
CORRELATION AND REAL-TIME CLASSIFICATION OF PHYSIOLOGICAL STREAMS FOR 

CRITICAL CARE MONITORING 

 

 

by 

Anirudh Thommandram 

 

 

A Thesis Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

 

Master of Electrical and Computer Engineering 

 

in 

 

The Faculty of Engineering and Applied Sciences 

Program 

 

 

University of Ontario Institute of Technology 

December, 2013 

 

 

© Anirudh Thommandram, 2013



 

ii 
 

Certificate of Approval 

 
  



 

iii 
 

Abstract 

This thesis presents a framework for the deployment of algorithms that support the correlation and 

real-time classification of physiological data streams through the development of clinically meaningful 

alerts using a blend of expert knowledge in the domain and pattern recognition programming based on 

clinical rules.  Its relevance is demonstrated via a real world case study within the context of neonatal 

intensive care to provide real-time classification of neonatal spells.  Events are first detected in 

individual streams independently; then synced together based on timestamps; and finally assessed to 

determine the start and end of a multi-signal episode.  The episode is then processed through a classifier 

based on clinical rules to determine a classification.  The output of the algorithms has been shown, in a 

single use case study with 24 hours of patient data, to detect clinically significant relative changes in 

heart rate, blood oxygen saturation levels and pauses in breathing in the respiratory impedance signal.  

The accuracy of the algorithm for detecting these is 97.8%, 98.3% and 98.9% respectively.   The accuracy 

for correlating the streams and determining spells classifications is 98.9%.  Future research will focus on 

the clinical validation of these algorithms and the application of the framework for the detection and 

classification of signals in other clinical contexts.  
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Chapter 1 -  Introduction 

This thesis presents a method for correlation and real-time classification of physiological streams for 

critical care monitoring.  The method is instantiated in a real-time computer software environment 

enabled by stream computing.  Its relevance is demonstrated via a real world case study within the 

context of neonatal intensive care to provide real time classification of neonatal spells.  A neonatal spell 

is a cardiorespiratory event that presents with variable combinations of cessation of breathing, decrease 

in blood oxygen saturation, and decrease in heart rate.  Common causes of spells include physiological 

immaturity, respiratory conditions, and infection. A spell may be the only manifestation of a seizure 

caused by a brain haemorrhage or stroke.  Determination of the cause of spells often involves multiple 

invasive investigations before the cause is established and the real-time classification of spells helps 

narrow down the list of potential diagnoses thus reducing the number of invasive tests.  

1.1 -  Current State of Bedside Monitors 

In a critical care environment, there is a need for continuous monitoring of the physiological state of 

patients.  But most intensive care units are limited by human resources and technological assistance to 

perform this in a truly continuous fashion.  The techniques for gathering physiological information has 

come a long way since the 1960s when vital sign monitoring was first implemented at the bedside.  

Much advancement has been made in the design of sensor circuitry and signal processing algorithms to 

reduce noise in signals [Thomas et al., 1979].  Today, these devices are a staple in any patient care 

scenario and can gather many physiological signals simultaneously and display them on a screen for 

interpretation by humans. 

 In fact, the number of physiological parameters that a standard bedside monitor collects and 

displays on screen is staggering.  However, even though the amount of raw data displayed is large, the 

ability to extract useful information is mostly left up to the person interpreting the screen.  Even state-
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of-the-art patient monitors offer very limited data integration and analysis for non-trivial clinical 

decision support as they still follow the single-sensor-single-indicator approach (SSSI) [Drews, 2008].  A 

result of some of the simplistic alarm algorithms present in current patient monitors is that too many 

false alarms are generated.  This point needs to be clarified – the alarms thrown are “correct” in 

detecting anomalies in the physiological signal.  However, this does not necessarily mean that an audible 

alert was necessary.  Anomalies are more than likely to be artefacts caused by noise from sensors.  Even 

with a clean signal, an alert based on a simple threshold breach of a parameter may be of no clinical 

significance in the context of the patient and other physiological data streams [Koski et al., 1990].   

It is this context that is lost in current standard bedside monitors.  The monitors lack the 

capability of correlating several data streams into one, “smarter” alert.  The high output of clinically 

insignificant audible alerts may have additional unintended consequences such as the phenomenon of 

alarm fatigue [Meredith & Edworthy, 1995; Tsien, 1997b].  

1.2 - Problem Statement 

The traditional method for developing such algorithms or models is performing retrospective analysis of 

the physiological data and clinical annotations.  The data is lined up with the annotations and panning 

through from start to finish one can see the signal patterns that correspond with each annotation.  One 

of many machine learning algorithms such as neural networks [Guez & Nevo, 1996], decision trees 

[Tsien et al., 2000], and fuzzy logic [Mirza et al., 2010; Becker et al., 1994; Kickert & Mamdani, 1978] is 

applied to the raw signals and the corresponding annotations.  While technically this approach seems 

sound, there are several limitations to the method.  One of the main issues is that the physiological data 

is collected by the bedside monitor, but the annotations are collected separately.  This can cause the 

timestamps of data and events to be unsynchronized.  While the offset may not be very much and quite 

possibly insignificant to a human observer, when that data is used to train models and algorithms it 
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introduces error and uncertainties.  To mitigate such errors, some assumptions are made on the data 

and this leads to results that are potentially clinically invalid.   

There is another major concern when using black box modeling systems for classifying 

conditions from physiological signals.  Such systems make classifications based on patterns and 

similarities learned from training data and so the actual behaviors in the signal are not clearly defined.  

This adds to the uncertainty in a way that cannot be related to the classification process performed by 

human experts.  The way these processes define features is not provided for the human to examine and 

it does not work the same way that human decision making does when analysing the same data 

streams.  Many attempts at implementing clinical decision support systems are faced with this issue and 

clinical experts that the systems are designed to support are not confident in the output [Waterson, 

1988].   

1.3 - Thesis Objective 

In order to bring bedside monitor alerts into a new age, a system that uses real-time streaming of 

physiological data together with algorithms that check the correlation of several parameters of different 

sampling frequencies is required. A framework for developing clinically significant alerts using a blend of 

expert knowledge in the domain and pattern recognition programming based on clinical rules is the 

objective of this thesis.   

This methodology is implemented for the task of automated recognition and classification of 

neonatal spells.  The physiological data streams of heart rate (HR), respiratory impedance (RI) and blood 

oxygen saturation (SpO2) are captured from the bedside monitors and events are detected in the 

individual streams, followed by analysing the correlation between the events in the different streams, 

resulting in a classification of the type of spell that has occurred. 
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1.4 - Scope of Thesis 

The work presented in this thesis is part of the larger Artemis Project that is in progress in the Health 

Informatics Research Laboratory (HIRL) at UOIT.  In the larger project of Artemis, there are several topics 

surrounding real-time clinical monitoring.  Research on applying automated monitoring techniques for 

apnoea of prematurity [Catley et al., 2011], developing an accurate pain profile for neonates [Naik et al., 

2013], and monitoring conditions related to retinopathy of prematurity [Cirelli et al., 2013] are only a 

subset of the projects being worked on.  In addition to the clinical conditions being studied, there is 

research on ways to visualise data and how best to present algorithm outputs to clinicians [McGregor et 

al., 2013]. 

The framework developed as part of this thesis will be used for developing rule-based 

algorithms for many clinical conditions, however this thesis is limited to validating the framework’s 

functionality in the context of neonatal spells.  While the development of the algorithms for correlating 

and classifying physiological streams on a real-time platform is the main contribution of this thesis, the 

design of the clinical rules is outside the scope of this thesis.  That is the contribution of Dr. Edward 

Pugh. 

Dr. Pugh is a neonatologist who is a research fellow in the Division of Neonatology at The 

Hospital for Sick Children in Toronto.  For his Masters in Health Informatics he has been designing the 

requirements for a real-time automatic detection system for classifying neonatal spells.  His expert 

primary knowledge in the subject of neonatal spells will be used to accurately translate relevant events 

in physiological signals into automated detection algorithms. 

Also to note is that the presentation of algorithm outputs and results to clinicians is not in the 

scope of this research.  The framework designed in this thesis outputs classifications onto a text-based 

report file.  While the report is legible and clearly understandable, the file is optimized for machine 
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reading and to be used to develop custom visualizations and user interfaces for clinicians.  This task is 

the research work of Rishikesan Kamaleswaran, another Artemis team member. 

1.5 - Organization of Thesis 

This thesis presents some background on the medical condition that has been used to demonstrate the 

framework that enables the correlation and real-time classification and the software tools employed in 

the framework.  This and an overview of the related work completed in the field of automated 

classification of physiological data are presented in Chapter 2.  Chapter 3 presents some background for 

the case study of classifying neonatal spells as well as an overview of the research on automated 

detection schemes for spells.  The next chapter details the methods for the contribution of this thesis 

work for developing algorithms for the purpose of producing clinically significant alerts and their 

implementation.  Chapter 5 demonstrates the use of the developed framework in implementing 

algorithms to classify neonatal spells.  Chapter 6 presents the testing and validation procedures and the 

results of implementing the framework.  Chapter 7 concludes this thesis with summary findings of the 

research in support of the research questions proposed. Suggestions for future work are proposed in the 

conclusion also. 
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Chapter 2 -  Background and Related Work 

Before describing the requirements of a new and improved patient monitoring system, a review must 

first be performed of studies that have already been completed in this area of research.  Developments 

in critical care monitoring have been ongoing in both industry as well as academia.  In this chapter, a 

review of the research related to correlation and real-time processing of data streams is presented.  The 

review is categorized into two core components of an intelligent decision support system and 

establishes the need for the framework proposed in this thesis. 

2.1 - Data collection 

Collection of the physiological data is the first step in the development of a patient monitoring system.  

As technology has progressed the amount of physiological data as well as clinical information about 

patients has grown significantly.  As such, developing systems that record this data securely and at a 

suitable sampling rate is a large research topic on its own.  In this section, some of these systems are 

described. 

Sukuvaara et al. developed a system called DataLog which would connect to bedside monitors 

through an RS232 serial interface to collect physiological signals every five seconds.  In addition, they 

also had direct access to the patient data management system of the intensive care unit (ICU) and 

collected clinical information with recorded times. They performed some trending analysis to the signals 

and combined it to heuristic if-then rules to create a knowledge-based alarm system [Sukuvaara, 1993].  

Capturing a data point once every five seconds is not enough to make accurate assessments for complex 

behaviors such as spells.  Also, only numeric signals are collected with DataLog and no waveform data is 

captured which is an important component of detecting conditions in real-time. 

One of the major contributions to the collection of physiological data in critical care 

environments came from Moody et al in the mid-90s.  They developed customized software to log the 



 

7 
 

signals coming from the Hewlett Packard CMS (“Merlin”) bedside monitors that were being used in the 

medical, surgical, and cardiac ICUs of Boston’s Beth Israel Hospital.  They implemented this by using a 

pair of RS232 serial interface cards in the monitor and communicating the data to a standard PC with a 

Digiboard PC/4e serial interface over 38400 baud.  At this maximum output rate that the monitors can 

support, they were able to record three ECG signals each sampled at 500 Hz and four or five other 

signals sampled at 125 Hz, in addition to periodic measurements and alarm messages.  Clinical data 

derived from the patient’s medical records was also captured. The physiological data and clinical 

information were stored in a relational database called MIMIC, which has been made available to the 

public for research [Moody & Mark, 1996].  While the amount of data collected is impressive, their 

approach was to strictly record and store the data for the purpose of retrospective analysis.  There was 

no functionality to serve the data for any on line processing.  

Tsien et al. set out to better understand the alarms in a pediatric intensive care unit and to 

assess the positive predictive value of different monitoring devices.  In their prospective study, they 

collected numerical data, from SpaceLabs Medical bedside monitors, that was sent to a bedside laptop 

every five to ten seconds.  On that laptop, they also recorded annotations of relevant clinical events 

onto a Microsoft Access database.  This was done manually by a trained observer [Tsien, 1997a; Tsien 

2000].  As with the previously described research, this project involved only recording the data for the 

purpose of retrospective analysis.  The annotations collected from a separate source are unified with the 

physiological data through a series of post-collection processing programs.  Also, collecting data directly 

from patient monitors using a laptop is not a methodology that is easily scalable. 

It is interesting to note that RS232 or serial port has been the most widely used interface when 

collecting data from bedside monitors.  This has been noted by Chambrin as early as 1989 [Chambrin, 

1989].  RS232 has remained the standard in communications with bedside monitors for over 15 years.  
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Even with the advent of networked monitors that are connected to a hospital’s local area network 

(LAN), most prototype systems proposed by researchers still use the RS232 interface.  This is because of 

its position as a de facto standard in the medical computing community [Eddleman et al., 1990].  It could 

also be because the device’s LAN network connection is being used for the operations of the hospital 

staff such as central monitoring feeds and in order to collect data without interrupting hospital 

processes, researchers resort to using the serial interface. 

Still, as early as 1996, researchers began to investigate the capabilities of a networked system 

with remote data collection possibilities.  Wang et al. developed an online monitoring system whereby 

they could send collected physiological signals from bedside monitors over the Internet to be displayed 

on web pages [Wang et al., 1996].  While this opened many doors to the possibilities of remote online 

analytics, it also began the discussion on security of sensitive data over the internet.  The updating cycle 

for the data in this study was one minute, which is far too slow to perform any useful analytics but as a 

pilot study the researchers have shown that it can be feasible to collect data from patient monitors 

remotely. 

Saeed et al. took advantage of the fact that hospitals were upgrading their ICUs with network 

capable monitors and equipment.  They designed a system that collected physiological and clinical data 

from the hospitals information management system for the purpose of creating a temporal ICU patient 

database called MIMIC II.  They monitored patients admitted to an 8-bed medical intensive care unit and 

an 8-bed coronary care unit.  The physiological data consisted of four continuously monitored 

waveforms (two leads of ECG, arterial blood pressure, pulmonary artery pressure) sampled at 125 Hz, 1-

minute parameters (HR, BP, SpO2, cardiac output), as well as monitor-generated alarms. All this data is 

collected by Philips patient monitors and gets transmitted to a Philips Information Center Database 

Server.  They captured the relevant clinical data by interfacing with the Philips central monitoring 
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system that was being used to house information such as laboratory results, nurses’ text notes, 

medications, fluid balance, and patient demographics [Saeed et al., 2002].  The MIMIC II database has 

been widely used in research as it is a rich source of data, but an important thing to note is that the 

steps taken to achieve this are specific to this case and the model isn’t as easily generalised to different 

technologies and hospitals.  The research team worked closely and had the assistance and cooperation 

of the manufacturer in order to interface with these proprietary systems.  The strength in their approach 

is the ability to vary the presentation of data depending on what kind of research the data is being used 

for.  Users of the database can extract a detailed record of a single signal, or for more temporal analysis 

data from many signals can be displayed in one view.  However this ability to provide data temporally 

can only be done after considerable pre-processing and data fusion and is inherently retrospective. 

The extent to which a well-networked hospital can benefit from continuous monitoring systems 

is evident in the real-time, continuous physiological data acquisition system for the study of disease 

dynamics in the pediatric ICU described by Goldstein et al in 2003.  They collected data from 16 Philips 

Merlin patient monitors which were sampling slowly varying signal averages such as heart rate at 0.98 

Hz and sampling other signals such as ECG at 500 Hz and respiratory and pressure waveforms at 125 Hz.  

This data is sent through the intranet of the Oregon Health & Science University for display and analysis, 

in addition, it is also sent over the Internet to the Portland State University and the University of 

Pittsburgh Medical Center for display and analysis remotely [Goldstein et al., 2003].  Their system was 

only designed to collect and store data from multiple monitors simultaneously and not to perform any 

online analysis however they went on to perform some linear and nonlinear analysis techniques on the 

data retrospectively.  As well, clinical annotations were combined with the physiological data 

retrospectively. 
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2.2 - Designing intelligent systems and real-time considerations 

Researchers in patient monitoring techniques have always tried to add complexity and intelligence to 

better aid medical professionals.  Even the development of an electronic patient monitor itself was an 

advance in monitoring as prior to being connected to several sensors, a patient’s condition was 

monitored by putting one’s finger on the patient’s pulse and listening to the chest through a 

stethoscope [Samuels, 1986; Meredith & Edworthy, 1995].  As patient monitors began to accurately 

measure physiological signals, they started incorporating alarm systems to notify clinicians if any of the 

signals were outside a normal range.  However, to this day these alarm systems on modern monitors 

that only detect numeric threshold breaches of a specific signal.  There are many reported problems 

with the number of auditory alarms going off in intensive care units, many of which are unnecessarily 

loud and continuous [Meredith & Edworthy, 1995].  This occurs because of the simple nature of the 

algorithms and a lack of clinical context.  Also historically, manufacturers have a ‘better safe than sorry’ 

attitude with regards to generating an alert and making it as loud as possible [Meredith & Edworthy, 

1995].  Generally, these alarm systems do not consider multivariate interactions, partly due the limited 

processing capacity to build the temporal layers necessary to associate multiple physiological events 

with multiple clinical conditions [Sukuvaara et al., 1993].  Therefore, a major area of research is being 

focussed on how to incorporate artificial intelligence techniques and related methods in the field of 

physiological data monitoring.  In this section, some of these systems are described. 

The knowledge based alarm system developed by Sukuvaara et al. was designed for monitoring 

patients undergoing cardiac surgery.  One of its components, DataLog, was described in the previous 

section.  The other part of their system is InCare which is a knowledge-based alarm system that 

implemented 87 rules to provide highly specific alarms.  The rules would use the latest values of 

physiological signals in addition to detecting trends in the data over time.  One of the factors the 

researchers considered is that to make it sufficiently intelligent, InCare had to operate even with 
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incomplete data which is a common occurrence during intensive monitoring due to the movements of 

patients for tests and procedures.  To this end, multiple rules and multiple conditions in the rules were 

combined by logical OR operators to preserve the multi-route structure of inference [Sukuvaara et al., 

1993].  They used the prototype system in a trial with ten patients and then upgraded the rule base and 

tested it again with 15 patients.  The sensitivity was 100% in both tests, and the specificities increased 

from 20% to 73% [Koski et al., 1994].  While the alarms generated by InCare take into account multiple 

variables, it only checks the current state or current trend of a specific signal.  It cannot correlate 

temporal events that happen in sequence and this is a necessary component of classifying complex 

conditions.  However, it should be noted that this research was towards a replacement of the bedside 

monitor so a constraint of the research is for the processing to be achieved on a microcomputer. 

Another approach is to use classification trees to detect patterns in data. Tsien et al. explored 

decision tree induction and decision tree-guided logistic regression on multiple physiologic data signals 

in order to detect whether or not artifacts were present on any of the signals.  The data was 

preprocessed by abstracting features in the raw data such as moving average, median, best fit linear 

regression slope, standard deviation, maximum, minimum, range.  Each value was calculated over a 

sliding window of three-minutes, five-minutes and ten-minutes and fed as inputs to the C4.5 decision 

tree learning algorithm.  Their results were shown to be promising as the receiver operating 

characteristics (ROC) curve area was at least 85% for successfully detecting artifacts in the heart rate, 

blood pressure, and CO2 signals [Tsien et al., 2000].  The researchers later went on to collect an 

annotated data set recorded by a trained human observer and put it through a decision tree induction 

system as well as a neural network classifier system to detect true alarms in the systolic blood pressure 

signal.  The decision tree system achieved an area under the ROC curve of 94.34% while the neural 

network achieved an ROC curve area of 98.98% [Tsien, 2000a].  The researchers recognise that there is a 

temporal aspect which differentiates true alarms to the fleeting nature of false alarms, and chose their 
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feature set as eight statistical measures for three different time intervals on five signals.  While this is a 

multi-signal approach that is taking into account the behavior of signals over a period of time, the 

reasons for choosing many of the parameters such as the number of time intervals, is completely 

arbitrary.  The arbitrary nature of feature selection may be suitable for machine learning algorithms, but 

they do not translate well as clinical decision support tools for anything more complex than simple 

artefact detection. 

Mylrea et al. (1993) discuss the potential of using neural networks to improve pattern 

recognition to reduce the number of false alarms in anesthesia-related events.  They compare rule-

based analysis to pattern recognition methods such as neural networks and concluded that for complex 

medical problem solving neural networks would work better because they are able to assimilate data 

and provide meaningful alarms on a real-time basis without first analyzing and summarizing the data 

[Mylrea et al., 1993].  The neural network implemented in this study used 25 features from three analog 

waveform signals to detect when critical events have occurred.  The issue then is their definition of 

complex medical problem solving.  While pattern recognition methods may be more suitable for finding 

anomalies or critical events, when it comes to analysing the sequence of patterns in multiple signals to 

classify clinical conditions such methods introduce far too much uncertainty when trying to define the 

relationships between characteristics of multiple signals over time as compared to rule-based expert 

systems.  

One of the more widely used algorithms used in analysing physiological data is fuzzy logic.  It has 

been used as far back as 1978 to incorporate the “experience” of a human process operator in the 

design of a controller.  Using a set of linguistic rules to describe the control strategy, an algorithm is 

constructed with the words used defined as fuzzy sets.  This approach is advocates the possibility of 

implementing “rule of thumb” experience, intuition and heuristics [Kickert & Mamdani, 1978].  It was 
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originally used predominantly in industrial control, consumer electronics and robotics.  In biomedical 

engineering, it has been applied in controlling pacemaker rates in cardiac support systems [Sugiura et 

al., 2009] and monitoring the dynamics of a left ventricular assist device [Yoshizawa, 1992].  Becker et al. 

devised a fuzzy controller to evaluate the interdependencies of a patient’s vital signs in order to replace 

simple threshold alarms to intelligent alarms.  They acquired the knowledge base from 14 cardiac 

anaesthetists and formulated a set of state variables and membership functions to come up with 188 

fuzzy rules [Becker et al., 1994].  Zong et al. used fuzzy logic to model the relationship between arterial 

blood pressure and ECG to reduce the number of false alarms in the ICU [Zong et al., 1999].  Mirza et al. 

developed a fuzzy controller for detecting critical events during anesthesia administration.  They 

formulated membership functions for heart rate, blood pressure and pulse volume and created seven 

rules that act on the fuzzy sets to determine the level of alarm/warning necessary [Mirza et al., 2010].  

While these methods show that a close match to human experts in detecting events is possible, it also 

demonstrates the challenge in translating such systems to the bedside for routine clinical use.  The fuzzy 

logic systems excel at characterizing specific signals but as a tool for classifying complex conditions their 

clinical implementation has been minimal. 

While there are clearly some methods that more popular than others, there has been much 

research activity in applying many other machine learning and classification techniques to physiological 

data.  Bloom noted however, that it is nearly impossible to interpret automatically collected data to 

produce intelligent alarms and identify particular conditions without identifying the specific clinical 

context in which the data are obtained.  To identify such changes in context, he used cluster analysis, 

discriminant analysis and statistical predictors on electrocardiogram (EEG) data [Bloom, 1993].  Gather 

et al. studied the correlation between physiological variables to detect known association patterns in 

haemodynamic time series data.  They employed statistical graphical models based on partial 

coherences between different signals.  It is a unique approach and showed success in characterizing 
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particular clinical states with particular partial correlation models [Gather et al., 2002].  Thommandram 

et al. used the k-nearest neighbours algorithm (kNN) classification of respiratory time series data to 

determine whether certain one minute epochs contained apnoea or not.  The area under the ROC curve 

was 96.04% [Thommandram et al., 2013a].  The commonality in these approaches is the heavy 

dependence on black box modeling systems where clinical context regarding patient condition is not a 

factor in the algorithm.  This makes results difficult to defend at the bedside or as a clinical tool no 

matter how well they seem to perform on historical datasets. 

Very few studies on frameworks for real-time multi-signal classification of conditions were 

found in the literature.  Zhang trained classification trees and neural networks for individual patients 

and suggested that the trained algorithms could then work prospectively in real-time [Zhang, 2003].  

This does not meet the real-time standards set in this thesis where online learning and classifications 

need to happen simultaneously.  Fried et al. compared several methodologies designed for online 

detection of trends for classification of patient state, but found that not one single statistical 

methodology could model all the patterns in physiological time series data [Fried et al., 2001].  This 

comparison of online detection models makes it evident that a more complex framework for developing 

models for automating existing, functioning rules is required.  Such a framework would have to combine 

simple statistical methods with pattern specific models to accomplish classification of complex 

conditions. 

Most of the studies described above perform analysis retrospectively.  This allows them to train 

their models on a training set of data and test it on another portion of data. While this is sound 

methodology, it does not translate easily to online or real-time analysis. Performing online learning and 

real-time classifications requires the use of different approaches.  Based on the limitations in current 
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systems described in this literature review, a set of requirements for data acquisition and analytics are 

formulated for achieving the ability to correlate and classify physiological data streams in real-time. 

2.3 - Requirements 

2.3.1 - Data Acquisition 

For an intelligent monitoring system, it is crucial to be able to process as many physiological signals as 

possible at a high sampling rate.  This will ensure that algorithms will not have to deal with data loss and 

be forced to make assumptions for the gaps in time for low frequency sampled data.   

For waveform data such as ECG, it is important to have as high a sampling rate as possible.  For 

most modern monitors, this is 500 Hz.  This high resolution allows for analysis into small deformations in 

the waveform and subtle anomaly detection.  For other waveforms such as respiratory impedance (RI), 

blood pressure, and blood oxygen saturation the sampling rate does not need to be as high as features 

and anomalies in these signals are not as subtle as ECG and can be discerned with a sampling rate as low 

as 50 Hz. 

For numerical data streams, it is vital to break past the one minute sampling frequency.  Too 

much information is lost when the raw data consists of an average value for an entire minute.  This 

makes trend detection more difficult and the analysis more speculative.  Numerical streams such as HR, 

SpO2, blood pressure (BP) and many others need to be collected at a rate of 1 Hz in order to perform 

useful analytics with them. 

It has been observed that many research endeavours in developing analytics algorithms usually 

also involves developing the system to interface to specific patient monitors as well.  This unnecessarily 

complicates the project and detracts from the focus of the research, which is in the analysis.  Thus far it 

has been an inevitable task as different machines have different data export capabilities and interface 
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protocols. Although, when designing a framework that supports a wide range of users, the data 

interface with the monitors needs to be separated from the algorithm development environment. 

2.3.2 - Real-Time Analytics 

The data acquisition is only the first step in the process of creating an intelligent monitoring system.  

Arguably, the most critical component of such a system is the analytics.  As complex as the bedside 

monitors are in terms of the sensors onboard the alerts are simplistic and most only detect events in 

single signals.  The nature of real clinical conditions makes it very necessary to move beyond single 

signal event detectors and develop algorithms that can correlate multiple physiological data streams in 

order to classify conditions. 

Another obstacle that has been a common theme in the literature is the difficulty of taking a 

system that is trained retrospectively and then being able to run it on live data in real-time.  One of the 

issues operating in real-time is synchronising different streams so that the signals are always in phase.  

When running an algorithm retrospectively, an almost universal step was the preprocessing of data and 

annotations to match up the timestamps so that the system could be trained properly.  A method needs 

to be developed to handle the time variability of incoming data in a real-time and robust way. 

Considerations must be taken for adapting the research methods to extend beyond the 

laboratory environment and into the hospital to the bedside.  This involves making analysis processes 

transparent and understandable by clinicians.  To accomplish this, there needs to be less dominance of 

black box modeling systems and more input from medical professionals in a rule based expert system.  

There are advantages to using black box methods but as the literature review above shows, a great deal 

of resistance is met when implementing the work commercially [McGregor et al., 2009].  A new balance 

between the different approaches is required. 
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It is clear that to support real-time analysis of multiple physiological streams simultaneously there is a 

need for a robust data acquisition system as well as a sophisticated software environment to perform 

complex analytics for the cross correlation of features required for real-time monitoring associated with 

many clinical conditions.  The next section details the Artemis platform that met this need by providing a 

platform within which the instantiation of the framework of this thesis could be demonstrated. 

2.4 - Artemis framework for real-time data capture and analytics 

The platform used in this research, known as Artemis [McGregor et al., 2011], is a multidimensional, 

online health analytics framework designed to support intensive care environments. The framework 

supports the acquisition, collection, transmission, real-time processing, storage and retrospective 

analysis on wave form and numeric physiological data streams combined with supporting clinical 

information including laboratory results and observations. A diagram of the Artemis framework is shown 

in Figure 1. 

 

Figure 1.  High level architecture [McGregor et al., 2011] 
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The Artemis framework relies on the acquisition of physiological data from existing bedside 

medical devices contained within the NICU. These devices, which are already enabled to output their 

data for collection, can be connected to via an Ethernet and/or serial port. 

Within the current Artemis framework, an existing medical software data collection system 

supplied by CapsuleTech is used. This system connects the outputs from the monitors to the input data 

stream of Artemis where they are parsed in real-time. The data collected by Artemis varies based on the 

medical monitors being used and their capabilities.  In general, the data streams collected include but 

are not limited to heart rate (HR) at 1 Hz, respiratory impedance (RI) waveform at 62.5 Hz, blood oxygen 

saturation (SpO2) at 1 Hz, multiple blood pressure signals such as mean blood pressure (MBP) and 

systolic blood pressure (SBP) and diastolic blood pressure (DBP) at 1 Hz, electrocardiogram (ECG) at 500 

Hz, respiratory rate (RR) at 1 Hz, and carbon dioxide (CO2) waveform at 62.5 Hz. 

The real-time stream processing component of Artemis is built upon IBM InfoSphere Streams 

(Streams), which is IBM’s scalable middleware component for handling multiple streams of high volume, 

high rate data. In Streams, real-time algorithms for processing the data are constructed as sets of 

operators interconnected as a graph. Each operator takes one or more data streams as input and 

produces one or more output streams. Complex analysis is enabled through the correlation of the 

behaviours shown by the data across multiple physiological streams. As a result, this approach can 

provide support for multiple concurrent real-time clinical management needs. Through the provision of 

stream operators, diagnostic algorithms can be developed with a focus on core evidence-based 

hypothesis design. 

Additional features of Artemis include the persistent storage of the physiological data streams 

together with the derived analytics. This stored data can be queried to support real-time clinical 

management and the development of new diagnostic algorithms as part of clinical research studies. 
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Streams uses an application specific programming language known as the Streams Processing 

Language (SPL) to enable stream-based applications. In this environment, the applications, commonly 

called “graphs”, are deployed which run operators to process the streams in parallel to each other as 

they enter the system.  Each operator represents a step in the logic of an SPL graph and communicates 

with other operators through packets called tuples using a simple message format.  This breakdown of a 

program into steps and operators is what allows Streams to distribute processing over multiple 

computing elements.  This system is highly scalable and effective at handling large amounts of data. 

The Artemis framework has been deployed in the Neonatal Intensive care Unit (NICU) of The Hospital 

for Sick Children in Toronto, Ontario, Canada.  It has been capturing physiological data streams and 

patient health records since August 2009 [Blount et al., 2010].  A cloud based version of Artemis, known 

as Artemis Cloud was deployed at Women and Infants Hospital, Providence Rhode Island in 2010 

(McGregor et al., 2011). Artemis and Artemis Cloud are currently being tested by the NICU, Children’s 

Hospital of Fudan University since 2012 (Kamaleswaran et al., 2013).  In addition to capturing data, the 

environment has also been used for a clinical research study for identifying late onset neonatal sepsis 

(LONS) using heart rate variability analysis [McGregor et al., 2012]. 

The above observations highlight the decision to use Artemis as the chosen platform in the 

proposed framework to collect data from patient monitors and serve it to a real-time engine for 

analytics.  The data acquisition portion of Artemis handles the interface protocols with various 

manufacturers and allows researchers to focus on developing algorithms.  Artemis also contains the 

InfoSphere Streams analytics engine which enables the processing of signals in a real-time fashion.  Its 

design within the Artemis framework allows for data to be collected remotely as well.  This makes 

performing real-time analysis with data from multiple sites much more feasible.    
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Chapter 3 -  Case Study: Classifying Spells in the NICU 

To demonstrate the capability of the proposed real-time data stream processing methods as proposed 

in this thesis, I chose to implement algorithms that can classify neonatal spells in the neonatal intensive 

care unit (NICU).  The NICU is an intensive care unit that specializes in the care of premature and 

critically ill mature newborn infants.  Due to the very sensitive nature of the patients, the level of 

monitoring in a NICU is much higher than with regular medical care.  In addition, patients in the NICU 

are left to sleep for longer periods of time than other ICUs as interventions are bundled together, where 

possible, to occur when the babies are awake.  This reduces the amount of artefacts in the signals as 

compared to other populations.  From a research standpoint, this translates to access to high quality 

physiological data to base the algorithm development around.   

The NICU provides care for premature infants and critically ill mature newborn infants born after 

37 weeks gestation.  A baby is classified as premature if it is less than 37 weeks gestational age.  

Preemies, as they are also called, are at a stage in their life where they are incredibly vulnerable and 

require the most care to develop and grow properly.  Generally, the earlier the baby is born, the higher 

the risk of complications.  Also, the weight of the baby at birth is an important factor in determining the 

risks.  Some of the health problems preterm babies face after birth include [“Premature babies”, n.d.]: 

Respiratory distress syndrome – This is a breathing problem that is most common in babies born before 

34 weeks of pregnancy.  These babies do not have surfactant, a protein that that stabilises the small air 

sacs in the lungs and prevents them from collapsing at the end of expiration. 

Infections – premature babies are at increased risk for infection because of immaturity of their immune 

systems and the use of invasive intensive care technologies. 

Intraventricular hemorrhage – This is bleeding within the fluid filled spaces in the center of the brain. 
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Necrotising enterocolitis – an ischaemic injury of the intestinal mucosa of the gastrointestinal tract.   

Apnoea – This is a pause in breathing for 20 seconds or more. 

Retinopathy of prematurity – This is vasoproliferative disorder of the immature retina that can lead to 

vision impairment or blindness. 

Some of the long-term health care problems premature babies can have include chronic lung 

disease, cerebral palsy, and vision and hearing loss.  The risk of developing these conditions is heavily 

dependent on the neonate’s degree of immaturity, size, and the occurrence of infection at any time 

and/or the complications of immaturity.   

For the case study implemented in this thesis the focus was on neonatal apnoea, also called spells. 

3.1 - Neonatal spells 

The term neonatal spell is frequently used in the NICU as a synonym for apnoea, however it 

encompasses other physiological events that also trigger a monitor alarm such as a fall in heart rate or a 

decrease in blood oxygen saturation. Apnoea is defined by the American Academy of Pediatrics as a 

pause in breathing for more than twenty seconds or a pause in breathing of any duration that is 

associated with cyanosis, pallor, bradycardia, or marked hypotonia [“AAP”, 2003]. The alarm systems on 

modern monitors detect numeric threshold breaches and therefore, they are not capable of alarming for 

instances of this second more complex definition of apnoea. As a result nurses in the NICU are relied on 

to clinically assess if a baby is apnoeic. It is not practical for nurses to observe a baby continuously so the 

term spell has come into use to document events where the monitor alarms but a cessation of breathing 

was not observed. 

In his recent research within the Artemis team, Pugh has determined that spells may be 

classified as central apnoea, vagal apnoea, obstructive apnoea, obstructive central apnoea, central 
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obstructive apnoea, isolated blood oxygenation desaturation or isolated bradycardia [Pugh et al., 

2013a]. The only accurate way to recognise and classify these spells is with polysomnography, which 

uses multiple sensors and continuous clinical observation to determine the type of spell that is 

occurring. The pattern of change of the recorded variables is classified using coded algorithms based on 

well-defined physiological principles [“AASM”, 2007]. Polysomnography is not practical in the NICU 

environment because it often requires relocating the baby and having a sleep technician monitor 

multiple channels of bio-signals requiring many electrode attachments to patients as well as performing 

intrusive operations to measure some physiological variables.  It is a resource intensive operation and as 

a result, it is reserved only for the most difficult cases to diagnose.  Figure 2 shows an example of a 

timeline of events that lead up to a spell that would go undetected by conventional threshold 

techniques.  It starts with all physiological signals in a stable condition.  This is shown as the baseline 

phase.  Then the respiratory impedance wave, the blue line, shows a pause in breathing in the Resp 

pause phase.  This is then followed by a drop in blood oxygen saturation.  At this point, a spell can be 

defined.  However, since none of the signals breached its individual alarm thresholds yet, the bedside 

monitor would not raise an alert. 

 

Figure 2.  Structure of a spell 
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This is not the first time automated detection of apnoea has been attempted.  There is quite a history in 

intelligent systems for the classification of apnoea and it varies widely in the number and types of 

physiological signals used, as well as the type of system identification techniques. 

Most automated detection schemes involve black box modeling systems such as artificial neural 

networks. While some of these systems perform well, their adoption in practice is very low, possibly 

because of the lack of traceable rules inherent to black box systems [McGregor et al., 2011]. Obstructive 

sleep apnoea and hypopnoea can be automatically detected by extracting wavelet-based features in 

electrocardiogram (ECG) recordings and finding patterns using a feed forward neural network 

[Khandoker et al., 2009].  Schluter et al. developed a decision tree classifier towards an approach for 

automatic sleep stage scoring and apnoea detection by using rules formulated for sleep technicians for 

manual scoring.  They used derivative dynamic time warping (DDTW) to perform pattern matching in an 

attempt to detect the same shapes in the signal as a sleep technician would detect [Schluter et al, 2010]. 

It has been hypothesized that simple features can still be sufficient for accurate detection if extracted 

from a variety of signals.  Belal et al. used a combination of HR, RR and SpO2 features and fed them to a 

neural network to find correlations [Belal et al., 2011].  All of these schemes don’t really make use of the 

logic by which human experts detect features in signals.  They simply use the results and train pattern 

matching algorithms.  This is why these approaches remain in the realm of novel research as supposed 

to transitioning to the bedside. 

Apart from the ECG, the RI waveform is believed to be very valuable for apnoea detection as it is 

directly correlated to breathing effort. Lee et al. recognized that RI signals also contain fluctuations 

caused by the beating of the heart. These fluctuations are misinterpreted as breaths by bedside 

monitors and cause inaccurate alarms [Lee et al., 2012]. They developed a cardiac filter that involved 

resampling the RI at the frequency of the ECG to reduce the effect of the periodic fluctuations caused by 
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the heart. Some research has moved in a different direction, taking the respiratory measurement from 

locations other than the chest. Ansari et al. discovered that it is possible to extract a reliable RR using 

signal processing from impedance measured across the arm [Ansari et al., 2009]. While this method 

resolves the cardiac effect, it is prone to movement artefacts.  This research takes a different approach 

for filtering this artefact by incorporating a threshold cut-off that ensures only major peaks caused by 

breathing are detected and minor peaks caused by heart rate influence are ignored [Thommandram et 

al., 2013b]. 

In order to develop an accurate means to detect and classify spells and have it adopted for 

clinical practice, this thesis proposes rule-based temporal analysis methods in a hierarchical model. Each 

individual physiological signal will be processed independently initially to find any significant events. The 

duration and order of the events from multiple signals will be processed by the next level in the 

hierarchy in order to output a spells classification. 

The approach within this thesis is unique in its modular architecture. By using Streams, 

algorithms can be developed in a distributed manner and linked together to perform complex 

classifications. Independent low level alerts can be channeled to any algorithm that needs them. This 

also allows us to expand or broaden the analysis as required.  Spells and many other conditions can be 

classified by automating the rules used by human experts because of the main contribution of this 

thesis, which is the ability to build complex rule sets from the ground up by defining physiological events 

and building their temporal correlations in a hierarchical approach.  
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Chapter 4 -  Methodology 

This chapter presents the methodology for the framework that has been designed to support the real- 

time classification of physiological streams for critical care monitoring.  Over the course of the literature 

review in the previous chapter, there were key observations made towards the technical requirements 

of developing such a system. This framework as a contribution of this thesis addresses these 

requirements.  The proposed framework is a library of operators programmed in SPL supporting analysis 

of physiological signals as necessary for the direct support and association with clinical conditions.  The 

system that instantiates the framework was developed using InfoSphere Streams Studio, an SPL 

development environment created by IBM [Ballard et al., 2012].  In this section, the designed framework 

for supporting real-time classifications of physiological signals is described in detail.  A diagram of the 

overall architecture of the framework is shown in Figure 3 below.  

 

 

Figure 3.  Overall architecture of framework 
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The first element within this framework is each raw physiological data stream. Currently within Artemis 

the raw streams are one of two types, numerical periodic data and waveform data.  But the framework 

extends to any type of input data stream.  These raw data streams are then processed through 

individual alert operators.  These are any of multiple algorithms that are coded to detect different kinds 

of anomalies or features in a specific data stream.  The individual alerts represent the first step of the 

hierarchy of classifying complex conditions.  The framework supports any number of individual alerts to 

be instantiated.  As well, multiple individual alerts can be fed the same raw data stream.  This enables 

various features to be detected on a single data stream simultaneously.  Once all individual signal 

feature streams have been configured, the next step in the framework is to synchronise the streams.  

This operator reads the timestamps for every individual alert stream and acts as a buffer while 

outputting data points from all the streams in one message with one synchronised timestamp.  The next 

step is to determine an episode profile for any events that may be occurring.  This operator provides the 

ability to observe correlations between events in multiple streams.  It builds a buffer of synchronised 

alert messages starting with the first message where any alert was raised and ending with the last 

message where all alerts have returned to normal.  This buffer is the episode profile and is sent to the 

final block of the framework that is the classifier.  In this block, any rule based logic can be implemented 

to analyse the episode profile and determine a label for the whole event.  In the following subsections, 

each block in the framework is described in detail. 

4.1 - Events in individual streams 

One of the first steps in a complex classification framework is to detect anomalies or features in 

individual physiological streams.  The individual events will be processed for correlation downstream in 

the logic, but the detection of events in a specific stream is an independent process.  Any number of 

individual feature streams can be configured for a source raw stream.  For example, if a classification 

rule required the detection of a dramatic fall in heart rate (HR) and also needed to know the value of the 
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heart rate variability, then two individual feature streams or individual alert streams would be 

configured on the raw physiological stream of HR.  This forms the base for a highly extendable event 

detection system as various specific event rules can be packaged as tools in the framework to be applied 

to algorithms as needed.  Figure 4 below shows some of the developed individual feature detector 

modules that are now part of the framework’s toolkit.  The decision to implement these specific 

individual alert modules was driven by the case study described in the next chapter. Any future 

classification algorithm that uses the proposed framework will have access to the existing modules for 

generating individual alerts for various data types, as well as the capability to program new ones. 

 

 

 

Figure 4.  Individual alert modules that currently make up the framework’s toolkit 
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4.1.1 - Numerical data streams 

For numerical data streams, several individual event detectors have been developed.  These event 

detectors are independent in the sense that no context is taken with respect to other signals.  The 

context is provided during the correlation and classification phase downstream in the algorithm.   

Absolute Alert 

The first event detector to be implemented is the absolute threshold breach detector.  This module 

analyses a signal to see if the value is within set parameters.  It has an output port on which it sends the 

absolute alert value stream.  The alert value is zero if the source data is within threshold conditions and 

one if a threshold has been breached.   

The absolute threshold breach detection is very simple and reflects what is currently used in 

most bedside monitors.  The logic of the absolute threshold detector is shown in Figure 5 below. 

 

 

 

Figure 5.  Logic of absolute alert stream 

Relative Alert 

A more useful approach is to detect relative changes in the signal such as drastic falls or drastic rises.  

This is a more complex alert and requires much more computation.  To do this, a sliding baseline is 
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determined on an ongoing basis as data enters the module.  This sliding baseline is similar to a moving 

average of the signal and is used to determine the patient’s current “normal” state.  Every new value of 

the physiological stream is then compared to this baseline and if there is a change of more than a 

certain percentage, then an event is noted in the module’s output stream.  Figure 6 below demonstrates 

the detection algorithm for when values are holding within the limits of the baseline. 

 

Figure 6.  Detecting relative change 

Defining when the alert value should be zero and when it should be one is not as simple as it is with the 

absolute threshold.  This is because if an alert is raised when the reading point is out of range with the 

baseline, and the baseline continues recalculating, eventually the baseline will have shifted closer to the 

value the reading point was at when the alert was raised.  To properly determine the exit conditions for 

this alert, more sophisticated logic is required.  The normal state prior to the alert needs to be preserved 

or remembered to serve as a basis for comparison.  When an alert is raised, the baseline is locked and 

acts as a reference state to which the patient needs to recover in order for the alert to terminate.  

Figure 7 below shows a baseline locked due to a detected event. 
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Figure 7.  Locking baseline 

This covers most of the cases where the signal deviates from the baseline and returns to 

baseline, but the case where the signal never returns is not handled.  Since the characteristics of the 

physiological data are always changing, it is entirely possible that the signal stabilizes at a different, but 

still normal level.  The algorithm monitors this case by maintaining another baseline with a longer time 

window that doesn’t lock when an event starts.  If the signal stabilizes at a value for a set duration, then 

the event is considered finished and a new normal is obtained.  The logic of the relative alert is shown in 

Figure 8 below. 

 

 

Figure 8.  Logic of relative alert stream 
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4.1.2 - Waveform data 

For waveform data the desired features to detect are very different.  Most of the interpretations of 

waveform data by a human expert use patterns in the peaks and valleys in the waveforms.  Since the 

framework is based on enabling rule-based classification systems, it is vital to provide the peaks and 

valleys as features for use in classification rules.  To facilitate this, a peak detection algorithm has been 

coded into a Streams operator that takes raw signal values as input.   

Peak Detection 

There are many algorithms for finding peaks in time series data, but the approach selected is simple 

enough to be performed on real-time data but robust enough in its performance.  The popular zero-

derivative method is not used because the noise inherent in this real-life signal produces many 

accidental zero-crossings.  Usually to get rid of these false detections, some kind of smoothing is applied 

with a low pass filter.  But this changes the original signal, and as discovered is really not necessary.  The 

detection of peaks in this case is not really the same as finding maxima and minima in the mathematical 

sense; the system just has to identify the peaks that seem obvious to the human.  To do this, a value for 

maximum and minimum are kept updated by comparing every new value. When searching for peaks, 

the new value is checked to see if it is less than the stored maximum by a certain difference.  If it is, then 

it is concluded that the signal has changed direction and a search for the next valley is started.  When 

searching for valleys, the new value is checked to see if it is greater than the stored minimum by a 

certain difference.  If it is, it is concluded that a valley was reached and the signal changed direction and 

a search for the next peak is started.  This process continues indefinitely on incoming data.  Since the 

source signal is physiological in nature, it is expected that there will be some noise so a simple threshold 

cut-off parameter is set to ignore minor peaks and valleys and only detect major ones.  When a peak or 

valley is detected a tuple is output to the Maximums and Minimums streams respectively.  These two 

streams allow the development of algorithms that use the locations and amplitudes of peaks and values 
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in waveform data.  A flow diagram describing the logic of the peak detection algorithm is shown in 

Figure 9. 

 

Figure 9.  Flow diagram describing peak detection algorithm 

However, there is a case where the Maximums and Minimums streams are not enough.  The 

trouble is in the fact that the peak detection operator only outputs a tuple to these streams only when a 

peak or valley has occurred.  It does not emit any tuples in between peaks.  That means that to find out 

how much time has elapsed since the last peak, you would have to wait for another peak to form 

because only then would the operator output another tuple.  This is because the way Streams operators 
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behave, logic code is only executed when a tuple arrives at an input port.  For a lot of applications, 

simply knowing the time and amplitude of peaks is enough to perform a trend analysis.  However there 

are cases where knowing how much time has elapsed since the last peak is crucial.  These are usually 

when a certain peak to peak time is expected and an alert needs to be raised because that time has 

passed without a new peak.  This live peak location stream is designed to output a tuple for every tuple 

on its input port.  Along with the timestamp, the location value is one if there is a peak at that 

timestamp or zero otherwise.  A comparison of the maxes operator output stream and the live peak 

locations output stream is shown in the Figure 10.  Based on the live peak locations, an individual alert 

can be designed for waveforms to detect relevant events.  For example, an operator can be designed to 

output a relative alert if too much time has elapsed without a new peak. 

 

 

Figure 10.  Comparing Maxes and Live Peak output streams from peak detection algorithm 

4.1.3 - Artefact Detection 

Another feature added in the framework is the ability to detect and filter artefacts in the raw signal.  

There are times when a sensor is disconnected but the monitor still measures a signal and sends it to the 

computer.  In these cases, the signal value is a nonsensical number.  For example, if the SpO2 sensor is 

still plugged into the monitor but fails to make proper contact with the skin, the values obtained for the 



 

34 
 

signal will change from a number 0-100 to exactly 8,388,607 for example on Philips Intellivue series 

devices.  To allow classification operators to have access to this piece of information, a set of signal 

validity operators were developed for both numerical data types as well as waveforms.  Currently, the 

only artefact being detected is the presence of 8,388,607 values.  As input, the operator takes the raw 

data. For every input tuple, it produces an output.  Figure 11 demonstrates the output of the validity 

stream as leads off events are detected.  As more sensors get integrated into the system, the need for 

detecting more complex artefacts will be apparent.  To this point, the validity module has been 

developed to output a percentage confidence based on all the artefact blocks within the module.  Since 

the only block employed right now is the leads off detection, the validity module for any signal only 

outputs either one (100% confidence of validity) if the sensor is properly connected, and zero (0% 

confidence of validity) if the sensor isn’t properly connected to the body. 

 

 

Figure 11.  Logic of validity check operator 

4.2 - Syncing streams 

Once data signals have individual alerts, it is time to correlate the alerts to find meaning and insight into 

the event as a whole.  This is a key step to support classifications because up till now all the processing 

on a signal was bound to only that signal with no link to any other physiological data.  By synchronising 

all the relevant signals and their validity streams, analysis on which alerts came in what order and when 

signals recovered back to normal can be done.  
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Intuitively, syncing multiple signals shouldn’t be an issue. After all, the data is streaming in from the 

machines at the same time so the times of the latest sample of each physiological signal would be very 

close.  But it is not sufficient to rely on real incoming time to sync signals.  While the framework is 

geared towards real-time analysis, by not constraining data timestamps to real-time but rather to use 

the measurement time allows the framework to be equally suited for running algorithms through data 

retrospectively.  With this design, the framework does not take into account how many real seconds 

have passed since the last input tuple.  It compares the sample’s timestamp to the previous timestamp 

to calculate the time elapsed.  This also enables rapid replay of retrospective data for analysis as the 

computation time is only limited to processing capability.  So it would be possible to analyse hours of 

retrospective data in minutes. 

The syncing module of the framework has parameters specifying the different alert streams 

required to be grouped for classification.  The module has to consider that different types of input 

streams may have different data rates.  It down-samples the waveform data to speed of the numeric 

signals but since it is not down-sampling the raw waveform but rather the relative alert stream of that 

waveform, temporal features have already been extracted.  The sync operator takes in multiple inputs 

each with a timestamp and alert value or validity value and outputs one stream where each tuple 

contains a timestamp and an alert value from every input as well as the validity signal values.  Figure 12 

below shows an example of what the sync module does with inputs from three relative alert streams of 

varying sampling frequencies.  The output of the sync operator represents the state of individual signals 

at any time and is the starting point for temporal analysis of the data. 
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Figure 12.  Behavior of sync module with source streams of different sample rates 

4.3 - Determining the episode profile 

The next step in the pipeline of the framework is the creation of the episode profile.  This module 

monitors the synced signals stream and creates a buffer when any of the individual alerts are thrown. 

This marks the beginning of an episode.  Tuples are added to the buffer until all individual alerts have 

recovered. This marks the end of an episode.  The entire episode buffer is output in a tuple for a rule 

based classifier to analyse the temporal patterns in the episode profile.  Figure 13 shows the logic 

behind the episode profile generation operator.  The episode profile module also has access to the 

validity streams as they would be one of the features in the synced stream.  For any point in an episode 

if any of the validity streams goes to 0, then the episode is determined to be invalid and it will not be 

forwarded to the classifier operator to be analysed.  In addition to the episode buffer, this operator also 

calculates some metrics regarding the episode and forwards them to the classifier block to help with the 

classifications.  The metrics include an event id, the start and end time of the event, the duration, and 
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the number of signals affected.  These metrics save the classifier block one scan of the buffer which 

helps with efficiency. 

 

 

Figure 13.  Episode profile generation from synced streams 

The final step in the framework pipeline is the classifier block.  This module takes the episode buffer 

containing the profile of an episode and applies rules to determine a classification for the event.  The 

classification usually is based on the sequence of events in the episode. The event buffer is scanned and 

a code is given to each transition of state of an alert.  Then the event code sequence is sorted by 

timestamp.  This results in a temporal view of what transpired in the event by means of showing how 

alerts in one signal affected alerts in others over time.  This sorted event code sequence is then fed to a 

rule based classifier to assign a label to the event.  The classifier will analyse the sequence of events and 

match them against a knowledge base of event sequence-logic pairs to determine the classification.  

Figure 14 below show an example of such a classifier analysing a simple episode profile. 



 

38 
 

 

Figure 14.  Example classification of event profiles based on simple rules 

This rule based classifier is looking for events where signal 1 raises an alert, followed by signal 2, 

followed by a recovery in signal 1 and finally a recovery in signal 2.  It receives a tuple with an episode 

buffer that matches this pattern. It can now output a tuple with a summary of the event including a 

label, time of start and time of end.  Different classifiers can be written to analyse the same episode 

profile stream and the classifiers can run in parallel in real-time.  Classifiers can also be added into the 

framework’s library of modules. 

4.3.1 - Real-time considerations and utilities 

With so many individual alert algorithms running on multiple patients simultaneously, it is very probable 

that parameters and thresholds need to be adjusted on a patient to patient basis.  Streams was 

designed mainly as an analytics engine and user interfaces are not common components of the system.  

However, due to the need to change thresholds and other parameters on an ongoing basis, Streams 

operators were designed to open network sockets and act as a server.  Also, an application was 

developed to display parameters and change them in real-time.  Below is a figure of the simple interface 

application that was created as part of this research. 
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Figure 15.  Screenshots of simple interface application to change parameters of multiple running sample SPL graphs 

The application is written in Java and communicates over the TCP/IP network to Streams where there is 

an operator listening on a specific port for commands to change parameters.  Currently, only the 

absolute alert and relative alert operators for numeric data types is supported.  The changeable 

parameters are the absolute threshold, the relative alert baseline window size, the relative alert reading 

delta, and the relative alert change percentage.  But the framework allows for this functionality to be 

enabled for any new feature detector that is implemented by way of standardized parameter interface 

protocols. 
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Chapter 5 -  Implementation: Classifying spells in the NICU 

In this chapter, the implementation of the designed framework for the task of classifying neonatal spells 

is described.  An overview of the state of technology in the bedside monitors in the NICU is given in the 

Background and Related Work chapter of this document.  Also in that chapter is a summary of what 

neonatal spells are and how they have been approached by automated systems thus far.  By using 

Streams and the new framework we can now develop an algorithm to perform complex classifications 

such as spells using rule-based temporal analysis methods in a hierarchical model.  This approach is 

unique and is well suited to be adopted as a useful clinical decision support tool.   

A main step in developing a rule-based system is designing the actual rules.  The process of 

discovering the optimal rule set is outside the scope of my research as it requires deep clinical 

knowledge of the condition being analysed.  This insight is contributed by Dr. Edward Pugh.  Combining 

his expert primary knowledge in the subject and an exhaustive literature review on the various types of 

spells and how their structures differ and how they are detected in the medical community, a set of 

rules have been devised.  These rules describe a sequence of events that would have to take place in 

order for a specific type of spell to have occurred. 

For the spells classification system, three sources of data are used – the heart rate (HR), the 

blood oxygen saturation (SpO2), and the respiratory impedance (RI).  These three sources of data are fed 

into Streams as live streams.  The HR and SpO2 are of the 1 Hz numeric signal type and the RI is a 

waveform signal coming in at approximately 62 samples per second.  Using the full suite of algorithms 

described in the Methodology chapter, each individual raw data stream is processed to extract features, 

detect relative changes and anomalies.  These single signal events are referred to as level 1 events.  They 

are then combined and the sequence of events is evaluated to assign the entire episode a classification.  
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Using the architecture described in the previous chapter, the design of the spells classifier is shown in 

the Figure 16. 

 

Figure 16.  Spells classifier design using Streams 

We start by designing the single signal event processing blocks for relative change detection.  Below is a 

figure that details the rules for detecting level 1 relative events in the RI, HR, and SpO2 used by Pugh et 

al. [Pugh et al., 2013]. 

 

Figure 17.  Rules for detecting relative events in individual streams 

5.1 - Heart rate and blood oxygen saturation events 

To detect a relative change in the HR or SpO2 signal, a fall of more than 10% of the baseline needs to be 

detected.  The designed framework as described in the Methodology chapter provides the Streams 
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operators to perform the necessary calculations to detect such a fall.  What is required is the 

implementation of two relative change detection modules to the raw HR and SpO2 respectively.  The 

parameters for the module will have to be set.  The parameter values for HR and SpO2 are shown in 

Table 1.  While the values for the parameters are just a starting point for performing experiments they 

are not completely arbitrary and were decided by Dr. Pugh based on his clinical expertise of the 

characteristics of each physiological signal as well based on some experiments conducted with varying 

parameters.  These parameters are designed to be configurable and will be tuned as experimental 

results are analysed. 

Table 1.  Values of parameters and thresholds for relative change detection in HR and SpO2 

 

 

Once the two relative change detection modules have been configured, the level 1 event detection 

system for HR and SpO2 is complete.  Each module will output the relative alert stream along with the 

data validity stream for that physiological signal. 

Streams is well suited for such processing of real-time time series data.  Figure 18 below shows 

the Streams graph for detecting relative change events in the SpO2 signal.  The Streams graph for the HR 

relative change algorithm is identical except with differences in the parameters as shown in Table 1. 
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Figure 18.  Streams graph for detecting relative change in SpO2 

5.1.1 - Raw input data 

Incoming raw data is read through a network socket or a file depending on whether the algorithm is 

being run prospectively or retrospectively.  The algorithm is largely unchanged between the two 

because all operations involving changes in time uses the timestamp attribute tied to each data sample 

instead of the actual time changes.  Raw data is formatted into tuples containing a pair of data values – 

a timestamp and physiological value.  The SPL operators responsible for handling and distributing the 

raw data are shown in Figure 19. 

 

 

Figure 19.  SPL operators for handling raw SpO2 data 
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5.1.2 - Tunable parameters 

The relative change detection module has several parameters that can be set at instantiation or during 

runtime.  These parameters are the absolute alert threshold, the relative alert baseline window size, the 

relative alert reading delta, and the relative alert percent change.  The use of each parameter will be 

explained in the following sections.  In order to be able to modify these parameters during run time, the 

SPL graph has to communicate with external applications.  This is done through a TCP socket interface.  

The SPL operators that handle this communication are shown in Figure 20. 

 

 

Figure 20.  SPL operators for updating parameter values 

Messages are received from the external Java interface application and parsed to determine the new 

value of parameters.  Any time a new parameter change message arrives, a tuple is sent to any operator 

in the graph that is using that parameter. 

5.1.3 - Absolute Alarm operator 

The incoming data is sent to the Absolute Alarm operator which performs the comparison with the 

absolute threshold parameter and outputs the absolute alert stream over a socket or to a file.  The SPL 

operator responsible for performing this calculation is shown in Figure 21. 
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Figure 21.  SPL operator for determining absolute alerts 

5.1.4 - Baseline Operator 

The formatted raw data is connected to the baseline calculating operator shown in Figure 22.  This 

operator reads the timestamp of incoming tuples and keeps a reference of the values for the last 30 

seconds.  This is the Window_size parameter and it can be modified to tune the behavior of the alert.  

As new tuples come in, it removes the oldest values form the back of its window and pushes the new 

value at the front of the window.  When there is a full window of data, the average of the window is 

calculated to be the baseline value.  The reading point with which the baseline average is compared with 

is ahead of the baseline window by a few seconds.  This parameter is called the Reading_delta and has a 

value of five seconds.  Once there is data for a full baseline window average and a valid reading point 

five seconds ahead of the window, there is enough information for the operator to output a tuple 

containing the percent difference between the reading point and baseline average. 

 

 

Figure 22.  SPL operator for determining baseline 
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5.1.5 - Relative alert operator 

This operator is the focal point of relative change detection as it takes in baseline window values and the 

percent difference and decides whether a level 1 event should be triggered and when the event should 

finish.  The SPL operators responsible for performing the relative change detection are shown in Figure 

23. 

 

 

Figure 23.  SPL operators for determining relative change alerts 

It checks to see if the percent difference is greater than the relative change percent parameter and if it 

is, it outputs a tuple with the timestamp and an alert value of 1 indicating an in-alert state.  It also stores 

the value of the baseline average at this time as the frozen baseline average to check future values for 

recovery.  If the percent difference is within the limits and the operator is currently not in an alert state, 

the operator outputs a tuple with the timestamp and an alert value of 0 indicating a non-alert state. 
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If the operator is in an in-alert state, it checks incoming tuples to see whether the values have recovered 

to the frozen baseline.  To ensure that the signal has indeed recovered back to the baseline and it is not 

just a single value that just happened to breach the normal limit, an exit condition window is employed.  

In essence the new values must be within the limits of the frozen baseline for ten seconds in order for 

the operator to justify the recovery. 

Another way for an event to recover is if the value has stabilized around a new value.  This is 

considered a new normal and is valid due to the nature of the physiological signals.  To facilitate this, 

similar to the tracking baseline window another sliding window of larger length (90 seconds for SpO2) is 

used to keep track of how stable values are.  This stream is also fed to the relative alert operator so it 

can check whether new values have stabilized somewhere even if it is not the same range as the frozen 

baseline.  A stable baseline is found when the raw values are within two percent of each other in a 90 

second window.  Raw values are determined to be within the limits of a new stable if they are within 

one percent of the stable baseline for 10 seconds.  If this condition is achieved, it is concluded that the 

signal has found a new stable baseline and the event can be ended. 

The raw data is also windowed using an Aggregate operator.  This operator then sends each full 

window of samples as a tuple to the next operator, which calculates the baseline average.  The Relative 

Alert operator uses the windowed values, the baseline value and the latest value to determine whether 

a relative fall has occurred.   

5.1.6 - Live display output 

The external software that is used to update algorithm parameters at run time can also receive data 

from Streams.  It does this using a second network socket connection to the application.  The raw 

values, the absolute alert stream, and the relative alert stream are joined and formatted into a more 
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convenient structure for sending to the external application for live on-screen display of streams.  The 

SPL operators that perform this function are shown in Figure 24. 

 

 

Figure 24.  SPL operator for sending data to live display 

5.1.7 - Validity stream 

In addition to the relative alert, there is a stream that presents a metric for the quality of the data 

received.  As described in the Methodology chapter, for HR and SpO2 this operator checks the incoming 

value to see whether it is 8,388,607 indicating a poor signal or a leads off scenario.  If the incoming 

signal is valid, the operator outputs a validity value of one for that timestamp and if it detects any 

8,388,607 in the last 30 seconds it outputs a validity of zero for that timestamp.  This means that a signal 

returning from a leads off scenario needs to present valid signal values for 30 seconds for the validity 

operator to justify its validity.  This validity stream will be used alongside the output of the relative alert 

stream when performing classifications.  The SPL operators for performing the validity check are shown 

in Figure 25. 
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Figure 25.  SPL operators for performing validity check 

5.2 - Breathing events 

In addition to the HR and SpO2 relative events, classifying spells requires the analysis of the respiratory 

impedance (RI) waveform.  The RI waveform represents the expansion and contraction of the chest as 

the patient is breathing with the peaks in the signal corresponding to maximum chest expansion in each 

breath.  The rule for detecting a relative alert in the RI signal is that a respiratory pause is defined when 

there is no breath for the duration of time it took for the previous two breaths.  Implementing this in 

Streams involves the use of the live peak locations stream in the developed framework as well as several 

sliding windows keeping track of the time it took for the previous two breaths and the time that has 

elapsed without a breath.  Figure 26 below shows the operators and connections in the Streams graph 

for detecting pauses in breathing using the RI wave.   
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Figure 26.  Streams graph for detecting relative change events in the RI signal 

Incoming data is preprocessed to get to a form usable for analysis.  Once the data is in timestamp and 

value pairs it goes through the peak detection portion which outputs a breaths stream indicating the 

locations of every breath.  This stream is connected to the relative alert operator which measures the 

time between breaths and determines when a missed breath has occurred.   

5.2.1 - Raw input data 

Incoming raw data is read through a network socket or a file depending on whether the algorithm is 

being run prospectively or retrospectively.  RI data comes in from the monitor at a rate of 62.5 samples 

per second.  This odd number is the result of the way patient monitors send their data to Artemis.  The 

format for incoming data is a timestamp and an array of 16 values.  There are 4 such packets received 

every 1024 milliseconds.  Hence the data rate is 62.5 samples per second.  Some preprocessing is 

required to make this data in a format that is more convenient to use.  To do this, the four packets are 

combined and all values are assigned an interpolated timestamp.  The end result of this operator is a 
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stream of tuples each consisting of one timestamp and one value.  The SPL operators responsible for 

handling and distributing the raw data are shown in Figure 27. 

 

 

Figure 27.  SPL operators for handing raw RI data 

5.2.2 - Live display output 

Source RI data is sent through an operator to the external streams display application.  In the same way 

as the HR and SpO2 graphs send data out, a network socket connection is made from the operator.  

Some preprocessing is done to reduce the amount of data being sent to the display.  This is because 62.5 

samples are not required to reproduce the RI waveform with enough detail for human observation.  

Down-sampling is performed by an Aggregate operator with a tumbling window of 0.5 seconds for 

which one value is sent.  The SPL operator for sending data to the live display is shown in. 
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Figure 28.  SPL operators for sending data to live display 

5.2.3 - Detecting breaths 

Implementing the generic peak detection module described in the Methodology chapter, the breath 

detection operator performs peak detection on the raw RI signal to find the starts of breaths.  Figure 29 

shows that the breath detection operator’s only input is the raw RI after the timestamps are 

interpolated and each tuple is a timestamp and value.  The operator’s outputs include the maximums 

and minimums stream as well as the Breaths stream, which is basically the live peak stream described in 

the Methodology. 
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Figure 29.  SPL operators for calculating locations of breaths 

To determine when there has been a pause in breathing, the locations of each breath and the time 

between breaths must first be calculated.  Generally, the peaks in the RI waveform are the starts of 

breaths however there is some cross-talk from the heart activity as the physical movement of the chest 

is also affected by the beating heart which causes minor peaks in the RI signal.  This has to be filtered 

out to accurately measure the breath using RI.  This is achieved by incorporating the threshold cut-off 

functionality in the framework that ensures only major peaks in the waveform are recognised as breaths 

and minor peaks are ignored.  The delta parameter in the peak detection module from the framework is 

configured such that a peak is only detected as a breath if it is higher than its surrounding points by at 

least 60% of the range of the signal.  Below is a figure of the raw RI signal and the detected breaths using 

live peak detection module described in the Methodology chapter. 



 

54 
 

 

Figure 30.  Detecting locations of breaths in a raw RI signal using live peak detection 

5.2.4 - Absolute alert operator 

The absolute alert is configured as an alert that is raised when 15 seconds of no breathing have gone by.  

It takes the live peak stream, or the detected breaths stream in this case, and sends it to an Aggregate 

operator.  This operator aggregates the detected breaths stream with a sliding window of 15 seconds 

and sends the number of breaths detected in the window to the absolute alert operator.  The absolute 

alert operator reads the incoming tuples and if any window contained zero breaths, an absolute alert is 

raised. The alert is returned when a full breath has been detected again.  The SPL operators to perform 

the absolute alert algorithm are shown in Figure 31. 
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Figure 31.  SPL operators to perform the absolute alert algorithm for an RI signal 

5.2.5 - Relative alert operator 

This is the main operator involved in generating the level 1 event stream for RI.  It receives tuples 

indicating the locations of breaths and is in charge of determining when a breath has been missed and 

how much time has gone by before normal breathing continues.  The SPL operators responsible for 

performing the missed breath detection are shown in Figure 32. 

 

 

Figure 32.  SPL operators for determining missed breath alerts 
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It operates as kind of a state machine first checking for a breath, then checking for a second breath, then 

continuously recalculating the time for the last two breaths and checking the time elapsed since the last 

breath.  Figure 33 shows the output of the RI relative alert operator’s logic.  It begins with A, where the 

signal is stable and a two breath time is calculated.  B shows how the two breath time is kept updated by 

recalculating at every new breath.  C shows the alert being raised when the latest two breath times has 

elapsed and no new breath was found.  D shows a complete breath being taken in under less time than 

the two breath time, so the alert is returned to zero. 

 

 

Figure 33. Logic of RI relative alert stream 

The code is structured as a state machine that starts in state 0 where it is searching for the first breath.  

When an incoming tuple has a breath value of 1, the timestamp is recorded and the state is switched to 

1.  In state 1, the operator reads the incoming tuples until another breath value of 1 appears.  When it 

does, the timestamp is recorded as the second breath and the state is switched to 2.  During state 2, the 

operator is searching for the next breath so it can calculate the time it took for the last two complete 

breaths.  Once it finds the third breath and calculates the two breath time the state switches to 3.  In 

state 3, the timestamp of every incoming tuple is checked and if the breath value is 1, the two breath 

time is recalculated and the operator stays in state 3.  If the breath value is 0 the operator checks how 
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much time has elapsed since the last breath.  If it has been more than the two breath time, and event 

start is recorded and the operator goes into state 0 with alarm value 1.  The operator then checks 

incoming breaths until there has been one complete breath within the last valid two breath time.  This 

marks the end of an RI level 1 event.  The entire logic of the operator is shown in Figure 34 as a state 

diagram. 

5.3 - Spells classification 

Now that all three individual alerts are configured, they can be linked to a sync module to get one 

stream of all alert values and validity values.  This stream can then be connected to the episode profile 

module, whose logic is described in the Methodology chapter.  The output of the episode profiler is an 

episode buffer.  The creation of the episode buffer represents the end of the framework’s standard 

procedures and the start of spells specific rules based classification.  Figure 35 shows the operators and 

connections in the Streams graph for classifying spells. 
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Figure 34.  State Diagram of RI relative alert detection algorithm 
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Figure 35.  Streams graph for classifying spells 

5.3.1 - Incoming individual alert data 

Incoming individual alert data is read from concurrently running individual alert graphs or from a file 

depending on whether the algorithm is being run prospectively or retrospectively.  The incoming data 

consists of the three alert streams, each one sending tuples containing timestamp and alert value pairs.  

In addition there are the two validity streams whose format is a timestamp and validity value.  The SPL 

operators responsible for collecting and distributing the individual alert data are shown in Figure 36. 

 

Figure 36.  SPL operator for handling individual alert data 

5.3.2 - Syncing streams 

In order to make any comparisons between the three alerts, a vital step is to sync the event streams.  At 

the end of the sync process, the tuples emitted should have all five values and only one corresponding 
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timestamp.  The Barrier operator in Streams is used to check the timestamp of the five incoming 

streams and waiting for a match on all five ports and when a match is found, one tuple with the above 

format is emitted.  The SPL operators involved in syncing the streams are shown in Figure 37. 

 

Figure 37.  SPL operators for syncing streams 

Also, a consideration has to be made for the fact that RI data is coming at a faster rate than the HR and 

SpO2.  As described in the methodology chapter, since temporal features have been extracted in the RI 

signal, the alert can be down sampled to match the rate of the other streams.  A one second window is 

taken and if there was an RI alert value of one at any point within the second, that second would be 

labeled an alert value of one.  This effectively converts the RI alert stream into a format identical to the 

other two alert streams.  In addition to the three alert streams, the validity streams are synced as well. 

5.3.3 - Generating episode profile 

Once the events and validity streams are synced, they go through the episode detection phase.  The 

purpose of this operator is to segment off the time and alert signals to send to the classier to do analysis 
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on.  The rules and logic for performing this are described in the Methodology chapter.  Figure 38 shows 

the SPL operator responsible for reading the synced alerts and generating the episode profile. 

 

Figure 38.  SPL operator for generating episode profile 

5.3.4 - Classifying the spell 

This operator performs the penultimate step in the entire algorithm.  The SPL operators responsible for 

performing the rule based classification and generating the final report with event logs are shown in 

Figure 39. 

 

Figure 39.  SPL operators responsible for rule based classification and report generation 

This Streams operator takes the episode buffer and first checks how many signals were affected in the 

episode.  If only one signal was affected, the classification becomes very straight forward.  If only the RI 

was affected, the episode is classified as an isolated RI pause.  If only the HR was affected, the episode is 

classified as an isolated bradycardia.  If only the SpO2 was affected, the episode is classified as an 

isolated desaturation. 

If more than one signal was affected in the episode, then the classification is much more 

complicated.  The episode is scrolled through from start to finish, recording the start and end times of 
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the three individual alerts.  In the case of RI pauses, because there can be multiple RI pauses within one 

episode the number of pauses is recorded for output in the spell summary. 

Once the start and end times of the relative alerts is found, they are sorted by timestamp to 

determine the event sequence.  This sequence is encoded and sent to the classification determination 

part of the code.  One of the goals for this research was to make a system that would be embraced by 

the medical community and this required the type of classifier to not be a complete black box.  A rule 

based approach was chosen.  By using clearly defined rules, the results of an automated classifier can be 

decomposed and easily explained to physicians in a report style document.  The rules describe a 

sequence of events that would have to take place in order for a specific type of spell to have occurred.  

Table 2 below shows the various spells and their corresponding sequence of events as determined by 

Dr. Pugh. 

Table 2.  The different spells types and their corresponding sequence of events 

 

 

The rule based logic for the classification is described in the Methodology chapter.  Table 3 lists the code 

values corresponding to the various alert state transitions.   
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Table 3.  All the state transitions being monitored and their event code values for use in the classification stage 

 

 

The sequence of state transitions is defined as the event sequence code.  Figure 40 shows the 

classification logic of how final spells classifications are made based on the event sequence code. 
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Figure 40.  State diagram of the spells classification process 
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The logic begins with checking how many signals were affected in the event.  This is because if it is found 

that only one signal was affected, the classification process is much quicker.  If only one signal is 

affected, the classifier checks whether it is RI, HR, or SpO2 and ends the process with a classification of 

isolated RI pause, or isolated bradycardia, or isolated desaturation respectively.  However if more than 

one signal is affected, the next step is to sort all the event transitions in time order.  From here, it is 

possible to observe the chain of events in the episode.  Referring to the table with the event sequences 

for various types of spells, it is possible to do a simple lookup with if-statements to check whether a 

buffer follows the sequence for a specific spell type.  For example, if the order of events shows that an 

HR_RISE_START event was first, followed by an SPO2_FALL_START and then an HR_RISE_RECOVER and 

finally an SPO2_FALL_RECOVER event, then the event sequence according to the encoding table in Table 

3 would be “2435”.  In the classifier logic, the same encoding is performed so a simple check to see if the 

event code matches will result in a spells classification. 

Some computational considerations were made to effectively describe some events.  For a 

classification of vagal apnoea the HR drop and the RI pause should happen simultaneously.  However 

the chance of an automated system finding simultaneity when timestamps are measured to the 

millisecond is low.  This is a pragmatic challenge for the technology.  The key is to realise that the term 

simultaneous in this case really means contextually concurrent and so in the classifier it is defined as 

two events occurring within two seconds of each other. 

Another such interpretation is presented in the sequence for central obstructive apnoea 

episodes.  In the recovery phase of a central obstructive apnoea episode, the HR continues to fall.  To 

make the link between the recovery phase in the automated classifier and the recovery phase in the 

physiological sense, a closer look at how episodes are segmented is taken.  Since an episode cannot 

reach the classifier block without having all alerts go back to 0, there is no way the HR alert can be 1 at 
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the end of an episode.  However, if the HR continued to fall and reached a different baseline it would 

take much longer for the alert to recover to 0.  For classifying central obstructive events, this behaviour 

can be identified in the episode buffer by measuring the time between the end of the RI pause event 

and the end of the HR event.  If the difference is greater than five seconds, it is determined that the HR 

took a long time to recover after the rest of the signals have recovered.  This is a signature of a central 

obstructive episode and so the classification can be made.  The trick with rule based expert systems is to 

be able to interpret the real world rules in such a way that is computationally feasible to implement. 

5.4 - Presentation of Classification Results 

The previous chapter presented a model for the application of the framework through the developed 

system to the case study problem of this research, namely neonatal spells. This chapter presents the 

results of using this approach on physiological data captured from premature infants using Artemis. This 

research was part of the “Real-time, multidimensional temporal analysis of complex high volume 

physiological data streams for the identification of condition onset predictors for nosocomial infection in 

the neonatal intensive care unit”. REB File No.: 1000013657 at SickKids and File No.: 09/002 at UOIT. 

Figure 41 presents some example output of the individual alert algorithms as logged for the 

entirety of a patient study in addition to the final classifications.  This was prepared initially for 

debugging purposes through the validation steps of the algorithm. This format was necessary to support 

the experiments as detailed in the next section.  As noted in chapter 1, the user interface for clinicians 

providing only clinical relevant information via an analytics interface is outside the scope of this research 

and is part of the research of Artemis team member Rishikesan Kamaleswaran.  The study report 

consists of a main text file called “Classifier Summary” which logs every classification made by the 

system.  The content of the summary file is shown below in Figure 41. 
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Figure 41.  Contents of the classifier summary file 

There is a line in the file for every event detected.  The event is numbered and the start and end time as 

well as the duration of the full event are noted.  Also, the number of signals affected is logged.  This is 

because for further analysis all events with only one signal affected can be filtered out to leave behind 

only complex multi-signal episodes.  For single signal events, the signal affected is noted, and finally the 

classification is recorded.  In the case of multi-signal events, the number of signals and names are noted.  

Then the event sequence is recorded with easily understandable labels describing each individual alert’s 

state.  Figure 42 below shows the summary for a possible isolated desaturation event. 

 

Figure 42.  Event summary for a possible isolated desaturation classification 
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It is shown that the first event to occur is a fall in SpO2.  This is followed by a pause in breathing, then a 

recovery of breathing and finally by a recovery of SpO2.  The event summary also shows the number of 

respiratory events that occurred during the duration of the episode.  Finally, the result of the 

classification is shown as a “Possible Isolated Desaturation”. 

Apart from the summary file, there is another text file that is recorded that contains a more 

detailed report including the contents of the entire buffer of alert values for the episode.  A figure of the 

buffer file for the event described above is shown below. 

 

Figure 43.  Event buffer file for a possible isolated desaturation event.  This file contains the summary information as well as 
the entire episode buffer of alert values 

Since the start and end time of the episode is noted, the raw signal values for the duration can also be 

pulled from the database and made available for viewing.  The separation of output data into these 

three levels enables the creation of intuitive user interfaces to display classifications.  The development 

of such interfaces is not in the scope of this thesis, but it has been envisioned that the study summary 

would be displayed first and any episode that needs to be viewed in greater detail can be clicked on to 

bring up data from the event buffer file.  That, combined with the raw signal data can be displayed 
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together in a synchronised format for a user to view the entire decomposition of the event and fully 

understand the classification process. 

In addition to the textual report generated, validation of the algorithms and classifications can 

be done with the aid of custom software described in the next chapter. 
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Chapter 6 -  Results and Discussion 

In this chapter, the results from testing the framework are presented.  The process by which the output 

of the framework is validated is described in the Experimental Design section.   

6.1 - Experimental Design 

The testing and validation of the designed framework is done within the context of the NICU case study 

for real-time spells detection.  The validation methods are presented below in two steps.  In the first 

phase, the algorithm output of the individual alerts is compared to a neonatologist’s annotations on a 

raw stream data set.  This includes the relative change detection algorithms for heart rate and blood 

oxygen saturation as well as the breath pause detection in the respiratory impedance signal.  The 

second phase of validation is performed by comparing the neonatologist’s annotations of spells events 

with the framework’s final classification report. 

As the first phase of validation of the algorithms, the relative change algorithms for HR, SpO2, 

and RI are run retrospectively through data collected by Artemis.  The database is screened for babies 

that are suitable for the study.  This means filtering patients that are suitably premature to fit the 

parameters used in the algorithm.  A 24-hour sample of one patient’s HR, SpO2, and RI is acquired.  The 

signals are then run through the individual alert graphs and their output is validated using a custom 

programmed data display and review application.  Then the signals are run through the entire 

classification algorithm and the output report of the framework will be compared to annotated episodes 

of apnoea in the same data set. 

6.1.1 - Streams Data Display Application 

The patient data is stored in a database and formatting it for visual display traditionally requires 

software tools such as SPSS or MATLAB or at the least a spreadsheet software such as Excel.  To make 

the process of annotating the patient data easier for the neonatologist, an application was developed as 
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a contribution of this thesis to display the three relevant physiological signals in a synchronised time 

format.  This is similar to how the patient bedside monitor displays signals, and it enables the reviewer 

to pan through hours of data more comfortably than the traditional software tools.  Below is a figure of 

how the software presents the HR, SpO2 and RI signals for review. 

 

Figure 44.  The Streams Data Display application enables a reviewer to pan through  
 hours of HR, RI, and SpO2 data to validate alerts. 

 

The slider bar can be dragged to pan the data forward and backward in time.  For more precise control, 

a textbox and left and right arrows allows the user to enter the number of seconds to pan. 

The software is configurable in the sense that it is not limited to displaying the raw HR, raw 

SpO2, and raw RI.  It can load the raw HR on the top display, HR absolute alert on the second display, and 
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HR relative alert on the bottom display.  This allows the reviewer to compare the outputs of the 

individual alerts with the traditional threshold system. 

In addition to displaying the data, the application allows for the user to click on any point on the 

signal to input an annotation.  The timestamp of the clicked point is retrieved and printed in the textbox.  

A note can be entered next to the timestamp to describe any event that may be occurring.  This text can 

then be copied out to an external document or report. 

6.1.2 - Validating individual alerts 

First, the individual alerts are run separately without the classification phase.  The output of the Streams 

graphs running the individual alert graphs is a text file containing rows of timestamp and alert value 

pairs.  This text file is loaded onto the data display program.  For ease of comparison, the raw signal is 

loaded on the top graph, the absolute alert is loaded in the center graph, and the relative alert is loaded 

on the bottom graph.  Since the three graphs move in sync, it is simple for a neonatologist to validate 

the alerts based on the behavior of the raw signal.  Below is a figure of the data display application setup 

for reviewing SpO2 alerts. 
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Figure 45.  Streams Data Display application showing raw SpO2, SpO2 absolute alert, SpO2 relative alert 

For the case of validating RI events, things are slightly different.  The main steps of the algorithm for 

detecting breathing events are detecting the locations of the start of breaths, and then to calculate the 

time between breaths.  For the purpose of validating this stream, the algorithm was configured to 

record the locations of the breaths onto a text file.  With the addition of the raw RI signal and the final 

relative alert signal, a neonatologist can review the accuracy of breath detection as well as the accuracy 

of the breathing alert detection.  Figure 46 shows the data display application setup for reviewing RI 

events. 
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Figure 46.  Streams Data Display application setup to view raw RI, detected breaths, and RI relative alert 

6.1.3 - Validating classifications 

The framework outputs its classifications as a report in text files.  This output contains a summary of all 

the events as well as a more in depth log of each event.  A neonatologist can view the summary file 

along with the streams display application showing the individual alerts.  A second instance of the 

streams display program can be launched and configured to display the raw signals for the same time 

frame.  By reviewing the sequence of events detected along with the raw signals, the final classification 

can be validated. 

6.2 - Results 

A suitable patient was found in the Artemis database who was reported to be experiencing spells.  A 24-

hour sample of this neonatal patient was used to evaluate the accuracy of the event detection 
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algorithms for HR, SpO2, and RI.  The data was processed using the framework algorithms and the results 

were reviewed for accuracy by Dr. Edward Pugh.  For the relative change alerts in the heart rate and 

blood oxygen saturation, annotations were done on the raw traces blind to the results of the relative 

change algorithms.  For detecting pauses in breathing from the respiratory impedance signal however, 

the 24 hours were manually scanned viewing the raw trace along with the breath detection and the 

relative alert outputs and verifying the events along the way.  While this may not be ideal, it was taken 

into consideration that the number of breaths taken by a premature baby over 24 hours is an 

unreasonable amount of data for one person to review and annotate. 

6.2.1 - Relative change algorithm and breath pause detection 

In this sample, first the HR and SpO2 relative alerts are validated.  There were 229 relative change alerts 

detected in the HR and 119 events detected in the SpO2 signals over the course of the 24 hours.  

Clinically significant relative falls were manually determined by Dr. Pugh and compared with the relative 

falls detected by the algorithms.  A high level of correlation was found.  The algorithm detection 

correlated 97.8% for HR and 98.3% for SpO2.  Figure 47 illustrates the accuracies of the three relative 

alert algorithms. 
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Figure 47.  Relative change algorithm compared to clinically annotated trace 

For validating the breathing events, the same 24 hour sample was scanned using the streams display 

application checking if the breaths have been marked correctly in respect to the respiratory impedance 

waveform.  The relative alert for RI is fired any time there is a missed breath in the time it took for the 

previous two complete breaths.  The total number of breath pause events detected by the algorithm 

was 2896 and it was determined that the algorithm detected missed breaths in the RI waveform with an 

accuracy of 98.9%.  It was found that this alert was raised very frequently.  But as we will see in the 

results of the classification stage, many of the RI alerts are filtered out because they are isolated events 

that last a short amount of time, mostly recovering after missing only one breath.  Below is a figure 

showing a section of the raw RI, the locations of the detected breaths, and the RI relative alert where 

multiple short alerts in quick succession are detected. 
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Figure 48.  Section of raw RI along with detected breaths where multiple short                                          
RI relative alerts in quick succession are detected 

6.2.2 - Comparison to absolute threshold alerts 

When the relative change algorithms for HR and SpO2 were in the process of initial validation, a 

comparison of relative alerts to the absolute alerts generated by bedside monitors was made 

[Thommandram et. al., 2013b].  A 24-hour sample of heart rate and blood oxygen saturation data was 

collected and processed using the designed algorithms.  There were 339 relative falls in HR and 32 

relative falls in SpO2 over the course of the 24 hours.  The relative changes were compared to the results 

of manually determined clinically significant falls in heart rate with relative falls detected by the 

algorithm.  The accuracy of the algorithm was determined to be 99.45%. 

Another result to note is the number of absolute threshold breaches found in the HR and SpO2.  

In the 24 hour sample, 1117 absolute change alerts were detected in HR and 92 absolute change alerts 

were detected in SpO2.  What this means is because the algorithm is highly accurate in finding clinically 

relevant changes in HR and SpO2, the number of alarms being fired at the bedside can potentially be 
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reduced by a factor of almost 3 times.  This would be a vast improvement on its own over what is fast 

becoming an alarm riddled environment.  But the framework has the potential to drop that down even 

more because individual alerts are correlated and only then is any kind of alert is raised. 

 

Figure 49.  Relative to Absolute threshold comparison 

Figure 49 above compares the performance of the relative change signal and the absolute threshold 

based signal currently used by bedside monitors.  (A) shows a patient’s HR hovering around the 

threshold causing inaccurate alarms.  (B) shows a dramatic drop in HR from 165 to 115 beats/minute in 

fewer than 10 seconds that goes undetected by the monitor using only absolute thresholds.  (C) shows a 

drop in saturations that is detected 20 seconds in advance of the threshold breach. 

6.2.3 - Spells classification algorithm 

When we combine the three relative alerts into the classifier stage, we get the final report of all the 

episodes that were detected.  The summary of all the episodes detected using the 24-hour sample from 

section 6.2.1 is shown in the table and figures below.  This distribution of all the events detected by the 

classifier is shown graphically in Figure 50.  A comparison of manually annotated spells events with the 

clinically significant spells detections made by the classifier is shown in Table 4. 
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Figure 50.  Distribution of all events detected by the classifier 

Table 4.  Summary of the accuracy of spells classifications by the algorithms 

 

 

It can be seen in the above figure that the vast majority of events detected were isolated RI pauses.  

Because they were isolated events with no change in the HR or SpO2, they can be considered clinically 

irrelevant.  Including them in the final report is not considered as false detection of spells.  The sensitive 

detection of breathing pauses is made apparent in the high number of possible isolated desaturations 

and possible isolated bradycardia events.  These events that would be isolated HR or SpO2 events if it 

not for a missed breath during the event.  One or two missed breaths during a bradycardia or 
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desaturation are not defined as a spell but rather a slight variation of an isolated episode.  However, an 

isolated episode can be defined as a spell if the conditions for a breach of the absolute threshold are 

met.  It is important to note why desaturations were listed in the spells classification table.  An isolated 

desaturation or isolated bradycardia can be classified as a spell if the relative fall coincided with an 

absolute threshold breach.  The algorithms for detecting relative change in HR and SpO2 also output a 

stream for the absolute alert.  This alert file was given to the neonatologist to scan alongside the raw 

data in the viewer application.  It was with this additional alert stream that the accuracy of the isolated 

events was determined.  While strictly speaking the classifier Streams graph is not performing the sync 

on the absolute streams to make this classification right now, it is a minor addition that will be done as 

the next course of action. 

 

Figure 51.  Distribution of all clinically significant multi-signal spells events 

After filtering out the isolated and possible isolated events, with Figure 51 it can be seen that a total of 

68 multi-signal episodes were detected.  22 central episodes were found, four central obstructive 

events, and one vagal episode.  These episodes were checked by the neonatologist to confirm the 

classification.  All the episodes were determined to be accurate except for one Central event.  One 

central event that the classifier detected was considered unclassifiable by the human expert.  For any 

case that the expert was unsure of the classification, the detailed event report containing the supporting 
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evidence was consulted.  It was determined that tuning of parameters could lead to better 

classifications on a patient to patient basis. 

An important result to note is the number of unclassified events that were found.  These consist 

of event sequences that are not specified in the rules for classifications table.  Based on some consistent 

event sequences being present, it is possible that these are legitimate spells and that some tuning of the 

rules will allow the classifier to recognize the events.  
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Chapter 7 -  Conclusion 

In a critical care environment, there is a need for continuous monitoring of the physiological state of 

patients.  Current bedside monitors are capable of acquiring a great deal of data and displaying it on a 

screen, but even state of the art monitors offer very limited data integration and analysis for non-trivial 

clinical decision support.  This thesis has presented the design of a framework for the correlation and 

real time classification of physiological data streams for critical care monitoring.  The limitations of 

traditional algorithm development methods such as machine learning are described and the decision to 

develop clinically significant alerts using a blend of expert knowledge in the domain and pattern 

recognition programming based on clinical rules is highlighted.  The methods are implemented for the 

task of automated detection and classification of spells.  The performance of the classifier is evaluated 

and in doing so, the benefit of this framework as a novel approach in developing the next generation of 

intelligent alarms at the bedside is justified.  This thesis concludes with a summary of findings and 

suggestions for future research. 

7.1 - Research and findings 

First, a literature review was performed to uncover the need for a framework that can perform multi-

signal analysis of non-trivial conditions in real-time.  A set of requirements for data acquisition and 

analytics for achieving the ability to correlate and classify physiological data streams in real-time is 

formulated based on the limitations in current systems described in Chapter 2.  To demonstrate the 

practical application of the proposed framework, the classification of spells in the NICU was chosen as 

the task for implementation.  Details on the specific events that the framework will be used to identify 

are described in Chapter 3 along with a survey of existing automated solutions and their performance in 

this task. 
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A rule based classification approach was chosen to best provide evidence on results to the 

medical professionals the framework is used to assist.  Chapter 4 describes in detail the various 

components of the framework starting from identifying anomalies in individual streams, synchronising 

the streams based on timestamps, and then determining classifications based on the sequence of events 

in multiple signals.  

The implementation of the generalised framework for the task of automated spells classification 

is explored in Chapter 5.  The clinical rules for classifying spells were formulated by a neonatologist 

based on accepted physiological principles and an extensive literature review as part of his research 

work.  Modules were designed to detect threshold breaches as well as relative changes in numerical 

data streams such as heart rate and blood oxygen saturation.  For waveform data such as respiratory 

impedance, different modules were designed to detect anomalies representing abnormal breathing 

patterns.  The individual events from the three streams are synced and correlated to generate episode 

profiles which are then assigned a classification based on a comparison to a truth table of various event 

sequences and their corresponding spells. 

The output of the individual alert streams as well as the final classifier for a test sample 

consisting of 24 hours of patient data is shown in Chapter 6.  Also, the results of the verification of the 

classifier outputs in comparison to data annotated by a neonatologist are discussed.  The design of the 

framework and its implementation to the task of classifying spells demonstrated that rule based 

algorithms are a feasible approach in a field dominated by black box systems for developing next 

generation algorithms for complex multi-signal temporal events.  The algorithms for detecting relative 

change events in individual signals outperformed the standard threshold breach detectors used in 

current bedside monitors in terms of reducing the risk of alarm fatigue in NICUs as well as generating 

alerts that were clinically significant.  The rule-based algorithms for performing the spells classifications 
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performed comparatively to some black box techniques applied to specific conditions.  However it is 

important to note the approach demonstrated in this thesis has the advantages of performing analyses 

for multiple conditions simultaneously without the need to retrain for each condition specifically.  In 

addition, this methodology has the advantage of providing clinically relevant evidence to medical 

professionals regarding classifications.  This will increase the clinicians’ confidence in the algorithm and 

therefore has much greater potential than current automated systems for being deployed in a clinical 

setting. 

In addition to the framework for designing algorithms, another contribution of this thesis is the 

Streams Data Display application.  This program provides an interface to view live streaming data and 

the alert signals.  It allows for changing algorithm thresholds and parameters for feature-condition in 

real-time.  This is very useful as the alerts can be fine-tuned on a patient-to-patient basis very quickly.  

The application also is capable of loading retrospective data for viewing and playback, as well as for 

making annotations in the data.  It is a valuable tool for validation testing of algorithms. 

7.2 - Suggestions for future work 

The research presented in this thesis is part of the larger Artemis project that is ongoing in the Health 

Informatics Research Laboratory (HIRL) at UOIT.  The framework for temporal analysis of multi-signal 

events was designed to be generic and applicable across many clinical contexts.  However, only a few 

modules for detecting specific events have been developed so far mainly because the initial 

development was driven by the case study of classifying spells. 

One area for future work would certainly be to validate the output of the designed spells 

classifier in a clinical setting.  As was mentioned, polysomnography is currently the gold standard 

method for classifying different kinds of spells.  A comparison of the designed classifier with the results 

of a polysomnographic evaluation would show how close the system is to being used as a decision 
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support tool in the NICU.  This work has actually been commenced and is a part of the research of Dr. 

Edward Pugh.  A portable version of the Artemis system along with the real-time framework and spells 

classification algorithms has been designed to run in parallel with the polysomnography equipment.  

Details on this system are shown in Appendix A.  The tests will provide some valuable data with which 

the algorithms parameters can be tuned for optimal performance. 

There are improvements that can be made to the spells classification algorithms as well.  

Currently, only the relative change alerts along with the breathing alerts are being used to determine 

the type of spell.  However, if the absolute alerts were synced and sent to the classifier block as well, 

more events can be accurately labeled.  For example, it was determined that an isolated bradycardia or 

isolated desaturation event is considered a spell if and only if the relative fall was accompanied by a 

threshold breach.  Since the threshold breaches are already being detected by the absolute alert 

modules, the simple addition to the rule set in the classifier block would enhance its functionality. 

On a similar note, another level in the hierarchy can be added to make more complex 

classifications.  Currently, individual alerts are detected and their sequences are grouped into an episode 

and that episode is classified.  The episode is ruled by the starting of any alert and the ending of all 

alerts.  However, there are conditions such as periodic breathing that this current design cannot 

determine because an episode of periodic breathing would encompass multiple episodes of RI pause 

classifications.  Periodic breathing is a variation in breathing generally characterized by a pause in 

breathing for ten to 20 seconds followed by several rapid short breaths.  In the current design, it was 

noted the large number of RI pauses that get detected.  Adding another layer in the classifier that can 

analyse the frequency and duration of the isolated RI pause episodes can lead to a determination of 

periodic breathing. 
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Arguably the main area for future research is designing more rules suitable for automation with the 

designed framework.  So far only the rules for the classification of spells have been implemented in the 

framework, but in the future there is a potential to have several algorithms running for detecting various 

conditions simultaneously.  The process for adding algorithms to detect new conditions involves people 

with the clinical knowledge to determine the physiological changes that can be monitored and the 

behavior of these changes that characterize a classification.  That clinical knowledge can then be 

translated into automatable rules which can then be programmed into the framework using the existing 

modules or by creating new modules.  At the HIRL at UOIT, there are several projects that are working 

on this.  There is research undergoing in classifying sleep/wake cycling in infants, retinopathy of 

prematurity, and describing novel premature infant pain profiles. 

7.3 - Concluding remarks 

The research in automated detection and classification of complex multi-signal events in physiological 

data has been constrained to specific solutions and single classifications.  As well, most of work has 

focused on the research context and their implementation in a commercial clinical setting is limited.  

This thesis provides a framework to develop algorithms to make classifications of physiological signals in 

a way that is effectively presentable to medical professionals by employing a rule based approach and 

generating a report for each classification showing the supporting evidence.   

This contribution was shown to accurately detect and classify a medical condition such as spells 

in neonates.  It has the potential to continuously monitor for many conditions that would otherwise go 

unnoticed and to fundamentally change the notion of what critical care monitoring can provide as a 

clinical decision support tool. 
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Appendix A – Polysomnography Validation 

A.1 - Experimental Design 

At present, the gold standard for detection and classification of neonatal spells is polysomnography.  

This is an expensive process involving the patient spending the night in a sleep laboratory connected to 

devices recording several physiological signals and being monitored by trained professionals.  

Polysomnography is not practical in the NICU environment so it is reserved for the most difficult cases to 

diagnose. 

As part of the validation process for the framework and case study algorithm, a portable version 

of the Artemis platform to be placed in the room of the sleep study was created.  This portable system 

consists of two laptops on a private network isolated from the hospital’s network.  One laptop is 

responsible for the collection of physiological data from the medical monitor and displaying a status on 

screen.  The second laptop is responsible for storing that data into a DB2 database and also running the 

data through Streams and the framework algorithms.  Figure 52 below shows the layout and 

functionality of the portable system. 
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Figure 52.  Layout of equipment for collecting data during polysomnography 

The Patient Monitor interface laptop operates on Microsoft Windows and runs the software to interface 

with patient monitors.  The laptop is physically connected to the device via a USB-serial adapter.  It 

captures data from the monitor and serves the data over a network socket.  The laptop also contains 

configuration applications to set up data collection parameters depending on which device is connected.  

When setting up for a sleep study or polysomnography, custom software described in the next section is 

launched to serve as a real-time system status display. 

The Streams/DB2 laptop operates on RedHat Enterprise Linux and runs the IBM Infosphere 

Streams software and the DB2 database software.  In Streams, a graph is started to connect to a 

network socket and receive data from the windows laptop.  Another graph forms a connection to a DB2 

database and writes the raw data as well as the output of any algorithm graphs that may be running to 

DB2 tables using secure authenticated connections.  There are scripts on the machine that automate 

some functions of streams such as starting and stopping graphs and also scripts that automate 
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interactions with the database.  These scripts can be triggered through the custom software residing on 

the other laptop. 

The entire system is run on an offline network that does not have to be connected to the 

hospital’s network to function.  The laptops are configured with static IP addresses and the network hub 

manages the local network.  This provides a security assurance to the hospital that the data cannot 

accidentally leave the hospital through the Internet.  The data resides in the DB2 database with 

enterprise level security measures and the export of data from the system requires the use of a secure 

storage medium such as an encrypted hard drive. 

Once the sleep study has completed, the data from the polysomnography is created into a 

report for the attending physician.  This report contains a detailed log of every event that took place 

over the course of the study, including desaturations and episodes of apnoea.  This truth data will be 

compared to the report generated by the designed framework for concordance. 

A.1.1 - Sleep Study Status Application 

Since sleep studies are not frequently performed in the hospital, it was important to make sure our 

equipment was functioning without flaws during the sleep study nights.  As I would not be permitted to 

stay in the room during the study, an application was developed to run on one of the laptops that would 

remain open for the sleep technician to be alerted if data collection has stopped for any reason.  The 

figure below shows a screenshot of the application. 
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Figure 53.  Sleep Study Status application showing system is operational 

The application displays the latest timestamp and value of the heart rate (HR) reading and the blood 

oxygen saturation (SpO2) reading.  These give an indication of whether the data collection is keeping up.  

In addition, in the event that there has been an error writing to the database, the big green rectangle 

will turn red and read “System ERROR” as shown in the figure below and provide a contact number to 

notify.  This allows us to diagnose the issue immediately and bring the system back up with minimal 

down time.   
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Figure 54.  Sleep Study Status application showing a system error 

The sleep study status application also provides the functionality to start and stop the Artemis Streams 

graphs which reside on the second laptop.  This is done by designing several shell scripts which execute 

commands on the networked machine through a secure shell connection (SSH).  This reduces the time 

needed to restart the system by a drastic amount.  Another feature of the application is to update the 

Patient ID used for storage in the database directly from the application.  Traditionally this requires a 

row modification on a DB2 database table, but by using Java JDBC it was possible to automate the 

functionality from within the application.  Again, this greatly reduces the time required to set up the 

environment for a sleep study. 

A.2 - Preliminary Results 

Being sufficiently satisfied with the results of the neonatologist’s validation, phase 2 of the validation 

process was to perform the comparison with the gold standard of polysomnography.  The test was 

performed by collecting patient data side by side with the polysomnography equipment and running the 

data through the framework algorithms. 
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Data was successfully collected for one sleep study as of this writing.  The truth data consisted of a 

detailed table of the times and types of events during the course of the night.  Below is a table showing 

the different kinds of events and the number of each detected.  A typical polysomnography records 

many more types of events, but this table only displays types of events similar to the types being 

detected by the framework’s classifier. 

Table 5.  Truth data from polysomnography listing the types of events detected and the number of occurrences of each event 

 

 

 

In comparison, the output of the framework report contained no multi-signal spells classifications.  

Below is a table showing the different events and the number of each detected. 

Table 6.  Output from the classifier algorithm listing the types of events detected and the distribution of occurrences 
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At first observation, there seems to be a poor correlation between the two results.  But with the 

assistance of Dr. Pugh, it was noticed that there is a pattern in the way the SpO2 alerts are firing.  The 

framework seemed to catch very few of the desaturations and the ones that did line up with the truth 

data seemed to be delayed by a few seconds.  Such a discrepancy would certainly cause the proposed 

algorithm to malfunction as not detecting desaturation events will inevitably lead to not detecting spells 

events. 

Upon further investigation into what could cause the algorithm to miss desaturations, it was 

observed that even the raw SpO2 signal captured by the Artemis framework did not show as many visual 

desaturations as the raw SpO2 captured by the polysomnography equipment.  It was this revelation that 

led to the discovery that there is an averaging feature on the bedside monitor that we were capturing 

data from.  This parameter affects the raw SpO2 values being collected from the patient monitor.  It was 

set very high and so the raw signal was already greatly smoothed and detecting dramatic falls was all but 

impossible. 

While the initial testing did not yield any positive correlation, we did learn a lot about more 

about the format and contents of the polysomnography result data.  As well, many issues were 

discovered regarding differences in monitor settings between patient monitors in the research 

laboratory and patient monitors in the NICU. 

 

 

 


