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Abstract

Assuming a bidirectional relay assisted network, we first study the problem of optimal

resource sharing between two transceiver pairs. One of the pairs, referred to as the

primary pair, owns the spectral resources while the other pair, called the secondary

pair, is considered to own the relay infrastructure. Assuming amplify-and-forward

relaying scheme and aiming to establish a cooperation between the two networks, we

study three different design problems in a single carrier scenario. In the first approach

we maximize the smaller of the secondary transceiver rates subject to two separate

constraints on the total powers consumed in the primary and the secondary networks

while providing a minimum data rate to the primary pair. In the second approach, we

replace the per network power constraint by a constraint on the average total power

consumed in both networks. The third approach combines the two aforementioned

methods to materialize spectrum leasing and sharing for the case when the primary

network is active with a certain probability. Then we investigate two different design

approaches to the multi-carrier scenario. The first approach relies on maximizing

the secondary network average sum-rate subject to two spectral power masks for the

two networks while providing a minimum sum-rate to the primary pair in a multi-

relay scenario. In the second approach, we replace the spectral power mask for each

network by a constraint on the total power consumed in that network. Different from

the previous studies, we further investigate the resource allocation problem between

several energy harvesting relay nodes such that a unidirectional communication link

is established between a pair of users and the harvested energy is optimally allocated

between the relays such that the overall throughput of the network is maximized.

xiv



xv

Assuming the availability of full knowledge of channel state information and that of

the energy packets, we maximize the throughput of the network under two sets of

constraints on the status of the battery. We then consider the problem of maximizing

the average throughput of the system, for the case when only the statistics of the

channels are available.
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Chapter 1

Introduction

1.1 Overview

During the last decade, there has been an astronomical growth in wireless network

market. The number of subscribers in all existing wireless technologies e.g., third

generation (3G), fourth generation (4G), code division multiple access (CDMA), het-

erogenous networks (HetNets) and etc., as well as their data-rate demand have mas-

sively grown. In order to have a sense of the order of the increase in the wireless

network market, we need to consider the number of smart phone devices that use

their platform to run social networking applications, e.g., Facebook, Tweeter and

etc., geo-location softwares, e.g., google maps, and networked games. Hence, mobile

operators and service providers need to grow their networks to address and meet their

costumers’ demand, while keeping their costs minimum. One of the major aspects of

the costs for service providers is energy. The growth in the size of networks and the

number of subscribers result in higher amount of consumed energy in such industries.

For instance, there existed 4 million base stations (BSs) in 2011, to cover areas where

mobile users were connected to the cellular networks. Each BS consumes, on average,

25 Mega Watt hour (MWh) per year. Moreover, the number of BSs in developing

1
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countries were doubled from 2007 to 2012 [4]. This shows how fast the size of the

mobile networks and their corresponding consumed energy in such networks increase.

Since the energy resources are limited and the trend of the increase in energy con-

sumption becomes drastically important, international community is unified to take

action. The reasons behind this action is to preserve the energy resources for future

generations and to limit the environmental problems caused by energy usage, e.g.,

global warming, air pollution, forest destruction, etc. The rising energy costs, carbon

footprint and the crisis about how to preserve energy for future generations led to

an emerging trend to address the efficient ways to use energy amongst network op-

erators and regulatory bodies, e.g., 3rd Generation Partnership Project (3GPP) and

International Telecommunication Union (ITU) [1,2]. This trend has opened up a new

direction for researchers called Green Communications which proposes an energy-

efficient platform for both the user equipment devices as well as the backbone of the

network. Green Communications, as a new research area, needs to address all issues

regarding the protocol layers that are associated with a communication network, e.g.,

physical layer, multiple access (MAC) layer, network layer and etc. Figs 1.1 and

1.2, show the power consumption in different key parts of a typical cellular network

and provide an insight into possible research areas to reduce the energy, or equiva-

lently power consumption of the network. There are four key trade-offs in a design

considering energy efficiency and performance of the network, namely deployment

costs, bandwidth utilization, achievable rates, and end-to-end average delay. Among

all promising energy aware technologies, e.g., efficient BS design, self-organizing net-

work, opportunistic network access or cognitive radios, cooperative relay networks

and HetNets, cognitive radios and cooperative relay networks have gain significant
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Figure 1.1: Power consumption of a typical wireless cellular network [1].

attentions among researchers. For instance, in most indoor or outdoor communica-

tions, where there is an obstacle between the BS and the mobile user, the signal can

merely penetrate the obstacle and the quality of the signal at the end user will be

degraded drastically. The conventional solution to such a problem is to increase the

BS power in order to let the signal penetrate the obstacle and carry the information

to the end user. However, it can be easily seen that this is a waste of energy at the

BS. A well-known promising energy-efficient approach to tackle this problem is to use

distributed wireless nodes as relays to provide an indirect link between the BS and

the mobile user with overall lower power consumption and more reliable communica-

tion. We should note that many power and energy concerns about cooperative relay

networks are still unanswered, and it needs more attentions to be addressed.
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Figure 1.2: Power consumption distribution in radio base stations [2].

1.2 Measuring Greenness

One may ask “what is the definition of green networks?”. How can we measure the

“greenness”of a network. The natural definition for “greenness” is to measure the

amount of greenhouse gasses that is released into air by a specific technology [5].

However, as the amount of greenhouse gasses that are released by telecommunica-

tion technologies is less than 1% which can be assumed to be negligible, one may

consider other factors in the definition, e.g., lower energy costs, increased battery life

time for equipments, replacing conventional energy resources with renewable energies

such as wind, solar and etc. Hence, it makes more sense if we use energy and power

savings and performance of wireless networks as the measure of “greenness”. Stan-

dard organizations such as Alliance Telecommunications Industry Solutions (ATIS)

and European Technical Standard Institute (ETSI) classified the energy efficiency of
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communication networks in the following categories: facility level such as data cen-

ters and high level systems, equipment level such as cell phones and network level

such as properties that assesses related issues such as capacity and coverage of the

network [6, 7]. A common factor that appears in all of the above categories more

frequently, Watt
date-rate

. This factor can be interpreted in two different view points. In

the first view point, one may fix the data-rate and minimize the power consumed in

the network. The second view point suggests to fix the total power consumed in the

network and then maximizes the data-rate. One may see these two approaches to be

equivalent. The latter approach is mainly used in this dissertation as the benchmark

for comparison between different design problems.

1.3 Cooperative Relay-Assisted Communications

The ever growing demand for wireless connectivity, anywhere, and providing such

a service with better quality to the costumers have been the challenges for opera-

tors since the last decade. For instance, increasing demands from users that have

smart phones with built-in applications such as Facebook, Youtube and etc, need

huge amounts of resources to be assigned to the users of such technologies while the

users of previous technologies are still needed to be serviced. As deploying more in-

frastructures to increase the resources that are needed in a network is expensive and

sometimes impossible (due to limited spectral, temporal and technological resources),

the operators need to redesign their networks in a way that the available resources

are used more efficiently. Note that, the link between a transmitter and a receiver in

wireless systems, called channel, has random quality. This means that the channel

specifications change during time. This makes the communication link between the
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the transmitter and the receiver less reliable since the channel quality can be degraded

drastically over some transmission time intervals. To tackle this problem, different

techniques such as time, space, frequency diversity have been proposed in the last

decades. These techniques basically try to send a copy of the transmitter’s message

signal at different time slots, in different frequency bands, or through different spa-

tial routes to the destination, respectively. It is less likely that all the copies of the

transmitted signal that goes through different resources faces bad quality, hence the

probability of successful delivery of the transmitted message becomes higher. Equiv-

alently, the reliability of the link between the transmitter and the receiver becomes

higher.

A more recent way to achieve spatial diversity is to use multiple-input-multiple-

output (MIMO) technique where the transmitter and the receiver are equipped with

multiple antennas. However, as the size and the cost of wireless modules are the main

limits in designing mobile nodes, e.g., in sensor networks or in cellular phones, placing

many antennas on a single device may not be practical. More recently, Cooperative

Relay-Assisted Communications has opened up an opportunity to form a distributed

antenna system. Such a distributed system benefits from the spatial diversity. In the

simplest form of such systems, there is a pair of transmitter and receiver that are as-

sisted with multiple distributed relays. The transmitter broadcasts its message signal

to the relays. The relays receive a copy of the signal transmitter by the transmitted

and rebroadcast it to the destination.

1.3.1 Unidirectional Communication

Unidirectional communications is a communication framework where the flow of in-

formation is from a specific node, called source, to another node (multiple nodes),
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Figure 1.3: Unidirectional relay-assisted communications [3].

called destination (destinations). In other words, only the source can send the in-

formation symbols to the destination/destinations. In unidirectional relay-assisted

communications, the source broadcast its message signal to the relays in a time slot.

In the next time slot, the relays broadcast a function of the received signal, in the

previous time slot, to the transceivers. Fig 1.3 shows the underlying communication

framework [3].

Many cooperative relay-assisted strategies have been proposed in the literature

based on different relaying protocols such as amplify-and-forward (AF), decode-and-

forward (DF), selective-relaying (SR), filter-and-forward (FF) and compress-and-

forward (CF). In AF relaying scheme, the relays simply scale the signal received from

the transmitter by a factor and rebroadcast the so-obtained signal to the receiver. In

DF relaying scheme, the relays decode the signal received from the transmitter and

they broadcast the decoded signal to the receiver. Note that in this scheme there

may occur error in decoding the transmitter signal. SR scheme selects a subset of
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the distributed relays to establish the cooperation between the transmitter and the

receiver. In FF method, each relay node is equipped with a finite impulse response

filter that is used to equalize the channel between the transmitter and that relay as

well as the channel between the relay and the receiver. In CF protocol, each relay

quantizes the signal it receives from the source and encodes the samples into a new

packet and rebroadcast it to the destination. In this scheme, the receiver can combine

the two observations, the one that is directly delivered by the source and the other

one that is delivered by the relays. More precisely, the relay employs source coding

with side information at the destination.

1.3.2 Bidirectional Communication

The concept of bidirectional communication was proposed by Claude Shannon in

1961 where two transceivers are willing to communicate with each other in both

directions at the same time [8]. In a bidirectional relay-assisted communication, two

transceivers aim to establish a communication link to exchange information through

the help of one or multiple relays. To realize simultaneous communication between

two transceivers, three types of bidirectional relaying protocols have been proposed

in the literature. The first and simplest approach is to consider four equal-length

temporally orthogonal time slots, where each pair of these time slots are considered

to establish a unidirectional communication, thereby allowing each user to convey

its information symbols to the other user in its corresponding pair of time slots.

The second approach is the so-called time division broadcast (TDBC) scheme, where

three time slots are required to exchange two information symbols between the two

transceivers. In the first and the second time slots, the two transceivers transmit their

information symbols to the relays in their assigned time slots, and then, the relays
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broadcast the processed version of the received signals to both transceivers. The last

and the most bandwidth-efficient approach is the multiple access broadcast (MABC)

bi-directional relaying scheme, where only two time slots are needed to establish a

two-way communication between the two transceivers. In the first time slot, the

two transceivers broadcast their information symbols to the relays, simultaneously.

The relays then rebroadcast a modified version of the receives signals from the two

transceivers over the next time frame. In next section, we describe different system

designs which benefit from cooperation between the nodes in a network while assuring

the greenness of the networks.

1.4 Cooperative Energy Efficient Technologies

Recently, research on energy efficient wireless networks gains a lot of attentions.

Among all such research efforts, cooperative relay networks and cognitive radio net-

works are of significant importance since they employ the concept of green communi-

cations in designing new wireless technologies while implementing intelligent structure

in their design. Beside energy efficiency, cognitive radios enable us to utilize the ra-

dio spectrum in a more efficient manner. Cooperative relays and cognitive radios

can hence provide significant improvements in throughput, coverage and reliability of

future wireless networks.

1.4.1 Green Communication via Cognitive Radio

Efficient bandwidth allocation has been always a crucial concern in wireless communi-

cations. Numerous studies have thus focused on this problem in the last decade [9–15].
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However, most of these studies have not considered directly the power/energy effi-

ciency in their design approaches. Based on the report released by Federal Com-

munication Commission (FCC) in 2002, it has been realized that the conventional

spectrum allocation is highly under-utilized [16]. Cognitive radio, as an enabling

technology, appears to be the most efficient concept which aims to find the licensed

spectral resources that are under-utilized and assign them to unlicensed users, intel-

ligently [17]. The question is why utilizing spectral resources efficiently is important

and how it can reduce power consumption? The answer lies under the work of Shan-

non on the tradeoff between the bandwidth and power. The capacity of a Gaussian

channel increases linearly with bandwidth, but only logarithmically with power. This

means that in order to reduce power, one should seek for more bandwidth [18]. Since

the spectral resources are limited, allocating the spectral resources optimally and

adaptively is the only choice to increase the capacity with a given power consumption

limit. While this concept is the building block of cognitive radios, every possible pa-

rameter measurable by a wireless node or network is taken into account in the general

definition of cognitive radios so that the network intelligently modifies its function-

ality to meet a certain objective [19]. One of these objectives can be power saving.

It has been shown in recent works that the concept of cognitive radio can reduce the

energy consumption, while maintaining the required quality-of-service (QoS), under

various channel conditions [20].

1.4.2 Relay Cooperation to Deliver Green Communications

In infrastructure-based wireless networks, expanding the coverage of a BS to larger

areas is a vital issue. Considering the channels random nature and their properties

such as small scale/large scale fading, path losses and shadowing effects, providing
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coverage for distant users via direct transmission becomes very expensive in terms

of required power and energy consumption. Another drawback of expanding the

coverage of a BS by increasing its transmission power, is high levels of interference

to nearby users and BSs. Recently, cooperative communication techniques as an

enabling technology for distributed MIMO systems in order to extend the coverage,

capacity and reliability of a communication channel, have been considered in different

studies [21]. Cooperative techniques also combat shadowing by covering spatial holes.

This means that when there is no direct link between the transmitter and the receiver,

the relay will establish another link to let the transmitter send its information to the

receiver. Moreover, relaying techniques have been proposed to extend the battery

life of user devices, which is the first step towards green wireless networks. The

authors in [22] showed that relay assisted communication consumes less energy than

direct communication. Delivering green communication via cooperative techniques

can be achieved by two different approaches. One is to deploy fixed relays in different

locations in the network to help users have access to the network constantly which

results in less power consumption. The other technique is to exploit the users in the

network as relays.

Fixed Relays

The path loss of a channel, as a known characteristic of the channel, is an interesting

property since the transmitted signal from a BS fades away in a specific distance from

the BS. This property makes the spectral resources reusable in different locations in a

network. This leads to having the chance to deploy more BSs with lower transmitting

powers as well as cover larger areas. The authors of [23] show that in a specific scenario

in additive white Gaussian noise (AWGN) where the channel path loss exponent is
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4, the number of BSs can be increased by a factor of 1.5 in the same area of the

network while reducing the transmitting power of the BSs by a factor of 5. Indeed,

by increasing the density of BSs, the overall energy consumption of the network

becomes smaller. In fact, these features of fixed distributed relay network make it a

good candidate for delivering green communication.

User Cooperation

User cooperation as a well-known promising technique to increases the overall data-

rate and robustness of a network, i.e., the achievable rates are less sensitive to channel

variations, is introduced in [24]. In [25], a game-theoretic approach is proposed to

offer to each user an incentive to act as relays when they are idle, and it is shown that

user cooperation has the potential of simultaneously improving users bits-per-energy

efficiency under different channel conditions. Hence, this new approach can be a

promising technique to increase the system performance in terms of energy efficiency

in future wireless mobile networks.

1.5 Motivation and Problem Statement

Energy efficiency and costs of implementation have always been the challenges in

deploying wireless networks. Although deploying more BSs in an area results in

providing services for more users and can lead to consume less amount of energy

in the whole network, it can be costly for the network operators, as deploying each

BS is expensive. Moreover, it may lead to a more complex network structure such

that the overhead of the interaction among the BSs can be significant. Efficiently

allocating the available spectral resources such that more users can have access to the

network is another solution to improve energy efficiency. Such an approach has been



13

considered in cognitive radio networks in the last few years and promising results have

been obtained. Another possible solution, that is yet to be studied, is to deploy a

number of distributed low power relays, instead of deploying a network of BSs which

are expensive and consume more power than a similar relay network, and design the

modified relay-assisted network to obtain an efficient spectral, temporal and power (or

energy) allocation strategy. In this dissertation, we consider the problem of spectrum

leasing and resource sharing between two bidirectional relay networks in both single-

and multi-carrier schemes. Our motivation in considering this problem is to enable

two networks to cooperate, thereby allowing the primary network (i.e., the network

which owns the spectral resources) to extend its coverage and/or to consume less

power. In return, the secondary users exploit the spectral resources of the primary

network to serve its transceivers. We further study the problem of resource allocation

for an energy harvesting cooperative relay network under different assumptions on

the availability of channel state information (CSI) and on the knowledge of harvested

energies. Our motivation in considering this problem is to enable a self-power supplied

relay network to extend the range of a unidirectional communication between a pair

of users and/or to increase the throughput of the network. More specifically, the

problems that are studied in this dissertation are summarized below.

1. In the first and the second proposed approaches, we consider a secondary net-

work and a primary network in a single-and a multi-carrier scenarios. The

secondary network can help the users in the primary network to achieve higher

data-rates by encouraging them to use the relay infrastructure, communicate

with each other. In exchange for this cooperation, the secondary network will

have the permission to efficiently utilize the spectral and temporal resources
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of the primary network for its own users. Moreover, considering different con-

straints on the power consumption of different parts of each network (which is

a measure of greenness), we aim to design the parameters of the secondary net-

work as well as those of the primary network such that the users in the primary

network are guaranteed to have a minimum achievable data-rate. Furthermore,

the users in the secondary network can achieve maximum achievable data-rate

as a reward for helping the users in the primary networks. We study these ap-

proaches for different system setups and, for each case, provide simple solutions

to design the parameters of the two networks.

2. The third proposed approach is to consider two users in a primary network that

are willing to communicate with each other using a distributed relay network.

We assume that the relays are equipped with energy harvesting modules such

as solar panels, wind turbines and etc. Hence, the relays can harvest and

store energy from different sources in a specified battery for future use. Then

we propose an energy-harvesting-power-efficient design approach such that the

relays can maximize the throughput of the network. We note that this approach,

considers the concept of harvesting renewable energies and designing a power-

efficient network which both lie under the umbrella of green wireless networks.

1.6 Methodology

For both single-and multi-carrier bidirectional communication schemes, we develop

two relay-assisted system models to tackle the problem of inefficient resource al-

location in conventional wireless networks by employing the concept of cooperative

energy/power aware design in the next generation networks in our design approaches.
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We also develop a different system model for a single-carrier unidirectional relay-

assisted network where the relays are equipped with energy harvesting modules to

tackle the problem of optimal power allocation to the relays for different scenarios.

In our first design approach, we study and model the problem of resource shar-

ing between two pairs of users, namely the primary pair and secondary pair, in two

bidirectional relay-assisted networks in a single-carrier scenario. We formulate the

corresponding resource sharing problems as the maximization of the smaller of the

data-rate of the two secondary transceivers under individual per network power con-

straints or under a total power constraint to address power efficiency, while the smaller

of the rates of the primary transceivers is guaranteed to be above a given threshold.

Aiming to optimally calculate the optimal beamforming coefficients of each relay and

their corresponding consumed power, we obtain a semi-closed form solution for the

case of per network power constraints. A simple line search solution is also proposed

for the case when there is a constraint on the total power consumed by the two net-

works. We further incorporate the concept of spectrum sensing in order to allocate

the available spectral resources more efficiently.

In the second design approach, we study and model the problem of resource shar-

ing between two pairs of transceivers, a primary pair and a secondary pair, in a

bidirectional multi-carrier relay-assisted scenario. Aiming to optimally calculate the

optimal beamforming coefficients of each relay over different subcarriers and their cor-

responding consumed power, we maximize the average sum-rate of the two secondary

transceivers under per-network power spectral masks or under a per-network total

power constraint. In the case of per-network power spectral masks, we simplify the

optimization problem into a linear programming problem where the solution to that
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problem can be easily obtained using convex optimization solvers. We also propose

two alternating convex search solutions for the case where there exists a per-network

total power constraint, for multi-relay and multi-relay scenarios. We emphasize that

this is not a simple generalization of the single-carrier scenario and more challenges

appear since the spectral resources are also needed to be allocated between the users

in each network efficiently.

Finally, we study the resource allocation in a unidirectional relay-assisted network

where there exists one pair of users that are willing to communicate with each other

through the help of the relays. Assuming that the relays are equipped with energy

harvesting modules, we formulate the problem of maximizing the data-rate of the two

users over a specific number of time frames while optimally distributing the harvested

energy among the relays. We prove that such an optimization problem is convex with

respect to the total power consumed by all relays over each time frame. Assuming

the knowledge of full CSI, we obtain the optimal powers that are to be allocated to

the relays. We further solve the problem of maximizing the average data-rate of the

two users for the case where the statistics of the channels are known. Last but not

least, we obtain the total power that are to be allocated to the relays for the case

where there is a temporal correlation between the coefficients of a channel using the

proposed adaptive channel estimation and power allocation algorithm.

1.7 Contributions

We now summarize our contributions to the stated problems.

1. Assuming a bidirectional relay-assisted communication scheme, we develop a

data model for optimal spectrum leasing and resource sharing between two
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pairs of transceivers with different priorities, in a single-carrier scenario. To the

best of our knowledge, this is the first attempt to consider such a scenario.

2. We obtain the optimal relay beamforming coefficients and the portion of the

time that are to be assigned to each pair such that the transceivers in each

network can simultaneously communicate with their peer user.

3. We further generalize the aforementioned data model for the multi-carrier sce-

nario, under different sets of constraints, in order to obtain the optimal relay

beamforming coefficients and the portions of the time, over different subcarrier,

that are to be assigned to each pair.

4. Assuming a unidirectional communication scheme, we also develop a new model

to consider the problem of optimal power allocation among a number of relay

assisting nodes such that they can establish a reliable link between a pair of users

for the case where the relays are equipped with energy harvesting modules.

1.8 Publications

The results of these studies have been published/submitted in several prestigious

journals and conferences as we summarize below.

1. A. Gavili and S. Shahbaz Panahi, “Optimal Spectrum Leasing and Resource

Sharing in Two-Way Relay Networks,” IEEE Trans. Signal Process., vol.62,

Oct., 2014.

2. A. Gavili and S. Shahbaz Panahi, “Optimal Resource Sharing and Network

Beamforming in Multi-Carrier Bidirectional Relay Networks,” accepted for pub-

lication, IEEE Trans. Signal Process., July 1st, 2015.
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3. A. Gavili and S. Shahbaz Panahi, “Optimal Power Allocation and Network

Beamforming in Collaborative Relay Networks With Centralized Energy Har-

vesting,” to be submitted to, IEEE Trans. Signal Process., July, 2015.

4. A. Gavili and S. Shahbaz Panahi, “Optimal Resource Sharing and Network

Beamforming for Bidirectional Relay Networks,” International Workshop on

Signal Processing Advances in Wireless Communications (SPAWC), vol.62, Jun.,

2014.

5. A. Gavili and S. Shahbaz Panahi, “Optimal Spectrum Leasing and Network

Beamforming for Two-Way Relay Networks,” IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), May, 2014.

1.9 Outline of The Dissertation

In this dissertation, we focus on the optimal resource allocation and the greenness of

the proposed networks. The remainder of this dissertation is as follows: In Chapter

2, we provide a review on the literature of optimal resource allocation strategies in

relay-assisted networks and green wireless networks. In Chapter 3, we study the

problem of resource sharing between two bidirectional relay networks in a single-

carrier scenario. For such a network model, we propose a semi-closed form solution

in the case of individual per network power budget. For the case of imposing a

constraint on the total power consumption, we propose a simple line-search solution

with low complexity. We also incorporate the spectrum sensing concept in the case of

total power constraint and show that how the overall rate of the secondary network

would be increased. In Chapter 4, we study the problem of resource sharing between

two bidirectional relay networks in a multi-carrier scenario. We propose a linear
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programming solution in the case of imposing individual power spectral masks on

each network. We further study the case where there are two power constraints

on the total power consumed in each network. We show that this problem is not

convex and may not be amenable to a low computationally complex solution. We also

propose sub-optimal solutions for single-relay and multi-relay scenarios and provide

two algorithms to obtain the parameters of the two networks. Chapter 5 is dedicated

to the study on the optimal power allocation to a set of relay nodes, that are connected

to a single energy harvesting battery module, to assist a pair of users to establish a

communication link between them. We formulate the problem such that the overall

throughput of the users is maximized under several constraints on the status of the

battery and the assumption that full knowledge of the channel state information for

all links are available. We prove that such a problem is a convex optimization problem

with respect to the total power consumption of the relay nodes over each time frame.

We further extend the study to consider the cases where partial information on the

channel state information is known. In Chapters 6, we present the concluding remarks

as well as the possible research directions.

1.10 Notation

We use E{·} to represent the statistical expectation. Matrices and vectors are rep-

resented by uppercase and lowercase boldface letters, respectively. Transpose and

Hermitian (conjugate) transpose operations are represented by (·)T and (·)H , respec-

tively. The notation I stands for the identity matrix, diag(a) denotes a diagonal

matrix with the elements of the vector a as its diagonal entries, and ⊙ represents

Schur-Hadamard (element-wise) vector product.



Chapter 2

Literature Review

In this chapter, the recent studies in relay-assisted and energy efficient wireless net-

works are discussed. Throughout this review, we concentrate on similar research

results regarding resource sharing/leasing/allocation in conventional and cooperative

cognitive relay-assisted networks, unidirectional and bidirectional communications

in distributed relay networks and finally, designing green communications in relay-

assisted networks. In our design proposal we assume that all channel state information

(CSI) for all links are known perfectly1, unless otherwise stated. Cooperative com-

munication schemes have been proposed extensively in literature [26–28]. In some

studies, the authors assume that the CSI in their design approaches is not known for

any nodes in the network [29]. However, in some other studies it is assumed that the

CSI is known only at the receiver. For instance, the authors of [30] and [31] studied

non-coherent amplify-and-forward relaying scheme and distributed space-time coding,

respectively. Finally, perfect knowledge of CSI into account in some studies is taken,

such as the decode-and-forward in [30] and [32] and the coded cooperation in [28]. We

will consider perfect channel state information knowledge in our proposed network

1Channel estimation and estimation error are out of the scope of this proposal

20
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models, unless otherwise stated, and discuss why this assumption is essential.

2.1 Resource Allocation in Relay Networks

Relay-assisted networks, as a promising technology to increase the bandwidth effi-

ciency, reliability and decrease the total consumed power in the whole network, has

gained significant attention in recent years. Allocating the available resources in such

networks to different users is of interest for many researchers. Note that the available

resources, that are needed to be allocated optimally in such networks, are spectral

resources such as RF spectrum, temporal resources such as dedicated time slots to

users to transmit their information symbols, spatial resources such as utilizing similar

radio bands in different locations, physical resources such as relay infrastructures, and

energy resources such as energy harvested from fuels or renewable energies resources.

To address how a network can allocate these resources optimally, many studies have

been done in the literature. In the following subsections, we summarize the results of

such studies.

2.1.1 Conventional Relay-Assisted Networks

In conventional networks, the users in each network are authorized by the network

operator to use its infrastructure in order to communicate with other users in many

forms such as phone call, internet access and etc. In other words, the users are

promised to have some services with different qualities anytime they need the services.

Deploying relay-assisted wireless nodes in conventional networks is a new key idea that

has attracted many attention in past few decades to extend the coverage, quality of
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service and the reliability of the communication links as well as increase the number

of users in such networks. Deploying a large number relays in a conventional network

may cause more power consumption in the whole network, however, one can optimize

the new structure of the network such that the power consumption of the whole

network is minimized. In the following, we address the recent works on this topic.

Single Relay

In [33], the authors consider a single-relay AF scenario where several pairs of users

wish to communicate with each other. The authors use game theory to analyze the

relays power allocation among the signals of each user. The interaction among the

users is modeled as a bargaining problem, where users negotiate with each other to

set the relay powers. This problem has been solved for centralized and distributed

cases. Also, a generalization of the proposed game-theoretic-based power allocation

scheme and its distributed implementation has also been proposed to address the

multi-user multi-relay scenario. The authors of [34] consider a multi-user scenario

and design the joint power allocation, subcarrier allocation and coupling for orthogo-

nal frequency-division multiple access (OFDMA) based uplink transmission using AF

relaying scheme. The authors formulate sum-rate maximization problem and solve

the problem in two steps. As the first step, a subcarrier allocation and coupling prob-

lem with a given power allocation for allocated subcarriers is considered. Then, the

optimal power allocation problem is solved using a dual decomposition technique. Ad-

dressing subchannel allocation/pairing as well as joint source-relay power allocation,

the authors of [35] propose an optimal adaptive resource allocation scheme for the
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OFDM based multi-destination regenerative relay system. A more practical down-

link OFDM-based cooperative network is considered in this study, where the relay

is used to help the source (base station) to communicate with multiple destinations

(users) rather than a single destination. In [36], the authors consider a cellular based

multihop OFDMA broadcast network, where a source transmits signals to multiple

destinations with the help of an AF relay node. The so-called proportional fairness

(PF) concept is adopted in this paper to address the transmission rate fairness among

the destinations. Considering PF scheme, subcarrier allocation problem is formulated

as a mixed integer programming problem. The article [37] proposes a symmetric sys-

tem model consisting of two user nodes and an access point (AP). It assumes that

each user can act as a source as well as a potential relay. In this model, each user has

the opportunity to share its resources (e.g., bandwidth and power) with other users

and seek the other users’ cooperation to relay its data to a specific destination. This

scheme achieves cooperative diversity. The degree of cooperation depends on how

much bandwidth the relay node is willing to contribute to the source to transmit its

data. It is proved that such a problem can be modeled as a two-person bargaining

problem. The authors then propose a cooperative Nash bargaining solution (NBS),

in which if a certain condition is satisfied, users will cooperatively work, and each will

share a certain fraction of its bandwidth for data relaying; otherwise, they will choose

to independently operate. In [38], the authors consider power allocation problem in

an AF relaying scheme and employ the concept of buyer and seller to jointly real-

ize the benefit of source and relay node in a symmetric bargaining problem. In this

two-person bargaining game, the source acts as a buyer who wants to buy data-rate

from the seller, which is the relay, at some fixed price. Throughout this game, the net
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utility of the source is the data-rate obtained by maximal ratio combining technique

minus the data-rate that it buys from the relay. Such a problem has been proved to

have a unique and Pareto optimal solution. In this paper, the authors consider one

relay to cooperate with the source depending on the offered price and channel quality.

Multi-Relay

The authors of [39] consider the optimal power allocation between a source and mul-

tiple distributed relays. The authors aim to maximize the end-to-end achievable rate

of such cooperative scenario using AF relaying protocol. This study considers the

structural properties of the optimal power allocation in MIMO cooperative networks

with per-node power constraints. In [40], a distributed ascending-clock auction-based

algorithm is proposed for multi-source power allocation through the help of several

cooperative relay nodes. More specifically, each source node sends its optimal power

demand to each relay node in response to the prices announced by the relay nodes. It

is proven that the proposed distributed algorithm enforces truthful power demands

and converges quickly to the unique Walrasian Equilibrium (WE) allocation that max-

imizes the social welfare. In addition, the proposed algorithm is shown to maximize

transmitters’ sum-rate which coincides with centralized power allocation based on

convex optimization problems. Article [41] studies joint bandwidth and power alloca-

tion for wireless multi-user networks with and without relaying. The joint bandwidth

and power allocation is proposed to address three different design approaches, such

as maximizing the sum-rate of all users, max-min rate balancing approach and min-

imizing the total power consumed by all users. The corresponding joint bandwidth
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and power allocation problems are formulated and it is easy to show that such opti-

mization problems are convex and that there are several efficient algorithm to solve

convex problems. In [42], the problem of jointly optimizing the source power alloca-

tion and relay beamforming to improve the overall network performance. Two design

problems are considered in this paper. The first problem is to maximize the minimum

SINR among all users (max-min SINR balancing problem) subject to the constraints

on individual and total transmitted powers. The second problem is to minimize the

transmission power consumed by all sources and relays while guaranteeing SINR re-

quirements of all users. In [43], the authors consider a relay-assisted network which

consists of two single-antenna transceivers and several single-antenna relay nodes.

The authors aim to minimize the total consumed power subject to two constraints on

the transceivers’ received signal-to-noise ratios (SNRs). In the second approach, they

propose an SNR balancing technique where the smaller of the two transceiver SNRs

is maximized while the total consumed power is kept below a certain power budget.

The achievable rate-region under joint distributed beamforming and power allocation

is studied in [44]. The authors obtain the achievable beamforming rate region for a

two-way communication network consisting of two transceivers and several distributed

relays. Assuming that the relay beamforming weights as well as the transceiver trans-

mit powers are the design parameters, this region is characterized under a constraint

on the total (network) transmit power consumption. Then, a sum-rate maximiza-

tion approach to obtain jointly optimal relay beamforming weights and transceiver

transmit powers is proposed. Using joint optimal power control and beamforming

design, the authors of [45] study and compare the performance of two well-known
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bidirectional network beamforming schemes, e.g., the multiple access broadcast chan-

nel (MABC) and the time division broadcast channel (TDBC) protocol. The authors

design such a network through minimizing the total power consumed in the whole

network subject to quality of service (QoS) constraints such as SNR and rate, for

the two cases with and without a direct link between the two transceivers in TDBC

model. The corresponding power minimization problems are carried out over the

transceiver transmit powers as well as relay beamforming weights, thus resulting in a

jointly optimal power allocation and beamforming criterion.

2.1.2 Cognitive Relay-Assisted Networks

Rapid growth of the number of users in wireless networks and limited spectral re-

sources, inspired researchers to revise the conventional fixed resource allocation scheme

into a more dynamic ones. Since the spectral resources in conventional networks are

not allocated efficiently, thus many studies have been conducted to find vacant spectra

in different time instances and locations, and assign them to new users that need to

have access to the network. The users that have the licence to use the spectrum and

they do not use their spectral resources all the time are called primary users (PU),

while the new users that aim to utilize the spectral opportunities that are vacant are

called secondary users (SU). The cognitive radio technology enables the users to [46]:

- Determine which portions of the spectrum are available and detect the presence

of licensed users when a user operates in a licensed band (spectrum sensing).

- Select the best available channel (spectrum management).

- Coordinate access to this channel with other users (spectrum sharing).
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- Vacate the channel when a licensed user is detected (spectrum mobility).

Among all, three different approaches have been studied recently. The first ap-

proach is opportunistic spectrum access, where the SUs search for spectral resources

of the PUs in time and location, and whenever they find the spectrum vacant, they

can start their communication with each other. However, if the PUs want to use

their spectral resources, the SUs must vacate the spectrum that they use and try to

find another opportunity to communicate. The second approach is spectrum sharing,

where there is a cooperation between the PUs and SUs, meaning that the PUs allow

the SUs to use their spectral resources for a specific amount of time. In exchange for

this cooperation, the PUs have the authority to use the SUs as a relay to help them

if they need to communicate with each other. The last approach is spectrum leasing,

meaning that the PUs lease a part of their resources to the SUs for a fixed cost per

use of resources. In what follows, we discuss relevant recent studies conducted on

relay-assisted cognitive radio networks.

Resource Allocation

In [47], the authors propose the optimal power allocation between the users in a

cognitive full-duplex relay assisted network. The optimal power allocation has been

carried out to minimize the outage probability of the SUs, and then derive the outage

probabilities of the SU in the noise- and interference-limited environments. Adding to

this, they also propose an outage-constrained power allocation scheme to reduce the

overhead of the feedback in the network. This means that the instantaneous channel

state information (CSI) for the link between the PUs and SUs is not needed to be
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known in advance. The authors of [48] study the problem of power allocation con-

sidering interference constraint for OFDM based cognitive relay network. The design

problem in this paper is to maximize the average data rate for the SUs considering

power constraint on all subcarriers. The conventional solution for such a set up is

the so-called water-filling scheme where more power is allocated to the subcarrier

with the best channel quality and less power is allocated to the subcarrier with worst

channel quality. However, allocating more power to the best subcarriers may increase

interference to the PUs in that subcarrier. Thus the power allocation problem is two

fold: reduce interference to the PU as well as increase the data transmission rate of

SU links. The authors in [49] consider a multiple relay scheme for MIMO two-way

relay cognitive radio networks with AF strategy. The authors have formulated an

optimization problem to maximize the secondary network sum-rate by taking into

account the power budget of the system and the interference level tolerated by the

PUs. They derive the optimal solution expression of the power allocation problem.

Note that there are two general paradigms where the primary and secondary users co-

exist, namely the underlay and overlay paradigms. The underlay paradigm mandate

that concurrent primary and secondary transmissions may occur only if the interfer-

ence generated by the secondary transmitters at the primary receivers is below some

acceptable threshold. Rather than determining the exact interference it causes, a

secondary user can spread its signal over a very wide bandwidth such that the inter-

ference power spectral density is below the noise floor at any primary user location.

These spread signals are then despread at each of their intended secondary receivers.

The premise for overlay systems is that the secondary transmitter has knowledge of

the primary users transmitted data sequence. Knowledge of a primary users data
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sequence and/or codebook can be exploited in a variety of ways to either cancel or

mitigate the interference seen at the secondary and primary receivers. The problem

of spectrum allocation problem has been considered in [50]. This paper considers a

cognitive relay network, in which multiple pairs of SUs share the unlicensed spectrum

among themselves using overlay transmission mode and for each SU pair, the two

ends exchange data via a common relay node that senses the spectrum and allocates

the unused bandwidth. A multi-object auction problem has been formulated to allo-

cate the spectrum between the users and a mechanism of sequential first price auction

and sequential second price auction has been introduced to solve such problem. For

each mechanism, the authors obtained the optimal bidding strategy and analyzed it.

In [51], the authors analyze the performance of cooperative spectrum sharing in a

single-carrier relay-assisted system using DF relaying protocol. Two relay selection

schemes, namely a full CSI-based best relay selection and a partial CSI-based best

relay selection, are proposed under two constraints on the users in the network, e.g.,

the peak interference power at the primary user and the maximum transmit power at

the secondary user. The authors of [52] present an optimal power allocation scheme

and relay selection strategy in a relay-assisted cognitive radio network where a pair

of SUs communicate with each other with the help of the relays. The SUs are as-

sumed to share the spectrum with a PU and each node is assumed to be equipped

with a single transmit/receive antenna. Using an interference limited approach, they

consider joint relay selection and optimal power allocation among the SUs achieving

maximum throughput under transmit power and PU interference constraints. The

problem of joint multiple-relay-assignment and power-allocation (JRAPA) has been

investigated in [53]. The authors formulate a constrained optimization problem for
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JRAPA in shared-band AF relaying in a cognitive radio set up. They proved that the

proposed optimization problem is a non-convex-mixed-integer nonlinear optimization

problem and it is generally NP-hard. An efficient greedy iterative algorithm has been

proposed in order to jointly assigns the relays and assign the obtained powers to the

SUs while satisfying the interference constraint on the primary network.

Resource Leasing

The problem of spectrum leasing where the SUs are used as relays for the primary

users has been studied in [54]. Considering that the primary network is operating

at a fixed target rate in a lease contract with the primary network, the problem

of minimizing the outage probability of the primary network has been investigated.

Meanwhile, a spectrum sharing policy that maximizes the outage capacity of the

SUs has been proposed. Article [55] proposes an energy-efficient resource allocation

algorithm to minimize the total average transmission power of SUs in a cognitive

relay-assisted network. The proposed optimization problem in this work is a joint

time slot scheduling, relay selection and power control algorithm to minimize the total

average transmission power of SUs, while guaranteeing the minimum rate requirement

of PUs and SUs. Authors in [56] studies a spectrum leasing scheme based on one-path

alternate relaying and two-path successive relaying that is developed in the multi-user

scenario. The primary system has the incentive to lease its licensed spectrum with

the SUs. In exchange, the SUs will help the primary network whenever they want.

In this paper, the SU that can guarantee the primary rate is selected before the data

transmission and the outage probabilities of primary and secondary systems has been

analyzed. Reference [57] studies a cooperation-based spectrum leasing model where
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primary users grants some spectral resources to the secondary users in exchange for

cooperation. In this study, SUs are assumed to act as relays to help the PUs, then

the SUs may be given an access to use the spectrum bands of the PUs to transmit

information symbols. Article [58] proposes a framework in which secondary terminals

are granted the permission to use a given spectral resource by the incumbent primary

users in exchange for cooperation. The rationale is that the primary nodes will be

willing to lease their spectral resources for a fraction of time if, in exchange for this

concession, they will benefit from SUs infrastructure, thanks to cooperation with the

secondary nodes. In turn, the secondary nodes have the choice about whether to

cooperate or not with the primary users on the basis of the amount of cooperation

required by the primary users and the corresponding fraction of the time leased for

secondary transmissions.

2.2 Energy/Power Efficiency in Relay-Assisted Net-

works

Energy consumption in wireless networks is closely related to their radio resource

management schemes [5]. Allocating radio resources optimally and harvesting energy

from variety of resources lead to a more energy efficient wireless network [59–65].

In [66], the authors consider the problem of optimal packet scheduling in a single-

user energy harvesting wireless communication system, where both the data packets

and the harvested energies are modeled to arrive at the source node randomly. The

goal of this study is to adaptively allocate the rate of the user according to the traffic

load and available energy, such that the time by which all packets are delivered is
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minimized. Assuming that the energy arrival times and harvested energy amounts

are known a-priori, two different scenarios have been proposed. As the first scenario,

it is assumed that all bits at the transmitter are ready for transmission. In the second

scenario, the case where packets arrive during the transmissions, with known arrival

times and sizes is investigated. The authors of [67] consider a pair of transceivers

where the transmitter has the ability to harvest energy from environment. The prob-

lem of throughput maximization in a specific amount of time as well as minimization

of the time (or delay) by which the transmission of a specific number of bits is com-

pleted, is considered in this study. The authors solve the aforementioned problems

under deterministic (offline) and stochastic (online) knowledge of energy arrivals and

signal packets. The problem of maximizing the throughput of a single user energy har-

vester node via energy allocation over a finite horizon of time slots has been targeted

in [68]. Considering the fact that the channel SNRs and the amount of the harvested

energies change over different time slots, the authors study the problem of throughput

maximization and the corresponding optimal energy allocation problem, using some

properties such as concavity and monotonicity in their design problem. The authors

in [69] study two-hop transmission in the case of energy harvesting nodes. The focus

center of this study is on a two-hop network composed of an energy-harvesting source,

an energy-harvesting relay and a destination. The energy harvesting process at each

node is modeled as a packet arrival process, such that each energy packet of a random

amount arrives at a random time instant. Their focus is on offline algorithms, that

is, the instants and the amounts of random energy packet arrivals are assumed to be

known. The problem of maximizing the total amount of data that can be transmitted
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to the destination within a specific amount of time is considered in this paper. Ar-

ticle [70] addresses the problem of throughput maximization in an energy-harvesting

two-hop amplify-and-forward relay network. The authors obtain optimal policies for

transmission powers of the relay and the transmitter for two cases, namely non-causal

knowledge of the harvested energy and that of the channel coefficients in a fading en-

vironment as well as causal knowledge of such parameters. An effective algorithm

has been proposed to solve the power allocation problem in the non-causal (offline)

case, while in the causal (online) case, a sub-optimal Markov decision process (MDP)

has been applied to such a problem. The authors solve the resulting optimization

problem using only causal knowledge of the fading and the harvested energy.



Chapter 3

Optimal Spectrum Leasing and
Resource Sharing in Single-Carrier
Setup

We study the problem of optimal resource sharing between a high-priority (called

primary) transceiver pair and a low-priority (secondary) transceiver pair. The two

transceivers in each pair wish to establish a two-way communication using the relay

infrastructure. In our study, we assume that the primary pair owns the spectral re-

sources, while the secondary pair owns the relay infrastructure. Moreover, we assume

that there is no direct link between the primary transceivers, hence establishing a

connection between the primary pair through the relay infrastructure is inevitable.

As such, a cooperation scheme between the two networks is needed in order to allow

the primary pair exploit the relays to guarantee a connection between its transceivers.

In exchange for this cooperation, the primary pair allows the secondary pair to use

the primary spectral resources for a specific amount of time. We thereby consider

the problem of maximizing the smaller of secondary transceiver average rates, while

preserving a minimum rate for the primary pair. Aiming to optimally calculate the

34



35

design parameters of the primary and secondary networks, we study three different ap-

proaches. In the first approach, we maximize the smaller of the secondary transceiver

average rates subject to two separate constraints on the total power consumed in

the two networks, while guaranteeing a minimum rate for each of the two primary

transceivers. We prove that in this case the original optimization problem splits in

two separate sub-problems. We simplify each sub-problem into a one dimensional

optimization problem and show that it has a unique solution, which can be obtained

in a semi-closed form. In the second approach, we consider a constraint on the total

power consumed in both networks. In this case, we simplify the optimization problem

to a simple line search with low complexity. In our third approach, we use the results

obtained from the second approach to devise spectrum leasing technique for the case

when the primary network is not active all the times, i,e., it is active with a certain

probability. The contributions of this chapter can be summarized as listed below:

• We study and model the problem of resource sharing between two bidirectional

relay networks under total and per network transmit power constraints.

• We formulate the corresponding resource sharing problems as the maximization

of the smaller data rate of the two secondary transceivers under individual per

network power budget or under a total power constraint, while the smaller rate

of the primary transceivers is guaranteed to be above a given threshold.

• For such setups, we show how the corresponding resource sharing problems

can be simplified such that parameters of each network can be obtained in a

distributed manner.
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3.1 System Model

We consider a cooperative communication scheme consisting of two transceiver pairs

and nr relay nodes. The two transceivers in each pair wish to exchange information

with the help of the relays. The two pairs employ the relay nodes in temporally

orthogonal time intervals. One of the transceiver pairs, referred to as the primary

network (or primary pairs), owns the spectral resources, and a minimum rate between

its transceivers has to be guaranteed. The other transceiver pair is assumed to be

the secondary pair, meaning that they are allowed to communicate using the spectral

and temporal resources of the primary network in exchange for helping the primary

transceivers achieve a required minimum rate. It is assumed that the secondary

network owns the relay infrastructure. Therefore, a cooperation scheme should be

established between the two networks to guarantee the rate demand of the primary

transceivers, while maximizing the date rate between the secondary pairs. In order to

establish a cooperation between the primary and the secondary networks, the primary

transceiver pair aims to let the secondary transceivers achieve the highest possible

rate without violating their own minimum rate constraint. We assume that there

is no direct link between the transceivers in each pair and that the only way for

them to exchange data is to exploit the relays. Note that even if there is a direct

link between the two transceivers, the transceivers cannot benefit from the direct

link in an multiple access broadcast channel (MABC) based bidirectional relaying

as they cannot receive and transmit at the same time. The only way to exploit

such a direct link is to use a TDBC two-way relaying scheme. The time division

broadcast channel (TDBC) scheme however requires three time slots to exchange

two information symbols between the two transceivers, and as shown in [45], this
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scheme can incur significant performance loss, in terms of the data rate, if the direct

link is not strong enough. The primary transceivers PTRX1 and PTRX2, transmit

their information symbols, s1 and s2, with transmit powers p1 and p2, respectively.

Moreover, the secondary transceivers STRX1 and STRX2, transmit their symbols,

s3 and s4, with powers p3 and p4, respectively. All the transmitted symbols are

considered to be zero-mean, independent random variables with average powers equal

to 1, i.e., E{|s1|2} = E{|s2|2} = E{|s3|2} = E{|s4|2} = 1.

The problem of joint distributed beamforming and power control for time-asynchronous

two-way relay networks has been studied in [71–76]. In these studies, it is assumed

that the propagation/relaying delay for each relay could be different from that of the

other relays. As a result, the signal arrival time from one transceiver to the other one,

corresponding to each relay, could be different from those for the other relays. As

shown in these studies, in such time-asynchronous two-way relay networks, the end-

to-end channel can be viewed as a multipath channel which produces inter-symbol

interference at the two transceivers. Based on this model for a single-carrier two-way

relay network, under a total power constraint, a min-max mean squared error (MSE)

approach to design jointly optimal transceiver power control, post-channel equaliza-

tion, and decentralized beamforming leads to a relay section scheme where only relays

which correspond to one of the channel taps are turned on and the remainder of the

relays are turned off [71, 75]. In such a relaying scheme, the data model is simplified

to a time-synchronous two-way relay network, where the active relays induce time-

delays which are within one symbol period, and thus, the network can be modeled

as the relays are time synchronous. The same result can be achieved if a total MSE

minimization approach or a max-min SNR technique is used to design jointly optimal
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transceiver power control, post-channel equalization, and decentralized beamforming.

In multi-carrier two-way time-asynchronous relay network, a max-min SNR approach

to design jointly optimal subcarrier power control at the transceivers and distributed

beamforming at the relays results in the very same aforementioned relay selection

scheme, rendering the relay network time-synchronous [72,74,76]. Based on the above

discussion, we assume that the relays are time-synchronous and this assumption will

not result in any loss of generality when applied to time-asynchronous networks..

Furthermore, it is assumed that the channels are frequency flat. The nr × 1 vec-

tor of the complex channel coefficients corresponding to the links between PTRX1

(PTRX2) and the relays, is represented as f1 (f2). Similarly, the nr × 1 vector of the

complex channel coefficients corresponding to the link between STRX1 (STRX2) and

the relays, is represented as g1 (g2). Moreover, the transmission scheme is considered

to be time-slotted. The total available time for both transceiver pairs is referred to

as a time frame with T seconds duration. Without loss of generality, we assume that

T = 1. Each time frame is divided into two time intervals called subframes. The

primary transceivers communicate with each other in the first subframe, while the

second subframe is considered for communication between the secondary transceivers.

The parameter α is the portion of the time that the secondary transceivers communi-

cate with each other using their own relaying infrastructure and the spectral resources

of the primary network. The underlying communication scheme is shown in Fig. 3.1.

The relays are assumed to operate in a half-duplex mode using an amplify-and-forward

(AF) relaying scheme in both subframes. The AF relaying is of particular interest

due to its implementation simplicity. The relays use an nr × 1 complex vector w1 to

implement a network beamformer, thereby enabling communication between PTRX1



39

T

T (1− α) Tα

b

b

b

b

PTRX1 PTRX2

STRX1 STRX2

f1 f2

g1 g2

rN−1

r1

rN

b

r2

Primary Subframe Secondary Subframe

b
b
b

r3

Figure 3.1: Sharing resources between two bidirectional relay networks.

and PTRX2 in the first subframe. The relays also employ a second nr×1 complex vec-

tor w2 to materialize a second network beamformer, thereby establishing a two-way

connection between STRX1 and STRX2 in the second subframe. The communication

protocol for transmission and reception between the primary (secondary) transceivers

and the relays is based on multiple access broadcast channel (MABC). In this proto-

col, each subframe is divided into two equal-length time-slots. In the first time slot,

two transceivers transmit their information symbols simultaneously to the relays. In

the next time slot, the relays re-transmit amplified- and phase-adjusted versions of the

signals received in the previous time slot to the transceivers. The ith relay uses the

ith entry of w1 to cooperate with other relays in establishing a two-way connection

between PTRX1 and PTRX2 and uses the ith entry of w2 to participate in enabling a

two-way connection between STRX1 and STRX2. Considering the MABC protocol,
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the vector of signals received at the relays, corresponding to the two subframes, could

be respectively written as

xp =
√
p1 f1s1 +

√
p2 f2s2 + ν1 (3.1.1)

xs =
√
p3 g1s3 +

√
p4 g2s4 + ν2 (3.1.2)

where the ith entries of xp and xs are the signals received at the ith relay in the first

and second subframes, respectively, while ν1 and ν2 are the corresponding relay noise

vectors of size nr × 1, which are assumed to be zero-mean complex Gaussian random

vectors with E{ν1ν
H
1 } = E{ν2ν

H
2 } = I, and I is the nr × nr identity matrix. The

relays use an AF scheme to relay the signals they have already received. Hence the

vector of the signals re-transmitted by the relays are given as

tp = w1 ⊙ xp, ts = w2 ⊙ xs. (3.1.3)

Here, the operator ⊙ represents Schur-Hadamard (element-wise) vector product,

whereas tp and ts are the nr× 1 vectors of relay re-transmitted signals corresponding

to the primary and secondary subframes, respectively. The ith entries of tp and ts

are the amplified- and phase-adjusted versions of the signals received at the ith relay

in the first and second subframes, respectively. The following definitions are used,

F1 , diag(f1), F2 , diag(f2), G1 , diag(g1) and G2 , diag(g2), where diag(·) is

an operator producing a diagonal matrix whose diagonal elements are the input vec-

tor of the operator. Using the above definitions, the signals received at the primary

transceivers are given as

y1p = fT1 tp + n1 =
√
p1w

H
1 F1f1s1 +

√
p2w

H
1 F1f2s2 +wH

1 F1ν1 + n1 (3.1.4)

y2p = fT2 tp + n2 =
√
p1w

H
1 F2f1s1 +

√
p2w

H
1 F2f2s2 +wH

1 F2ν1 + n2 (3.1.5)
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where y1p and y
2
p are the signals received at PTRX1 and PTRX2, respectively, while n1

and n2 are the received noises at the corresponding primary transceivers. The signals

received at the secondary transceivers are also given as

y1s = gT1 ts + n3 =
√
p3w

H
2 G1g1s3 +

√
p4w

H
2 G1g2s4 +wH

2 G1ν2 + n3 (3.1.6)

y2s = gT2 ts + n4 =
√
p3w

H
2 G2g1s3 +

√
p4w

H
2 G2g2s4 +wH

2 G2ν2 + n4 (3.1.7)

where y1s and y2s are the signals received at STRX1 and STRX2, respectively, while

n3 and n4 are the noise components at the corresponding secondary transceivers. All

the transceiver noise components in (3.1.4)-(3.1.7), are considered to be zero-mean

complex Gaussian random variables with unit variance. Moreover, a control channel

between the primary and secondary networks is considered for coordination.

The primary transceivers are assumed to be responsible to calculate network pa-

rameters and broadcast these parameters to the relays and to the secondary transceivers.

We assume that each transceiver knows the channel coefficients corresponding to the

links between itself and the relays as well as those corresponding to the links between

its peer transceiver and the relays, i.e., PTRX1 and PTRX2 know both f1 and f2,

while STRX1 and STRX2 know both g1 and g2. This assumption, is frequently used

in the literature [43, 45, 77–96], and it is reasonable as it implies that channel state

information (CSI) is available at the receiving nodes. We will show in next section

that this assumption on the availability of CSI in the two networks is essential for all

forthcoming algorithms. Each algorithm may however require additional exchange of

CSI between the two networks. We explain those additional exchanges as we present

each algorithm.

Each relay can use the control channel to transmit to the primary (secondary)
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transceivers, the complex estimate1 of its local channel coefficients corresponding to

its link to the primary (secondary)2 transceivers. Taking into account that the perfect

knowledge of f1 and f2 as well as that of g1 and g2 are available at the primary and

secondary transceivers, respectively, each pair can obtain the optimal beamforming

vector corresponding to its subframe. Therefore, the first term in (3.1.4) ((3.1.6)) and

the second term in (3.1.5) ((3.1.7)) are respectively known to the PTRX1 (STRX1)

and PTRX2 (STRX2). These terms, often called self-interference, can hence be can-

celed out from (3.1.4), (3.1.5), (3.1.6) and (3.1.7). After the self-interferences cance-

lation, the residual signals at the primary and secondary transceivers are respectively

given by

ỹ1p = y1p −
√
p1w

H
1 F1f1s1 =

√
p2w

H
1 F1f2s2

︸ ︷︷ ︸

desired signal for PTRX1

+wH
1 F1ν1 + n1

︸ ︷︷ ︸
noise at PTRX1

(3.1.8)

ỹ2p = y2p −
√
p2w

H
1 F2f2s2 =

√
p1w

H
1 F2f1s1

︸ ︷︷ ︸

desired signal for PTRX2

+wH
1 F2ν1 + n2

︸ ︷︷ ︸

noise at PTRX2

(3.1.9)

ỹ1s = y1s −
√
p3w

H
2 G1g1s3 =

√
p4w

H
2 G1g2s4

︸ ︷︷ ︸

desired signal for STRX1

+wH
2 G1ν2 + n3

︸ ︷︷ ︸

noise at STRX1

(3.1.10)

ỹ2s = y2s −
√
p4w

H
2 G2g2s4 =

√
p3w

H
2 G2g1s3

︸ ︷︷ ︸

desired signal for STRX2

+wH
2 G2ν2 + n4

︸ ︷︷ ︸
noise at STRX2

(3.1.11)

where ỹ1p and ỹ2p as well as ỹ1s and ỹ2s are the residual signals at the primary and

secondary transceivers, respectively. Using the residual signals derived in (3.1.8)-

(3.1.11), the primary and the secondary transceivers can extract their corresponding

desired signals. In the remaining of this section, we derive the total consumed power

in each subframe and the signal-to-noise-ratios (SNRs) for the primary and secondary

1Considering the estimation error does not fit in the scope of this study.
2Alternatively, these channel coefficients can be estimated at the transceiver through channel

training [97, 98].
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transceivers in terms of p1, p2, p3, p4, w1, and w2. Using (3.1.1)-(3.1.3), the total relay

transmit powers corresponding to the primary and secondary subframes are given by

prp(p1, p2,w1) = E{tHp tp} = wH
1 (p1D1 + p2D2 + I)w1 (3.1.12)

prs(p3, p4,w2) = E{tHs ts} = wH
2 (p3E1 + p4E2 + I)w2 (3.1.13)

where we have used the following definitions:

D1 , F1F
H
1 ,D2 , F2F

H
2 ,E1 , G1G

H
1 ,E2 , G2G

H
2 . (3.1.14)

Note that D1 and D2 as well as E1 and E2 are diagonal matrices. Furthermore,

using (3.1.12) and (3.1.13), the total power consumed in the primary and secondary

subframes are, respectively given as

pp(p1, p2,w1) = p1 + p2 + prp(p1, p2,w1)

= p1(1 +wH
1 D1w1) + p2(1 +wH

1 D2w1) +wH
1 w1 (3.1.15)

ps(p3, p4,w2) = p3 + p4 + prs(p3, p4,w2)

= p3(1 +wH
2 E1w2) + p4(1 +wH

2 E2w2) +wH
2 w2. (3.1.16)

Moreover, using (3.1.8) and (3.1.9) as well as (3.1.10) and (3.1.11), the received SNRs

corresponding to the signals received at PTRX1, PTRX2, STRX1 and STRX2 can be

respectively, expressed as

SNR1(p2,w1) =
p2w

H
1 hp h

H
p w1

wH
1 D1w1 + 1

(3.1.17)

SNR2(p1,w1) =
p1w

H
1 hp h

H
p w1

wH
1 D2w1 + 1

(3.1.18)

SNR3(p4,w2) =
p4w

H
2 hs h

H
s w2

wH
2 E1w2 + 1

(3.1.19)

SNR4(p3,w2) =
p3w

H
2 hs h

H
s w2

wH
2 E2w2 + 1

(3.1.20)
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where

hp , F1f2, hs , G1g2. (3.1.21)

We also define the information theoretic rates of the primary transceivers as well as

those of the secondary transceivers as

R1(p2,w1) =
1

2
log2(1 + SNR1(p2,w1)) (3.1.22)

R2(p1,w1) =
1

2
log2(1 + SNR2(p1,w1)) (3.1.23)

R3(p4,w2) =
1

2
log2(1 + SNR3(p4,w2)) (3.1.24)

R4(p3,w2) =
1

2
log2(1 + SNR4(p3,w2)). (3.1.25)

In the following sections, we use our data model to design our spectrum leasing

scheme, thereby allowing the primary transceivers calculate both network parameters

and broadcast them to the relays and the secondary transceivers using the control

channel.

3.2 Spectrum sharing system design

In our system model, obtaining the optimal values of the network parameters (i.e., the

beamforming vectors w1 andw2, the transceiver transmit powers p1, p2, p3 and p4, and

the time sharing factor α) is of interest. Depending on the objective and requirements

of the design, different approaches can be proposed. Since it is assumed that there

is no direct link between the primary pairs, cooperation between the primary and

secondary networks is essential in order to provide a minimum quality of service

(QoS) for the primary transceivers. As a measure of QoS, the minimum average

rate of the two primary transceivers is constrained to be larger than a predefined
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threshold. In exchange for this cooperation, the primary network assigns a portion

of its spectral or temporal resources to the secondary network so that the secondary

transceivers can exchange their information using the relay infrastructure. In order

to establish this cooperation scheme, it is rational that the primary network offers

the highest attainable average rate to the secondary transceivers, while preserving a

minimum QoS for its own transceivers. Therefore, the goal of our design approaches

is to maximize the secondary network average rate under a QoS constraint on the

primary transceivers.

In this design approach, one has to ensure a minimum QoS for the primary

transceivers, meaning that the minimum average rates for the two primary transceivers

is constrained to be larger than a predefined threshold η. Other limiting constraints

on the network parameters, are the transmit powers consumed in the two networks in

their corresponding subframes. Two different types of power constraints are consid-

ered in this section. First, two constraints are considered to restrict the total transmit

powers consumed by each network in the corresponding subframes. Second, we con-

sider a constraint on the total power consumed in both subframes. In the following

subsections, two optimization problems are presented and the corresponding optimal

solutions are developed.
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3.2.1 Separate power constraint per network

In order to determine the primary and secondary network parameters, let us consider

the following optimization problem:

maximize
{pi}4i=1,α,w1,w2

αmin(R3(p4,w2), R4(p3,w2))

subject to pp(p1, p2,w1) ≤ Pp, ps(p3, p4,w2) ≤ Ps

(1− α) min(R1(p2,w1), R2(p1,w1)) ≥ η

0 ≤ α ≤ 1. (3.2.1)

In the objective function of (3.2.1), we use a max-min rate fair design approach,

thereby maximizing the smaller of the average rates of the two transceivers in the

secondary network. Indeed, the parameter α takes into account that the secondary

transceivers utilize the channel only α fraction of the time. The first and the second

constraints limit the total amounts of power consumed in the primary and secondary

subframes, to Pp and Ps, respectively. In fact, Pp and Ps are the peak powers for the

primary and secondary networks in their corresponding subframes, respectively.

From each network point of view, a total power constraint is of great importance,

since it provides a flexible environment to control or optimize the total consumed

power in that network by allowing each element of the network to have its own

optimal power relative to the total power constraint. In addition, such a constraint

provides a guideline for how to set individual relay powers. For example, as was

shown in [43,44,78], when applying a max-min SNR (or rate) design approach to the

case of a single two-way relay network with nr relay nodes, the relays will collectively

consume half of the available total transmit power. In such a network, it is reasonable

to assume that each relay, in average, consumes 1
nr

fraction of half of the total power
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budget. This argument is particularly correct when the relays are moving randomly

in the environment. In such a scenario, different relay channels appear to be drawn

from the same probability distribution. For all these reasons, total power constraints

have been adopted in the literature for performance analysis and optimal design

[43, 44, 78, 80, 86, 89].

Finally, the third constraint in (3.2.1) ensures that the smallest average rate of

the two primary transceivers are above a given threshold η, while taking into account

that these two transceivers are communicating (1−α) fraction of the time. It is worth

mentioning that η is measured in bit per channel use (b/cu) unit.

We now show how the optimization problem (3.2.1) can be solved. To do so,

note that in the optimization problem (3.2.1), the primary network QoS inequality

constraint becomes equality. In order to prove this claim, assume that at the optimal

solution, the third constraint in (3.2.1) is satisfied with inequality. One can then

choose a value for α to be larger than its optimal value such that this constraint is

satisfied with equality. However, the new value of α will further increase the objective

function, thereby contradicting optimality. Hence, the third constraint holds with

equality, leading us to the following expression for α at the optimum:

α = 1− η

min(R1(p2,w1), R2(p1,w1))
. (3.2.2)

It is worth mentioning that since the condition 0 ≤ α ≤ 1 must be satisfied, it follows

from (3.2.2) that min(R1(p2,w1), R2(p1,w1)) ≥ η must hold true. Using (3.2.2) in

the objective function of the optimization problem (3.2.1) leads us to the following
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maximization problem:

maximize
{pi}4i=1,w1,w2

(1− η

min(R1(p2,w1), R2(p1,w1))
) min(R3(p4,w2), R4(p3,w2))

subject to pp(p1, p2,w1) ≤ Pp, ps(p3, p4,w2) ≤ Ps

min(R1(p2,w1), R2(p1,w1)) ≥ η. (3.2.3)

Since the constraints as well as the objective function in (3.2.3) depend on two mutu-

ally exclusive sets of parameters, the optimization problem (3.2.3) could be split into

the following two separate sub-problems:

Sub-Problem 1 maximize
p1,p2,w1

min(R1(p2,w1), R2(p1,w1))

subject to pp(p1, p2,w1) ≤ Pp

min(R1(p2,w1), R2(p1,w1)) ≥ η (3.2.4)

Sub-Problem 2 maximize
p3,p4,w2

min(R3(p4,w2), R4(p3,w2))

subject to ps(p3, p4,w2) ≤ Ps (3.2.5)

The last constraint in Sub-Problem 1 is only a feasibility condition. We can ignore

this constraint, solve the remaining problem, and then check if this constraint holds

true or not. The two sub-problems in (3.2.4) and (3.2.5) are similar in formulation,

therefore, we concentrate on how to solve one of them. It has been proven in [43] that a

max-min SNR (or rate) fair approach to design a bidirectional network beamformer,

under a total power budget, leads to SNR balancing. The results of [44] can be

applied directly to solve (3.2.4) and (3.2.5). Using the following definitions, Φ(x, y) =

2xD1 + (y − 2x)D2 + I and Ψ(x, y) = 2xE1 + (y − 2x)E2 + I, the optimal values of

the primary and the secondary network parameters are given as
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Solution to Sub-Problem 1:

po1(Pp) = arg max
0≤p1≤Pp

2

p1(Pp − 2p1)h
H
p Φ

−1(p1, Pp)hp (3.2.6)

po2(Pp) =
1

2
Pp − po1(Pp) (3.2.7)

wo
1(Pp) = κ(Pp)

√

po2(Pp)Φ
−1 (po1(Pp), Pp)hp (3.2.8)

κ(Pp) =
(
hHp (2p

o
1(Pp)D1 + I)Φ−2 (po1(Pp), Pp)hp

)− 1
2 (3.2.9)

Solution to Sub-Problem 2:

po3(Ps) = arg max
0≤p3≤Ps

2

p3(Ps − 2p3)h
H
s Ψ

−1(p3, Ps)hs (3.2.10)

po4(Ps) =
1

2
Ps − po3(Ps) (3.2.11)

wo
2(Ps) = µ(Ps)

√

po4(Ps)Ψ
−1 (po3(Ps), Ps)hs (3.2.12)

µ(Ps) =
(
hHs (2p

o
3(Ps)E1 + I)Ψ−2 (po3(Ps), Ps)hs

)− 1
2 . (3.2.13)

It has been proven in [43] and [44] that the maximization problem (3.2.6) and (3.2.10)

are convex in terms of p1 and p3, respectively. We can thus use efficient algorithms

such as interior point methods in order to solve (3.2.6) and (3.2.10). Furthermore,

the optimal primary and secondary transceivers’ instantaneous rates as well as the

optimal value of the time sharing factor are, respectively, given by

f(Pp) , R1 (p
o
2(Pp),w

o
1(Pp)) = R2 (p

o
1(Pp),w

o
1(Pp)) (3.2.14)

g(Ps) , R3 (p
o
4(Ps),w

o
2(Ps)) = R4 (p

o
3(Ps),w

o
2(Ps)) (3.2.15)

αo(Pp) = 1− η

f(Pp)
. (3.2.16)

As mentioned earlier, in order to cancel the self-interference, each transceiver

should know its corresponding beamforming vector. To calculate wo
1(Pp) (wo

2(Ps)),
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the two primary (secondary) transceivers should know the channel coefficients cor-

responding to the links between themselves and the relays. In the case of separate

total power constraint for each subframe, the design problem, as shown above, can be

split into two disjoint sub-problems, hence the primary transceivers do not need to

know the secondary CSI. This is the advantage of this approach as each transceiver

pair can design the transmission parameters of their own network knowing only the

channel coefficients of the link between themselves and the relays.

To summarize our contribution in this subsection, we showed that the optimization

problem (3.2.1) can be separated into two optimization problems (3.2.4) and (3.2.5),

and that time sharing factor can obtained as in (3.2.16) using only the channel state

information of the primary network and the corresponding required minimum data

rate.

3.2.2 Total power constraint for both networks

In this subsection, we propose another optimization framework, where individual per-

network constraints on the total transmit powers are replaced with a constraint on

the average total power consumed by the two networks in a time frame. Instead

of separate power constraint per network, it is rational that using a constraint on

the average total power, consumed in the whole time frame, leads to a more flexible

power allocation between the primary and secondary networks. This is due to the

fact that the available average power in each time frame could be allocated optimally

between the primary and the secondary networks. Hence, when using an average

total power constraint, it is easier to satisfy the primary QoS constraint compared to

the case of separate power allocation to the two networks in the first approach. This
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is the advantage of this approach compared to the first approach3. One application,

where using a constraint on the total power consumed by both networks is useful, is

a scenario where the relays are not moving and they are powered up from the power

grid. In this case, as will be shown, the proposed solution results in a total relay power

consumption equal to half of the total available power for the two networks. Hence,

using a total power constraint indeed limits the total power the relays collectively

consume from the power grid. Such a relay power control is indeed a desired feature

for stationary relays, which are powered up from the power grid. Based on this

discussion, our second optimization problem is presented as

maximize
{pi}4i=1,α,w1,w2

αmin(R3(p4,w2), R4(p3,w2))

subject to (1− α) pp(p1, p2,w1) + α ps(p3, p4,w2) ≤ PT

(1− α) min(R1(p2,w1), R2(p1,w1)) ≥ η

0 ≤ α ≤ 1. (3.2.17)

Although, the solution to the optimization problem (3.2.17) does not appear to be

straightforward, we show how this problem can be simplified. To do so, we first prove

that R3(p4,w2) = R4(p3,w2) and R1(p2,w1) = R2(p1,w1) hold true at the optimum.

In order to prove these rate balancing properties, let us assume, without loss of

generality, that at the optimum, R1(p2,w1) < R2(p1,w1) holds true. Without loss of

optimality, we can decrease the optimal value of p1 in order to decrease R2(p1,w1)

and make it equal to R1(p2,w1). This reduction of the optimal p1 will not violate the

total consumed power4, neither will it affect the primary network QoS constraints.

Now, assume without loss of generality that at any optimal solution to (3.2.17),

3This approach has its own requirements as will be pointed out later.
4Note that according to (3.1.15), when p1 is decreased, pp(p1, p2,w1) is also decreased.
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R3(p4,w2) < R4(p3,w2) holds true. We can then decrease the optimal value of p3 to

reduce R4(p3,w2) and make it equal to R3(p4,w2), without violating the total power

constraint5 and without changing the value of the objective function. We hence

conclude that at each transceiver pair, the equality of rates can be assumed without

loss of optimality. Using an auxiliary parameter P̃s, we can rewrite the optimization

problem (3.2.17) as

maximize
P̃s,p1,p2,α,w1

α max
p3,p4,w2

min(R3(p4,w2), R4(p3,w2))

subject to ps(p3, p4,w2) ≤ P̃s

(1− α) pp(p1, p2,w1) + α P̃s ≤ PT

(1− α) min(R1(p2,w1), R2(p1,w1)) ≥ η

0 ≤ α ≤ 1. (3.2.18)

For any fixed P̃s, the inner maximization problem is the same as the problem

stated in (3.2.5), when Ps is replaced with P̃s. Hence, the secondary transceiver

powers as well as the optimal secondary beamforming vector are, respectively, the

same as (3.2.10), (3.2.11) and (3.2.12), when Ps is replaced with P̃s. Using the fact

that at the optimum, the secondary rates are equal when Ps is replaced with P̃s, we

simplify the optimization problem (3.2.17) as

maximize
P̃s,p1,p2,α,w1

α g(P̃s)

subject to (1− α) pp(p1, p2,w1) + α P̃s ≤ PT

(1− α) min(R1(p2,w1), R2(p1,w1)) ≥ η

0 ≤ α ≤ 1 (3.2.19)

5Note that according to (3.1.16), when p3 is decreased, ps(p3, p4,w2) is also decreased.
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where g(P̃s) is given in (3.2.15), when Ps is replaced with P̃s. At the optimum, the

first constraint in the optimization problem (3.2.19) is satisfied with equality. To

show this, assume that at the optimum, this constraint is satisfied with inequality.

One can then increase the optimal value of P̃s to turn this inequality into equality.

This increase of the optimal P̃s will lead to a higher value for the objective function as

g(P̃s) is increasing in P̃s (see appendix). This is a contradiction, and hence, the total

consumed power should be satisfied with equality. Moreover, the second constraint

in the optimization problem (3.2.19) is also satisfied with equality. To show this,

assume that at the optimum, this constraint is satisfied with inequality. One can

decrease the optimal value of p1, thereby decreasing R2(p1,w1), to turn the second

constraint in the optimization problem (3.2.19) into equality6. However, this decrease

of the optimal value of p1 results in lower value for pp(p1, p2,w1), thereby turning the

first constraint in (3.2.19) into inequality. Hence, one can increase the optimal value

of P̃s until the first constraint in (3.2.19) turns into equality. This increase of the

optimal value of P̃s, will lead to higher value for the objective function as g(P̃s) is

an increasing function of P̃s, thereby contradicting optimality. Hence, the second

constraint in (3.2.19) must be satisfied with equality.

We now introduce a new auxiliary variable P̃p in (3.2.19) to denote the total power

consumed in the primary subframe. As such, the optimization problem (3.2.19) can

6Note that for the new value of p1, R1(p2,w1) > R2(p1,w1)
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be rewritten as

maximize
P̃s,P̃p,p1,p2,α,w1

α g(P̃s)

subject to pp(p1, p2,w1) = P̃p

(1− α)P̃p + α P̃s = PT

(1− α) min(R1(p2,w1), R2(p1,w1)) = η

0 ≤ α ≤ 1. (3.2.20)

In order to further simplify the optimization problem (3.2.20), let us assume

that at the optimum, the total consumed power in a time frame as well as those

consumed in the primary and secondary subframes are given by P o
T , P

o
p and P o

s ,

respectively. Furthermore, assume that the optimal time sharing factor is given

by αo. The primary network QoS constraint in (3.2.20) forces that the condition

R1(p2,w1) = R2(p1,w1) =
η

(1−αo)
must hold true. This rate balancing property holds

at point a in the (R1, R2) plane, as shown in Fig. 3.2. In addition, for any given P̃p,

the rate region for the two primary transceivers is denoted as the set C(P̃p), and it is

given by [44]

C(P̃p) = {(R1(p2,w1), R2(p1,w1))|R1(p2,w1) ≥ 0, R2(p1,w1) ≥ 0,

R2(p1,w1) ≤
1

2
log2(2 + 2γmax(P̃p)− 22R1(p2,w1))}. (3.2.21)

In (3.2.21), γmax(P̃p) is the maximum balanced SNR for each of the two primary

transceivers for any given P̃p. For the optimal value P o
p , any achievable rate pair

for the primary pair is located inside or on the boundary of the set C(P o
p ) (see Fig.

3.2) [44]. We now prove that the optimal values for the two primary transceiver

rates, R1(p2,w1) and R2(p1,w1), must be on the boundary of C(P o
p ). To show this,
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let us assume that the two primary transceiver rates are located inside C(P o
p ) (see

Fig. 3.2). One can then decrease the optimal total power consumed in the primary

subframe to P̂p (P̂p < P o
p ) (for example by scaling down the magnitude of w1), such

that the optimal point a is still inside C(P̂p). This decrease in the optimal value of

the total power consumed in the primary subframe turns the first constraint in the

optimization problem (3.2.20) into inequality. Hence, ∃ ε > 0 such that P o
s + ε is

still feasible. As g(P o
s + ε) > g(P o

s ), this is contradiction. We hence conclude that

the optimal point a in Fig. 3.2, must be on the boundary of C(P o
p ). Using the above

discussion, we can simplify the optimization problem (3.2.20) as:

maximize
P̃s,P̃p,α

α g(P̃s)

subject to (1− α) P̃p + α P̃s = PT

(1− α) f(P̃p) = η, 0 ≤ α ≤ 1 (3.2.22)

where f(P̃p), as defined in (3.2.14), is given by

f(P̃p) = max
p1,p2,w1

min(R1(p2,w1), R2(p1,w1))

subject to pp(p1, p2,w1) ≤ P̃p. (3.2.23)

Note that P̃p is the total consumed power in the primary subframe and is to be

optimized by solving (3.2.22). If the optimal value of P̃p is given, then the primary

transceiver powers as well as the optimal primary beamforming vector are, respec-

tively, the same as (3.2.6), (3.2.7), and (3.2.8), when Pp is replaced with the optimal

value of P̃p. Furthermore, using the first and the second constraints in (3.2.22), we

can express P̃p and P̃s in terms of α. Hence, the optimization problem (3.2.22) can be

easily turned into a one-dimensional problem. Indeed, using the first two constraints
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R1(p2,w1)

R2(p1,w1)

b

a

η

(1−αo)

η

(1−αo)

R1(p2,w1)=R2(p1,w1)

Figure 3.2: Rate region graph.

in (3.2.22), we can eliminate P̃p and P̃s and can rewrite (3.2.22) as

maximize
0≤α≤1

α g

(

PT − (1− α)f−1( η

1−α)

α

)

subject to (1− α)f(
PT

1− α
) ≥ η (3.2.24)

where f−1(·) is the inverse function of f(·). Since f(·) is a monotonically increasing

function of its argument, its inverse function exists. We can see that the optimization

problem (3.2.24) is a line search in the following interval, 0 ≤ α ≤ 1. To employ

the line search scheme, we can turn this interval into a grid with a small enough

step size, then for each point in the interval, we check if the constraint in (3.2.24) is

feasible or not. Among all feasible points in the interval 0 ≤ α ≤ 1, we introduce

the one which results in the highest value for the objective function, as the optimal
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solution. Note that, since there is no closed-form solution for f(·), deriving a closed-

form solution for the inverse function f−1(·) is not possible. To tackle this issue, note

that f(P̃p), as defined in (3.2.23), is the maximum achievable balanced rates of the

two primary transceivers when pp(p1, p2,w1) = P̃p. Finding f
−1( η

1−α) means that we

want to obtain the value of the total power consumed in the primary subframe, when

the achieved balanced rates satisfy R1(p2,w1) = R2(p1,w1) = η

1−α . Now, we argue

that this total consumed power should be as small as possible, thereby allowing P̃s to

be as large as possible7. Hence, to obtain the smallest value of f−1( η

1−α), we need to

solve the following optimization problem:

f−1( η

1−α) = min
p1,p2,w1

pp(p1, p2,w1)

subject to R1(p2,w1) = R2(p1,w1) =
η

1−α . (3.2.25)

It has been proved in [78], the problem (3.2.25) has a unique minimizer, hence we

can solve it using the efficient algorithm proposed in [78].

Note that the uniqueness of the solution to the optimization problem (3.2.24) may

not be claimed as objective function does not have an explicit form and that is exactly

why we are proposing a line search to solve (3.2.24).

We now discuss how the control channel can be utilized to broadcast the infor-

mation needed by the two networks nodes to calculate their design parameters of

interest. Let us assume that the optimal values of the time sharing factor and the

total powers consumed in the primary and secondary subframes are, respectively,

given by αo, P o
p (α

o), and P o
s (α

o). As we assumed earlier, each transceiver in the two

pairs knows the channel coefficients corresponding to the link between itself and the

relays to cancel its self-interference. In addition, the optimization problem (3.2.24)

7The largest possible value of P̃s, for a given α, results in the largest value of g(P̃s).
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is a joint optimization problem, therefore, further assumption on the availability

of the secondary network CSI to the primary transceivers is needed. To calculate

g (P o
s (α

o)) in the optimization problem (3.2.24), the two primary transceivers need

to know only the magnitude of the channel coefficients corresponding to the link be-

tween the secondary transceivers and the relays, i.e., the absolute values of g1i and

g2i for i = 1, 2, ..., nr, where g1i and g2i are the ith elements of g1 and g2, respectively.

Hence, we assume that the two primary transceivers know the magnitude of the chan-

nel coefficients between each of the two secondary transceivers and the relays. These

channel coefficient magnitudes can be sent to the primary transceivers, either by the

secondary transceivers or by the relays, one-by-one.

Now, we explain what parameters are needed to be broadcasted in the control

channel after the optimization problem is solved at the primary transceivers. Once

the optimal values αo, P o
p (α

o), and, P o
s (α

o) are obtained, the primary transceivers can

then calculate their own optimal transmitting power as well as the corresponding op-

timal beamforming vector in the first subframe, by substituting Pp in (3.2.6), (3.2.7),

and (3.2.8) with P o
p (α

o). The two primary transceivers then broadcast αo and P o
s (α

o)

in the control channel to the secondary transceivers8 in order to allow them to calcu-

late their design parameters, by replacing Ps in (3.2.10), (3.2.11), and (3.2.12) with

P o
s (α

o). According to (3.2.8) (or (3.2.12)), each relay beamforming coefficient de-

pends only on the local CSI corresponding to the links between the relay and the two

primary (or secondary) transceivers. Moreover, considering the optimal beamforming

vector provided in (3.2.8), the primary transceivers only need to broadcast the pa-

rameters P o
p (α

o), κ
(
P o
p (α

o)
)
, and po1

(
P o
p (α

o)
)
, to allow each relay to calculate its own

8The relays also receive these two parameters in the control channel.
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beamforming coefficient corresponding to the primary subframe. Similarly, the sec-

ondary transceivers broadcast the following parameters, µ (P o
s (α

o)) and po3 (P
o
s (α

o)),

in the control channel to allow each relay calculate its own beamforming coefficient9.

To end up this subsection, we provide a comparison between the two approaches

presented in this section. On one hand, the advantage of the first approach is its

inherent separability in which both networks can simultaneously calculate their own

parameters without the need for too much information exchange between the two

networks. Indeed, in the first approach, the only parameter that the primary network

should transmit to the secondary transceivers is αo(Pp), where Pp is total available

power in the primary subframe. However, if the two network consumed powers are

fixed, the first approach may not be feasible for some primary network QoS demand.

This is the disadvantage of this approach. On the other hand, the advantage of the

second approach is its flexibility with respect to the primary network QoS demand.

Whenever, the primary network QoS demand is high, more power is assigned to the

primary network, and vice versa. However, this approach has its own disadvantages.

First, the optimization problem in this approach is a line search problem which may

not be convex, hence efficient algorithms may not be applicable in this case. Second,

the two transceivers in the primary network need to know the magnitudes of the

channel coefficients between the two secondary transceivers and the relays. This

means that the second approach requires more information exchange between the

two networks through the control channel. This is the price to be paid to guarantee

relatively high rate demand for the primary network.

To summarize our contribution in this subsection, we simplified the optimization

9P o
s (α

o) is already broadcasted by the primary transceivers and there is no need to be re-
transmitted by the secondary transceivers.
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problem (3.2.17) as in (3.2.24), first by proving that the two constraints in (3.2.18) are

satisfied with equality, and then, by proving that the optimal values for the two pri-

mary transceiver rates, R1(p2,w1) and R2(p1,w1), must be on the boundary of C(P o
p ).

To show the latter, we rely on the monotonicity of g(·), as shown in the appendix.

Part of the novelty of our work resides in this rigorous proof. Another novel aspect

of our work is to prove that to solve (3.2.24), one can use the optimization problem

(3.2.25) to calculate the value of f−1( η

1−α) for any feasible value of α. Without such

a proof, one may not be able to solve (3.2.24) as the function f−1(·) does not have a

closed form.

3.3 Spectrum sharing-leasing system design

In the previous section, we implicitly assumed that the primary transceivers always

have information to exchange. If the traffic of this network is bursty, i.e., if the

primary transceivers have data to exchange with a certain probability, then the two

methods proposed earlier cannot benefit from those instances where the primary

network is inactive. In this section, the idea of spectrum sharing-leasing is proposed

in order to increase the secondary network throughput. This aim is accomplished by

considering that the secondary transceivers can use the spectrum during the whole

time frame, when the primary transceivers have no data to transmit. In this case, the

primary network leases out the whole bandwidth to the secondary network. We refer

to this mode as leasing mode, in order to emphasize that the primary network allows

the secondary transceivers to exploit almost the whole time frame when the primary

transceivers are inactive. In exchange for providing this opportunity to the secondary
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transceivers, the primary network is also able to increase its minimum rate threshold,

thereby offering higher balanced rates to its transceivers whenever they have data

to exchange. In order to further explain this idea, we consider the same network

structure as the one introduced in the previous section. The only difference is the

structure of the time frame. Let us assume that at the beginning of each time frame,

a small portion of the time is reserved for the secondary network to sense and detect

the presence of the transceivers in the primary network. This reserved time interval is

called sensing time and is denoted as Ts. If the secondary transceivers does not detect

the presence of the primary network, they switch to the leasing mode and utilize the

remainder of the time frame. However, if the presence of the primary network is

detected, the secondary transceivers switch to the sharing mode as described in the

previous subsections, see Fig. 3.3 for more details.

T

(T−Ts)(1−α) (T − Ts)αTs

Primary Subframe Secondary SubframeSensing time

Sharing

Leasing (T − Ts)Ts

Secondary SubframeSensing time

mode

mode

Figure 3.3: Cognitive leasing-sharing scheme.

In the sharing mode, the primary and secondary transceivers establish a two-way

communication in their corresponding time intervals but, in the leasing mode, only

the secondary transceivers communicate with each other. We should mention that all

of the notations defined in the previous section for the primary and secondary network

parameters are still valid. Depending on the status of the primary transceivers, two
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optimization problems are considered as

Leasing mode

maximize
Ps≥0

(1− Ts
T
) g(Ps)

subject to Ps ≤ PT (3.3.1)

Sharing mode

maximize
0≤α≤1

(1− Ts
T
)α g

(

PT − (1− α)f−1( η

1−α)

α

)

subject to (1− α)(1− Ts
T
)f(

PT
1− α

) ≥ η. (3.3.2)

The solutions to both problems in (3.3.1) and (3.3.2) were presented in the previous

sections. Using the results of the first approach, the optimal values of the average

secondary transceiver maximum balanced rates, when the primary transceivers are

passive, is g(PT ). Furthermore, when the primary transceivers are active the optimal

average secondary transceiver maximum balanced rates and the time sharing factor

are denoted by αog(P o
s (α

o)) and αo, respectively, where P o
s (α

o) is the corresponding

optimal total power consumed in the secondary subframe obtained by solving (3.3.2).

We refer to the former case as the leasing mode of cooperation while the latter is

called as the sharing mode.

Let us assume that the probability of the primary transceivers being active in

each time frame is q. To consider the problem of detecting the signal of the primary

transceiver, where the detection is performed at one of the secondary transceivers, we

denote the probability of detection and the probability of false alarm as Pd and Pf ,

respectively. Assuming an energy detection scheme, the relationship between these
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two probabilities, for a given sensing time Ts, is shown to be [99]

Pd = Q(
Q−1(Pf)−

√
Ns θ√

2 θ + 1
) (3.3.3)

where, Q(x) , 1√
2π

∫∞
x

exp(− t2

2
)dt, Ns = Ts fs is the number of samples taken dur-

ing the sensing time, fs is the sampling frequency and θ is the SNR received at the

secondary transceiver which is in charge of detecting the presence of the primary

transceivers signals. One can write the average secondary transceiver maximum bal-

anced rates in the sharing-leasing and the sharing modes, respectively, as

Sharing-Leasing rate = (1− q)(1− Pf)g(PT ) + Pd qα
og(P o

s ) (3.3.4)

Sharing rate = αog(P o
s (α

o)). (3.3.5)

Compared to the sharing mode, the gain obtained by using the sharing-leasing ap-

proach is then given by

gain = (1−q)(1−Pf)
(

g(PT )−αog(P o
s )

)

+

(

(Pd − 1)q+Pf(q − 1)

)

αog(P o
s ). (3.3.6)

where (3.3.6) is obtained by subtracting (3.3.5) from (3.3.4). One can see that, for

given PT , θ, Ns and a given channel realization, there are a pairs of (Pd, Pf) which

results in a positive value for the gain in (3.3.6). In a special case, where the received

SNR from the primary transceivers θ during the sensing time, or the frequency of

sampling fs is large enough, then it follows from (3.3.3) that Pd = 1 and Pf = 0.

Replacing Pd = 1 and Pf = 0 in (3.3.6), will lead to the following equation for the

gain obtained from sharing-leasing method when compared to the sharing mode

gain = (1− q)

(

g(PT )− g(P o
s )

)

. (3.3.7)

This gain is always greater than zero since the average secondary transceiver maxi-

mum balanced rates, when all the resources are allocated to the secondary transceivers,
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i.e., g(PT ), is larger than that of the secondary transceivers when the resources are

shared between the primary and secondary transceivers, i.e., αog(P o
s (α

o)). There-

fore, using sharing-leasing approach leads to a higher value for the average secondary

transceiver maximum balanced rates, compared to the sharing approach, thereby

resulting in utilizing the available resources more effectively. The increase in the av-

erage secondary transceiver maximum balanced rates in the sharing-leasing approach

for any feasible values of η in (3.2.24), depends on the probability of the primary

transceivers being active. This means that the lower the probability of the primary

network being active is, the higher the average secondary transceiver maximum bal-

anced rates will be. In general, the received SNR, θ from the primary transceiver

during the sensing time, or the number of samples Ns may not be large enough,

hence we need to evaluate the gain obtained in (3.3.6) for different values of θ and

Ns. To do so, we use numerical simulations to study the effect of choosing different

values for θ and Ns on the average gain.

Remark: We wrap up this section by emphasizing that since in all three resource

allocation schemes presented, the underlying two-way relay beamforming is the one

presented in [78], [100], [44], in each sub-frame, the relays collectively consume half

of the total transmit power corresponding to that subframe. It is thus reasonable to

assume that each relay, in average, consumes 1
nr

fraction of half of the total power

budget. Hence the proposed schemes provide a guideline for choosing the maximum

average total transmit power for each relay.
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3.4 Simulation Results

We consider a network of nr = 10 relays and two transceiver pairs. We assume that

the distance between the two transceivers in each pair is 2 units of distance10. We also

assume that the relays are randomly located between the two transceivers. Indeed, we

assume that the x-coordinate of each relay is uniformly distributed between the two

transceivers and its y-coordinate has a Gaussian probability density with the variance

equal to 1 unit distance. Hence, the channel coefficient between each transceiver and

each relay is drawn from a complex Gaussian random distribution where its variance

is proportional to lρ, where l is the distance between the transceiver and that relay

and ρ is the path-loss factor. Moreover, the noises at the transceivers as well as those

at the relays are assumed to be i.i.d with unit variance.

3.4.1 Separate power constraint per network

Fig. 3.4 illustrates the average maximum balanced rate of the secondary transceivers

versus η, for different values of Ps, when Pp = 30 (dBW) is chosen. We can see that

the average maximum balanced rates of the secondary transceivers decrease linearly

when the primary demand η increases. This effect can be explained using (3.2.3),

where the relationship between the average secondary transceivers balanced rates and

η is linear. This figure confirms that when Ps and Pp are fixed, if the primary pair

rate demand η is too large such that the design problem becomes infeasible, none

of the two pairs can exploit the spectral and temporal resources to transmit their

information symbols. Moreover, for sufficiently small values of η, the design problem

10The chosen unit of the distance does not affect our discussion on the performance of the proposed
schemes.
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Figure 3.4: Average maximum

balanced rates of the secondary

transceivers versus η for different

values of Ps, when Pp = 30 (dBW)
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Figure 3.5: Average maximum

balanced rates of the secondary

transceivers versus η for different

values of Pp, when Ps = 30 (dBW) .

is always feasible, meaning that the primary pair is served with its rate demand equal

to η and the secondary transceivers communicate with the largest possible average

balanced rates. Furthermore, we can see form Fig. 3.4 that as Ps is increased, the

secondary transceivers achieve higher balanced rates.

In Fig. 3.5, we plot the average maximum balanced rates of the secondary pair

versus η for different values of Pp, when Ps = 30 (dBW). One can see from this figure

that as Pp is increased, the design problem can satisfy higher primary pair demand

η. It is worth mentioning that, when Ps is fixed, as η approaches zero the average

maximum balanced rates of the secondary transceivers becomes equal. This is be-

cause of the fact that when η approaches zero, the optimal value of the time sharing
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factor becomes equal to 1. This means that all the spectral and temporal resources

are allocated to the secondary transceivers, thereby increasing the average maximum

secondary transceiver balanced rates to a value which is independent of Pp. Fig. 3.6

shows the probability of feasibility of the resource sharing problem under individual

per network power constraint for different values of η and Pp. As expected, this figure

shows that as the minimum required data rate of the primary network is increased,

the power allocated to this network has to be increased to ensure the problem is

feasible. Fig. 3.7 illustrates the average maximum balanced rates of the secondary

transceivers versus Ps, for different values of Ps, when η = 3 (b/cu). It is obvious

that when the design problem is feasible, increasing Ps leads to a higher value for the

average maximum balanced rates of the secondary transceivers. Furthermore, con-

sidering the optimal values of the design parameters throughout the simulations, we

have observed that each transceiver in the primary (secondary) network consumes, in

average, a quarter of the total power consumed in the primary (secondary) subframe.

Furthermore, for any channel realization, the relays collectively consume half of the

total power consumed in the primary subframe and half of the total power consumed

in the secondary subframe. These results are in agreement with, and can be explained

by the studies of [43, 78] and [44].

3.4.2 Total power constraint for both networks

Considering a total power constraint for the two networks, Fig. 3.8 shows the average

maximum balanced rates of the secondary transceivers is increasing in PT , meaning

that for a fixed value of η, the power allocated to the secondary pair increases, when

PT increases. However, as η is increased, the maximum achievable balanced rates
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Figure 3.6: Probability of feasibility of the resource sharing problem under individual

per network power constraints

of the two secondary transceivers is decreased. This means that as η is increased,

the primary transceivers need to exploit the spectral and temporal resources further,

hence less and less resources remain for information exchange between the secondary

transceivers.

In Fig. 3.9, we plot the average maximum achievable balanced rates of the sec-

ondary transceivers versus η, for different values of PT . We observe that the average

maximum balanced rates of the secondary transceivers decreases as the rate demand

of the primary pair, η increases. However, increasing PT can compensate the effect

of increasing η by providing more power to the secondary transceivers. This means

that when the amount of the total available power increases, the primary transceivers

rate demand can be satisfied easier. For instance, increasing η from 3 (b/cu) to
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Figure 3.7: Average maximum balanced rates of the secondary transceivers versus Ps

for different values of Pp, when η = 3 (b/cu) .

4 (b/cu), when PT = 25 (dBW), decreases the secondary pair rates roughly by 0.2

(b/cu), however this decrease of the secondary transceivers rates can be recovered by

adding roughly 5 (dBW) to PT .

3.4.3 Spectrum sharing-leasing system design

Figs. 3.10 and 3.11 show the average gain of the sharing-leasing scheme, as an im-

age, versus θ and Ns, for two different values of q, when PT=40 (dBW). We can

see from these figures that this gain can indeed be positive if Ns is properly chosen.

In other words, given q, we can design and use a detector at one of the two sec-

ondary transceivers such that the gain achieved by using the sharing-leasing scheme,

compared to the sharing scheme, is positive.



70

25 30 35 40
1

1.5

2

2.5

3

3.5

4

4.5

PT (dBW)

A
ve
ra
ge

m
ax
im

u
m

S
T
R
X

b
al
an

ce
d
ra
te
s
(b
/
cu
)

 

 
η = 1 (b/cu)
η = 2 (b/cu)
η = 4 (b/cu)

Figure 3.8: Average maximum

balanced rates of the secondary

transceivers versus PT , for different

values of η.

1 1.5 2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

4.5

η (b/cu)

A
ve
ra
ge

m
ax
im

u
m

S
T
R
X

b
al
an

ce
d
ra
te
s
(b
/c
u
)

 

 
PT = 25 (dBW)
PT = 30 (dBW)
PT = 40 (dBW)

Figure 3.9: Average maximum

balanced rates of the secondary

transceivers versus η, for different

values of PT .

Fig. 3.12 demonstrates the effect of the probability q of the primary pair being ac-

tive, on the maximum achievable balanced rates of the secondary transceivers. In this

figure, we plot the maximum achievable balanced rates of the secondary transceivers

versus q, for different values of η, when PT=30 (dBW). This figure shows that when

the primary pair utilizes the shared resources more frequently, i.e., when q is large, the

average maximum balanced rates of the secondary transceivers are lower compared to

the case when the primary pair is less active, i.e., when q is small. This means that in-

creasing q reduces the average maximum balanced rates of the secondary transceivers.

Furthermore, the slope of the curve of the average maximum balanced rates of the

secondary transceivers versus 1− q increases, when the value of η is increased.
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Fig. 3.13 depicts the average maximum balanced rates of the secondary transceivers

versus 1− q, for η = 4 (b/cu) and for different values of PT . We can see that increas-

ing PT , increases the highest achievable balanced rates of the secondary pair. This

is the common result of both the second and the third approaches as increasing the

total available power helps to increase the average maximum balanced rates of the

secondary transceivers. These discussions imply that the sharing-leasing approach

outperforms the sharing approach when q > 0.

3.5 Conclusions

We studied optimal resource sharing between two pairs of transceivers which exploit a

network of nr relays. We considered a communication framework in which the primary
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pair leases out a portion of its spectral and temporal resources to the secondary pair

in exchange for using the relays to guarantee a minimum data rate for the primary

transceivers. We proposed three approaches with different pros and cons. In each

approach, we formulated an optimization problem in order to optimally calculate the

corresponding design parameters.

As the first approach, we maximize the secondary transceivers rates while guar-

anteeing a minimum data rate for the primary transceivers and limiting the total

powers consumed in the primary and the secondary network to be less than prede-

fined thresholds. We showed that for the primary and the secondary transceivers,

the design problem can be simplified into two SNR balancing problems, each with its

own semi-closed-form solution.
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In the second approach, we replaced the two separate constraints on the total

power consumed in the primary and secondary networks used in the first approach,

with a constraint on the total power consumed in the whole time frame. We proved

that the optimization problem in this approach can be simplified to a simple line

search problem with low complexity. Furthermore, we showed that the second ap-

proach is superior to the first approach as in the latter approach one can optimally

allocate the available power between the primary and the secondary transceivers.

The third approach combines the two aforementioned methods to materialize spec-

trum leasing and sharing for the case when the primary network is active with a certain

probability.
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3.6 Proving that g(Ps) is increasing in Ps

Let us define

g̃(p3, Ps) , p3(Ps − 2p3)×

hHs (2p3E1 + (Ps − 2p3)E2 + I)−1hs. (3.6.1)

Note that as follows from (3.2.10), for a given Ps, the maximum balanced SNR of

the secondary network is obtained by finding the maximum value of g̃(p3, Ps), when

p3 ∈ [0 Ps

2
]. We herein prove that the function g(Ps), which is given by

g(Ps) =
1

2
log2(1 + g̃(po3(Ps), Ps))

=
1

2
log2(1 + max

0≤p3≤Ps
2

g̃(p3, Ps)), (3.6.2)

is a monotonically increasing function of Ps, meaning that if P 1
s > P 2

s then, g(P 1
s ) >

g(P 2
s ). In order to show this, we first prove that, for any given p3 > 0, the first

derivative of g̃(p3, Ps) with respect to Ps is positive. To do so, we recall that

Ψ(p3, Ps) = (2p3E1 + (Ps − 2p3)E2 + I)−1, (3.6.3)

and write

∂g̃(p3, Ps)

∂Ps
= p3h

H
s Ψ(p3, Ps)hs

+ p3(Ps − 2p3)h
H
s

∂Ψ(p3, Ps)

∂Ps
hs. (3.6.4)

As Ψ(p3, Ps) is a diagonal matrix, we can write

∂Ψ(p3, Ps)

∂Ps
= −Ψ2(p3, Ps) E2. (3.6.5)
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Using (3.6.5) and the auxiliary variable p̃3 = Ps − 2p3, we can write (3.6.4) as

∂g̃(p3, Ps)

∂Ps
= p3h

H
s Ψ(p3, Ps)hs − p3p̃3h

H
s Ψ

2(p3, Ps) E2hs

= p3h
H
s Ψ

2(p3, Ps)
(
Ψ−1(p3, Ps)− p̃3E2

)
hs

= p3h
H
s Ψ

2(p3, Ps)(2p3E1 + I)hs . (3.6.6)

It follows from (3.6.6), that ∂g̃(p3,Ps)
∂Ps

> 0, for p3 > 0. Hence, g̃(p3, Ps) is an increasing

function of Ps, when p3 > 0. Moreover, it has been proven in [43], that for any given

Ps when p3 ∈ [0 P 1
s

2
], the function g̃(p3, Ps) is a concave function of p3, with a unique

maximum. Fig. 3.14 is a descriptive diagram of the two functions g̃(p3, P
1
s ) and

g̃(p3, P
2
s ) versus p3, when P

1
s ≥ P 2

s .

The optimal value of p3, as an implicit function of Ps, is given by

po3(Ps) = arg max
0≤p3≤Ps

2

g̃(p3, Ps). (3.6.7)
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Using (3.6.7), the following inequality holds true:

g(P 1
s ) =

1

2
log2(1 + g̃(po3(P

1
s ), P

1
s )) ≥

1

2
log2(1 + g̃(p3, P

1
s )) for any p3 ∈ [0

P 1
s

2
] (3.6.8)

As po3(P
2
s ) ≤ P 2

s

2
≤ P 1

s

2
, we can use (3.6.8) to write

g(P 1
s ) =

1

2
log2(1 + g̃(po3(P

1
s ), P

1
s ))

≥ 1

2
log2(1 + g̃(po3(P

2
s ), P

1
s ))

≥ 1

2
log2(1 + g̃(po3(P

2
s ), P

2
s )) = g(P 2

s ) (3.6.9)

where the second inequality follows from the fact that for any given p3 > 0, g̃(p3, Ps)

is monotonically increasing in Ps. This completes the proof that g(Ps) is an increasing

function of Ps.



Chapter 4

Optimal Spectrum Leasing and
Resource Sharing in Multi-Carrier
Setup

In the previous chapter, we studied and modeled the problem of resource sharing be-

tween two bidirectional relay networks under total and per network transmit power

constraints in a single carrier setup. We herein study the problem of resource sharing

between a high-priority (called primary) transceiver pair and a low-priority (sec-

ondary) transceiver pair in a multi-carrier scenario. Aiming to optimally calculate

the design parameters of the primary and secondary networks, we study two different

approaches.

In the first approach, we consider a multi-relay scenario where we maximize the

average sum-rate of the secondary transceivers subject to two spectral power masks

to limit the total power consumed in each network over each subchannel while guar-

anteeing the primary transceivers’ rate demand. We show that the design problem

turned into a linear programming problem.

In the second approach, we consider the secondary network sum-rate maximiza-

tion subject to two constraints on the total power consumed in each network over all

77
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subchannles while guaranteeing a certain rate demand for the primary transceivers.

In this approach, we considered a single-relay and a multi-relay scenario and pro-

posed iterative based convex search solutions to each scenario to obtain the design

parameters.

For the single relay case, we use a high SNR approximation and develop an it-

erative convex search algorithm which exploits the biconcavity of the approximated

objective function in terms of the design parameters, namely the vector of the total

powers allocated to each network over different subchannels and the vector of rates

of the primary network over all subchannels.

In the case of a multi-relay scenario, we expand the design parameters to five

vectors and showed that the problem is concave in any parameter vector, given the

other four vectors are fixed. As such, we propose an iterative convex search algorithm

to introduce a solution to the underlying problem.

The contributions of this chapter can be summarized as listed below:

• We study and model the problem of resource sharing between two bidirectional

multi-carrier relay networks. We maximize the average sum-rate of the two

secondary transceivers under power spectral masks for each networks or under

a per-network total power constraint, while the average rate of the primary

transceivers is guaranteed to be above a given threshold.

• In the case where we apply the two power mask constraints on the design

problem, we prove that the proposed optimization problem turns into a linear

programming for which the optimal solution to the problem can be obtained by

almost all optimization tool boxes.
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• In the case where there are two constrains on the total power consumed in each

network, we show that the design problem is not convex. Then, we provide two

alternate convex search solutions, one for the single-relay case and one for the

multi-relay case.

4.1 System Model

We consider a communication framework where two transceiver pairs exchange their

information symbols via sharing their spectral, temporal, and physical resources.

We assume that the frequency resources are composed of k orthogonal subbands,

that the temporal resources are time-slots during which each pair is active, and that

the physical resources consist of nr relay nodes. The two transceivers in each pair

wish to communicate with each other by exploiting the available resources through

cooperation with the other pair. Assuming that there is no direct link between the two

transceivers in each pair, they need to use the relay infrastructure to exchange their

information. One of the transceiver pairs, which owns the spectral resources, is called

the primary pair. In our scheme, it is required to serve the primary transceiver pair

with minimum average sum-rate between its transceivers. The secondary pair owns

the relay infrastructure and is allowed to use the remaining resources to maximize

the sum-rate of its transceivers. The assumption that the primary network owns only

spectrum and the secondary network owns only the relays, is a common assumption in

the literature on spectrum leasing based cognitive radio networks, see for example [11].

This resource sharing scheme is implemented using a cooperation scheme between the

two pairs as explained in the sequel. The primary pair can establish a link between
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its transceivers using the secondary network relay resources. In exchange for this

cooperation, the primary pair will lease out the remaining resources to the transceivers

in the secondary pair in order to exchange their information symbols. Moreover, the

two pairs communicate in one time frame with length T . In the mth subchannel, each

time frame is divided into four non-overlapping time intervals, called time slots. In

the first and second time slots, the primary and the secondary transceivers transmit

their information symbols to the relays, respectively. In the third time slot, the relays

broadcast the amplitude- and phase-adjusted versions of the signals they received in

the first time slot to the primary transceivers. Similarly, in the fourth time slot,

the relays broadcast the amplitude- and phase-adjusted versions of the signals they

received in the second time slot to the secondary transceivers. We note that in the

MABC relaying protocol, the length of the first and the third time slots must be the

same. Similarly, the second and the fourth time slots have the same duration. We

refer to the pair of the first and the third time slots (and the second and the fourth

time slots), the primary (secondary) subframe. Since we assume that the relays

operate in half-duplex mode and thus, the relays cannot receive and transmit data at

the same time, our proposed model guarantee that none of the nodes is required to

transmit and received, simultaneously. As shown in Fig. 4.1, in the mth subchannel,

the fraction of the time that the primary pair leases its RF spectrum to the secondary

transceivers is denoted as αm, for m = 1, 2, ..., k. We note that in our scheme, when

a node is required to stop transmission in a certain subchannel, it can replace the

baseband signal corresponding to that subchannel to zero without affecting the signal

of its other active subchannels. Hence, any node will stop transmission only if all of

its subchannels are deactivated.
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Figure 4.1: Sharing resources between two bidirectional relay networks.

The primary (secondary) transceivers PTRX1 and PTRX2 (STRX1 and STRX2),

transmit their mth information symbols denoted as s1m and s2m (s̃1m and s̃2m), re-

spectively, in the mth subchannel, to the relays with transmit powers p1m and p2m

(p̃1m and p̃2m). The transmitted symbols of all transceiver pairs in all subchannels

are considered to be zero-mean, independent random variables with variance equal

to 1, i.e., E{|s1m|2} = E{|s2m|2} = E{|s̃1m|2} = E{|s̃2m|2} = 1. We assume that the

frame length is much smaller than the coherence time of the channel, implying that

during each transmission frame, the channel specifications do not change. In the mth

subchannel, the nr × 1 vector of the complex channel coefficients corresponding to

the links between PTRX1 (PTRX2) and the relays is represented as f1m (f2m). Sim-

ilarly, in the mth subchannel, the nr × 1 vector of the complex channel coefficients

corresponding to the links between STRX1 (STRX2) and the relays, is denoted as
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f̃1m (f̃2m). We herein assume that both transceivers in the two pairs are synchro-

nized both at symbol level and at carrier level. We do not address time or frequency

synchronization as this topic does not fit in the scope of this work. The underlying

communication scheme is shown in Fig. 4.1.

As a bandwidth efficient transmission scheme, we utilize the MABC protocol to

establish a bidirectional communication between the transceivers in each pair. In this

protocol, each subframe consists of two equal-length time-slots as explained earlier.

Assuming that the transceivers operate in a half-duplex mode, in the first time slot,

the two transceivers in each pair simultaneously transmit their information symbols

to the relays. In the second time slot, the relays broadcast, to the transceivers,

amplified and phase-adjusted versions of the signals they received in the previous

time slot. Note that even if there is a direct link between the two transceivers in

each pair, the transceivers cannot benefit form such a direct link in an MABC based

bidirectional relaying scheme as they operate in half-duplex mode (i.e., they cannot

receive and transmit at the same time). We assume that the ith relay, i ∈ {1, 2···, nr},

uses the ith element of the nr × 1 complex vector wm (w̃m) to participate in building

a network beamformer over the mth subchannel, thereby enabling communication

between PTRX1 and PTRX2 (STRX1 and STRX2). In the mth subchannel, the

nr × 1 vectors xm and x̃m of the signals received at the relays corresponding to the

primary and secondary subframes can be written as

xm =
√
p1m f1ms1m +

√
p2mf2ms2m + νm, (4.1.1)

x̃m =
√

p̃1m f̃1ms̃1m +
√

p̃2m f̃2ms̃2m + ν̃m (4.1.2)

Here, νm (ν̃m) is an nr×1 zero-mean complex Gaussian random vector, which repre-

sents the relay noise vector in the primary (in the secondary) subframe over the mth
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subchannel. We assume that E{νmνHm} = E{ν̃mν̃Hm} = I, where I is the identity

matrix of size nr × nr. We also note that p1m and p2m are the transmit powers of

the transceivers in the primary network and p̃1m and p̃2m are the transmit powers of

the transceivers in the secondary network. The relays use the AF relaying protocol,

hence the nr × 1 vectors of the signals re-transmitted by the relays over the mth

subchannel, corresponding to the primary and the secondary subframes, are given as

tm , wm ⊙ xm and t̃m , w̃m ⊙ x̃m, respectively. Let us define q̄ = 1, if q = 2 and,

q̄ = 2, if q = 1. Using the following definitions, F1m , diag(f1m), F2m , diag(f2m),

F̃1m , diag(f̃1m), and F̃2m , diag(f̃2m), we express signals received at the primary

transceiver pairs over the mth subchannel as

yqm = fTqmtm + nqm =
√
pqmw

H
mFqmfqmsqm +

√
pq̄mw

H
mFqmfq̄msq̄m

+wH
mFqmνm + nqm (4.1.3)

where q ∈ {1, 2} and yqm is the signal received by the qth primary transceiver over the

mth subchannel, nqm is the received noise measured at the corresponding transceiver

over the mth subchannel. We can also express signals received at the secondary

transceiver pairs over the mth subchannel as

ỹqm = f̃Tqmt̃m + ñqm =
√

p̃qmw̃
H
mF̃qmf̃qms̃qm+

√

p̃q̄mw̃
H
mF̃qmf̃qms̃q̄m + w̃H

mF̃qmν̃m + ñqm (4.1.4)

where q ∈ {1, 2} and ỹqm is the signal received at the qth secondary transceiver

over the mth subchannel, ñqm is the received noise measured at the corresponding

transceiver over the mth subchannel. All the received noises in all subchannels are

considered to be zero-mean complex Gaussian random processes with unit variance.
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We consider a control channel between the primary and secondary networks for co-

ordination. We also assume that both PTRX1 and PTRX2 have full knowledge of

the channel vectors f1m, f2m and the knowledge of the amplitude of different entries

of f̃1m, and f̃2m, while STRX1 and STRX2 both know only their local channel state

information (CSI) f̃1m and f̃2m. The global CSI knowledge at the primary transceiver

is an essential assumption in the design approaches provided in this chapter. Dis-

cussing methods of obtaining the CSI for all transceivers does not fit in the scope of

this study. Partial or global CSI knowledge assumption is frequently used in the liter-

ature [43,78,80,88,89,101]. Based on these assumptions, we show that each pair can

obtain its corresponding optimal beamforming vector. Hence, the two transceivers

in each pair can cancel out, from their received signals, the so-called self-interference

signal (i.e., the first terms in (4.1.3) and (4.1.4)). After self-interference cancelation

in the mth subchannel, the primary and the secondary transceivers can decode their

corresponding desired information symbols in each subchannel. After self-interference

cancelation at the primary and secondary transceivers, the remaining signals can then

be written as

zqm =
√
pq̄mw

H
mFqmfq̄msq̄m +wH

mFqmνm + nqm (4.1.5)

z̃qm =
√

p̃q̄mw̃
H
mF̃qmf̃q̄ms̃q̄m + w̃H

mF̃qmν̃m + ñqm. (4.1.6)

where q ∈ {1, 2}. Note that zqm (z̃qm) is the residual signal at the qth primary

(secondary) transceiver over the mth subchannel. Moreover, in the mth subchannel,

the total relay transmit power corresponding to the primary and secondary subframes
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are, respectively, given by

prm(p1m, p2m,wm) , E{tHmtm} = wH
m(p1mD1m + p2mD2m + I)wm (4.1.7)

p̃rm(p̃1m, p̃2m, w̃m) , E{t̃Hmt̃m} = w̃H
m(p̃1mD̃1m + p̃2mD̃2m + I)w̃m (4.1.8)

where the following definitions are used: D1m , F1mF
H
1m, D2m , F2mF

H
2m, D̃1m ,

F̃1mF̃
H
1m, and D̃2m , F̃2m f̃

H
2m. Note that D1m,D2m, D̃1m, and D̃2m are diagonal

matrices. Using (4.1.7) and (4.1.8), we can express the total power consumed in the

primary and secondary subframes over the mth subchannel as

Pm(p1m, p2m,wm) ,
2∑

q=1

pqm + prm(p1m, p2m,wm)

=
2∑

q=1

pqm(1 +wH
mDqmwm) +wH

mwm (4.1.9)

P̃m(p̃1m, p̃2m, w̃m) ,
2∑

q=1

p̃qm + p̃rm(p̃1m, p̃2m, w̃m)

=
2∑

q=1

p̃qm(1 + w̃H
mD̃qmw̃m) + w̃H

mw̃m. (4.1.10)

Also, we use (4.1.5) and (4.1.6) to express the received SNRs corresponding to the

signals received at the primary and secondary receivers over the mth subchannel,

respectively, as

SNRp
qm(pq̄m,wm) =

pq̄mw
H
mhmh

H
mwm

wH
mDqmwm + 1

,

SNRs
qm(p̃q̄m, w̃m) =

p̃q̄mw̃
H
mh̃mh̃

H
mw̃m

w̃H
mD̃qmw̃m + 1

(4.1.11)

where the following definitions are used: hm , F1mf2m and h̃m , F̃1mf̃2m. In (4.1.11),

the superscripts p and s stand for primary and secondary networks, respectively. The

information theoretic rates of the two transceivers over the mth subchannel in the
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primary and secondary pairs are also defined as

Rqm(pq̄m,wm) =
1

2
log2

(

1 + SNRp
qm(pq̄m,wm)

)

(4.1.12)

R̃qm(p̃q̄m, w̃m) =
1

2
log2

(

1 + SNRs
qm(p̃q̄m, w̃m)

)

. (4.1.13)

In the next two sections, we use the proposed data model to design our spectrum

leasing schemes.

4.2 Resource Sharing with Power Spectral Masks

In order to optimally obtain the transceiver transmit powers over different subchan-

nels, the corresponding beamforming vectors, and the time sharing factors in all

subchannels, we resort to a sum-rate maximization approach whereby the sum of the

average of the two secondary transceivers rates over all subchannels is maximized by

solving the following optimization problem:

maximize
Pp,Ps,α,Wp,Ws

k∑

m=1

αm

(

R̃1m(p̃2m, w̃m) + R̃2m(p̃1m, w̃m)
)

subject to P̃m(p̃1m, p̃2m, w̃m) ≤ γ̃m, p1m ≥ 0, p2m ≥ 0 for m = 1, 2, ..., k

Pm(p1m, p2m,wm) ≤ γm, p̃1m ≥ 0, p̃2m ≥ 0 for m = 1, 2, ..., k

k∑

m=1

(1− αm)
(
R1m(p2m,wm) +R2m(p1m,wm)

)
≥ η

0 ≤ αm ≤ 1, for m = 1, 2, · · · , k.

(4.2.1a)

(4.2.1b)

(4.2.1c)

(4.2.1d)

(4.2.1e)

In the objective function in (4.2.1), we take into account that the secondary transceivers

utilize themth subchannel only αm fraction of the time. Also, we define Pp , {p1,p2}

and Ps , {p̃1, p̃2} where pi , [pi1 pi2 · · · pik]
T and p̃i , [p̃i1 p̃i2 · · · p̃ik]

T are the

vectors of subchannel transmit powers of the ith primary and secondary transceivers,
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respectively. We also define Wp , {w1,w2, · · · ,wk} and Ws , {w̃1, w̃2, · · · , w̃k}

as the sets of the beamforming vectors for the primary and secondary transceivers,

respectively, and α , [α1 α2 · · · αk]
T represents the vector of time sharing factors

over different subcarriers. The constraints in (4.2.1b) and (4.2.1c) are used to limit

the peak total power consumed in the secondary and the primary subframes, respec-

tively, over all channels. Indeed, to ensure that our design meets a given spectral

power mask requirement, it is often desired that a network meets a certain set of re-

quirements for the amount of the power it transmits in each frequency band allocated

to it. Spectral power masking1 is a well-known approach to limit the co-channel

interference between different transceivers in a shared bandwidth and it has been

widely used in literature [102,103]. Hence, we herein incorporate the use of a spectral

power masks into our design by using (4.2.1b) and (4.2.1c). It is worth mentioning

that a constraint on the total power consumed in the mth subchannel can lead to

a significant performance improvement compared to the per-node power constraints.

Indeed, such a constraint provides a flexible environment to optimize the network

performance by allowing each element of the network to have its own optimal power.

Such a constraint also provides a guideline to set individual relay powers . Consid-

ering a total power constraint in a design problem is important in network planning

as it provides the flexibility required to control the amount of the power that each

node consumes in the network. Furthermore, using total power constraint provides a

guideline for allocating the optimal powers for each relay. For instance, when SNR

balancing approach is applied to the case of synchronous/asynchronous two-way relay

networks with nr relay nodes, half of the total available power will be allocated to

1A spectral power mask prescribes the maximum transmit power that one network may use at
different frequency bands within the available RF spectrum.
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the relays [43, 104]. In such networks, it is rational to assume that, on average, each

relay consumes 1
nr

fraction of the half of the total available power. This assump-

tion is particularly correct when the relays are moving randomly in the environment

and thus their channel coefficients appear to be drawn from the same probabilistic

distribution. In the case where all the nodes are powered up from the electric grid

(implying that the locations of the nodes are fixed), using a total power constraint is

a must to ensure that the total power consumed by the network is restricted. We also

note that considering per-node power constraints in the design of two-way relaying

schemes is challenging and computationally prohibitive. The results of [77] show that

even in the case of synchronous single-carrier two-way relay networks, finding the

optimal AF relaying scheme leads to a two-dimensional search over a sufficiently fine

grid of transceiver powers, and solving a convex feasibility programming problem on

each vertex of this grid. The multi-carrier nature of the scheme considered in this

study will only add to the level of difficulty associated with using per-node power

constraints in the context of two-way relay networks. Furthermore, in the sum-rate

maximization problem under per-node power constraints for any given channel real-

ization, the relays may not consume all the power available to them. As a result, the

average power consumed by the relays for different channel realizations will be less

than the power available to each of them. It is also worth mentioning that sum-rate

maximization under a total power constraint provides an upper bound to the same

problem when per-node power constraints are considered. For all these reasons, total

power constraint has been adopted in the literature for performance analysis and op-

timal design. The extension to individual power constraints is an interesting problem

especially in relay networks where each relay is expected to have a limited amount of
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power. But this extension may not have a computationally affordable solution. These

reasons have inspired us to benefit from this well-known constraint on the total power

budget in our design approaches. The constraint in (4.2.1d) guarantees the primary

transceivers’ rate demand by ensuring that the sum of the average sum-rate of the

two primary transceivers over all subchannels are larger than a predefined threshold.

The factor (1−αm) in (4.2.1d) represents the fraction of the time that the secondary

transceivers occupy the mth subchannel. The constraint (4.2.1e) ensures that the

time sharing factor of the mth subchannel must be in the interval [0 1]. Note that η,

the primary network rate demand, is measured in bits per use of the parallel channel

(b/cu). Note that our approach in (4.2.1) is essentially different from our approach

in [101]. Indeed, in (4.2.1), the objective function and the rate demand constraint

is of the form of sum-rate of transceiver pairs over all subchannels in a multi-carrier

scenario, while the objective function and the rate demand constraint in [101] is of

the form of max-min of the rate of the transceiver pairs in a single-carrier scenario.

To simplify (4.2.1), we note that the constraints on the total power consumed in

the secondary subframes for each subchannel are disjoint. Hence we can rewrite the

optimization problem (4.2.1) as

maximize
Pp,α,Wp

k∑

m=1

αm max
p̃1m,p̃2m,w̃m

(

R̃1m(p̃2m, w̃m) + R̃2m(p̃1m, w̃m)
)

subject to P̃m(p̃1m, p̃2m, w̃m) ≤ γ̃m, p̃1m ≥ 0, p̃2m ≥ 0, for m = 1, 2, · · · , k

Pm(p1m, p2m,wm) ≤ γm, p1m ≥ 0, p2m ≥ 0 for m = 1, 2, · · · , k
k∑

m=1

(1− αm)
(
R1m(p2m,wm) +R2m(p1m,wm)

)
≥ η

0 ≤ αm ≤ 1, for m = 1, 2, · · · , k.

(4.2.2a)

(4.2.2b)

(4.2.2c)

(4.2.2d)

(4.2.2e)
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For any cubchannel index m, given the total available power γ̃m in the mth subchan-

nel, the inner maximization in (4.2.2), given as

ψ̃m (γ̃m) , max
p̃1m,p̃2m,w̃m

(

R̃1m(p̃2m, w̃m) + R̃2m(p̃1m, w̃m)
)

subject to P̃ (p̃1m, p̃2m, w̃m) ≤ γ̃m, p̃1m ≥ 0, p̃2m ≥ 0 (4.2.3)

can be shown to be a rate balancing problem2 and the optimal values of the p̃1m, p̃2m

and w̃m (denoted as p̃o1m(γ̃m), p̃
o
2m(γ̃m) and w̃o

m(γ̃m)) are given by [44]

p̃o1m(γ̃m) = arg max
0≤p̃1m≤ γ̃m

2

p̃1m(γ̃m − 2p̃1m)h̃
H
mQ̃

−1
m (p̃1m, γ̃m)h̃m

p̃o2m(γ̃m) =
1

2
γ̃m − p̃o1m(γ̃m)

w̃o
m(γ̃m) = κ̃m(γ̃m)

√

p̃o2m(γ̃m)Q̃
−1
m (p̃o1m(γ̃m), γ̃m) h̃m

κ̃m(γ̃m) =
(

h̃Hm(2p̃
o
1m(γ̃m)D̃1m + I)Q−2

m (p̃o1m(γ̃m), γ̃m) h̃m

)− 1
2

Q̃m(p̃1m, γ̃m) = (2p̃1mD̃1m + (γ̃m − 2p̃1m)D̃2m + I)−1.

(4.2.4a)

(4.2.4b)

(4.2.4c)

(4.2.4d)

(4.2.4e)

As proven in [43, 44], the optimization problem (4.2.4) is convex and it can be

efficiently solved using Newton-Raphson method. Using (4.2.3), we can rewrite the

optimization problem (4.2.2) as

maximize
Pp,α,Wp

k∑

m=1

αmψ̃m (γ̃m)

subject to Pm(p1m, p2m,wm) ≤ γm, p1m ≥ 0, p2m ≥ 0, for m = 1, 2, ..., k

k∑

m=1

(1− αm)
(
R1m(p2m,wm) +R2m(p1m +wm)

)
≥ η

0 ≤ αm ≤ 1, for m = 1, 2, · · · , k.

(4.2.5a)

(4.2.5b)

(4.2.5c)

(4.2.5d)

Note that at the optimum, we can show that the inequality constraint in (4.2.5c)

on the primary network rate demand is satisfied with equality. To do so, assume

2We note that under total power constraint, max-min SNR balancing problem and the sum-rate
maximization problem ina two-way relay network are equivalent, see [44] for a proof.
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that at the optimum, this constraint is satisfied with inequality. One can increase

the optimal values of αm’s to turn the primary network QoS constraint into equality,

however this increase of the values of αm’s leads to a value for the objective function

which is larger than its optimum value, thereby contradicting optimality. Hence, at

the optimum, the primary network QoS constraint has to be satisfied with equality.

One can rewrite the optimization problem (4.2.5) as

maximize
Pp,α,Wp

k∑

m=1

αmψ̃m (γ̃m)

subject to Pm(p1m, p2m,wm) ≤ γm, p1m ≥ 0, p2m ≥ 0, for m = 1, 2, · · · , k
k∑

m=1

(1− αm)
(
R1m(p2m,wm) +R2m(p1m +wm)

)
= η

0 ≤ αm ≤ 1, for m = 1, 2, · · · , k.

(4.2.6a)

(4.2.6b)

(4.2.6c)

(4.2.6d)

To further simplify (4.2.6), let us define the auxiliary variables ζm as

ζm , (1− αm)
(
R1m(p2m,wm) +R2m(p1m,wm)

)
, for m = 1, 2, · · · , k, (4.2.7)

where ζm is the average primary sum-rate in the mth subchannel and it must satisfy

the constraint ζm ≥ 0, for m = 1, · · · , k. Using (4.2.7), one can rewrite αm in terms

of ζm as

αm = 1− ζm
(
R1m(p2m,wm) +R2m(p1m,wm)

) , for m = 1, 2, · · · , k. (4.2.8)

Using (4.2.8), we can rewrite the constraint in (4.2.6d) as

0 ≤ ζm ≤
(
R1m(p2m,wm) +R2m(p1m,wm)

)
. (4.2.9)

By substituting (4.2.8) in the objective function in (4.2.6) and replacing (4.2.6d)
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with (4.2.9), we can rewrite the optimization problem (4.2.6) as

maximize
Pp,ζ,Wp

k∑

m=1

ψ̃m (γ̃m)

(

1− ζm
(
R1m(p2m,wm) +R2m(p1m,wm)

)

)

subject to Pm(p1m, p2m,wm) ≤ γm, p1m ≥ 0, p2m ≥ 0, for m = 1, 2, · · · , k

0 ≤ ζm ≤
(
R1m(p2m,wm) +R2m(p1m,wm)

)
, for m = 1, 2, · · · , k

k∑

m=1

ζm = η (4.2.10)

where ζ , [ζ1 ζ2 · · · ζk]
T is the vector of the primary transceivers sum-rate in

all subchannels. Moreover, since the constraints on the total power consumed in the

primary subframes are disjoint, one can rewrite (4.2.10) as

maximize
ζ

k∑

m=1

1

2
ψ̃m (γ̃m)×

max
p1m,p2m,wm

(

1− ζm
(
R1m(p2m,wm) +R2m(p1m,wm)

)

)

subject to Pm(p1m, p2m,wm) ≤ γm, p1m ≥ 0, p2m ≥ 0, form = 1, 2, · · · , k

ζm ≤
(
R1m(p2m,wm) +R2m(p1m,wm)

)
, form = 1, 2, · · · , k

k∑

m=1

ζm = η and ζm ≥ 0, for m = 1, 2, · · · , k

(4.2.11a)

(4.2.11b)

(4.2.11c)

(4.2.11d)

For any m, given the total available power γm in the mth subchannel for the

primary transceivers, and given ζm ≥ 0, the inner maximization in (4.2.11) can be

written as

max
p1m,p2mwm

(
R1m(p2m,wm) +R2m(p1m,wm)

)

subject to Pm(p1m, p2m,wm) ≤ γm, p1m ≥ 0, p2m ≥ 0

ζm ≤
(
R1m(p2m,wm) +R2m(p1m,wm)

)
. (4.2.12)
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Note that, for any m and fixed value of ζm, the last constraint in (4.2.12) is only a

feasibility condition. We first ignore this constraint, and solve the following problem

ψm (γm) , max
p1m,p2mwm

(
R1m(p2m,wm) +R2m(p1m,wm)

)

subject to Pm(p1m, p2m,wm) ≤ γm, p1m ≥ 0, p2m ≥ 0. (4.2.13)

Note that the optimization problem (4.2.12) is feasible if and only if ζm ≤ ψm (γm).

The solution to (4.2.13) (denoted as po1m(γm), p
o
2m(γm) and wo

m(γm)), is given by [44]

po1m(γm) = arg max
0≤p1m≤ γm

2

p1m(γm − 2p1m)h
H
mQ

−1
m (p1m, γm)hm

po2m(γm) =
1

2
γm − po1m(γm)

wo
m(γm) = κm(γm)

√

po2m(γm)Q
−1
m (po1m(γm), γm)hm

κm(γm) =
(
hHm(2p

o
1m(γm)D1m + I)Q−2

m (po1m(γm), γm)hm
)− 1

2

Qm(p1m, γm) = (2p1mD1m + (γm − 2p1m)D2m + I)−1.

(4.2.14a)

(4.2.14b)

(4.2.14c)

(4.2.14d)

(4.2.14e)

Using (4.2.12), one can rewrite the optimization problem (4.2.11) as

maximize
ζ

k∑

m=1

(

1− ζm
ψm (γm)

)

ψ̃m (γ̃m)

subject to
k∑

m=1

ζm = η, 0 ≤ ζm ≤ ψm (γm) , for m = 1, 2, · · · , k. (4.2.15)

To solve (4.2.15), one has to obtain ψ̃m (γ̃m) and ψm (γm) as defined in (4.2.3) and

(4.2.12). The optimal solutions to (4.2.3) and (4.2.12) are similar and are amenable

to semi-closed-form solutions, as given in (4.2.4) and (4.2.14), respectively. Note

that ζm is the amount of the primary rate that is to be assigned to the mth sub-

channel, hence in order to ensure feasibility, the total rate demand η of the primary

transceivers must satisfy the following condition,
∑k

m=1 ζm = η ≤
∑k

m=1 ψm (γm).

Otherwise, the optimization problem in (4.2.1) is not feasible. Let us define a ,
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∑k
m=1 ψ̃m (γ̃m), 1 , [1 1 · · · 1]T , b , [ ψ̃1(γ̃1)

ψ1(γ1)
ψ̃2(γ̃2)
ψ2(γ2)

· · · ψ̃k(γ̃k)
ψk(γk)

]T and

c , [ψ1 (γ1) ψ2 (γ2) · · · ψk (γk)]
T . Using these definitions, the optimization

problem (4.2.15) can be written as

maximize
ζ

a− bTζ

subject to 1Tζ = η, 0 4 ζ 4 c, (4.2.16)

where 4 is elementwise inequality operator. The optimization problem (4.2.16) is a

linear programming (LP) problem and it can be easily solved using any LP solver.

We summarize the proposed solution in Algorithm 1.

Algorithm 1 : LP Based Problem Solution to (4.2.16)

Step 1. Given the values of γ̃m and γm, the secondary and the primary users can calculate

ψ̃m (γ̃m) and ψm (γm) using (4.2.3) and (4.2.13), respectively, for m = 1, 2, · · · , k.

Step 2. Obtain a =
∑k

m=1 ψ̃m (γ̃m), b = [ ψ̃1(γ̃1)
ψ1(γ1)

ψ̃2(γ̃2)
ψ2(γ2)

· · · ψ̃k(γ̃k)
ψk(γk)

]T and c =

[ψ1 (γ1) ψ2 (γ2) · · · ψk (γk)]
T .

Step 3. Solve the optimization problem (4.2.16) and obtain the optimal value for ζ ,

[ζ1 ζ2 · · · ζk]
T .

Step 4. Use the so-obtained optimal {ζm}km=1 in (4.2.8) to calculate the optimal value

of α.

We now discuss what parameters are needed to be broadcasted to the transceivers

to enable them to calculate their transmission parameters. Given the maximum

total power γm (γ̃m) available in the mth primary (secondary) subchannel, the two

primary (secondary) transceivers can calculate the values of ψm (γm) (ψ̃m (γ̃m)), for

m = 1, 2, · · · , k. The primary transceivers need the values of ψ̃m (γ̃m) in order to
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calculate ζm in (4.2.16) (or equivalently the optimal value of the time sharing factors

αm’s in (4.2.8)). Hence for every m, the secondary transceivers need to broadcast,

to the primary transceivers, the values of ψ̃m (γ̃m), for m = 1, 2, · · · , k. The primary

transceivers then solve the LP problem (4.2.16) and broadcast to the relays and the

secondary transceivers, the optimal value of ζ (or equivalently the optimal values

of time sharing factors αm, m = 1, · · · , k). Using such a parameter distribution

scheme, one can alleviate the need to provide the information about the channel

coefficients in the secondary network to the primary network. We further note that,

a control channel between the primary and the secondary networks is also a commnly-

used assumption in spectrum leasing based cognitive radio networks [11]. A control

channel is needed in order to send crucial paramaters between the two networks.

4.3 Resource Sharing with A Total Power Con-

straint

In the previous section, we considered a resource sharing problem where there was

a power mask that limits the total transmitted power in each subcarrier. If there

is no such a restriction on the spectral resources, we can optimize the allocation of

the total power budget and the spectral resources in a joint design approach. Let us

consider the underlying communication architecture in Fig. 1. To obtain the design

parameters of the two networks, we now consider the following optimization problem:
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maximize
Pp,Ps,α,Wp,Ws

k∑

m=1

αm

(

R̃1m(p̃2m, w̃m) + R̃2m(p̃2m, w̃m)
)

subject to
k∑

m=1

P̃m(p̃1m, p̃2m, w̃m) ≤ γ̃, p̃1m ≥ 0, p̃2m ≥ 0

k∑

m=1

Pm(p1m, p2m,wm) ≤ γ, p̃1m ≥ 0, p̃2m ≥ 0

k∑

m=1

(1− αm) (R1m(p2m,wm) +R2m(p1m,wm)) ≥ η

0 ≤ αm ≤ 1, for m = 1, 2, · · · , k

(4.3.1a)

(4.3.1b)

(4.3.1c)

(4.3.1d)

(4.3.1e)

where Pp,Ps,α,Wp, and Ws are defined in the previous section. Different from

(4.2.1), in (4.3.1) we assume that there is a constraint on the total power consumed

over all subchannels in each network. Hence, we aim to allocate the total available

power to each subchannel in each pair, while optimally determining the time sharing

factors for all subchannels. Although this approach does not allow spectral power

mask, but it limits the total power consumed in the whole available RF spectrum.

Assuming distributed beamforming at the relays, the objective function in (4.3.1)

is the sum-rate for the secondary network over all subchannels. The constraints in

(4.3.1b) and (4.3.1c) are used to limit the peak total power consumed in the sec-

ondary and the primary subframes by γ and γ̃, respectively, over all subchannels3.

The constraint in (4.3.1d) is used to guarantee a minimum sum-rate for the primary

transceivers. Using the approach we used in the previous section, we can reformulate

3In order to take into account the constraint on the average power, one can can replace (4.3.1b)

and (4.3.1c) with the following two constraints,
∑k

m=1(1 − αm)γm ≤ γ and
∑k

m=1 αmγ̃m ≤ γ̃. We
will later show that how the corresponding design problem will be solved under these two average
power constraints.
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the problem in (4.3.1) as

maximize
ζ,γ,γ̃<0

k∑

m=1

(

1− ζm
ψm (γm)

)

ψ̃m (γ̃m)

subject to

k∑

m=1

γ̃m = γ̃,

k∑

m=1

γm = γ

k∑

m=1

ζm = η, 0 ≤ ζm ≤ ψm (γm) , for m = 1, 2, · · · , k,

(4.3.2a)

(4.3.2b)

(4.3.2c)

where the following definitions are used: γ , [γ1 γ2 · · · γk]
T and γ̃ , [γ̃1 γ̃2 · · · γ̃k]

T .

In the next two subsections, we provide a solution to (4.3.2) for a single-relay and

multi-relay scenarios.

4.3.1 Single-Relay Scenario

For the single-relay case, one can write ψm (γm) and ψ̃m (γ̃m), respectively, as [104]

ψm (γm) = log2

(

1 +
γ2m|hm|2

2

(√
1 + γmd1m +

√
1 + γmd2m

)2

)

(4.3.3)

ψ̃m (γ̃m) = log2

(

1 +
γ̃2m|h̃m|2

2

(√

1 + γ̃md̃1m +

√

1 + γ̃md̃2m

)2

)

. (4.3.4)

Here, we define d1m , |f1m|2 (d2m , |f2m|2), where f1m (f2m) is the channel coefficient

between PTRX1 (PTRX2) and the relay in the mth subchannel. Similarly, we define

d̃1m , |f̃1m|2 (d̃2m , |f̃2m|2), where f1m (f2m) is the channel coefficient between

STRX1 (STRX2) and the relay in the mth subchannel. The optimization problem

(4.3.2) is not convex and it may not be amenable to a computationally efficient

solution. To tackle this optimization problem, we aim to maximize an upper-bound

for the objective function in (4.3.2), thereby providing a sub-optimal solution for this
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problem. More specifically, to simplify the problem, we use an upper bound for each

of the two functions ψm (γm) and ψ̃m (γ̃m). If we consider a high SNR approximation

where, 1 ≪ γmd1m, 1 ≪ γmd2m, 1 ≪ γ̃md̃1m, and 1 ≪ γ̃md̃2m, the functions ψm (γm)

and ψ̃m (γ̃m) can be, respectively, upper-bounded by ϕm (γm) and ϕ̃m (γ̃m) which are

given as

ϕm (γm) , log2(1 + γm|hem|2), ϕ̃m (γ̃m) , log2(1 + γ̃m|h̃em|2), (4.3.5)

where we have used the following definitions:

hem ,
|hm|√

2(
√
d1m +

√
d2m)

, h̃em ,
|h̃m|√

2(
√

d̃1m +
√

d̃2m)
. (4.3.6)

Since, for any given pair of γm and γ̃m, ϕm (γm) > ψm (γm) ≥ 0 and ϕ̃m (γ̃m) >

ψ̃m (γ̃m) ≥ 0, then 1 − ζm
ϕm(γm)

> 1 − ζm
ψm(γm)

≥ 0 holds true due to the constraints in

(4.3.2c). Hence, we can write
(
1 − ζm

ϕm(γm)

)
ϕ̃m (γ̃m) >

(
1 − ζm

ψm(γm)

)
ψ̃m (γ̃m) ≥ 0. As

a result, we now replace
(
1 − ζm

ψm(γm)

)
ψ̃m (γ̃m) in (4.3.2a) with its upper bound

(
1 −

ζm
ϕm(γm)

)
ϕ̃m (γ̃m). Based on these discussions, we rewrite the maximization problem of

the upper bound (4.3.2) as

maximize
ζ,γ,γ̃<0

k∑

m=1

(

1− ζm
log2(1 + γm|hem|2)

)

log2(1 + γ̃m|h̃em|2)

subject to
k∑

m=1

ζm = η,
k∑

m=1

γ̃m = γ̃

k∑

m=1

γm = γ, 0 ≤ ζm ≤ ψm(γm), for m = 1, 2, · · · , k.

(4.3.7a)

(4.3.7b)

(4.3.7c)

We now provide an approximate solution to the design problem. One can see that

for any given pair of vectors ζ,γ and γ̃, the optimization problem (4.3.7) is convex

with respect to the third vector. Hence, using an alternating convex search algorithm
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(Algorithm 2), it is guaranteed that at each iteration, the value of the objective

function will increase until it reaches a maximum. Algorithm 2, summarizes our

proposed solution to the resource sharing problem (4.3.7). This technique will help

us to obtain the design parameters iteratively. We note that the alternating convex

search algorithm converges to at least a local optimum. However, global optimality

may not be claimed at this point. To do so, at each iteration, we fix two of the vectors

ζ,γ and γ̃, and obtain the third vector. Note that since ψm(γm) is an increasing

function of γm [101], its inverse ψ−1
m (·) exists. Hence, when ζ and γ̃ are fixed, the

constraint ζm ≤ ψm(γm) is equivalent to ψ−1
m (ζjm) ≤ γm which is a linear constraint.

Furthermore, in Step 5 of Algorithm 2, we need to calculate ψ−1
m (ζjm). It can be shown

that ψ−1
m (ζjm) is given by

ψ−1
m (ζjm) = 2µjm

(2
√

1 + 1

2µjm

|f1m||f2m|
+
d1m + d2m

|hm|2
)

, (4.3.8)

where µjm = 2ζ
j
m − 1. To initialize the search algorithm, one good candidate is the

solution to the optimization problem (4.2.1), where γm = γ

k
and γ̃m = γ̃

k
. The reason

for this choice is that for such a setup in (4.2.1), the optimal solution can be easily

obtained by solving a simple LP problem4.

We now provide a semi-closed-form solution to the powers allocated in the sec-

ondary network over all subchannels in Step 4 of the Algorithm 2. Let us assume

that ζjm and γjm are, respectively, the values of the primary transceivers’ sum-rate and

their total consumed power over the mth subchannel in the jth iteration. Also, we

4Obtaining a feasible initial point for the optimization problem (4.3.7) is not trivial. In order to
satisfy the primary network rate demand η, one needs to choose the total power available for the
primary network γ to be sufficiently large. If the above mentioned initial point is not feasible, we
may resort to a random selection of a feasible initial point. However, this random selection process
could be time consuming, and thus, computationally infeasible, meaning that one cannot afford to
solve this problem.
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Algorithm 2 : Alternating Convex Search Solution to (4.3.7) - Single-Relay Scenario

Step 1. Choose ε as the stopping criterion of the algorithm.

Step 2. Assume j to be the number of iterations and set j = 0.

Step 3. Initialize the problem (4.3.7) with γ0m = γ

k
, γ̃0m = γ̃

k
and obtain the vector ζ̃

0

as the solution to the optimization problem (4.2.16), when γm and γ̃m are replaced

with γ0m and γ̃0m, respectively. Define the value of the objective function in (4.3.7)

in the jth iteration as ξ(ζj,γj , γ̃j) ,
∑k

m=1

(

1− ζ
j
m

ϕm(γjm)

)

ϕ̃m (γjm).

Step 4. Solve the following convex optimization problem to find the optimal γ̃j+1 as

γ̃j+1 = argmax
γ̃<0

ξ(ζj ,γj, γ̃), s.t.

k∑

m=1

γ̃m = γ̃

Step 5. Solve the following convex optimization problem to find the optimal γj+1as

γj+1 = argmax
γ̃<0

ξ(ζj ,γ, γ̃j+1)

s.t.

k∑

m=1

γm = γ, 0 ≤ ψ−1
m (ζjm) ≤ γm, for m = 1, 2, · · · , k.

Step 6. Find the optimal ζj+1 by solving the following convex optimization problem

ζj+1 = argmax
γ̃<0

ξ(ζ,γj+1, γ̃j+1)

s.t.

k∑

m=1

ζm = η, 0 ≤ ζm ≤ ψm
(
γj+1
m

)
, for m = 1, 2, · · · , k.

Step 7. If |ξ(ζj+1,γj+1, γ̃j+1)− ξ(ζj,γj , γ̃j)| < ε, go to Step 8, otherwise set j = j + 1

and go to Step 4.

Step 8. Stop the algorithm.
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define tjm ,
(

1− ζ
j
m

log2(1+γ
j
m|hem|2)

)

. To obtain the values of γj+1
m , one has to solve the

following optimization problem:

γ̃j+1 =arg max
γ̃<0

k∑

m=1

tjm log2(1 + γ̃m|h̃em|2)

subject to
k∑

m=1

γ̃m = γ̃. (4.3.9)

The dual Lagrangian of the convex optimization problem (4.3.9) can be defined as

L(γ̃, ρ̃, λ̃) ,
k∑

m=1

tjm log2(1 + γ̃m|h̃em|2) + ρ̃(γ̃ −
k∑

m=1

γ̃m)−
k∑

m=1

λ̃mγ̃m, (4.3.10)

where ρ̃ and λ̃m are Lagrange multipliers or dual variables. The KKT optimality

conditions for the convex optimization problem (4.3.10) implies that

∂L(γ̃, ρ̃, λ̃)
∂γ̃m

=
tjm |h̃em|2

ln 2(1 + γ̃m|h̃em|2)
− ρ̃− λ̃m = 0

k∑

m=1

γ̃m = γ̃, λ̃mγ̃m = 0, γ̃m ≥ 0, λ̃m ≥ 0. (4.3.11)

The solution to the KKT conditions in (4.3.11) is given by γ̃j+1
m = max{0, tjm

ln 2

(
1
ρ̃∗

−
ln 2

t
j
m|h̃em|2

)
}, where ρ̃∗ is found such that

∑k
m=1 γ̃

j+1
m = γ̃.

4.3.2 Multi-Relay Scenario

We now consider a multi-relay scenario, where nr relays are assisting the two transceivers

in each pair to exchange their information symbols. In this case, in the optimization

problem (4.3.2), there is no closed-form solution for ψm (γm) and ψ̃m (γ̃m). It is worth

mentioning that this problem is not convex hence it may not be amenable to a solu-

tion with low computational complexity. We now discuss some of the properties of

the optimization problem (4.3.2) and present a solution to (4.3.2) with relatively low
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computational complexity. To do so, using (4.2.3) and (4.2.4a) as well as (4.2.12) and

(4.2.14a), we can write ψ̃m (γ̃m) and ψm (γm) as

ψ̃m (γ̃m) = max
0≤p̃1m≤ γ̃m

2

υ̃m(p̃1m, γ̃m), ψm (γm) = max
0≤p1m≤ γm

2

υm(p1m, γm). (4.3.12)

where the following definitions are used:

υ̃m(p̃1m, γ̃m) , log2

(

1 + p̃1m(γ̃m − 2p̃1m)h̃
H
mQ̃m(p̃1m, γ̃m)h̃m

)

Q̃m(p̃1m, γ̃m) , (2p̃1mD̃1m + (γ̃m − 2p̃1m)D̃2m + I)−1

υm(p1m, γm) , log2

(

1 + p1m(γm − 2p1m)hm
HQm(p1m, γm)hm

)

Qm(p1m, γm) , (2p1mD1m + (γm − 2p1m)D2m + I)−1.

(4.3.13a)

(4.3.13b)

(4.3.13c)

(4.3.13d)

Using (4.3.12)-(4.3.13), we rewrite the optimization problem in (4.3.2) as

maximize
ζ,γ,γ̃,p1,p̃1<0

k∑

m=1

(

1− ζm
υm(p1m, γm)

)

υ̃m(p̃1m, γ̃m)

subject to

k∑

m=1

γ̃m = γ̃,

k∑

m=1

γm = γ

k∑

m=1

ζm = η, 0 ≤ ζm ≤ ψm(γm).

0 ≤ p̃1m ≤ γ̃m
2
, 0 ≤ p1m ≤ γm

2
, m = 1, 2, · · · , k, (4.3.14)

where we have used the following definitions: p1 , [p11 p12 · · · p1k]T and p̃1 ,

[p̃11 p̃12 · · · p̃1k]
T . It can be shown that υ̃(p̃1m, γ̃m) (υ(p1m, γm)) is a biconcave5

function of p̃1m and γ̃m (p1m and γm), where 0 ≤ p̃1m ≤ γ̃m
2

(0 ≤ p1m ≤ γm
2
). If

we fix any four vectors out of the five vectors ζ, γ, γ̃, p1, and p̃1, the objective

function (4.3.14) is concave with respect to the fifth vector. This property inspires

5We note that r(x, y) is said to be a biconcave function if, for fixed x, r(x, y) is concave with
respect to y, and for fixed y, r(x, y) is concave with respect to x.



103

us to derive an alternating convex search technique to the optimization problem

(4.3.14). In each iteration, we fix four out of five of the above variable vectors, and

solve the optimization problem (4.3.14) for the fifth vector. At each iteration, we

can use efficient algorithms (e.g., interior point) to solve the problem. This iterative

algorithm will be repeated until the objective function reaches a maximum. Algorithm

3 summarizes our proposed solution to the problem (4.3.14).

It is worth mentioning that since there is no closed-form-solution for ψm(·) in the

multi-relay case, deriving a closed-form-solution for the inverse function ψ−1
m (·) is not

possible. To tackle this issue, note that ψm(γm), as defined in (4.2.12), is the maximum

achievable balanced rates of the two primary transceivers in mth subchannel, when

Pm(p1m, p2m,wm) = γm. Finding ψ−1
m (ζjm) means that we want to obtain the value

of the total power consumed in the primary subframe, when the achieved balanced

sum-rate satisfies R1m(p2m,w1m)+R2m(p1m,w1m) = 2R1m(p2m,w1m) = ζjm. Now, we

argue that this total consumed power should be as small as possible, thereby allowing

γm to be as large as possible. Hence, to obtain the smallest value of ψ−1
m (ζjm), we need

to solve the following optimization problem:

ψ−1
m (ζjm) = min

p1m,p2m,w1m

Pm(p1m, p2m,w1m)

subject to R1m(p2m,w1m) +R2m(p1m,w1m) = ζjm

p1m ≥ 0, p2m ≥ 0. (4.3.15)

It has been proven in [78], the problem (4.3.15) has a unique minimizer, hence it can

be solved it using the efficient algorithm proposed in [78].

Remark 1: If we consider the average power constraints, i.e.,
∑k

m=1(1−αm)γm ≤
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Algorithm 3 : Alternating Convex Search Solution to (4.3.14) - Multi-Relay Scenario

Step 1. Choose ε as the stopping criterion of the algorithm.

Step 2. Assume j to be the number of iterations and set j = 0.

Step 3. Set γ0m = γ
k
, γ̃0m = γ̃

k
, and obtain the vectors of ζ0,p0 and, p̃0 as the solution to the

optimization problems (4.2.16), (4.2.14a) and (4.2.4a), when γm and γ̃m are replaced with

γ0m and γ̃0m, respectively. Initialize the problem (4.3.7) with the above values. Define the

value of the objective function in (4.3.14) in the jth iteration as δ(ζj ,γj,pj , γ̃j, p̃j) ,

∑k
m=1

(

1− ζ
j
m

υm(pj1m,γ
j
m)

)

υ̃m(p̃
j
1m, γ̃

j
m).

Step 4. For each m, m = 1, 2, · · · , k, solve the following convex optimization problem to find

the optimal γ̃j+1 as

γ̃j+1 = argmax
γ̃≥0

δ(ζj ,γj,pj , γ̃, p̃j)

k∑

m=1

γ̃m = γ̃, 0 ≤ p̃j1m ≤ γ̃m
2
,

Step 5. For m = 1, 2, · · · , k, obtain p̃j+1
1m by solving the following convex optimization problem:

p̃j+1
1m (γ̃m) = arg max

0≤p̃1m≤ γ̃
j+1
m
2

p̃1m(γ̃
j+1
m − 2p̃1m)h̃

H
mQ̃

−1
m (p̃1m, γ̃

j+1
m )h̃m.

Step 6. Solve the following convex optimization problem, ror m = 1, 2, · · · , k, to find the

optimal γj+1:

γj+1 = argmax
γ≥0

δ(ζj ,γ,pj , γ̃j+1, p̃j+1)

k∑

m=1

γm = γ, 0 ≤ ψ−1
m (ζjm) ≤ γm, 0 ≤ pj1m ≤ γm

2
,

Step 7. For m = 1, 2, · · · , k, obtain pj+1
1m by solving the following convex optimization problem:

pj+1
1m (γm) = arg max

0≤p1m≤ γ
j+1
m
2

p1m(γ
j+1
m − 2p1m)h

H
mQ

−1
m (p1m, γ

j+1
m )hm.

Step 8. For each m, m = 1, 2, · · · , k,, solve the following convex optimization problem to find

the optimal ζj+1:

ζj+1 = argmax
ζ≥0

δ(ζ,γj+1,pj+1, γ̃j+1, p̃j+1)

k∑

m=1

ζm = η, 0 ≤ ζm ≤ ψm(γ
j+1
m ),

Step 9. If |δ(ζj+1,γj+1,pj+1, γ̃j+1, p̃j+1) − δ(ζj,γj,pj , γ̃j , p̃j)| < ε, go to Step 10, otherwise

set j = j + 1 and go to Step 4.

Step 10. Stop the algorithm.
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γ and
∑k

m=1 αmγ̃m ≤ γ̃, the optimization problem (4.3.1) can be simplified as

max
ζ,γ,γ̃<0

k∑

m=1

(

1− ζm
ψm (γm)

)

ψ̃m (γ̃m)

s.t.
k∑

m=1

(

1− ζm
ψm (γm)

)

γ̃m = γ̃,
k∑

m=1

ζm
ψm (γm)

γm = γ

k∑

m=1

ζm = η, 0 ≤ ζm ≤ ψm (γm) , for m = 1, 2, · · · , k.

This problem is also biconcave and can be solved using an algorithm similar to Algo-

rithm 3.

Remark 2: With respect to the assumption of global CSI, note that the global

CSI is not needed, since

• In the first approach, the secondary transceivers need to send only the values

of {ψ̃m(γ̃m)}km=1 to the primary transceivers in order to solve the optimization

problem (4.2.16).

• In the second and third approaches, the secondary transceivers need to trans-

mit the magnitude of their CSI to the primary transceivers, i.e., {|f̃1m|}km=1

and {|f̃2m|}km=1, since in (4.3.3), ψ̃m(γ̃m) is a function of the amplitudes of the

channel coefficients not their phases [43].

Remark 3: Note that in all our design problems, we observe that half of the

total available power is consumed by the relays [43, 101, 104]. Hence if the relay-

transceiver coefficients are drawn from the same distribution, then each relay will

consume, in average, 1
2nr

fraction of the total power consumed by either network in

their corresponding time frames.
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4.4 Simulation Results

We consider a network with nr = 10 relays, k = 10 subchannels, and two transceiver

pairs. We assume that the relays are randomly located between the two transceivers.

Indeed, we assume that the channel coefficient between each transceiver and each

relay is drawn from a complex Gaussian random distribution with zero mean and

unit variance. Moreover, the noises at the transceivers as well as those at the relays

are assumed to be i.i.d Gaussian with unit variance.

4.4.1 Multi-relay scenario with two spectral power mask con-

straints

In our simulations, we consider a flat power spectral mask where the maximum total

power available to the primary (secondary) network over all subchannels are equal.

In other words, we assume that γm = γ

k
(γ̃m = γ̃

k
), where γ (γ̃) is the total power

consumed in the primary (secondary) network over all subchannels. Fig. 4.2 illustrates

the average sum-rate of the secondary transceivers versus γ, for different values of

η, when γ̃ = 25 dBW. We observe that the average secondary sum-rate increases

when the total power consumed in the secondary network increases. Given γ and

γ̃ are fixed, this figure demonstrates that when the primary network rate demand

increases, the secondary network sum-rate will decreases, implying that the higher

is the rate demand of the primary network, the less resources will remain for the

secondary network users. Fig. 4.3 shows the secondary network sum-rate versus η,

for different values of γ̃, when γ = 25dBW. This figure illustrates that the secondary

network sum-rate is a decreasing function of the primary network rate demand. For
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Figure 4.2: Average secondary sum-

rate versus γ, in the multi-relay sce-

nario with spectral power mask con-

straints, for different values of η, when

γ̃ = 25 dBW.
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Figure 4.3: Average secondary sum-

rate versus η, in the multi-relay sce-

nario with spectral power mask con-

straints, for different values of γ̃, when

γ = 25 dBW.

different values of γ̃, Fig. 4.3 depicts that the higher the value of γ̃ is, the larger

the value of secondary network sum-rate will be. This effect can be justified based

on (4.2.15), noting that the value of the objective function is increasing in ψ̃m(γ̃m).

Hence, when γ̃ increases, the value of the objective function also increases.

4.4.2 Single-relay scenario, with per-network total power con-

straints

Fig. 4.4 shows the value of the average sum-rate of the secondary transceivers achieved

by our solution to (4.3.7) and the value of the objective function of (4.3.7) for the
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same solution versus γ, for different values of η, when γ̃ = 35dBW. This figure shows

that when γ is increased, the value of the secondary network sum-rate increases.

However, this sum-rate becomes saturated for large values of γ. This saturation

behaviour can be explained using (4.2.8) and (4.3.7), where the contribution of γm

(and equivalently that of γ) to the secondary network sum-rate is in the time-sharing

factor αm. Since the maximum value for each time sharing factor is 1, increasing

the primary network power budget, can not increase the secondary network sum-

rate substantially, when αm in (4.2.8) is close to 1. Note that Fig. 4.4 reveals that

there is a large gap between the graphs for low γ, and this gap becomes smaller for

higher values of γ. This effect is in agreement with the high-SNR approximation that

we used in our proposed method, where the gap between the value of the objective

function and its upperbound becomes smaller for higher values of γ. Interestingly,

the gap is relatively small even for low values of γ. Fig. 4.5 shows the value of the

secondary network sum-rate achieved by our solution to (4.3.7) and the value of the

objective function of (4.3.7) for the same solution, versus η, for different values of γ̃.

This figure illustrates that the secondary network sum-rate is a decreasing function

of the primary network rate demand.

Fig. 4.6 shows the convergence behaviour of Algorithm 2, when ǫ = 10−4 is chosen,

for single-relay multi-carrier scenario. In this figure, we have plotted the values of

the secondary network sum-rate normalized to its final value for different channel

realizations and the average value of the secondary network sum-rate, normalized to

its final value, averaged over 100 channel realizations. As can be seen from this figure,

the proposed algorithm converges very fast to a stationary point.
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Figure 4.4: Average secondary sum-

rate versus γ, in the single-relay sce-

nario with per-network total power

constraint, for different values of η,

when γ̃ = 35 dBW.
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Figure 4.5: Average secondary sum-

rate versus η, in the single-relay sce-

nario with per-network total power

constraint, for different values of γ̃,

when γ = 25 dBW.

4.4.3 Per-network total power constraint in multi-relay sce-

nario

Fig. 4.7 illustrates the values of the average sum-rate of the secondary transceivers

versus γ and γ̃, for different values of η. This figure shows that when γ or γ̃ is

increased, the value of the secondary network sum-rate increases. Fig. 4.8 shows the

effect of η on the sum-rate of the secondary users. We observe that increasing the

value of γ̃ leads to a higher value for the secondary network sum-rate. We also observe

that the slope of reduction in the sum-rate of the secondary users in terms of η is

larger as γ̃ is increased, while γ is fixed. The reason is that, these curves have to
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Figure 4.6: Normalized secondary sum-rate versus the number of iterations in the

multi-relay scenario, when η = 4, γ = 25 dBW and γ̃ = 25 dBW.

be monotonically decreasing in terms of η and they all have to approach zero as η

approaches a certain value. This value of η, say ηmax, is the same for different values

of γ̃ and when γ is fixed. Indeed, ηmax depends only on γ. As for higher values of γ̃,

the secondary network sum-rate is higher compared to the same rate for lower values

of γ̃. This sum-rate has to decay faster compared to the same curve for lower values

of γ̃, as η is increased, to ensure that this sum-rate approaches zero as η approaches

ηmax.

Fig. 4.9 shows the convergence behaviour of Algorithm 3, when ǫ = 10−4 is chosen,

for a multi-relay scenario. In this figure, we have plotted the values of the secondary

network sum-rates normalized to its corresponding final value for different channel

realizations and the average value of the secondary network sum-rate, normalized

to its final value, averaged over 100 channel realizations. We observe that the pro-

posed algorithm reaches its final value in 5-8 iterations. This figure shows that the
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Figure 4.7: Average secondary sum-

rate versus γ̃, in the multi-relay sce-

nario with per-network total power

constraint, for different values of η,

when γ̃ = 25 dBW.
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Figure 4.8: Average secondary sum-

rate versus η, in the multi-relay sce-

nario with per-network total power

constraint, for different values of γ̃,

when γ = 25 dBW.

convergence of the proposed algorithm is relatively fast.

4.5 Conclusions

We studied the problem of the temporal, spectral and relay resource sharing between

two pairs of transceivers which exploit a network of one or multiple relays. We

proposed two spectrum leasing and resource sharing approaches, each of which has

its own application. In each approach, we formulated an optimization problem in

order to calculate the corresponding design parameters.

In the first approach, we considered a multi-relay scenario and maximized the
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Figure 4.9: Normalized secondary sum-rate versus the number of iterations in the

multi-relay scenario, when η = 4, γ = 25 dBW and γ̃ = 25 dBW.

average sum-rate of the secondary transceivers, while guaranteeing an average sum-

rate for the primary transceivers, under two spectral power masks to limit the total

power consumed in each network over each subchannel. We showed that this design

problem can be turned into a linear programming problem.

In the second approach, we considered the maximization of the secondary net-

work sum-rate subject to per-network total power constraints, while guaranteeing

a minimum sum-rate for the primary transceivers. In this approach, we considered

two different scenarios: a single-relay scenario and a multi-relay scenario. For the

single-relay case, we used a high-SNR approximation and developed an alternating

convex search algorithm which exploits the biconcavity of the approximated objec-

tive function in terms of the design parameters, namely the vector of the total powers

allocated to each network over different subchannels and the vector of rate of the pri-

mary network over all subchannels. In the case of a multi-relay scenario, we expanded
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the design parameters to five vectors and showed that the problem is concave in any

parameter vector, given the other four vectors are fixed. Doing so, we proposed an

alternating convex search algorithm, to tackle the underlying problem.



Chapter 5

Optimal Power Allocation in
Unidirectional Collaborative Relay
Networks: Centralized Energy
Harvesting Case

In this chapter, we consider a network consisting of several distributed relay nodes

and a pair of users. The relays are connected to a central energy harvesting module,

that is equipped with a battery to store the harvested energy, via a wire network. The

underlying transmission scheme consists of k temporally orthogonal time frames. We

assume that energy packets arrive at the beginning of each time frame. In each time

frame, a specific amount of the harvested energy will be allocated to each relay and

the remaining energy remains in the battery for future possible relay transmission.

We assume that there is no direct link between the users, hence, a communication

link will be established through the help of the relays. The design problem in this

chapter is to obtain the optimal transmission policy for the relays in a unidirectional

communication scheme, under several constraints on the total power consumed by

the relays over each time interval, such that the overall throughput of the network is

maximized. The contributions of this chapter is summarized as:

114
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• We first study the problem of obtaining optimal transmission policy under the

assumptions that full CSI is available and the amount of energies, that are to be

harvested in future, are known. We then formulate the problem of maximizing

the throughput of the network restricted by several constraints on the total

power consumed by the relays over each time frame. We prove that the design

problem is convex with respect to the design variables, i.e., the total power

consumed by the relays over each time frame.

• We then study the case where only the statistics of the channels are known. In

this case, we resort to optimizing the average throughput of the users under the

same constrains of the first optimization problem. We obtain a semi-closed form

expression for the average throughput as a function of the the total consumed

power by the relays over the different time frames. Furthermore, we obtain the

optimal power allocation in each time frame using the concept of the so-called

energy-tunnel.

We discuss the proposed model in detail in the sequel.

5.1 System Model for Relay Energy Harvesting

We consider a network which consists of a pair of transmitter-receiver and nr relay

nodes. Assuming that there is no direct link between the transmitter and the receiver,

the relays cooperate to establish a communication link between the transmitter and

the receiver. We assume that the transmitter and the receiver are connected to a

power grid, meaning that they have access to a constant source of electricity to power

up their electronic modules. In other words, the transmitter and the receiver have



116

their own source of power. However, the relays distributed between the transmitter

and the receiver are not connected to the power grid. We assume that renewable

energies, i.e., energy that can be harvested from a variety of sources, is used to power

up the relays for their transmission needs. Furthermore, we assume that the relays

are connected to a single energy harvesting module that is equipped with a battery

which stores the harvested energy. The energy harvesting module is responsible to

distribute the harvested energy among the relays using power cables which connect

all the relays to the harvested energy. This assumption means that the location of

the relays are fixed and they all rely on the battery for their transmission need. The

assumption that all the relays are connected to one single battery is essential and

we will discuss the benefit of such an assumption in next section. The transmission

framework consists of k equal-length orthogonal time intervals, called time frame,

each with T seconds duration. Each time frame consists of two equal-length non-

overlapping time slots. Assuming amplify-and-forward (AF) relaying protocol, in the

first time slot the transmitter in the ith time frame sends its information symbols

to the relays. The relays then broadcast the so-called amplified-and phase-adjusted

versions of the signals they received in the previous time slot. We assume that at

the beginning of ith time frame an energy packet Er
i−1 arrives and is stored in the

battery. Note that each battery has a maximum capacity to store energy. We denote

the capacity of the battery in our model as Bmax. Fig. 5.1 summarizes the proposed

model.

Let us denote the transmitted symbol of the transmitter over the ith time frame,

(when (i − 1)T ≤ t ≤ iT ), as si(t) where the power of the transmitted symbol is

assumed to be a fixed value, denoted as P0. The nr × 1 vector of the signals received
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Figure 5.1: Energy harvesting in a two-hop relay assisted network.

at the relays over the ith time frame can be written as

xi(t) =
√

P0fisi(t) + ni(t) (5.1.1)

where fi = [f1,i f2,i · · · fnr,i]
T is the nr × 1 vector of the channel coefficients

between the transmitter and the relays, ni(t) is the nr × 1 vector of the received

noises at the relays over the ith time frame and xi(t) = [x1,i(t) x2,i(t) · · · xnr,i(t)]
T

is the nr × 1 vector of the noisy signal received by the relays. The relays then

process their received signals and broadcast modified versions of the signals that they

received in the previous time slot to the receiver using AF relaying protocol. Defining

x̃j,i(t) ,
xj,i(t)√
P0|fj,i|2+1

, for j = 1, 2, ..., nr, the nr × 1 vector of the relay retransmitted

signals can be written as

ti(t) = wi(t)⊙ x̃i(t) (5.1.2)



118

where wi(t) = [w∗
1,i(t) w

∗
2,i(t) · · · w∗

nr,i
(t)]T is the nr × 1 relay beamforming vector

over the ith time frame and x̃i(t) = [x̃1,i(t) x̃2,i(t) · · · x̃nr,i(t)]
T is the nr × 1 vector

of the normalized version of the received signals by the relays with unit power. Using

(5.1.2), one can show that the sum of the instantaneous transmitted powers of all

relays over the ith time frame can be written as

E{‖ti(t)‖2} = ‖wi(t)‖2 = pi(t) (5.1.3)

where pi(t) is the total instantaneous power consumed by the relays over the ith time

frame. Furthermore, using (5.1.2), one can write the received signal over the ith time

frame at the receiver as

ri(t) = tTi (t)gi + ni(t) =
√

P0w
H
i (t)Gifisi(t) +wH

i (t)Gini(t) + ñi(t) (5.1.4)

where gi = [g1,i g2,i · · · gnr,i]
T is the nr × 1 vector of the channel coefficients

between the relays and the receiver, Gi is an nr × nr diagonal matrix whose jth

diagonal element isGi(j, j) =
gj,i√

P0|fj,i|2+1
and ñi(t) is the received noise at the receiver

over the ith time frame. We assume that all noises are complex Gaussian random

processes with zero-mean and unit-variance, i.e., E{ni(t)nHi (t)} = I and E{ñi(t)2} =

1, where E{·} stands for the statistical expectation operator and I is an nr × nr

identity matrix. One should note that in a discrete time signal model, the information

theoretic rate is a function of the signal-to-noise-ratio (SNR), and thus is denoted as

R(SNR) and the total number of transmitted bits can be written as δt × R(SNR)

where δt is the duration of the transmission. Moreover, if the bandwidth of the

channel is large enough, the transmission scheme can accept small values for δt.

Hence, one can write the instantaneous function for the number of the transmitted
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bit as δt×R(SNR(t)) [105].With a small abuse of notation, we define the instantaneous

information theoretic rate in the ith time frame as

Ri(wi(t)) = log2

(

1 + SNRi(wi(t))

)

(5.1.5)

where we have obtained the instantaneous SNR over the ith time frame from (5.1.4)

as SNRi(wi(t)) =
P0|wH

i (t)Gifi|2
|wi(t)HGi|2+1

=
P0w

H
i (t)
(
Gifif

H
i GH

i

)
wi(t)

wH
i (t)
(
GiG

H
i

)
wi(t)+1

=
wH

i (t)
(
P0Gifif

H
i GH

i

)
wi(t)

wH
i (t)
(
GiG

H
i + 1

pi(t)
I

)
wi(t)

. In

the following sections, we use the proposed data model to design the parameters

of interest, the relay beamfoming vectors {wi(t)}ki=1 and obtain their corresponding

power consumptions {pi(t)}ki=1, in our proposed energy harvesting system model,

thereby allowing the relays to calculate the network parameters.

5.2 Problem Formulation

Using the data model developed in the previous section, we aim to design the re-

lay beamfoming vectors {wi(t)}ki=1 and obtain their corresponding total relay power

consumptions {pi(t)}ki=1. Having the knowledge of the harvested anergies over all

time frames apriori, we propose two different approaches to obtain the parameters

of the network, where each of them has its own application. In order to obtain

the parameters of interest, i.e., the beamforming vectors over all time frames and

the corresponding power consumption of each relay, we aim to maximize the total

transmitted bits (the overall throughput) in the network under several constraints on

the total consumed power by the relays over each time frame. Let us consider the
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following optimization problem:

max
W ,P

k∑

i=1

∫ iT

(i−1)T+T
2

Ri(wi(t))dt

s.t. ‖wi(t)‖2 = pi(t), pi(t) ≥ 0 i = 1, 2, ..., k

l∑

i=1

∫ iT

(i−1)T+T
2

pi(t)dt ≤
l−1∑

i=0

Er
i , for l = 1, 2, ..., k

l∑

i=0

Er
i −

l∑

i=1

∫ iT

(i−1)T+T
2

pi(t)dt ≤ Bmax, for l = 1, 2, ..., k − 1,

(5.2.1a)

(5.2.1b)

(5.2.1c)

(5.2.1d)

where we define W =
{
w1(t),w2(t), · · · ,wk(t), for all t

}
, as the set of the beamform-

ing vectors and P =
{
p1(t), p2(t), · · · , pk(t), for all t

}
, as the set of total relay power,

over different time frames. The objective function in (5.2.1a) is the overall through-

put of the network over all time frames. Note that the factor T
2
in the boundary

of the integral represent the fact that the relays transmit the received information

symbols only over half of each of the time frames. The constraints in (5.2.1b) stand

for the relation between the relays beamforming vectors and their corresponding total

consumed power over all time frames. Due to the fact that the battery cannot store

the energy which has yet to be harvested, a set of constraints is needed to be applied

to our design problem. Hence, the so-called energy causality constraints in (5.2.1c)

are used to ensure that the total energy consumed by all relays up to the lth time

frame is less than the total harvested energy over the same sets of time frames. The

constraints in (5.2.1d) are used to ensure that the remaining energy in the battery up

to the arrival of the lth time frame is less than the battery maximum capacity, oth-

erwise an overflow would occur in the battery. When overflow occurs in the battery,

the excessive energy must be eliminated, e.g., grounding the extra amount of energy.

These constraints ensure that the battery overflow will not occur. To simplify the
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optimization problem (5.2.1), let us rewrite this problem in the following equivalent

form:

max
P

k∑

i=1

max
wi(t)

∫ iT

(i−1)T+T
2

Ri(wi(t))dt

s.t. ‖wi(t)‖2 = pi(t),

l∑

i=1

∫ iT

(i−1)T+T
2

pi(t)dt ≤
l−1∑

i=0

Er
i , for l = 1, 2, ..., k

l∑

i=0

Er
i −

l∑

i=1

∫ iT

(i−1)T+T
2

pi(t)dt ≤ Bmax, for l = 1, 2, ..., k − 1. (5.2.2)

We note that the inner maximization problem in (5.2.2) can be written as

max
‖wi(t)‖2=pi(t)

∫ iT

(i−1)T+T
2

Ri(wi(t))dt =

∫ iT

(i−1)T+T
2

max
‖wi(t)‖2=pi(t)

Ri(wi(t))dt

=

∫ iT

(i−1)T+T
2

log2

(

1 + SNRmax
i (pi(t))

)

dt

=

∫ iT

(i−1)T+T
2

Rmax
i (pi(t))dt (5.2.3)

where SNRmax
i (pi(t)) = max

‖wi(t)‖2=pi(t)
SNRi(wi(t)) and with a small abuse of notation we

have used Rmax
i (pi(t)) instead of Ri(w

o
i (t)), where wo

i (t) is the optimal beamforming

vector over the ith time frame at time t for a given value of pi(t). One can easily

show that SNRmax
i (pi(t)) can be written as

SNRmax
i (pi(t)) = max

‖wi(t)‖2=pi(t)
SNRi(wi(t))

= max
‖wi(t)‖2=pi(t)

wH
i (t)

(
P0Gifif

H
i GH

i

)
wi(t)

wH
i (t)

(
GiGH

i + 1
pi(t)

I
)
wi(t)

= P0pi(t)h
H
i

(
pi(t)Qi + I

)−1
hi (5.2.4)
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where we used the following definitions: hi = Gifi and Qi = GiG
H
i . We also note

that the optimal beamforming vector in the ith time frame can be written as

wo
i (t) = κ

(
pi(t)Qi + I

)−1
hi (5.2.5)

where κ = pi(t)

hH
i

(
pi(t)Qi+I

)
−2

hi

. See [106] for more detail.

Lemma 1: The power distribution pi(t) over the ith time frame must be a constant

value to deliver the maximum throughput.

Proof: See Appendix A.

For a given constant power allocation pi over the ith time frame, the maximum

achievable rate can be written as

Rmax
i (pi) = log2

(
1 + SNRmax

i (pi)) = log2
(
1 + P0pih

H
i

(
piQi + I

)−1
hi), (5.2.6)

where with a small abuse of notation, we have used pi instead of pi(t). We also note

that the overall throughput over the ith time frame is given by T
2
Rmax
i (pi). Using

the result of Lemma 1 along with (5.2.4), the optimization problem (5.2.2) can be

rewritten as

max
pi≥0

i=1,2,...,k

T

2

k∑

i=1

Rmax
i (pi)

s.t
T

2

l∑

i=1

pi ≤
l−1∑

i=0

Er
i , for l = 1, 2, ..., k

l∑

i=0

Er
i −

T

2

l∑

i=1

pi ≤ Bmax, for l = 1, 2, ..., k − 1. (5.2.7)

Lemma 2: For a fixed value of P0, SNR
max
i (pi) is a concave function of pi.

Proof: See Appendix B.

Since SNRmax
i (pi) is a concave function of pi and log2(·) is a concave and increasing

function of its argument, Rmax
i (pi) is also a concave function of pi. Moreover, the two
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sets of constraints in (5.2.7) are linear in terms of the total power consumed in each

time frame. Therefore, the optimization problem (5.2.7) is a convex optimization

problem. There are several efficient algorithms, e.g., interior point algorithm, can be

used to obtain the optimal solution to the design problem (5.2.7). In the following

sections, we introduce two different scenarios where we aim to obtain the optimal

power consumption for all relays over all time frames at the beginning of the first

time frame.

5.3 Offline case

We note that the optimal solution to the optimization problem (5.2.7) can be obtained

if the values of the energies arrived at the beginning of all time frames as well as the

CSI for all links over all time frames are known apriori. We refer to the solution

for this case as offline solution, meaning that, at any time instance, the CSI and

the knowledge of the values of the energies which are to arrive over all future time

frames are available apriori. In the sequel, we provide some properties of the optimal

solution to the optimization problem (5.2.7) by using Karush-Kuhn-Tucker (KKT)

conditions. Let us define the Lagrangian corresponding to the optimization problem

(5.2.7) as

L(p,λ,η,µ) = −T
2

k∑

i=1

Rmax
i (pi) +

k∑

l=1

λl

(
T

2

l∑

i=1

pi −
l−1∑

i=0

Er
i

)

+

k−1∑

l=1

ηl

( l∑

i=0

Er
i −

T

2

l∑

i=1

pi − Bmax

)

−
k∑

l=1

µlpl (5.3.1)

where we have used the following notations: p , [p1 p2 · · · pk], λ ,

[λ1 λ2 · · · λk], η , [η1 η2 · · · ηk] and, µ , [µ1 µ2 · · · µk]. We note
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that λ, η and µ are the vectors of dual variables. The KKT conditions for the

Lagrangian function in (5.3.1) are given by

Primal and Dual Feasibility:

p < 0, λ < 0, η < 0, µ < 0

T

2

l∑

i=1

pi ≤
l−1∑

i=0

Er
i , for l = 1, 2, · · · , k

l∑

i=0

Er
i −

T

2

l∑

i=1

pi ≤ Bmax, for l = 1, 2, · · · , k − 1 (5.3.2)

Complementary Slackness:

λl

(
T

2

l∑

i=1

pi −
l−1∑

i=0

Er
i

)

= 0, for l = 1, 2, · · · , k

ηl

( l∑

i=0

Er
i −

T

2

l∑

i=1

pi −Bmax

)

= 0, for l = 1, 2, · · · , k

µlpl = 0, for l = 1, 2, · · · , k

(5.3.3a)

(5.3.3b)

(5.3.3c)

Stationarity:

∂L(p,λ,η,µ)
∂pi

= −T
2

dRmax
i (pi)

dpi
+
T

2

k∑

l=i

λl

− T

2

k−1∑

l=i

ηl − µi = 0, for i = 1, 2, · · · , k − 1. (5.3.4)

∂L(p,λ,η,µ)
∂pk

= −T
2

dRmax
k (pk)

dpk
+
T

2
λk − µk = 0. (5.3.5)

Let us define νi(pi) ,
T
2

dRmax
i (pi)

dpi
= T

2

dSNRmax
i (pi)

dpi

1+SNRmax
i (pi)

= T
2

P0h
H
i

(
piQi+I

)
−2

hi

1+P0pih
H
i

(
piQi+I

)
−1

hi

. We note

that Rmax
i (pi) is a concave and increasing function of its argument (see Appendix B),

which means νi(pi) > 0 and dνi(pi)
dpi

< 0. In other words, νi(pi) is a strictly decreasing
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function of pi, therefore ν
−1
i (·) exists. One can see that, for i = 1, 2, · · · , k − 1, if at

the optimum, the optimal power, denoted as poi , is equal to zero, then µo
i ≥ 0, and if

poi > 0 then, µo
i = 0. Using (5.3.3c) and (5.3.4), for i = 1, 2, · · · , k − 1, one can write

if µo
i > 0, then poi = 0 ⇒ −νi(0) +

T

2

k∑

l=i

λol −
T

2

k−1∑

l=i

ηol = µo
i (5.3.6)

if poi > 0, then µo
i = 0 ⇒ −νi(poi ) +

T

2

k∑

l=i

λol −
T

2

k−1∑

l=i

ηol = 0 . (5.3.7)

We note that (5.3.6) and (5.3.7) are mutually exclusive. This means that only one

of the two constraints in (5.3.6) and (5.3.7) can happen at the same time. To show

this, noting that νi(0) = T
2
P0‖hi‖2, one can realize from (5.3.6) that T

2

∑k

l=i λ
o
l −

T
2

∑k−1
l=i η

o
l ≥ νi(0) = T

2
P0‖hi‖2 must hold true if µo

i > 0. Moreover, using the

fact that νi(pi) is a positive and decreasing function of pi, when pi > 0, then one

can write 0 ≤ νi(p
o
i ) < νi(0) = T

2
P0‖hi‖2. This fact leads us to rewrite (5.3.7)

as 0 ≤ T
2

∑k

l=i λ
o
l − T

2

∑k−1
l=i η

o
l = νi(p

o
i ) ≤ νi(0) = T

2
P0‖hi‖2, and hence obtain

the optimal power consumption poi as poi = ν−1
i

(

T
2

(∑k

l=i λ
o
l −

∑k−1
l=i η

o
l

)
)

. These

discussions prove that (5.3.6) and (5.3.7) are mutually exclusive and they can be

rewritten as

if
T

2

k∑

l=i

λol −
T

2

k−1∑

l=i

ηol ≥
T

2
P0‖hi‖2 ⇐⇒ poi = 0 (5.3.8)

if
T

2

k∑

l=i

λol −
T

2

k−1∑

l=i

ηol <
T

2
P0‖hi‖2 ⇐⇒ poi = ν−1

i

(
T

2

(
k∑

l=i

λol −
k−1∑

l=i

ηol
)
)

(5.3.9)

One can merge (5.3.8) and (5.3.9) to write the optimal power consumption over the

ith time frame, i = 1, · · · , k − 1, as

poi = max

{

0, ν−1
i

(

T

2

(
k∑

l=i

λol −
k−1∑

l=i

ηol

))}

. (5.3.10)
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Similarly, using (5.3.5), one can write the optimal power consumption over the kth

time frame as

pok = max

{

0, ν−1
k

(
T

2
λok

)

.

}

(5.3.11)

The optimal total power consumption over all time frames, obtained in (5.3.10) and

(5.3.11), must satisfy the primal feasibility constraints in (5.3.2). The optimal dual

variables in (5.3.10) and (5.3.11) can be interpreted as the solution of the so-called

directional-water-filling algorithm that is introduced in [105] as a variation of the

conventional water-filling algorithm. Algorithm 4 summarizes the steps to obtain the

optimal solution.

Algorithm 4 : Directional water-filling algorithm to solve (5.3.10) and (5.3.11)

Step 1. Set the iteration index as u = 1.

Step 2. Given the values of Er
i−1, for i = u, u + 1, · · · , k, find the first index d where

Er
d−1 > Er

l−1, for l = u, u+ 1, · · · , d, then calculate νl(p̃l) as the water levels, where

p̃l =
2Er

l−1

T
.

Step 3. If water levels are equalized, i.e., νm(p̃m) = νn(p̃n) for allm,n ∈ {u, u+1, · · · , d},

set pom = p̃m and go to step 4 otherwise, change the level of powers, using bisection

method to, pom such that νm(p
o
m) is equalized, and that the conditions T

2

∑d

m=1 p
o
m =

∑d

m=1E
r
m−1 and T

2
pm < Bmax are not violated, then go to step 4.

Step 4. If u > k stop the algorithm otherwise, set u = d+ 1 and go to step 2.
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5.4 Semi-offline case

In the previous section, we obtained the optimal values of the total power consump-

tion over each time frame if the values of the energies arrived at the beginning of all

time frames as well as the CSI for all links over all time frames are known apriori.

However, if the values of the energies Er
i , i = 0, 1, · · · , k − 1, are known1 apriori

but the channel coefficients are known only at the beginning of the upcoming time

frame, one can not solve the optimization problem (5.2.7). However, if the statistics of

the channels are available, one can consider a different scenario where the decision for

transmission over each time frame is made based on the average throughput criterion.

In other words, one can maximize the average transmitted bits over all time frames

under several constraints on the power vector p. In this scenario, we assume that fj,i

and gj,i, j = 1, 2, · · · , nr and i = 1, 2, · · · , k, are drawn from a complex Gaussian dis-

tribution with zero-mean and unit-variance. Let us consider a modified version of the

optimization problem (5.2.7), where we have replaced the instantaneous throughput

with the average throughput, that is we consider the following optimization problem

max
p

E

{

T

2

k∑

i=1

{

Rmax
i (pi)

}}

s.t
T

2

l∑

i=1

pi ≤
l−1∑

i=0

Er
i , for l = 1, 2, ..., k

l∑

i=0

Er
i −

T

2

l∑

i=1

pi ≤ Bmax, for l = 1, 2, ..., k − 1 (5.4.1)

where E
{
·
}

is the expectation operator is taken over all channel realizations. In

appendix C, we obtain a semi-closed-form expression for E

{

Rmax
i (pi)

}

, and thereby

1For most of the energy harvesting technologies, the values of energies that are to arrive for a
specific duration of time can be calculated precisely.
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showing that this expression does not depend on the index of the time frame. This

means that for a given value of s, E

{

Rmax
i (s)

}

= E

{

Rmax
j (s)

}

= ψ(s), where j 6= i.

Hence, one can rewrite the optimization problem (5.4.1) as

max
p

T

2

k∑

i=1

ψ(pi)

s.t.
T

2

l∑

i=1

pi ≤
l−1∑

i=0

Er
i , for l = 1, 2, ..., k

l∑

i=0

Er
i −

T

2

l∑

i=1

pi ≤ Bmax, for l = 1, 2, ..., k − 1. (5.4.2)

We note that the expectation and the summation operators in the objective func-

tion of (5.4.1) are linear operators, hence they preserve concavity. This means that

the objective function in (5.4.2) is a concave function of p. As the objective func-

tion in (5.4.2) does not depend on the CSI over the ith time frame, one can show

that the optimal power policy for the optimization problem (5.4.2) can be obtained

based on only considering the constraints. Indeed, if in an optimization problem, the

objective function is a summation of the same concave function, evaluated over dif-

ferent optimization variables, and when the constraints of the optimization problem

are affine functions of the optimization variables, then one can obtain the optimal

power policy regardless of the shape of the objective function [105, 107]. In order

to obtain the optimal value for the total consumed power over each time frame, let

us first plot the so-called energy tunnel graph. The energy tunnel is the area re-

stricted between the cumulative energy
∑l−1

i=0E
r
i as the upper-bound of the graph

and max(0,
∑l

i=0E
r
i − Bmax) as the lower bound of the graph, for different time

frame index l. Figs. 5.2 and 5.3 show two different examples of this tunnel for two

different energy arrival profiles. The cumulative energy spent by the optimal power
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allocation, forms a continuous curve and must stay within this tunnel to conform

to energy feasibility constraints. A power allocation that crosses the upper bound

∑l−1
i=0E

r
i , spends more energy than the available energy, and the one that crosses the

lower bound max(0,
∑l

i=0E
r
i −Bmax), causes a battery overflow. Therefore, the set of

feasible energy consumptions lies within this tunnel. The optimal energy consump-

tion policy corresponds to a plot that connects the origin of the graph to the end

point of the upper-bound of the graph while having the minimum length. Such an

optimal energy consumption policy is indeed a piece-wise linear curve which resides

in the energy tunnel, has the minimum total length and connects the origin of the

graph to end point of the upper bound of the consumed cumulative energy. Then this

optimal path allows us to calculate the optimal constant power consumption over each

time frame. The authors in [107] proposed a low complexity algorithm to calculate

the optimal power consumption corresponding to the optimization problem (5.4.2),

by first finding the optimal energy consumption path as described earlier. Then the

optimal power consumption can be calculated by obtaining the slope of the optimal

energy consumption path over each time interval. We further use the results of the

Appendix C to evaluate the average throughput of the users based on the optimal

power policy that is described earlier.

5.5 Simulation Results

We consider a network consisting of a transmitter-receiver pair and nr = 10 relay

nodes. The relay nodes are connected to an energy harvesting module. We assume

that the energy harvesting module has a battery with maximum capacity of 10 energy

units and the energy arrival rate is λ per unit of time. We further assume that the
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Figure 5.2: Optimal path for power

consumption for two different energy

arrival profiles, with Bmax = 10.
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Figure 5.3: Optimal path for power

consumption for two different energy

arrival profiles, with Bmax = 10.

relays are randomly distributed between the transmitter-receiver pair. Indeed, we

assume that the channel coefficient between the transmitter (the receiver) and each

relay, over each time interval, is drawn from a complex Gaussian random distribution

with zero mean and unit variance.

In Fig. 5.4, we show the average value of the throughput of our scheme versus the

energy arrival rate λ for the offline and semi-offline cases. One can observe that, for

both offline and semi-offline cases, the average throughput of the network increases

as λ increases. Indeed, the larger the value of λ is, the higher the average amount of

the harvested energy will be. Hence, the average throughput of the network increases

as the amount of the harvested energy increases. We also observe from Fig. 5.4 that

the rate of increase of the value of the average throughput of the network increases
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as λ increases. As can be seen from this figure, the offline case outperform the semi-

offline case, due to the fact that the strong assumption of the availability of full CSI

is assumed in the former case. Although assuming the availability of full CSI, over all

time frames, is not practical but the offline case has been considered as a benchmark

for comparison in the literature [105]. We also observe from Fig. 5.4 that the gap

between the value of the average throughput of the offline case and semi-offline case

remains constant as λ increases. However, for any fixed value of λ, this gap is higher

for larger values of k.

Fig. 5.5 depicts the average value of the throughput of the network versus the

number of time frames for the offline and the semi-offline cases. We observe that

the average throughput of the network increases monotonically as the number of the

time frames increases. Indeed, the value of the objective function in each of (5.2.7)

and (5.4.2) is a summation of per-time-frame throughput of the network. Hence,

for any fixed value of λ, as the number of time frames increases, the throughput of

the network increases monotonically. We also observe that that the gap between the

value of the average throughput of the offline case and semi-offline case increases as

k increases. One can quantify the gap between the average throughput of the offline

case and semi-offline case as the sum of per-time-frame gap. Hence, as k increases, the

gap between the value of the average throughput of the offline case and semi-offline

case increases.

5.6 Conclusions

In this chapter, In this paper, we considered a unidirectional collaborative relay net-

work consisting of nr relay nodes and a transmitter-receiver pair. Considering no
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direct link between the source and the destination, the relays assist the two end

nodes to establish a unidirectional communication. The relays are connected to a

central energy harvesting module with a battery that has a capacity of Bmax. In

each time frame, a specific amount of the harvested energy will be allocated to each

relay. Assuming an AF relaying protocol, the relays collectively materialize a network

beamformer to establish a link between the transmitter and the receiver. For such a

relay network, we studied two different scenarios.

In the first scenario, we considered the case where the global CSI is available

(i.e., the offline case) and we formulated an optimization problem to maximize the

throughput of the network subject to two affine sets of constraints on the total power

consumed by the relays over each time frame. The first set of constraints are energy

causality constraints which ensure that the energy which have been harvested up to
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any given time frame may be consumed. The second set of constraints are to prevent

overflow of the battery at any given time frame by optimally using the available

energy. We proved that such an optimization problem is convex hence it is amenable

to a computationally efficient solution. We observe that for both offline- and semi-

offline cases, the average throughput of the network increases as λ increases. We also

observe that the gap between the value of the average throughput of the offline case

and semi-offline case remains constant as λ increases. However, for any fixed value of

λ, this gap is higher for larger values of k.

As the second scenario, we considered the case where only the statistics of the

channels are available. For this scenario, we resorted to maximizing the average

throughput of the network under the same constraints of the previous design problem.

We proved that the objective function is concave, and thus the solution to such

an optimization problem does not depend on the shape of the objective function.

Using the concept of energy-tunnel, we used an computationally efficient algorithm

to optimally calculate the total power consumed by the relays over each time frame

and obtain the corresponding optimal beamforming vector. We observe that the

average throughput of the network increases monotonically as the number of the time

frames increases.
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5.7 Appendix

5.7.1 Proof of constant transmit power over each time inter-

val

Let us consider the optimal power profile as pi(t) and define a constant power policy

p∗i =

∫ iT

(i−1)T+T
2
pi(t)dt

T
2

=
2Eav

i

T
over the ith time frame, t∈ [(i−1)T+T

2
iT ), where Eav

i is

the total available energy to be consumed over the ith time frame. We now prove that

the constant power policy p∗i results in an average data rate which is higher than that

for the optimal power profile pi(t), i.e., R
max
i (p∗i ) ≥ 2

T

∫ iT

(i−1)T+T
2
Rmax
i (pi(t))dt, that

contradicts the optimality. To show this, let us first consider the following equality

p∗i =
2
∫ iT

(i−1)T+T
2
pi(t)dt

T
=

2 lim
m−→∞

∑m
j=1 pi

(

(i− 1)T + T
2
+ j ∆t

)

∆t

T
(5.7.1)

where ∆t = T
2m

. Since Rmax
i (·) is a concave function of its argument (see Appendix

2), hence one can show that

Rmax
i (p∗i ) = Rmax

i

(

lim
m−→∞

m∑

j=1

pi
(
(i− 1)T +

T

2
+ j ∆t

)2∆t

T

)

≥

= lim
m−→∞

m∑

j=1

Rmax
i

(

pi
(
(i− 1)T +

T

2
+ j ∆t

)
)
2∆t

T

=
2

T

∫ iT

(i−1)T+T
2

Rmax
i

(

pi(t)

)

dt. (5.7.2)

This shows that the optimal power policy pi(t) delivers lower average rate than the

constant power policy p∗i , thereby contradicting optimality.
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5.7.2 Proof of strictly concavity of SNRmax
i (pi)

To prove the concavity of SNRmax
i (pi), we need to prove that the second order deriva-

tive of this function with respect to pi is always negative. To do so, let us first

calculate the first derivative of SNRmax
i (pi) with respect to pi as

d SNRmax
i (pi)

dpi
= P0h

H
i

(
piQi + I

)−1
hi + P0pih

H
i

d

dpi

(
piQi + I

)−1
hi

= P0h
H
i

(
piQi + I

)−1
hi − P0pih

H
i

(
piQi + I

)−2
Qihi

= P0h
H
i

(
piQi + I

)−2
hi. (5.7.3)

In the derivation of (5.7.3), we have used the fact that if A(α) is a diagonal ma-

trix, then
dA−1(α)

dα
= −A−1(α)

dA(α)

dα
A−1(α) . One can see form (5.7.3) that

d SNRmax
i (pi)

dpi
is always positive which means that SNRmax

i (pi) is an increasing func-

tion of pi. We derive the second derivative of SNRmax
i (pi) over pi as

d2 SNRmax
i (pi)

dp2i
=

d

dpi

(

P0h
H
i

(
piQi + I

)−2
hi

)

= −2P0h
H
i

(
piQi + I

)−3
Qihi (5.7.4)

which is always negative. This completes the proof that SNRmax
i (pi) is a strictly

concave function of pi. We also note that log2(·) is a concave and increasing function

of its argument, hence Rmax
i (pi) = log2

(

1 + SNRmax
i (pi)

)

is also a concave function

of pi.
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5.7.3 Semi-closed form expression for the average rate in the

third scenario

To calculate the average rate of the user over a time frame, let us first recall that

SNRmax
i (pi) = P0pih

H
i

(
piQi + I

)−1
hi =

nr∑

j=1

P0pi|fj,iGi(j, j)|2
piQi(j, j) + 1

=

nr∑

j=1

P0pi|fj,iGi(j, j)|2
pi|Gi(j, j)|2 + 1

=

nr∑

j=1

P0pi|fj,i|2|gj,i|2
pi|gj,i|2 + P0|fj,i|2 + 1

. (5.7.5)

Note that since the distribution of fj,i as well as that of gj,i are considered to be com-

plex Gaussian random variables with zero-means and unit-variances, the distributions

of αj,i = |fj,i|2 and βj,i = |gj,i|2 are exponential with parameter 1, i.e., αj,i ∼ e−αj,i

and βj,i ∼ e−βj,i. To find the average rate, let us first find the cumulative distribution

function (c.d.f) of Zj,i(pi) =
P0pi|fj,i|2|gj,i|2

pi|gj,i|2+P0|fj,i|2+1
, i.e., FZj,i(pi)(zj), as

FZj,i(pi)(zj) = Pr

{

Zj,i(pi) ≤ zj

}

= Pr

{
P0piαj,iβj,i

piβj,i + P0αj,i + 1
≤ zj

}

= Pr

{

P0αj,i(piβj,i − zj) ≤ zj(piβj,i + 1)

}

. (5.7.6)

where Pr{·} is the probability of an event. Using the definition of the total probability

for disjoint events, one can rewrite the equation (5.7.6) as

FZj,i(pi)(zj) = Pr

{

P0αj,i(piβj,i − zj) ≤ zj(piβj,i + 1), piβj,i − zj ≥ 0

}

+ Pr

{

P0αj,i(piβj,i − zj) ≤ zj(piβj,i + 1), piβj,i − zj < 0

}

= Pr

{

αj,i ≤
zj(piβj,i + 1)

P0(piβj,i − zj)
, βj,i ≥

zj
pi

}

+ Pr

{

αj,i ≥
zj(piβj,i + 1)

P0(piβj,i − zj)
, βj,i <

zj
pi

}

= Pr

{

αj,i ≤
zj(piβj,i + 1)

P0(piβj,i − zj)
, βj,i ≥

zj
pi

}

+ Pr

{

αj,i ≥ 0, βj,i <
zj
pi

}

,

(5.7.7)
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where we have used the fact that when βj,i <
zj
pi
, then

zj(piβj,i+1)

P0(piβj,i−zj) < 0 and since αj,i is

always non-negative, then the constraint αj,i ≥ zj(piβj,i+1)

P0(piβj,i−zj) for this case is simplified

to αj,i ≥ 0. To further simplify (5.7.7), one can write

Pr

{

αj,i ≤
zj(piβj,i + 1)

P0(piβj,i − zj)
, βj,i ≥

zj
pi

}

=

∫ ∞

zj
pi

(∫ zj(piβj,i+1)

P0(piβj,i−zj )

0

e−αj,i × e−βj,idαj,i

)

dβj,i

=

∫ ∞

zj
pi

(

1− e
− zj(piβj,i+1)

P0(piβj,i−zj)

)

e−βj,idβj,i. (5.7.8)

Pr

{

αj,i ≥ 0, βj,i <
zj
pi

}

= Pr

{

αj,i ≥ 0

}

× Pr

{

0 ≤ βj,i ≤
zj
pi

}

= 1×
∫ zj

pi

0

e−βj,idβj,i = 1− e
− zj

pi . (5.7.9)

From (5.7.8)-(5.7.9), one can show that

FZj,i(pi)(zj) =

(∫ ∞

zj
pi

(

1− e
− zj(piβj,i+1)

P0(piβj,i−zj )

)

e−βj,idβj,i

)

+

(

1− e
− zj

pi

)

(5.7.10)

We now derive the probability density function (p.d.f) of Zj,i(pi), denoted by FZj,i(pi)(zj),

by finding the derivative of FZj,i(pi)(zj) as

FZj,i(pi)(zj) =
dFZj,i(pi)(zj)

dz
=

d

dzj

(∫ ∞

z
pi

(

1− e
− zj(piβj,i+1)

P0(piβj,i−zj)

)

e−βj,idβj,i

)

+
1

pi
e
− zj

pi ,

(5.7.11)

where

d

dzj

(∫ ∞

zj
pi

(

1− e
− zj(piβj,i+1)

P0(piβj,i−zj )

)

e−βj,idβj,i

)

= − 1

pi

(

1− lim
βj,i→(

zj
pi

)+
e
− zj(piβj,i+1)

P0(piβj,i−zj)

)

e
− zj

pi

+

∫ ∞

zj
pi

(
piβj,i(piβj,i + 1)

P0

(
piβj,i − zj

)2 e
− zj(piβj,i+1)

P0(piβj,i−zj)

)

e−βj,idβj,i. (5.7.12)
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One can show that lim
βj,i→(

zj
pi

)+
e
− zj(piβj,i+1)

P0(piβj,i−zj ) ≈ 0, hence we can rewrite (5.7.11) as

FZj,i(pi)(zj) =

(

− 1

pi
e
− zj

pi +

∫ ∞

zj
pi

(
piβj,i(piβj,i + 1)

P0

(
piβj,i − zj

)2 e
− zj(piβj,i+1)

P0(piβj,i−zj)

)

e−βj,idβj,i

)

+
1

pi
e
− zj

pi

=

∫ ∞

zj
pi

{
piβj,i(piβj,i + 1)

P0

(
piβj,i − zj

)2

}

× e
−
(

zj(piβj,i+1)

P0(piβj,i−zj)
+βj,i

)

dβj,i. (5.7.13)

As mentioned earlier, ψ(s) = E

{

Rmax
i (s)

}

does not depend on the index of time

frame, hence one calculate the average value of the rate as

ψ(pi) = E

{

Rmax
i (pi)

}

= E

{

log2
(
1 + SNRmax

i (pi))

}

= E

{

log2

(

1 +

nr∑

j=1

Zj,i(pi)

)}

=

∫ ∞

z1=0

· · ·
∫ ∞

znr=0

log2

(

1 +
nr∑

j=1

zj

)

×

FZ1i(pi)(z1)× · · · × FZnri(pi)
(znr)dz1 · · ·dznr . (5.7.14)

One can also note that the p.d.f of the sum of several independent random vari-

ables is the convolution of the p.d.f of all random variables, i.e., F(
∑nr

j=1 Zj,i(pi)) =

FZ1i(pi)(z1) ⊛ FZ2i(pi)(z2) ⊛ · · · ⊛ FZnri(pi)
(znr) = FZ̃i(pi)

(z̃i), where ⊛ stands for the

convolution operator. Hence, if we denote Z̃i(pi) =
∑nr

j=1 Zj,i(pi), then we can easily
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show that the equation (5.7.14) can be rewritten as

ψi(pi) =

∫ ∞

z̃=0

log2

(

1 + z̃i

)

Fz̃i(z̃i)dz̃i

=

∫ ∞

z̃=0

log2

(

1 + z̃i

)

×

F−1

{

F
{
FZ1i(pi)(z̃i)

}
× · · · × F

{
FZnri(pi)

(z̃i)
}
}

dz̃i. (5.7.15)

where F(·) and F−1(·) stand for Fourier transform and inverse Fourier transform,

respectively. Note that the p.d.f of each of Zj,i(s) does not depend on the index

of time frame and on the index of relays, as all channel coefficients are assumed to

be independent and identically distributed. Hence, with a small abuse of notation,

we use Z(pi) and Z̃(pi) instead of Zj,i(pi) and Z̃i(pi), respectively, one can rewrite

(5.7.15) as

ψ(pi) =

∫ ∞

z̃=0

log2

(

1 + z̃

)

F−1

{(

F
{
FZ(pi)(z̃)

}
)nr
}

dz̃. (5.7.16)

Note that ψ(pi) does not have a closed-form expression, however, the relays can create

a look-up table for different values of pi and P0, and evaluate ψ(pi) numerically. We

also note that one can obtain ψ(pi) in (5.7.16) using numerical monte-carlo simulations

thereby approximating ψ(pi) as

ψ(pi) = E

{

Rmax
i (pi)

}

= E

{

log2
(
1 + SNRmax

i (pi))

}

≃ lim
m→∞

1

m
×

m∑

k=1

log2
(
1 + {SNRmax

i (pi)}k) (5.7.17)

where {SNRmax
i (pi)}k stands for the kth realization of the SNRmax

i (pi) over the ith

time frame.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In Chapter 3, we studied optimal resource sharing between two pairs of transceivers

which exploit a network of nr relays. We considered a communication framework in

which the primary pair leases out a portion of its spectral and temporal resources to

the secondary pair in exchange for using the relays to guarantee a minimum data rate

for the primary transceivers. We proposed three approaches with different pros and

cons. In each approach, we formulated an optimization problem in order to optimally

calculate the corresponding design parameters.

As the first approach, we maximize the secondary transceivers rates while guar-

anteeing a minimum data rate for the primary transceivers and limiting the total

powers consumed in the primary and the secondary network to be less than prede-

fined thresholds. We showed that for the primary and the secondary transceivers,

the design problem can be simplified into two SNR balancing problems, each with its

own semi-closed-form solution.

In the second approach, we replaced the two separate constraints on the total

power consumed in the primary and secondary networks used in the first approach,
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with a constraint on the total power consumed in the whole time frame. We proved

that the optimization problem in this approach can be simplified to a simple line

search problem with low complexity. Furthermore, we showed that the second ap-

proach is superior to the first approach as in the latter approach one can optimally

allocate the available power between the primary and the secondary transceivers.

The third approach combines the two aforementioned methods to materialize spec-

trum leasing and sharing for the case when the primary network is active with a certain

probability.

In Chapter 4, we investigated the temporal, spectral and relay resource sharing

problem between two pairs of transceivers which exploit a network of one or multiple

relays in a multi-carrier scenario. We proposed two spectrum leasing and resource

sharing approaches, each of which has its own application. In each approach, we

formulated an optimization problem in order to calculate the corresponding design

parameters.

As the first approach, we considered a multi-relay scenario and maximized the

average sum-rate of the secondary transceivers while guaranteeing an average sum-

rate for the primary transceivers and under two spectral power masks to limit the

total power consumed in each network over each subchannel. We showed that for

the primary (secondary) transceivers, the design problem can be turned into a linear

programming problem.

In the second approach, we considered maximization of the secondary network

sum-rate subject to per network total power constraints while guaranteeing a min-

imum sum-rate for the primary transceivers. In this approach, we considered two
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different scenarios namely a single-relay case and a multi-relay case. For the sin-

gle relay case, we used a high SNR approximation and developed an iterative convex

search algorithm which applies the biconcavity of the approximated objective function

in terms of the design parameters, namely the vector of the total powers allocated to

each network over different subchannels and the vector of rate of the primary network

over all subchannels. In the case of a multi-relay scenario, we expanded the design

parameters to five vectors and showed that the problem is concave in any parameter

vector, given the other four vectors are fixed. Doing so, we proposed an alternate

convex search algorithm to introduce a solution to the underlying problem.

In Chapter 5, we considered a unidirectional collaborative relay network consisting

of nr relay nodes and a transmitter-receiver pair. Considering no direct link between

the source and the destination, the relays assist the two end nodes to establish a uni-

directional communication. The relays are connected to a central energy harvesting

module with a battery that has a capacity of Bmax. In each time frame, a specific

amount of the harvested energy will be allocated to each relay. Assuming an AF re-

laying protocol, the relays collectively materialize a network beamformer to establish

a link between the transmitter and the receiver. For such a relay network, we studied

two different scenarios.

In the first scenario, we considered the case where the global CSI is available

(i.e., the offline case) and we formulated an optimization problem to maximize the

throughput of the network subject to two affine sets of constraints on the total power

consumed by the relays over each time frame. The first set of constraints are energy

causality constraints which ensure that the energy which have been harvested up to

any given time frame may be consumed. The second set of constraints are to prevent
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overflow of the battery at any given time frame by optimally using the available

energy. We proved that such an optimization problem is convex hence it is amenable

to a computationally efficient solution. We observe that for both offline- and semi-

offline cases, the average throughput of the network increases as λ increases. We also

observe that the gap between the value of the average throughput of the offline case

and semi-offline case remains constant as λ increases. However, for any fixed value of

λ, this gap is higher for larger values of k.

As the second scenario, we considered the case where only the statistics of the

channels are available. For this scenario, we resorted to maximizing the average

throughput of the network under the same constraints of the previous design problem.

We proved that the objective function is concave, and thus the solution to such

an optimization problem does not depend on the shape of the objective function.

Using the concept of energy-tunnel, we used an computationally efficient algorithm

to optimally calculate the total power consumed by the relays over each time frame

and obtain the corresponding optimal beamforming vector. We observe that the

average throughput of the network increases monotonically as the number of the time

frames increases.

6.2 Future Work

Energy harvesting in wireless relay networks is a promising technology to enable

a long-lasting communication between wireless nodes through providing sustainable

energy supply. The nodes in such networks are capable of harvesting energy from

different sources in the environment, e.g., motion and vibration, light and infra-red

radiation, RF radio waves and etc. In some specific wireless devices, e.g., randomly
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distributed relay nodes or wireless sensors, where each node is supplied by a battery, it

is highly restrictive or even impossible to replace/recharge the batteries when they are

deployed. Hence, energy harvesting has been introduced to alleviate the bottleneck

of the power supplies. Due to the renewable nature of the aforementioned energy

sources, energy harvesting can provide supply of power with a theoretically unlimited

lifetime. The challenge, however, is that due to the random nature of the profile of

the harvested energy, one needs to provide an optimal policy to use the harvested

energy in order to sustain a specific design requirement. Several possible research

areas for future work can be summarized as they follows

1. Assuming a bidirectional communication, one can extend our study of the

optimal resource sharing and spectrum leasing problem between two pairs of

transceivers to the case where there exist multiple pairs of transceivers for both

single- and multi-carrier scenarios. In such a design approach, one can maxi-

mize the smaller of the sum-rate of each pair of transceivers under per-network

power constraints or average total power constraint. One can benefit from the

results of this thesis to elaborate on the solution to the problem of resource

sharing and spectrum leasing in the multi-pair scenario.

2. Moreover, in the unidirectional communication, one can investigate the optimal

resource sharing problem between the transmitter-receiver pair and the relays

for the case where both the relays, the transmitter and the receiver are equipped

with energy harvesting modules. In this case, one can maximize the overall

throughput of the network under the constraints on the causality of energy

arrivals and the battery capacity and obtain the optimal policy to allocate the

harvested energy between the relay nodes as well as the users.
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3. Furthermore, one can consider the problem of maximizing the lifetime of the

battery such that the overall throughput of the network is above a predefined

threshold. This means that the throughput demand of the network must be

satisfied while the lifetime of the battery is maximized. A fair comparison

between the throughput maximization and the battery lifetime maximization

schemes is needed to be well studied.

4. In addition, one can extend our studies on bidirectional networks to the case

where the relay nodes, the users in the two pairs of transceivers, or both, are

equipped with energy harvesting modules and solve the corresponding optimiza-

tion problems under a new set of constraints.
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