32 HttpResponse response = client.execute(post);

33 BufferedReaderrd = new BufferedReader(new InputStreamReader

34 (response.getEntity().getContent()));

35 String line = "";

36 while ((line = rd.readLine()) != null) {

37 System.out.println(line);

38 }

39 if(actionUpdate=="on")

40 {

41 actionUpdate="off";

42 }else{

43 actionUpdate="on";

44 }

45 }

46 }

47 }

48}

49

87

The following code snippet shows a part of Device Management IoT service in which

the new device in added to the network. The details of the device is stored in to the

MongoDB.

1 public void AddDevice(Device device)

2 {

3 try

4 {

5 MongoDatabasedb = null;

6 MongoClientmongoClient = new MongoClient("localhost", 27017);

7 db = mongoClient.getDatabase("deviceiot");

8 MongoCollection<Document>coll = db.getCollection("mydevices");

9

10 //Code to simulate the multiple calls :UNCOMMENT THIS SECTION FOR

SIMULATION

11 /* for(int port=8080; port<8090;port++){

12 String simulateDevice="127.0.0.1:"+port;

13 coll.insertOne(new Document().append("name", device.getName()).

14 append("id", port).

15 //append("type", device.getType()).

16

17 append("ip",simulateDevice).

18

19 //append("status", device.getStatus()));

20 append("location", "HOME"));

21 System.out.println("Wemo Simulated endpoint created IP-"+ simulateDevice

+"/ConnectWemo");

22 } */

23

24

25 //Code to add a device :UNCOMMENT THIS SECTION FOR ACTUAL APPLICATION

26 coll.insertOne(new Document().append("name", device.getName()).

27 append("id", device.getId()).

28 append("ip", device.getIp()).

29 append("location", device.getLocation()));

30

31 System.out.println("new added device-"+ device.getName() +

device.getId() +device.getIp() +device.getLocation());

32

33

34

35 mongoClient.close();

36 }

37 catch(Exception e)

38 {

39 e.printStackTrace();

40 }

88

A.6. Sample Claim in XML Format

The SAML token are in XML formats, used for authentication and authorization

purposes. It consists of a SOAP message body which is encrypted and signed to secure

the integrity of the sender. The token also has assertions, protocols and bindings to define

its security features. The whole message is contained in an outer envelop which has to be

decrypted by the reciever to retrive the message.

<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">

<s:Header>

<a:Action s:mustUnderstand="1" u:Id="_5" xmlns:u="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:a="http://www.w3.org/2005/08/addressing">http://schemas.xmlsoap.org/ws/2005/02/trust

/RST/SCT</a:Action>

<a:MessageID u:Id="_6" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"

xmlns:a="http://www.w3.org/2005/08/addressing">urn:uuid:2fa96b4c-3f5a-4364-960e-

0158b4e837f0</a:MessageID>

<ActivityId CorrelationId="49de3ccc-0504-4664-b539-67b1cdc5f9f7"

xmlns="http://schemas.microsoft.com/2004/09/ServiceModel/Diagnostics">2c44dfdb-b4c1-41f1-

a639-7bf72df95af6</ActivityId>

<a:ReplyTo u:Id="_7" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd" xmlns:a="http://www.w3.org/2005/08/addressing">

<a:Address>http://www.w3.org/2005/08/addressing/anonymous</a:Address>

</a:ReplyTo>

<a:To s:mustUnderstand="1" u:Id="_8" xmlns:u="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:a="http://www.w3.org/2005/08/addressing">http://localhost/SamlTokenIISService/IoTSer

vice.svc/calc/symm</a:To>

<o:Security s:mustUnderstand="1" xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-secext-1.0.xsd">

<u:Timestamp u:Id="uuid-08bacf29-2b6b-488f-b870-82497cc9a05d-3"

xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1.0.xsd">

<u:Created>2016-02-23T21:32:58.559Z</u:Created>

<u:Expires>2016-02-23T21:37:58.559Z</u:Expires>

</u:Timestamp>

<e:EncryptedKey Id="uuid-08bacf29-2b6b-488f-b870-82497cc9a05d-2"

xmlns:e="http://www.w3.org/2001/04/xmlenc#">

<e:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"

xmlns="http://www.w3.org/2000/09/xmldsig#"></DigestMethod>

</e:EncryptionMethod>

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<o:SecurityTokenReference>

<o:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-

security-1.1#ThumbprintSHA1" EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-soap-message-security-

1.0#Base64Binary">pDyI78FhbVWR+OxltL+Uqg04hCo=</o:KeyIdentifier>

</o:SecurityTokenReference>

</KeyInfo>

<e:CipherData>

<e:CipherValue>gqPrbwsnPCrRvw2THppiKDuVOUbq9iQoi4TZRTliqd+FcNUOTzB/NuKdj92cP6DVYg+b0bjIMmo

q7pyqwhsF4OKZnVCqA8RQOZFR4XMIaenfIaT2xd4t1a2kF9djcvt/FZwDOJKQxCFoGMh7bQ36Hwk73pRw5xxPqAbiF

E++E0XVk4UNAw/lEnB7OJq4GTcuSvfb5Og5N6r8c4pGCotDBs6Bb+Bn8G2OK6GAc3ymIQ17Us/05pkRmJP7JfLVy3B

U+E4sXpHKDhf1NSLhsdqa+BWhU9knaPGZca9j6SVxLhLF4qqNcBYyN9NMxV8T0JUThiA72UysOj3BdetjlWSG+Q==<

/e:CipherValue>

</e:CipherData>

89

</e:EncryptedKey>

<c:DerivedKeyToken u:Id="_0" xmlns:c="http://schemas.xmlsoap.org/ws/2005/02/sc"

xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1.0.xsd">

<o:SecurityTokenReference k:TokenType="http://docs.oasis-open.org/wss/oasis-wss-soap-

message-security-1.1#EncryptedKey" xmlns:k="http://docs.oasis-open.org/wss/oasis-wss-

wssecurity-secext-1.1.xsd">

<o:Reference ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-

1.1#EncryptedKey" URI="#uuid-08bacf29-2b6b-488f-b870-82497cc9a05d-2"></o:Reference>

</o:SecurityTokenReference>

<c:Offset>0</c:Offset>

<c:Length>24</c:Length>

<c:Nonce>

<!-- Removed-->

</c:Nonce>

</c:DerivedKeyToken>

<c:DerivedKeyToken u:Id="_2" xmlns:c="http://schemas.xmlsoap.org/ws/2005/02/sc"

xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1.0.xsd">

<o:SecurityTokenReference k:TokenType="http://docs.oasis-open.org/wss/oasis-wss-soap-

message-security-1.1#EncryptedKey" xmlns:k="http://docs.oasis-open.org/wss/oasis-wss-

wssecurity-secext-1.1.xsd">

<o:Reference ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-security-

1.1#EncryptedKey" URI="#uuid-08bacf29-2b6b-488f-b870-82497cc9a05d-2"></o:Reference>

</o:SecurityTokenReference>

<c:Nonce>

<!-- Removed-->

</c:Nonce>

</c:DerivedKeyToken>

<e:ReferenceList xmlns:e="http://www.w3.org/2001/04/xmlenc#">

<e:DataReference URI="#_4"></e:DataReference>

<e:DataReference URI="#_10"></e:DataReference>

<e:DataReference URI="#_11"></e:DataReference>

</e:ReferenceList>

<saml:Assertion MajorVersion="1" MinorVersion="1" AssertionID="_3c69ff08-3284-44e0-aa2d-

b91c282a2ae0" Issuer="Self" IssueInstant="2016-02-23T21:32:56.660Z"

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

<saml:Conditions NotBefore="2016-02-23T21:32:56.660Z" NotOnOrAfter="2016-02-

24T07:32:56.660Z">

<saml:AudienceRestrictionCondition>

<saml:Audience>http://localhost:8000/servicemodelsamples/service/calc/symm</saml:Audience>

<saml:Audience>http://localhost:8000/servicemodelsamples/service/calc/asymm</saml:Audience

>

</saml:AudienceRestrictionCondition>

</saml:Conditions>

<saml:Advice></saml:Advice>

<saml:AttributeStatement>

<saml:Subject>

<saml:NameIdentifier>

<!-- Removed-->

</saml:NameIdentifier>

<saml:SubjectConfirmation>

<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:holder-of-

key</saml:ConfirmationMethod>

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<e:EncryptedKey xmlns:e="http://www.w3.org/2001/04/xmlenc#">

<e:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>

</e:EncryptionMethod>

<KeyInfo>

<o:SecurityTokenReference>

<o:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-

security-1.1#ThumbprintSHA1">pDyI78FhbVWR+OxltL+Uqg04hCo=</o:KeyIdentifier>

</o:SecurityTokenReference>

</KeyInfo>

<e:CipherData>

<e:CipherValue>PQEv8mhGFhtbhRvmLzPlj1M0IAsSEf+/i/wZmFAc9W4L5XIJiFu8HZBhhS+i8H0EKCshbzSZaTG

S03h7dnGi9g+2zSdbH/g8PiE+3wDTsC7xzhWo/3OiLhvPi7EqaDvtUDnRphQRTuX/ohRCl44dzEB4nxH948vD0e1vx

ApJhoxARPdKLHsxwlJAlfdlfFumFDE8p5qU/Cgba2T7MnkLNEd5finXS07GUaczcYCTjE/nOysJLSgOwR3OtzrtUjm

PINLblOAZJEe5tLA+11MvcJ+t9N9n3ElwCu/jnsEuQyTq8kn5R47aC/zAz21AMmMUbz1EXOWtTauNbsIzRz0shw==<

/e:CipherValue>

90

</e:CipherData>

</e:EncryptedKey>

</KeyInfo>

</saml:SubjectConfirmation>

</saml:Subject>

<saml:Attribute AttributeName="name"

AttributeNamespace="http://schemas.xmlsoap.org/ws/2005/05/identity/claims">

<saml:AttributeValue>

<!-- Removed-->

</saml:AttributeValue>

</saml:Attribute>

</saml:AttributeStatement>

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-

c14n#"></CanonicalizationMethod>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"></SignatureMethod>

<Reference URI="#_3c69ff08-3284-44e0-aa2d-b91c282a2ae0">

<Transforms>

<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"></Transform>

<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"></Transform>

</Transforms>

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>

<DigestValue>583Y/8cTnrnFE17g1iAVFn17F9g=</DigestValue>

</Reference>

</SignedInfo>

<SignatureValue>GQfghQe14FQT7hplHlRMWfO5SdplnqOlBHSZs2VaPGX3MIEOCb9vZiJkfcCn04Lz8w2qonayqu

NOtGs7xYc0/uFYEcPJjktGyA9hteuejyIhqcj5UcNXu27d6a9Fa0Dojf9ZiqYbLGdV7ru1wqr9lgYHObza5n7nG0Is

5ZUgjVPRwWJZJZb+WvwyD9+YOWAuzq9HsvPaeQ4NjqiSF3udUK/uWzWFiTxpy9jYBkyc4T3jnOAuvmrvaHj8eo8yDC

UuVy/iA3IC5/itiVr4UZ/BwmhBei+j5XHNhLZxy1NnT5TO4WrgnavnHx8seJ94cxu0p8+aoBSxzU1W9aGxsZ3u4Q==

</SignatureValue>

<KeyInfo>

<o:SecurityTokenReference>

<o:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-soap-message-

security-1.1#ThumbprintSHA1">DMERTMckBIxWZR+A9pyNnehhtO0=</o:KeyIdentifier>

</o:SecurityTokenReference>

</KeyInfo>

</Signature>

</saml:Assertion>

<c:DerivedKeyToken u:Id="_9" xmlns:c="http://schemas.xmlsoap.org/ws/2005/02/sc"

xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-

1.0.xsd">

<o:SecurityTokenReference k:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-

token-profile-1.1#SAMLV1.1" xmlns:k="http://docs.oasis-open.org/wss/oasis-wss-wssecurity-

secext-1.1.xsd">

<o:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-

1.0#SAMLAssertionID">_3c69ff08-3284-44e0-aa2d-b91c282a2ae0</o:KeyIdentifier>

</o:SecurityTokenReference>

<c:Offset>0</c:Offset>

<c:Length>24</c:Length>

<c:Nonce>

<!-- Removed-->

</c:Nonce>

</c:DerivedKeyToken>

<e:EncryptedData Id="_10" Type="http://www.w3.org/2001/04/xmlenc#Element"

xmlns:e="http://www.w3.org/2001/04/xmlenc#">

<e:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-

cbc"></e:EncryptionMethod>

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<o:SecurityTokenReference>

<o:Reference ValueType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"

URI="#_2"></o:Reference>

</o:SecurityTokenReference>

</KeyInfo>

<e:CipherData>

<e:CipherValue>7UgU45U+uNzyf8o5xUR9m0iBb4aoJv9L9MRUgjknbz3m33bx9k8Ite6LPUFfPfHnsFJWjAihObp

iuBCSYxiMDw2h7BKMnWs8/NthfZhG4Trm5S0ewK4SEBQuQtG+GNsFBLigg1eJ8mm+M2YJ4ZVO7FrSLhAmNgrHZ4iHE

1Yc2vlvZfHuTFu8nX5wzBKSDWve/r++176BX8ryUmOQCJ6orP0jTMg/4v/PgMdDPrFX91Vkjl4IdsUwzulmmxtYAvS

Y8t8uAKEA05XlAOo7OGaNlhBqd7Mdg1kb/12YnHsg+7G59W2+ehBUel1TMKpcfsI1+wNL7b2sO6XkKrx3eww4Ex5GG

JKiWlPrKE94IuTOmpWwodOaH6assg+t2NcN7ZBZjvPcVFYGYCvV3nnyQi+nIaa0Mq/P9BU+8nRuYhirFF2wNeE1NjZ

k1gA1IfrkUWc7zouYmYpDLKdySA+YVDvLgkaeDdN0+LZVN/SN9pEiSJ2wCq2h6cZTMO7jSjJokmUpxOTdYykq2jcEC

91

hnSu37WW9X85xGvsB/PDFR4a2QDNWJpoUMOzKtAHCn1TBy+o/qsCejErq0g6liC4BQgpXVd6ZhfEhGxkxaBnzCyHph

PgHRn2H6A6/lyah7+3F5jaRHarc5jrJGZaTvUci6CO4m4iaPn165CqprFIIwz6+QZcNqMOkdUTV2A5ybetaEslvkyN

0pEuko/HaoEfUUgsEMfPu/h0iXCjs/QRu2bufHzo5WdSCYucVS5Ox32v3ZZUwTksnr2q81J7x9v2e9PhP2N2x0zr7f

iayiPacczl7iT0i/Q6c1sDofwo3P4iaR5CmHHpMP6l/UIuJBiZ37QdOR6uh4Ic1gzMqLqjWIRvT5SppiUcff1a6J6Z

pHwBGZDK+FrTc9Mm+9p7ugoinGmRC8Zdrvgdl16jQWIABpHwXHTcAynSJLSbZLwS1WyIEqnSAdKGxwfMplPDtp9vjt

srVKwV6gvH2sBKz89pLPwsHot1okyECKczA+9U9Ax2Rs03duwnJvPj5K4AaNOsdG+J36onZq5T+L6+Nmktg15e30ip

TSJJ9R6SKvq1aJHQYueFJ3+VAiDS149DmhE2veuAdBLoJ8xj2aaVqFxAnJaaQ+Tv/ssw6PrS51+/EaJ/eYyXKmxoQd

D2Ox7uIL7t08zwgzK8s8ZegNDbr+LA+yPK1acazuD7k5auoZOyCDyc8MCYJ2CQFhKxgjmYCNC2RKIjHJiMaCb+pcmb

IkbU4C/8xM4ixZADSx1n+2TrUY2ZlPX7aouCZkJoOzVCcIgcv12llXy95m3fdlt47GLJcoZuCLscKq6RHANK8dbXKh

QWco0Ezos1vdpaFuwaYrpD5bqVOeWIiZGQBRjiwxtZapybQcdZAMhR+k0us7pGGN9H1iyZXNW8Die6wOAEQGdpnY0m

KVWrU8u8VMnV47HkwIhRsGOlfRqgXuJdn6JxJ3oB25U9H9CeskvSOBJeUEP3iXoEhPvRsXnONGEuPGm4wfHpfO6IW5

R9btKxvEAz3ssC1yiGcF3ZOQILQoIkQk912evmB9W4zHCP4AUsaxO9Qifj3gLbS6XNfC1RIZvKW0uRuTCf/XUE/ah/

HBJBOzcvKFd+hEwX7oEP4XcsSM/HHDqhNNU2mzJ2Us5w7lNf6Y0SNF+PoGeCOhihIxYkaqKvARUCLR8pIs8lvL1J8n

/Amn7nH77iVjatMZE2+fr0nwY2Nx6N8z0fIWZ6j8yeTHbosaEB7fwDXUz6KxwV2Pqubh8PRQ4Nk7hgfv+FhO3FOWl2

hAuU85aCRtRbbjtkpDfTuL65ddeVJDWwx5yQvceD9IS6TiFb0eM8MokBRNaOdcSCSltcXl57jtdGxwRmnfR/eZOBM2

3dO9OJjTcF9jNwWILC30JCZa98dnkNZJdemrQ2BD4Hb7jxVZj12vovYnQxGxDvL7GmGcSTepmb/ZFxkCOyula0Ih+/

gtWQnPeuVwIccpYCmX/+scBk8Y9z/Y3UuqsdRclN+bYYop2/keTJUZs96SgVaJrlol5fpoy5urwyMxJYQbD86U3TkZ

YEndMasTypi7iysWhdRrT5zKhM4yjSuisxJlB10+AbXwHRJ/EwBGVDRsoK+zHVD4OKTbpf2FPC0zEyJLBfim6TD7fk

LVqNhhK4wB04qfPwSD7Wg8NHX+Kp/U1/YfwnvimglbBADGXKM1pTegtmxd9mvE9xfdIfMfnPPFagz+id89Hy/WAsHQ

11wAvccsyXbhnwZnMm6IfbgeDPcNh+8Eg11nOrDY8E+y1v2h7XAuxIn2AOC+KbCa1alnSs1KREquB2MI7uhNNZPRB7

yd7Ph1XWIjuGrr3x3vBoexgd/UBK/XlnZDPHBwJkaQ9CYkZfbLbhj+DoU5TmHKIiXaQBw8ICSODi/q0uknmzobgcGE

em58oTxD4EspJ4cQtUWBDP+dn/P2Wv2Qy/Ch25yFjp/lSFuWr3bH04QS1JSm0mpIkPi2Asa+/ZH/xIia8aTTFMKJRh

yax/EhXhYguBhBoRwO6DhpfAp70fyN/Kg96yxx8+8jHioMbQCW4YJSfQb3ZMTo7oMYCvF6VPseTiOT8u2kIN1Cixp8

3m476OdirvAbUCZ+Ouw2Kb17dB2StYLwGSygzshgi7EnbAocYUfbCiJjVVsLOR2N4Be4Kwk7RyCyZILvEsX3Wurgdz

gl+mE9O6VjL227fg3VBF78ebSveXCWsnRJR9QtoPywhvq3D5WDI/lDBHDCiTcMGX7sPQ19bXVHj7s3q5tyn1ZQitw=

=</e:CipherValue>

</e:CipherData>

</e:EncryptedData>

<e:EncryptedData Id="_11" Type="http://www.w3.org/2001/04/xmlenc#Element"

xmlns:e="http://www.w3.org/2001/04/xmlenc#">

<e:EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes256-

cbc"></e:EncryptionMethod>

<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">

<o:SecurityTokenReference>

<o:Reference ValueType="http://schemas.xmlsoap.org/ws/2005/02/sc/dk"

URI="#_2"></o:Reference>

</o:SecurityTokenReference>

</KeyInfo>

<e:CipherData>

<e:CipherValue>aQskguyi2G2vIF/pgWeW/CE4LzaRhylULmf47cfq/BrLSA3JMaAbEO9UB6JImyTTV1px9K6m0Fi

h4aAZNpY/cc3s2Fcekg3FADxYUs4jpP5jK3EMpY9S5jqd5EsxdFFv/nniZJI2IsyMYpjfJuccXyUj5nuYShFwFSNfi

EsNoGFAUZsF+BwXmM10UyENmtCRN5nWCw/iq7gLjR+MiVVnzs286NdAsOf1MypWRQwkfbuCZt7lohMgD/pYLVUhGm7

TOxB2b4yWc6F5338Fg00gzpqGlISb9az6w4AsqEl8Xa4hkLAuN6H621IwjA0Na7/vBuymIpC1KP3AcIuYtosNcxJJ2

Z9MbGDyPy15aDOkXfdDokgJp83NUjubLSL3jIImbXeM1d42Ormg4sf8mpkBZJi/JkoK2KuJcBdghz6rmMqONK18KdT

mZllNzoelmJ4RYVlW8nFdEnziv5B+ffhVcLVR4UQYDfgeMyJX8qsNuxQHct5WUvxE0+zPc9eWhFMnibbRofcZo7JbI

2+58M/BBZjM4skMRotSIMUufnNIHH5hpRmiYTdK8jlag1j/uJNJBkc+fMWRFWw+yXeJYIrzjiRHBOLJmJP+AEjnZip

gqwCgMhxTuxjT9BfEajqwOCWC6Wi+CLJh6+EppqGeiJeGgcf08y72qtJNMguMr+cWHDDE7Ew8+ekr8GwJr0AkUEFny

1MdIyQKvqjqloAUfFyG2ctNlSojGY2gYYhiyGKGNr0T8L82otmsLVXRd1KeG84jY/wOWEFKjZxIxFxselxHik2rKW1

7VukI7BZO6fnbGtmOiqyf4MFWKQzh5+QzzrKN63nRRTOXKbTRQuwkdWbCNLv860WEW9VsyMcF3COFT1TajMh0BGwsP

u6y9ETmknY+Df+bd7Tkqg6di0Vb+fEB1a8C+bfXx/ykMYCMCbXVBEMyyx1rWApRc2CX4ZsZe2hNun7fsXun5TZdYwt

vZ8gqtaJ0MWuSu5Yf81wfYOiIj6Ind3QkOwyNy9Vog8jaPcZgOJBBQX+VmYazVifCmHHIuMDCusRpIjuxaYHumKgSn

lqGduXV96fMybvP212ZENBz</e:CipherValue>

</e:CipherData>

</e:EncryptedData>

</o:Security>

</s:Header>

</s:Envelope>

92

Appendix B

Log Files

B1. Sample Log files

The log files that contains the timestamp of each iterations performed in the evaluation

phase is given below. The log files shows the timestamp values of the action for 10

requets when we used the WeMo device for case study in LAN.

Claims Middleware Log for 10 requests:

2016-02-24 08:56:04.5473|INFO|Device ON: User authenticated to

contact Wemo device 192.168.100.101:49153

2016-02-24 08:56:05.3067|INFO|Device OFF: SUCCESS. User

authenticated for Wemo device 192.168.100.101:49153

2016-02-24 08:56:06.1409|INFO|Device ON: User authenticated to

contact Wemo device 192.168.100.101:49153

2016-02-24 08:56:06.9276|INFO|Device OFF: SUCCESS. User

authenticated for Wemo device 192.168.100.101:49153

2016-02-24 08:56:07.7432|INFO|Device ON: User authenticated to

contact Wemo device 192.168.100.101:49153

2016-02-24 08:56:08.5525|INFO|Device OFF: SUCCESS. User

authenticated for Wemo device 192.168.100.101:49153

2016-02-24 08:56:09.3916|INFO|Device ON: User authenticated to

contact Wemo device 192.168.100.101:49153

2016-02-24 08:56:10.1547|INFO|Device OFF: SUCCESS. User

authenticated for Wemo device 192.168.100.101:49153

2016-02-24 08:56:11.0039|INFO|Device ON: User authenticated to

contact Wemo device 192.168.100.101:49153

2016-02-24 08:56:11.8147|INFO|Device OFF: SUCCESS. User

authenticated for Wemo device 192.168.100.101:49153

Intermediary Web Service Log for 10 requests:

2016-02-24 09:55:59.7721|INFO|Wemo device: 192.168.100.101:49153

turned ON.

2016-02-24 09:56:00.5405|INFO|Wemo device: 192.168.100.101:49153

turned OFF.

2016-02-24 09:56:01.3781|INFO|Wemo device: 192.168.100.101:49153

turned ON.

2016-02-24 09:56:02.1548|INFO|Wemo device: 192.168.100.101:49153

turned OFF.

93

2016-02-24 09:56:02.9740|INFO|Wemo device: 192.168.100.101:49153

turned ON.

2016-02-24 09:56:03.8083|INFO|Wemo device: 192.168.100.101:49153

turned OFF.

2016-02-24 09:56:04.6199|INFO|Wemo device: 192.168.100.101:49153

turned ON.

2016-02-24 09:56:05.3835|INFO|Wemo device: 192.168.100.101:49153

turned OFF.

2016-02-24 09:56:06.2382|INFO|Wemo device: 192.168.100.101:49153

turned ON.

2016-02-24 09:56:07.0392|INFO|Wemo device: 192.168.100.101:49153

turned OFF.

B.2. Calculation of Performance Time

The calculation details of the time taken for both the intermediary server and the Claims

middleware is given below.

Figure B.1: Excel sheet containing the calculation details

The total time for each service is calculated by substracting the start time from the

end time. The total time to process the whole requests is calculated by adding each

server’s processing time.

94

B.3. JMeter generating Requests

The requests are made to the client using the JMeter tool. It has the provison to

change the number of users and the requests per user. This tool helped us make

multiple calls to the server.

Figure B.2. JMeter tool used for simulation

95

Bibliography

[1] Vermesan, O., & Friess, P. (Eds.). (2013). Internet of things: converging technologies

for smart environments and integrated ecosystems. River Publishers.

[2] Vermesan, O., & Friess, P. (Eds.). (2014). Internet of Things-From Research and

Innovation to Market Deployment (pp. 74-75). River Publishers.

[3] Lefort, L., Henson, C., Taylor, K., Barnaghi, P., Compton, M., Corcho, O., ... & Page,

K. (2011). Semantic sensor network xg final report. W3C Incubator Group

Report, 28.

[4] Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things

(IoT): A vision, architectural elements, and future directions. Future Generation

Computer Systems, 29(7), (pp. 1645-1660).

[5] Shipley, A. J. (2013). Security in the internet of things, lessons from the past for the

connected future. Security Solutions, Wind River, White Paper, Retrieved April 13,

2016, from http://www.intel.com/content/dam/www/public/us/en/documents/white-

papers/wind-river-security-in-the-internet-of-things.pdf.

[6] Claims-Aware Applications. Retrieved September 27, 2015, from

https://msdn.microsoft.com/en us/library/windows/desktop/bb736227(v=vs.85).aspx.

[7] What Is Windows Communication Foundation. Retrieved July 15, 2015, from

https://msdn.microsoft.com/en-us/library/ms731082(v=vs.110).aspx.

[8] Enterprise service bus. (2016, March 7). In Wikipedia, The Free Encyclopedia.

Retrieved April 13, 2016, from

https://en.wikipedia.org/w/index.php?title=Enterprise_service_bus&oldid=708708094.

96

[9] Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). Role of middleware

for internet of things: A study. International Journal of Computer Science &

Engineering Survey (IJCSES), 2(3), (pp. 94-105).

[10] Joe Folkens, (2014, December). Building a gateway to the Internet of Things.

Texas Instruments, White Paper, Retrieved October 18, 2015, from

http://www.ti.com/lit/wp/spmy013/spmy013.pdf.

[11] Collina, M., Corazza, G. E., & Vanelli-Coralli, A. (2012, September). Introducing

the QEST broker: Scaling the IoT by bridging MQTT and REST. In Personal Indoor

and Mobile Radio Communications (PIMRC), 2012 IEEE 23rd International

Symposium on (pp. 36-41). IEEE.

[12] De Caro, N., Colitti, W., Steenhaut, K., Mangino, G., & Reali, G. (2013,

November). Comparison of two lightweight protocols for smartphone-based sensing.

In Communications and Vehicular Technology in the Benelux (SCVT), 2013 IEEE

20th Symposium on (pp. 1-6). IEEE.

[13] Eisenhauer, M., Rosengren, P., & Antolin, P. (2010). Hydra: A development

platform for integrating wireless devices and sensors into ambient intelligence

systems. In The Internet of Things (pp. 367-373). Springer New York.

[14] Katasonov, A., Kaykova, O., Khriyenko, O., Nikitin, S., & Terziyan, V. Y.

(2008). Smart Semantic Middleware for the Internet of Things. ICINCO-ICSO,8, (pp.

169-178).

[15] Bazzani, M., Conzon, D., Scalera, A., Spirito, M., & Trainito, C. I. (2012, June).

Enabling the IoT paradigm in e-health solutions through the VIRTUS middleware.

In Trust, Security and Privacy in Computing and Communications (TrustCom), 2012

97

IEEE 11th International Conference on (pp. 1954-1959). IEEE. Stankovic, J. (2014).

Research directions for the internet of things. Internet of Things Journal, IEEE, 1(1),

(pp. 3-9).

[16] Chen, Y. K. (2012, January). Challenges and opportunities of internet of things.

In Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific,

IEEE, (pp. 383-388).

[17] Ortiz, A. M., Hussein, D., Park, S., Han, S. N., & Crespi, N. (2014). The cluster

between internet of things and social networks: Review and research

challenges. Internet of Things Journal, IEEE, 1(3), (pp. 206-215).

[18] DaCosta, F. (2013). Rethinking the Internet of Things: a scalable approach to

connecting everything. Apress, Retrieved November 08, 2015, from

http://dl.acm.org/citation.cfm?id=2578967, ACM Digital Library

[19] Blackberry IoT Platform. Retrieved September 10, 2015, from

http://ca.blackberry.com/internet-of-things.html.

[20] Amrita Internet of Things Middleware. Retrieved September 10, 2015, from

http://www.aiotm.in/atotmmiddleware.html.

[21] MuleSoft AnyPoint Platform. Retrieved November 18, 2015, from

https://www.mulesoft.com/integration-solutions/api/iot.

[22] Salem Hadim and Nader Mohamed, "Middleware Challenges and Approaches for

Wireless Sensor Networks," IEEE Distributed Systems Online, vol. 7, no. 3, 2006, art.

no. 0603-o3001.

98

[23] Noergaard, T. (2012). Embedded systems architecture: a comprehensive guide for

engineers and programmers. Newnes. Retrieved April 10, 2016 from

http://www.eetimes.com/document.asp?doc_id=1276764.

[24] Bernstein, P. A. (1996). Middleware: a model for distributed system

services. Communications of the ACM, 39(2), (pp. 86-98).

[25] Privat, G., Zhao, M., & Lemke, L. (2014, April). Towards a Shared Software

Infrastructure for Smart Homes, Smart Buildings and Smart Cities. InInternational

Workshop on Emerging Trends in the Engineering of Cyber-Physical Systems, Berlin.

[26] Gu, T., Pung, H. K., & Zhang, D. Q. (2005). A service‐oriented middleware for

building context‐aware services. Journal of Network and computer

applications, 28(1), (pp. 1-18).

[27] Roman, R., Najera, P., & Lopez, J. (2011). Securing the Internet of

Things.Computer, IEEE Computer Society, 44(9), (pp. 51-58). IEEE.

[28] Security Assertion Markup Language. (2016, March 23). In Wikipedia, The Free

Encyclopedia. Retrieved 13:32, April 13, 2016, from

https://en.wikipedia.org/w/index.php?title=Security_Assertion_Markup_Language&o

ldid=711590214.

[29] SAML (Security Assertion Markup Language).(2008, January) Retrieved April

10, 2016, from http://searchfinancialsecurity.techtarget.com/definition/SAML.

[30] SAML Token Provider. Retrieved December 5, 2015, from

https://msdn.microsoft.com/en-us/library/aa355062(v=vs.110).aspx.

[31] Lewis J and Fowler M. (2014, March 25). Microservices. Retrieved October 2,

2015, from http://martinfowler.com/articles/microservices.html.

99

[32] Richardson C. (2014). Microservice Architecture. Retrived Decmber 15, 2015,

from http://microservices.io.

[33] Li, F., Vögler, M., Claeßens, M., & Dustdar, S. (2013, June). Efficient and

scalable IoT service delivery on Cloud. In Cloud Computing (CLOUD), 2013 IEEE

Sixth International Conference on (pp. 740-747). IEEE.

[34] Thones, J. (2015). Microservices. Software, IEEE, 32(1), (pp. 116-116).

[35] Stafford G. A. (2015, May 18). Building a Microservices based REST API with

RestExpress, JavaEE and MongoDB: Part 1. Retrieved October 13, 2015, from

https://programmaticponderings.wordpress.com/2015/05/18/building-a-

microservices-based-rest-api-with-restexpress-java-and-mongodb-part-1.

[36] Woods D. (2015, February 10). Building Microservices with Spring Boot.

Retrieved October 13, 2015, from http://www.infoq.com/articles/boot-microservices.

[37] Issac L. P. (2014, January 14). SQL vs NoSQL Database Differences Explained

with few Example DB. Retrieved October 24, 2015, from

http://www.thegeekstuff.com/2014/01/sql-vs-nosql-db.

[38] Gorst D. (2014, August 4). MongoDb vs CouchDB. RetrievedOctober12, 2015,

from http://blog.scottlogic.com/2014/08/04/mongodb-vs-couchdb.html.

[39] Wei-ping, Z., Ming-Xin, L., & Huan, C. (2011, May). Using MongoDB to

implement textbook management system instead of MySQL. InCommunication

Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on (pp.

303-305). IEEE.

[40] MongoDB. (2013). Retrieved November 25, 2015, from

https://www.mongodb.org/about/introduction.

100

[41] Han, J., Haihong, E., Le, G., & Du, J. (2011, October). Survey on NoSQL

database. In Pervasive computing and applications (ICPCA), 2011 6th international

conference on (pp. 363-366). IEEE.

[42] SAML Tokens and Claims. Retrieved December 5, 2015, from

https://msdn.microsoft.com/en-us/library/ms733083(v=vs.110).aspx.

[43] Kim, D. S., Lee, J. M., Kwon, W. H., & Yuh, I. K. (2002). Design and

implementation of home network systems using UPnP middleware for networked

appliances. IEEE Transactions on Consumer Electronics, 48(4), (pp. 963-972).

[44] Anatomy of a SAML-Secured SOAP Message. Retrievd April 10, 2016, from

https://blogs.oracle.com/superpat/entry/anatomy_of_a_saml_secured.

[45] Fundamentals of WCF Security. Retrieved April 11, 2016, from

http://www.codemag.com/article/0611051.

[46] Types of Middleware. Retrieved January 12, 2016, from

http://apprenda.com/library/architecture/types-of-middleware/.

[47] Jing, Y., Lan, Z., Hongyuan, W., Yuqiang, S., & Guizhen, C. (2010, August).

JMeter-based aging simulation of computing system. In Computer, Mechatronics,

Control and Electronic Engineering (CMCE), 2010 International Conference

on (Vol. 5, pp. 282-285). IEEE.

[48] Zhang, L. J., & Zhou, Q. (2009, July). CCOA: Cloud computing open

architecture. In Web Services, 2009. ICWS 2009. IEEE International Conference

on (pp. 607-616). IEEE.

[49] Lar, S. U., Liao, X., & Abbas, S. A. (2011, August). Cloud computing privacy &

security global issues, challenges, & mechanisms. In Communications and

101

Networking in China (CHINACOM), 2011 6th International ICST Conference on (pp.

1240-1245). IEEE.

[50] Kaufman, L. M. (2009). Data security in the world of cloud computing.Security &

Privacy, IEEE, 7(4), (pp. 61-64).

[51] Bupe, P., Haddad, R., & Rios-Gutierrez, F. (2015, April). Relief and emergency

communication network based on an autonomous decentralized UAV clustering

network. In SoutheastCon 2015 (pp. 1-8). IEEE.

[52] Copeland, M., Soh, J., Puca, A., Manning, M., & Gollob, D. (2015). Microsoft

Azure and Cloud Computing. In Microsoft Azure (pp. 3-26). Apress.

[53] Belkin WeMo HOME AUTOMATION. Retrieved, January 24,2016, from

http://www.belkin.com/us/Products/home-automation/c/wemo-

homeautomation/#whyWemo.

[54] Ur, B., McManus, E., Pak Yong Ho, M., & Littman, M. L. (2014, April). Practical

trigger-action programming in the smart home. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems (pp. 803-812). ACM.

[55] Best Seller Online Store. Retrieved January 25, 2016, from

http://compareuyesn.bl.ee/reviews-for-bendable-desk-lamp-gunmetal-with-

adjustable-stem-table-lamp/.

[56] D-LINK. SharePortTM Mobile Companion DIR-505. Retrieved January 24, 2016,

from http://ca.dlink.com/products/access-points-range-extenders-and-

bridges/shareport-mobile-companion-2/.

[57] GitHub. WeMoWsdl. Retrieved December 2, 2015, from

https://github.com/sklose/WeMoWsdl.

