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Abstract 

Wireless Sensor Networks (WSNs) are typically used to monitor specific phenomena and gather 

the data to a gateway node, where  the data is further processed. WSNs nodes have limited power 

resources, which require  developing power efficient systems. Additionally, reaching the nodes 

after a deployment to  correct any design flaws is very challenging due the distributed nature of 

the nodes. The current  development of WSNs occurs at the coding layer, which prevent the 

design from going through a  typical software design process. Designing and analyzing the 

software modules of a WSN  system at a higher abstraction layer than at the coding level will 

enable the designer of a WSN to  fix any design errors and improve the system for power 

consumption at an early design stage,  before the actual deployment of the network.  

This thesis presents multiple Unified Modeling Language (UML) design patterns that enable 

the  designer to capture the structure and the behavior of the design of a WSN at higher 

abstraction  layers. The UML models are developed based on these design patterns that are 

capable of early  validation of the functional requirements and the power consumption of the 

system hardware  resources by leveraging animation and instrumentation of the UML diagrams.   

To support the analysis of power consumption of the communication components of a 

WSN  node, the Avrora network simulator was integrated with the UML design environment 

such that  designer is able to analyze the power consumption analysis of the communication 

process at the  UML layer. The UML and the Avrora simulation integration is achieved through 

developing a code  generator that produces the necessary configuration for Avrora simulator and 

through parsing the  simulator results. The methodology presented in this thesis is evaluated by 

demonstrating the  power analysis of a typical collector system. 
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1. Introduction 

1.1  Motivation  

Wireless Sensor Networks (WSNs) consists of tiny electronic devices that communicate 

wirelessly and are typically deployed in a field in large numbers to monitor specific phenomena, 

such as temperature, humidity, and soil moisture). WSNs have multiple applications in many 

areas, such as agriculture, military, localization, health, and environmental. For example, sensor 

networks can be deployed in a vineyard to monitor the temperature of the vineyard in order to 

mitigate for crop damage [1] [2] [3] [4]. Also, WSNs can be used to detect foreign chemical 

agents in the air or in the soil [5]. They have been used to monitor volcanic activity by deploying 

multiple sensors on the top of a volcano to consistently measure the temperature and the vapour 

of the volcano [6]. Basically, WSNs are pervasive in this day and age.   

WSNs nodes are distributed across the operation field in huge number in order to monitor 

the phenomenon with a good resolution. For that reason, WSN nodes are difficult to reach once 

the nodes are deployed on the operating field. This challenge illustrates the necessity of testing 

and verifying the software system prior to deployment. In addition, the current design and 

analysis of software systems for WSNs occurs primarily at the coding layer, which prevents the 

design from going by the typical software development cycle and correct for errors early in the 

design stages. Implementation of the design at the coding layer, leads to a decrease in code 

portability and to platform-specific implementations [7]. 

 The process of developing WSN software code is very challenging since the software 

design is prone for errors and the debugging process is very time consuming. Moreover, the 

limitation of user interface I/O hardware of each node (only 3 LEDs as output devices), leads 

difficulty to test the software while the software is operating and as a consequence, debugging 
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and correcting the system software code is very challenging. If the code errors are not detected 

during the implementation and verification stages of development then they may appear once the 

system is deployed and is operational, which is difficult and challenging to correct due to the 

operational conditions of WSN systems.  

WSNs often consist of self-powered nodes that have limited power resources, which 

impose design constraints focused on the improvement of power consumption. For example, 

there is a requirement to improve the power consumption due to the limitation of the power 

resources otherwise the node the die and will not operate if the node ran out of power. The power 

consumption of each node is strongly influenced by the software design, the timing constrains of 

the software modules, the routing protocols used, and the network topology. Design decisions 

that do not take these issues into account can result in a battery drain on the sensor node, which 

eventually will lead to disabling the sensor network.  

Software modeling enables the designer to capture the design of the software system at 

higher abstraction layers than at the coding layer, therefore, the designer is able to test and verify 

the design before the actual deployment. Also, representing the software design at higher 

abstraction layers gives the chance for early detection of any errors and, as such, early correction 

of the errors. Additionally, by using various tools of model execution techniques and code 

instrumentation, the designer can predict the power consumption of the software system. 

Moreover, by leveraging model driven approaches, the designer can generate and deploy the 

software code and consequently save the time consumed to implement and debug the code. Also, 

software modeling enables the designer to design the software system independent of the 

platform.   
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1.2 Thesis Statement and Scope of Research   

1.2.1 Problem Statement  

In general, the development of WSN applications occurs almost entirely at the coding 

layer, which results in an inability to take advantage of the software development life cycle, 

and  reduces the chances of early detection of errors, verification for design requirements, and 

design improvements for power consumption before the deployment of the code as stated by 

Losia et. Al. [7] and Sharma et. Al. [8]. The resulting implementation  is often time consuming to 

develop and debug, platform specific, prone to errors, and is developed during the last stage of 

the  design. There is a lack of software modeling and analysis techniques for system operational 

requirements and power consumption for WSNs at an abstraction layer other than the coding 

layer. 

1.2.2 Thesis Statement 

WSN modeling allows for early detection and verification of the system 

design  performance than the current analysis at the coding layer. Using modeling executions 

techniques and instrumentation methods, this thesis provides an approach to analyze the system 

requirements and power consumption characterizes for the sensor nodes components in a WSN. 

Moreover, this thesis integrates the WSN simulation tools with the UML software models to 

analyze the power consumed during the communication processes, and feedbacks the simulator 

results to the design modeling layer.      

1.3  Thesis Methodology and Contribution 

1.3.1 Thesis Methodology  

This thesis focuses on providing WSN developers the opportunity to develop a model for 

the  software in a sensor node that is part of a WSN and the ability to analyze the model for 
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against any power design requirements. Furthermore, the WSN sensor node software design can 

be improved based on the feedback results  obtained from the analysis of the models and sensor 

network simulations. This thesis does not focus on developing a design, which guarantees  the 

Quality of Service (QoS) and power management as much as the availability of enhancing the 

design model based  on the analysis results. The steps taken in this thesis methodology were as 

follows and correspond to Figure 1-1. 

1. Reviewing WSN software modeling approaches. 

As a first step several software modeling approaches for WSN systems were reviewed in 

order to determine the best modeling language for capturing and analyzing the design of a WSN. 

Also, the review helped in becoming familiar with the modeling and analysis strategies used at 

the software modeling layer. This review is presented and discussed in detail in Chapter 3 along 

with a comparison of those approaches to the approach presented in this thesis.  

2. Representing the sensor node software design at the modeling layer. 

This thesis developed 4 UML design patterns that guide a software designer to capture 

the design of the software of a sensor node at the modeling layer. The patterns capture the design 

components and the design behavior using the UML class diagram and state-charts diagrams.  

IBM Rational Rhapsody tool was leveraged to create the diagrams.  

3. Verifying the design requirements and analyzing the power consumption at the 

modeling layer. 

This thesis has leveraged the UML model execution technique to validate the design 

against the requirements and analyze the power consumption for the hardware components, such 

as LEDs, sensors, and ADC. The validation procedure and the analysis were done by executing 

the UML model and instrumenting the state-chart diagrams with both the power consumption 
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annotations and the timing annotations. Based on the validation procedure, the designer is able to 

correct and improve the design, which is considered as the first feedback analysis to the design. 

The model patterns and the verification are discussed in chapter 4.  

4. Generating the code and configuration files for the network simulator 

A simulator is used to estimate the power consumed by the communication components, 

which is not deterministic and hence very challenging to model in the UML modeling layer as 

were the hardware components. A code generator was developed in order to generate the code 

and the configuration files required for the WSN network simulator. The code generator parses 

the XML representation for the UML diagrams that represent the software design of the sensor 

node. This XML representation is generated by the UML modeling toolkit. Some of the sensor 

network information does not exist in the design model, such as the battery capacity and network 

topology, so the code generator has to prompt the designer for such details. The code generator 

instruments the generated code in order to facilitate integrating the results of the simulator back 

to the model. 

5. Validating the generated code  

The generated code from the UML model was validated using instrumentation statements 

that were added by the code generator. The code is executed on the network simulator and it 

displays the calls between the design’s components defined in the UML model. The output from 

the instrumentation statements are compared to the UML executed model in order to ensure that 

the generated code workflow expresses exactly the behavior captured in the design. The code 

generator and validation procedure are discussed in detail in chapter 5. 
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6. Power consumption analysis for the communication process  

The simulator simulates the activity of each node in the network and generates a power 

consumption log file for each node. This thesis developed a parsing tool that uses the simulator’s 

power consumption log file report together with the instrumentation output to display the power 

consumption at each portion of the UML model. This parsing tool enables the designer to relate 

the communication process analysis to the model layer and to integrate the simulation results 

with UML model.  

1.3.2 Thesis Contribution 

This thesis developed a framework and methodology for model level analysis for 

WSNs.  The framework allows the designer to represent the design at the modeling layer and 

enables the  designer to early detect the design errors, validate the design against the system 

requirements,  and improve the power consumption of the design. The thesis leverages the 

simulation tools to  analyze the networking power consumption and integrates the simulation 

results with the design  representation at the modeling layer (i.e. UML models). The developed 

framework contains the  following developed tools:   

 Representation of the WSN design at the modeling layer using UML diagrams: UML 

patterns are developed to capture the WSN design components and the WSN design 

behavior. Representation of the WSN design at the UML layer enables the designer to 

early verify the system requirements at the modeling layer and analyzing the power 

consumption of the sensor node leveraging the UML model execution feature. The 

developed framework contains the following developed tools:  

 Generating code and the configuration files for a network simulator from the UML 

model: A code generator is developed in java to parse the XML representation of the 
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UML model and generate the equivalent code for the network simulator. The code 

generator also created the configuration file required for the simulator. The code 

generator also instrument the generated code with debugging statement to ease the 

integration between the simulation results and the UML models 

 Parsing the simulation results tool: A tool has written in java code to parse the 

simulation results and feedback the results to the model, which enable the design to 

integrate the simulation results with the model. The integration of power analysis of the 

simulator is essential to feedback the simulator power analysis of the communication 

process back to the model.   

1.4 Tools leveraged in the thesis  

The tools that were used can be categorized into 2 groups:   

 The tools that were developed as part of this thesis contribution. The tools developed  are 

the code generator and the parsing tool used to parse the results from the sensor  network 

simulator. Those tools are explained in Chapters 4 and 5, respectively.    

 The tools that existed and were leveraged to develop the UML models and analysis of 

the  power consumption related to those software components that displayed deterministic 

power  consumption characteristics. The tools used were the IBM rational Rhapsody for 

UML models  and Avrora WSN simulator. Tools leveraged and developed in this thesis 

1.4.1 IBM Rational Rhapsody 

IBM Rational Rhapsody [9] is an UML software design environment developed by IBM 

to ease a software designer on the use of UML tools and model driven approaches in software 

design. IBM Rational Rhapsody contains many features; however, this section contains the 

overview of the features that were used in this thesis: 
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Component Diagrams: Rational Rhapsody offers component diagrams that capture the 

system components, sub  components, interfaces,  operations, and attributes  . Rhapsody contains a 

new feature called a  composite class, which  is a part of the component diagram. The composite 

class is considered as a  container for the sub  components and captures the structure of one main 

component. The  composite class offers the feature “class part” which enables one class to create 

instance of  another class. Therefore, one class can signal a method or an event of another class. 

The class part  feature is essential to enable the animation of the sequence and state-chart 

diagrams, which  captures the behavior of the design.  

State-Charts: The state-chart defines the behavior of a component or a sub component. 

The  behavior is  captured through a group states, transitions, events, and triggered  operations. 

Rational rhapsody  offers the state-chart execution feature which  executes the model and 

highlights the current  executed state.  The events can be triggered through a state within the same 

state-chart or from  another  state-machine of a separate component through using the class part 

feature. This feature  enables the designer to specify  the interaction between the system sub 

components and the main  components. Additionally, the state-chart execution feature enables to 

the designer to inject  events   (manually generate the events) and observe the system behavior in 

case this  particular  event has occurred . 

In addition, Rational Rhapsody enables the designer to add code to the state-chart to do a 

specific function so that the code is executed once the state is active. This feature is very helpful 

to instrument the state-chart which can be used for analysis purposes as explained in chapter 4. 

Moreover, the state-charts can be annotated to represent the time constrains of the system by 

timing the transition of the state-chart. The timing constrains facilitatethe validation procedure 

of the requirements as well as the system analysis.   
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Sequence Diagrams: The sequence diagram presents the interaction between the system 

components in the  form of messages. The diagram contains the component life line, the 

messages  exchanged between the components, and the time different between the messages.  The 

messages on the diagram can represent an event, a triggered operation, or internal  method.   

The sequence diagram offers two modes:   

 The design mode: this mode creates methods, operations, and events once the  designer 

draw them in the diagram and they are considered as part of the design.  

 The analysis mode: this mode enables the designer to verify the behavior of the  design 

and validate whether or not the design meets the functional and the non- functional 

requirements.   

- The designer can draw the messages, time constrains, events, actors on a  sequence 

diagram and save it as the non-executed sequence diagram. The messages,   and 

events drawn have no effect on the design.  

- The designer runs the animation mode of the design and the sequence  diagram 

will capture the actual trace of the system in an executed sequence  diagram.  

- Rational Rhapsody offers a tool for comparing the sequence diagrams. 

The  comparison verifies if the executed sequence diagram (from the actual  system 

trace) is identical or different from the non-executed sequence  diagram. The 

comparison shows the differences between the two sequences  diagrams and test 

the timing of the signals between the system components, the sequence of the 

signals, the missing states, etc. The comparison is very helpful tool to validate the 

system design against the system requirements.    
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Code Generation: The code generation tool has support to generate the code for 

four  languages; Java, C, C#, and C++. Additionally, IBM rational rhapsody contains a plugin 

to  generate the XML representation for the model. The XML contains representation for 

developed  diagrams. The XML representation helps in the code generation process in case the 

programming  language of the target platform is not supported by Rhapsody.  

1.4.2 Avrora Simulator 

Avrora simulator is cycle accurate instruction-level simulator (emulator) and is presented 

in [10]. The simulator is built in java language, so the simulation for the WSN design 

components takes place by the object oriented principle. Avrora simulator requires; the code 

representation for the software design, the network topology, and the simulation flags that 

configure the simulation.  

Avrora represents each node of the network with an object and each object runs by an 

individual thread. By the threads the nodes interact with each other in the terms of 

sending/receiving messages based on the nesC code of the node. All the nodes are synchronized 

by the use of one global clock. The node activity is simulated by using a java event queue. In 

reality the low power consumption profile of OS puts the nodes into sleep where less power is 

consumed. The node wakes up whenever an event is signaled from a hardware component, clock, 

or a message received. Consequently, the simulator fills the event queue with the events that are 

about to be signaled in an order of which the software calls them. Then, the simulator consumes 

each event in the queue in a first-in-first out (FIFO) ordering.        

The simulator has a class to simulate the behavior of the CC2420 Radio 

Frequency  transceiver chip, which is utilized in many sensor nodes based on the 802.15.4 

communications  protocol. The CC2420 simulator class controls the sending and receiving process 
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of each node  through using the wait() function so that the program guarantees the synchronization 

between the  sender and receiver nodes. The collision avoidance is considered in the radio 

program as well.  The CC2420 simulator class     calculates the summation of all RSSI of all the 

signals received by  the node. If the RSSI is too high, this implies that there are too many nodes 

sending information  to the receiver node and thus the radio program will force the sender node to 

wait or re-send the  message later. Also, the RSSI value can be used to determine the range and 

location discovery of  sensor nodes. Moreover, the program that simulates the radio 

communication process of the  nodes simulates the 802.15.4 Link Quality Indicator (LQI). LQI 

consider the signal-to noise  ratio and the measurements of the RSSI value in order to find the 

best parent node for each node  in topology. The RSSI between the two nodes is determined 

through a topology configuration  file, which is configured by the designer of the sensor network. 

The topology configuration file  contains the X Y Z coordinates for the layout of the sensor nodes 

and the density of obstacles (if  not present is zero) for each radio link. Based on the physical 

distance between the nodes, the  simulator estimates the RSSI between the nodes.  

 Avrora offers instrumentation tools for debugging and analysis purposes. In order to use 

those tools the designer needs to configure the simulator to reflect the interest to use those tools. 

There is variety of tools offered by the simulator; however we will highlight the tools that are 

used in this thesis only.  

Debugging Statements in Avrora: The debugging statements in Avrora are capable 

of  printing any statements while executing a specific location of the code as well as the 

time/cycle  of the statement execution. The debugging statements do not require any changes in 

the simulator  structure.   
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Calls Monitor in Avrora: The monitor call is a debugging tool that is supported by 

Avrora  in order to monitor the calls between the node components and the interrupt handlers. In 

this thesis approach, monitoring the call was leveraged to validate the generated code by 

comparing the monitored calls with the equivalent calls at the modeling layer. 

Power Consumption Monitoring in Avrora Tool [11]: Avrora has a power model for the 

components of the nodes; the model was developed based on  real time measurements and code 

executions of the sensor node components. The model covers  the power consumption for the 

LEDs, CPU, Board, and Radio. The power consumption tool has  the capability to generate a 

power consumption log file for each node in the network. The power  consumption tool updates 

the log file whenever the power profile changes. The update contains  the cycle number when the 

update occurred and the amount of power consumed for each  component. Also, the power 

consumption tool can predict the life time of each single sensor  node. At the end of the 

simulation, the tool prints out for each node; the node life time and the  power consumed for each 

hardware resource   in the sensor node.  
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Figure  1-1: Thesis Methodology Diagram 

1.5 Thesis Structure 

The structure of this thesis is as follows.  

 Chapter 2 contains the background material and  contribution of this thesis. This chapter 

discusses the problem statement of this thesis and the  methodology that is followed to 

solve this problem. The methodology explains the tools that are  used and the tools that 

are implemented to solve the problem as well as the requirements at each  design stage so 

that the reader gets a good overview about this thesis objective and this 

thesis  contribution.  
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 Chapter 3 discusses the prior art in software modeling for wireless sensor networks  and 

compares this prior art to the approach taken in this thesis.   

 Chapter 4 explains the UML  design patterns that were developed as a part of this thesis 

contribution, as well as, the proposed  methodology in using these design patterns to 

validate the operational system requirements.  Chapter 4 also presents an approach to 

calculate the power consumption of any deterministic  components in a sensor node by the 

instrumentation of the software model entities. In order to  analyze the power consumed 

due to the communications caused by the sensor network, it was  necessary to integrate 

the UML models with a sensor network simulator.  

 Chapter 5 explains the  code generator tool developed that parses the UML model and 

generates the equivalent code for  the network simulator. This chapter also presents the 

validation procedure used against the  generated code by instrumenting the generated code 

using debugging statement. The debugging  statements ease comparing the software 

behavior at the coding level to the software behavior at  the model level. Moreover, this 

chapter contains examples of generation and validation procedure  of the code in order to 

demonstrate that the algorithms work properly.  

 Chapter 6 describes the  integration between the UML models and the analysis coming 

back from the network simulator  so that alterations to the software design can be 

performed as opposed to code alterations.  

  Chapter 7 presents a complete study cases that demonstrate how to design the sensor 

system at  the modeling layer, analyze the power consumption for the deterministic 

components, generate  the code for the simulator, and finally simulate the design and 
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integrate the simulation results  back to the UML models. Chapter 8 contains the 

conclusions and future work.   

 Chapter 8 contain the thesis contribution, the limitation of the developed methodology, 

and the future work. 
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2. Background 

2.1 WSN Structure  

Wireless Sensor Networks (WSNs) consists of tiny electronic devices that communicate 

wirelessly and are typically deployed in a field in large numbers to monitor specific phenomena, 

such as temperature, humidity, and soil moisture). The nodes communicate wirelessly in order to 

forward the packets to one gateway where the information is further processed.  

Typically, each sensor node contains a wireless unit to communicate with the other 

nodes,  a processor unit, one or more sensors attached to the node and Analog to Digital 

Converter   (ADC) unit. The sensors sense the phenomenon and generate the analog signal that 

represents the  sensed data then transfers the analog digital to the ADC that converts the sensed 

information to  a digital form. The sensor node loads the digital information into data frames and 

sends the data  by the wireless unit to the parent node. The nodes communicate with each other 

wirelessly to  transfer the sensed data to one gathering node, which is known as a collector node. 

The collector  node could be attached to a gateway to facilitate the transfer of data between the 

WSN and  other devices on more conventional networks like those based on the Internet Protocol 

(IP).   

Most of wireless nodes that are used in a WSN have a range of 500 meters. Therefore, 

the  nodes rely on the multi-hop communication routing  protocol to  deliver the information from 

the  source node to the destination node, especially if the  WSN  monitors the phenomena in a 

large  field. The task of the routing protocol is to build the  data path  by establishing the routing 

tree  structure. This structure defines the data path for each  node  by defining its parent node. 

The  most common WSN routing protocols (i.e. CTP [26]  and  RPL [28]) use the expected 

transmission  count (i.e. ETX) to estimate the link  quality between  each node and its neighbor 
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node. The ETX  is a ratio between the successfully delivered frames  and the total number 

of  attempts to send  those frames. Therefore, the lower the ETX is the better  link quality the 

nodes have. Each  node  selects the parent node based on the lower ETX. Using  this policy will 

avoid the infinite  loops of  forwarding the data packets. The root node (in most  cases the 

gateway) broadcasts a  frame which indicates that its ETX  is zero so that all frames are  collected 

in the gateway. The tree  structure is maintained by  broadcasting beacon frames to check  the 

availability of the parent  nodes. In case one of the  nodes fails, the routing protocol builds 

a  different path to overcome the  broken link.   

The tree structure dynamically changes based on the availability of the 

nodes  and  the  packet delivery rate, which is determined by the ETX. Also, the packet delivery 

rate is  affected  by  the environmental conditions of the transmission process. All of these 

conditions lead  to  the  dynamic changes of the tree structure and the taken path by each data 

packet.  Therefore,  the  communication process has a non-deterministic nature.     

The data packet wakes up the node from the low power listening mode and 

signals  the  radio to start  receiving the packet. Once the receiving process is completed, the 

radio  component  signals an event to indicate the completion of the process. The behaviour of the 

nodes  when the packet is received can be  different  from one design to another based on 

the  implementation of the event handler.  The designs  can be classified into the following 

categories:  

 Partially non-deterministic design: The non-deterministic  portion of the design 

is  the  receiving and forwarding of the received frames from the  child nodes due to 

the  dynamic changes of the typology. Therefore, the  implementation of the receive 

event  handler  contains a simple code to forward the  data packet until the packet 
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reaches  the  gateway. The rest of the node activities, such  as sensing, controlling the 

ADC unit,  and  controlling the LEDs is fully deterministic  since they are activated 

based on a  specific  timer and signalled for a specific rate of  time.  

 Deterministic design: Some of the designs are fully 

deterministic  where  the  communication process occurs based on a pre-defined point-

to-  point  communication node.   

2.2 WSN Power Consumption 

The power resources of WSN nodes are very limited, since each node is powered by 

rechargeable batteries. Therefore, the design of any application that executes on a sensor node 

must to be essentially power efficient to avoid the node failure. Therefore, the power 

consumption requirement is crucial since the life time of the node relies on the life time of the 

battery. Therefore, power consumption improvement is essential to maintain the life time of the 

node, especially during the dark hours since the batteries are not being charged. The power 

consumed by the node can be classified as follows: 

 Sensor Node Power Consumption: This power consumed by the sensor node 

hardware components, such as (LEDs, ADC, Sensors, etc.). The amount of power 

consumed is proportional to the rate of signaling those components. The software 

design controls the rate of signaling those components and the duration of operating 

each component.   

 Sensor Network Power Consumption: This power consumption by the sending and 

receiving process that occurred during the communication between the nodes. This 

portion is not consistent among all nodes and among all operational conditions due to 

the unstable topology nature, as explained in the previous section, and due to the 
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unpredictable data control packets. The communication process consumes around 

60% of the total power consumption of each node.  

There are multiple factors that influence the power consumption of each node, such as the 

following: 

 The routing protocol that is used to control the communication process. 

 The data collection methodology since the data collection methodology controls the 

number of packets sent and received. 

 The software structure that controls the signaling of the hardware components.  

2.3 WSN Modeling  

The design of WSN systems usually occurs at the implementation level and does 

not  involve design at higher levels of abstraction. This leads to a decrease in code portability and 

to  platform-specific implementations [2]. A WSN system produced using this approach is prone 

to  both design and implementation errors and is very challenging to debug (user interfaces 

to  sensor nodes are very limited so even simple text output is challenging). If errors are not 

detected  during the implementation and verification stages of development, then they may appear 

once the  system is deployed and is operational.  

Modeling of a WSN enables the designer to capture the design at higher abstraction 

layers before the actual implementation of the application. This facilitates fixing and correcting 

design errors using diverse methods of design analysis. Early model analysis for the design 

enables the user to evaluate the design before the actual deployment. Moreover, modeling 

enables the designer to display the flow of the design so that the designer is capable of capturing 

and enhancing the design before the actual code implementation. Also, integration of the power 
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consumption analysis and the system model facilitates the evaluation of the design energy 

consumption.  

The characteristics of modeling techniques can be categorized as follows: 

 Language Syntax: the modeling language syntax can vary between graphical (i.e. 

UML) or textual syntax such XML language. 

 Language Scope: the language scope can vary based on capturing either the 

procedural activity of the node or capturing structure of the node. 

 Language Tools: the tools associated with each language can vary based on the aim 

of the modeling. For instance, some of the modeling language support model 

execution, other support code generation. 

The system details that are captured with each modeling language are strongly dependent 

on the aim of the modeling, while the rest of the system details are abstracted out. An extensive 

survey was conducted for the existing modeling language for WSN and was explained in Chapter 

3.  
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3. Modeling Techniques for Wireless Sensor Networks 

3.1  Introduction 

The objective of WSN software modeling is to represent the WSN design at a 

higher  abstraction layer than at the coding layer. The result of this is to facilitate analysis of the 

WSN  prior to any significant coding. The design details that are captured at the modeling 

layer  are strongly dependent on the objective of modeling while the rest of the details are 

abstracted  out, such as code generation, or analysis network performance. This chapter presents 

the results  of a survey of nine modeling techniques for WSNs. The modeling techniques are 

different from  each other in the terms of notation, the objective for the sensor model, the 

representation of the  sensor node architecture, and the representation of the system architecture.  

Some of the  modeling techniques capture the sensor node architecture, such as the sensor node 

software, and  the interaction between the node’s software components. Other modeling 

techniques capture the  WSN system architecture, such as the interaction between the nodes and 

the topology structure.  In this chapter, each modeling technique is explained briefly by showing 

the objective of the  modeling, the modeling technique notation, the representation for sensor 

node software  architecture, and the representation for the WSN architecture. Also, the 

software  modeling approach that was developed in this thesis, was presented in order to compare 

this  thesis approach to the art in software modeling techniques for WSNs.  

The rest of the chapter is organized as follows; Section  3.2 gives an overview of the 

reviewed modeling techniques, Section 3.3 discusses the modeling of the node architecture, 

Section  3.3 presents the modeling of system architecture, and Section  3.5 has the conclusion. 
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3.2 Modeling Techniques Overview 

This section provides an overview of each of the modeling technique included in 

the  chapter. Some of the modeling techniques use an appropriate notation to support the aim of 

the  modeling, such as UML, while others use their own notation, such as the Insense technique 

[12]. The techniques use different basic elements (e.g. channels, processes, modules, 

components) to  express a WSN as a model. A channel is used to represent the communication 

between two  elements of a WSN. For example, channels can represent the characteristics of 

sensor-node  communication, node-node communication, and node-gateway communication. 

Processes,  modules, and components are used to represent the sensors and nodes of a WSN. 

Also, the  modeling techniques vary with the tools used by the modeling technique to achieve the 

modeling  purpose. For example, some techniques use code generation tool to produce the 

operating system  code, other modeling technique use model execution tools to analyze the 

software model. The  modeling techniques surveyed also vary in terms of the scope of modeling. 

For example, some  techniques are intended to model a single sensor node; some are intended to 

model the complete WSN.  

3.2.1 High-Level SDL Models (HL-SDL) 

HL-SDL is a modeling language that uses the Specification and Description Language 

(SDL), which is normally used to model and simulate communication protocols as defined         

in [13]. Dietterle, et al. [14] adapted SDL to analyze the worst case execution time (WECT) of 

the node design and to generate the required nesC code for TinyOS once the analysis is 

completed. The HL-SDL uses SDL processes (i.e. extended finite state machines to model 

TinyOS components.   The node is modeled as a collection of channels and processes. The HL-

SDL approach focuses on modeling the node behaviors and did not capture the system 
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architecture. Dietterle, et al. has mentioned that the generated code requires a manual 

improvement in order to operate properly. An example of manual improvement of WSN 

generated source code is modifying the  communication between the components from 

asynchronous in the model to synchronous in the  target platform. In addition to manual 

improvement of the generated source code, simulation can  be used at the model level to refine 

the model (with respect to performance) prior to code  generation. 

3.2.2 Insense 

Dearle et Al. [12] developed the Insense modeling language, which is java based 

language to create a component-based model for a WSN. Insense is built and run on the Contiki 

operating system, which is a popular operating system used for WSN [15]. Insense models the 

node behavior and analyzes the component behavior for worst case execution times (WCETs) 

and worst case space (WCS) within a given WSN node. The components in Insense model the 

behavior of the software and the hardware component. An example of a hardware-software 

binding is the interaction between the sensor (e.g.  humidity, temperature or moisture) and the 

software component that handles the readings. The  sensor type is modeled as a component that 

uses a communication channel to transfer data to the  software components [9].  

The model components are concurrent and they communicate synchronously via 

directional channels that are used to abstract away from low-level synchronization and 

communication issues. To the best of our knowledge, the approach does not have support to 

model the WSN system architecture.  

3.2.3 MathWorks Modeling Approach 

Mozumudar et al. [16] have developed a framework in MatLab environment that aims to 

design, simulate, and generate the code for WSNs. The node behavior is modeled as a 
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parameterized state flow block. Nodes in the MathWorks approach also contain timing and 

random number generators that are used for simulation. MathWorks leveraged the tools such as 

state-charts execution, chart displays, scopes, and plots, to perform the algorithmic analysis. 

According to the analysis results the model can be refined. The final stage is to generate the 

WSN code using the Target Language Complier (TLC) which can generate C code for MANTIS 

[17] and nesC code for TinyOS. The Mathworks analysis approach has also been used 

successfully to generate the code  for Power Efficient and Reliable In-Network Aggregation 

(EERINA)   [18] 

In MathWorks, the framework is able to model the static topology by modeling the nodes 

with state chart and the communication medium which is implemented in C, models the 

connectivity between the network nodes. 

3.2.4 Model Driven Engineering Approach (MDEA) 

Losilla, et al. [7] used UML and a Model Driven Engineering (MDE) approach that 

includes  three modeling layers:   

 WSN Domain Specific Modeling: a meta-model that created by a domain expert.  

 Component-based Platform Independent Models (PIMs): A UML-like 

language  primarily composed of activity diagrams and state-machine diagrams.  

 NesC Platform Specific Model (PSM): used with the UML PIMs to generate the 

NesC  source code.  

Transformation rules were defined that control moving from one modeling layer to 

another.  Moreover, manual refinement can occur after every transformation to improve the 

generated  model. The MDEA approach is supported by the Eclipse IDE as well as a number of 

Eclipse  plug-ins (e.g. MOFScript) that are responsible for automating the transformation process. 
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The  MDEA approach is used to generate the nesC code for the MITRA WSN application, which 

was  designed for the application domain of precision agriculture.  For the system architecture, 

MDEA does not have representation for the topology structure.  However, the MDEA approach 

develops a UML model for the gateway node and a model for  the network nodes, assuming that 

all the nodes have the same behaviour. 

3.2.5 Promela and the SPIN Model Checker for WSNs (PM)  

V. Oleshchuk proposed using Promela and Spin model checking technique to check the 

WSN network connectivity. The technique uses Promela language as an input language for the 

design model. The approach included the physical location of all the dynamic nodes and supports 

adding and removing nodes as well as changing their physical location. The Spin model checker 

is used to perform a network connectivity check. Specifically, the physical location data of the 

nodes is analyzed in conjunction with the data about the coverage range of the sensors [19]. The 

only technique that did not model node behavior was the paper using the  Promela Model 

Checker. The authors of this work decided to simply focus on the modeling  of network 

connectivity as opposed to including any significant modeling of the node behaviors.   

3.2.6 SensorML 

SensorML approach is an XML based language that supports modeling each sensor by 

specifying the sensor’s meta-data (e.g. sensor ID, sensor type) as presented in the SensorML 

specification document manual [20]. The model includes representations of the physical 

elements (e.g. sensors and actuators) and the non-physical element (e.g. mathematical operation 

within the sensor). All of the elements are modeled as processes that are linked together 

explicitly by inputs and outputs. Linked sequences of processes form process chains that 

correspond to the behavior inside a single node [4]. SensorML has support to model network 
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elements, such as base station, sensors, and the network topology. SensorML does not provide 

any sort of model execution techniques that enables the designer to improve or test the design 

before the actual deployment.  

3.2.7 SystemC-AMS 

M. Vasilevski et. Al in [21] have developed SystemC-AMS that analyzes the 

communication channel between two nodes for Bit Error Rate (BER) and Signal –to Noise Ratio 

(SNR). The approach combines C++ with block diagrams to model the WSN and simulate the 

system. For each node SystemC-AMS models the Analog to Digital Converter (ADC), the 

microprocessor, and the communication channel between the node and the next hop node. On the 

system architecture level, the approach models the communication process between two nodes.  

However, the modeling technique does not have support for the network topology since the 

approach assumes that data is transmitted by single hop communication. 

3.2.8 UM-RTCOM Model 

M. Diaz et. Al. [22] developed the UM-RTCOM modeling technique, which is a real-

time  component based modeling framework written in CORBA and developed to analyze the 

design  for Wireless Sensor Actor Network systems (WSANs ). WSANs have the same 

functionality as WSN; however, WSAN also reacts in response to the sensed data. The approach 

analyzes the design  for WCET, deadlock freedom, and verification of live time of the design 

nodes .  The modeling technique assumes the network is composed of sensors that have identical 

functionality,  and actors of the same rules.   The modeling approach captures the system 

architecture  through modeling the network elements (sensors, actors, and the  gateway)  as 

three  virtual  machines (VMs), where each VM models a single element. The 

system  behavior  is  modeled by  the interaction between the three VMs.   Sensors communicate 
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with actors and actor’s  communicate with the coordinator over channels  . Communication via a 

channel is modeled  as a tuple. A tuple is a sequence of fields with the form: (t1   , t2, ..., tn) where 

each field ti  can be: a TC identifier (or) a value of any established data type of the host language 

where the  model is integrated.   The communication channel protocol modeled in UM-RTCOM 

has  been tested in an actual sensor network deployment by Barbaran et al.   [23]. The deployment 

shows the improvement of the middleware overhead compared to another deployment where the 

motes send the sensed data periodically to the actors. 

3.2.9 eXtended Reactive Modules (XRM) 

Demaille, et al. [24] have extended Reactive Modules (RMs) language to develop XRM 

language. The authors have used WSN design as a case study to demonstrate the capability of the 

developed modeling language. The approach leverages the model execution technique to 

calculate the package delivery probability and the power consumption of the nodes. The 

technique uses a module that captures the behavior of each single node in the network. Each 

module captures the node behavior, the communication capability, memory, and power 

consumption. XRM models the power consumption by deducting the power consumed value 

from a local variable for every time an activity is provoked in the module. The model has 

multiple modules to model the network nodes. Each module contains X-Y variable to indicate 

the physical coordinates of each node. Also, the modeling technique supports executing the 

modules which models the behavior of both the node and the system behavior.  

3.3 Overview from the Node’s Software Architecture Perspective 

This   section discusses how the software modeling techniques capture the 

software  architecture of the elements in a sensor node, such as nodes, sensors, actuators, 
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software  components, and hardware components. In particular, we consider the modeling of the 

node  structure and the node behavior.   

Most of the reviewed modeling techniques used a form of component-based modeling 

to  represent the software in a  sensor node. The WSN behavior is modeled by specifying 

the  component’s internal behavior,  component to component interactions, and the 

communication  channel’s characteristics. The approaches reviewed can be divided into two 

distinct types. Those  that focuses on the  augmentation of the models to capture particular 

features such as concurrency,  event-driven  behavior, and real-time behavior and those that 

leverage standard models like state  space and  procedural coding that were later used for code 

generation or performance analysis.   

Most of the reviewed modeling techniques reviewed used to create a 

platform  independent  model for the node software architecture. However, there is a necessity to 

include  some of  the hardware details for the following reasons:  most of the modeling techniques 

surveyed can be used to create a platform independent  model for the node architecture. However, 

there is a necessity to include some of  the hardware details for the following reasons: 

 The software behavior is tightly coupled to the hardware elements of the node. 

Therefore  the  binding of software and hardware components should be represented in the 

model.  For example, some of the sensor boards require signaling the sensors sequentially 

and not  concurrently. Therefore the hardware properties impose a specific behavior on 

the  software.   

 The hardware information may be needed to be represented in order to be able 

to  generate  source code from the model. Generated source code is interacting with 
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the  node  hardware (timers, ports, sensor types) and therefore the model has to be aware 

of  the hardware  components in order to generate the correct code.   

 The design analysis tools require some information about the hardware specification to 

develop the proper analysis results. For example, the WECT that is calculated by some 

modeling techniques is highly dependent on the hardware response time.   Also,

calculating the total power consumption is strongly related to the hardware used in the 

designing process. 

3.4 Overview from the System’s Architecture Perspective 

The surveyed modeling techniques capture the WSN system architecture by representing 

network behavior, the topology structure, and the network behavior. Modeling network 

architecture is crucial because many important performance  values are based on the network: 

 Analyzing the network power consumption requires the representation of the network 

behavior since the communication process (sending and receiving) consumes most 

amount of power.  

 Analyzing the packet lose requires the representation for transferring the data packet 

across the network.  

 Analyzing the schedule-ability factors, such as WECT and WCS requires captures the 

time responses of the network elements.  

 Analyzing the network connectivity requires capturing the network topology structure. 

 Analyzing the communication channel between the channels requires the representation 

of the communication environment.    

The topology of WSN systems can be dynamic or static. The static topology represents the 

nodes in a fixed location while the dynamic topology represents the nodes while they are in a 
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moving state. Additionally, based on the modeling target, the technique models the number of 

hops in the network design. We can categorize the topology representation by the modeling 

techniques into two categorize;  

 Group Representation: For some the Modeling technique, representing the physical 

location is not essential to their approach, however, there is a necessity to represent 

various elements, such as the gateway, nodes, and actuator. Therefore, each element is 

represented with a separate model components. For instance, UM-RTCOM has a 

virtual machine to capture all the nodes behavior and another virtual machine to 

capture the actuators. MDEA uses a UML model to captures the design of the 

gateway and another one to represent all nodes. 

 Single Representation: Other modeling techniques the physical location of the node 

is very essential to their approach so the model contains a representation for each 

single element in the network. Each node is defined by the X-Y coordinates.  

3.5 Model and Simulation Integration 

The modeling techniques for WSNs are capable of representing the design at higher 

abstraction layers and are capable of developing the system analysis at the modeling layer. Some 

of the parameters that the modeling techniques can analyze the design for are SNR, power 

consumption, WECT, WCT, and packet lose rate as explained in Section  3.4.  

Some of the modeling techniques  [25] [26]  [27] have integrated the simulation tools 

such as OMNeT, Matlab, and Pmodel with the system model in order to develop further analysis 

for the system, such as testing the design performance, system scalability, and system 

optimization. The integration between the model and the simulator requires a coupling tool 

to  intermediate the model domain and the simulator domain and requires a group of defined rules 
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that controls the transformation process between the model and simulation requirements. The 

coupling tool ensures that the underlying coding language, which is required by the  simulator, 

matches the model semantics.   

The integration between the model and the simulation tools enable the designer to assess 

the designer for various QoS parameter, such as the reliability, integrity, safety, and power 

consumption. Based on the survey that was published in [28] for 33 modeling techniques, the 

integration between the models and the simulation tool requires the generation of the simulator 

configuration. The generation process for the configuration faces a lot of challenges, such as the 

flaws in the generated items, as well as, the quality of the generated items. Moreover, based on 

the classification for surveyed techniques, some work should be invested in the feedback 

simulation results to the model, especially for the analysis of the non-functional requirements.  

The feedback of the simulation analysis to the model enables the designer to evaluate the 

QoS parameters of the design at early stages of the design cycle.  In addition, the feedback 

allows the designer to conduct the analysis which is very challenging in the model level. The 

feedback should be mapped to the model using the model terms so that the designer can relate 

the analysis results to the model. Additionally, based on the survey results, the best way to 

present the feedback is to visualize the system trace that is analyzed by the simulation and 

compared the feedback to the system trace that is displayed in the sequence diagram.  

3.6 Concluding Remarks for the Review 

Modeling technique enables the designer to represent the design at higher abstraction 

layers, which ease testing and correcting the design before the actual deployment. The elements 

can vary to be process, modules, components, diagrams, or channels. Modeling helps to resolve 
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some of the WSN software implementation challenges by the following (see  

Table  3-1): 

 Calculating the system performance parameters, such SNR, BER, WECT, WCS, or power 

consumption. 

 Generating the deployment code so that amount of effort used to write and debug the 

code is saved 

 Checking the design correctness.  

Approach Notation Modeling 

Scope 

Modeling 

Elements 

Modeling 

Purpose 

HL-SDL [14] SDL Node Process-channels  nesC code 

generation + 

model execution 

to analyze 

(WECT) 

Insense [12] Insense 

Language 

Node components, 

channels 

Analysis for 

WECT and WCS 

Mathworks [16] State Diagram 

and C 

Node-System State-charts, 

communication 

medium 

NesC and C code 

generation tool + 

functional 

analysis 

MDEA [29] UML Node-System Components 

(wireless link as 

class) 

nesC Code 

generation  

PM [19] Pormela Network Processes, 

channel 

Model checking 

to verify the 

connectivity of 

the nodes 

SensorML [30] XML- Source 

Code 

Node Components-

processes model 

 

SystemC-AMS 

[21] 

Block Diagram – 

C++ 

Node Block diagram, 

source code 

Model Execution. 

Design analysis 

for SNR and BER 

UM-RTCOM 

[22] 

CORBA Node-System Components, 

channels 

Analyze WCET, 

enhancing the 

communication 

properties 

XRM [24] eXtended 

Reactive 

Modules 

Node-System Modules Analyzing the 

Packet delivery 

probability and 
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power 

consumption 
 

Table  3-1: Overview of the Modeling Techniques 

The scopes of the modeling technique can various to capture the node architecture, 

the  network architecture, or both architectures. Modeling techniques uses different 

modeling  elements to capture either the node behavior or the network behavior. The modeling 

techniques are targeted to analyze specific software challenges like concurrency,  real-time, and 

event modeling. Modeling at the system level is also another feature that some modelers support.          

As seen  in Table 3-2 several modeling techniques like UM-RTCOM, XRM, PM, MDEA, 

and MathWorks  can all model the sensor network but there is a focus for each on what behavior 

they model. They  all model node activity and take into account node to node communication but 

not all can  explicitly model the network topology as is the case with MDEA. 

 

Approach Node Behavior Network Behavior Network Topology  

HL-SDL [14] Concurrency, event-

driven 

- - 

Insense [12] Concurrency, real-

time 

- - 

Mathworks [16] Procedural, state 

space 

Node/base station 

interaction 

Single hope. Static 

topology 

MDEA [29] Procedural, 

state  space 

Node/base station 

interaction 

- 

PM [19] - Node connectivity Multi hop, dynamic 

topology 

SensorML [30] Event driven - - 

SystemC-AMS [21] Procedural - Single hop, static 

topology 

UM-RTCOM [22] Concurrency, real-

time, event-driven 

Nodes/actor/base 

station interaction 

Single hop, 

static  topology 

XRM [24] Procedural, 

state  space 

Power management-

wake up states 

Single hop, 

static  topology 
 

Table  3-2: Modeling of Node and System Arcitecture 
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This thesis approach has the following similarities to the modeling approach: 

 Representation the topology as X-Y coordinates of the nodes using the strategy that is 

introduced by XRM.  

 Calculating the power consumption using the strategy that is introduced by XRM and 

HL-SDL. 

 Leveraging the state-chart to capture the node behavior, this is a similar to MDEA 

approach. 

 The model of the node is platform independent. The platform specifications are added by 

the code generation, which is a similar approach to MDEA and Mathworks.    

 Using the model execution techniques to analyze the system performance parameters. 

However, none of the modeling techniques have presented a design patterns that are able 

to capture WSN design semantics. Additionally, our approach is capable of validating the 

functional represents of the design early during the design stages.  

Additionally, this thesis introduced a methodology to validate the generated code by 

leveraging the sequence diagram execution feature and simulation results. Also the generated 

code by our approach does not require any sort of manual improvement, which is the case of 

MDEA and HL-SDL approach.  

  None of the modeling techniques have introduced a mythology to improve the design 

based on the analysis results. However, we have implemented a parsing tool to analyze the 

simulation results and integrate the results with the UML model so that the designer is capable to 

improve the design at the modeling layer.  
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4. UML Modeling and Power Consumption Analysis for Wireless 

Sensor Networks 

4.1 Introduction 

This chapter introduces a group of UML design patterns, which enable the system 

designer to capture the design at a higher abstraction layer other than the coding layer. The 

introduced UML design patterns allow the designer to capture the design requirements, 

determine the design OS support components, define the design structure through using class 

diagrams, define the design behavior through using state-chart diagrams. Capturing the design 

using the UML diagrams gives the designer the opportunity to verify the design requirements, 

and to analyze the power consumption through the UML model execution technique and the 

comparing sequence diagram feature. Also, the chapter introduces the instrumentation for the 

state-chart that eases the analysis process. Based on the verification and the power consumption 

analysis, the designer is able correct and improve the design.  

The UML patterns were developed from the code of a typical data acquisition 

sensor  network designed for the acquisition of temperature values in a vineyard  [1]. This system 

was coined SensIV  and was developed by leveraging the TinyOS operating system. The SensIV 

system integrates  multiple system design aspects typical of collector style WSNs, such as sensing 

the phenomena,  transmitting the data to a collector node, controlling system hardware elements 

(i.e. LEDs, ADC,  and transducers), having a static defined location of the nodes, and leveraging 

some dynamic  tree collecting routing protocol like the Collector Tree Protocol (CTP) [31].  

The database provides the code generator with the TinyOS component information, 

such  as the  component nesC syntax, the required interfaces of the component, the events nesC 
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syntax,  and  the variables associated with each event. The database structure contains one parent 

table  and  four child tables.     

Design Requirements Design Requirements 

Structures Bahviour

Initial High-
Level Design

Design Representation at 
High Abstraction Level Using 

UML Diagrams

Enhance and correct the design 
for power consumption and 

requirement validation 

Extracted from 

coding level

State-Charts
Composite 

Class diagram

UML Design 
Patterms

Drives
Requirement 

Validation

Power 
Consumption 

Analysis

Model Execution Through 
Animated Diagrams 

Design Requirements 
&Power Consumption 

Analysis At UML Model Level

Instrumentation 
for State-Chart

Comparison of 
Sequence 
Diagrams 

UML 
Diagrams

Verification and Power Consumption Analysis at the Model Layer

 

 

The chapter is structured as follows: Section  4.2 explains the architecture of the WSN 

design and the required components; Section  4.3 introduces the UML design patterns with 

examples, Section 4.4 demonstrates the validation procedure for the system requirements; 

Section  4.5 explains the methodology that was used for design verification; Section 4.6 contains 

the related work; and Section  4.6 presents the summary of the chapter. 

4.2 WSN Systems Design Architecture 

Wireless Sensor Networks consist of several nodes deployed in a field to monitor specific 

phenomena, such as temperature and humidity. The resources that are used in the majority WSNs 

system are as follows [32]: 

 Transducers: The transducers sense the phenomena and generate the analog signal 

that represents the sensed values. The transducers are known as sensors as well. The 

 

Figure  4-1: Modeling, Verification, and Analysis at the Model Layer 
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nodes can be connected to multiple sensors of the same type or different types. 

Therefore, one node can sense one phenomenon only or multiple phenomena.  

 Analog-to-Digital (ADC): The ADC converts the analog signal generated by the 

sensors to a digital form so that the radio unit loads the digital signal into a payload 

frame and sends the data to the next node.  

 CPU: The CPU controls the activity of the node. Normally, the CPU alternates 

between the sleeping, idle, and active modes based on the power profile of the design. 

For example, the low power profile forces the CPU to be in the sleeping mode while 

the node does not execute any activity.  

 Radio Unit: The radio unit is responsible for sending and receiving the routing 

protocol control packets and the sensor data to and from the next node.  

 Battery: Each node contains rechargeable batteries. The batteries are charged during 

the day by using a solar cell connected to the node. The batteries are considered as 

limited power resource, and therefore, the system needs to be power efficient due to 

the difficulty of reaching the nodes after deployment.  

 The Operating System: WSN operating systems offer a group of tools to ease the 

design process of the system. WSN operating systems are event driven operating 

systems, such as TinyOS [32] and Contiki [15] OS. Each operating system offers a 

group of components, which are denoted as OS hardware and software components.  

o The OS hardware components contain a group of parameters, events 

producers, and methods that manages the signalling between the hardware 

resources and the application software. For example, an ADC hardware 
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module that contains the methods that turns on the ADC unit and then turns 

off the ADC unit once the conversion process is completed. 

o The OS software components contain a group of parameters, event producers, 

and methods that ease implementation of the functionalities required for the 

system, such as routing procedure. For example, TinyOS offers two routing 

protocols: Collective Tree Protocol (CTP) [31] and Routing Protocol for Low 

Power and Low Noisy Networks (RPL) [33]. The software components offers 

the methods to start the routing components in order to start passing the 

routing message, send the data packets, and stop the routing components. 

Once the component is started, the routing component takes the responsibility 

to build and maintains the routing tree.  

The design process for WSN systems involves various stages based on the system 

requirements. The typical design process of a WSN system involves the following stages: 

 Define the application requirements. 

 Define the design structure that determines the software and the hardware 

components that are necessary to build the system. 

 Define the design behaviour that is controlled by the deployed application software. 

The application software controls the hardware and software resources by the signals 

between the design components, the timing, and the signal sequences between the 

components. The designer defines the behaviour of the software so that the system 

requirements are met. 

 Validate the system design against the system requirements. 
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 Analyze and calculate the power consumption of the design based on the design 

behaviour. 

4.3 Design Patterns for Wireless Sensor Networks  

The design patterns introduced in this section were developed based on TinyOS 

programming manual. The programming manual quoted the definition of the pattern as 

“descriptions of communicating objects and classes that are customized to solve a general 

design problem in a particular context” [34]. The programming manual introduced a group of 

TinyOS coding patterns as well as the description of the TinyOS nesC code structure. UML 

design patterns were developed from some of the coding patterns that were defined in the 

programming manual and were applied to SensIV system. The defined UML design patterns 

enable the designer to capture the design behavior and the design structure at the UML modeling 

layer.  

Each pattern is introduced by illustrating the pattern intent, which explains the purpose of 

developing the pattern; illustrating the pattern motivation, which explains the general design 

feature that the pattern captures; illustrating the pattern structure, which explains the UML 

diagrams structure that represents the patterns, and illustrating an example that explains how to 

apply the pattern. The template used to explain the design patterns follows the pattern 

explanation introduced in [34]. 

4.3.1 Sensor Node Service Component Design Pattern 

4.3.1.1 Pattern Intent 

The pattern captures the software and hardware components at the UML layer, which the 

designer uses to build the design structure.  
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4.3.1.2 Pattern Motivation 

At an early design stage, the design structure is built by selecting the design hardware and 

software resources and selecting the proper software and hardware components to interact with 

these resources. Each component offers the service to the application software so that the 

application software can access the equivalent resources. The component contains a group of 

parameters, parameterized methods, and event producers to ease the access of the resource. The 

application software can create one or many instances of the service component. For example, 

the application can create four instances of a sensor hardware module to access four  sensors 

attached to a sensor   node.  

4.3.1.3 Pattern Structure 

The hardware and the software components are captured in the UML layer by defining a 

group of stereotype classes. The UML stereotypes classes contain a representation of the 

parameters, the methods, and the event producers captured by a class diagram and a state-chart to 

capture the behaviour of the stereotype class. The developed stereotype classes are as follows:  

 Sensor Stereotype Class: This class captures the implementation of the sensor 

hardware component that controls the sensor hardware. The class has the methods 

that trigger the sensors and produce the event with a parameter that has the sensed 

value. 

 ADC Stereotype Class: This class captures the implementation of the ADC hardware 

component that controls the ADC unit. The class has the methods that turn on and off 

the ADC. 

 Radio Stereotype Class: This class captures the implementation of the radio hardware 

components that controls the radio unit.  
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 Routing Stereotype Class: The routing software component is used to setup each data 

packet path from the source node to the destination node. The application software 

starts and controls this routing component. The UML routing class represents the 

routing component at the UML layer methods and the class contains the method that 

controls the routing process of the data packets. 

4.3.1.4  Sensor Node Service Component   Component Example 

An example of the behavior of the sensor hardware component is shown in Figure  4-2. 

The state-chart contains the signaled operation called sensor1_on and sensor2_on, which captures 

the behaviour, read that starts the sensors and offered by OS support component. Once the 

method sensor_on1 is called, the state-chart changes the state from Idle to ADC_On in order to 

model the action of sensing. The state-chart stays in this state for 250ms and then signals the 

event readDone. The time parameter of 250ms is calculated based on real time measurements for 

the sensor behavior in [35]. This state-chart also captures the sensor component’s capability to 

turn the sensor’s ADC on and off. 
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4.3.2 Sensor Node Event Handler Design Pattern 

4.3.2.1 Pattern Intent  

The pattern captures the multiple events and event handlers structure of the software.   

4.3.2.2 Pattern Motivation 

Each node in a WSN network contains multiple hardware components, such as 

ADC,  sensors, LEDs, and radio. The node software communicates with the hardware 

components to  start or stop the hardware resource and to pass and return the processed data. For 

instance, the  software signals the sensors to starting sensing, and then the sensors return the 

values back to the  software once the sensor completes the process. The software signals the radio 

hardware  component and passes the sensed data to the radio to be sent out. The synchronization 

of the  communication process between the software and the hardware resources blocks the 

node’s  activity until the hardware completes the task and releases the resources. Meantime, the 

 

Figure  4-2: State-chart of Sensor Hardware Module 
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CPU  cycles and the memory resources are wasted. According to TinyOS programming guide, 

using the  synchronized communication is recommended as long as the hardware operation does 

not operate  for a long time.    

Alternatively, the designer can use multithreading to manage multiple hardware 

resources  and avoid wasting CPU cycles. However, a WSN is considered as an example of an 

embedded  system, which has limited memory resources (i.e. limited RAM). Therefore, using 

multithreading  on handling the hardware tasks is not recommended since the memory resources 

are very limited   (i.e. TinyOS memory is 512 bytes).  

TinyOS offers another approach called the split phase communication approach. 

This  approach achieves bi-directional communication between the hardware and the 

software  components. The software can call the command, which signals the hardware to 

accomplish a  specific operation. The hardware will start executing the operation, while the 

software executes  the rest of the flow without waiting for the hardware to complete the 

execution. Once the  hardware completes the execution, the hardware issues an interrupt for the 

software by signaling  an event to indicate the completion of the operation. The software can call 

multiple commands  to multiple hardware components since the software components are not 

blocked while waiting  for the hardware to complete the operation. Therefore, TinyOS starts to 

schedule the multiple  commands using the first-in-first-out (FIFO) technique.    

For example, the software signals the sensors to start sensing by calling the 

command  mysensor.read(). The software is not blocked while waiting for the sensor to complete 

the process.  Once the sensor completes the operation, the sensor signals an event to indicate that 

the operation  is completed. In the event handler, the software signals the radio hardware resource 

to start  sending the information (see Figure  4-3)    
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Figure  4-3: Split Phase Communication 

Some typical events which are used in WSNs are signaled by the following components:  

 Timers: Timers generally control the flow of the entire application. For instance, 

once the sensing timer is fired, the application calls the sensors to read the 

temperature.  

 Sensors: Once the sensor finishes reading data values an event is triggered. 

 Routing Protocol: The routing protocol signals an event once the node starts to 

send the routing messages to the neighbor nodes. 

 Sending Unit: Once the sending component finishes sending the data, an event is 

signaled to indicate that the data is sent. 

4.3.2.3 Pattern Structure 

The event based nature of an embedded OS leads to the possibility of signaling any event 

at any instance based on the process computation time. The same approach is used to capture the 

 
event void myTimer2.fired() { 
 
call Leds.led1On(); 
 
call mySensor0.read(); 
} 

 
event void mySensor3.readDone(error_t 
result, uint16_t data) { 
call mySend.send(&sendbuf, 56);} 
 
event void 
mySend.sendDone(message_t*msg, 
error_t error) { 
call myTimer2.startPeriodic(1000);} 
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event in UML. The events are signals by the timers of one of the stereotype classes. The event 

translates the state-chart from the Idle state to a main state. The main state contains sub-states, 

which capture the steps of the event handler. After the state is executed, the system returns to Idle 

and waits for the event to be signalled again. 

The event based nature of an embedded OS leads to the possibility of signalling any 

event at any instance based on the hardware computation time. In order to capture this behaviour, 

the AND state was used. The AND state runs the sub-states concurrently. Therefore, the application 

state-chart is ready at any time to be signalled by any event captured in the state machine.  

4.3.2.4 Example 

A portion of the state-chart that manages the sensors is shown in Figure 4-4. The state-

chart of SensIV contains the following event handlers: 

 The event readDone0: This event is signaled by OS support component that manages 

the sensors, once the first sensor completes the sensing process. The event handlers 

contain the instructions to turn the LEDs on, load the array with the returned value, 

and finally signal the second sensor to start sensing. 

 The event readDone1: This event is signaled by the hardware component once the 

second sensor finishes  sensing as well. For this activity the same procedures are 

executed as those presented  for the event readDone0.  
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4.3.3  Association of the Application Software and OS Support Components   

4.3.3.1 Pattern Intent 

The pattern captures the association between the application software OS support 

components. 

4.3.3.2 Pattern Motivation 

As mentioned in the previous section, each operating system for a WSN offers a group of 

components that ease accessing the hardware resources of the node and offer software services to 

the application. This pattern captures the association between these OS components and the 

application. Each platform has its own platform specific form of defining the association of the 

components. For example in TinyOS, the association is specified by a concept known as 

“wiring” and captured with the following nesC code: 

 

The statement associates the application component RadioControl to the TinyOS interface 

ActiveMessageC. ActiveMessageC is a TinyOS module, which interacts with the link layer of the 

Figure  4-4: Portion State-Chart for SensIV System 

 

myApp.RadioControl -> ActiveMessageC 
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radio unit. Therefore, the application component RadioControl has access to the methods and the 

event handles which were developed for the wireless transmitter.  

4.3.3.3 Pattern Structure 

The Composite Class [9] captures the internal system objects, the associations between the 

system classes, and the collaboration of the interconnected elements of the modeled system. The 

Composite Class supports the creation of a Class Part that is supported by Rational Rhapsody [9]. 

The Class Part is an instance of a class in another class and is used to capture the interface 

between two classes, which are associated to each other in the Composite Class. When the Class 

Part is created, the Class Part name is change based on the target class name.                      

A Composite Class is used to capture the instance of a node’s hardware components, 

software components, and the associations between these components to the application, which 

reflects the tinyOS component wiring design pattern. Moreover, the Class Part is required when 

one of the classes signals one of the events in the other classes. This feature is essential in order 

to execute the state-charts in Rhapsody that are used for analyzing power consumption of the 

deterministic components in a sensor node (presented in more detail in Chapter 5).  

4.3.3.4 Example 

The RFID composite class is shown in Figure  4-5a. The system has one application class, 

which is called RFID, and three components, which are the LEDs, the database, and the 

connection. The composite classes display all the components of the system and the association 

between them by using association arrows. The class parts are displayed in the Rhapsody project 

panel (see Figure  4-5b). The RFID is an example of point to point sensor networks systems and 

is used to authenticate the RFID tags. The UML design of the RFID is explained in details in 

Chapter 6. 
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A) Composite Class 

 

B) RFID Panel  

Figure  4-5: RFID System Components 
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4.4 State-Chart Stereotypes 

As mentioned in the previous sections, the WSN design was captured by a group 

of  stereotypes classes that captured the OS support components, together with the  application 

software component that captured that application’s behaviour. The application’s behaviour was 

modeled as a state-chart that contains a group of events and event handlers as mention in Section 

4.3.2.  

As introduced in Chapter 2, the power consumption analysis of some of WSN System 

requires running a simulator to complete the analysis, which requires generating the code for 

simulator. The code generator requires information about the OS support components that are 

signalled by the application software component. Another group of stereotypes are introduced to 

the model so that the stereotypes will be an indication for the generator to  load the proper 

information of the components while generating the code based on the target platform 

component (see Table  4-1). Table  4-1 contains the model stereotype’s syntax, an example of the 

state-chart, contains an explanation of the state and the stereotypes, and contains the equivalent 

TinyOS component syntax. The stereotype’s syntax is generic so that the designer can use the 

same model for generating the proper code for multiple WSN platforms.  

As shown in the table below, each state has the component stereotype and either an 

Async or a Sync stereotype in order to indicate the synchronization type of the task. The 

synchronization type of the task is essential to the code generator in order to generate the proper 

debugging statements that are essential to integrate the simulation results with the UML model as 

explained in Chapter 6.   
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Model Stereotype Example Details TinyOS Component 

(nesC syntax) 

Timer 

 

The state signals 

the timer 

component  

TimerMillic 

Sensor 

 

The state signals 

the second sensor 

SensorMDA300CA 

ADC 

 

The timer turns off 

the ADC unit 

MicaBusC 

Routing 

 

The state starts the 

routing component 

to send/receive 

data packets to the 

neighbour nodes 

CollectionC 

Radio 

 

The state starts the 

radio component 

so that the radio 

listens to the 

network and is 

ready to 

send/receive 

messages 

CollectionSenderC 

Leds 

 

The state controls 

the LEDs of the 

node 

LedsC 

Table  4-1: Model Stereotypes 

4.5 Analysis in the UML Model Layer 

The previous sections have explained the UML model patterns and the stereotypes that 

were developed to capture the software design and the OS support components of the sensor 

node. This section demonstrates the capability of verifying the requirements of the design at the 

modeling layer, in particular the requirements that are related to the power consumption of the 

system.   
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The steps in the analysis are listed below: 

 The instrumentation of the state-charts.  

 The model execution that occurs by using the Rational Rhapsody state- chart 

execution feature and the sequence diagram comparison feature, which are introduced 

in  Chapter 2.    

4.5.1 Instrumentation of State-Charts for Power and Timing Annotation      

The behaviour of the stereotype classes that captures the OS support components are 

captured by a state-chart using  the Sensor Node Service Component Design Pattern (see 

Section  4.3.1). The instrumentation takes place by annotating the power consumption values, as 

well as, the time  response of the operation that is modeled by the appropriate state.   

The power consumption annotations are inserted as C++ code instead each state. As long 

as the ADC is turned on and is not turned off by the signal from the  application, the total power 

consumption of the sensor is increasing. The  time is controlled by using the transition condition 

tm(Time) function, which forces the state- chart to be triggered every t time and therefore every t 

the total power consumption is increased by the annotated value.   

For example, power consumption of the ADC unit is 13mA/second.  Once the sensor 

board receives the signal excitation on, the sensing state and the  calculate power state is 

activated. The calculate power state triggers itself by using the transition  tm(1000) every 1 second 

and adds to the total power consumption a 13 value. The power consumption will continue 

increasing until the ADC component receives the signal excitation_off (see Figure  4-6). The 

annotated values are taken  from actual power measurements of the sensor nodes as presented by 

Zheng et Al. [35].    
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The Async operations do not require a signal to turn off, such as the sending and sensing 

operations. Those operations signal an event to indicate the completion of the executed event. 

Therefore, the power consumption of such operation is calculated once, since they do not require 

any signal to be turned off. However, the model contains tm(t) function to model the time taken 

by the operation to be executed and signal the event back to the application. This time annotation 

is essential for the verification of the requirements. For example, the sensing operation consumes 

1mA and needs 250ms to complete sensing. The sensing starts once the application signals the 

sensor with sensor2_on event signal and takes 250ms to complete sensing and signals the event 

readDone in the application  (see Figure  4-7). 

  

 

 

 

 

 

 

Figure  4-6: ADC State-Chart Model 

 

 

Figure  4-7: Sensing State-Chart Model 
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4.5.2 Model Execution 

The state-chart of the OS support components are instrumented with the timing 

annotations that are based on real-time measurements. The model execution includes the timing 

annotations that are inserted in the model. The executed sequence diagrams show the signals that 

are being exchanged between the design components and the application software, as well as, the 

timing components.  

For example, when the application signals the sensor component to start sending by 

TriggerSensor1 state (see Figure  4-8), a signal is sent from the application to the sensor 

component. Then, the sensor component signals the event readDone after 250ms (see Figure  4-7), 

which models the sensing operation. Once readDone1 is signaled, the event handler state executes 

the states Idle, Leds_S5, LoadArray, and TriggerSensor2 (see Figure  4-8). This interaction between 

the application and the sensor component is captured in the sequence diagram as well as the 

timing components. The sequence diagram has life line for each OS component and the software 

component. On the life line of each component, Rhapsody prints the active state, which the 

component is executing in the state-chart. Also, the event signaling between the component is 

displayed in the sequence diagram using arrows (see Figure  4-9).  

  

 

 

 

 

 

 
 

Figure  4-8: Trigger Sensors State-Charts 
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Figure  4-9: Executed Sequence Diagram- Interaction between Application and Sensor Component 

IBM Rational Rhapsody supports the sequence diagram comparison feature. This 

feature  compares the executed sequence diagram to a desired sequence diagram. The desired 

sequence  diagram is created by the designer and contains the expected behavior of the system 

that meets  the design requirements. The sequence diagram comparison feature compares the 
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following  diagram elements: the sequence of the signals, the signals between the components 

and the  application, the timing annotations, the variable types, and the range of the values. 

The  comparison shows if any of the signals between the design components are missing, if any 

of the  signals are out of order, and the timing requirements (i.e. system delays). By using the 

color code  for the sequence diagram elements, the comparison feature displays the matched and 

unmatched  elements between the two sequence diagrams (i.e. the signal sequence, the time 

components, the  variables, etc.).  

For example, part of the SensIV application requirements is to trigger the 4 

temperature  sensors in sequence. When each sensor completes the sensing process within the 

time range of   250ms, a readDone signal is signaled. In order to illustrate the sequence diagram 

comparison  feature, the trigger signal to the fourth sensor was purposely dropped. Therefore, the 

executed  sequence diagram will only have 3 triggered sensors while the required sequence 

diagram will  have 4 signaled sensors. The comparison results are as follows:   

 The signals and the time delay between the components SensIV and the Board 

of  sensor2_on operation are matched in both the executed diagram and the desired 

one.  The matched elements between the two diagrams are indicated by using the blue 

color   (see Figure  4 10).  

 The signals between the components SensIV and the Board of sensor3_on  operation  are 

not matched in both the executed diagram and the desired one.  The  unmatched  signals are 

indicate using the purple color so that the designer can conclude  that the  design does not 

meet this particular requirement   ( see Figure 4 22 -   ).  
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The comparison feature also can be leveraged to visualize the enhancement for the  design  by 

comparing the executed sequence of the design before and after the  enhancements .  

 

                          A: Actual sequence Diagram                                                   B: Assumed Sequence Diagram 

Figure  4-10: Sequence Diagram Comparison Results-1 
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                                A: Actual sequence Diagram                                                   B: Assumed Sequence Diagram   

                                                           Figure  4-11: Sequence Diagrams Comparison Result-2 

4.6 Summary and Limitations 

This chapter presented three UML modelling patterns used to guide a software 

designer  of WSNs to capture the WSN design architecture and behaviour, as well as to model 

component  interaction in a typical event-based operating system. It also presented an approach of 

using  stereotypes in state diagrams to help analyse the power consumption for the deterministic 

power  components in a WSN by leveraging power consumption and timing annotations in the 

state  charts that are executed at the modelling layer. In order to validate the behaviour of the 
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WSN, it  was demonstrated that the sequence diagram comparison approach could be used. The 

system  architecture was captured by using the association of the pattern of design components 

while the  design behaviour was captured by using the event handler and the service component 

pattern.  The UML patterns leveraged the class diagrams and state-chart diagrams to capture the 

system in  the modeling layer. This chapter also introduced an approach to verify the WSN 

design  requirements. This thesis approach relied on instrumenting the OS support components 

state-chart with the power consumption values and the timing annotations. The  annotated values 

were calculated based on real-time measurements. In addition, the verification of 

the  requirements of the system was developed by using the sequence diagram comparison 

feature.  The comparison took place between a sequence diagram that contained the expected 

system  behaviour (i.e. assumed sequence diagram) and the executed sequence diagram of the 

system.  Based on the comparison, the designer can evaluate the design whether or not the design 

meets  the functional requirements.   

The power consumption methodology that was used in the chapter, calculates the 

power  consumption for the deterministic components (i.e. the LEDs, the ADC, and the sensors). 

The  power consumption for those components is directly proportional to the rate of signalling 

those  components. Therefore, by using the instrumentation of the state-chart diagrams and 

the  executed state-chart diagrams, the power consumption of those components was calculated. 

The  communication process between the network nodes has a non-deterministic nature as 

explained  in Chapter 2. Therefore, the methodology explained in this chapter is not capable of 

calculating  the power consumption of the communication process. WSN simulators have the 

capability to  simulate the network communication process and to calculate power consumption. 

The WSN  simulator requires the code that is deployed in the nodes as one of the required input 
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for the  simulator. The next chapter explains the code generator that parses the XML 

representation of the  design and generates the code for the simulator.     
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5 Generating TinyOS code for UML High Level Models  

5.1 Introduction 

The analysis developed in the previous chapter involves power consumption analysis 

for  the hardware resources in a WSN sensor node that exhibit simple direct interactions with 

the  application layer and therefore their power consumption can be deterministically 

calculated  through a power consumption equation. However, in a WSN the communication 

process between  the nodes exhibit a non-deterministic behaviour because the routes that the data 

packets of each  node can vary based on the routing algorithms. In addition, the routing 

algorithms periodically  send routing packets to maintain the topology of the network. The result 

is that the sending  and receiving of messages is unpredictable. Therefore, the Avrora simulator 

was integrated with  the UML modeller to analyze the power consumption for each node, 

including the power  consumption of the communication process. In order to use the Avrora 

simulator it is necessary  to generate executable code from the model that is installed into the 

simulator. This chapter  explains the code generator that produces the platform code and 

simulator configuration for the  WSN Avrora.  

The code generator parses the XML representation of the UML model and loads 

the  information required by the platform from a database, such as the code syntax and the 

OS  support components. The code generator prompts the designer for some additional 

information  about the platform that is not represented in the model. Based on the information 

gathered, the  code generator builds the required code and the necessary information for the 

simulator. In addition, the  code generator adds the debugging statements to the generated code, 

which are necessary to  validate the code and to integrate the simulation results to the model as 

explained in Chapter 6.  Currently, the code generator generates nesC code, which is the required 
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code for the TinyOS  operating system. However, the code generator can be extended to support 

any WSN event  based operating system (see Figure  5-1).       

  

 

 

 

 

 

 

 

This chapter is structured as follows: Section  5.2 explains nesC code structure; 

Section  5.3 presents the code generator structure; Section  5.4 discusses the instrumentation of the 

generated code; Section 5.5 presents examples of the generated code; Section 5.6 demonstrates 

the evaluation of the generated code; Section  5.7 contains the related work; and Section  5.7 

contains the summary and the conclusion.   

5.2 TinyOS Code Structure 

TinyOS is an event based operating system that is designed for sensor nodes with limited 

resources (i.e. power, memory, and CPU speed). TinyOS is written in nesC language, which is a 

C based language. The C code is composed of functions while nesC code is composed of 

components. Each component offers a particular common service, such as LedC component 

offers the control methods for the LEDs and CollectionC component offers the methods, which 

handles the routing protocol. Furthermore, each component offers a group of specific interfaces, 

which implement different functionalities of the same component.  

XML 
Parsing

Load info
 from Database

Code Generation

For Validation 
&Simulator-Model 

Integration 

Prompt the designer 
for platform 
information 

Bulid the 
Code

Code 
Instrumentation

Load info
 from SQL 
database

Simulator 
Configuration

XML file Representation
 for the UML Mode

XML file Representation
 for the UML Mode nesC code & Simulator 

Configuration

nesC code & Simulator 
Configuration

 

Figure  5-1: Code Generation and Verification 
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The nesC code has 2 modules: the configuration module, which contains the wiring code, 

and the application module, which contains the application code. The nesC code has the 

following properties: component wiring, interface declaration, and event handlers. This section 

explains each property so that the reader can understand the code generation steps.  

5.2.1 Component Wiring  

TinyOS support components have to be wired to the application in order to offer the 

service to the application software. The wiring is expressed by explicit statements in the 

configuration module. The following code lines show an example of the wiring statements:  

 

 

 

 The first line declares an instance of TinyOS component CollectionC called myCollectionC. 

The second line wires the application component RoutingControl to the component instance 

myCollectionC. After wiring, the RoutingControl component has access to all the methods, events, 

and parameters in CollectionC component.  

Some applications require additional services, which are not offered by the component 

service, but are related to the component service. Those additional services are offered by an 

upper level component. For instance, the application requires some information about the parent 

node in the routing path. The routing service is offered by application CollectionC component 

while the routing information (i.e. parent node) is offered by another upper component called 

CTPInfo (see Figure  5-2).  

Each TinyOS component contains a specific group of predefined interfaces. Each 

interface defines a group of functions called commands which the application can call. For 

instance, the component CollectionC has StdControl, Send, Receive, and Packet interfaces. 

Components CollectionC as myCollectionC 
myApp.RoutingControl -> myCollectionC 
myapplication.myCTP ->myCollectionC.CTPInfo 
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StdControl interface implements the commands start and stop, which are responsible for starting 

the routing control packets and stopping the routing control packets, respectively. In the 

application module, the call for the interface commands is executed by calling the application 

component which is wired to the TinyOS component followed by the command syntax. For 

instance, to start the routing control messages: 

 The interfaces have to be declared as well as the components. However, the interfaces 

are declared in the application module. The following code shows the interface 

declaration for CollectionC component. 

 

 The declaration for the interface of the CTP info component will be as follows: 

 

 The interfaces can be bi-directional, either the interface is provided by the component 

or the interface is consumed by a component. The provided interface has the keyword 

provides while the consumed interface has the keyword uses. 

5.2.2 Event Handlers 

WSN operating systems offer the capability for the system to post a task for the one 

of  the OS support components to be completed.   The posted tasks for the processor are scheduled 

to be executed according to FIFO scheduler protocol. Normally, the tasks are posted for the 

computational processes, which require a specific period. In most cases, those tasks contain one 

 

Figure  5-2: TinyOS components 

 

uses interface StdControl as RoutingControl 

uses interface myCTP as Receive 
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or more of the commands which are implemented in the TinyOS support components. Therefore, 

the command must be called by the appropriate component interface and in the form of a task in 

order to be processed in the background.  

After the command is finished executing, the command triggers an event to indicate that 

the execution is over. The event is triggered by the TinyOS component interface, which is the 

wired application component. The designer can implement the event handler based on the design 

workflow. Some of the events return parameters, which are the output of the execution process. 

The following code presents an example of posting the task and implementing the event handler: 

 

 

 

The event startDone is implemented in the interface StdControl that is offered by 

CollectionC component and wired to the application component RoutingControl. The parameter error 

is returned by the event to indicate if the task has been executed properly. 
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Figure  5-3: Code Generator Structure 

 

post startrouting(); 

Task startrouting(){  call RoutingControl.start(); } 

// once the routing started: 

event void RoutingControl.startDone(error_t error){….} 
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5.3 Code Generator Structure 

The code generator is written in Java language and contains the the following three main 

components: XML Parser, Database Structure, and the Code Builder (see Figure  5-3). The target 

of the code generator is to parse the information provided by state-chart diagram for the design 

and generate the equivalent nesC code. The code generator has the following functions:  

 Parse the XML representation for the UML model. 

 Recognize the system components, which are used with the design. 

 Contact the database and load the required TinyOS components information. 

 Generate the instance of each component. 

 Wire the TinyOS support components to the application. 

 Declare the component interfaces which are used by the application. 

 Generate the application code workflow. 

5.3.1 XML Parser 

Rational Rhapsody provides a toolkit which generates an XML representation for the 

UML model. The XML Parser component reads the XML file and extracts the model 

information. The extracted information from the XML file is the following: 

 The event names which exist in the model. 

 The main state which is activated when the event is signaled. 

 The sub-states inside each main state. 

 The stereotype of each state. 

 The input and output transitions ID of each state, which is necessary for organizing the 

code workflow. 
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There are two packages which the XML Parser uses: XMLTypes and ClassTypes. 

5.3.1.1 XMLTypes Package 

An XML file contains lines structured in a tree format, which contains a tag that 

identifies the type of element the line represents. The lines contain tags for the statesID, 

transitions, stereotypes, etc. The XMLTypes package is responsible for storing and extracting this 

information and saving it in a similar tree structure.  

5.3.1.2 ClassTypes 

The ClassTypes package uses the extracted information by XMLTypes and organizes the 

formation in events, main state, and the sub-states so that they have a similar structure as the 

nesC code (i.e. event, events handlers, and execution steps in each event handler). 

5.3.2 Database Structure 

The database provides the code generator with the TinyOS component information, such 

as the component nesC syntax, the required interfaces of the component, the events nesC syntax, 

and the variables associated with each event. The database structure contains one parent table 

and four child tables (see Figure  5-4). The explanation of each table column is shown in 

Table  5-1. 
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Figure  5-4: Database Structure 
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Database Table Column Description 

S
ta

te
K

ey
 StateID Contains the name of all the states as appeared 

in the mode (example: TriggerSensor0, Leds_S5, 

and StartTimer1). 

Stereotype Contains the high-level stereotypes, which are 

captured in the model (example: Sensor, ADC, 

and LEDs). 

C
o

n
fi

g
M

o
d

u
le

 

TinyOS_Component Contains the TinyOS support components, 

which are required for the higher-level 

components (example: CollectionC). 

Upper_Component Contains the TinyOS support components, 

which are required for providing service to 

main component (example: CTPInfo). 

Interfaces Contains the interface syntax for the TinyOS 

support components (example: StdControl for 

collection component). 

Headers Contains the TinyOS header files, which are 

required for the components (example: Timer.h 

that is required for timers)  

Instance Contains a True or False value. The true value 

indicates whether the TinyOS component is 

initiated.  

ComponentID Contains the association between the 

ConfigModule table and the Events table. The 

code generator requires information about the 

component that signals the particular event.  

V
a

ri
a

b
le

s 

Variable Contains the variables to be initiated. Some of 

the states require variables to be initiated 

(example: sendbuf variable) 

Type Contains the variable type (example: 

message_t) 
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Code Contains the TinyOS code syntax that is 

equivalent to the UML state (example: 

Leds.led0On()  

Call_Type Contains the call type for the command 

(example: call and post). 

Component_Required Contains a Boolean value to indicate whether 

this code requires the component instance. For 

example(led0On() needs the components 

association LedsC) 

E
ve

n
ts

 

Model_Event Contains the event names in the model 

(example: startRoutingDone and readDone0). 

TinyOS_Event Contains the equivalent nesC syntax for the 

model event name (example: sendDone and 

booted). 

Variables Contains the parameters returned with the 

triggered event (example: error).  

EventType Contains the return type when an event is 

called. (Example: received event returns a 

variable of type message). 

Table  5-1: Explanation of the Database Tables 

5.3.3 Code Builder 

The code builder is considered as the central component  of the code generator. The code 

builder triggers the XML  Parser to parse the XML file. The parser loads the XML file and parses 

the  information and saves it in a form of a java vector. The vector contains  multiple objects of the 

events class. The  code builder uses the information in the vector and  contacts the database to 

load the required information. Each state requires wiring code that is generated to the 

configuration module. Also, each state requires the interface declaration and the code logic that is 

associated with the state behaviour to be written in the application module.  
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 The configuration module is generated by using the components TinyOS syntax and 

the  upper components syntax, together with TinyOS keywords: new components, ->, 

implementation,  and configuration. 

For the application module, the code generator declares the application module  by 

the  declaration of the interfaces using the  keywords uses, provides, and as. Also, the 

event  handlers’  code is generated by using the keywords event and void  followed by the 

component  name and the parameters,  which exist in the information vector and were loaded from 

the  database.  The code workflow is generated in the same  manner as the configuration and 

the  application module.  However, the sub-states in the XML file are out of order,  therefore, the 

code  builder checks the in and out  transitions unique ID to organize them to generate 

the  proper  sequence of code.   

For example the state “Leds_S4” in the UML layer requires a creating instance line and 

wiring line in the configuration module components LedsC; and Counter.Leds->LedsC respectively.  

Also the “Leds_S4” state requires the interface declaration in the application module uses 

interface Leds as Leds and the code logic lines call Leds.led0On(), call Leds.led1On(), and call 

Leds.led2Off(); . 

 As mentioned in the chapter introduction, the code generator’s role is to generate the 

 TinyOS support component syntax and the code syntax that are required for the simulator in

order to achieve the integration between the UML model and the network simulator. Some of the 

design specification is not captured in the UML layer of the design. Therefore, before generating 

the code the generator prompts the designer for such information. For instance, the network 

topology, the battery capacity, and the platform details since such information is required in the 

configuration file of the simulator as explained in Chapter 2.   
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5.4 Instrumentation of the Generated Code 

The code generator adds debugging statements to instrument the generated code for two 

purposes: to help  validate the code and to support integrating the simulator results back to the 

model. The debugging statements consist of nesC print method that are implemented in the 

nesC  header file AvroraPrint.h. The print method accepts multiple parameters types, such as string, 

integer, etc. In addition, the simulator prints the print method parameter once the complier 

reaches the debugging statement location in the code. Also, the simulator prints the CPU cycle 

when the debugging statement is executed.    

5.4.1 Code validation instrumentation 

  The validation procedure of the code occurs by comparing the code workflow to the 

model workflow so that that generated code semantics are verified to match the model semantics, 

which is known as back-to-back testing [36]. The code generator adds a debugging statement 

that prints the UML state ID and was translated by the code generator to the nesC statements. 

Those debugging statements are printed when the simulator executes the generated code and 

reaches debugging statement location in the code. As shown in Figure  5-5 (A), the debugging 

statements consist of the nesC function printStr and a parameter of type string. The parameter 

indicates the model state ID that caused the code lines to be generated (Figure  5-5-B).  

 

 

 

 

 

Figure  5-5 (A): The Code Instrumentation Example 

event void Boot.booted() { 

printStr("Booted Event Signaled");  

printStr(“Leds_S2”);  

call Leds.led0On();  

call Leds.led1On();  

call Leds.led2Off(); 

printStr("Call Start Routing");  

call myRadio.start();}  

The nesC code for the event header, 

 

The debugging statements prints the 

UML states that caused the code lines to 

be generated.  

The Leds statements   

Starting the routing components 
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5.4.2 Instrumentation to Facilitate the Integration of the Simulator to the UML model 

The integration of the Avrora analysis of the power consumption is achieved by using the 

debugging statements. The debugging statements are added to the code to indicate the following: 

The code generator instruments the produced code with the debugging statements that are 

inserted in pairs, one to indicate the start time/cycle of a specific operation and the second one to 

indicate the end time/cycle of the operation. The debugging statements can be categorized as the 

following: 

 Event Handlers Statements: One debugging statement is inserted at the beginning 

of the event handler and another statement is inserted at the end of event handler to 

displays the start cycle and the end cycle of the event handler respectively. The 

event handlers are the basic unit of the WSN software since the operating systems 

are event based. 

 Spilt Phase Statements: One debugging statement is inserted at code position 

where the software calls the operation to display start cycle. The other debugging 

statement is inserted at the beginning of the event handler that is signalled when the 

hardware completes the operation, in order to display the time/cycle when the 

operation is completed.  

 

 

Figure  5-6 (B): The Model States 
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The string that is printed by the debugging statements has two parts:  

 Statement ID: The statement ID refers to the event handler name, which exist in 

the UML model. The code generator is aware of the event handlers in the model and 

the equivalent nesC code event handlers. The code generator adds the event handler 

UML name so that the parsing tool calculates the power consumption that is caused 

by the event handler code and refers the results to the event handlers in the model. In 

the same manner, the debugging statement is inserted for the split phase operations. 

The statement ID will have the state name that represents the operation calling in 

state-chart diagram. 

 Statement Type: The type indicates whether the debugging statement is the start 

point or the end point of the either the event handler or a split phase operation. An 

example for integration debugging statements that are used to integrate the simulator 

with the UML is shown in Figure  5-7. Two debugging statement are inserted to 

indicate the start cycle and the end cycle of each operation. The debugging statement 

prints the statements once the code execution reaches the  debugging statement 

location in the code flow. The simulator prints the debugging statement  string, the 

node ID, and the time/cycle of the execution time and stores the output in a trace 

file   (Figure  5-8). The trace file is used by the parsing tool to calculate the power 

consumption and  generate the power consumption report.   
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Figure  5-8: The Trace File Output 

5.5 Code Generation and Instrumentation Example 

This section shows an example of the generated code for a UML model of a counter 

application. The application contains 3 nodes that have the exact software design. Each node is 

  event void Timer0.fired() { 

  printStr("|Timer0Handler| St"); 

  counter++; 

  printStr("|CallSend| St"); 

  call AMSend.send(counter(; 

  printStr("|Timer0Handler| En");   } 

 

 event void AMSend.sendDone(message_t*msg, error_t 

error){ 

 printStr("|CallSend| En"); 

 printStr("|SendDoneHandler| St"); 

  printStr("|CallTimer0| St"); 

  call Timer0.startOneShot(1000); 

  printStr("|SendDoneHandler| En");  } 

The debugging statement 

used to indicate the starting 

and the ending of the event 

handlers  

The debugging statement 

used to indicate the starting 

and the ending of the 

asynchronous process send 

Figure  5-7: Example of Debugging Statement for Simulator Integration 

Loading Rx.elf...[OK: 0.095 seconds] 

Loading Tx.elf...[OK: 0.020 seconds] 

=={ Simulation events }================ 

Node          Time   Event 

----------------------------------------------------------- 

   0       8010824  |Booted| St 

   0       8011224  |Booted| En 

   0       8025530  |StartDoneHandler| St 

   0       8025756  |StartDoneHandler| En 

   1       8021638  |BootDone| St 

   1       8022052  |BootDone| En 

   1       8036330  |StartDone| St 

   1       8036556  |StartDone| En 

   1      15200241  |Timers0Handler| St 

   1      15200360  |CallSend| St 

   1      15202731  |CallSend| En 

   1      15202835  |Timer0Handler| En 

   1      15250673  |SendDoneHandler| St 

1 15250794  |SendDoneHandler| En 

…………… 
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activated every 5 minutes, adds 1 value to a local integer counter, and then sends the value to the 

neighbour node that displays the counter node through the LEDs. The model and the generated 

code (i.e. the configuration module and application module) are shown in Figure  5-9. The code is 

generated based on the following steps: 

a. The model has four events; 

 Event booted: The event is signaled once the node hardware completes booting 

 Event StartRoutingDone: The event is signaled once the routing component is 

started 

 Event SendDone: The event is signaled once the node completes sending the data 

 Event StartOneShot: The event is signaled once the timer completes one cycle 

b.    The code generator parses the XML representation of UML for each event and 

   creates a list of the states that are located in the UML event handler along with each    

   state stereotypes.  

c. For each state the code generator loads from the database the TinyOS component, the 

upper component, the interface, and the headers from the config table. Then, the 

loaded information is saved in the events class. The code generator uses the state 

stereotype as an indicator to the TinyOS component. For example, the stereotype 

“Sensor” in model will indicate the MDA3000CA TinyOS component. Table  4-1 in 

Chapter 4 shows all the model stereotypes and the equivalent TinyOS components.   

d. The code generator creates the instances of each component and wires the component 

to operating OS support components by using the keywords new, as, and components 

and write the wired information is written in the configuration module.  
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e. The components interfaces are written in the application module using the keywords 

use, interface, and as. 

f. The code generator checks the events table in the database and loads the TinyOS 

events syntax, which are equivalent to the model events. Also, the TinyOS 

components that are associated with the events are loaded from the config table.  

g. The event handlers’ headers are written in the application module by using the loaded 

information from the previous step. 

h. For each state, the code generator loads the nesC code syntax from the database that 

is equivalent to the state loaded from the table code module.  

i. Before generating the final code, the code generator adds the debugging statement to 

generated code for validation procedure purposes and for the integration of the model 

and the simulator as explained in Section 5.4.) 
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Application Module 

Module Counter { 

uses interface Boot; 

uses interface Leds as Leds; 

uses interface SplitControl as myRadio; 

uses interface Timer<TMilli> as myTimer; 

uses interface StdControl as myRouting; 

uses interface Send as mySend; 

uses interface Receive as myReceive;} 

implementation  { 

message_t sendbuf; 

event void Boot.booted() { 

printStr("Booted Event Handlers |Start|"); 

printStr("Booted Event Signaled"); 

printStr(“Leds_S2”); 

call Leds.led0On(); 

call Leds.led1On(); 

call Leds.led2Off(); 

printStr("Call Start Routing"); 

PrintStr("Call StartRouting|Start("|  

call myRadio.start(); 

printStr("Booted Event Handlers|End|"); 

} 

event void myRadio.startDone(error_t error) { 

printStr ("Booted Event Handlers |Start|"); 

printStr("|StartDone Event Signalled); 

printStr(“Leds_S1”); 

call Leds.led0On(); 

call Leds.led0On(); 

call Leds.led2Off(); 

PrintStr (“Start Timer0 |Start|”); 

printStr(“StartTimer0”); 

call myTimer.startOneShot(1000); 

printStr("Booted Event Handlers |End|");} 

event void mySend.sendDone(message_t*msg,  

 error_t { 

printStr("Send Done Event Handler |Start|"); 

printStr(“Send Data |Start|”); 

printStr(“Leds_S4”); 

call Leds.led0On(); 

call Leds.led1Off(); 

call Leds.led2On(); 

printStr(“Start Timer0”); 

printStr("StartTimer0 |Start("|  

call myTimer.startOneShot(1000); 

 printStr("Send Done Event Handler |End|"); 

}} 

event void myTimer.fired() { 

printStr("Timer0 Fired Event Handlers |Start|"); 

printStr("StartTimer|End("|  

printStr(“Leds_S3”); 

call Leds.led0Off(); 

call Leds.led1Off(); 

call Leds.led2On();} 

printStr("Send Data"); 

printStr(“Send Data |Start|”); 

call mySend.send(&sendbuf, 56);{ 

event message_t*  

myReceive.receive(message_t* msg, void* payload, 

uint8_t len) {}; 

 

Configuration Module 
configuration  CounterAppC {}  

implementation  {  

components MainC, LedsC, Counter;  

components ActiveMessageC as OSRadio;  

components new TimerMilliC() as OSTimer;  

components CollectionC as OSRouting;  

components new CollectionSenderC(9) as OSSend;  

 

Counter -> MainC.Boot;  

Counter.Leds->LedsC;  

Counter.myTimer -> OSTimer;  

Counter.myRouting -> OSRouting;  

Counter.mySend -> OSSend;  

Counter.myReceive -> SRouting.Receive[9]; } 

Figure 5-9: Code Generation Example 

                    Debugging statements 

                    Keywords 
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5.6 Validating the generated Code  

The aim of the code validation procedure is to confirm that the generated code has the 

same semantics as the UML models. The validation procedure occurs by comparing the design 

semantics in both layers (i.e. the code layer and the model layer) and tracing the signals between 

the components in both layers.  

In order to demonstrate the code validation procedure, the generated code is instrumented 

with the debugging statements together with the call trace feature in Avrora simulator. The 

debugging statements in the code display the state names that generated the code  lines, as 

explained in the previous section. The call trace option displays the signals between the OS 

support components and the application component and records the signals in a log file. The 

debugging statements and the trace of the signals are saved in a log file. For the validation 

procedure, the log file is compared to the executed sequence that shows the current state of the 

software and the signals between the components.   

In order to demonstrate the code validation procedure, the validation procedure for a 

simple counter application is shown in Figure  5-11. The counter application contains 2 nodes: the 

sender node and the receiver node. The sender node is activated every 1 minute and then adds 

value 1 to a counter and sends the value to the receiver node. The execution sequence for the 

sender node was generated through UML model execution of the design (see Figure  5-11). The 

sequence diagram is for 1 cycle. The sequence diagram is split into 4 sections due to the size 

limitations. The sequence diagram shows that the sender node is booted followed by triggering 

the booted event. Once the booted event is triggered, the software turns the Leds_S2 on by 

sending the signal to the LEDs support component, and then the software starts the routing 
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component by sending the proper signal to the routing component. Once the routing component 

is started, the routing startdone event is signaled.  

In the startrouting event handler, the software turns on another group of LEDs and then 

initiates a  timer. Once the timer expires, the timer signals the timer event. In the timer handlers, 

the software  turns on other groups of LEDs, add value 1 to the counter, and sends the data 

packet. Once the  sending process is completed, an event is signalled to indicate the end of the 

sending  process. In the event handler, the software turns a group of LEDs on and starts the timer 

again for the  next cycle, as it appears in the executed sequence  diagram. At the send node, the 

LEDs can be used to display the status of the code where each even handler has a specific LEDs 

turned on.  The simulation results that are recorded in the log file is shown in Figure  5-12. The 

log file contains the output debugging statements from Avrora, which displays the UML states ID 

from the generated code. In addition, the log file displays the call the application components 

and OS support components. The comparison shows that the instrumented code semantics 

matches the sequence diagram behaviour.   

 

 

 

 

 

 

 

 



 

 

                         

 

Figure  5-10: Executed Sequence Diagram for Counter Sender Node (Part -A)  
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                                                                                                                                                                                                                                                                              ……. 

Figure  5-11: Executed Sequence Diagram for Counter Sender Node (Part B)   

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5-12: The screen shot Node1 log file 

5.7 Summary 

This chapter introduced the structure of the code generator, which generated the required 

code for the simulation and generated the necessary configuration for the simulator. The code 

Loading RX.elf...[OK: 0.112 seconds] 

Loading TX.elf...[OK: 0.026 seconds] 

=={ Simulation events }======================================================= 

Node          Time   Event 

------------------------------------------------------------------------------  

   1       8012253  |Booted Event Signaled| 

   1       8012327  |Leds_S2| 

   1       8012342  on  on  off      

   1       8012505  |Call Start Routing|  

   1       8012507       --> CC2420CsmaP__SplitControl__start 

   1       8012805       <-- CC2420CsmaP__SplitControl__start 

   1       8017193       --> #13 0x0030 

   1       8017290           --> CC2420SpiP__Resource__request 

   1       8017486           <-- CC2420SpiP__Resource__request 

   1       8017524       <-- #13 0x0030 

   1       8027271  |StartDone Routing Event Signalled| 

   1       8027345  |Leds_S1| 

   1       8027360  on  off off  

   1       8027474  |Start Timer0|  

   1       8027517           --> VirtualizeTimerC__0__startTimer 

   1       8027560               --> SchedulerBasicP__TaskBasic__postTask 

   1       8027604               <-- SchedulerBasicP__TaskBasic__postTask 

   1       8027614           <-- VirtualizeTimerC__0__startTimer 

   1      15190792  |Timer0_Fired|  

   1      15190866  |Leds_S3| 

   1      15190881  off off on  

   1      15190974  |Add Counter| 

   1      15191088  |Send Data| 

   1      15191123               --> CC2420ActiveMessageP__AMSend__send 

   1      15193363               <-- CC2420ActiveMessageP__AMSend__send 

   1      15193367               --> SchedulerBasicP__TaskBasic__postTask 

   1      15195475               <-- SchedulerBasicP__TaskBasic__postTask 

   1      15195495           <-- VirtualizeTimerC__0__fireTimers 

   1      15195521       <-- SchedulerBasicP__TaskBasic__runTask 

   1      15195555       --> SchedulerBasicP__TaskBasic__runTask 

   1      15195593           --> Atm128AlarmAsyncP__0__Counter__get 

   1      15195625           <-- Atm128AlarmAsyncP__0__Counter__get 

   1      15195680       <-- SchedulerBasicP__TaskBasic__runTask 

   1      15240914       --> SchedulerBasicP__TaskBasic__runTask 

   1      15241032           --> AMQueueImplP__0__AMSend__sendDone 

   1      15241048               --> AMQueueImplP__0__sendDone 

   1      15241092                   --> BlinkToRadioC__AMSend__sendDone 

   1      15241302  |SendDone Event Signalled| 

   1      15241418  |Timer0_Fired|  

   1      15241492  |Leds_S4| 

   1      15241512  on off on 

   1      15241626   Start Timer0 
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generator generated the code by parsing the XML representation of the UML model and loaded 

the required nesC syntax from a central database. The model provided the code generator with 

the information about the event handlers, events, and the design components while the database 

provided the code generator with the TinyOS components, parameters, methods, header files, and 

the events syntax. The code generator prompted the designer for additional information about the 

design, such as the topology, the platform, and the battery capacity since this information varied 

from one design to another and do not existed in the database. The code generator instrumented 

the generated code in order to verify the code and integrate the simulator results to the model. 

The code verification occurred by comparing the instrumentation output and the tracing of the 

components calls to the executed sequence diagram. 
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6 Integration of the Simulator and the UML Models  

6.1 Introduction  

This chapter presents the integration between the Avrora network simulator and the 

UML  software models so that the software WSN software designer can modify the UML models 

to  improve the WSN performance. In the previous chapters, this thesis demonstrated how 

to  represent the design and the analysis of the power consumption at the modeling layer such 

that  the designer is able to verify the design and calculate the power consumption at the early 

stages  of the design process. However, the presented approach in the previous chapters,  is not 

capable of calculating the power consumption of the communication process, which consumes 

60% of the  total power consumption. Therefore, there is a necessity to calculate the power 

consumption of  the communication process and integrate the results with the UML model for the 

design so that  the designer has a complete estimation of the power consumption at the modeling 

layer. Based on  the power consumption that was developed at the UML model (presented in 

Chapter 4) and the  simulation power consumption analysis (Chapter 5) , the designer should be 

able to improve and  correct the design at the modeling layer.    

The code generator produces the nesC code, network topology, and the 

simulator  configuration, required by the network simulator (as discussed in Chapter 5). Also, the 

code  generator instruments the generated code in order to help facilitate the integration of 

the  simulation results back to the model (this will be discussed in more detail in section  6.5.) 

A  parsing tool was developed to parse the power log file for each node, the debugging 

statements  trace file, and generate a power consumption report. The generated power report 

enables the  designer to integrate the simulator results back to the UML model. This process is 

captured in  Figure  6 1.   
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The rest of the chapter is organized as following: Section 6.2 describes the 

TinyOS  operational nature to illustrate the structure of the code instrumentation. Section 6.3 

describes the  communication process between the WSN nodes and  its non-deterministic 

nature,  which justifies  the necessity of using a WSN simulator for the power consumption of 

communication process.  Section 6.4 shows the instrumented code, which eases the integration. 

Section  6.5 explains the  parsing tool that enables the designer to integrate the simulation analysis 

results back to the  model. Section 6.6 contains an example of the process for a simple TinyOS 

application, and  Section 6.8 contains the summary.    

 

 

 

 

 

 

 

 

 

 

6.2 The Parsing Tool 

As explained in the Section  5.4.2, the debugging statements tool Avroraprint.h prints the 

debugging statements that are inserted by the code generator to indicate the start CPU and the 

end CPU cycle of each event handler and each operation. The printed results contain the node ID 

where the debugging statement was printed, the operation/event name as indicate in the UML 

Simulate the 
network 

behaviour

Simulation

Generate energy log 
file for network 

nodes 

nesC code & Simulator 
Configuration

nesC code & Simulator 
Configuration Avrora Simulator

Parsing the 
analysis results 

Generate the report 
analysis to feedback 

the results to the 
UML model

The analysis report contains the following:
- The energy consumption of each event handler in the model.
- The total energy consumption for each hardware component.
- The life time of each node (worst life time for the nodes).
- Evaluation of the energy consumption for the routing components.   

Code Generator

UML Model for the 
Design

 

Figure  6-1: Integration of the Simulation and the UML Models 
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layer (i.e. UML name), the CPU cycle of the debugging statements, and the statement type (i.e. 

start or end). The printed statements are stored in a trace file. 

The power consumption tool of the Avrora simulator generates a power log files for each 

single node in the topology. The power log file contains the amount of power that is drained from 

the battery for the OS support components (CPU, Red LED, Green LED, Yellow LED, Radio, 

Sensor Board, and Flash). The log file is updated with a new entry to indicate the amount of 

power consumed when one of the hardware resources is activated. In addition, the simulator 

prints the CPU cycle of each entry in the file. 

A parsing tool was developed to parse the power log files for each node and the 

debugging statement trace file. The parsing tool searches the trace file, extracts all the operation 

names of each node and the start/end cycle of each operation, and then stores the information in 

an array. For each log file, the parsing tool finds the entries that fall in the start and cycle range 

for each operation/event and total the power consumption for each hardware resource. For 

example, node 1 debugging statements indicate the CallSend operation started at the CPU cycle 

22406624 and ended at 22449918. The debugging statements keyword St and En indicate the 

start and the end of the operation respectively. The parsing tool searches for log file of node 1 for 

all entries that lay between the range 22406624 and 22449918. The parsing tool creates an 

integer variable for each hardware resource (CPU, RED, Yellow, Green, Radio, Board, and 

Flash) and stores the summation of the energy consumption of each component within the cycle 

range. The total energy consumption for each component will the summation of all numbers 

displayed in the resource column (see Figure  6-2). 
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The parsing tool generates a report that contains the following information: 

 The power consumption of each operation and each event handler. The parsing tool 

refers to the operation and event handlers by using the syntax that is used in the UML 

model. 

 The rate of calling each operation. 

 The total power consumption of each hardware resource. 

 The life time of each node (provided by the simulator) so that the designer can 

conclude the worst life-time among all nodes.  

 

 

 

 

 

 

 

The receiving operation is signalled by packet once the packet reaches the node. Once the 

receiving operation is completed, the myradio.receive() event is signalled. Therefore, the receiving 

operation occurs independent of the destination node code, although the code has signalled an 

event to indicate the completion of the receiving. Therefore, there are no entries in the log file to 

indicate the starting of the receiving operation since the operation is initiated by the data packet. 

However, there are entries to indicate the completion of the operation (i.e. the received event 

handler). In order to calculate the power consumption of the receiving operation, the parsing tool 

Log File for Node 1 
Cycle               CPU            RED     Yellow  Green  Radio    Board Flash   Total                

2239391893 0.0033433 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0294452 

2240855324 0.0033433 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0294452 
2240855325 0.0075667 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0336687 

2240855649 0.0075667 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0336687 

2240855650 0.0033433 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0294452 
.. 

.. 

.. 
2244851990 0.0075667 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0336687 

2244853876 0.0075667 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0336687 

2244853877 0.0033433 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0294452 

2246456924 0.0033433 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0294452 

2246456925 0.0075667 0.0022 0.0022 0.0022 0.0188 7.0E-4 2.0E-6 0.0336687 

 

Debugging Statements Trace file 
1      22406482  |Timer0Handler| St 

1      22406624  |CallSend| St   

1      22408839  |Timer0Handler| En 

1      22449918  |CallSend| En 

1      22450083  |SendDoneHandler| St 

1      22450218  |CallTimer0| St 

1      22450521  |SendDoneHandler| En 

 

Figure  6-2: Parsing Log files and Trace file 
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traces the number of the receiving event handlers and multiplies the value by the power 

consumed by the receiving operation that is published in the Avrora documentation.  

6.3  Integrating Simulation results with UML Model Example 

This section presents the analysis of a counter application, which contains 3 nodes. The 

sender node is activated every 5 minutes, adds 1 value to a local integer counter, and then sends 

the value to a receiver node. Figure  6-3 presents a portion of the sender node model. The model 

contains two event handlers: Timer0_Fired and SendDone. In the Timer0_Fired event handler, the 

code adds value 1 to a counter and initiates the send operation. Once the send operation is 

completed, sendDone event is signalled and the event handler Timer0 is started again. 

The code generator inserts four pairs of debugging statements, two pairs to indicate the 

cycle boundaries of the two event handlers, one pair to indicate the cycle boundaries of the send 

operation, and one pair to indicate the cycle boundaries of the timer. The topology configuration 

contains three nodes where each node is a sender and a receiver as well. The same code is 

applied for all nodes in the network. Avrora simulates the code and prints one trace file, which 

contains the debugging statements for all operations of all nodes and power log file for each 

node. The parsing tool analyzes the files, as previously explained, generates the report that 

enables the designer to integrate the results with the UML model.  

In some WSN applications, some nodes have different code designs than others. In this 

case, a separate UML design is created for each node and multiple copies of the code is 

generated which correspond with the deployment of the 3 nodes. The procedure of the parsing 

tool does not change since parsing tool analyzes the tracing file and the power log file. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

event void Timer0.fired()  { 

printStr("|StartTimer0| En"); 

printStr("|Timer0_Fired Handler| St"); 

counter++; 

printStr("|SendData| St");  

call AMSend.send(counter);  

printStr("|Timer0_Fired Handler| En");  } } 

 

 event void AMSend.sendDone(message_t* 

msg, error_t err) { 

 printStr("|SendData| En"); 

 printStr("|SendDone Handler| St");   } 

 printStr("|StartTimer0| St"); 

 call Timer0.startOneShot(1000); 

 printStr("|SendDone Handler| En");  } 

 

Code Generation produces the 

code and instrument the code 

with debugging statements. 

 

The statements contain the 

operation syntax as used in the 

UML model. 

 

The debugging statements 

indicate the start/end of each 

operation. 

 

  

 

Debugging 

Statements 

Trace  

File 

Nodes Power 

Log Files Parsing tools search 

for the entrees in 

each log file for the 

operation cycles.  

Avrora simulator generates a power log file for 

each node specified in the topology.  

 

Avrora generates a trace file with debugging 

statement outputs and the CPU cycle. 

 

 

The parsing tool calculates the power consumption for each 

operation in the model. 

 

The report contains the power consumption for each hardware 

component. 

 

The report is generated for each node so that the designer can 

conclude the worst power consumption node.  

Figure  6-3: Power Consumption Analysis of Counter Application 



 

 

6.4 Summary 

This chapter explained the integration between WSN simulators (i.e. Avrora simulator) 

and UML models that capture the design structure and the design behaviour. The UML model is 

able to analyze the power consumption of the deterministic components, such as LEDs, ADC, 

and sensors. However, the UML model is not capable of analyzing the power consumption of the 

communication process due to the non-deterministic nature of the multi-hop communication 

process. Avrora simulator provides the power consumption tool that produces the power 

consumption log file for each node in the network. The log file contains the power consumption 

of each hardware resource. The log file is updated with a new entry at each executed CPU cycle. 

In addition, Avrora simulator supports a debugging statement tool that prints out the string of the 

debugging statement when the complier reaches the statement location in the code. 

To achieve the integration between the Avrora simulator and the UML model so that the 

designer is able to predict the power consumption at the UML model layer, the generated code 

was instrumented with the debugging statements to indicate the start and the end cycle of each 

operation. The debugging statements contain the operation syntax, as shown in the UML model. 

In addition, a parsing tool was implemented to analyze the power log of all nodes and calculate 

the power consumption of all operations and event handlers, and then generates a report. The 

generated report contains the power consumption for all nodes and the breakdown of the power 

consumption for each operation in the node so that the designer can evaluate the worst node in 

the terms of power consumption and integrate those results in the UML model. The report 

contains the total power consumption for each hardware resource so that the designer can 

evaluate the performance of the hardware resource.   
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7 Evaluation 

7.1 Introduction 

This chapter evaluates this thesis approach by discussing the design process for a typical 

collector WSN  system called SensIV. For the SensIV system design, the chapter explains 

the  system architecture, the system requirements, the design process, and the power 

consumption  analysis using this thesis approach.   

As presented in the previous chapters, the system design of a wireless sensor system 

is  captured using UML object and state diagrams guided by a set of UML design patterns. If 

the  wireless sensor system consists of single hop communications the power consumption model 

is  deterministic and can be easily specified at the UML modeling layer. In these scenarios 

the  executed UML diagram features were leveraged to validate the design against the system 

requirements and analyze  the power consumption of the hardware components. For multi-hop 

sensor networks the  communication process of the WSN system has a non-deterministic 

behavior due to the  stochastic nature of the routing protocol algorithms. In the non-deterministic 

scenario, it is more suitable to  analyze the power consumption of the sensor network using a 

network simulator. In order to use  the network simulator a code generator is required which 

produces the code for the simulator as  well as the network configuration. Also, a parsing tool was 

implemented to analyze the power  consumption results from the simulator and help the software 

designer to integrate these results  back to the UML model so that the designer can improve the 

software design of the WSN  .   

For the non-deterministic systems , the power consumption analysis is developed by  using 

the UML modeling power consumption analysis approach in combination with the 

power  consumption analysis of the simulator. For the deterministic systems, the power 
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consumption  analysis at the modeling level is sufficient to estimate the power consumption of 

the system  without the necessity of using the simulation. However, the designer can use the code 

generation  tool to produce the code for the deterministic system and validate the produced code 

as part of  software development cycle.  

The rest of the chapter is organized as follows: Section  7.2 explains the alternative that 

designer can utilize to improve the power consumption. Section 7.3 focuses on the power 

analysis  of the SensIV system which consists of power consumption analysis at the modeling 

layer,  power consumption using the Avrora simulation tool, and the integration of the power 

analysis  simulator results to the SensIV UML model.  

7.2 Power Consumption Improvement 

This chapter shows how the designer can use the approach developed in this thesis to 

evaluate the enhancements that can be introduced to the design to improve the power 

consumptions. The enhancements can be categorized into 2 main categories:  

Modifying the software logic: The modification of software logic takes place at the 

modeling layer entirely since the logic is captured by using the UML modeling patterns that was 

introduced in Chapter 4. Meantime, the software logic has a strong impact on the power 

consumption of the sensor node components and the power consumption of the network. The 

impact of software modification on the sensor node power consumption is analyzed by the 

executed state-chart methodology that was presented in Chapter 4 while the impact of the 

network power consumption was analyzed by using the integration between Avrora simulator 

and the UML model that was presented in Chapter 5 and 6. This chapter presents four types of 

the software logic modification that can be used to improve the power consumption of the sensor 

node components and the power consumption of the network. An example of the power 
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consumption of a sensor node is demonstrated by analyzing the power consumption for two 

scenarios of software logic that controls the ADC unit. The analysis for the two scenarios was 

developed at the modeling layer using the executed state-chart feature as explained in 

section  7.3.3. The software logic that impacted the network power consumption is demonstrated 

by two scenarios for the data collection protocol and by modifying the event handler structure as 

explained in section  7.3.4. The data collection protocol is implemented by the software logic that 

was captured by the UML design patterns. However, the protocol controls the amount of data 

packets sent by each node and amount of data packets that is forwarded across the network and 

ultimately the power consumption of the network. The event handler structure contains the calls 

for the components to complete a specific task. Based on the network operation, some of the 

events handlers can be signaled often compared to other event handlers. The network analysis 

calculates how often each event was signaled while the network was operating. Therefore, the 

designer can modify the structure of the event handler to reduce the hardware resource calls in 

this particular event handler. 

Modifying the Network Configuration: The network configuration influences the power 

consumption of the network. For instance, the Low Power Listening (LPL) mode controls radio 

communication between the nodes and is initiated when the node is booted. There are no major 

changes in the UML model in order to initiate the LPL, however, it has to be presented in the 

UML model so that the code generator can produce the required code lines for the LPL as 

explained in Section 7.3.4.4.  

As explained in the Chapter 6 that the parsing tool analyzes the simulator results and 

generates a power consumption report that enables the designer to feedback the simulation 
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results back to the model (see Chapter 6). The feedback loop enables the designer to evaluate the 

modification and use alternatives to improve the design for power consumption.   

7.3 SensIV System Design 

7.3.1 SensIV System Requirements and Specifications 

The aim of the SensIV system is to monitor the temperature of a vineyard field. SensIV is 

considered as a typical collector WSN system consisting of a set of sensor nodes that collect 

temperature data across a field and  transmit this data to a collection point using wireless signals.  

The  nodes communicate with each other wirelessly until the data reaches the gateway where 

the  temperature values are stored in the database for further analysis.  

SensIV system consists of 10 nodes, each node contain the following:  

 Four temperature sensors: The sensors used are thermal sensors of type LM135 [4]. 

The sensor’s  accuracy is +/- 1
o
C and can measure a temperature range in between -

55
o
C and 150

o
C.  

  MDA300CA acquisition board: The MDA300CA data acquisition board from 

Crossbow  has expansion connectors for 7 single-ended and 4 differential ADC 

channels . 

  Wireless Iris node: The Iris wireless node uses the Atmel processor with 128 KB 

program  memory and 8KB RAM. In terms of radio communication, it uses 2.4GHz 

(IEEE802.15.4)  with a range of 500 meters. This type of node also supports a low-

power mode of operation for  the micro-processor and radio.  

  Solar cell: A solar cell is used to recharge the 2 AA alkaline batteries that power the 

sensor node. The  system was designed for continuous operation with sunlight 

conditions encountered in  Southern Ontario.  
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 CTP Routing Component: CTP is an address free protocol that maintains a tree 

routing topology among the sensor network to the  collector. The version of CTP used 

is the one available in the TinyOS deployment.   

The system requirements are as following:  

 Sensing the temperature: 

o The sensor is activated every 5 minutes. 

o The system turns the ADC on 1 minute before sensing.  

o The system signals the 4 sensors.  

o The system turns the ADC off. 

o The nodes send the data packages to the neighbour node. 

 Maximum overnight power consumption (7 hours) is 2000 mAH: 2000 mAH is the 

maximum capacity of the battery until the solar cell charges the battery during the 

day.  

The sensing portion of the design has a deterministic behaviour since the sensor 

is  activated every 5 minutes and the power consumption characteristics of the sensor and ADC 

can  be mathematically modelled. The sensing activity includes turning on the ADC for one 

minute   (this is known as the sensor warm-up period), followed by signalling the four sensors 

to  commence the sensing, and finally turning off the ADC. The communication process among 

the  nodes has a non-deterministic nature since SensIV is a WSN and the CTP routing protocol 

is  continuously trying to maintain a tree topology in a stochastic noisy environment.  

7.3.2 UML Models for SensIV System 

The service component pattern that was introduced in Section  4.3.1 captures the 

system  components by using defined stereotype classes. The UML model for SensIV contains 
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four  stereotype UML classes: the radio component; the routing component, the acquisition 

board  component, and the LEDs component as well as the SensIV software class. The composite 

class diagram has the four class diagrams that capture the behaviour of OS support components 

(itsRouting, ItsSensIV, itsMDA, and itsLEDs). Also, the composite class contains itsSensIV class 

which contains the design software component that controls the system behaviour  (see  

Figure  7-1). The five classes capture one sensor node design of WSN system.  

 

 

 

 

 

 

Figure  7-1: Service Components UML Model for SensIV 
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As mentioned in Section 4.3.1 that each stereotype class contains the methods and 

parameters that are provided by the components and are essential to manage the OS support 

components. Figure  7-2 shows an example of the routing stereotype class. The classes contain 

three methods: 

 startrouting: The system software signals this method to enable the routing protocol 

to build the routing tree. 

 stoprouting: The system software signals this method to stop the routing protocol. In 

most cases this method is used to restart the routing protocol. 

 getgnfo: The system software uses this method to collect information about the parent 

node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  7-2: Routing OS Component State-Chart 
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The methods startrouting,  stoprouting, and getinfo are signaled by the SensIV software 

component based on the software workflow. Once the state-chart component completes the 

operation, the service component signals an event back to the application software.  

The software behavior of SensIV is captured by itsSensIV class using the event handler 

pattern that was introduced in Section 4.3.2. The event handler pattern captures the events and 

the event handler structure. SensIV classes capture all the events that are signaled by the 

stereotypes classes and the event handler structure that contains node behavior once the event is 

signaled. The events that are captured by SensIV are signaled by the followings components: 

 Timers: Timers generally control the flow of the  entire system. Once the timer 

expires, the timer signaled the event Timer_fired. The event handler contains the 

execution steps that the node will flow. In SensIV, we have 2 main timers: 

o Timer1: The timer is started once the node is booted and it controls the main cycle 

of the node. Every 5 minutes the time expires and signals the event Timer1_fired. In 

the event handler, the software wakes up each node and starts to perform the 

sensing operation.  

o Timer2: The timer is started when the software turns the ADC on in order to 

warm up the hardware. Once the timer expires, the event handlers signal the event 

to start sensing.  

 Sensors: The sensor signals the software to indicate the completion of the sensing 

process. Due to the hardware limitation, the sensors have to be signaled sequentially. 

The sensors signal the events readDone that are signaled by the sensor classes (see 

Figure  7-3). 
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 Routing Protocol: The routing protocol signals  three events: 

o StartRotuing_Done: To indicate that the routing component is started. 

o StopRouting_Done: To indicate that the routing component is stopped. 

o GetInfo: To indicate that the reading of the parent node info is completed.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Radio: The radio unit signals the software to indicate that the sending operation is 

completed.  

 Booted: The hardware signals the software to indicate the completion of the booting 

process. Normally, the booted event is the first event to be signaled.  

 

Figure  7-3: Portion of SensIV State-Chart 
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 The association between the classes is captured by the Association of the Application 

and OS support Component pattern introduced in Section  4.3.3. The association 

captures the component wiring for the design. The component association enable 

IBM rational rhapsody to animate the UML diagram to complete the analysis. The 

association is completed by creating the ClassPart that links the SensIV application 

with the rest of the stereotypes classes. The created class parts are shown in the panel 

diagram (SensIV Class/Parts) (see Figure  7-4). 

 

 Figure  7-4: SensIV Panel Diagram 
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7.3.3 SensIV Analysis at the Modeling Layer 

As introduced in the previous chapter, the UML model execution feature was leveraged 

to validate the design workflow requirements and calculate the power consumption of the sensor 

node. The analysis at the modeling layer relies on the instrumentation for the state-charts of the 

stereotype classes, as explained in Chapter 4. 

7.3.3.1 System Design Validation Procedure   

The system design is validated against the system requirements by using the comparing 

sequence diagram feature that is supported by IBM rational rhapsody. The designer creates the 

assumed sequence diagram that contains the expected behaviour of the system to fulfil the 

requirements. The assumed sequence diagram is compared to the executed sequence diagram. 

The comparison shows if both sequence diagrams have the same order of signals between the 

components, states, and timing. The complete sequence diagram association is shown in 

Appendix IV.  

7.3.3.2 Sensor Node Analysis 

Based on SensIV system design, the components ADC, sensor, and LEDs are activated on 

a regular basis. The power consumption analysis for those components can be developed at the 

modeling layer since signalling those components occur on a deterministic manner. As 

mentioned in Section  4.5.1, the state-charts are instrumented with the execution time and the 

power consumption constraints for the hardware resources (i.e. ADC, sensors, and LEDs). The 

time and the power annotations are calculated based on real-time measurements [35] and shown 

in Table  7-1.  
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Component Current mA/sec 

ADC excitation 13 

Sensor  1 

LED 2.2 
Table  7-1: Power Consumption Constrains 

In order to demonstrate the advantages of performing  the power analysis at the software-

modeling layer, three scenarios were presented for controlling the ADC and each have 

a  significant impact on the power consumption of the sensor  unit.  

To recap, recall that in the SensIV application each  node supported 4 sensors. In the first 

scenario (S1), the  application signals the sensor excitation to turn on and then  signals the ADC to 

read the sensors one after another. While  the 4 sensors sense the temperature, the sensor 

excitation is  kept running. Finally, after the 4 sensors finish sensing, the  excitation is shut down. 

In the second scenario (S2), the  application signals the sensor excitation and then reads the  first 

sensor value. After the first sensor finishes sensing, the  application shuts down the sensor 

excitation, saves the  sensed data, and turns on the excitation to prepare the  second sensor for 

reading. In the third scenario (S3), the same  design flow happens as in the first scenario, except 

the  designer forgets to shut down the sensor excitation after  completing the sensing. Forgetting to 

shut down the sensor  excitation is one of the common design mistakes in WSNs.  Scenarios 1 and 

2 offer design alternatives while scenario 3  is simply a design mistake.  

The analysis was run for the three scenarios for a 7 hours period of lengths, which is the 

period when the batteries are not being charged with the solar cell. The node was activated every 

five minutes to trigger the  sensors. The results of the analysis are shown in Figure  7-5. The X-

axis represents the time component while the Y-axis shows the accumulative value of the 

consumed current. The analysis was run for the 3 scenarios for 7 hours and the node was 

activated every 8 minutes to trigger the sensors. The results showed that the first scenario had 
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consumed 3.16 mA or 0.05 mA/hr., and the second scenario had consumed 11.89 mA or 0.19 

mA/hr. while the third scenario had consumed 215 mA or 3.4 mA/hr. 

The designer has the choice to use the simulator to analyze the deterministic and the non-

deterministic components or to analyze the deterministic component only (i.e. power 

consumption of communication process) since the power consumption of the deterministic 

components are analyzed using the UML model execution technique.  

  Using the simulator to  analyze the power consumption of the communication process 

only will require the development of a sub- system that contains the communication control 

methods (i.e. sending and receiving) while the rest of the design is abstracted out. In this case, 

the total power consumption of the node will be the power consumption of the deterministic 

components (i.e. sensors, ADC, and LEDs) that are analyzed by the model in addition to the 

power consumption of the communication process that is analyzed by the simulator. The 

deterministic power consumption analysis for 7 hours is shown in  

Table  7-2.  

7.3.4 Power Consumption Analysis of the WSN Network 

SensIV design relies on CTP routing protocol to forward the sensed data to the one 

collector node where the information is further processed and displayed to the user. As explained 

in previous chapters, CTP protocol uses ETX method to establish the routing tree, which leads to 

the non-deterministic nature of the communication process. In addition, the data loss and the 

routing packages that exchanged between the nodes leads to the unpredictable power 

consumption of the communication process. Therefore, in order to complete the power 

consumption analysis, the network simulator Avrora is required.     
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Component Current mA Current mAH Joules 

Sensors 11830 mA 31 mAH 334 

ADC 1820 mA 0.5 mAH 5.4 

LEDs 3900 mA 1.11 10.8 

Total  32 mAH 350 
 

Table  7-2: Power Consumption Analysis for SensIV Determintsic Components 

IBM rational rhapsody exports the XML representation of the UML model. The code 

generator parses the XML representation and prompts the designer for the following design 

details that are required for the simulation: 

 The routing protocol: The routing protocol that designer will use for system. 

 

Figure  7-5: Power Analysis for Three Scenarios of Controlling the ADC 
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 The topology structure: The topology structure is defined by a text file, which 

contains the physical location of the nodes defined as X Y Z coordinates. The 

designer places sensors in the field to achieve the best monitoring resolution. The 

monitoring resolution is directly proportional to number of sensors in a square area. 

Additionally, the network connectivity is directly proportional to the number sensors 

in the square area because if the one of the nodes dies, the routing protocol can re-

build the tree using another node within the child node area. This thesis does not 

focus on the impact of the topology structure on the power consumption. Therefore, 

the topology structure used was provided with SensIV system documents. The 

topology structure configuration for the simulation is shown in Figure  7-6. The 

physical sensor location is displayed on a 2-D google map in Figure  7-7. 

 The maximum battery capacity: Normally the capacity of the rechargeable battery is 

2000 mAH (21600 Joule). Based on the power consumption requirement, the nodes 

should not cross the maximum capacity during the night (7 hours). 

Based on the information provided by the designer, the code generator builds the 

topology configuration file and the simulator configuration file. The simulator configuration file 

contains the flags that were required to print the debugging statements and print the calls 

between the components, the nodes platform, the reporting CPU formats (i.e. cycles or seconds), 

and the number of nodes (see Figure  7-8).   
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#Each line should be a node like: nodeid x y z rho 

#nodeid = node identifier 

#x y z = 3D node coordinates 

#rho: density of obstacles (if not present is zero) for each radio link  

#simulator will take the maximum rho between transmitter and receiver 

0   0  0   0  0 

1   7  98  -4   0 

2  5  62  -1  0 

3  26  6  3  0 

4  -5  131  -1  0 

5  18  126  4  0 

6  18  36  5  0 

7  54  0   0  0 

8  5  37  1  0 

9   7  98  1  0 

10  5  72  4  0 

Figure  7-6: SensIV Topology Structure 

 

 

Figure  7-7: Physical Location of SensIV Nodes 
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The generated code was instrumented by the debugging statements, which are necessary 

for the code validation procedure and the integration between the UML model and the simulator 

(see Appendix I for the generated code). Avrora simulates the code and prints out the 

debugging  statements that display the code semantics as well as the signals between the modules, 

so that the  designer can compare the semantics to the design semantics that are shown in the 

executed sequence  diagram (see Figure  7-9and Figure  7-10). In Figure 7-9, the simulator log file 

displays the debugging statement output, which prints out the state-charts ID that caused the 

code generator to produce the executed code by the simulator. The designer can verify that the 

model semantics matches the code semantics through the following comparison:  

 Comparison between the flow of the generated code semantics and the UML 

semantics: the sequence of the printed states-ID that was generated through 

debugging statements match the sequence of the states in the sequence diagram. For 

example, the debugging statements display the system flows as BootHandler – Leds_S7- 

action=simulate 

 colors=false 

 banner=false 

 platform=micaz 

 update-node-id=true 

 monitors=c-print, energy 

 monitors=calls 

 show-stack=false 

 call-sites=false 

 edge-types=false 

 logfile=Node 

 #report-seconds 

 #real-time 

 seconds-precision=1 

 seconds=10000 

 simulation=sensor-network 

 nodecount=12 

topology=./top.top 

Figure  7-8: The Simulator Configuration 
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Turnoff ADC StartRadio (see Figure 7-9). The sequence diagram shows the exact same 

flow in the sequence diagram (see Figure 7-10).   

 Comparison between the signals and the OS components at the coding layer and the 

signaling between the UML classes: the simulator displays the signaling messages 

between the modules at a low level (detailed signals). Meantime, the UML sequence 

diagrams displays the exact message, but at a higher abstraction layer. For example, at 

the coding level, starting the radio is achieved by a signal generated by the application 

to the CtpRoutingEngineP__0__StdControl__start  while this message is represented by 

StartRadio signal at the modeling layer.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   0       8025990  |BootedHandler| St 

   0       8026078  |Leds_S7| 

   0       8026193  |TurnoffADC| 

   0       8026304  |StartRadio| 

   0       8026306       --> PowerCycleP__SplitControl__start 

   0       8026464       <-- PowerCycleP__SplitControl__start 

   0       8026585  |StartRouting| 

   0       8026592       --> CtpRoutingEngineP__0__StdControl__start 

   0       8026621           --> CtpRoutingEngineP__0__chooseAdvertiseTime 

   0       8028854           <-- VirtualizeTimerC__0__startTimer 

   0       8028866       <-- CtpRoutingEngineP__0__StdControl__start 

   0       8029015  |BootedHandler| En 

   0       8029048       --> SchedulerBasicP__TaskBasic__runTask 

   0       8029104           --> PowerCycleP__startRadio__runTask 

   0       8029108               --> CC2420CsmaP__SplitControl__start 

   0       8045556  |StartRadioControlHandler| St 

   0       8045644  |Leds_S4| 

   0       8045773  |StartTimerS1| 

   0       8045775                   --> Atm128AlarmAsyncP__0__Counter__get 

   0       8045807                   <-- Atm128AlarmAsyncP__0__Counter__get 

   0       8045815                   --> VirtualizeTimerC__0__startTimer 

   0       8045901                   <-- VirtualizeTimerC__0__startTimer 

   0       8046120  |StartRadioControlHandler| En 

   0      43881941           <-- Atm128AlarmAsyncP__0__Counter__get 

   0      43881943           --> VirtualizeTimerC__0__fireTimers 

   0      43882404  |StartTimerS1Handler| St 

   0      43882492  |Leds_S1| 

   0      43882614  |ReadVoltage| 

   0      43882617               --> ArbiterP__1__Resource__request 

   0      43882646                   --> SchedulerBasicP__TaskBasic__postTask 

   0      43882690                   <-- SchedulerBasicP__TaskBasic__postTask 

   0      43882704               <-- ArbiterP__1__Resource__request 

   0      43882804  |TurnOnADC| 

   0      43882935  |StartTimerS2| 

   0      43882937               --> Atm128AlarmAsyncP__0__Counter__get 

   0      43882969               <-- Atm128AlarmAsyncP__0__Counter__get 

   0      43883267  |StartTimerS1Handler| En 

   0      43950594  |Vref_readDone Handler| St 

   0      43950682  |Leds_S4| 

   0      43950897  |Vref_readDone Handler| En 

   0      51039263  |StartTimerS2TimerHandler| St 

   0      51039393  |TriggerSensor0| 

   0      51039396               --> ArbiterP__1__Resource__request 

   0      51039425                   --> SchedulerBasicP__TaskBasic__postTask 

   0      51039469                   <-- SchedulerBasicP__TaskBasic__postTask 

   0      51039483               <-- ArbiterP__1__Resource__request 

   0      51039667  |StartTimerS2andler| En 

   0      51106635     |Sensor0_readDoneHandler| St 

   0      51106723  |Leds_S5| 

   0      51106831  |LoadArray| 

   0      51106961  |TriggerSensor1 

   0      51106964           --> ArbiterP__1__Resource__request 

   0      51107007           <-- ArbiterP__1__Resource__request 

   0      51107172  |Sensor0readDone| En  

   0      51171422  |Sensor1readDoneHanlder| St 

   0      51171510  |Leds_S5| 

   0      51171646  |TriggerSensor2| 

   0      51171649           --> ArbiterP__1__Resource__request 

   0      51171692           <-- ArbiterP__1__Resource__request 

   0      51171904  |Sensor1readDoneHanlder| En    

   0      51236231  |Sensor2readDoneHandler| St 

   0      51236319  |Leds_S5| 

   0      51236455  |TriggerSensor2| 

   0      51236458           --> ArbiterP__1__Resource__request 

   0      51236501           <-- ArbiterP__1__Resource__request 

   0      51236715  |Sensor2readDoneHandler| En    

   0      51301036  |Sensor3readDoneHandler| St 

   0      51301124  |Leds_S5| 

   0      51301239  |TurnoffADC| 

   0      51301642  |SendData| 

   0      51301650              --> CC2420ActiveMessageP__AMSend__send 

   0      15193363               <-- CC2420ActiveMessageP__AMSend__send 

   0      51301670  |Sensor3readDoneHandler| En 

   0       51301675  |SendDone Event Signalled|  St  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                 

  

                                                                                                                                                                                    Figure  7-9: The Call Trace Produced by Avrora 
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Figure  7-10: SensIV Executed Sequence Diagram 

For the power consumption, Avrora generates the following files: 

 Power log file: The power log file contains the power consumed by each hardware 

resource together with the CPU cycle. The file is updated whenever one of the 

resources is signaled (see Appendix II for the log file structure).  

 Trace file: The trace file contains the CPU cycles for each operation (see Appendix 

III for the trace file structure). 

In order to demonstrate how the power consumption report can enable the designer to 

improve the power consumption of SensIV system, an initial analysis was run for SensIV. The 

analysis for SensIV shows that the highest amount of power is consumed by nodes 1, 6, 8, and 9 

and the power consumed was 7289 Joules while the lowest amount of power was consumed by 

the other nodes and power consumed was 4368 Joules (see Table  7-4). Therefore, the total 

amount of power consumed by the worst nodes for 7 hours was 7289  Joules for the 

communication process (analyzed by the simulator) plus 350 Joules for the  deterministic 
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components (analyzed by the executed  model) which equals 7639 Joule total. This  total is less 

than 21600 Joule which is the battery’s maximum capacity which implies that the nodes will not 

die before the battery is recharged. The power consumption for the nodes 1, 6, 8, and 9 are 

considered the worst power consumption and is shown in Table 7-4.  

Node ID Total Power Consumption (Joules) 

0 4368 

1 7289 

2 4368 

3 4368 

4 4368 

5 4368 

6  7289  

7 4368 

8  7289  

9  7289  
Table  7-3: SensIV Nodes Total Power Consumption 

 

Event Handler Sign

aling 

Rate 

Breakdown Power Consumption for Hardware Resources 

(Joule) 

CPU Radio Board Green 

LED 

Yellow 

LED 

Red 

LED 

Total 

|TimerS1Handler| 8617 Energy Neglected  

 |SendDoneHandler|  8617 

|StartDoneHandler|  1 

 |RoutingStart|  1 0.052 0.019 0.0056 0 0 0 0.775 

|CallSend| 8617 1139.638 3132.180 146.104 228.193 228.193 228.193 5101.501 

|Booted| 1 Energy Neglected 

|ReceiveHandler| 8617 509.222 1536.031 57.190 33.110 33.124 18.921 2187.598 

Table  7-4: Power Consumption Report for Node 1, 6, 8, and 9 

    As explained in Chapter 6, the parsing tool provides the designer with the power 

consumption  breakdown report that contains the following information: 

 The  power consumption for each hardware resources activity (i.e. CPU, Radio, LEDs, 

and Board) that was associated with each event handler and each operation call.   

 The rate of signaling for each event handler and each  operation.  
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The information provided by the parsing tool gives the designer the following  alternatives 

in order to improve the power consumption of the design:   

 Modifying the Software Logic 

o Change Event Handler Structure 

o Switching Data Collection Protocol 

 Changing Network Configuration  

o Low power Listening Mode 

7.3.4.1 Modifying the Software Logic 

7.3.4.1.1 Modifying Event Handler Structure 

In case one of the event handlers is signaled often, the designer can change 

the  event  handler structure in order to decrease the calls to the hardware resources that were 

located in the event  handler  and eventually the power consumption will be decreased.  For 

example, based on Table  7-4 the event handlers |ReceiveHandler| is signaled 8617 times once a 

data package is received. If the designer removes the calls for the LEDs from those particular 

event handlers, the power consumption of the event handler will decrease and ultimately, the 

power consumption of the node will decrease.  

The modifications of the event handlers were developed in the UML state-chart. The code 

generator considers the change once the code is produced. Figure  7 9-A shows the state-chart 

while the calls for the LEDs were included in event handler structure while Figure  7 9-B  shows 

after the event handler is modified to remove the calls to the LEDs. The UML model 

modification leads to the remove the code associated with LED_S5 state. These modifications 

have enhanced the power consumption for the nodes 1, 6, 8, and 9 as shown in  

Table  7-5. 
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A. Receive Hander Before Design Modification 

 

 

 

 

 

B. Receive Handler After Design Modification 

Figure  7-11: Design Modification for Event Structure 

 

Event Handler Sign

aling 

Rate 

Breakdown Power Consumption for Hardware Resources 

(Joule) 

CPU Radio Board Green Yellow Red Total 

|TimerS1Handler| 8617 Energy Neglected  

 |SendDoneHandler|  8617 

|StartDoneHandler|  1 

 |RoutingStart|  1 0.052 0.019 0.0056 0 0 0 0.775 

|CallSend| 8617 1139.638 3132.180 146.104 228.193 228.193 228.193 5101.501 

|Booted| 1 Energy Neglected 

|ReceiveHandler| 8650 509.222 1536.031 0 0 0 0 2045 

 

Table  7-5: Power Consumption for Nodes 1, 6, 8, and 9 after Modification 

The removal of the LEDs calls from the event handlers is a simple example to show the 

alternatives that the design can do to improve the energy consumption by modifying the event 

handlers’ structure. However, the example shows that importance of the network simulation to 

determine the signaling rate of event handlers that are related to the network behaviour. 

Therefore, the network simulation results and the parsing for simulator results can be a guideline 

to the designer to change the design of the event handlers at the modeling layer.  
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7.3.4.1.2 Switching Data Collection Methodology  

The initial analysis of SensIV power consumption indicated that the sending operation 

was called 8617 and consumed 5101 Joule which is around 70% of the total consumed energy. 

Changing the rate of calling the send operation definitely improves the amount of energy 

consumed by this operation.  

There are two common data collection methodologies for WSN; aggregation and non-

aggregation protocols. In the non-aggregation methodology, the data packets are transmitted 

without any  node holding the packets for processing. This technique leads to call the sending 

operation often which leads to increase the radio power of the communication process among the 

network. In the data aggregation methodology, the node does not send the sensed data directly 

after sensing process is completed. However, the node waits to a specific event to occur and then 

combine both the sensed data and the event data in one data packet and send both data packets 

together. For example, the parent node waits until it receives the data from the child node and 

combines both the generated data and the child node data and send the data in one package. 

Another example, the node senses the temperature every cycle and sends the average temperature 

of two cycles. Sending the average of the two temperatures instead of sending the data after 

every sensed cycle will decrease the amount of power consumed in the communication process 

among the network [38].   

The initial design of SensIV was designed to use the non-aggregation methodology since 

each node sends the data directly after the sensing process is completed. SensIV software 

component was modified to use aggregation technique by averaging the two temperature values 

that were produced every two cycles. The send function is called after the average is calculated 
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to send the average value. This lead to decrease the number of calls to the “send” operation and 

the amount of powered consumed for the communication process.  

As shown in Figure  7-12, the state-chart is modified to calculate the average between the 

current sensed temperature and the previous sensed temperature. The sending operation is called 

every 6 minutes to send the average temperature of two values since the node is activated every 3 

minutes to sense the temperature.    

The design modification that changes the design from non-aggregation to aggregation 

data collection technique leads to decrease the number of calls for the sending operation from 

8677 calls to 4305 (see Table  7-5 and Table  7-6). Moreover, since the number packets sent by 

each child node are decreased, the number of packets received by the parent nodes is decreased 

as well. Decreasing the amount of data packets that were transferred across the network, leads to 

decreasing the amount of power consumption in the communication process. Figure  7-13 and 

Figure  7-14 compare the power consumed for sending and receiving by each node for both data 

collection protocols, aggregation protocol and non-aggregation methodologies. 
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Figure  7-12:Aggregation SensIV State-Chart Design 
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|TimerS1Handler| 8617 Energy Neglected  

 |SendDoneHandler|  8617 

|StartDoneHandler|  1 

 |RoutingStart|  1 0.052 0.019 0.0056 0 0 0 0.775 

|CallSend| 4305 569.261 1565.634 73.045 0 0 0 2207.94 

|Booted| 1 Energy Neglected 

|ReceiveHandler| 4305 140.9 485.604 18.06 0 0 0 2045 

 

Table  7-6: Aggregation Power Consumption for Nodes1, 6, 8, and 9 

 

 

 

 

 

 

 

 

 

 

 

Figure  7-13: Power Consumption of Network Sending Process 
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7.3.4.2 Network Configuration 

7.3.4.2.1 Low Power Listening Mode 

TinyOS offers a low power listening mode (LPL) that decreases the amount of power 

consumed by radio. LPL mode wakes up the node through time intervals to detect if the 

transmitter node sends any packets. The transmitter node keeps sending the packets until it 

receives acknowledgments or timeout from the linked layer. Once the receiver node receives the 

first data packet, the node stay awake until the sender receives the rest of the packets then it goes 

to sleep mode and wake up again at the end of the time interval. 

The LPL is a design choice that should be enabled once the node the node is booted. The 

LPL is enabled through the code line call myLPL.setLocalSleepInterval(LPL_INTERVAL), where 

myLPL is an instance of the wiring component. The implementation of LPL is offered by TinyOS 

support component which manages all the logic required for the mode. In order to enable the 

Figure  7-14: Power Consumption for the Network Receive Processing Process 
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mode the only change required to the design will be adding a state “Enable LPL_300” in the state-

chart as shown in Figure  7-15. The code generation will produce the necessary component wiring 

and the required code.  

  

 

 

 

 

 

 

Enabling the LPL saves significant amount of power that was consumed for the receiving 

process since the radio unit of the receiving node is not open for a long time to receive the 

package compared to the non-LPL mode. Figure 7-16 compares the power consumed by the 

receiving process for all nodes. As it shown, in the figure the amount of power saved is around 

50% compared to the normal network operation (non-LPL). 
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Figure  7-16: Power Consumption of Receiving Energy for LPL Vs Normal Mode 

 

Figure  7-15: Enabling LPL in Booted Event 
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7.3.5 Network Analysis Accuracy  

The focus of this thesis is the development of a framework and of a methodology 

to  design and analyzes the power consumption of WSN. The accuracy of the analysis values is 

not  the focus of this thesis. Nevertheless, the analysis results reflect the impact of the 

design  enhancements of the overall power consumption. The analysis results can indicate to the 

designer  whether the design enhancements have improved the overall power consumption of the 

system.   

Additionally, the accuracy of the power consumption analysis is driven by the accuracy 

of  the energy model (i.e. the annotated power model values):  

 The power consumption values that are annotated in the UML model and are used by  the 

model execution technique to analyse the power consumption of the 

hardware  component, are measured while the actual hardware system was running (see 

Section   4.5.1).  

 The power consumption values that are used by Avrora simulator to analyze the  network 

power consumption are calculated by measuring the power consumption of  an actual 

hardware system while the system was running. Based on the publication of  Avrora 

development team that were published in [39], the error of the power  consumption 

analysis of the simulator compared to the power consumption of the  actual hardware was 

measured using an Oscilloscope is 0.4% with standard deviation:   0.24.   

7.4 Framework Automation  

As the previous chapters show, the design process includes the following: 

 The design representation using the UML design patterns 

 The requirement validation using the sequence diagram comparison feature 
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 The power analysis at the modeling layer for the hardware component  

 The code and the simulator configuration generation for the platform  

 The network simulation and the power consumption analysis for the network 

 The simulation results parsing to integrate the results with the UML models 

 

Table  7-7 shows the automated intervention and the designer intervention of each stage of the 

process.   

Stage Designer Intervention Automated Intervention 

Representing the design in 

the UML layer 

 The designer uses the 

UML design patterns to 

represent the design 

structure and behaviour 

 The designer initiates the 

XML toolkit 

 XML tool kit provided by 

Rational Rhapsody 

software generates the 

XML text file that can be 

parsed by the code 

generator 

Analysis at the modeling 

layer 

 Using the sequence 

diagram comparison 

results to correct the 

design error 

 Using the power 

consumption results to 

enhance the design 

 Compares the sequence 

diagrams of the multiple 

scenarios and uses the 

colour code to indicate the 

missing signals, timing 

values, etc. 

 Calculates the power 

consumption of the 

hardware component  

Code generation  Imports the XML file to 

the code generator 

 Inputs the network 

topology structure  

 Inputs some of the 

platform specification, 

such as battery capacity 

and node platform 

 Builds the target code  

 Builds the simulator 

configuration  

 Instruments the code with 

the necessary debugging 

statements  

Simulations   Imports the generated code 

 Imports the simulation 

configuration file 

 Runs the simulator  

 Simulates the network 

behaviour 

 Calculates the power 

consumption for each node 

and generates the log file 

 Generates the trace file for 
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the debugging statements 

UML model and simulator 

integration 

 Imports the trace file and 

the logs file to the parsing 

tool 

 Uses the values printed by 

the parsing tool to 

determine the 

enhancements to the 

model   

 Parses the simulator files  

 Calculates the power 

consumption of each 

event, event handler, and 

method and prints the 

values to the designer 

 

Table  7-7: Designer and Automated Intervention Comparison 

To summarize, the designer intervention is as the following: 

- Linking the inputs and outputs of each stage  

- Interrupting the analysis results in order to modify the design 

To summarize, the automated intervention is as the following:  

- Executing the design model 

- Generating the required code and the simulator configuration files 

- Simulating the network behaviour 

- Parsing the simulation results and displaying the power consumption results to the 

designer 

7.5 Framework Generality 

The tools that were leveraged to developed this thesis approach can be classified as 

the  developed tools as part of the thesis contribution (i.e. UML models and code generator) and 

the  tools that were leveraged to develop the models and simulate the network behaviour 

(i.e.  Rational Rhapsody and Avrora Simulator ) as introduced in Section 1.4. This section 

discusses  the generality of the thesis tools, such as the support for other operating systems other 

than the  case study operating system TinyOS, using alternative UML tools to develop the 

models, and  using alternative simulators to simulate the network behaviour.   

 



125 

 

7.5.1 UML Model and Code Generator Generality 

The design patterns were inspired by a field design called SensIV, which 

is  TinyOS  based  operating  system. However, the patterns can be leveraged to represent the 

design  of other  WSN  operating  systems that have similar design semantics to TinyOS, such as 

Contiki   [15].  Contiki  operating system  offers a group of OS components that contain a group 

of  methods  and  parameters to control the  hardware elements of the node and those 

components  can  be  represented by the service component  patterns (see Section 4.3.1.). 

In  addition,  Contiki  operating systems is an event based operating  systems, therefore, using 

the  event  handler’s pattern  will capture the flow of the design  (see Section   4.3.2.).    

Moreover, the syntax that defines the hardware components, such as ADC, Radio, 

and  Leds,  are  defined  such that the syntax is generic so that the designer can use the 

same  model  for  generating  the proper  code for multiple WSN platforms.   

The design behaviour is represented in the model using the events and the 

event  handlers.  The code  generator parses the XML representation and creates a vector of the 

states in  each event  handler and  loads the code associated with each state from the database (see 

Section   5.3). The  basic  requirements for the code generator to successfully generate the code is 

the event  based nature  of  the design and the correct code syntax in the database. Therefore, the 

code  generator is  capable of  generating the code for any event-based system. Also, the 

instrumentation  strategy  relies on inserting  debugging statements at the beginning of each event 

handler and the  calls of each  methods. Those  characteristics are common among any event-based 

system.   
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7.5.2 The Generality of the Leveraged Tools 

The developed framework relies on the mentioned tools, Rational Rhapsody 

and  Avrora  simulators, to create the UML model and the simulate the network behaviour 

respectively.  Other  UML tools can be used instead of Rational Rhapsody to develop the UML 

models.  However, the  alternative UML tool has to be capable of generating the XML 

representation of  the UML  design. Since the XML file structure is standard, the introduced code 

generator in this  thesis is  capable of parsing the XML file and generating the proper code. In case 

the alternative  UML tool  does not support model execution technique, then the designer has to 

rely on the  simulator  completely to analyze the power consumption of the hardware components 

instead of  using the  model execution technique in Rational Rhapsody to analyze power 

consumption of the  hardware  components in the modeling layer.   

An alternative for Avrora simulator is Tossim [36] simulator. Both simulators 

require  the  nesC code to analyze the power consumption of the hardware components and the 

network  behaviour  and both simulators support code instrumentation. Therefore, using Tossim 

simulator  will require changing  the debugging statements inserted by the code generator to 

instrument the  code, for instance  from printStr (used by Avrora) to db (used by Tossim), while 

the printed string  will remain the  same.  However ,  Avrora simulator was chosen to conduct the 

power consumption  analysis for the network  due to the detailed log file for the power 

consumption. The entries in  Avrora log file are updated with the power drained from battery, as 

well as, the time stamp of the  process. The log file details are essential for the parsing tool to 

integrate the simulation results  with the UML models.   
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7.6 Threats to Validity 

This section discusses the WSN system ontology in order to explore the capability of the 

developed framework to design and to analyze various types of WSN systems. A typical WSN 

system consists of a group of nodes, which contain a sending and receive unit, a group of 

attached sensors, a processor, memory, and a deployed software application. In addition, the 

WSN system contains a routing protocol, a topology structure for the nodes, and a gateway node 

that collects all the data.  The nodes communicate wirelessly to deliver the information to one 

gateway node that has sending and receiving capabilities. Normally, the gateway is attached to 

central computer to further process the collected data and enable global access to the data 

through internet. Based on AKyildize et. Al. [6] and Yick et. Al. [40] WSN systems can be 

classified based on: 

7.6.1 Monitored Data Type  

Examples of monitored data include temperature, humidity, and pressure. One WSN node 

can contain multiple sensors of the same type, for example multiple temperature sensors or 

multiple sensor types, such as a temperature and a pressure sensor. From a power consumption 

efficient design perspective, the type of the monitored phenomena is irreverent to the power 

consumption analysis compared to the power consumed by the sensor hardware. The power 

consumption analysis framework that was developed in this thesis requires annotating the power 

consumed by the sensor such that framework can analyze the overall power consumption of the 

sensor hardware.  
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7.6.2 Data Collection Protocols   

The WSN data collection protocols can be categorized as follows:  

 Point-to point protocol: The nodes sense the phenomena and send the sensed data to the 

gateway node directly without passing the data packet through any neighbour nodes. The 

communication process can occur through optical signals, such as the system developed 

in [41] or occur through wireless signal that follows 802.11 protocol, such as the system 

developed in [42]. The communication process has a deterministic nature since there is 

no data forwarding or control packets involved (see Section 2.2). Therefore, the power 

consumption of the communication process can be analyzed through annotating the UML 

model with the sending and receiving power values. The power consumption can be 

analyzed using the model execution techniques that were used to analyze the power 

consumption of the SensIV hardware component (see Section  7.3.3) since the hardware 

components in both cases have a similar operating scenario.  

 Multi-hop communication protocol: The routing protocol builds a routing tree that 

enables the nodes to pass the data between multiple nodes until the data is delivered to 

the gateway.  Using the multi-hop protocol enables the designer to deploy multiple nodes 

and so increase the monitoring resolution to cover the operating fields using limited 

wireless range nodes. This thesis framework is capable of analyzing the power 

consumption of the multi-hop communication protocol, which was illustrated through 

power consumption analysis for SensIV that uses CTP protocol (see Section  7.3.4).  

7.6.3 Fault Tolerance Capability 

Some of the sensors may fail while they are operating due to power consumption issues 

or destruction of the sensor caused by the operating conditions, such as the military WSN 
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systems. The capability of the sensors to function without interruption due to the failure relies 

primarily on the software logic that controls the nodes behaviour. For instance, if one of the 

nodes dies the routing re-establishes the network routing tree to avoid the dead node.  

This thesis presented a framework that analyzes the influence of changing the software 

logic on the network power consumption. The WSN simulator simulates the network behaviour 

and considers the software logic modification that occurred at the model level such that the 

simulator analysis results reflect the impact of these modifications (see Section  7.3.4).   

7.6.4 Hardware Constraints 

The hardware constraints of a WSN node are defined as the sensing unit, the radio unit, 

the processor unit, and the memory unit. The WSN systems are classified based on the hardware 

constraints as follows: 

 The cost of the hardware constraints. 

 The capability of the hardware constraints to operate in high densities. 

 The hardware constraints capability to adapt to the environment.  

 The power consumption of the hardware constraints.    

The focus of this thesis is the designing of power aware WSN systems. The power 

consumption of the hardware constraints can be predicted using the UML modeling analysis 

method introduced in Section  4.5.1 and are demonstrated by the analysis for SensIV hardware 

components (see section 7.3.3).  

7.6.5 Network Topology 

The network topology defines the physical location of the network nodes. Defining the 

topology during the designing phase reduces the installation cost and eliminates the need to re-

organize the topology.  This thesis does not focus on designing the optimum topology of the 
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network. However, the topology structure influences the worst node for power consumption 

since the node’s location determines the amount of packets that are passed through that particular 

node. The framework enables the designer to insert the network topology to the code generator. 

The code generator produces the simulator configuration that includes a network topology (see 

Chapter  5). Based on the network topology, the network simulator analyzes the power 

consumption of each node considering the topology structure. Using the parsing tool, this thesis 

framework integrates the simulation results with the UML model (see Section  6.3). The designer 

can test the influence of the different topology configurations on the overall power consumption.  

7.6.6 Software Design 

The software design controls the hardware components of the nodes and the node 

behaviour. Based on the survey mentioned above, the software design can be categorized into 2 

main categories: 

 Sensor Management Protocol (SMP): The sensor software logic provides software 

operations and methods to control the data aggregation, exchanging data to locate the 

sensor, time synchronization, and turning on/off hardware components. The SMP 

structure influences the power consumption of the nodes. This thesis examined the 

impact of modifying the sensor software logic on the power consumption through using 

the model execution techniques and the integration of using the simulation with UML 

models. Sections  7.3.3 and  7.3.4 demonstrate the framework capability to detect the 

impact of turning the SensIV hardware components on/off, changing the event handler 

structure, and changing the data collection methodology.   

 Sensor query and data dissemination protocol (SQDDP): Some of the WSN systems 

require sending dissemination commands from the gateway node to the rest of the nodes 
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to change of the network operating parameters, such as the data-querying rate. This thesis 

framework relied on analyzing the power consumption of the network behaviour using 

the simulator. In addition, the simulation results are integrated with the UML model using 

the parsing tool. Avrora simulator, which was leveraged in this thesis, supports the packet 

injection feature. The feature simulates any dissemination commands sent by the 

gateway. The power consumption of any node activity is analyzed by the simulator and 

creates an entry in the node log files (see Section  1.4.2). All the log files are parsed using 

the parsing tool that was implemented as part of the thesis framework.  

7.7 Summary  

This chapter presented SensIV system as a case study to validate the approach that was 

developed in this thesis. Explained in this chapter was the structure of SensIV system and the 

system requirements in order to demonstrate how the developed UML patterns and the power 

consumption analysis can assist the designer to represent the design at higher abstraction layers 

and improve the design for the power consumption. SensIV design is represented using five 

classes (i.e. one class represents the software design and four classes represent the OS 

components). The UML executed diagrams ware used to validate the procedural requirements of 

SensIV system, such as the sensing timing and the signalled sensors. In addition, the power 

consumption of the sensor node was analyzed using the executed and the instrumented state-

charts. The sensor node analysis was demonstrated through testing 3 scenarios of controlling the 

sensors and ADC in order to select the best energy efficient scenario. The power consumption of 

the sensor network was analyzed through generating the code as well as the simulator 

configuration files. The simulation results were parsed to feedback the simulation results to the 

UML model so that the designer can improve the power consumption of the design. The parsing 
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results enable the designer to improve the network power consumption through modifying the 

network logic, modifying the event handler’s structure, switching the data collection 

methodology, and changing the network configuration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



133 

 

8 Summary and Conclusion 

8.1 Summary  

Chapter 1 introduced the motivation of the thesis work by explaining the challenges of 

the design process of WSNs. In addition, the chapter introduced the scope of research, the thesis 

statement, and a brief introduction about the tools that were leveraged in this thesis work. 

Chapter 2 explained the WSN design background by explaining the WSN structure, WSN power 

consumption, and WSN modeling. The existing modeling techniques for WSN were surveyed in 

Chapter 3. Chapter 3 classified the modeling techniques based on their representation for the 

sensor node at the modeling layer, sensor network at the modeling layer, and the analysis tools 

that are associated with each modeling technique.  

This thesis has presented a group of UML design patterns that enable the designer to 

represent the WSN at higher abstraction layers and to analyze the power consumption of sensor 

node components (Chapter 4). In addition, this thesis presented a code generator that generates 

the required code and the required configuration for WSN simulation tool so that the designer 

can analyze the power consumption of the sensor network communication process (Chapter 5). 

The simulation results were integrated with the UML design through parsing the simulator log 

file so that the designer can improve the design at the modeling layer (Chapter 6). The thesis 

methodology was evaluated through applying the UML design patterns and power consumption 

methodologies to a typical WSN collector system called SensIV (Chapter 7). 

8.2 Thesis Contribution  

This thesis developed a framework and methodology for model level analysis for 

WSNs.  The framework allows the designer to represent the design at the modeling layer and 

enables the  designer to early detect the design errors, validate the design against the system 
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requirements,  and improve the power consumption of the design. The thesis leverages the 

simulation tools to  analyze the networking power consumption and integrates the simulation 

results with the design  representation at the modeling layer (i.e. UML models). The developed 

framework contains the  following developed tools:  

1. This thesis presented a UML modeling approach to capture the WSN design at higher 

abstraction layers other than the coding level. Three UML design patterns were 

defined which enabled the designer to capture the design structure and the design 

behaviour by capturing the design OS support  components, the component’s 

associations, and the event/events handlers of the design. The UML design pattern 

enable the designer to validate the operational requirements occurred by using the 

sequence diagram comparison feature that is supported by IBM rational rhapsody. 

The UML model execution feature enables the designer to analyze the power 

consumption of the sensor node components (i.e. ADC, Sensors, CPU, and LEDs). 

The UML diagrams are instrumented using the power consumption values for each 

hardware component and are instrumented by the timing values of each component. 

The timing and power consumption instrumentation are essential for the UML model 

execution   to validate the operational requirement and to analyze the power 

consumption. 

2. This thesis presented a code generator developed to parses the model information and 

generate the proper code for the simulator and the simulator configuration. The code 

generator instruments the code through the debugging statements for two purposes: 

verifying that the code semantics match the design semantics and integrating the 

simulation results with the model.  
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3. This thesis presented a methodology to integrate the UML design and Avrora 

simulation so that designer can estimate the power consumed by the sensor network 

at the modeling layer. The integration was achieved through using the debugging 

statements that were generated by the code generator and through using the parsing 

tool that was implemented as part of the thesis contribution. The debugging 

statements are displayed at the start and the end of the CPU cycles of the event 

handlers and the call operations. The implemented parsing tool used the cycle’s 

information and calculated the power consumption of each node through searching 

the power consumption log files entries that were identified by CPU cycles as well.  

8.3 Future Work 

This thesis presented an approach to capture the design at higher abstraction layers other 

than the coding level. In addition, this approach is capable of analyzing the design power 

consumption and provides details about the power consumption of each hardware component by 

instrumenting the UML diagrams and by integrating WSN analysis results with the UML 

models.   

As future work, the developed approach can be extended to analyze the non-functional 

requirements, such as the system latency, since some WSN systems require hard-deadlines in the 

performance. The system latency requires calculating the worst case execution time (WCET) 

factor of the OS support components of the design and the delay periods to deliver the package 

from the source node to the destination node. The UML model analysis approach developed in 

this thesis can be extended to analyze the software and hardware latency by instrumenting the 

state-charts with the WECT factor. Additionally, the integration of UML models and the 

simulation tools can be used to analyze the network delay to deliver the packages.  
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The current approach can be extended to develop WSN safety systems. The WSN safety 

systems are considered Wireless Sensor Actor Network systems where the system gathers the 

information and reacts in response to the gathered information to avoid risks. Based on the safety 

protocols, such as ISO 262626 protocols, the designer defines the system hazards risks and the 

safety requirements. The safety requirements normally involves the response time of the system, 

the predefined actions, or the system states to avoid risks.  

Based on the safety protocols, the validation procedure of the safety requirements occurs 

at the early stages of the design process before the actual implementation of the system. In 

addition, the design process requires back-to-back code verification process, which is verifying 

that the code semantics match the design semantics. This thesis approach can validate the safety 

requirements at the modeling level using the UML diagram instrumentation and the sequence 

diagram comparison feature. In addition, this approach is capable of developing the back-to-back 

verification by instrumenting the generated code with debugging statements and compared it to 

the system sequence diagrams.    

As an improvement to the developed approach, the code generator can be extended to 

support multiple platforms other than TinyOS, which is study case used in this thesis. The code 

generator can produce the code for event-based operating systems. However, the code generator 

database needs to be updated with the programming language syntax.  

In addition, the current approach relies on using three domains to complete the 

development cycle: the IBM rational rhapsody to create the model and generate the XML 

representation for the model; the code generator and parsing tool that generate the nesC code and 

parses the simulator information respectively; and the Avrora simulator that simulates the 

network behaviour and calculates the power consumption. The approach used in this thesis relied 
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on exporting files from each domain and injecting the files to the next domain. Incorporating the 

code generator and the simulator into one tool will ease using this approach to complete the 

analysis. Therefore, the designer must inject the XML design representation to the new tool and 

the new tool will be responsible to generate the code, run the simulation, and parse the 

simulation results.  
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10 Appendices  

Appendix I 

The appendix shows the generated code for SensIV system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#include "AvroraPrint.h" 

module SensIV{ 

uses interface Boot; 

uses interface Leds as Leds; 

uses interface GeneralIO as myPW1; 

uses interface SplitControl as myRadio; 

uses interface StdControl as my; 

uses interface Timer<TMilli> as myTimer; 

uses interface Read<uint16_t> as mySensor0; 

uses interface Read<uint16_t> as myBattery; 

uses interface GeneralIO as myPW7; 

uses interface Timer<TMilli> as myTimer2; 

uses interface StdControl as myRouting; 

uses interface Read<uint16_t> as mySensor1; 

uses interface Read<uint16_t> as mySensor2; 

uses interface Read<uint16_t> as mySensor3; 

uses interface Send as mySend; 

uses interface Receive as myReceive; 

} 

implementation  { 

bool sendbusy=FALSE; ; 

uint16_t reading[];; 

uint16_t voltage=380; ; 

message_t sendbuf; 

 

event void Boot.booted() { 

 

printStr("|BootedHandler| St"); 

printStr("|Leds_S7|"); 

call Leds.led0Off(); 

call Leds.led1Off(); 

call Leds.led2Off(); 

printStr("|TurnoffADC|"); 

call myPW1.set(); 

printStr("|StartRadio|"); 

call myRadio.start(); 

printStr("|StartRouting|"); 

call my.start(); 

printStr("|BootedHandler| En"); 

} 

event void myRadio.startDone(error_t error) { 

printStr("|StartRadioCotrolHandler| St"); 

printStr("|Leds_S4|"); 

call Leds.led0Off(); 

call Leds.led0On(); 

call Leds.led2Off(); 

printStr("|StartTimerS1|"); 

call myTimer.startPeriodic(5000); 
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event void myTimer2.fired() { 

printStr("|WarmUpTimerHandler| St"); 

printStr("|TriggerSensor0"); 

call mySensor0.read(); 

printStr("|WarmUpTimerHandler| En"); 

} 

 

event void myTimer.fired() { 

printStr("|SamplerTimerHandler| St"); 

printStr("|Leds_S1|"); 

call Leds.led0Off(); 

call Leds.led1Off(); 

call Leds.led2On(); 

printStr("|ReadVoltage|"); 

call myBattery.read(); 

printStr("|TurnOnADC|"); 

call myPW7.makeOutput(); 

call myPW7.clr(); 

call myPW1.makeOutput(); 

call myPW1.set(); 

printStr("|StartTimerS2|"); 

call myTimer2.startPeriodic(1000); 

printStr("|SamplerTimerHandler| En"); 

} 

event void myBattery.readDone(error_t result, uint16_t data) { 

printStr("|Vref_readDone Handler| St"); 

printStr("|Leds_S4|"); 

call Leds.led0On(); 

call Leds.led1Off(); 

call Leds.led2On(); 

printStr("|Vref_readDone Handler| En"); 

} 

event void myRadio.stopDone(error_t error) { 

printStr("|StopRadio| St"); 

call Leds.led0On(); 

call Leds.led1On(); 

call Leds.led2Off(); 

call myRadio.start(); 

call myRouting.start(); 

printStr("|StopRadio| En"); 

} 

event void mySensor1.readDone(error_t result, uint16_t data) { 

printStr("|Sensor1readDoneHanlder| St"); 

printStr("|Leds_S5|"); 

call Leds.led1On(); 

call Leds.led0On(); 

call Leds.led2On(); 

printStr("|TriggerSensor2"); 

call mySensor2.read(); 

printStr("|Sensor1readDoneHanlder| En"); 

} 
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event void mySensor2.readDone(error_t result, uint16_t data) { 

printStr("|Sensor2readDoneHandler| St"); 

printStr("|Leds_S5|"); 

call Leds.led1On(); 

call Leds.led0On(); 

call Leds.led2On(); 

 

printStr("|TriggerSensor2"); 

call mySensor3.read(); 

printStr("|Sensor2readDoneHandler| En"); 

} 

event void mySensor3.readDone(error_t result, uint16_t data) { 

printStr("|Sensor3readDoneHandler| St"); 

printStr("|Leds_S5|"); 

call Leds.led1On(); 

call Leds.led0On(); 

call Leds.led2On(); 

printStr("|TurnoffADC|"); 

call myPW1.set(); 

printStr("|StartTimerS1|"); 

call myTimer.startPeriodic(5000); 

printStr("|SendData|"); 

call mySend.send(&sendbuf, 56); 

printStr("|Sensor3readDoneHandler| En"); 

} 

event message_t* myReceive.receive(message_t*msg, void* payload, uint8_t len) { 

printStr("|ReceiveHanlder| St"); 

printStr("|Leds_S3|"); 

call Leds.led0Off(); 

call Leds.led1On(); 

call Leds.led2On(); 

returnmsg; 

printStr("|ReceiveHandler| En"); 

} 

} 
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Appendix II 

This appendix shows the energy log file for one of the sensor node. The log file shows the 

hardware components, the CPU cycle for each power consumption entry, and the power consumed value 

for each hardware component during each processor cycle.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cycle CPU Yellow Green Red Radio SensorBoard flash total 

0 0.0075667 0.0 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.0082887 

8011181 0.0075667 0.0 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.0082887 

8011182 0.0075667 0.0 0.0 0.0022 2.0E-5 7.0E-4 2.0E-6 0.010488699999999998 

8011183 0.0075667 0.0 0.0 0.0022 2.0E-5 7.0E-4 2.0E-6 0.010488699999999998 

8011184 0.0075667 0.0 0.0022 0.0022 2.0E-5 7.0E-4 2.0E-6 0.012688699999999999 

8011185 0.0075667 0.0 0.0022 0.0022 2.0E-5 7.0E-4 2.0E-6 0.012688699999999999 

8011186 0.0075667 0.0022 0.0022 0.0022 2.0E-5 7.0E-4 2.0E-6 0.0148887 

8011187 0.0075667 0.0022 0.0022 0.0022 2.0E-5 7.0E-4 2.0E-6 0.0148887 

8011188 0.0075667 0.0022 0.0022 0.0 2.0E-5 7.0E-4 2.0E-6 0.012688699999999999 

8011189 0.0075667 0.0022 0.0022 0.0 2.0E-5 7.0E-4 2.0E-6 0.012688699999999999 

8011190 0.0075667 0.0022 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.010488699999999998 

8011191 0.0075667 0.0022 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.010488699999999998 

8011192 0.0075667 0.0 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.0082887 

8013452 0.0075667 0.0 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.0082887 

8013453 0.0033433 0.0 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.0040653 

8017864 0.0033433 0.0 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.0040653 

8017865 0.0075667 0.0 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.0082887 

8026224 0.0075667 0.0 0.0 0.0 2.0E-5 7.0E-4 2.0E-6 0.0082887 

8026225 0.0075667 0.0 0.0 0.0 4.26E-4 7.0E-4 2.0E-6 0.0086947 

8027496 0.0075667 0.0 0.0 0.0 4.26E-4 7.0E-4 2.0E-6 0.0086947 

8027497 0.0075667 0.0 0.0 0.0 0.0188 7.0E-4 2.0E-6 0.027068699999999998 

8029314 0.0075667 0.0 0.0 0.0 0.0188 7.0E-4 2.0E-6 0.027068699999999998 

8029315 0.0033433 0.0 0.0 0.0 0.0188 7.0E-4 2.0E-6 0.0228453 

9661274 0.0033433 0.0 0.0 0.0 0.0188 7.0E-4 2.0E-6 0.0228453 

9661275 0.0075667 0.0 0.0 0.0 0.0188 7.0E-4 2.0E-6 0.027068699999999998 

9661599 0.0075667 0.0 0.0 0.0 0.0188 7.0E-4 2.0E-6 0.027068699999999998 

9661600 0.0033433 0.0 0.0 0.0 0.0188 7.0E-4 2.0E-6 0.0228453 

………………. 
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Appendix III 

This appendix shows the trace file for the nodes, the CPU cycle, and the output of the debugging 

statements.  

 Loading Node.elf...[OK: 0.125 seconds] 

===================================================== 

Node          Time   Event 

------------------------------------------------------------------------------  

   0       8012848  |Booted| St 

   0       8012992  |RoutingStart| St 

   0       8013392  |Booted| En 

   0       8027833  |RoutingStart| En 

   0       8028005  |StartDoneHandler| St 

   0       8028149  |StartTimerS1| St 

   0       8028431  |StartTimerS1| St 

   0       8028728  |StartDoneHandler| En 

   8       8012848  |Booted| St 

   8       8012992  |RoutingStart| St 

   8       8013392  |Booted| En 

   8       8027833  |RoutingStart| En 

   8       8028005  |StartDoneHandler| St 

   8       8028149  |StartTimerS1| St 

   8       8028431  |StartTimerS1| St 

   8       8028728  |StartDoneHandler| En 

   5       8012848  |Booted| St 

   5       8012992  |RoutingStart| St 

   5       8013392  |Booted| En 

   5       8027833  |RoutingStart| En 

   5       8028005  |StartDoneHandler| St 

   5       8028149  |StartTimerS1| St 

   5       8028431  |StartTimerS1| St 

   5       8028728  |StartDoneHandler| En 

   4       8012848  |Booted| St 

   4       8012992  |RoutingStart| St 

   4       8013392  |Booted| En 

   4       8027833  |RoutingStart| En 

   4       8028005  |StartDoneHandler| St 

   4       8028149  |StartTimerS1| St 

   4       8028431  |StartTimerS1| St 

   4       8028728  |StartDoneHandler| En 

   9       8012848  |Booted| St 

   9       8012992  |RoutingStart| St 

   9       8013392  |Booted| En 

   9       8027833  |RoutingStart| En 

   9       8028005  |StartDoneHandler| St 

   9       8028149  |StartTimerS1| St 

   9       8028431  |StartTimerS1| St 

   9       8028728  |StartDoneHandler| En 

   3       8012848  |Booted| St 

………….. 

    


