
A NEGOTIATION PROTOCOL WITH CONDITIONAL OFFERS

FOR CAMERA HANDOFFS

by

Wiktor Starzyk

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Faculty of Graduate Studies (Computer Science)
University of Ontario Institute of Technology

Supervisor(s): Dr. Faisal Z. Qureshi

Copyright c© 2014 by Wiktor Starzyk

Abstract

A Negotiation Protocol with Conditional Offers

for Camera Handoffs

Wiktor Starzyk

Master of Science

Faculty of Graduate Studies

University of Ontario Institute of Technology

2014

This thesis explores the idea of conditional offers during camera handoff negotiations. In a

departure from contract-net inspired negotiation models that have been proposed for camera

handoffs, the current scheme assumes that each camera maintains the state of its neighbouring

cameras. To this end, we develop a new short-term memory model for maintaining a camera’s

own state and the state of its neighbouring cameras. The fact that each camera is aware of its

surrounding cameras is exploited to generate conditional offers during handoff negotiations.

This can result in multiple rounds of negotiations during a single handoff, leading to successful

handoffs in situations where one of the cameras that is being asked to take on one more task

is unable to take on a new task without relinquishing an existing task. The results demonstrate

the advantages of the proposed negotiation model over existing models for camera handoffs.

ii

Acknowledgements

First, I would like to thank my supervisor Dr. Faisal Z. Qureshi for allowing me to work with

him over the past six years, first as an undergrad and later as a masters student. I am very

grateful for the guidance, motivation and opportunities that he gave me. I would also like

to acknowledge my fellow lab members Mohamed Helala, Luis Zarrabeitia, Jordan Stadler,

Nurjahan Parvin, Zheng Wang, Ryan Shanks, Ernesto Rodriguez Reina, Wesley Taylor and

David Nemirovsky as well as all the others I have shared a lab with these past few years. They

made my graduate experience enjoyable and rewarding.

Finally, I would like to thank by parents and sisters for supporting and encouraging me

throughout these many years.

iii

Contents

1 Introduction 1

1.1 Our Approach . 4

1.1.1 Camera Network Simulation . 6

1.2 Contributions . 6

1.3 Thesis Overview . 7

2 Background Material 8

2.1 Basic Concepts . 8

2.1.1 Camera Networks . 8

2.1.2 Smart Cameras . 10

2.1.3 Tracking . 10

2.1.4 Camera Network Topology . 11

2.1.5 Calibration . 12

2.1.6 Camera Handoff . 13

2.2 Existing Approaches for Camera Selection . 13

2.3 Afterword . 17

3 Approach 18

3.1 Smart Camera Nodes . 18

3.2 Memory Model . 22

3.3 Negotiations . 25

iv

3.3.1 Conditional Offers . 26

3.4 Implementation Details . 27

3.4.1 Message Events . 28

3.4.2 Activity Manager Events . 29

3.4.3 Controller Events . 34

3.4.4 Concurrency . 36

4 Results 38

4.1 Test Scenarios . 39

4.1.1 Scenario 1 . 40

4.1.2 Scenario 2 . 41

4.1.3 Scenario 3 . 42

4.1.4 Scenario 4 . 45

4.1.5 Scenario 5 . 47

4.1.6 Scenario 6 . 49

5 Conclusion 52

A Virtual Camera Model 54

A.1 Camera Model . 55

A.2 PTZ Camera . 57

A.3 High Level Logic . 58

A.3.1 Tracking Routine . 59

A.3.2 Fixate and Zoom Routines . 59

A.3.3 Activity Layer . 61

B Camera Network Simulator 63

C Virtual Pedestrians 66

v

Bibliography 69

vi

List of Tables

2.1 A Comparison Of Handover Approaches. 14

3.1 Events handled by the camera controller . 27

3.2 Data associated with a Request . 28

3.3 Constants we used for our testing . 36

4.1 Scenario 3 Parameters . 42

4.2 Message counts for scenario 3 . 44

4.3 Scenario 4 Parameters . 46

4.4 Message counts for scenario 4 . 46

4.5 Scenario 5 Parameters . 48

4.6 Message counts for Scenario 5 . 48

4.7 Scenario 6 . 50

A.1 Simulated Camera Commands . 58

vii

List of Figures

1.1 Operator monitoring a large number of surveillance cameras 2

1.2 The need for handoff . 3

1.3 Conditional Offers . 4

2.1 Centralized vs distributed camera networks 9

2.2 Smart camera . 10

2.3 Communication graph . 11

3.1 The layered camera architecture . 19

3.2 Levels of behaviours . 19

3.3 Camera state machine . 21

4.1 Scenario 1: Overview . 39

4.2 Scenario 1: Tracking history . 40

4.3 Scenario 2: Overview . 41

4.4 Scenario 2: Tracking history . 41

4.5 Scenario 3: Overview . 42

4.6 Scenario 3: Percent observed over time . 43

4.7 Scenario 3: Average number of pedestrian observed over time 44

4.8 Scenario 4: Overview . 45

4.9 Scenario 4: Percent observed as the number of pedestrians increases 46

4.10 Scenario 5: Overview . 47

viii

4.11 Scenario 5: Percent observed as number of pedestrians increases 48

4.12 Scenario 5: Average number of pedestrians observed over time 49

4.13 Scenario 6: Overview . 50

4.14 Scenario 6: The number of pedestrians observed over time 51

5.1 Other uses for memory module . 53

A.1 The layered architecture of a virtual camera 54

A.2 Anatomy of a virtual camera. 55

A.3 A cameras image bounds . 57

A.4 The field of view of a camera . 57

A.5 The layered architecture of our Smart Camera Nodes. 59

A.6 Image Projection . 60

A.7 Fixate and Zoom Routines . 61

B.1 2D Camera Network Simulator . 63

B.2 Sample scenario config file . 64

B.3 Virtual Vision Simulator . 65

C.1 Virtual Pedestrians . 66

C.2 Virtual Camera Tracking . 67

C.3 Scripted pedestrians . 68

ix

Chapter 1

Introduction

The need for security in public spaces and the plummeting costs associated with camera in-

stallations are pushing the growth of video surveillance. Surveilling large environments ne-

cessitates the use of multiple cameras, as no single camera is able to observe the entire scene.

As the number of cameras grows, it becomes impractical for a human operator to monitor all

the video feeds (Figure 1.1). Consequently, over the last several years, there is much work on

camera networks capable of providing video coverage of extended spaces with minimal human

intervention. The computer vision community is busy developing algorithms for tracking [40],

object counting [26, 25], traffic analysis [32, 3], event detection [7, 34], etc. to automate the

task of monitoring video streams from a video surveillance installation. Concomitant with the

advances in video analysis is the work on smart camera networks. Unlike traditional camera

networks that rely upon a central unit to process and store videos captured by CCTV cameras,

smart camera networks push processing and storage to individual cameras. Smart camera net-

works comprise visual sensing nodes (commonly referred to as smart cameras) with onboard

processing and storage and the ability to communicate with other cameras in the vicinity.

Smart camera networks offer several advantages over traditional CCTV-based video surveil-

lance systems: 1) the lack of a central processing unit suggests that smart camera networks are

highly scalable; 2) the deployment and maintenance costs of these networks are forecasted to

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: A single operator monitoring a large number of surveillance cameras. Source [17].

be much less than those of traditional CCTV-based surveillance systems; 3) these networks

are more robust as there is no single point of failure; and 4) these camera networks can be

easily reconfigured by adding or removing camera nodes. Camera control and coordination are

important research areas within smart camera networks. Specifically, how best to coordinate

the available cameras to carry out the observation tasks? Ideally the control and coordination

strategy should be distributed, as centralized schemes do not scale and defeat the raison d’êter

of smart camera networks.

Consider the problem of observing individuals present in an area using a network of cam-

eras. This task requires not only image analysis routines for detecting, tracking, and identifying

pedestrians, but also techniques for controlling and coordinating these cameras to best observe

the pedestrians present in the scene. Specifically, we need methods to assign each camera

with the task of observing a subset of pedestrians at any given instance. This suggests that the

problem of scheduling cameras to observe pedestrians is a special instance of a job scheduling

problem [5]. The key challenge present in camera scheduling is the lack of information about

the future actions of individuals under observation. For example, it is often not possible to

determine how long an individual might stay within the field-of-view of a camera. Or when

CHAPTER 1. INTRODUCTION 3

Figure 1.2: As a pedestrian moves through an area such as a hallway in a building, the tracking
responsibility needs to be handed off from camera to camera. In this example, the pedestrian
represented by a red rectangle moves from the viewing region of the blue camera to the green
followed by the purple and then finally enters the yellow cameras viewing region.

an individual might leave the field-of-view of one camera. This observation has led to the de-

velopment of, what might be referred to as, reactive approaches for camera scheduling, where

camera assignments are constructed on-the-fly in response to changing observation goals and

pedestrian locations.

Camera handoff is simply shifting the task of observing a pedestrian from one camera

to another camera. Camera handoffs occur when an individual (or any other kind of object

that is under observation) leaves the field-of-view of one camera and enters that of another

camera (Figure 1.2). In this situation, the second camera needs to take on the responsibility for

observing this person. For any camera network that is spread over a wide area and is observing

a large number of individuals, camera handoffs occur at a high frequency. It is tedious—and for

all intent and purposes, infeasible—for a human operator to manage camera handoffs manually,

and there is a need to develop a camera handoff strategy capable of detecting and responding to

individuals meandering through the field-of-views of different cameras. This thesis studies the

problem of camera control within the context of smart camera networks and develops a new

negotiation protocol for camera handoffs. The proposed model has two novel features:

• Short-term memory model for storing the state of neighbouring cameras: it de-

scribes a short-term memory model, which enables each camera to maintain the state

CHAPTER 1. INTRODUCTION 4

Cam 1Cam 1 Cam 2 Cam 2 Cam 1 Cam 2

Cam 1 Cam 2 Cam 1 Cam 2

Not
Tracked

With Conditional Offers Without Conditional Offers

(a)

Camera 2

onEvaluateSuccessful

beginEvaluate(hid)

Camera 1

MsgNewRequest(rid, hid, cid)

MsgOffer(rid, value, condition, cid)

MsgOffer(rid, value, cid)

onPedestrianIsLeaving

if canAddTask():
 send offer
else if swapCandidateExists():
 send conditional offer
else:
 send a -1 value offerMsgOffer(rid, -1, cid)

onAuctionExpired
- choose winner
- notify winner
- endObserve(hid)
if condition:
 beginObserve(condition)

beginObserve(hid)
if condition:
 endObserve(condition)

MsgResponse(rid, response, cid)

(b)

Figure 1.3: (a) Conditional offers allow handoffs to occur even if a camera is already at is
tracking limit. They allow a camera to send an offer with a condition that ensures the auctioning
camera takes over a task from the bidding camera. (b) Messages exchanged during the handoff
operation. Notice that camera 2 proposes a conditional offer suggesting a task swap.

of its neighbouring cameras. Each camera is able to use the remembered state of its

neighbouring cameras during handoffs and task assignments.

• Counter-offers during handoff negotiations: it implements a mechanism for condi-

tional offers, which allows cameras to go through multiple rounds of negotiations during

each handoff task. The ability to propose conditional offers leads to successful handoffs

in situations where a camera that is being asked to take on a new task is unable to do so

unless it first terminates an existing task.

1.1 Our Approach

The proposed approach is distributed. Camera handoffs are the result of local negotiations

between two neighbouring cameras (i.e., cameras that are within the communication range of

each other). The lack of a central controller suggests that the proposed technique can be scaled

to large camera networks—the scalability properties of the proposed method have yet to be

empirically evaluated. We evaluate the proposed negotiation model on a (simulated) network

of uncalibrated active pan/tilt/zoom (PTZ) cameras. The negotiation model is used to perform

handoffs between individual cameras, which are modelled as autonomous behaviour-based

CHAPTER 1. INTRODUCTION 5

agents. The handoffs ensure that the camera network is able to track multiple targets as these

move in the area under observation, weaving in and out of the field-of-views of different cam-

eras. We have also compared our technique against the camera handoff scheme that appeared

in [12] and the initial results appear promising.

A Thought Experiment

Consider the scenario shown in Figure 1.3. Camera 1 is observing a pedes-

trian depicted as the blue circle and camera 2 is tracking an individual

depicted as the green square. When camera 1 detects that the blue circle

is about to leave its field-of-view, camera 1 requests camera 2 to take over

the tracking (or observation) responsibilities for this pedestrian. Camera

2 is already at its tracking limit, i.e., camera 2 can only observe a single

pedestrian at any given time.1 Consequently, camera 2 is unable to take

on the task of observing the blue circle. However, in the scheme proposed

here, camera 2 is able to propose the following conditional offer to camera

1: camera 2 agrees to observe the blue circle if camera 1 agrees to observe

the green square. Camera 2 comes up with this conditional offer by relying

upon its internal model of camera 1. Camera 1 agrees and the two cameras

swap their pedestrians, resulting in a successful handoff.

In the above example, we have used tracking limit as the reason why

camera 2 is unable to take on a new task, which in turn triggered a con-

ditional offer and the second round of negotiations. Tracking limit is but

one of the reasons why a camera might be unsuitable for taking on a new

task. It is possible that a camera is unable to carry out a particular combi-

nation of tasks simultaneously. For example, a pan/tilt/zoom (PTZ) camera

1The tracking limit of 1 is only used for illustrative purposes in this example. The proposed scheme does not
assume that each camera can only track a single individual.

CHAPTER 1. INTRODUCTION 6

might be unable to view two pedestrians at the opposite ends of its field-of-

view with the desired resolution. Such situations are also resolved through

conditional offers.

1.1.1 Camera Network Simulation

Setting up a physical camera network of appropriate size and complexity is prohibitively costly

for most computer vision researchers. This observation led to the development of virtual vision

paradigm for camera networks research [30]. Virtual vision advocates the use of visually and

behaviourally realistic environments for studying, designing, and evaluating camera networks.

Initially we considered using the virtual vision simulator developed in [39] to evaluate our

handoff strategy. We quickly realized that we lack the computational resources to use this

simulator for our purposes. We instead decided to develop our own camera network emulator

to carry out our work on camera handoffs. Our emulator is able to simulate smart camera

networks comprising active PTZ and passive wide-FOV cameras in 2D. While it does not

model imaging artifacts of physical cameras, it does support sensing characteristics due to

occlusions and limited field-of-views of video cameras.

1.2 Contributions

This thesis makes the following contributions:

1) We build on the work of Qureshi [29] on collaborative sensing in smart camera networks by

extending the negotiation protocol that allows cameras to collaborate on tasks.

2) We introduce a memory module to the smart camera node that keeps track of what neigh-

bouring cameras are doing resulting in better decision making during the negotiation process.

3) We present a software framework which can be used to quickly simulate different camera

networks making testing different scenarios quick and easy.

4) The work presented in this thesis has been accepted to appear in the Eighth ACM/IEEE

CHAPTER 1. INTRODUCTION 7

International Conference on Distributed Smart Cameras that will be held in November, 2014

in Venice, Italy.

1.3 Thesis Overview

The remainder of the thesis is organized as follows: the next chapter presents background

information that is needed to understand the rest of this thesis and summarizes existing work

on camera handoffs. A detailed description of our solution to the handoff problem is provided

in Chapter 3. We demonstrate our proposed approach and show how it compares to another

recent handoff approach in Chapter 4. Chapter 5 concludes this thesis by summarizing our

work and suggesting possible directions for future research.

Chapter 2

Background Material

This chapter covers background material needed to understand the rest of this thesis. We also

summarize existing work on camera selection and handoffs with a view to highlight the novel

aspects of our handoff strategy.

2.1 Basic Concepts

2.1.1 Camera Networks

Any video surveillance system that spans an extensive space or even a small region divided by

visual barriers needs more than one camera to provide adequate visual coverage; cameras have

limited FOVs, and no single camera can observe the entire scene. Multiple cameras, and hence

camera networks, are needed to provide the desired visual coverage in such situations.

A centralized camera network relies upon a central processing unit for processing and stor-

ing the video footage (Figure 2.1a). Here each camera simply pipes the captured video to

this unit. The central unit is also responsible for controlling and coordinating these cameras

to carry out the various observation tasks. Centralized camera networks are appropriate for

smaller installations; however, these do not scale well. These networks also typically have

very high bandwidth requirements, as each camera sends its video to the central unit. These

8

CHAPTER 2. BACKGROUND MATERIAL 9

Processing
Node

- Video data sent to
 processing node
- Commands returned

(a) Centralized

Two way
message passing

(b) Distributed

Figure 2.1: In a centralized camera network all cameras communicate with a central process-
ing node. The central processing node is responsible for any coordination or control decisions.
In a distributed camera network, the cameras are able to communicate directly with each other
allowing them to make their own decisions.

centralized camera networks, however, have one key advantage: it is easy to implement and

enforce “access” or “privacy” policies on these networks. These policy control how captured

video is stored, archived, accessed, and used.

Distributed camera networks on the other hand do away with a central processing unit

(Figure 2.1b). By necessity these networks require smart camera nodes, complete with on

board processing and storage. Video processing and storage is distributed across the cameras.

Many technical challenges—such as, in-network control and coordination of camera nodes,

distributed sensing, energy-aware processing, implementation of operational policies, etc.—

must be tackled before distributed camera networks become a reality. We envision that future

camera networks will be by necessity distributed and that these networks will provide percep-

tive coverage of large areas with little or no human supervision. The work presented here is a

step towards realizing this vision of distributed camera networks.

CHAPTER 2. BACKGROUND MATERIAL 10

Imaging Unit
- get image from sensor
- pre-processing

Captured Video
(a) A typical camera

Imaging Unit

Processing Unit

Communication Unit

Abstracted
Data

Messages

- get image from sensor
- pre-processing

- object detection & tracking
- data abstraction

- send or receive data over:
 usb, ethernet, wifi

Captured
Video

(b) A smart camera

Figure 2.2: A smart camera adds processing and communication modules to a typical camera.

2.1.2 Smart Cameras

Smart cameras combine sensing, processing, and communication in a single package (Fig-

ure 2.2). A mobile device with an embedded camera, for example, is a canonical example of

a smart camera. Smart cameras are able to process video at source, saving bandwidth required

to send raw video to a video processing unit. Within the camera networks community, there is

a lot of interest to develop image processing, distributed sensing, and camera control and coor-

dination methods for enabling smart cameras to organize themselves into ad hoc networks and

provide visual coverage of extensive spaces. Our work relies upon the processing, storage and

communication capabilities provided by smart cameras. Specifically, the proposed short-term

memory model and camera handoff strategy is only relevant for smart cameras.

2.1.3 Tracking

For a camera to be fully autonomous, it must be able to detect and track objects. Tracking

objects such as pedestrians poses several challenges. Pedestrians can be occluded by other

objects or can blend into the background. Pedestrians move around and are very unpredictable

CHAPTER 2. BACKGROUND MATERIAL 11

Cam 1

Cam 2

Cam 5

Cam 4Cam 3Cam 6

(a)

Cam 2Cam 1

Cam 4

Cam 5

Cam 3Cam 6

(b)

Cam 2Cam 1

Cam 4

Cam 5

Cam 3Cam 6

(c)

Figure 2.3: A communication graph can optimize the communication between cameras. (a) A
sample camera network. (b) The communication graph for the camera network in (a). (c) The
vision graph for the network in (a).

making it difficult for cameras to follow them. Multiple pedestrians can also have similar

visual appearance, making it difficult for a camera to differentiate between multiple people.

Many different approaches for tracking objects have been proposed, and we refer the interested

reader elsewhere for a survey of tracking methods [40]. For the purposes of our work, we

assume that our cameras are able to track pedestrians reliably. Our assumption is supported by

the recent strides made within the computer vision community on object tracking.

2.1.4 Camera Network Topology

Spatial relationship between cameras plays an important role during handoffs. Handoffs are

almost always performed between two neighbouring cameras. There are spacial cases, such

as person re-identification after a extended observation gap, when a person might be handed

off to a non-neighbouring camera. These cases are far and few between. We currently do not

concern ourselves with these cases. Camera network topology encodes the spatial relationship

between cameras. Given a camera, for example, it is possible to find its neighbours using cam-

era network topology. Camera networks can be represented as a graph, where nodes represent

individual cameras, and an edge between two nodes indicates that these two nodes are neigh-

bours. Many schemes exist to construct a network topology for a given camera network. Some

CHAPTER 2. BACKGROUND MATERIAL 12

approaches such as [4] work with overlapping camera FOVs, while others such as [10, 22]

work with non-overlapping FOVs.

A vision graph encodes the observation-relationship between cameras; an edge between

two nodes in a vision graph indicates that the two cameras have overlapping field-of-views

(Figure 2.3c). A communication graph encodes the messaging-relationship between cameras;

an edge between two nodes in the communication graph indicates that the two cameras are

within the communication range of each other (Figure 2.3b). Esterle et al. proposes the use of

ant-colony inspired pheromones to learn a communication graph [13]. Vision and communi-

cation graphs can be used during camera handoffs. Distributed handoff approaches, including

ours, require that cameras communicate with their neighbours. Communication and vision

graphs can be used to identify neighbours, and messaging are then restricted to these cameras

only. Broadcast messages waste both bandwidth and processing power—every camera that

receives a message ends up spending resources to send back a reply.

2.1.5 Calibration

In simple terms, camera calibration maps pixels to real-world coordinates. If the camera is

calibrated, it is possible to find the 3D location of the observed pedestrian (under some as-

sumptions). It is also possible to calibrate the entire network, meaning that the 3D locations

of individual camera nodes are known within a common frame of reference. It is possible to

estimate the location of every observed object within this frame of reference, which greatly

simplifies object tracking and identification. Even if two individuals look identical, they can-

not occupy the same physical space. A fact that can be exploited to disambiguate between the

two persons. There is a great deal of existing literature about camera calibration [16, 6] and

camera network calibration [8, 14]. A deeper discussion about camera calibration is beyond

the scope of this work; however, we make the following observations:

Maintaining camera and network calibration over the lifetime of a camera

network is tedious. Particularly so for networks with mobile camera nodes

CHAPTER 2. BACKGROUND MATERIAL 13

or PTZ cameras. Consequently, camera control methods that do not rely

upon camera or network calibration are preferable to those that do need

calibration information. Our method does not assume camera or network

calibration. However, it is possible to extend the camera handoff strat-

egy proposed here to use camera or network calibration information when

available.

2.1.6 Camera Handoff

As stated earlier, handoff refers to shifting the observation responsibility of an object (in our

case, pedestrians) from one camera to another. Even if we ignore the higher-level camera

selection problem, camera handoff is challenging due to the vagaries of visual tracking and

object recognition. In order for a camera to take over the observation responsibility of a pedes-

trian from another camera, the two cameras must agree upon the identity of the pedestrian in

question. Recognizing a person as he moves from one camera to another is challenging: the

same person might look different when viewed from different viewpoints, the two cameras

might have different colour responses, etc. There is much work found in the computer vision

literature that deals with the problem of object re-identification [9, 15]. This work, however,

assumes that acceptable solutions exist for object identification problem. This thesis is con-

cerned with the problem of camera selection, i.e., which of the available cameras should next

observe the pedestrian. We discuss existing handoff approaches in the following section.

2.2 Existing Approaches for Camera Selection

Many different approaches have been proposed for solving the handoff problem. Some of

the most relevant ones to our work are shown in Table 2.1. These various approaches have

many different properties such as distributed or centralized, embedded or pc-based, calibrated

or uncalibrated and active or static cameras. A comparison of some of these approaches is

CHAPTER 2. BACKGROUND MATERIAL 14

Table 2.1: A Comparison Of Handover Approaches.

Approaches D C AC RT RD NC NP O
Javed & Khan [18] No No No Yes Yes 2 2 Yes
Park et al. [27] Yes No No Yes No 20 N/A Yes
Jo & Han [19] No No No Yes Yes 2 N/A Yes
Quaritsch et al. [28] Yes No No Yes Yes 2 1 No
Morioka et al. [24] Yes No No N/A No 6 1 Yes
Li & Bhanu [20] No No No Yes Yes 3 2 Yes
Qureshi & Terzopoulos [31] Yes Yes Yes No No 16 100 Yes
Song et al. [38] Yes Yes Yes No No 14 N/A Yes
Song & Roy-Chowdhury [37] Yes No No No Yes 7 9 No
Qureshi [29] Yes No Yes Yes No 4 8 Yes
Esterle et al. [12] Yes No No Yes Yes 4 31 No
Our Work Yes No Yes Yes No 16 32 Yes

Legend: D–Distributed; C–Calibrated; AC–Active Camera; RT–Real Time; RD–Real Data;
NC–Number of Cameras; NP–Number of Pedestrians; O–Overlapping FOVs;

discussed in [21].

One of the first handoff approaches was presented by Javed and Khan in 2000 [18]. They

describe a way to discover the spatial relationship between the FOVs of different cameras by

projecting the FOV lines of one camera onto another cameras view. The FOV lines can be

learned by having a single person walk around to see where cameras viewing regions overlap.

When the person is seen by more than one camera at the same time, a constraint point for a

FOV line in a cameras image is added. Once there are at least two constraint points, a line

can be drawn defining the overlapping region in a cameras image. Knowing the overlapping

regions makes it possible to hand off a pedestrian from one camera to another. This approach

does not require any calibration, but requires overlapping camera views.

Park et al. propose a solution to the handoff problem based on constructing a lookup table

which encodes the suitability of a camera to observe a specific region [27]. This approach

works by first calibrating the cameras to a global coordinate system. Once this is done, the

viewing frustum of each camera is partitioned into sub-frustums of equal volume. Each sub-

frustum is then given a location in world coordinates which is then sent to all neighbouring

CHAPTER 2. BACKGROUND MATERIAL 15

cameras. A lookup table is then constructed which ranks cameras based on how well they can

image a specific location. Once the lookup table is constructed, a simple lookup operation is

performed when a handoff is needed.

Jo and Han introduce the concept of occurrence to co-occurrence to solve the handoff prob-

lem [19]. A handoff table is constructed by computing the ratio of co-occurrence to occurrence

for all pairs of points in two views. The table maps a domain set of points in one view to a

range set of points in another view. When a handoff is needed, the point an object is observed at

is looked up in the handoff table to find the corresponding point in another cameras view. The

approach does not require calibration and can be applied to a scene with non-planar ground.

Quaritsch et al. propose an approach that relies on a static vision graph that encodes mi-

gration regions [28]. The migration regions assign neighbouring cameras to specific areas in

a cameras FOV. When an object enters a migration region which is represented as a polygon

in image coordinates, the camera that corresponds to that migration region is notified and a

handoff occurs. No information about how the migration regions are computed is provided

which leads us to believe that they are defined manually.

Morioka et al. propose a fuzzy-based approach for handing over of tracking authority [24].

The camera selection decision is driven by fuzzy reasoning based on the previously selected

camera and the tracking level of the object in each camera. Tracking level is defined by esti-

mating the position measurement error in the monitoring area of each camera. The approach is

tested using several simulations and does not require calibration.

Li and Bhanu propose a game theoretic approach to the handoff problem [20]. In this

approach, cameras use bargaining to decide which camera to handoff a pedestrian to. When

a pedestrian is visible in multiple cameras, the best camera is selected based on its expected

utility. A number of criteria to construct the utility function is proposed, such as the number

of pixels occupied by the person in the image. Their approach eschews spatial and geometric

information.

Song et al. also present a game-theoretic approach to the handoff problem [38]. In their

CHAPTER 2. BACKGROUND MATERIAL 16

approach, optimal global utility is achieved by having each camera optimize its local utility.

PTZ cameras are used to track all targets in the area at an acceptable resolution and some at a

high resolution. Negotiations are used to decide which pedestrians will be tracked at the higher

resolution. The approach is tested in a simulated environment and requires calibration.

Qureshi and Terzopoulos propose a distributed camera coalition formation scheme for per-

ceptive scene coverage and persistent surveillance in smart camera networks [31]. In the pro-

posed approach, cameras form groups to complete observation tasks. Cameras are added to

a group by the use of an auction which is initiated by a group leader. New cameras can be

added and old cameras can be removed from the group as the pedestrian moves around the

observation region. In cases where multiple groups require the same resources, the Constraint

Satisfaction Problem (CSP) technique is used to resolve the conflict. The approach is tested

using the Virtual Vision Train Station Simulator [35].

Qureshi proposes a solution to the handoff problem in his work on collaborative sensing

via local negotiations [29]. In this work, Qureshi presents a solution to the handoff problem

by introducing a negotiation protocol that allows cameras to collaborate on tasks. The camera

nodes, which are modelled as behaviour based autonomous agents, are able to ask other cam-

eras to take over a task when they are no longer able to meet tasks requirements. Neighbouring

cameras evaluate their suitability to the task and send back an offer. The requesting camera

node is then able to choose which camera can do the best job and a handoff is initiated. This

thesis is an extension of this work.

In 2012, Esterle et al. present an approach to the handover problem based on self-interested

autonomous agents that hand off tasks from one camera to another using a market mecha-

nism [13]. Each camera tries to maximize their own utility by auctioning off tasks they are no

longer able or no longer want to complete. The utility computation of a camera is based on how

well a camera is able to complete its assigned tasks as well as the payments it has made and

received from auctions. Upon receiving an auction initiation message, neighbouring cameras

evaluate their suitability for the task and the effect it will have on their own utility. If adding

CHAPTER 2. BACKGROUND MATERIAL 17

the task increases their utility, a bid is sent back and the camera with the highest bid wins the

auction resulting in a handoff.

All of these approaches fall into two main groups: handoff function based approaches and

negotiation based approaches. The handoff function or handoff table based approaches learn

the spatial relationship between cameras. They can be used to quickly find out which cameras

can see an object or where an object will appear after leaving a cameras field-of-view. This is

useful when carrying out an investigation after an incident occurs because it allows the inves-

tigator to quickly find all of the video footage showing the person of interest. It is less useful

in active camera systems doing real-time analysis. Such systems have a limited amount of

resources which must be taken into account when making handoff decisions. Handoff function

based approaches do not allow this which is why negotiation based approach are needed.

In negotiation based approaches, camera nodes communicate with each-other to make

handoff decisions. This allows camera nodes to take resource limitations into account when

agreeing on a handoff. The problem with a lot of these approaches is that they employ self-

interested agents that try to maximize their own utility. This works great in some situations

because the camera that can do the best job will probably be assigned to an observation task.

Occasionally situations will arise where cameras need to help each other out to complete a

handoff and to improve global utility. The self-interested approach to agent design will not

allow this resulting in observation failures. We hope to solve this problem with our approach

that employs agents willing to help each other out whenever possible.

2.3 Afterword

Table 2.1 juxtaposes the proposed method and existing schemes on camera handoffs. Our

technique is novel insofar as it provides a mechanism for maintaining the state of neighbouring

cameras and uses this state to generate counter-offers during handoff negotiations.

Chapter 3

Approach

We now describe our approach for camera handoffs. Consider an area under observation by n

cameras C = {c1, · · · , cn}. These cameras are tasked with observing the pedestrians present

in the scene. Let H = {h1, · · · , hm} denote the set of pedestrians, and Hi denote the set of

pedestrians currently assigned to camera ci. Camera assignments evolve over time in response

to 1) the arrival of new pedestrians, 2) the departure of individuals currently under observation,

3) the movement of a person, and 4) the changes in the overall observation tasks. Therefore, we

need a mechanism to update camera assignments so as to satisfy the overall observation goal(s).

Camera handoff problems typically arise when we seek a distributed mechanism for updating

camera assignments. Camera handoff strategies often belong to the class of approaches where

“global” camera assignments are managed locally at each camera through pairwise interactions

between neighboring cameras.

3.1 Smart Camera Nodes

We model each camera as a highly capable behaviour-based autonomous agent. Each camera

node has access to a repertoire of behaviours. Figure 3.2 shows the behaviour routines available

to our smart cameras. These behaviours range from simple activities, such as turning on a

sensing unit, to increasingly complex abilities, such as panning to keep a pedestrian in view. We

18

CHAPTER 3. APPROACH 19

Camera Controller Layer

Bottom up
flow of

information

Top down
flow of

commands
Activity Layer

Camera Routine Layer

PTZ Camera

Figure 3.1: Our camera nodes implement a layered architecture with information flowing from
the PTZ camera up to the Control Layer and commands flowing back down.

Behaviour Arbitration

Camera State

Level 2 Behaviours
Multiple instances of

each behaviour are allowed

Level 1 Behaviours
Only one instance of

each behaviour is allowed

si = {evaluating(h1) , ... , evaluating(hm) , observing(hm+1) , ... , observing(hm+n)}

Evaluate
behaviours1 m

Observe
behaviours1 n

Track Search Fixate Zoom Reset Resolution

Behaviour Selection

Figure 3.2: Levels of behaviours implemented by our camera nodes. Originally appeared
in [29]

take the layered approach to behaviour design which was first popularized by the subsumption

architecture [2]. Figure 3.1 provides an overview of our smart cameras. At the bottom of our

layer architecture is any standard static wide-FOV or active PTZ camera. The second layer is

the Camera Routine Layer which implements the level 1 behaviours shown in Figure 3.2. Next

is the Activity Layer where the level 2 behaviours are implemented and where the behaviour

arbitration takes place. The fourth and final layer in our layered architecture is the Camera

Control Layer. This layer handles the high level decision making and communication between

cameras, which is the focus of this thesis.

We make the following assumptions about the camera nodes:

• a camera is able to track pedestrians (targets) assigned to it;

CHAPTER 3. APPROACH 20

• a camera is able to use appearance based signatures for acquiring a new pedestrian (tar-

get) for tracking;

• a camera is able to detect when it loses track of a pedestrian; and

• PTZ cameras are able to select appropriate values for pan, tilt and zoom settings to

observe the assigned pedestrians.

These assumptions are motivated (and supported) by recent advances in pedestrian detection,

recognition and tracking [11] and PTZ camera tracking [23]. Similar assumptions have been

made by others [29, 12].

Each camera node is aware of the pedestrians (or targets) present in its FOV. This is easily

accomplished by using a pedestrian detection routine. Algorithm 1 is used to maintain the set

of pedestrians Hi seen by a camera ci between times t − tforget and t, where t represent the

current time. ts(·) is an operator that is used to set and retrieve the time-stamps for elements

of Hi; it operates on sets. To make things concrete ts(S) = t sets the time-stamps of every

element of set S equal to t; where as, ts(S) assumes that ‖S‖ ≤ 1 and returns the time-stamp

of the element or the current time if the set is empty. ts(S) for ‖S‖ > 1 is undefined. tforget

serves an important purpose by providing a mechanism for ignoring short-duration detection

failures of pedestrians present in the scene. In the absence of tforget, Hi might constantly change

in response to the output of pedestrian detector.

At any given time, each camera may be engaged in several activities. A camera might be

tracking multiple individuals, it might be evaluating its suitability for tracking a new target,

or in case of PTZ cameras, a camera might be performing a visual search in the pan/tilt/zoom

space to fixate and zoom in on a pedestrian. Ignoring the innards of a camera node, it is

possible to keep track of these activities using a finite state machine proposed in [29] (see

Figure 3.3). The state of a camera node represents the activities it is currently executing. Given

this list of activities, Algorithm 2 maintains the activity set A for a camera ci. Whether or not

a camera is tracking an individual or evaluating its suitability for tracking a new individual is

CHAPTER 3. APPROACH 21

Algorithm 1 Removing unseen pedestrians from Hi

Require: Hi . The set of pedestrians seen by camera i between times t− tforget and now (t).
Ensure: Updated Hi

1: Capture a frame at time t
2: Use pedestrian detection (recognition) routines to construct a possibly empty set H t

i of
pedestrians found in frame I .

3: Hexisting
i = H t

i

⋂
Hi . The next four lines update the time-stamps of existing pedestrians

in Hi

4: Hi = Hi \Hexisting
i

5: ts(Hexisting
i) = t

6: Hi = Hi

⋃
Hexisting

i

7: Hnew
i = H t

i \H
existing
i

8: ts(Hnew
i) = t

9: Hi = Hi

⋃
Hnew

i . Add the previously unseen pedestrians into Hi

10: for all h ∈ Hi do
11: if t− ts({h}) > tforget then
12: Hi = Hi \ {h} . Pruning stale entries from Hi

13: end if
14: end for

si

New request to
observe pedestrian hj

si + {evaluating(hj)} _ {idle}

si + {observing(hj)} _ {evaluating(hj)}

Request to
observe pedestrian hj

was withdrawn or timeout

New task assignment to
observe pedestrian hj

Stopped observing
pedestrian hj

 if si ={}, si={idle}

+ {evaluating(hj)} _ {idle}

_ {evaluating(hj)}

+ {observing(hj)} _ {evaluating(hj)}

_ {observing(hj)}
 if si ={}, si={idle}

Figure 3.3: The state machine used by our Camera Controller. States are shown in ovals and
transitions are shown in boxes. Additions and subtractions are shown next to each transition
arc. Courtesy of [29].

CHAPTER 3. APPROACH 22

Algorithm 2 Updating Activity Set
Require: The current activity set A.
Ensure: The updated activity set A.

1: if camera ci is not engaged in activities at the moment then return A = Φ
2: end if
3: for all h ∈ Hi do
4: if Camera is tracking h then
5: A = A

⋃
{Observing(h)}

6: end if
7: if Camera is evaluating its suitability for tracking h then
8: A = A

⋃
{Evaluating(h)}

9: end if
10: end for

dictated by the tasks assigned to the camera. Other caveats are: 1) a camera cannot be both

Observing and Evaluating the same individual and 2) an idle camera cannot be engaged in

Observing or Evaluating any individual. Typically these tasks are assigned automatically

through camera handoff negotiations described in the next section. These tasks can also be

assigned by an operator manually or through heuristics of the form: track every individual that

enters a specific region.

3.2 Memory Model

In contrast to existing models of smart camera nodes, we explicitly model short-term memory

of a camera node. Each camera ci uses the short-term memory to store its own state (the list

of pedestrians in the near past plus the list of currently active tasks, i.e., Hi and Ai) and the

state of its neighbouring camera nodes. Each camera manages its memory to keep it up-to-

date. Stale items present in the memory are automatically removed. Presently, we assume that

each camera has unbounded memory. Furthermore, we employ time-stamps to decide when

to remove an item from the memory. Below we discuss how a camera manages the states of

its neighbouring cameras. Say Ci represents the neighbours of ci then ci will store the current

state sj for each camera cj ∈ Ci. Additionally, ci will also keep track of previous states of

CHAPTER 3. APPROACH 23

camera cj . Remembered states are time-stamped and older states are automatically forgotten

after some time.

Lets consider the following example to illustrate the memory model. Consider a camera c2

that is currently tracking pedestrians h2 and h3. c2 is also evaluating its suitability for tracking

pedestrian h4. Previously, c2 was tracking h1; however, h1 is no longer tracked by c2. In this

scenario a neighbouring camera c1 will store the following information about c2 in its memory:

• Observing(c2, h2, t);

• Observing(c2, h3, t);

• Evaluating(c2, h4, t); and

• Know(c2, h1, t
−).

Notice that each memory item is time-stamped. Know(c2, h1, t
−) indicates that camera c1

believes that c2 has seen the pedestrian h1 at some previous time t−.

Cameras share states voluntarily during negotiation messages or via a periodic state update

message. In the above scenario, camera c2 will periodically send H2 and A2 to the neighbouring

camera c1. c1 breaks down the received state into memory items and compares these with the

current c2 items stored in its memory. One of the following four things can happen:

• if an item is already found in the memory, its time-stamp is updated;

• if an Observing item is received that matches with a stored Evaluating item, the Evaluat-

ing item is replaced with the Observing item;

• if no item matches with an already stored Observing or Evaluating item, the Observing

(or Evaluating) item is replaced by a Know item; or

• if a received item does not match with a stored item (using the criteria implicit in the last

three cases), the received item is time-stamped and inserted into the memory.

CHAPTER 3. APPROACH 24

The following example clarifies these rules. Say c1 receives the following information from c2

at time t+ > t:

A2 = {Observing(h2), Observing(h4)}

and

H2 = {h1, h2, h3, h4},

where ts(h1) = t−, ts(h2) = t+, ts(h3) = t and ts(h4) = t+. c1 will update its information

about c2 as follows:

• Observing(c2, h2, t
+);

• Know(c2, h3, t);

• Observing(c2, h4, t
+); and

• Know(c2, h1, t
−).

If t+− t− > tforget then item Know(c2, h1, t
−) will be removed from the memory of c1. There

are many schemes for selecting tforget; however, for the results presented in this paper, we use

a single value of tforget for all items.

In conclusion, the items stored in the short-term memory of a camera take one of the fol-

lowing forms:

• Observing(ci, hj, t);

• Evaluating(ci, hj, t);

• Know(ci, hj, t).

Here ci ∈ C, hj ∈ H and t refers to the time-stamp of a particular item. Notice that this form

allows a camera to store both its own state and the states of its neighbouring cameras. Sec-

ondly, it is relatively easy to write queries involving cameras and pedestrians on the data stored

in the short-term memory of a camera, such as (1) pick a neighbouring camera that is currently

CHAPTER 3. APPROACH 25

observing pedestrian hj , (2) how many neighbouring cameras are observing a particular pedes-

trian, (3) is their some neighbouring camera that knows about a particular pedestrians, etc.

When considering the memory model discussed here, it is worthwhile to remember two things:

(1) each camera only maintains the memory state of its first-hop neighbours, i.e., cameras that

share an edge in the communication graph, and (2) we do not impose any guarantees that the

state of the neighbouring camera is perfectly synchronized. The second item is of particular

importance. The communication overhead to guarantee that each camera maintains a “per-

fectly synchronized copy of the state of its neighbours” is explosive and therefore unattainable

in a real scenario.

Others, including [12], have developed techniques for generating vision and communica-

tion graphs within the context of camera networks. A side-effect of explicitly modelling the

state of neighbouring cameras is that both communication and vision graphs are automatically

learned. The goal is not to learn the overlaying communication graph or vision graph for the

whole network. Rather, our goal is to learn a local snapshot at each node. For stationary nodes,

we can assume the snapshot to be static; whereas, for non-stationary nodes, it is best to rely on

the forgetting mechanism built into the memory model to maintain a time-varying snapshot.

3.3 Negotiations

Inter-camera negotiations allow observation tasks to be handed off from one camera to another

as a person moves around an observation area. Generally speaking, however, a camera can

initiate a negotiation whenever it wants another camera to take over an observation task:

• Typically a camera initiates a negotiation when it detects that the pedestrian in question

is about to leave its field-of-view; or

• A camera can also initiate a negotiation when it wants to free up resources for a task

requested by some other camera.

CHAPTER 3. APPROACH 26

Existing negotiation schemes for camera handoff do not start negotiations when a camera wants

to release resources that are currently being used by an observation task.

As stated earlier, a key difference between the current work and existing negotiation schemes

for camera handoff is that here each camera maintains the state of neighbouring cameras. This

allows a camera to be selective when considering neighbouring cameras for handoff. Consider

the following scenario: camera 1 has the following information in its memory:

• Observing(c2, h2, t
+);

• Know(c2, h3, t);

• Observing(c2, h4, t
+);

• Know(c2, h1, t
−); and

• Observing(c3, h6, t
+).

Since camera c3 is only observing a single pedestrian h6, camera c1 first requests a handoff

with c3. If that fails, it can request c2 to take over the task. Along similar lines, in a calibrated

camera network, where each camera not only knows the state of neighbouring cameras, but

also their observation constraints, cameras may be able to predict the outcome of negotiations

without actually exchanging any messages.

3.3.1 Conditional Offers

Camera nodes are not modelled as self-interested agents and are always ready to takeover an

observation task from a neighbouring camera. Still there are situations where a camera cannot

accept a task, even if it can meet all task requirements. A camera node has a limited set of

resources and is able to track at most o pedestrians at any given time. If a camera node is

at this tracking limit, it cannot accept any new tasks. One potential solution to this problem

is conditional offers. Conditional offers give camera nodes the ability to swap tasks or to

terminate existing tasks in order to take on new, more pressing tasks.

CHAPTER 3. APPROACH 27

Table 3.1: Events handled by the camera controller

Message Events

ReceivedRequestEvent
ReceivedOfferEvent
ReceivedResponseEvent
ReceivedStatusUpdateEvent

Activity Manager Events

PedestrianLeavingEvent
ObjectDetectedEvent
EvaluateSuccessfulEvent
EvaluateFailedEvent

Controller Events

EndAuctionEvent
CleanupRequestsEvent
SendStatusUpdateEvent
UpdateMemoryEvent

3.4 Implementation Details

The camera controller is implemented using an event-based architecture. An event-based ar-

chitecture makes it easy to manage all the things a camera node needs to do at any given time.

There are three types of events that a camera node responds to. The first type are events trig-

gered when a camera node receives a message from another camera. The second type are events

triggered by the activity manager when a pedestrian is detected or an activity is completed. Fi-

nally, the third group are events triggered by the camera controller itself. This includes events

set up to periodically update a camera nodes memory, send out status updates, and end auctions.

The events that we currently use are listed in Table 3.1.

When a camera sends or receives a request to take over a task, it needs to keep track of the

data associated with the request. This is achieved by the use of a Request Structure which is

made up of the elements shown in Table 3.2. A Request Structure is created and added to a list

of active requests when a camera receives an auction initiation message from another camera

or when it decides to start its own auction. Each request has a unique identifier composed of

the id of the camera initiating the request and the id of the pedestrian it involves. The Request

Structure differs depending on if a request was sent by a camera or received from another

camera. A sent request needs to keep track of the number of cameras notified of the request

CHAPTER 3. APPROACH 28

Table 3.2: Data associated with a Request

rid unique request identifier
src id of source camera
dst id or ids of destination cameras
hid id of the pedestrian associated with the request
expiry the time at which the request expires and should be removed
parent the id of any parent request

Sent Request
offers list of received offers
num sent number of camera nodes notified about the auction

Received Request
value the value of the offer sent back
condition the condition attached to the offer

and the offers/bids that have been received. A received request needs to keep track of the value

and condition of any offer/bid that is sent back. The information stored in the Request Structure

is used when responding to many of the events that can occur.

3.4.1 Message Events

Message events are triggered when a camera node receives a message from another camera.

There is an event for every type of message that a camera can receive. The message events that

we currently use are explained below.

Received Request Event

The received request event is triggered when a camera node receives a MsgNewRequest

message. This event has three parameters: rid, hid and sid. The rid is a unique identifier for

the request, hid is a unique pedestrian identifier or descriptor and the sid is the id of the sending

camera. Upon receiving this event, the camera node first checks to make sure the specified rid

and hid are not already part of an active request. The camera node then begins an evaluate

activity for the specified pedestrian. Lastly, a request object is created to keep track of all the

information associated with a request and is added to a list of active requests.

CHAPTER 3. APPROACH 29

Received Offer Event

The received offer event is triggered when a camera receives a MsgOffer message. This

event has four parameters: rid, value, condition and sid. The value parameter is the bid a

camera is submitting. For our tests, it is the number of pixels enclosed by the bounding box of

the pedestrian in a cameras image. The condition is either a pedestrian identifier or Nil. Upon

receiving this event, the number of received offers for the specified request is incremented and

the offer is added to the list of offers. If every camera node that was notified replies back, the

auction is ended prematurely and a winner is chosen.

Received Response Event

When a camera receives a response for an offer that was made, the received response event is

triggered. This event has three parameters: rid, response, and sid. The response received is

a Boolean value which is True if the camera won the auction and False otherwise. If a camera

won the auction, the observation time for the associated task is extended and if the offer had a

condition, the task associated with the condition is ended. The request object is also removed

from the active request list. Finally, the camera’s memory is updated and a status update is sent

out to notify the other cameras of the change.

Received Status Update Event

The ReceivedStatusUpdateEvent is triggered when a camera receives a MsgStatus message.

This event has two parameters: entries and sid. The entries parameter is a list of entries that

will be added to a cameras memory.

3.4.2 Activity Manager Events

Activity Manager Events are events triggered by the Activity Manager when it needs to notify

the Camera Controller of a change at the activity layer. These events are triggered when activ-

CHAPTER 3. APPROACH 30

ities complete successfully or unsuccessfully as well as when new objects are detected by the

camera.

Pedestrian Leaving Event

The pedestrian leaving event is triggered when a camera notices that a person is about to leave

a camera’s viewing region. Upon receiving this event, the camera controller first checks to see

if another camera is already observing the pedestrian. If the pedestrian is already observed by

another camera, no further action is taken. If the person is not observed by another camera,

the controller prepares to send out an auction initiation notification. The camera first gets a

list of its neighbours which is constantly updated based on the communication graph. Next,

the controller generates an rid for the request. After computing the expiry time based on the

kAuctionDuration constant, a request object is created to keep track of data associated with a

request. The request object is then added to the list of active requests, and the auction initiation

is then sent out to the neighbouring cameras. The final step enqueues an EndAuctionEvent

which will be triggered after the kAuctionDuration time passes.

Evaluate Successful Event

When a camera receives an auction initiation request from another camera, it begins evaluating

its suitability to observe the requested pedestrian. This evaluation can either end successfully,

meaning the person has been found and all of the constraints can be met, or otherwise unsuc-

cessfully. Upon receiving an EvaluateSuccessfulEvent, the camera controller must decide

if it wants to submit an offer for the request. This decision is based on whether or not a camera

is able to add a new task based on the resources that are available. If it is able to add a new

task, an offer is sent to the requesting camera and a temporary observation task is initiated for

the associated pedestrian. If the camera is not able to allocate enough resources for the task, it

looks for a task that could potentially be swapped with the requesting camera or handed off to

another camera. Handing off to a third camera requires a Child Request to be sent. Currently

CHAPTER 3. APPROACH 31

a Child Request is only attempted once. If a Child Request is unsuccessful or handing off a

pedestrian to a third camera still does not free up enough resources an offer with a -1 value is

sent.

Algorithm 3 Handling request after a successful evaluation
Require: rid . The request identifier of an active request

1: request← The Request Structure for the request with id rid
2: if Can add a new task then
3: Send an offer to requesting camera
4: Begin to temporarily observe the associated pedestrian
5: else if Handoff attempted by the use of a Child Request then
6: Send an offer with a -1 value to the requesting camera
7: else
8: Try finding a handoff candidate
9: end if

To find possible handoff candidates, a camera’s memory is queried to find other cameras

that know about the pedestrians observed by a camera. In our implementation, this results in

a dictionary that maps the hids of the pedestrians currently being observed by the camera to

lists of camera ids that know of the pedestrian with the corresponding hid. If this dictionary is

empty, it means that no handoffs are possible, and therefore an offer with a -1 value is sent. If

the dictionary is not empty, a candidate hid and camera id are chosen. The candidate camera

can either be the camera making the original handoff request or a third camera that needs to

be added to the negotiation. If the candidate is the requesting camera, a conditional offer is

sent and the requested pedestrian is temporarily observed. Otherwise, a new Child Request is

created asking a third camera to take over a task.

The function for picking the best handoff candidate takes in a dictionary that maps hids

of observed pedestrians to lists of cameras that know about the person. It then scores the

pedestrians based on how long they have been observed and their location in the cameras

viewing region. Pedestrians who have been observed longest and are most likely to leave

are scored higher. The winning candidate is the pedestrian with the highest combined score.

Currently the camera chosen is the first camera in the list of cameras that know the winning

CHAPTER 3. APPROACH 32

Algorithm 4 Handing off a task to free up resources
Require: camID . ID of the camera initiating handoff

1: Find possible handoff candidates
2: if No candidates found then
3: Send an offer with a -1 value
4: return
5: end if
6: Pick the best handoff candidate
7: if candidate camera == camID then . Attempt a swap
8: Begin to temporarily observe the pedestrian associated with the request
9: Send the requesting camera an offer with the candidate pedestrian as the condition

10: else . Add a third camera to the negotiation
11: Generate a new request structure for the child request
12: Add the request to the list of active requests
13: Send an auction initiation message to the candidate camera
14: Enqueue an EndAuctionEvent that will be triggered after kAuctionDuration
15: end if

Algorithm 5 Finding Handoff Candidates
Require: candidates . An empty dictionary
Require: observeList . A list of pedestrian IDs the camera is observing
Ensure: candidates maps observed pedestrians to other cameras that know the pedestrian.

1: for hid in observeList do
2: cams← A list of camera IDs that know the pedestrian identified by hid
3: if cams is empty then
4: continue
5: end if
6: activity ← The activity associated with hid
7: if not activity then
8: continue
9: end if

10: startT ime← Start time of activity
11: position← Position relative to the center of the cameras viewing region
12: candidates[hid]← (startT ime, position, cams)
13: end for

CHAPTER 3. APPROACH 33

pedestrian. This could potentially be expanded further to favour the requesting camera or the

camera with the most available resources.

Algorithm 6 Picking The Best Handoff Candidate
Require: candidates . A list of handoff candidates

1: scores← Empty Dictionary
2: sortedByStartT ime← The candidates sorted by start time
3: time← The current time
4: score← 0
5: for entry in sortedByStartT ime do
6: if entry.startT ime < time then
7: time = entry.startT ime
8: score = score + 2
9: end if

10: scores[entry.hid] = score
11: end for
12: sortedByPosition← The candidates sorted by position
13: pos← 0.0
14: score← 0
15: for entry in sortedByPosition do
16: if entry.position > pos then
17: pos← entry.position
18: score = score + 1
19: end if
20: scores[entry.hid] = scores[entry.hid] + score
21: end for
22: hid← The hid of the candidate with the highest score
23: cid← The id of the first camera in the list of cameras that know the candidate
24: return (hid, cid)

Evaluate Failed Event

The EvaluateFailedEvent is triggered when a camera cannot find a pedestrian or is not able to

meet all of the constraints. In such a case, an offer with a -1 value is sent back to the requesting

camera and the request is removed from the active requests list.

CHAPTER 3. APPROACH 34

Object Detected Event

The ObjectDetectedEvent is triggered when a camera detects a pedestrian that it is not observ-

ing. Upon receiving this event, a camera needs to decide if it wants to observe the pedestrian.

In situations with a large number of pedestrians, automatically observing all pedestrians may

not be the best use of resources. If a camera is configured to automatically observe all newly

detected pedestrians, it must first check to see if it has the resources available before beginning

to observe the pedestrian.

3.4.3 Controller Events

Controller Events are used by the controller to schedule a task at some point in the future. Such

events are used to end auctions, send out status updates and clean up outdated requests. They

can be one time events or events that are repeated periodically.

End Auction Event

The EndAuctionEvent is triggered when the allotted time for an auction is expired or when an

offer was received from every camera that was notified of the auction. A camera picks a winner

from the list of offers it has received using Algorithm 8. The offer with the highest value is

chosen; however, priority is given to offers without a condition. Once a winner is chosen, the

camera then notifies the winner of the result by sending a MsgResponse message. It then

ends the activity that was handed off and if there was a condition, it begins a new observe

activity for the conditional pedestrian. If the auction was part of a Child Request, the parent

request is revisited. Finally, the memory is updated and a status message is sent out to notify

the neighbouring cameras of the result. The request is also removed from the list of active

requests.

CHAPTER 3. APPROACH 35

Algorithm 7 End Auction Event Handler
Require: rid . The request identifier for an active request

1: request← The Request Structure for the request with id rid
2: hid← request.hid
3: winner ← The winner chosen from request.offers
4: if winner then
5: Stop observing the pedestrian identified by hid
6: Send a response to the winning camera
7: if winner.condition then
8: Begin Observing the conditional pedestrian
9: end if

10: if request.parent then
11: Re-evaluate parent request
12: end if
13: Update Memory
14: Send out a status update to neighbouring cameras
15: end if
16: Remove the request with ID rid from the list of active requests

Algorithm 8 Picking The Winner
Require: offers . A list of offers
Ensure: cam Is the ID of the winning camera
Ensure: condition Is a pedestrian identifier the auctioning camera agrees to observe
Ensure: value Is the value of the winning bid

1: value← 0
2: cam← Nil
3: condition← Nil
4: for offer in offers do
5: if offer.value > value and not offer.condition then
6: value← offer.value
7: cam← offer.cam
8: end if
9: end for

10: if not cam then
11: for offer in offers do
12: if offer.value > value and CANSEE(offer.condition) then
13: value← offer.value
14: cam← offer.cam
15: condition← offer.condition
16: end if
17: end for
18: end if

CHAPTER 3. APPROACH 36

Table 3.3: Constants we used for our testing

Name Value Description

kMaxObserve 4 Maximum number of objects a camera can observe at any time

kStatusFrq 2.0 The frequency of status messages sent by each camera

kMemUpdateFrq 1.0 How frequently a cameras memory is updated with information
about its local tasks

kMemExpiryT ime 5.0 Time at which memory entries expire and are removed

kAuctionDuration 1.0 Amount of time a camera waits for bids before choosing a winner

kRequestExpiry 1.0 Time at which information about a request is removed from a
cameras memory.

Update Memory Event

The UpdateMemoryEvent is used to periodically update a camera controllers memory with

information about the current activities being carried out by the camera. Outdated information

is also removed.

Send Status Event

The SendStatusEvent is used to periodically send status updates to neighbouring cameras. The

status update includes the latest information about the observe and evaluate tasks a camera is

carrying out as well as the pedestrians that it knows about.

3.4.4 Concurrency

Cameras may have multiple negotiations active at the same time. Special care must be taken

to ensure a camera does not assign the same resources to two different tasks. For example, if a

camera has enough resources to observe 4 pedestrians and it is already observing 3, it cannot

submit offers in two different negotiations at the same time. This could result in the camera

having to observe 5 pedestrians if it won both auctions. To prevent this from happening, a

camera begins to temporarily observe a pedestrian before it submits an offer. This temporary

observation task is treated no differently than any other observation task except for the fact that

CHAPTER 3. APPROACH 37

it expires after some period of time. If a camera has only one observation slot open, the first

offer sent will put the camera at its observation limit. This will force other negotiations to send

conditional offers or alternatively wait until a response is received.

Another issue that could arise with multiple negotiations occurring at the same time is a

pedestrian being used as a condition in two different negotiations. This too could result in a

camera exceeding its observation limit. This issue is addressed by not allowing a pedestrian to

be a handoff candidate if it is a condition in an active negotiation.

Chapter 4

Results

We simulated camera networks comprising 1, 2, 4, and 16 cameras observing up to 32 pedestri-

ans in our 2D camera network simulator to evaluate the proposed approach. We also compared

our method with the scheme proposed by Esterle et al. [12], which is a recent state-of-the-art

technique for distributed camera handoff. Esterle et al. approach exhibits many of the charac-

teristics of existing distributed handoff schemes: 1) there is no provision for counter-offers and

2) cameras ignore the state of neighbouring cameras. We implemented the messaging protocol

in Esterle et al. [12] within our 2D simulator (see Appendix B) to compare the two techniques.

The fact that we were able to simulate two different control strategies for camera networks

within our simulator supports our observation that it is much easier and more cost effective

to use simulated environments for studying camera networks, at least at the early stages. Our

camera networks assume “perfect” pedestrian detection, tracking, and identification. This is

indeed a simplifying assumption, however, the recent advances in pedestrian tracking suggests

that our assumptions hold for low to medium density crowds. Furthermore, we believe that

these assumptions do not diminish the camera handoff strategy proposed here.

38

CHAPTER 4. RESULTS 39

Cam 1 Cam 2 Cam 1 Cam 2 Cam 1 Cam 2

(a) Without memory and conditional offers

Cam 1 Cam 2 Cam 1 Cam 2 Cam 1 Cam 2

(b) With memory and conditional offers

Figure 4.1: An overview of scenario 1 with and without the use of memory. Without memory,
the pedestrian represented by the green square is no longer observed once it leaves camera
1’s viewing region. With the use of memory, as swap can occur, resulting in the pedestrian
represented by a green square being seamlessly handed over to camera 2.

4.1 Test Scenarios

We evaluate our approach on six different scenarios. Scenario 1 demonstrates the effects of

resource limitations on performing camera handoffs. Resource limitations encode the fact

that a camera may not be able to observe every individual that is present in its field-of-view.

Scenario 2 showcases a camera network with blind regions. Blind regions are not covered by

any camera in the camera network. Scenarios 3, 4 and 5 compare our method to the Esterle et al.

scheme [12]. Scenario 6 simulates a camera network comprising 16 PTZ cameras observing

a region with up to 32 pedestrians at any given time. This scenario is designed to study the

scalability properties of our approach.

CHAPTER 4. RESULTS 40

0	
 4	
 8	
 12	
 16	
 20	
 24	
 28	
 32	
 36	
 40	
 44	
 48	

Time (s)	

Tracking History Of Pedestrian 1	

With Memory	

Without Memory	

Figure 4.2: Scenario 1: The tracking history of pedestrian 1 with and without the use of
a camera’s memory for storing the internal state of the neighbouring cameras. When using
memory, a task swap can occur and pedestrian 1 is seamlessly tracked throughout his stay in
the region.

4.1.1 Scenario 1

In the first scenario, we demonstrate the effect our memory model and the use of conditional

offers has on handoffs between cameras that are at their observation limits. Cameras at their

observation limits are already observing the maximum number of targets that their resources

allow. This means that the only way to complete a handoff is for two cameras to swap tasks.

This scenario is made up of two cameras and two pedestrians as shown in Figure 4.1. The two

cameras are aligned in a row looking in the same direction and each camera is restricted to only

observe 1 pedestrian at a time. There are two pedestrians in the scene. One of the pedestrians—

which is initially observed by camera 2—is stationary, while the other pedestrian—initially

observed by camera 1—is moving across the region towards camera 2.

We performed two tests on this scenario. In the first test we do not use our proposed mem-

ory model and conditional offers, while in the second test we do. As Figure 4.1 (a) shows, in

the absence of memory model and conditional offers, a handoff cannot occur and the pedestrian

originally observed by camera 1 will no longer be observed once it leaves camera 1’s viewing

region. By using our memory model, camera 2 is able to respond to the auction initiated by

camera 1 with a conditional offer asking camera 1 to swap tasks. Camera 1 accepts the con-

ditional offer and the two cameras swap tasks. This is shown in Figure 4.1 (b). We plot the

tracking history for pedestrian 1 from both tests in Figure 4.2. Here you can clearly see that

without the use of our memory model, pedestrian 1 is no longer tracked after about 40 seconds.

CHAPTER 4. RESULTS 41

Cam 1 Cam 2 Cam 1 Cam 2 Cam 1 Cam 2

Figure 4.3: An overview of scenario 2. Here cameras do not have overlapping viewing regions.
This results in pedestrians being not observed for a period of time; however, the cameras are
able to recover once the pedestrian re-enters a cameras viewing region.

0	
 6	
 12	
 18	
 24	
 30	
 36	
 42	
 48	
 54	
 60	
 66	
 72	
 78	
 84	
 90	

Time (s)	

Tracking History of Pedestrian 0	

Figure 4.4: Scenario 2: The tracking history of pedestrian 0. Since the two cameras do not
have overlapping viewing regions, the pedestrian does not get tracked for a period of time.

By using our memory model, the two cameras can initiate a swap, which results in pedestrian

1 being seamlessly transferred to camera 2 so that it can continue to be observed.

4.1.2 Scenario 2

In Scenario 2, we show how our approach works in cases where cameras do not have over-

lapping field-of-views. This scenario also consists of two cameras; however, this time the

camera’s do not have overlapping field-of-views and are allowed to observe more than 1 target.

An overview of the scenario is shown in Figure 4.3. The scenario begins with both cameras

observing a single pedestrian. Like in scenario 1, the pedestrian observed by camera 2 is sta-

tionary, while the pedestrian observed by camera 1 is moving across the room. After some

time, the pedestrian that is moving leaves the first camera’s field-of-view and enters the region

not observed by any cameras. As it continues to move, the pedestrian enters camera 2’s viewing

region and is automatically detected by the camera.

Figure 4.4 plots the tracking history of pedestrian 1 as she moves between the observational

CHAPTER 4. RESULTS 42

Table 4.1: Scenario 3 Parameters

Test Number 1 2 3 4 5 6
Number of pedestrians 1 2 4 6 8 10
Number of cameras 2
Number of runs 30
Simulation time 70 seconds

ranges of camera 1 and camera 2. The first block represents the time the pedestrian is observed

by camera 1, while the second block represents the time it is observed by camera 2. Since there

is a region between cameras 1 and 2 that is not observed by any camera, this is the best that the

cameras were able to do.

4.1.3 Scenario 3

Cam 1 Cam 2 Cam 1 Cam 2 Cam 1 Cam 2

Figure 4.5: An overview of Scenario 3. The two cameras begin by observing a group of
pedestrians walking towards the other cameras viewing region. After some time, both groups
of pedestrians reach the edge of their respective cameras viewing region requiring multiple
handoffs so that the pedestrians can be observed as they continue walking.

The third scenario is made up of two cameras with overlapping field-of-views just like

scenario 1. For this scenario, we run 6 tests with 1, 2, 4, 6, 8 and 10 pedestrians. Other than the

first test, all tests begin with an equal number of pedestrians present in a cameras field-of-view.

The pedestrians walk toward each other resulting in a handoff situation when the two groups

meet in the area where the viewing regions of the two cameras intersect. An overview of the

test with 8 pedestrians is shown in Figure 4.5. The cameras in this scenario are restricted to

observing at most 4 pedestrians at any given time. As a result, a swap of tasks is necessary to

complete a successful handoff. For this scenario we run the same tests on both our approach

CHAPTER 4. RESULTS 43

70	

75	

80	

85	

90	

95	

100	

1	
 2	
 4	
 6	
 8	
 10	

Pe
rc

en
t O

bs
er

ve
d	

Number of Pedestrians	

Percent of Pedestrians Observed as the Number of
Pedestrians Increases	

Our Approach	
 Esterle Approach	

Figure 4.6: Scenario 3: The percent of pedestrians observed by our approach and that of
Esterle et al. [12] as the number of pedestrians increases. The results are averaged over 30
runs.

and the approach by Esterle et al. [12]. We run each test 30 times for each approach and average

the results.

The percent of observed pedestrians as the number of pedestrians increases in plotted in

Figure 4.6. The percent observed for each test is computed using equation 4.1 with results

averaged over the 30 runs. Here TS is the total number of time steps, Ptot is the total number

of pedestrians present in the scene and P i
obs is the number of pedestrians observed at time step

i.

PercentObserved =
100

TS × Ptot

TS∑
i=1

P i
obs (4.1)

Figure 4.6 shows that our approach performed slightly better than the Esterle et al. approach

once there are around 6 people in the scene. Figure 4.7 shows how smooth our approach is

compared to the Esterle approach. Our approach is able to complete seamless handoffs, even

when the cameras are tracking the max number of people. This is due to the memory module

allowing cameras to swap tasks when cameras are at their tracking limits. The Esterle et al.’s

CHAPTER 4. RESULTS 44

Our Approach

Esterle Approach

6

6.5

7

7.5

8

8.5

35 37 39 41 43 45 47 49 51 53 55 57 59

Pe

de
st

ri
an

s O
bs

er
ve

d

Time (s)

Average Number of Pedestrians Observed Over Time

Our Approach

Esterle Approach

Figure 4.7: Scenario 3: Average number of pedestrians observed at each time step with 8
people present.

Table 4.2: Message counts for scenario 3

Message Type Our Approach Esterle et al. Approach
1 2 4 6 8 10 1 2 4 6 8 10

MsgAuction 1 2 4 5 7 5 1 2 4 43 117 159
MsgOffer 1 2 4 5 6 5 1 2 4 5 4 2
MsgResponse 1 2 4 5 4 3 1 2 4 5 4 2
MsgStatus 70 72 76 77 77 75 0 0 0 0 0 0
Total 73 78 88 92 94 88 3 6 12 53 125 163

CHAPTER 4. RESULTS 45

Cam 1 Cam 2 Cam 3 Cam 4 Cam 1 Cam 2 Cam 3 Cam 4

Cam 1 Cam 2 Cam 3 Cam 4 Cam 1 Cam 2 Cam 3 Cam 4

Figure 4.8: An overview of Scenario 4.

approach has to wait until a pedestrian leaves a cameras viewing region before being able to

accept a new task. This results in a short period of time where a pedestrian will not be tracked.

This is more evident in scenario 5.

The average number of messages sent for each test are shown in Table 4.2. In our approach,

the majority of the message sent are status messages. The approach by Esterle et al. does not

use status messages; however, multiple auction initiation messages are sent if a pedestrian is

not successfully auctioned off. This results in a larger number of messages sent once cameras

are at there observation limit. For our tests, status messages where sent every 2 seconds and

every time a handoff was completed. Auction notifications were sent every 1 second since that

was the duration of the auction.

4.1.4 Scenario 4

The fourth scenario is made up of four cameras lined up in a row with overlapping field-of-

views as shown in Figure 4.8. For this scenario, we run tests with 2, 4, 8, 12 and 16 pedestrians.

The pedestrians start in four groups, one group per camera. The group that starts in camera

CHAPTER 4. RESULTS 46

Table 4.3: Scenario 4 Parameters

Test Number 1 2 3 4 5
Number of pedestrians 2 4 8 12 16
Number of cameras 4
Number of runs 30
Simulation time 120 seconds

Table 4.4: Message counts for scenario 4

Message Type Our Approach Esterle et al. Approach
2 4 8 12 16 2 4 8 12 16

MsgAuction 7 13 21 34 43 6 13 64 116 248
MsgOffer 6 12 20 31 41 6 12 63 114 247
MsgResponse 6 12 20 22 25 6 12 23 31 36
MsgStatus 374 393 417 424 433 0 0 0 0 0
Total 393 430 478 511 542 18 37 150 260 531

85	

90	

95	

100	

2	
 4	
 8	
 12	
 16	

Pe
rc

en
t O

bs
er

ve
d	

Number of Pedestrians	

Percent of Pedestrians Observed as the Number of
Pedestrians Increases	

Our Approach	
 Esterle Approach	

Figure 4.9: Scenario 4: The percent of pedestrians observed as the number of pedestrians
increased. The results are averaged over 30 runs.

CHAPTER 4. RESULTS 47

1’s viewing region walks across to camera 4’s viewing region, while the group that starts in

camera 4’s viewing region walks across towards camera 1. The pedestrians that start in camera

2’s viewing region walk toward camera one before doing a u-turn back towards camera 2.

Finally, the group that starts in camera 3’s viewing region walks towards camera 4 and also

does a u-turn back towards camera 3. This results in three different times when swap situations

occur which is shown in Figure 4.8.

The cameras in this scenario are also restricted to observing at most 4 pedestrians at any

given time. As a result, a swap in necessary to complete a successful handoff. We again ran

the same set of tests on both our approach and the approach by Esterle et al for 120 seconds of

simulation time.

The percent of observed pedestrians as the number of pedestrian increases is plotted in

Figure 4.9 using the same equation as Scenario 3. Again, our approach does significantly

better once the cameras are at their observation limits. Table 4.4 shows the message counts

which exhibit the same pattern as those in Scenario 3.

4.1.5 Scenario 5

Cam 1 Cam 2 Cam 1 Cam 2 Cam 1 Cam 2

Figure 4.10: An overview of Scenario 5.

Scenario 5 is very similar to scenario 3; however, there is one key difference. The pedes-

trians viewed by camera 2 never leave the camera’s viewing region. This combined with the

fact that a camera is restricted to only being able to observe 4 pedestrians at any given time

means a swap is necessary for a handoff to occur. Again we run tests with 1, 2, 4, 6, 8 and 10

CHAPTER 4. RESULTS 48

Table 4.5: Scenario 5 Parameters

Test Number 1 2 3 4 5 6
Number of pedestrians 1 2 4 6 8 10
Number of cameras 2
Number of runs 30
Simulation time 70 seconds

Table 4.6: Message counts for Scenario 5

Message Type Our Approach Esterle et al. Approach
1 2 4 6 8 10 1 2 4 6 8 10

MsgAuction 1 1 2 4 4 4 1 1 2 49 124 161
MsgOffer 1 1 2 3 4 4 1 1 2 2 2 2
MsgResponse 1 1 2 3 4 3 1 1 2 2 2 2
MsgStatus 70 70 72 74 76 74 0 0 0 0 0 0
Total 73 73 78 84 88 85 3 3 6 53 128 165

70	

75	

80	

85	

90	

95	

100	

1	
 2	
 4	
 6	
 8	
 10	

Pe
rc

en
t O

bs
er

ve
d	

Number of Pedestrians	

Percent of Pedestrians Observed as the Number of
Pedestrians Increases	

Our Approach	
 Esterle Approach	

Figure 4.11: Scenario 5: The percent of pedestrians observed by our approach and that of [12]
as the number of pedestrians are increased. The results are averaged over 30 runs.

CHAPTER 4. RESULTS 49

5

5.5

6

6.5

7

7.5

8

8.5

35 37 39 41 43 45 47 49 51 53 55 57 59

Pe

de
st

ri
an

s O
bs

er
ve

d

Time (s)

Average Number of Pedestrians Observed Over Time

Our Approach

Esterle Approach

Figure 4.12: Scenario 5: Average number of pedestrians tracked with 8 people present.

pedestrians and 70 seconds of simulation time.

The percent of pedestrians observed as the number of pedestrians increases is shown in

Figure 4.11. Our approach performs just as well as it did in Scenario 3; however, the approach

by Esterle et al. performs significantly worse. This is due to the fact that the pedestrians

observed by camera 2 no longer leave camera 2’s viewing region. Scenario 3 allowed an

indirect swap to occur—when using the approach by Esterle et al.—once both cameras dropped

one or more of their pedestrians.

The average number of pedestrians tracked over time for test number 5 is shown in Fig-

ure 4.12. Notice how our approach consistently observes all 8 pedestrians compared to the

approach by Esterle et al. The average message counts for this scenario are shown in Table 4.6.

Again our approach averages around 80 messages for all six of the tests while the Approach by

Esterle et al. requires almost double that when 10 pedestrians are in the scene.

4.1.6 Scenario 6

Scenario 6 consists of 32 pedestrians walking along a rectangular path. 16 cameras are tasked

with observing these individuals (see Fig. 4.13). The pedestrians are tracked for 3000 simu-

CHAPTER 4. RESULTS 50

Figure 4.13: Scenario 6: 16 cameras are tasked to observe 32 pedestrians as these move along
a rectangular path.

Table 4.7: Scenario 6

Test Number 1 2 3 4
Number of pedestrians 32
Number of cameras 16
Uses Memory Yes No Yes No
Max Observe 4 4 2 2
Number of runs 30
Simulation time 100 seconds

CHAPTER 4. RESULTS 51

14

16

18

20

22

24

26

28

30

32

34

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

of

 P
ed

es
tr

ia
ns

Simulation Steps (x30)

Number of pedestrians observed over time

4 Max with Memory

4 Max without Memory

2 Max with Memory

2 Max without Memory

Figure 4.14: Scenario 6: The numbers of pedestrians observed over time. Data is averaged
over 30 runs.

lation steps. Using this scenario, we have evaluated the proposed model under 4 settings: 1)

each camera can track no more than 4 pedestrians, 2) each camera can track no more than 4

pedestrians and the cameras do not maintain the state of their neighbours, 3) each camera can

track no more than 2 pedestrians and 4) each camera can track no more than 2 pedestrians

and the cameras do not maintain the state of their neighbours. Fig. 4.14 plots the number of

pedestrians tracked for each setting over time. On average 31.289 pedestrians are tracked when

cameras can track up to 4 pedestrians. This value is reduced to 30.611 when cameras are not

allowed to propose conditional offers (no memory). Similarly, on average the cameras track

22.557 pedestrians when each camera is allowed to observe only 2 pedestrians at any given

time. This value is reduced to 21.129 when cameras are not allowed to propose conditional

offers. While these results suggest that benefits of conditional offers are marginal, it is worth

keeping in mind that conditional offers only effect situations where tasks swaps are possible.

Perhaps, this scenario does not contain many such situations. In any case, scenario 1 clearly

makes the case of conditional offers.

Chapter 5

Conclusion

In this thesis, we presented a new approach to the camera handoff problem. We present a new

short-term memory model for maintaining a camera’s own state and the states of neighbouring

cameras. This memory model is used to introduce the concept of conditional offers during

handoff negotiations. Conditional offers allow successful handoffs to occur in situations where

existing approaches would fail. One such example is when a camera is at its tracking limit and

cannot rack any more pedestrians. With the use of the memory model, cameras, are able to

negotiate a swap of tasks if the pedestrians being tracked are visible in both cameras.

We have evaluated our approach on a variety of scenarios with 2, 4, and 16 cameras and up

to 32 pedestrians. We compared our approach to the Esterle et al. scheme that appeared in [12]

and the results seem to suggest that our approach outperforms the handoff approach developed

in [12].

Although we focus on using the memory to send conditional offers during a handoff negoti-

ation, there are other uses for the memory model. The memory model can be used to distribute

tasks between multiple cameras as shown in Figure 5.1. Here, two cameras start out tracking

the same group of pedestrians. Not only are the pedestrians tracked at a low resolution since

the cameras have to be zoomed out to observe all of the people, but it also wastes resources

since both cameras are doing the same work. These issues can be resolved by splitting the

52

CHAPTER 5. CONCLUSION 53

Cam 1

Cam 2

Cam 1

Cam 2

(a)

Cam 1 Cam 2 Cam 1 Cam 2

(b)

Figure 5.1: Other uses of memory. (a) distributing tasks between cameras to eliminate dupli-
cate tasks. (b) Handing off one task to add another.

pedestrians between the two cameras.

Another potential case where memory can be used is shown in Figure 5.1. Here camera 2

is observing four pedestrians and is at its tracking limit. When a new pedestrian—represented

as a red circle—comes into view, it is not able to observe it because it is at its tracking limit.

Using its builtin memory model, a camera could handoff a pedestrian to camera 1 which would

free up enough resources to observe the new pedestrians.

These are just a few examples of how a memory model can be used to improve the tracking

performance of a group of cameras which we plan on exploring in the future. We also plan on

evaluating the approach using real cameras.

Appendix A

Virtual Camera Model

Camera Model

PTZ Interface

High level logic

Figure A.1: The layered architecture of a virtual camera

Our Virtual Cameras are designed to mimic Smart Cameras. They use a layered architecture

made up of the three layers shown in Figure A.1. At the base of our virtual camera architecture

is the Camera Model layer which is a data structure for all of the information needed to define

a camera. The next layer is the PTZ Camera layer which adds an interface that is typically

found on a PTZ camera with options to pan, tilt and zoom. The final layer is where the camera

control and coordination logic is implemented allowing the camera to complete high level tasks

autonomously.

The layered architecture has many benefits. It is similar to a physical camera where the

PTZ interface manipulates the lower level camera properties. It also makes it much easier to

port our work to physical cameras. All we have to do is implement our PTZ Camera interface

on top of a physical camera’s PTZ interface and our smart camera node will be fully functional.

54

APPENDIX A. VIRTUAL CAMERA MODEL 55

A.1 Camera Model

e

v

w
u

Near/Image
Plane

Far Plane

Optical Axis

l

r
t
b

Figure A.2: Anatomy of a virtual camera.

The Camera Model is at the core of our virtual camera architecture. It is a data structure

for storing all of the properties needed to define a camera and its lens. Some of the properties

that make up the Camera Model are:

location The location of the camera in world coordinates represented by
a 3D point (x, y, z)

default direction A 3D vector denoting the direction the camera is point-
ing at when in its default position. This is a reference direction with
pan and tilt values set to zero.

current direction A 3D vector denoting the direction the camera is cur-
rently pointing at. It is computed by taking the default direction
vector and applying the pan and tilt values to it.

pan angle The horizontal angle between the current direction and default
direction vectors

tilt angle The vertical angle between the current direction and default di-
rection vectors

field of view angle The angle from the bottom of the screen to the top of
the screen.

up direction A vector perpendicular to the direction vector denoting the
direction the top of the camera faces.

APPENDIX A. VIRTUAL CAMERA MODEL 56

near plane The minimum distance an object must be away from the cam-
era for it to be visible.

far plane The maximum distance an object can be away from the camera
for it to be visible.

pan, tilt and zoom limits The minimum and maximum values for the pan,
tilt and zoom angles.

All high level manipulations of the camera affect these variables which are then used to

generate the viewing and projection matrices. The viewing and projection matrices allow a

point in world coordinates to be converted to a cameras local coordinates and then be projected

onto the cameras image plane. These matrices are also part of the Camera Model. The first of

these matrices is the view matrix Mv.

Mv =

xu yu zu −xe
xv yv zv −ye
xw yw zw −ze
0 0 0 1

 (A.1)

The view matrix converts points from world coordinates to camera coordinates so that they

can be projected onto the screen. Sometimes it is also necessary to convert camera coordinates

back to world coordinates. This is done by taking the inverse of the view matrix denoted by

M−1
v .

M−1
v =

xu xv xw xe

yu yv yw ye

zu zv zw ze

0 0 0 1

 (A.2)

To get an image onto the screen, it has to be projected onto the image plane. In our system,

we use a perspective projection matrix Mp.

Mp =

2n
r−l 0 l+r

l−r 0

0 2n
t−b

b+t
b−t 0

0 0 f+n
n−f

2fn
f−n

0 0 1 0

 (A.3)

In this matrix, n is the near plane, f is the far plane, l, r, t, b are the left, right, top and

bottom bounds that make up the screen relative to the optical axis (See Figure A.2). When a

APPENDIX A. VIRTUAL CAMERA MODEL 57

point is projected onto the screen, its converted into a (u,v) point along with a z value used by

the depth buffer. For a point to appear in the image, the u and v values must be in the range

of -1 and 1 as shown in Figure A.3. Points not in this range fall outside the image and are not

seen by the camera.

1

1

-1

-1

u

v

Image Boundary

Figure A.3: An object is visible by a camera if its projected bounds are within the -1 to 1
range.

Near/Image
Plane

θ

t

b

Figure A.4: A cameras field of view is defined as the angle between the cameras origin and
the top and bottom bounds of the image plane. A smaller angle results in objects taking up
more space when projected onto the image, while a larger value results in objects taking up
less space in the image.

A.2 PTZ Camera

The PTZ Camera layer adds an interface to the Camera Model which can be used to control a

camera. It includes all of the options that are found on a physical camera such as the ability to

zoom in or zoom out, to pan left or pan right, to tilt up or tilt down. For all of these options the

APPENDIX A. VIRTUAL CAMERA MODEL 58

angle as well as the amount of time it should take to transition from the current state to the new

state can be specified. There is also an option to revert the camera back to its default position.

There also needs to be a way to mimic the motors on a PTZ camera. If a PTZ camera is set

to pan 20 degrees to the right, it does not occur instantly. It takes some time for the panning

motor to adjust the camera. To achieve the same effect, we use simple animations.

The PTZ camera has a list of animations which are made up of a start value, end value,

duration, a pointer to the object that needs to be animated and the function that needs to be

called. During each time step, the parameter being animated is slowly adjusted by a fraction of

the difference between the start and end values until the animation is complete. We also have

the ability to modify the animation while it is running if any sudden changes need to occur.

The commands available to both active PTZ and static wide-FOV cameras are listed in

Table A.1.

Camera Type Command Description

PTZ & wide-FOV
setResolution Set the resolution of the image
getImage Gets the latest image from the camera

PTZ

panLeft Pan left by θ degrees
panRight Pan right by θ degrees
tiltUp Tilt up by θ degrees
tiltDown Tilt down by θ degrees
zoomIn Zoom in by θ degrees
zoomOut Zoom out by θ degrees
default Reverts the camera to its default settings

Table A.1: Simulated passive wide-FOV and active PTZ cameras support a set of commands
similar to those available in a typical IP camera.

A.3 High Level Logic

The high level logic layer is where is where the camera control and coordination logic is im-

plemented. For our implementation, we chose to break this up into three layers: the routine

layer, the activity layer and the control layer (See Figure A.5).

APPENDIX A. VIRTUAL CAMERA MODEL 59

Camera Model

PTZ Interface

Camera Routines

Camera Activities

Camera Control

Figure A.5: The layered architecture of our Smart Camera Nodes.

The routine layer implements routines that communicate directly with the PTZ Camera

layer below. This includes a tracking routine, a fixate routine, a zoom routine and a search

routine.

A.3.1 Tracking Routine

The tracking routine replaces the computer vision routines that would typically be used to

detect and track objects in an image generated by a physical camera. This routine iterates over

the list of pedestrians and projects their bounding boxes onto a cameras image plane to see

which ones appear in a cameras image (See Figure A.6).

At this time, we do not take into account occlusions; however, such a feature would be

fairly straightforward to add. By making each person a different colour, it is straightforward to

generate a simple image that contains a rectangle representing each pedestrian visible by the

camera. A simple image operation could then be performed to find pixels of a specific colour

to see if a particular pedestrian is visible.

A.3.2 Fixate and Zoom Routines

The camera tracks a pedestrian by using fixate and zoom routines [30]. Before tracking can

occur, the camera must first compute the region of interest. The region of interest is the portion

of the image that the camera wants to focus on. It is a rectangle that tightly encloses all of the

pedestrians the camera wants to track.

APPENDIX A. VIRTUAL CAMERA MODEL 60

Image Plane

Pedestrians

Figure A.6: A generated image uses a 2D coordinate system with its origin at the centre of the
image. Projected points inside the range -1 and 1 appear in the image, while points outside this
range do not.

The fixate routine brings the region of interest into the centre of the image by adjusting the

tilt and pan angles of the PTZ camera. The zoom routine adjusts the field of view of the camera

so that the region of interest occupies the desired percentage of the screen. This is called the

coverage factor. Figure A.7 shows the fixate and zoom routines in action. The first row shows

the camera panning to the right to fixate on the pedestrian. The second row shows the camera

zooming in on the same pedestrian.

When adjusting the pan, tilt, and zoom values, a Proportional Integral Derivative controller

(PID controller) [1] is used to compute how much the pan, tilt or zoom values should be

changed by. A PID controller computes the error between the current value and the desired

value by taking into account the past error and potential future error. PID controllers are widely

used in control systems such as PTZ cameras.

The fixate and zoom routines operate independently of each other. This means a camera

can fixate and zoom in at the same time. When the region of interest is close to the edge of the

image, the camera automatically zooms out to keep the object in view.

APPENDIX A. VIRTUAL CAMERA MODEL 61

Figure A.7: Fixate and Zoom routines in action: the top row shows a camera fixating on the
pedestrian, while the bottom row shows a camera zooming in on a pedestrian

A.3.3 Activity Layer

The Activity Layer is responsible for the level 2 behaviours shown in Figure 3.2. It also handles

behaviour arbitration so that a single ROI is passed down to the Camera Routine Layer.

The set of activities that a camera can engage in are:

• idle(ci): The camera ci is currently not performing any observation task.

• observing(ci, hj): The camera ci is currently observing pedestrian hj .

• evaluating(ci, hj): The camera ci is currently evaluating its suitability to observe pedes-

trian hj . A camera cannot take part in any negotiations involving hj without first knowing

its suitability to that task; suitability encodes the success probability of a camera with re-

spect to an observation task. Typically, a camera evaluates its suitability to an observation

task when it receives the task request from a neighbouring camera.

Behaviour Arbitration

Multiple instances of level 2 behaviours—Observe and Evaluate—may be active simultane-

ously in the activity layer. There is a one to one mapping between camera activities observing

APPENDIX A. VIRTUAL CAMERA MODEL 62

and evaluating and these two behaviours. All of the activities in the Activity Layer rely upon

the routines in the Camera Routine Layer. The routines in the Camera Routine Layer are sin-

gletons. This suggests that behaviour arbitration is needed to decide which routines will be

called and what parameters will be passed to them. Behaviour arbitration aims to avoid neg-

ative consequences of behaviour interactions such as any one behaviour taking over camera

resources and locking out all of the other behaviours. Behaviour arbitration also addresses the

problem of behaviour dithering, where a camera will constantly switch between two (or more)

competing tasks. We employ the behaviour arbitration model presented in [31].

Appendix B

Camera Network Simulator

Figure B.1: A screenshot of our 2D camera network simulator which was used to test our
approach.

To evaluate the proposed handoff technique, we developed a PTZ camera network simula-

tor, which is shown in Figure. B.1. The simulator—which is implemented in Python—is able to

simulate the movement of pedestrians, camera logic, camera motors (for PTZ cameras), inter-

camera communication and camera sensing. It allows us to quickly set up different scenarios

63

APPENDIX B. CAMERA NETWORK SIMULATOR 64

<?xml version=‘1.0’ encoding=‘UTF-8’?>
<vvs-2d version=‘1.1’>
<cameras>

<camera pos=‘200.0 0.0 100.0’ direction=‘0.0 0.0 1.0’ id=‘1’>
<up_vector>0 1 0</up_vector>
<near_plane>1</near_plane>
<far_plane>1500</far_plane>
<default_fov>60</default_fov>
<fov_limits>10 60</fov_limits>
<pan_limits>0 0</pan_limits>
<tilt_limits>-30 30</tilt_limits>

</camera>
</cameras>
<pedestrians>

<pedestrian height=‘165.0’ width=‘51.0’ depth=‘25.0’>
<commands>

<command type=‘start’ x=‘500’ z=‘300’ radius=‘200’/>
<command type=‘move’ speed=‘walk’ x=‘50’ z=‘300’ radius=‘200’/>
<command type=‘stand’ time=‘10’/>

</commands>
</pedestrian>

</pedestrians>
</vvs-2d>

Figure B.2: A sample scenario configuration file.

which can be saved and executed many times eliminating the need to set up real cameras and

the need to get volunteers to act out different scenarios.

The simulator has graphical tools for creating, configuring and saving a scenario. By se-

lecting one of the tools on the left and clicking on the canvas, a camera or pedestrian will be

added to the scene. The property editor on the right can be used to tweak all of the properties

of a camera or pedestrian making setting up a scenario quick and easy. A simulation can be

started by pressing the Run button or the Spacebar can be pressed to move the simulation for-

ward by one time step. The simulator uses an XML based scenario configuration file making

it possible to write a configuration file yourself or tweak a file generated by the simulator. A

sample configuration file is provided in Figure B.2

In addition to our 2D Camera Network Simulator, we also developed a 3D Virtual Vision

APPENDIX B. CAMERA NETWORK SIMULATOR 65

Simulator shown in Figure B.3. This simulator uses the same virtual camera architecture as

our 2D simulator making it possible to test the same camera control and coordination approach

in both simulators. It too is implemented in Python using the Panda3D game engine. Because

we use a 3D game engine to render the view of each camera, it is possible to use real computer

vision techniques for detecting and tracking objects in the rendered images allowing more

realistic testing conditions. For a detailed description of the 3D Virtual Vision Simulator, we

refer the reader to [39]. Do to its speed and flexibility, we chose to run all of our tests in our

2D simulator.

Figure B.3: A screenshot of our 3D virtual vision simulator

Appendix C

Virtual Pedestrians

width

height

depth

(a) (b)

Figure C.1: Our virtual pedestrians are represented as rectangular prisms made up of a width,
depth and a height. In our 3D simulator we use the bounding box of the 3D model used to
represent the pedestrian.

For our simulator to be useful, it requires objects that can be observed by the virtual cam-

eras. This is where our virtual pedestrian come into play. Our virtual pedestrians represent

the objects that are typically tracked by surveillance cameras. In our case we assume these

objects to by people; however they could easily be some other object such as an animal, a car

or anything else. They are represented as rectangular prisms as shown in Figure C.1 (a). The

rectangular prism is a bounding box defined by three values: width, depth and height. In

our 2D simulator, these values can be specified as properties of a pedestrian, while in the 3D

66

APPENDIX C. VIRTUAL PEDESTRIANS 67

(a) (b)

Figure C.2: (a) A camera observing two pedestrians in our 2D Camera Network Simulator. (b)
The image produced by projecting the bounding boxes of the two pedestrians onto the cameras
image plane.

simulator, they are based on the 3D model used to represent the pedestrian (see Figure C.1 (b)).

This bounding box is what allows us to implement a simple tracker by projecting the 8

points that make up the bounding box onto a cameras image plane. We can see whether or not

the object appears in the image, what part of the image it takes up and how big it is. This is

shown in Figure C.2

To test handoff approaches we need the pedestrians to move around the scene. Pedestrian

motions are scripted via a sequence of start, move and stand commands. The start command

defines the region where a pedestrian will begin its motion. It is defined by a 2D position on the

ground as well as a radius. The move command defines the region where a pedestrian should

move to. It is also defined by a 2D position and a radius; however, it also includes a speed. We

have defined three speeds a pedestrian can move in: walk, jog and run.

When a start or move command is initiated, a random position within the specified radius

is chosen as the location where the pedestrian will start or move to. This allows us to re-run a

scenario multiple times with a different position being chosen each time (See Figure C.3 (b)).

For the tests presented in this thesis, the radius is set to 200 units (or 2 meters in simulation

space). Movement is achieved by interpolating the position of the pedestrian from its starting

APPENDIX C. VIRTUAL PEDESTRIANS 68

r
x, y

(a) (b)

Figure C.3: (a). The position a pedestrian moves to is randomly chosen at runtime based on
the position and radius of a move command. (b). The same scenario can be run multiple times
producing a different path each time.

position to its end position. Currently we use straight line motion and ignore collisions; how-

ever, it is possible to use a steering approach such as OpenSteer [33] or RVO2 [36] instead of

the simple interpolation. Using a steering approach would produce a better looking simulation,

but it would not have any effect on the results and therefore we chose not to incorporate it at

this time.

Bibliography

[1] Mituhiko Araki. Pid control. Control systems, robotics and automation, 2:1–23, 2002.

[2] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE journal of

Robotics and Automation, 2:14–23, 1986.

[3] Zezhi Chen and T. Ellis. Automatic lane detection from vehicle motion trajectories. In

Advanced Video and Signal Based Surveillance (AVSS), 2013 10th IEEE International

Conference on, pages 466–471, Aug 2013.

[4] Zhaolin Cheng, Dhanya Devarajan, and Richard J. Radke. Determining vision graphs

for distributed camera networks using feature digests. EURASIP Journal on Advances in

Signal Processing, Special Issue on Visual Sensor Networks, pages 1–19, 2007.

[5] Edward G. Coffman and John L. Bruno. Computer and job-shop scheduling theory. John

Wiley and Sons, 1976.

[6] R.T. Collins and Y. Tsin. Calibration of an outdoor active camera system. In Computer

Vision and Pattern Recognition, 1999. IEEE Computer Society Conference on., volume 1,

pages –534 Vol. 1, 1999.

[7] C.F. Crispim, V. Bathrinarayanan, B. Fosty, A Konig, R. Romdhane, M. Thonnat, and

F. Bremond. Evaluation of a monitoring system for event recognition of older people.

In Advanced Video and Signal Based Surveillance (AVSS), 2013 10th IEEE International

Conference on, pages 165–170, Aug 2013.

69

BIBLIOGRAPHY 70

[8] Dhanya Devarajan, Richard J. Radke, and Haeyong Chung. Distributed metric calibra-

tion of ad hoc camera networks. ACM Transactions on Sensor Networks, 2(3):380–403,

August 2006.

[9] Gianfranco Doretto, Thomas Sebastian, Peter Tu, and Jens Rittscher. Appearance-based

person reidentification in camera networks: problem overview and current approaches.

Journal of Ambient Intelligence and Humanized Computing, 2(2):127–151, 2011.

[10] TJ Ellis, Dimitrios Makris, and James Black. Learning a multi-camera topology. Joint

IEEE International Workshop on Visual Surveillance and Performance Evaluation of

Tracking and Surveillance, pages 165—-171, 2003.

[11] Markus Enzweiler and Dariu M. Gavrila. Monocular pedestrian detection: Survey

and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence,

31(12):2179–2195, Dec 2009.

[12] Lukas Esterle and Peter R. Lewis. A socio-economic approach to online vision graph

generation and handover in distributed smart camera networks. ACM Transactions on

Sensor Networks, 0(0):1–24, 2011.

[13] Lukas Esterle, Peter R. Lewis, Martin Bogdanski, Bernhard Rinner, and Xin Yao. A

socio-economic approach to online vision graph generation and handover in distributed

smart camera networks. Fifth ACM/IEEE International Conference on Distributed Smart

Cameras, pages 1–6, August 2011.

[14] Stanislav Funiak, Carlos Guestrin, Mark Paskin, and Rahul Sukthankar. Distributed lo-

calization of networked cameras. In Proceedings of the 5th International Conference on

Information Processing in Sensor Networks, pages 34–42, New York, 2006.

[15] N. Gheissari, T.B. Sebastian, and R. Hartley. Person reidentification using spatiotemporal

appearance. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, volume 2, pages 1528–1535, 2006.

BIBLIOGRAPHY 71

[16] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge

University Press, ISBN: 0521540518, second edition, 2004.

[17] IndigoVision. Toulouse Casino Project. www.indigovision.com/documents/public/project-

briefs/Toulouse Casino-Project brief-Letter.pdf, 2012.

[18] O Javed and S Khan. Camera handoff: tracking in multiple uncalibrated stationary cam-

eras. IEEE Computer Society Workshop on Human Motion, 2000.

[19] Younggwan Jo and Joonhee Han. A new approach to camera hand-off without camera

calibration for the general scene with non-planar ground. Proceedings of the 4th ACM

international workshop on Video surveillance and sensor networks, 2006.

[20] Yiming Li and Bir Bhanu. Utility-based dynamic camera assignment and hand-off in a

video network. Second ACM/IEEE International Conference on Distributed Smart Cam-

eras, pages 1–9, 2008.

[21] Yiming Li and Bir Bhanu. A Comparison of Techniques for Camera Selection and Hand-

Off in a Video Network. Distributed Video Sensor Networks, 2009.

[22] Dimitrios Makris, Tim Ellis, and James Black. Bridging the gaps between cameras. In

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, volume 00, pages 0–5, 2004.

[23] C. Micheloni, B. Rinner, and G.L. Foresti. Video analysis in pan-tilt-zoom camera net-

works. IEEE Signal Processing Magazine, 27(5):78–90, Sep 2010.

[24] Kazuyuki Morioka, Szilveszter Kovacs, Joo-Ho Lee, Peter Korondi, and Hideki

Hashimoto. Fuzzy-based camera selection for object tracking in a multi-camera system.

2008 Conference on Human System Interactions, pages 767–772, May 2008.

[25] N. Nitta, T. Nakazaki, K. Nakamura, R. Akai, and N. Babaguchi. People counting across

spatially disjoint cameras by flow estimation between foreground regions. In Advanced

BIBLIOGRAPHY 72

Video and Signal Based Surveillance (AVSS), 2013 10th IEEE International Conference

on, pages 414–419, Aug 2013.

[26] C. Pane, M. Gasparini, A Prati, G. Gualdi, and R. Cucchiara. A people counting system

for business analytics. In Advanced Video and Signal Based Surveillance (AVSS), 2013

10th IEEE International Conference on, pages 135–140, Aug 2013.

[27] Johnny Park, PC Bhat, and AC Kak. A look-up table based approach for solving the

camera selection problem in large camera networks. Proceedings of the International

Workshop on Distributed Smart Cameras, 2006.

[28] Markus Quaritsch, Markus Kreuzthaler, Bernhard Rinner, Horst Bischof, and Bernhard

Strobl. Autonomous Multicamera Tracking on Embedded Smart Cameras. EURASIP

Journal on Embedded Systems, 2007:1–10, 2007.

[29] Faisal Z. Qureshi. Collaborative sensing via local negotiations in ad hoc networks of smart

cameras. Proceedings of the Fourth ACM/IEEE International Conference on Distributed

Smart Cameras - ICDSC ’10, page 190, 2010.

[30] Faisal Z. Qureshi and Demetri Terzopoulos. Virtual vision: Visual sensor networks in

virtual reality. In Proceedings of the 2007 ACM Symposium on Virtual Reality Software

and Technology, VRST ’07, pages 247–248, New York, NY, USA, 2007. ACM.

[31] Faisal Z. Qureshi and Demetri Terzopoulos. Multi-camera Control through Constraint

Satisfaction for Persistent Surveillance. 2008 IEEE Fifth International Conference on

Advanced Video and Signal Based Surveillance, pages 211–218, September 2008.

[32] R. Ratajczak, T. Grajek, K. Wegner, K. Klimaszewski, M. Kurc, and M. Domanski. Vehi-

cle dimensions estimation scheme using aam on stereoscopic video. In Advanced Video

and Signal Based Surveillance (AVSS), 2013 10th IEEE International Conference on,

pages 478–482, Aug 2013.

BIBLIOGRAPHY 73

[33] Craig W Reynolds. Steering behaviors for autonomous characters. In Game Developers

Conference, pages 763–782, 1999.

[34] R. Romdhane, C.F. Crispim, F. Bremond, and M. Thonnat. Activity recognition and

uncertain knowledge in video scenes. In Advanced Video and Signal Based Surveillance

(AVSS), 2013 10th IEEE International Conference on, pages 377–382, Aug 2013.

[35] Wei Shao and Demetri Terzopoulos. Autonomous pedestrians. Graph. Models, 69(5-

6):246–274, September 2007.

[36] Jamie Snape, Stephen J Guy, Deepak Vembar, Adam Lake, and Ming C Lin. Reciprocal

collision avoidance and navigation for video games. In Game Developers Conference,

San Fransico, 2012.

[37] B. Song and A.K. Roy-Chowdhury. Robust Tracking in A Camera Network: A Multi-

Objective Optimization Framework. IEEE Journal of Selected Topics in Signal Process-

ing, 2(4):582–596, August 2008.

[38] Bi Song, Cristian Soto, Amit K. Roy-Chowdhury, and Jay A. Farrell. Decentralized cam-

era network control using game theory. In Second ACM/IEEE International Conference

on Distributed Smart Cameras, pages 1–8, 2008.

[39] W. Starzyk, A Domurad, and F.Z. Qureshi. A virtual vision simulator for camera networks

research. In Computer and Robot Vision (CRV), 2012 Ninth Conference on, pages 306–

313, May 2012.

[40] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. ACM Comput.

Surv., 38(4), December 2006.

