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Abstract

In conventional wireless channel models, there is no control on the gains of different

subchannels. In such channels, the transmitted signal undergoes attenuation and

phase shift and is subject to multi-path propagation effects. We herein refer to such

channels as passive channels. In this dissertation, we study the problem of joint power

allocation and channel design for a parallel channel which conveys information from a

source to a destination through multiple orthogonal subchannels. In such a link, the

power over each subchannel can be adjusted not only at the source but also at each

subchannel. We refer to this link as an active parallel channel. For such a channel, we

study the problem of sum-rate maximization under the assumption that the source

power as well as the energy of the active channel are constrained. This problem is

investigated for equal and unequal noise power at different subchannels.

For equal noise power over different subchannels, although the sum-rate maximiza-

tion problem is not convex, we propose a closed-form solution to this maximization

problem. An interesting aspect of this solution is that it requires only a subset of

the subchannels to be active and the remaining subchannels should be switched off.

This is in contrast with passive parallel channels with equal subchannel signal-to-

noise-ratios (SNRs), where water-filling solution to the sum-rate maximization under

a total source power constraint leads to an equal power allocation among all sub-

channels. Furthermore, we prove that the number of active channels depends on the

product of the source and channel powers. We also prove that if the total power

available to the source and to the channel is limited, then in order to maximize the

sum-rate via optimal power allocation to the source and to the active channel, half

viii



ix

of the total available power should be allocated to the source and the remaining half

should be allocated to the active channel.

We extend our analysis to the case where the noise powers are unequal over dif-

ferent subchannels. we show that the sum-rate maximization problem is not convex.

Nevertheless, with the aid of Karush-Kuhn-Tucker (KKT) conditions, we propose a

computationally efficient algorithm for optimal source and channel power allocation.

To this end, first, we obtain the feasible number of active subchannels. Then, we show

that the optimal solution can be obtained by comparing a finite number of points

in the feasible set and by choosing the best point which yields the best sum-rate

performance. The worst-case computational complexity of this solution is linear in

terms of number of subchannels.
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Chapter 1

Introduction

1.1 Overview

In the last decade, the demand for fast and reliable wireless communications has

increased drastically. Pioneered by the advances in technologies, such as very large

scale integrated (VLSI) circuits and signal processing techniques, new wireless services

have been emerged. These services are mostly dedicated to meet the requirements

of high-quality video/audio streaming or even fast internet services. To this end, the

systems should be able to support high data rates as well as reliable transmission in a

resource-limited environment. These limitations can be either related to the system

itself or imposed by the environment. For example, power and spectrum limitations

are related to the system itself, while the fading effects are the limitations that are

imposed by the surrounding environment.

In order to support reliable communication against the imposed limitations, it is

essential to efficiently use the available resources such as power, time, frequency spec-

trum, and space. As an example, to combat the fading effects, it is well-known

that diversity techniques can be utilized. Diversity can be implemented either in 1)

1
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time domain, through the repetition of the signal in different time slots, 2) frequency

domain, through the repetition of the signal in different frequency bands, 3) space,

transmission or reception of a signal through multi-antenna systems at the both trans-

mitter and receiver side or 4) code, by repeating the signal using different codes. In

all the aforementioned cases, different copies of a signal experience different fading

states.

In conventional wireless channels, there is no control on the gain of different subchan-

nels. In such channels, the transmitted signal undergoes attenuation and phase shift

and is subject to multi-path propagation effects. We herein refer to such channels as

passive channels. Shifting the focus from passive channels, in this dissertation, we

study an energy-limited parallel channel, where the energy of each subchannel can

be adjusted at a certain level. Such adjustable channels, herein referred to as active

channels, differ from conventional passive links in the sense that not only the trans-

mit power over different subchannels can be adjusted, but also the energy of each

subchannel can be optimally controlled to optimize a certain performance criterion.

We aim to maximize the sum-rate of such channels under the both transmit power

and the channel energy constraint. The optimal solution to sum-rate maximization

problem is obtained for equal and unequal noise powers over different subchannels.

In the next subsection, we review the concept of a parallel channel and its properties.

1.2 Wireless Parallel Channel

Parallel channel refers to a link where the source and destination are able to com-

municate through different subchannels corrupted by independent noise. Most of

the communication channels such as inter-symbol interference (ISI) channels, fading
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channels and multiple input multiple output (MIMO) channels can be categorized as

parallel channels [1–7]. Below, we provide different applications of parallel channels:

Multi-tone transmission:

Multi-tone transmission deals with signaling over a number of different frequency

bands, where each frequency band corresponds to one parallel subchannel [1]. Fre-

quency division multiplexing (FDM) and orthogonal frequency division multiplexing

(OFDM) are the examples of such parallel channels. The frequency bands may be

non-overlapping or, as in OFDM, could be designed to be orthogonal. Practically, in

digital subscriber line (DSL) and inter-symbol interference (ISI) channels, this tech-

nique is the prime solution.

Time varying fading channels:

Consider a frequency-flat fading channel where the gain of the channel varies over

time. The channel can be interpreted as a parallel independent subchannels where

each subchannel refers to one fading state [2, 6].

Multi-antenna communication:

Multi-antenna communication has been evolved to improve the performance of the

communication systems. In such systems, the use of different antennas creates in-

dependent data tranmission paths which improve the performance of the systems

in terms of bit error rate (BER) and capacity. For the case where the transmitter

and receiver are equipped with multiple antennas, Telatar in [8] showed that singular

value decomposition (SVD) of the channel matrix yields a set of parallel subchannels

between the source and destination, and the gain of each of the parallel subchannels

corresponds to the singular values of the MIMO channel. It is shown that the number

of the independent parallel subchannels is equal to the rank of the channel response
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matrix [3, 4].

Dispersive channels:

In a time-dispersive channel or in a parallel channel with correlated noise , orthonor-

mal transformation of the channel at the receiver or transmitter turns the channel

into a set of parallel subchannels with uncorrelated noise [5].

In the above classification, different interpretations of parallel channels are presented.

In each category, we are dealing with a set of parallel subchannels, where each sub-

channel is a time slot, a frequency band, a fading state or a singular value of the

channel. It has been shown that water-filling power allocation scheme is the optimal

solution to the sum-rate maximization of the parallel channels under a total power

constraint [6, 7]. In the next section we review the water-filling power allocation

scheme

1.3 Water-filling Power Allocation

Typically, under total transmit power constraint, water-filling power allocation scheme

is the well-known solution to the sum-rate maximization problem of a point-to-

point communication link which conveys the information between a source (transmit-

ter) and a destination (receiver) through a set of parallel communication subchan-

nels [9, 10]. In this subsection, we review the water-filling power allocation scheme.

Let us consider a set of N parallel subchannels corrupted by independent noise. These

parallel subchannels can be considered as transformations from a frequency selective,

time varying, dispersive channel or the use of multiple antenna at both transmitter

and receiver (see section 1.2). It is shown that, the sum-rate of this link is given
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by [11]:

N
∑

i=1

log(1 + piβi), (1.3.1)

where pi and βi are, respectively, the assigned power and the signal-to-noise ratio

(SNR) of the ith subchannel. Using the availability of channel state information

(CSI) (the availability of βi’s), the problem is to find the optimal power allocation

scheme which yields the maximum sum-rate when the power constraint
N
∑

i=1

pi ≤ PT

is satisfied. Here, PT is used to denote the total available power at the transmitter.

Therefore, the optimization problem can be written as:

max
p

N
∑

i=1

log(1 + piβi)

subject to
N
∑

i=1

pi ≤ PT

pi ≥ 0 and 1 < i < N, (1.3.2)

where p , [p1, p2, . . . , pN ]
T . Note that, at the optimum solution, the first constraint

in (1.3.2) is satisfied with equality, otherwise, we can scale up the values of pi which

further increase the objective function. The solution to this optimization problem

can be found with the aid of Lagrangian method. The Lagrange function is given by

L(λ,µ,p) = −
N
∑

i=1

log(1 + piβi) + λ(
N
∑

i=1

pi − PT)− µTp, (1.3.3)

where the scalar λ as well as the N × 1 vector µ represent the Lagrange multipliers.

Let us define p∗i , λ
∗ and µ∗ as the optimal values to pi, λ and µ, respectively. Using

the Karush-Kuhn-Tucker (KKT) conditions, we obtain that the optimal solution to

(1.3.2) is required to satisfy the following conditions:
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• Primal feasibility:

1Tp∗ = PT (1.3.4)

−p∗ � 0. (1.3.5)

• Dual feasibility:

µ∗ � 0. (1.3.6)

• Complementary slackness:

λ∗(1Tp∗ − PT) = 0 (1.3.7)

µ∗ ⊙ p∗ = 0. (1.3.8)

• Stationary condition:

∂L(λ,µ,p)
∂pi

= − hi

(1 + p∗ihi)
+ λ∗ − µ∗

i = 0. (1.3.9)

Now, assuming p∗i > 0, then from (1.3.8), µ∗
i = 0, and therefore, from (1.3.9), we

have:

hi

(1 + p∗ihi)
= λ∗. (1.3.10)

or equivalently

p∗i =
1

λ∗ − β−1
i for

1

λ∗ > β−1
i . (1.3.11)

If we assume that p∗i = 0, from (1.3.8), we obtain that µ∗
i 6= 0, and therefore, from

(1.3.9), we conclude that βi + µ∗
i = λ∗, which means that

1

λ∗ < β−1
i . Therefore,

p∗i =



















1

λ∗ − β−1
i if

1

λ∗ > β−1
i

0 if
1

λ∗ < β−1
i .

(1.3.12)
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Defining (x)+ , max{0, x}, the optimal solution to (1.3.2) is given by

p∗i = (
1

λ∗ − β−1
i )+, for 1 < i < N. (1.3.13)

The parameter λ is chosen to satisfy the equality of constraint in (1.3.2), This pa-

rameter is called water level. Visually, as shown in Figure. 1.1 , this power allocation

technique is interpreted as pouring water over a surface given by the inverse gain of

subchannels, hence, it is called water-pouring or water-filling [9, 12–14].

subchannels

waterlevel

Power

p1

p2
p3

p4
p5

h−1
1

h−1
2

h−1
4

h−1
5

h−1
3

h−1
6

h−1
7

1
λ

Figure 1.1: water-filling power allocation, p∗i = (
1

λ∗ − β−1
i )+, where

N
∑

i=1

p∗i ≤ PT .

As shown in Figure 1.1, the shaded regions refers to the allocated power to the

corresponding subchannel. This power is a function of the inverse of the channel gain.

Indeed, the more transmit power is allocated to the subchannels with better qualities.
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1.4 Motivation

As mentioned earlier ( see subsection 1.3), in water-filling scheme, channels with

better qualities receive relatively more power. In a passive parallel channel, there

is no control on the gains of different subchannels. However, one can easily observe

that the maximum achievable sum-rate of a passive channel depends not only on

the source transmit power but also on the quality of individual subchannels (i.e., on

the power of the parallel channel). This obvious observation has motivated us to

study the problem of sum-rate maximization for a parallel channel where not only

can the source transmit power be adjusted but also the channel itself can be properly

designed or optimally adjusted to achieve a higher sum-are compared to traditional

passive channels. In order to design a channel, one can think of injecting power into

different subchannels somewhere between the course and the destination, as in the

relay networks. Alternatively, one may have some control over some parameters which

determine the channel characteristics. Examples of such channels include single- and

multi-user MIMO systems, where the antenna spacing can be adjusted to control

the underlying MIMO channel(s) [15, 16]. Such adjustable parallel channels, herein

referred to as active channels, differ from conventional passive links in the sense

that their characteristics (such as the power of each individual subchannels) can be

adjusted using a certain optimality criterion (such as sum-rate) under a constraint

on the total energy of the channel.
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1.5 Objective and Methodology

We study the problem of joint transmit power allocation and channel design for an

active link which conveys information from a source to a destination through multiple

orthogonal subchannels. In such a link, the power can be injected into the channel

not only at the source but also at each subchannel. Assuming that the source power

as well as the power injected by the active channel are constrained, we aim to jointly

optimize the power of each subchannel and the transmit power allocated to each sub-

channel by the source such that the sum-rate is maximized for the both equal and

unequal noise power over different subchannels. Compared to power allocation for

a passive parallel channel, the optimization problem we consider has one additional

constraint which limits the power of the active channel.

In the case of equal noise power for different subchannels, we show that the sum-rate

maximization problem, under the both channel energy and transmit power, is not

convex. Nevertheless, we show that KKT conditions can be used to develop a semi-

closed form solution to this problem. Our results show that the maximum sum-rate

is achieved by activating a certain number of subchannels, while the rest of the sub-

channels should be switched off. We show that the number of activated subchannels

is unique and only depends on the product of transmit power and the channel en-

ergy. This number of activated subchannels is optimally found using steepest descent

algorithm. Moreover, at the optimum, the total channel power and transmit power

should be equally distributed among the activated subchannels.

For the case with unequal noise power over differen subchannels, we first formulate

the sum-rate maximization problem of the parallel active channel, under the both

channel energy and transmit power constraint. To solve the sum-rate maximization
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problem under the two aforementioned source and channel power constraints, we

use KKT conditions to obtain a computationally efficient algorithm for source and

channel power allocation. We first show that how KKT conditions can be used to

determine how many subchannels can be active for the source power constraint to

be feasible. Indeed, we develop a computationally efficient method to determine the

feasible numbers of active channels. Then, for any feasible number of active channels,

we obtain the optimal source power allocation. In fact, we show that for any feasible

number of active channels, there are only zero, one, or two solutions for the optimal

source power allocation. As such the optimal solution can be obtained by comparing

a finite number of feasible points and choosing the best point which yields the best

sum-rate performance.

1.6 Outline of Dissertation

In this dissertation we focus on sum-rate maximization problem in an energy-limited

active channels. Here, we aim to jointly optimize the power of each subchannel as

well as the transmit power allocated to different subchannels such that the sum-rate

is maximized. The remainder of this thesis is organized as follows:

In Chapter 2, we first review the recent research results on resource allocation schemes

in different applications of parallel channels. Then, we proceed to the recent solutions

to sum-rate maximization problem in active channels.

In Chapter 3, we study the sum-rate maximization problem for active channels. and,

we assume an equal noise power over different subchannels. We show that the sum-

rate maximization problem is not convex. In such a case, we apply the KKT con-

ditions to derive the necessary optimality conditions. Then, we propose an efficient
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closed-form solution to sum-rate maximization problem. We then compare the per-

formance of the active channel versus the passive channel in terms of the maximum

sum-rate.

In Chapter 4, we extend the analysis in Chapter 3 to the case where unequal noise

powers are considered over different subchannels. Similar to the case discussed in

Chapter 3, we show that the sum-rate maximization problem is not convex. Nev-

ertheless, with the aid of KKT conditions, we propose a computationally efficient

algorithm for optimal source and channel power allocation. To this end, we first

obtain the feasible number of active subchannels. We then show that the optimal

solution can be obtained by comparing a finite number of points in the feasible set

and by choosing the best point which yields the best sum-rate performance.

In Chapter 5, we present the concluding remarks as well as the potential future work

in this area of research.



Chapter 2

Literature Review

As we introduced in Chapter 1, parallel channel is a model which fits to the various

type of wireless communication technologies that are the basis for the future commu-

nication systems. Parallel channels have been widely used in modern communication

systems. The application of such parallel channels can be found in MIMO systems, fre-

quency hopping spread spectrum (FH-SS) scheme, time division multiplexing (TDM)

systems, and OFDM-based communication schemes. In this chapter, we review the

techniques which have been used to maximize the capacity of the parallel channels.

2.1 Power Allocation in Parallel Channels

Recently, the optimal resource allocation over parallel subchannels have been studied

in literature. In this section, we review the current trends on the power allocations

in parallel channel.

OFDM Systems

OFDM-based communications can also be considered as a set of parallel subchannels

each of which corresponds to one frequency band. In the context of OFDM systems,

12
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under the availability of channel state information at the transmitter side (CSIT),

water-filling power allocation scheme has been considered to design an efficient com-

munication link [4, 17, 18]. This power allocation policy is mostly used to maximize

the throughput of the system and the spectral efficiency [19–22] as well as to minimize

the bit error rate (BER) [23, 24].

Under the situation where partial CSI is available, a modified water-filling is pro-

posed for the solution of sum-rate maximization problem in a MIMO channel [25].

The authors in [26], aim to minimize the bit error rate in a parallel channel with

partially available CSIT, while, under the same circumstances, the optimal power

allocation has been developed in [27], to maximize the spectral efficiency. In [28], a

correlated MIMO channel with partial CSIT is considered. The authors obtain an

upper bound for the sum-rate through power allocation. Then, it is shown that the

statistical water-filling (i.e., the water-filling power allocation over the mean of the

channel gains instead of the instantaneous channel gains), leads to the maximum of

the upper bound. The authors in [29], generalize the analysis in [28], by assuming

Nakagami-m fading over each subchannel. Furthermore, unlike [28], they maximize

the exact sum-rate of the parallel channel rather than its upper bound. They show

that the statistical water-filling power allocation scheme proposed in [28], results in

the maximum of sum-rate.

Multiuser orthogonal frequency division multiple accces (OFDMA) systems can also

be considered as parallel channel, where each user corresponds to one subchannel. For

such systems, the power and subcarrier allocation are well investigated in [30–34]. In

downlink scenarios, it has been shown that the sum-rate is maximized when each

subcarrier is allocated to only the user which reveals the best channel gain for that
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subcarrier, while the total power should be distributed among the subcarriers using

a water-filling scheme [31, 32].

Time Dispersive Channels

A time dispersive, or equivalently, frequency selective channel can be considered

as a multi-tap channel, where each tap corresponds to only one parallel subchan-

nel. The resource allocation over this type of the parallel channels is investigated

in [17, 18, 35–38].

For frequency selective single-input single-output (SISO) channels, the authors in [35],

aim to find the optimal power allocation which yields the maximum sum-rate. They

show that the water-filling scheme is the optimal solution to sum-rate maximization

problem. The authors in [17, 18, 36–38], study a frequency selective channel between

two transceivers with a colored noise. To maximize the sum-rate of such channel un-

der a fixed total consumed power, the authors in [17], design a bank of finite impulse

response (FIR) filters at the transmitter and receiver to decompose the frequency-

selective channel into a set of parallel frequency-flat subchannels with uncorrelated

noise over the subchannels. Then, they propose a power allocation algorithm to ob-

tain the maximum sum-rate. They show that their algorithm yields the same result

as water-filling power allocation scheme when the number of subchannels approaches

infinity.

MIMO Channels

Recently, the use of MIMO channels has attracted a significant attention from the

research community. Compared to SISO channels, the use of multi-antenna at both

transmitter and receiver sides increases the diversity of the system and offers a con-

siderable improvement in the capacity of the link through the creation of a set of
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independent parallel subchannels. [4, 8, 39].

One of the challenges in MIMO communication systems is to optimally allocate the

available resources, such as power, to achieve the capacity of the channel [4,9,40–65]

or to minimize the bit error rate and the mean squared error [17, 66–72]. In this

regard, the capacity of the MIMO channels is well-studied in literature. In most

cases, the transmitter and receiver are designed to transform the MIMO channel into

a set of parallel subchannels. At the optimum, the capacity is the sum of water-filled

singular (eigen-) subchannels that arise from the orthogonalization of the MIMO

channel matrix [8, 39].

In the case of frequency selective MIMO channels, a multi-tone transmission is

a well-known capacity achieving technique where each subcarrier experiences a flat

fading MIMO channel [4,39,73]. It is shown that the capacity of a frequency selective

MIMO channel is achievable when the transmitter and receiver is designed such that

the channel matrix at each subcarrier is diagonalized. Then, the water-filling solution

should be used to allocate the available power to each subchannel [4,9,40]. This type

of power allocation requires that the channel state information (CSI) be available at

both transmitter and receiver sides.

To minimize mean square errors, (MSEs), the authors in [39] consider a MIMO chan-

nel and aim to jointly design the precoder and decoder of this transmission system

using a weighted minimum mean-squared error (MMSE) criterion subject to a total

transmit power constraint. In [71, 74], the authors generalize the joint optimization

of the pre-coder and decoder of MIMO channels 1) to achieve the maximum sum-

rate, 2) to minimize the un-weighted MMSE, and 3) to satisfy a certain QoS over

each subchannel, under a total power constraint. According to their criteria, at the
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optimum, the MIMO channel is decomposed into a set of parallel subchannels, where

each subchannel corresponds to only one eigen mode. Then, to achieve their goals,

the water-filling power allocation policy is used (see also, [17,68–70,72,75,76] and the

references therein). Under the same structure, the authors in [66, 77], efficiently de-

sign the precoder and decoder to maximize the signal-to-interference-plus-noise ratio

(SINR) and minimize the bit error rate (BER) of the MIMO channel, respectivelly.

Under total power constraint, they show that the water-filling scheme can optimally

achieve the capacity.

The aforementioned results, mostly, focus on a simple waterfiling technique which

requires a single water level and a total transmit power constraint. Therefore, the

optimal power allocation can be obtained by calculating the waterlevel which satis-

fies the power constraint with equality. To find the waterlevel, different approaches

have been proposed which can be classified as iterative and exact algorithms. In

the iterative algorithms, the value of water-filling can be obtained through an iter-

ative procedure [70, 78–80], while the exact algorithms leads to the exact value for

waterlevel within a finite number of iterations [17, 71, 81]. The result of iterative

algorithms converges to the solution of the exact algorithms when the number of it-

erations tends to infinity. Unlike the above single-level water-filling solution, in some

applications, a multi-level water-filling solution has been deducted. For example,

in [82], the authors study the power minimization problem in a point-to-point MIMO

communication scheme with a set of quality-of-service (QoS) constraints. They show

that the solution is a multi-level water-filling scheme, where each water level satis-

fies one QoS constraint. Moreover, in [83], the joint transmitter-receiver beamformer

design has been considered to minimize the maximum BERs of the MIMO channel
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under multiple quality of service constraints. The solution to this problem as well

as the maximization of the harmonic mean of SINRs of subchannels lead to a mul-

tilevel water-filling solution. In terms of the implementation of the multiple water

level water-filling solution, the authors in [84], propose a practical solution to general

multiple water level water-filling problems.

2.2 Sum-rate Maximization for Active Channels

In the context of energy constrained active channels, the sum-rate maximization

problem has been studied extensively in [15, 16, 85, 86]. Here, we provide a summary

of different application of the active channels:

2.2.1 MIMO Active Channel

In MIMO communications, the motivations behind jointly optimal source power al-

location and channel design subject to two constraints, one on the source transmit

power and one the channel energy constraints are that, first, for the class of energy-

constrained channels, an upper bound on the MIMO channel capacity can be found;

and second, the characteristics of the channels with the best sum-rate can be ob-

tained. The characteristics of the capacity achieving channel could then be used to

guide the design of adaptive antenna arrays [15, 16, 85].

Single User MIMO Active Channel:

Among the literature, the investigation in [85] and [15] focus on single user MIMO
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active channels with equal noise power over different subchannels. In [85], the au-

thors study the capacity of a point-to-point multi-antenna Gaussian channel with the

freedom of perturbing the antennas location at the transmitter or at the receiver side.

Indeed, the authors aim to maximize the sum-rate of the MIMO channel under both

transmit power and MIMO channel energy constraints. It is shown that, for suffi-

ciently large SNRs, the maximum sum-rate is achievable by creating a set of parallel

subchannels where the power of all subchannels are equal. In [85], using eigen value

decomposition, the MIMO channel is transformed into a set of parallel subchannel

each of which corresponds to one eigen mode. The strength of each subchannel is

defined by the square of the corresponding eigen values of the channel matrix. Fur-

thermore, the antenna relocating possibility can modify a new eigen values of the

channel matrix. Therefore, the problem of the sum-rate maximization corresponds

to optimal positioning of the transmitter/reciver antennas to achieve the equal eigen

values, thereby, satisfying the channel energy constraint.

In [15], the authors investigate the capacity of a point-to-point MIMO channel under

the transmit power constraint as well as the channel norm constraint. They show

that the maximum sum-rate is obtained when the channel has equal singular values

for all of its non-zero eigen modes. Then, the total transmit power is equally dis-

tributed among a certain number of eigen modes. To obtain the optimal number of

eigen modes, a global search should be conducted.

Multi User MIMO Active Channel :

The study in [16] considers a multi-user MIMO system with channel energy constraint

and assume that the noise powers are equal over different subchannels. The authors

assume a k-user network where the transmitter and the receiver are equipped with
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Nt and Nr antennas, respectively. For such network, the authors in [15] derive an

upper bound for the capacity when Nt ≥ kNr. The authors in [16] are looking for

the best maximum sum-rate over all possible channel states which satisfy the channel

norm constraint for Nt ≥ kNr. It is shown that, for large values of SNR, the bound is

achieved when the user channels are mutually orthogonal to each other. This result is

analogous to the result in point-to-point MIMO channel [15]. Furthermore, for each

user, the channel energy and the transmit power are equally distributed among the

non-zero MIMO eigen modes. A further optimization required to find the optimal

number of eigne modes.

2.2.2 Relay-assisted Communication

Another application of the active channel is in asynchronous one- or two-way AF-

based multi-relay channels, where the end-to-end channel impulse response can be

adjusted by properly adjusting amplification weight of the relays [87,88] and/or their

locations. The problem of sum-rate maximization for one- and two-way relay networks

have been studied in numerous studies [89–93]. In all of these published results, the

constraints that are often used are either individual or total relay power constraints

or a total power constraints. The channel norm constraint that we herein study is

different from the widely used total or individual relay power constraints. However,

the norm of such channels can be written in terms of the individual relay powers,

or inversely, given channel gain h̃i’s, one can obtain the relay powers. Hence, one

can use the optimal subchannel powers to design the relay channel, for example, by

choosing the location of the relays with respect to the transmitter and the receiver.

The authors of [94] study the problem of sum-rate maximization for a multi-antenna
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multi-carrier relay channel. The constraint considered in [94] is a total transmit

power constraint which limits the sum of the relay and source powers. The solution

provided in [94] relies on a high-SNR approximation but there is no guarantee that

this solution results in high values of SNR, meaning that the sub-carrier powers are

not guaranteed to result in high values of SNR in each subcarrier. Furthermore, the

approximate solution provided in [94] has a water-filling structure.

2.3 Research Contribution

In this thesis, an active channel refers to a parallel channel whose subchannel gains

can be adjusted within a bound on the norm of the channel. In this thesis, we study

the sum-rate maximization for an active parallel channel subject to two constraints,

one on the source total transmit power and one on the channel energy.

For the case where equal noise power is considered over differen subchannels, we prove

that in order to achieve the maximum sum-rate, only a certain number of subchannels

should be turned on and the rest of the subchannels should be switched off. This is

in contrast with passive parallel channels with equal subchannel SNRs, where water-

filling solution to the sum-rate maximization under a total source power constraint

leads to an equal power allocation among all subchannels. The number of active

subchannels is proven to depend on the product of the source and channel powers.

Also, we show that when sum-rate is maximized, different active subchannels receive

the same level of powers. We prove that if the total power available to the source and

to the channel is limited, then in order to maximize the sum-rate via optimal power

allocation to the source and to the active channel, half of the total available power
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should be allocated to the source and the remaining half should be allocated to the

active channel.

For unequal noise power over different subchannels, we show that the sum-rate maxi-

mization problem is not convex. Neverthless, we use the Karush-Kuhn-Tucker (KKT)

conditions and obtain a computationally efficient algorithm for optimal source and

channel power allocation. We showed that not all subchannels but only a subset of

them may receive transmit power from the source. Then, for any feasible number of

active subchannels, we obtained the optimal source power allocation. In fact, we prove

that for any feasible number of active subchannels, there are only zero, one, or two

solutions for the optimal source power allocation. As such, the optimal solution can

be obtained by comparing a finite number of points in the feasible set and by choosing

the point which yields the best sum-rate performance. The worst-case computational

complexity of our solution is linear in the number of subchannels. Our analysis and

simulation results showed that active channels can offer significantly higher sum-rate

compared to their passive counterpart which rely on water-filling scheme for source

power allocation across subchannels.



Chapter 3

Sum-rate Maximization for Active
Channel: Equal Noise Power Over
Different Subchannels

3.1 System Model and Sum-rate Maximization

Consider an active channel which conveys information from a transmitter (source) to

a receiver (destination) through N orthogonal parallel subchannels. The transmitter

allocates power p̃i to the ith channel. The gain of the ith subchannel is represented

by the complex number h̃i. The received signal over the ith subchannel is modeled

as xi = p̃ih̃isi + ni, where si and ni are the transmitted signal and received noise

of the ith subchannel, respectively. This data model fits very well, for example, to

multi-carrier relay system, where the relay noise is negligible [95]. In this chapter,

we restrict our analysis to the case where the noise powers are the same at different

parallel subchannels. The case with unequal subchannel noise powers will be studied

in the next chapter. We assume that the total source transmit power is limited to Ps,

that is
∑N

i=1 p̃i ≤ Ps. Also, the total power of the channel is assumed to be limited

22
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to Pc. The problem of maximizing the sum-rate subject to two constraints, one on

the source transmit power and one on the total power of the parallel channel, can be

written as

max
p̃�0,h̃�0

N
∑

i=1

log2(1 + p̃i|h̃i|2)

subject to 1T p̃ ≤ Ps,

1T h̃ ≤ Pc , (3.1.1)

where p̃ , [p̃1 p̃2 · · · p̃N ]
T and h̃ , [|h̃1|2 |h̃2|2 · · · |h̃N |2]T . One application

of the optimization problem (3.1.1) is in asynchronous one- or two-way AF-based

multi-relay channels, where the end-to-end channel impulse response can be adjusted

by properly choosing the amplification weights of the relays [87–89] and/or their

locations. Note that when applied to asynchronous relay channels, the channel norm

constraint used in (3.1.1) is different from widely used total or individual relay power

constraints. However, the norm of such channels can be written in terms of the

individual relay powers, or inversely, given channel gains, h̃i’s, one can obtain the

relay powers. Hence, one can use the optimal h̃i to design the relay channel, for

example, by choosing the location of the relays with respect to the transmitter and

the source. Another application of (3.1.1) is that it can be used for optimal power

allocation and channel design for single- or multi-user multiple-input multiple-output

systems where the location of antennas are to be chosen carefully such that the sum-

rate is maximized. One more application of the optimization problem (3.1.1) is joint

power allocation for multi-career multi-antenna systems [94].

Note that in (3.1.1), for any fixed h̃, the maximization over p̃ is the traditional sum-

rate maximization problem under total power constraint. This maximization over p̃
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is convex and leads to the well-known water-filling power allocation scheme at the

transmitter for fixed channel. Similarly, for any fixed p̃, the maximization over h̃ is

also convex and leads to the well-known water-filling power allocation scheme across

subchannels. However, as shown in the appendix B, the objective function of the

optimization problem (3.1.1) is not concave. Nevertheless, in what follows, we show

how this problem can be solved efficiently. It can be readily seen that at the optimal

solution, the two constraints in (3.1.1) will be satisfied with equality. Otherwise, if,

for example, the entries of the optimal p̃ are such that 1T p̃ < Ps, one can scale up

all entries of such optimal p̃ such that 1T p̃ = Ps holds true and this new p̃ further

increases the objective function, thereby contradicting the optimality.

Note also that if the ith entry of p̃ is zero, the corresponding entry in h̃ will be zero

and vice versa. Let n represent the number of non-zero entries of p̃ and h̃. Then,

without loss of optimality, we can express the optimization problem (3.1.1) as

max
n

max
p,h

n
∑

i=1

log2(1 + pihi)

subject to 1Tp = Ps,

1Th = Pc

p ≻ 0

h ≻ 0, n ∈ {1, 2, . . . , N} , (3.1.2)

where p and h are n × 1 vectors which capture the non-zero entries of p̃ and h̃,

respectively, and hi is the ith entry of h. For any fixed n, the Lagrangian function

corresponding to the inner maximization in (3.1.2) can be expressed as

L(p,h) = −
n
∑

i=1

log2(1 + pihi) + λ1(1
Tp− Ps)

+ λ2(1
Th− Pc)− µT

1 p− µT
2 h , (3.1.3)



25

where pi and hi are the ith entry of p and h, respectively, and the scalars λ1 and λ2 as

well as the n× 1 vectors µ1 and µ2 represent the Lagrange multipliers. Applying the

KKT conditions, the optimal solution is required to satisfy the following conditions1:

• Primal feasibility:

1Tp = Ps (3.1.4)

1Th = Pc (3.1.5)

−p ≺ 0 (3.1.6)

−h ≺ 0. (3.1.7)

• Dual feasibility:

µ1 � 0, µ2 � 0. (3.1.8)

• Complementary slackness:

λ1(1
Tp− Ps) = 0 (3.1.9)

λ2(1
Th− Pc) = 0 (3.1.10)

µ1 ⊙ p = 0 (3.1.11)

µ2 ⊙ h = 0. (3.1.12)

• Stationary condition:

∂L(p,h)
∂pi

=
1

ln 2

−hi

(1 + pihi)
+ λ1 − µ1,i = 0 (3.1.13)

∂L(p,h)
∂hi

=
1

ln 2

−pi
(1 + pihi)

+ λ2 − µ2,i = 0. (3.1.14)

1Note that the constraints in maximization problem (3.1.2) satisfy linear constraint qualifications,
and therefore, KKT conditions are necessary for the optimal solution [96].
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In (3.1.13) and (3.1.14), µ1,i and µ2,i are the ith entries of µ1 and µ2, respectively.

It follows from the primal feasibility condition and complementary slackness that

µ1,i = µ2,i = 0 holds true for i = 1, 2, ..., n. Hence, (3.1.13) and (3.1.14) can be

rewritten, respectively, as

1

ln 2

−hi

(1 + pihi)
+ λ1 = 0,

1

ln 2

−pi
(1 + pihi)

+ λ2 = 0. (3.1.15)

Using (3.1.15), we can write2 hi

pi
= λ1

λ2
, for i = 1, 2, . . .N . Moreover, using the second

equation in (3.1.15) for i 6= j, we obtain that

0 =
1

ln 2

−pi
(1 + pihi)

+ λ2 =
1

ln 2

−pj
(1 + pjhj)

+ λ2 , (3.1.16)

or

pi
(1 + pihi)

=
pj

(1 + pjhj)
. (3.1.17)

Defining κ , λ1

λ2
= hi

pi
, we can rewrite (3.1.17) as

pi
1 + κpi2

=
pj

1 + κpj2
or, equivalently,

as

(pi − pj)(1−κpipj) = 0 . (3.1.18)

It follows from (3.1.18) that for any subchannel index j, either pj = p1 or pj = 1/κp1

must hold true. Let n2 be the number of those subchannels for which pj = 1/κp1

holds true. In this case, using the fact that hj = κpj , the sum-rate can be written

as (n − n2) log2(1 + κp21) + n2 log2(1 + 1/(κp21)) = n log2(1 + κp21) − n2 log2(κp
2
1). It

now becomes obvious that in order to maximize the sum-rate, n2 has to be 0, and

hence, pj = p1 holds true, for every j. Using a similar approach, we can prove that

hi = hj holds true. As a result, using (3.1.19) along with the facts that 1Tp = Ps

2Note that pi 6= 0 and hi 6= 0.
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and 1Th = Pc, we conclude that for any given n, the optimal values of pi and hi are

given by

pi =
1

n
Ps, hi =

1

n
Pc. (3.1.19)

To obtain the optimal number of active subchannels, n, using (3.1.19), we can write

the optimization problem (3.1.2) as

max
n

n log2(1 +
PsPc

n2
). (3.1.20)

The following lemma helps us to find the optimal value of n in an efficient manner.

Lemma 1: The function s(x) , x log2(1+
PsPc

x2
) has a unique real-valued maximizer

for x > 0.

Proof: We know that s(0) = 0 and s(+∞) = 0. As such, s(x) has at least one

maximum for x > 0. To prove that this maximum is unique, we show that for

x > 0, the function s(x) has a unique inflection point, where the second derivative

of the function s(x) vanishes. The second derivative of s(x) with respect to x can be

obtained as

∂2s(x)

∂x2
= − 1

ln 2

2PsPc

x2
(

1 +
PsPc

x2

)2

(

PsPc

x3
− 1

x

)

. (3.1.21)

Equating (3.1.21) to zero, we obtain the only non-negative solution to this equation

as x =
√
PsPc. It is obvious that

∂2s(x)

∂x2
> 0, for x ∈ (0,+

√
PsPc], and therefore, the

function s(x) is a concave function of x for x ∈ (0,+
√
PsPc]. Also, as

∂2s(x)

∂x2
< 0

for x > +
√
PsPc, the function s(x) is convex for x ∈ [+

√
PsPc,+∞). Hence, s(x)

has only one inflection point at x =
√
PsPc. Otherwise, if there were any other

inflection point in the interval (+
√
PsPc,+∞), the second derivative should become
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negative somewhere in this interval, and this is obviously not happening. As such,

the maximizer of s(x) is unique and it resides in the interval (0,+
√
PsPc], where s(x)

is concave. �

It follows from Lemma 1 that in order to find the real-valued maximizer of s(x),

the following steepest ascent algorithm can be used: x(k) = x(k−1) + ξ
∂s(x)

∂x

∣

∣

∣

x=x(k−1)
,

where x(k) is the value of x at the kth iteration and ξ is the parameter that controls

the stability and convergence of the algorithm. Once the steepest ascent algorithm

has converged to the global maximizer of s(x), we can obtain the optimal value of n

using the following procedure: If the global maximizer of s(x) is larger than or equal

to N , then the optimal value of n is equal to N . In this case, all subchannels will be

turned on. If the global maximizer of s(x) is smaller than N , then the optimal value

of n is either the largest integer number which is smaller than or equal to the global

maximizer of s(x) or the smallest integer number which is larger than or equal to

the global maximizer of s(x). As such, the optimal number of active channels can be

found in an efficient manner. The following lemma reveals another interesting aspect

of active parallel channels.

Lemma 2: If the total available power is limited, i.e., if Ps + Pc ≤ PT for a given

PT , then in order to maximize the sum-rate via optimal power allocation to the source

and to the active channel, half of the total available power should be allocated to the

transmitter and the remaining half should be allocated to the active channel.

Proof : To prove this, let us assume Ps + Pc ≤ PT , where PT is the maximum

total available power. Then, using, (3.1.20), the sum-rate maximization under a total
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power constraint can be written as

max
n,PsPc

n log2(1 +
PsPc

n2
), subject to Ps + Pc ≤ PT .

For any fixed n, the maximization over Ps and Pc leads to maximizing the product

PsPc subject to Ps + Pc ≤ PT . The solution to this maximization problem is well-

known to be Ps = Pc = 0.5PT . �

Interestingly, the optimal values of Ps and Pc are independent of the optimal

number of active subchannels. As such, in this case the optimal number of active

channels, n, can be obtained by using the very same steepest ascent based method,

which we outlined above, for Ps = Pc = 0.5PT .

Note that the authors of [94] study the problem of sum-rate maximization for a

multi-antenna multi-carrier relay channel. The constraint considered in [94] is a total

transmit power constraint which limits the sum of the relay and source power. In our

work, we consider two constraints, one on the source transmit power, and one on the

channel norm. Moreover, the solution provided in [94] is different from ours. Indeed

the method of [94] relies on a high-SNR approximation but there is no guarantee that

this solution results in high values of SNR, meaning that the sub-carrier powers are

not guaranteed to result in high values of SNR in each subcarrier. Furthermore, the

approximate solution provided in [94], while not applicable to the problem we are

considering, has a water-filling structure, whereas our methods does not fit into such

a water-filling structure.
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3.2 Simulation Results

Fig. 3.1 shows the maximum sum-rate, that can be achieved by an active channel

with N = 64 subchannels, versus the total available power PT . In this figure, we also

compare this maximum sum-rate with the maximum sum-rate achieved by two passive

parallel channels, one with equal subchannel SNRs and one with unequal subchannel

SNRs. In the passive channel with equal subchannel SNRs, all subchannel SNRs

are equal to 0 dB, while in the case of unequal subchannel SNRs, the subchannel

SNRs are different in each simulation. Indeed, in the latter case, the flat fading

subchannel coefficients are drawn from i.i.d. complex Gaussian distribution with zero

mean and unit variance. Hence, in the case of unequal subchannel SNRs, in each

simulation the subchannel SNRs are different, however, when averaged over different

channel realizations, all subchannel SNRs are equal to 0 dB. For the cases of passive

channels, the total available power is allocated to the transmitter, while in the case

of active channel, the total transmit power is divided between the transmitter and

the channel. Indeed, in this figure, for the active channel, three different scenarios

are considered: Ps = Pc, Ps = 3Pc and Ps = Pc/3, where Ps + Pc = PT . Fig. 3.1

shows that at high values of total transmit power, the active channel outperforms the

passive channel cases. However, in low values of total transmit power, the passive

channels offer a higher sum-rate as compared to the active channel. The reason is that

the passive channels considered here correspond to a feasible scenario in an equivalent

active channel where the total available power is PT + N . Note that any passive

channel is a special case (or a feasible point) in an active channel problem where the

channel energy is bounded to be less than the actual channel energy of the passive

channel. Hence, for low values of total transmit power, the power injected by the
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active channel into the signal paths are lower than those amounts of power injected

by the two passive channels into the signal paths. It can also be seen in Fig. 3.1

that the active channel yields the best sum-rate when the total transmit power is

divided equally between the transmitter and the channel, i.e., when Ps = Pc = 0.5PT .

Interestingly, for fixed Ps + Pc, the active channel offers the same sum-rate for both

cases of Ps = 3Pc and Ps = Pc/3. This is well-justified, as (3.1.20) shows that the

sum-rate is a function of the product PsPc.

In Fig. 3.2, we have shown the sum-rate versus number of subchannels N , for different

scenarios as explained above. As can be seen from this figure, when PT = 30 dBW, the

passive channel outperforms the active channel for small values of N . In this case, as

the number of the subchannels, N is increased, the performance of the active channel

saturates as the number of active channels reaches a certain value which depends only

on the product PsPc. This value does not change when the number of subchannels,

N is increased. At the same time, the performance of the passive channels improves

consistently, as the number of subchannels increases. As PT is increased from 30 to

35 dBW, the active channels outperform the passive counterparts in a wider range of

N . This is due to the fact that for PT = 35 dBW, number of active channels saturates

at a higher value as compared to the case where PT = 30 dBW.



32

10 12 14 16 18 20 22 24 26 28 30
0

50

100

150

200

250

300

350

400

 

 

S
u
m
-r
at
e
(b
it
s/
se
c/
p
ar
al
le
l
ch
an

n
el

u
se
)

Total consumed power (dBW)

active channel, Ps = Pc

active channel, Ps = 3Pc

active channel, Ps = Pc/3
passive channel, water-filling with unequal subchannel SNRs
passive channel, water-filling with equal subchannel SNRs

Figure 3.1: Maximum sum-rate versus the total consumed power for both active and

passive channels, N = 64.



33

0 50 100 150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

 

 
active channel, Ps = Pc, PT = 30 dBW
active channel, Ps = 3Pc, PT = 30 dBW
active channel, Ps = Pc/3, PT = 30 dBW

S
u
m
-r
at
e
(b
it
s/
se
c/
p
ar
al
le
l
ch
an

n
el

u
se
)

Number of subchannels, N

passive channel, water-filling with unequal subchannel SNRs, PT = 30 dBW
passive channel, water-filling with equal subchannel SNRs, PT = 30 dBW
active channel, Ps = Pc, PT = 35 dBW
active channel, Ps = 3Pc, PT = 35 dBW
active channel, Ps = Pc/3, PT = 35 dBW

Total power = 35 (dBW)

Total power = 30 (dBW)

passive channel, water-filling with unequal subchannel SNRs, PT = 35 dBW
passive channel, water-filling with equal subchannel SNRs, PT = 35 dBW

Figure 3.2: Maximum sum-rate versus number of subchannels, for active and passive

channels. and for different values of total consumed power.



Chapter 4

Sum-rate Maximization for Active
Channel: Unequal Noise Power
Over Different Subchannels

4.1 System Model and Sum-Rate Maximization

We consider an active channel which conveys information from a transmitter (source)

to a receiver (destination) through a set of N parallel orthogonal subchannels . The

communication channel is assumed to be active in the sense that the energy injected

into each subchannel can be adjusted to a certain level based on an optimality criterion

such as sum-rate. We assume that p̃i is the transmit power allocated to the ith

subchannel whose channel gain is represented by h̃i. In Chapter 3, we studied the

case where noise powers over different subchannels are all equal. In this chapter, we

assume unequal noise powers over different subchannels, and use α̃i to denote the

inverse of the noise power over the ith subchannel. Without loss of generality, we

assume that

α̃N ≥ α̃N−1 ≥ ... ≥ α̃1. (4.1.1)

34



35

We further assume that the total transmit power is limited to Ps, that is,
∑N

i=1 p̃i ≤ Ps.

Moreover, the norm of the active channel is constrained to be smaller than or equal to

Pc. We herein aim to maximize the sum-rate under two constraints, one on the total

transmit power of the source, and one on the total energy of the parallel channel.

Mathematically, we solve the following problem:

max
p̃�0,h̃�0

N
∑

i=1

log2(1 + α̃ip̃i|h̃i|2)

subject to 1T p̃ ≤ Ps

1T h̃ ≤ Pc (4.1.2)

where p̃ , [p̃1 p̃2 · · · p̃N ]
T and h̃ , [|h̃1|2 |h̃2|2 · · · |h̃N |2]T . Compared to power

allocation in a passive parallel channel, the optimization problem (4.1.2) has one

additional constraint which limits the energy of the active channel. Such a constraint

can be used for optimal power allocation and channel design in single- or multi-

user multiple-input multiple-output systems with unequal subchannel noise powers

[15,16,85]. Another application of the optimization problem (4.1.2) is in asynchronous

one- or two-way AF-based multi-relay channels, where the end-to-end channel impulse

response can be adjusted by properly adjusting amplification weight of the relays

[87, 88, 97] and/or their locations. Note that when applied to asynchronous relay

channels, the channel norm constraint used in (4.1.2) is different from widely used

total or individual relay power constraints. However, the norm of such channels can

be written in terms of the individual relay powers, or inversely, given channel gains,

h̃i’s, one can obtain the relay powers. Hence, one can use the optimal h̃i to design the

relay channel, for example, by choosing the location of the relays with respect to the

transmitter and the source and/or by using the right amount of the relay transmit
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power.

In Appendix A, it has been shown that the optimization problem (4.1.2) is not

convex. Nevertheless, we herein show how the optimization problem (4.1.2) can be

solved efficiently. To this end, note that at the optimum, the two constraints in

(4.1.2) are satisfied with equality. Otherwise, if at the optimum, 1T p̃ < Ps and/or

1T h̃ < Pc, we can scale up the elements of the optimal value of p̃ and/or those of

the optimal h̃ such that 1T p̃ = Ps and/or 1
T h̃ = Pc, whereas the new p̃ and/or the

new h̃ further increases the objective function, thereby contradicting the optimality.

Hence, the optimization problem (4.1.2) can be rewritten as

max
p̃�0,h̃�0

N
∑

i=1

log2(1 + α̃ip̃ih̃i)

subject to 1T p̃ = Ps

1T h̃ = Pc (4.1.3)

where h̃i is the ith entry of h̃. Note that if the ith entry of the optimal value

of p̃ is zero, the corresponding entry in the optimal h̃ will be zero and vice versa,

otherwise power will be wasted. Without loss of generality, let n represent the number

of non-zero entries of p̃ and h̃. Non-zero entries of p̃ and h̃ correspond to the n

largest entries of α̃. We define α to capture the n largest entries of α̃, i.e, α =

[α̃N−n+1 α̃N−n+2 · · · α̃N ]
T . Note that in light of (4.1.1), αi ≥ α1, that is the

elements of the vector α are ordered in non-descending order with α1 being the

smallest entry of α. Then, we can express the optimization problem (4.1.2) as
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max
n

max
p,h

n
∑

i=1

log2(1 + αipihi)

subject to 1Tp = Ps

1Th = Pc

p ≻ 0

h ≻ 0 (4.1.4)

where we use p and h to denote the non-zero entries of p̃ and h̃, respectively, and pi

and hi are the corresponding ith entries of p and h.

4.2 KKT Conditions

In what follows, we use the KKT conditions to obtain the necessary condition that

the solution to (4.1.4) must satisfy. To do so, for any n, the Lagrangian function

corresponding to the inner maximization over p and h can be expressed as

L(p,h) = −
n
∑

i=1

log2(1 + αipihi) + λ1(1
Tp− Ps)

+ λ2(1
Th− Pc)− µT

1 p− µT
2 h (4.2.1)

where the scalars λ1 and λ2 as well as the n × 1 vectors µ1 and µ2 represent the

Lagrange multipliers. Based on the KKT conditions, the optimal solution must satisfy

the following conditions:
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• Primal feasibility:

1Tp = Ps (4.2.2)

1Th = Pc (4.2.3)

−p ≺ 0 (4.2.4)

−h ≺ 0. (4.2.5)

• Dual feasibility:

µ1 � 0, µ2 � 0, (4.2.6)

• Complementary slackness:

λ1(1
Tp− Ps) = 0 (4.2.7)

λ2(1
Th− Pc) = 0 (4.2.8)

µ1 ⊙ p = 0 (4.2.9)

µ2 ⊙ h = 0 (4.2.10)

• Stationary condition:

∂L(p,h)
∂pi

=
1

ln 2

−αihi

(1 + αipihi)
+ λ1 − µ1,i = 0 (4.2.11)

∂L(p,h)
∂hi

=
1

ln 2

−αipi
(1 + αipihi)

+ λ2 − µ2,i = 0, (4.2.12)

where µ1,i and µ2,i are the ith entries of µ1 and µ2, respectively.

It follows from (4.2.4) and (4.2.9) as well as from (4.2.5) and (4.2.10) that µ1,i =

µ2,i = 0 holds true for i = 1, 2, ..., n. Hence, the conditions in (4.2.11) and (4.2.12)

can be rewritten, respectively, as
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1

ln 2

−αihi

(1 + αipihi)
+ λ1 = 0 (4.2.13)

1

ln 2

−αipi
(1 + αipihi)

+ λ2 = 0 . (4.2.14)

It follows from (4.2.13) and (4.2.14) that

hi

pi
=

λ1

λ2

, for i = 1, 2, · · · , n . (4.2.15)

Defining κ , λ1

λ2
and using (4.2.15) along with the first and the second constraints in

(4.1.4), we can obtain κ as

κ =
Pc

Ps
. (4.2.16)

Using (4.2.15) and (4.2.16), the maximization problem (4.1.4) can be rewritten as

max
n

max
p

n
∑

i=1

log2(1 + καip
2
i )

subject to 1Tp = Ps

p ≻ 0 . (4.2.17)

Solving the optimization problem (4.2.17) means that we are looking for the optimal

number of the activated subchannels and their corresponding allocated powers such

that the sum-rate is maximized subject to a constraint on the source transmit power.

Note that if αi > αj , then at the optimum, pi > pj . Otherwise, we could swap

the optimal pi and the optimal pj , thereby increasing the cost function in (4.2.17),

without violating the constraint. This implies that as the elements of α are sorted

in non-descending order, the elements of the optimal vector p are also sorted in

non-descending order.

In the sequel, we simplify the optimization problem (4.2.17) showing that it can

be equivalently written as optimally finding the number of active subchannels, n, and
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the power of the weakest subchannel among the nth strongest subchannel. To this

end, note that or any i 6= j, we obtain from (4.2.14) that

0 =
1

ln 2

−αipi
(1 + αipihi)

+ λ2 =
1

ln 2

−αjpj
(1 + αjpjhj)

+ λ2 (4.2.18)

or

αipi
(1 + αipihi)

=
αjpj

(1 + αjpjhj)
. (4.2.19)

As hi = κpi, we can rewrite (4.2.19) as

αipi
1 + αiκpi2

=
α1p1

1 + α1κp12
, for i = 1, ...., n. (4.2.20)

It follows from (4.2.20) that, for given p1, the optimal pi must satisfy the following

quadratic equation:

(καiα1p1)p
2
i − (αi + καiα1p

2
1)pi + α1p1 = 0, for i = 1, ..., n. (4.2.21)

Solving (4.2.21) yields the following two possible solutions for pi in terms of p1:

p+i (p1) =
(αi + καiα1p

2
1) +

√
∆i

2(καiα1p1)
(4.2.22)

p−i (p1) =
(αi + καiα1p

2
1)−

√
∆i

2(καiα1p1)
(4.2.23)

where ∆i , (αi + καiα1p
2
1)

2 − 4καiα
2
1p

2
1. Note that

∆i = (αi + καiα1p
2
1)

2 − 4καiα
2
1p

2
1

≥ (αi + καiα1p
2
1)

2 − 4καi
2α1p

2
1

= (αi − καiα1p
2
1)

2

≥ 0. (4.2.24)
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where, in the first inequality, we have used the fact that αi ≥ α1, for i > 1. It follows

from (4.2.24) that both values of p+i (p1) and p−i (p1) are real. Nevertheless, using the

fact that the elements of the optimal vector p are ordered in a non-descending order,

we now show that the solution p−i (p1), given in (4.2.23), is not acceptable. To do so,

at the optimal p1, it is required that

p−i (p1) ≥ p−j (p1), for αi > αj. (4.2.25)

Using (4.2.23) in (4.2.25), we can write

1 + κα1p
2
1

2κα1p1
−
√

(1 + κα1p
2
1)

2

4κ2α2
1p

2
1

− 1

καi

≥ 1 + κα1p
2
1

2κα1p1
−
√

(1 + κα1p
2
1)

2

4κ2α2
1p

2
1

− 1

καj

(4.2.26)

which leads us to αi ≤ αj . This contradicts with the earlier assumption that αi > αj .

As such, there cannot be more than one subchannel whose power is given by p−i (p1).

Now assume that the ith channel power is given by p−i (p1) and the rest are given by

p+i (p1). Then, assuming that

p−i (p1) ≥ p+j (p1), for αi > αj. (4.2.27)

we arrive at −α−1
i > α−1

j which contradicts with the fact that αi is positive. Hence,

we conclude that no subchannel power can be given by p−i (p1) and p+i (p1) is the

only acceptable solution to (4.2.21). For the sake of simplicity, we hereafter drop the

superscript + from p+i (p1). Then, given p1, the optimal value of pi is given by

pi(p1) =
1 + κα1p

2
1

2κα1p1
+

√

(1 + κα1p21)
2

4κ2α2
1p

2
1

− 1

καi

> 0 . (4.2.28)
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Using (4.2.28), the optimization problem in (4.2.17) can be equivalently written as

max
p1,n>2

n
∑

i=1

log2(1 + καip
2
i (p1))

subject to p1 +
n
∑

i=2

pi(p1) = Ps

0 < p1 < Ps (4.2.29)

where we have used the assumption that pi(p1) > 0, for i = 2, 3, . . . , n. Note that in

(4.2.29), we have excluded the case n = 1, as for n = 1, the solution is simply to assign

all the power to the strongest subchannel and deactivate all the other subchannels.

To solve (4.2.29), we propose to use a search procedure over n, where we obtain

the optimal value of p1 for every value of n. The pair of n and the corresponding

optimal value of p1 is then used to calculate the cost function. The pair which leads

to the highest value of the cost function is introduced as the solution to (4.2.29). Note

that not every value of n is feasible. In order for a particular value of n to be feasible,

the corresponding feasible set must not be empty. In other words for a ceratin value

of n to be feasible, the first constraint in (4.2.29) must have a solution in terms of

p1 in the interval (0, Ps). In the next section, we show that for any value of n, this

constraint has only zero, one, or two solutions for p1 in the interval (0, Ps). Hence,

the solution to (4.2.29) belongs to a set of finite number of pairs (n, p1) which are the

solutions to the second constraint in (4.2.29) such that 0 < p1 < Ps . This property

simplifies the search procedure as we need to examine only a countable number of

pairs (n, p1) to see which pair results in the highest value of the sum-rate.
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4.3 Feasibility And Solution

In this section, we present an efficient algorithm to find the feasible values of n > 2 .

Let us rewrite the first constraint in (4.2.29) as

fn(p1) = Ps. (4.3.1)

where fn(p1) , 1Tp = p1 +
n
∑

i=2

pi(p1). To solve (4.2.29), we need to find the values

of p1 and n which satisfy (4.3.1) and which at the same time result in the largest

value for the objective function. However, the equality constraint in (4.3.1) may not

be feasible for every n. In order for (4.3.1) to be feasible for a certain n, the following

inequality must hold true:

min
p1

fn(p1) ≤ Ps , for p1 ∈ (0, Ps). (4.3.2)

Indeed, if for any n, the minimum value of fn(p1), when p1 ∈ (0, Ps), is greater than

Ps, there is no solution for p1 satisfying the equality in (4.3.1), and therefore, that

particular value of n is not feasible. Hence, in order to reject the infeasible values

of n, we can find, for a certain n, the minimum value of fn(p1) for p1 ∈ (0, Ps) and

compare that minimum value with Ps. If this minimum value is greater than Ps, then

that value of n is rejected, otherwise, that specific value of n remains in the feasible

set. Let fmin
n represent the minimum value of fn(p1), when p1 ∈ (0, Ps).

We now find the minimum value of fn(p1), when p1 ∈ (0, Ps). To do so, note that

fmin
n is the same as the global minimum of fn(p1), if the global minimizer of fn(p1) is

in the interval (0, Ps). Let us study the properties of the global minimizer of fn(p1)

(which may not be in the interval (0, Ps)). We will later use these properties to obtain

the minimizer of fn(p1) in the interval (0, Ps). The following lemma presents these

properties.
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Lemma 3: : Let pmin
1,n denote the global minimizer of fn(p1) for n = 2, 3, ..., N .

Then, the following statements are true for any n:

a) pmin
1,n is unique.

b) The inequality pmin
1,n <

1√
κα1

holds true.

c) fn(p1) is monotonically decreasing for p1 ∈ (0, pmin
1,n ) and it is monotonically

increasing for p1 ∈ (pmin
1,n , Ps).

Proof : See Appendix C.

It follows from part (a) of Lemma 3 that the equation

∂fn(p1)

∂p1
= 0 (4.3.3)

has a unique solution for p1 > 0. This solution, referred to as pmin
1,n , can be easily

obtained using a bisection algorithm, as explained in the sequel. Let pl = 0 and

pu = 1√
κα1

be, respectively, the lower and upper bounds of the solution to (4.3.3). If

for any given value of p1 in the interval [pl, pu] (say p1 = (pl + pu)/2), we have that

∂fn(p1)

∂p1
> 0, then the solution to (4.3.3) is smaller than that value of p1. Hence, we

can choose that value of p1 to be a new value of pu. If, for the chosen p1, we have

∂fn(p1)

∂p1
< 0, then the solution to (4.3.3) is larger than that value of p1. Hence we

can choose that value of p1 to be a new value of pl. This process can be repeated until

the change in the value of p1 is small enough. The so-obtained value of p1 is then

introduced as pmin
1,n . If p

min
1,n ∈ (0, Ps] (see Figs. 4.1(a), 4.1(c), 4.1(d), or 4.1(f)), then we

have fmin
n = fn(p

min
1,n ). If p

min
1,n > Ps (see Fig. 4.1(b) or 4.1(e)), as the function fn(p1) is

monotonically decreasing for p1 < pmin
1,n (see part (c) of Lemma 3), then this function

attains its lowest value in the interval (0, Ps] at p1 = Ps. In this case, fmin
n = fn(Ps).

We have summarized this process as Algorithm 1.
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Ps

Ps

fn(p1)

p1
pmin
1,n

fn
min

(a)

Ps

Ps

fn(p1)

p1

fn
min = fn(Ps)

pmin
1,n

(b)

Ps

fn(p1)

p1
po1,n = pmin

1,n

fn
min = Ps

(c)

Ps

fn(p1)

p1
pmin
1,n

fn
min

po1,n

fn(Ps)

Ps

(d)

Ps

Ps

fn(p1)

p1
pmin
1,n

fn
min

po1,n

(e)

Ps

Ps

fn(p1)

p1
pL1,n

fn
min

pmin
1,n

fn(Ps)

pR1,n

(f)

Figure 4.1: Geometric representation of the location of fn
min with respect to Ps.
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Algorithm 1 Bisection algorithm to find fn
min = min

0<p1<Ps

fn(p1)

Step 1. Set ǫ as the desired stopping criterion.

Step 2. Initialize k = 0, pl = 0 and pu = 1√
κα1

.

Step 3. Choose p
(k)
t = (pl + pu)/2.

Step 4. Calculate
∂fn(p1)

∂p1
at p1 = p

(k)
t using

∂fn(p1)

∂p1
= 1 +

n
∑

i=2

(α1 κ p1
2 − 1)

(√
∆i + bi

)

2α1 κ p1
2
√
∆i

,

where ∆i = b2i − 4καiα
2
1p

2
1 and bi = (αi + καiα1p

2
1).

Step 5. If
∂fn(p1)

∂p1

∣

∣

∣

p1=p
(k)
t

> 0, set pu = p
(k)
t . If

∂fn(p1)

∂p1

∣

∣

∣

p1=p
(
tk)

< 0 set pl = p
(k)
t

Step 6. If |p(k+1)
t − p

(k)
t | > ǫ, set k = k + 1 and go to Step 3.

Step 7. Set pmin
1,n = p

(k)
t .

Step 8. If pmin
1,n > Ps, set f

min
n = fn(Ps) otherwise set fmin

n = fn(p
min
1,n ), where

fn(p1) = p1 +

n
∑

i=2

(

1 + κα1p
2
1

2κα1p1
+

√

(1 + κα1p21)
2

4κ2α2
1p

2
1

− 1

καi

)

.
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As mentioned earlier, the so-obtained value of fmin
n can be used to determine

whether the corresponding value of n is feasible or not. To do so, let us consider the

following three possible cases:

1. If for a certain value of n, fn
min > Ps holds true, then there is no solution for p1

which can satisfy fn(p1) = Ps, or, equivalently, to meet the KKT conditions.

Therefore, the chosen n is not feasible. Figs.4.1(a) and 4.1(b) correspond to

this situation, where the function fn(p1) does not intersect with the horizontal

line with the height Ps in the interval (0, Ps].

2. If for a certain value of n, fn
min = Ps holds true, then there is only one value

for p1 which satisfies (4.3.1) or the KKT conditions. This solution is, then the

optimal value of p1 for that n, is given by po1,n = pmin
1,n . This situation is shown

in Fig. 4.1(c). Note that in practice, the probability of this case is zero, given

the random nature αi’s.

3. If for a certain value of n, fn
min < Ps holds true, then using part (c) of Lemma

3, there is at least one solution to (4.3.1) in the interval of (0, Ps]. Based on

the value of fn(Ps) and the location of pmin
1,n with respect to Ps, the following

scenarios are possible:

subcase 3.1) If fn(Ps) < Ps and pmin
1,n < Ps (see Fig. 4.1(d)), then (4.3.1)

has a unique solution in the interval of (0, pmin
1,n ] and there is no solution when

p1 ∈ [pmin
1,n , Ps]. The uniqueness of this solution stems from the fact that fn(p1) is

monotonically decreasing in the interval of (0, pmin
1,n ), and hence, it can intersect

with the horizontal line with height Ps only once in the interval (0, Ps). Also, the

reason that (4.3.1) has no solution in the interval [pmin
1,n , Ps) is that the function
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fn(p1) is monotonically increasing in this interval and that fn(Ps) < Ps.

subcase 3.2) If fn(Ps) < Ps and pmin
1,n > Ps (see Fig. 4.1(e)), then (4.3.1) has

only one solution in the interval (0, Ps).

subcase 3.3) If fn(Ps) > Ps and pmin
1,n < Ps (see Fig. 4.1(f)), then (4.3.1) has

two solutions in the interval (0, Ps). One of these solutions (denoted as pL1,n)

is in the interval (0, pmin
1,n ) and the second solution (denoted as pR1,n) is in the

interval (pmin
1,n , Ps). Note that for a certain value of n, one of two values of pL1,n

and pR1,n should be chosen as the optimal value of p1 for that value of n. This

can be done by calculating the corresponding value of the objective function

for both values and choosing the one which leads to the largest value of this

objective function. Note that if the case pR1,n = Ps is not feasible and in such a

case, pL1,n is the solution for the chosen n.

In any case, the solution(s) to (4.3.1) (if exists) can be obtained using a simple

bisection method.

Note that if the constraint (4.3.1) is infeasible for a certain value of n, it will be

infeasible for m > n. The reason is that

fm(p1) = fn(p1) +

m
∑

i=n+1

pi(p1) > fn(p1) (4.3.4)

It follows from (4.3.4) that if n is not feasible, i.e. if fn(p1) > Ps in the interval (0, Ps],

then fm(p1) > fn(p1) > Ps in this interval. In other words, m is also infeasible. This

reduces the computational complexity as we do not need to check all values of n.

Indeed, we can start from n = 2 and check the feasibility of all values of n ≥ 2. As

soon as we find an infeasible value for n, we stop the search. Our proposed solution

is summarized as Algorithm 2.
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Algorithm 2 Finding the optimal solution to power control for active channels

Step 1. Define

pi(z) =

(

1 + κα1z
2

2κα1z
+

√

(1 + κα1z2)2

4κ2α2
1z

2
− 1

καi

)

(4.3.5)

Step 2. For n = 1, choose po1,n = Ps and calculate the corresponding sum-rate as R(n) =

log2(1 + α1PsPc).

Step 3. Choose n = n+ 1.

Step 4. If n > N , go to Step 14

Step 5. Use Algorithm 1 to obtain fn
min and pmin

1,n .

Step 6. If fn
min > Ps, then go to Step 14.

Step 7. If fn
min = Ps, then po1,n = pmin

1,n . Use (4.3.5) to obtain pi(p
o
1,n), and then calculate the

sum-rate as R(n) =
∑n

i=1 log2(1 + καip
2
i (p

o
1,n)), where κ = Pc

Ps
. Then, go to Step 14.

Step 8. If fn(Ps) < Ps and pmin
1,n < Ps, use a bisection method to find the solution po1,n to

fn(p1) = Ps in the interval (0, pmin
1,n ). Then, go to Step 12.

Step 9. If fn(Ps) < Ps and pmin
1,n > Ps, use a bisection method to find the solution po1,n to

fn(p1) = Ps in the interval (0, Ps). Then, go to Step 12.

Step 10. If fn(Ps) > Ps and pmin
1,n < Ps, use bisection methods to obtain pL1,n and pR1,n in the

intervals (0, pmin
1,n ) and (pmin

1,n , Ps), respectively.

Step 11. If
∑n

i=1 log2(1 + καip
2
i (p

L
1,n)) ≥

∑n
i=1 log2(1 + καip

2
i (p

R
1,n)), then po1,n = pL1,n, oth-

erwise po1,n = pR1,n.

Step 12. Use (4.3.5) to obtain pi(p
o
1,n) and then calculate the sum-rate as R(n) =

∑n
i=1 log2(1 + καip

2
i (p

o
1,n)), where κ = Pc

Ps
.

Step 13. Go to Step 3

Step 14. Find the maximum value of the sum-rate and the corresponding value of n as

Rmax = max
n

R(n) and no = argmax
n

R(n), respectively.

Step 15. Find the optimum value of p1 as po1 = po1,no .

Step 16. Use (4.3.5) to calculate the optimal value of power of the ith subchannels as p0i =

pi(p
o
1), for i = 1, 2, . . . , no. For no < i < N , choose poi = 0

Step 17. Calculate the optimal value of subchannel gains as hoi = κpoi .
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4.4 Simulation Results

In this section, we compare the performance of an active channel with that of a

passive channel with the same number of subchannels. For the active channel, the

total consumed power is defined as PT = Ps+Pc, and the following three scenarios are

considered: 1) Ps = Pc = PT/2, 2) Ps = 3Pc = 3PT/4 and 3) Ps = Pc/3 = PT/4. For

the active channel, the noise powers of different subchannels (i.e., αi’s) are modeled

as i.i.d exponentially distributed random variables with rate 0.5. For the passive

channel, we assume that we have no control over the subchannels, and hence, the

total available power is consumed at the source. Also, each subchannel of the passive

channel is assumed to have a gain which is modeled as complex Gaussian random

variable with variance 1. To maximize the sum-rate of the passive channel, we use

water-filling power allocation scheme.

In Fig. 4.2, we plot the maximum sum-rate of the active channel as well as the max-

imum sum-rate of the passive channel versus the total consumed power, for N = 16.

This figure shows that, at large values of PT, the active channel significantly out-

performs its passive counterpart in terms of the maximum sum-rate. This is due

to the fact that when maximizing the sum-rate of the active channel, we have more

degrees of freedom in our optimization problem as compared to the case when we

maximize the sum-rate of the passive channel. However, for small values of the total

consumed power, water-filling solution to the sum-rate maximization of the passive

channel performs slightly better than the proposed solution to sum-rate maximiza-

tion for the active channel. The reason is that the passive channel considered here

corresponds to a feasible point in an active channel problem where the total available

power is, in average, PT + N . Indeed, for the passive channel considered here, the
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norm of the channel is not zero but it is equal to N , in average. For small values of

the total transmit power, the power assigned to the active channel is smaller than the

power of the passive channel. This relatively low channel power of the active scheme

wastes the advantages of the additional degrees of freedom offered by this scheme,

resulting in a lower sum-rate as compared to the passive channel for small values of

the total transmit power. As the total available power is increased, the active chan-

nel receives increasingly more power, thereby gaining sum-rate advantages over the

passive channel.

As can be seen from Fig. 4.2, the active channel yields the same maximum sum-rate

for Ps = 3Pc and Ps = Pc/3. This is consistent with the fact that in the optimization

problem (4.1.4), the objective function does not change if we swap hi and pi. As can

be seen from this figure, the maximum sum-rate of the active channel is achieved

when half of the total available power is allocated to the source, while the remaining

half is assigned to the channel. This observation is explained below. Consider the

following optimization problem:

max
p,h

n
∑

i=1

log2(1 + αipihi)

subject to 1Tp+ 1Th = PT

p < 0, h < 0 .

This optimization problem can be equivalently written as

max
β

max
p,h

n
∑

i=1

log2(1 + αipihi)

subject to pi + hi = βi

1Tβ = PT

p < 0, h < 0, β < 0 .
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or as

max
β

n
∑

i=1

max
pi,hi

log2(1 + αipihi)

subject to pi + hi = βi

1Tβ = PT

p < 0, h < 0, β < 0 .

where β , [β1, β2, . . . , βn]
T . It is obvious that the inner maximization is solved when

pi = hi = βi/2. As such, at the optimum, half of the total available power has to be

assigned to the source and the remaining half has to be assigned to the channel.

In Fig. 4.3, we plot the average number of activated subchannels in the passive

channel as well as the average number of activated subchannels in the active channel

for the same aforementioned three power allocation scenarios. Although, for small

values of PT, the active channel performs slightly worse than the passive channel (see

Fig. 1), the number of activated subchannels of the active channel, in average, is much

smaller than that number for the passive channel. For example, at PT = 12 (dBW),

the active channel uses, in average, 4 out of 16 subchannels, while the passive channel

utilizes 13 subchannels. However, the maximum sum-rate of the passive channel is

only about 5 (bits/sec/parallel channel use) higher than that of the active channel.

At moderate values of PT, for example when PT = 22 dBW, compared to the passive

channel, the active channel yields higher sum-rate with using, in average, less number

of subchannels. For large values of PT, both active and passive channels utilize the

same number of subchannels, however, the active channel achieves a significantly

higher sum-rate. These features of the active channel is well explained by the fact

that the active channel offers more degrees of freedom. Indeed, in the active channel

both the source transmit power allocation strategy and the channel are designed to
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achieve a higher sum-rate, while in the passive channel, we have no control over the

channel and can only adjust the source power allocation scheme.

In Fig. 4.4, we have shown the maximum sum-rate for both active and passive

channels, versus number of the total available subchannels N , for PT = 30 (dBW) and

PT = 35 (dBW). For small number of available subchannels, the active channel results

in a higher sum-rate compared to its passive counterpart. As the number of available

subchannels increases, the maximum sum-rate of the active channel is saturated, while

the maximum sum-rate in the passive channel is increased consistently. The reason for

this saturation behavior of the active channel is that beyond a certain value of N , the

problem becomes infeasible, and no matter how many subchannels are available, the

corresponding power allocation scheme does not result in a higher sum-rate. When

PT increases from 30 (dBW) to 35 (dBW), the active channel performs better than

the passive channel in a wider range of N . To explain why the performance of the

passive passive channel improves as N is increased, one should note that the power

of the passive channel increases with N . However for an active channel, the proposed

power allocation scheme does not activate all subchannels, but uses only a subset of

them.
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Figure 4.2: Maximum sum-rate versus the total consumed power for both active and

passive channels with N = 16 subchannels.
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Figure 4.3: Average number of activated subchannels versus the total consumed power
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channels, and for different values of total consumed power



Chapter 5

Conclusions And Future work

The maximum achievable sum-rate of a passive channel depends not only on the

source transmit power but also on the quality of individual subchannels (i.e., on the

power (or strength) of the parallel channel). This obvious observation has motivated

us to study the problem of sum-rate maximization for a parallel channel where not

only can the source transmit power be adjusted but also the channel itself can be

properly designed or optimally adjusted to achieve a higher sum-rate compared to

traditional passive channels. This channel where its energy can be controlled at a

certain level refers to active channel. Throughout this dissertation, we studied the

joint optimization of the channel energy and transmit power over a set of active

parallel subchannels. The sum-rate maximization of such channels is investigated

under two constraints, one on the energy of channel and one on the transmit power.

This problem is investigated in two cases: equal and unequal noise power over different

subchannels.

For equal subchannel noise powers, we proved that in order to achieve the maximum

sum-rate, only a certain number of subchannels should be turned on and the rest

of the subchannels should be switched off. This is in contrast with passive parallel

57
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channels with equal subchannel SNRs, where water-filling solution to the sum-rate

maximization under a total source power constraint leads to an equal power allocation

among all subchannels. The number of active subchannels is proven to depend on

the product of the source and channel powers. We have also shown that when sum-

rate is maximized, different active subchannels receive the same level of powers. We

have also proven that if the total power available to the source and to the channel is

limited, then in order to maximize the sum-rate via optimal power allocation to the

source and to the active channel, half of the total available power should be allocated

to the source and the remaining half should be allocated to the active channel.

The sum-rate maximization problem is further investigated for unequal subchannel

noise powers. To solve this problem under source and channel power constraints, we

used KKT conditions to obtain a computationally efficient algorithm for source and

channel power allocation. We showed that how KKT conditions can be used to

determine how many subchannels can be active for the source power constraint to

be feasible. Indeed, we developed a computationally efficient method to determine

the feasible numbers of active subchannels. Then, for any feasible number of active

subchannels, we obtained the optimal source power allocation. In fact, we showed

that for any feasible number of active channels, there are only zero, one, or two

solutions for the optimal source power allocation. As such the optimal solution can

be obtained by comparing a finite number of feasible points and choosing the best

point which yields the best sum-rate performance. We showed that activating the

whole subchannels does not necessarily lead to the maximum sum-rate. Moreover,

it is proven that at the optimum, half of the total power should be assigned to the

subchannels and the remaining half should be allocated to each subchannel at the
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source.

5.1 Future work

In this thesis, sum-rate maximization of active parallel channels is extensively dis-

cussed. This work can be further investigated in one- or two-way relay networks

to:

• Derive the achievable rate region in OFDM-based two-way relay networks

• Achieve the maximum sum-rate of asynchronous relay networks

• Maximize the minimum rate in asynchronous relay networks



Appendix A

proof of non-convexity of (3.1.1)

To show that the optimization problem in (4.1.2) is not convex we show that the

Hessian matrix of the objective function is not negative definite. To show this, the

Hessian matrix can be written as

blkdg











∂2f(p̃,h̃)
∂p̃2i

∂2f(p̃,h̃)

∂p̃i∂h̃i

∂2f(p̃,h̃)

∂p̃i∂h̃i

∂2f(p̃,h̃)

∂h̃2
i











N

i=1

(A.0.1)

where f(p̃, h̃) denotes the cost function in (4.1.2). For i = 1, 2, · · · , n, we can write

∂f(p̃, h̃)

∂p̃i
=

1

ln 2

h̃i

1 + p̃ih̃i

(A.0.2)

∂f(p̃, h̃)

∂h̃i

=
1

ln 2

p̃i

1 + p̃ih̃i

(A.0.3)

(A.0.4)

and hence, we obtain

∂2f(p̃, h̃)

∂p̃2i
=

1

ln 2

−h̃2
i

(1 + p̃ih̃i)2
(A.0.5)

∂2f(p̃, h̃)

∂h̃2
i

=
1

ln 2

−p̃2i
(1 + p̃ih̃i)2

(A.0.6)

∂2f(p̃, h̃)

∂p̃i∂h̃i

=
1

ln 2

1

(1 + p̃ih̃i)2
(A.0.7)
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we can write the determinant of ith block in (B.0.1) as

∣

∣

∣

∣

∣

∣





∂2f(p̃,h̃)

∂p2i

∂2f(p̃,h̃)

∂p̃i∂h̃i

∂2f(p̃,h̃)

∂p̃i∂h̃i

∂2f(p̃,h̃)

∂h̃2
i





∣

∣

∣

∣

∣

∣

=
1

ln 2

p̃2i h̃
2
i − 1

(1 + p̃ih̃i)2
(A.0.8)

As can be seen from (B.0.7) that the ith block of the Hessian matrix is not always

negative definite. As such, the Hessian matrix is not always negative definite. Hence,

the cost function in (4.1.2) is not concave.



Appendix B

Proof of non-convexity of (4.1.2)

To show that the optimization problem in (4.1.4) is not convex we show that the

Hessian matrix of the objective function is not negative definite. To show this, Hessian

matrix can be written as

blkdg











∂2g(p,h)

∂p2i

∂2g(p,h)
∂pi∂hi

∂2g(p,h)
∂pi∂hi

∂2g(p,h)
∂h2

i











N

i=1

(B.0.1)

where g(p,h) denotes the cost function in (4.1.2). Noting that

∂g(p,h)

∂pi
=

1

ln 2

αihi

1 + αipihi

i = 1, 2, · · · , n, (B.0.2)

∂g(p,h)

∂hi

=
1

ln 2

αipi
1 + αipihi

i = 1, 2, · · · , n, (B.0.3)

we can have

∂2g(p,h)

∂p2i
=

1

ln 2

−αih
2
i

(1 + αipihi)2
i = 1, 2, · · · , n, (B.0.4)

∂2g(p,h)

∂h2
i

=
1

ln 2

−αip
2
i

(1 + αipihi)2
i = 1, 2, · · · , n, (B.0.5)

∂2g(p,h)

∂pi∂hi

=
1

ln 2

αi

(1 + αipihi)2
i = 1, 2, · · · , n . (B.0.6)
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We can write the determinant of ith block in (B.0.1) as

det





∂2g(p,h)
∂p2i

∂2g(p,h)
∂pi∂hi

∂2g(p,h)
∂pi∂hi

∂2g(p,h)

∂h2
i



 =
1

ln 2

α2
i p

2
ih

2
i − 1

(1 + αipihi)2
(B.0.7)

As can be seen from (B.0.7), the ith block of the Hessian matrix is not always negative

definite which means that the optimization problem (4.1.4) is non-convex.



Appendix C

Proof of Lemma

The proofs of parts (a) and (b) consist of three steps: Step 1:) we show that, for

n = 2, ..., N , the function
n
∑

i=2

pi(p1), has a unique minimizer at p1 =
1√
κα1

, Step 2:)

we prove that the function

n
∑

i=2

pi(p1) is convex for p1 ∈ (0,
1√
κα1

], and Step 3) using

the previous two steps, we prove the uniqueness of the minimizer of p1+
n
∑

i=2

pi(p1).

Step 1) The uniqueness of the minimizer of
n
∑

i=2

pi(p1): To prove that the

function

n
∑

i=2

pi(p1) has a unique minimizer, we show that for any i ∈ 2, · · · , N , the

function pi(p1) has the same unique minimizer. To show this, we differentiate pi(p1),

given as in (4.2.22), with respect p1 as

∂pi(p1)

∂p1
=

(α1 κ p1
2 − 1)

(√
∆i + bi

)

2α1 κ p1
2
√
∆i

(C.0.1)

where ∆i = b2i −4καiα
2
1p

2
1 and bi = (αi+καiα1p

2
1). Equating the derivative in (C.0.1)

to zero yields

p1 =
1√
κα1

. (C.0.2)
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It follows from (C.0.1) that for any i,
∂pi(p1)

∂p1
> 0, when p1 ∈ (

1√
κα1

,∞) and

∂pi(p1)

∂p1
≤ 0 for p1 ∈ (0,

1√
κα1

], and hence, we can write

n
∑

i=2

∂pi(p1)

∂p1



























> 0 , for p1 ∈ (
1√
κα1

,∞)

= 0 , for p1 =
1√
κα1

< 0 , for p1 ∈ (0,
1√
κα1

)

. (C.0.3)

The proof of Step 1 is now complete.

Step 2) Convexity of
n
∑

i=2

pi(p1), when p1 ∈ (0,
1√
κα1

]: To show that the

function

n
∑

i=2

pi(p1) is convex for p1 ∈ (0,
1√
κα1

], it is sufficient to show that for

any i, the function pi(p1) is convex in this interval, or equivalently, that the second

derivative of pi(p1) is positive for p1 ∈ (0,
1√
κα1

]. The second derivative of pi(p1) can

be obtained as

∂2pi(p1)

∂p21
=

(∆i)
3
2 + b3 − 6κα2

1α
2
i p

2
1 − 2κ3α4

1α
2
i p

6
1

α1 κ p1
3 (∆i)

3
2

. (C.0.4)

Let us rewrite (C.0.4) as

∂2pi(p1)

∂p21
=

(∆i)
3
2 + (αi + αi(κα1p

2
1))

3 − 6α1α
2
i (κα1p

2
1)− 2α1α

2
i (κα1p

2
1)

3

p1(κα1p
2
1) (∆i)

3
2

. (C.0.5)

Note that for p1 ∈ (0,
1√
κα1

], there exists 0 < ǫ < 1 such that α1 κ p1
2 = 1−ǫ. Hence,

we can write

∂2pi(p1)

∂p21
=

(∆i)
3
2 + (αi + αi(1− ǫ))3 − 6α1α

2
i (1− ǫ)− 2α1α

2
i (1− ǫ)3

p1(1− ǫ) (∆i)
3
2

. (C.0.6)

The denominator in (C.0.6) is positive for any 0 < ǫ < 1. The numerator can be
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written as

∆
3
2
i + 8α3

i − α3
i ǫ

3 + 6α3
i ǫ

2 − 12α3
i ǫ− 6α1α

2
i + 6α1α

2
i ǫ− 2α1α

2
i + 2α1α

2
i ǫ

3 + 6α1α
2
i ǫ− 6α1α

2
i ǫ

2

= ∆
3
2
i + α1α

2
i ǫ

3 + 8α2
i (αi − α1) + 6α2

i ǫ
2(αi − α1)− 12α2

i ǫ(αi − α1)− α2
i ǫ

3(αi − α1)

= ∆
3
2
i + α1α

2
i ǫ

3 + α2
i (αi − α1)(−ǫ3 + 6ǫ2 − 12ǫ+ 8)

= ∆
3
2
i + α1α

2
i ǫ

3 + α2
i (αi − α1)(2− ǫ)3 . (C.0.7)

Using the fact that αi > α1 and that ∆i > 0 (see (4.2.24)), it can be easily seen that

(C.0.7) is positive for any 0 < ǫ < 1. Therefore,
∂2pi(p1)

∂p21
> 0 for p1 ∈ (0,

1√
κα1

], and

consequently,

n
∑

i=2

∂2pi(p1)

∂p21
> 0 for p1 ∈ (0,

1√
κα1

]. (C.0.8)

Indeed, (C.0.8) states that

n
∑

i=2

pi(p1) is convex for p1 ∈ (0,
1√
κα1

]. This completes

the proof of Step 2.

Step 3) The uniqueness of the minimizer of fn(p1) = p1 +
n
∑

i=2

pi(p1): In

order to prove the uniqueness of the minimizer of fn(p1), we need to show that for

any n, the solution to the following equation:

∂fn(p1)

∂p1
= 1 +

n
∑

i=2

∂pi(p1)

∂p1
= 0, (C.0.9)

or, equivalently, to this one:

n
∑

i=2

∂pi(p1)

∂p1
= −1, n = 2, 3, ..., N. (C.0.10)

is unique. From (C.0.3) of Step 1, we observe that the solution to (C.0.10) is located

in the interval of (0,
1√
κα1

], because out of this interval,
n
∑

i=2

∂pi(p1)

∂p1
is positive, and

hence, (C.0.10) ( or (C.0.9)) cannot be satisfied. Using this observation along with
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the convexity of

n
∑

i=2

pi(p1) in the interval (0,
1√
κα1

], as shown in (C.0.8) of Step 2, we

conclude that the solution to (C.0.10) is unique. Therefore, the minimizer of fn(p1),

denoted by pmin
1,n is unique and

pmin
1,n ∈ (0,

1√
κα1

] . (C.0.11)

The proofs of both parts (a) and (b) are now complete.

To prove the first statement of part (c), we note that in the interval (0, pmin
1,n )

the function

n
∑

i=2

pi(p1) is convex (Step 3). The convexity of the function

n
∑

i=2

pi(p1)

implies that its derivative
n
∑

i=2

∂pi(p1)

∂p1
is monotonically increasing. Hence, for any

p1 ∈ (0, pmin
1,n ), we have

n
∑

i=2

∂pi(p1)

∂p1
<

n
∑

i=2

∂pi(p1)

∂p1

∣

∣

∣

p1=pmin
1,n

= −1. (C.0.12)

where the equality follows from the fact that pmin
1,n is the global minimizer of fn(p1),

i.e., (C.0.10) holds true at p1 = pmin
1,n . Using (C.0.12), we can write

∂fn(p1)

∂p1
= 1 +

n
∑

i=2

∂pi(p1)

∂p1
< 0, for p1 ∈ (0, pmin

1,n ). (C.0.13)

It follows from (C.0.13) that fn(p1) is monotonically decreasing for p1 ∈ (0, pmin
1,n ).

This completes the proof of the first statement of part (c).

We now prove the second statement of part (c). Using (C.0.3), we can write1

n
∑

i=2

∂pi(p1)

∂p1
≤ 0 for p1 ∈ [pmin

1,n ,
1√
κα1

) (C.0.14)

1Note that according to part (a), pmin
1,n <

1√
κα1

holds true.
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In light of (C.0.8), the function

n
∑

i=2

∂pi(p1)

∂p1
is monotonically increasing when p1 ∈

(pmin
1,n ,

1√
κα1

). Hence, for p1 ∈ (pmin
1,n ,

1√
κα1

), we can write

n
∑

i=2

∂pi(p1)

∂p1
>

n
∑

i=2

∂pi(p1)

∂p1

∣

∣

∣

p1=pmin
1,n

> −1

(C.0.15)

Hence, for p1 ∈ (pmin
1,n ,

1√
κα1

), we can write

∂fn(p1)

∂p1
= 1 +

n
∑

i=2

∂pi(p1)

∂p1
> 0 . (C.0.16)

Therefore, fn(p1) is monotonically increasing in the interval (pmin
1,n ,

1√
κα1

).

When p1 ∈ [
1√
κα1

, Ps], using (C.0.3), we can write

∂fn(p1)

∂p1
= 1 +

n
∑

i=2

∂pi(p1)

∂p1
> 0 . (C.0.17)

Using (C.0.17), we conclude that fn(p1) is monotonically increasing in the interval

[
1√
κα1

, Ps]. This completes the proof of the second statement of part (c). �

The proof is now complete.
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