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Joint 3D Trajectory Design and Time Allocation for
UAV-Enabled Wireless Power Transfer Networks

Wanmei Feng, Nan Zhao, Senior Member, IEEE, Shaopeng Ao, Jie Tang, Senior Member, IEEE,
Xiuyin Zhang, Senior Member, IEEE, Yuli Fu, Daniel K. C. So and Kai-Kit Wong, Fellow, IEEE

Abstract—This paper considers a rotary-wing unmanned aerial
vehicle (UAV)-enabled wireless power transfer system, where a
UAV is dispatched as an energy transmitter (ET), transferring
radio frequency (RF) signals to a set of energy receivers (ERs)
periodically. We aim to maximize the energy harvested at all
ERs by jointly optimizing the UAV’s three-dimensional (3D)
placement, beam pattern and charging time. However, the consid-
ered optimization problem taking into account the drone flight
altitude and the wireless coverage performance is formulated
as a non-convex problem. To tackle this problem, we propose
a low-complexity iterative algorithm to decompose the original
problem into four sub-problems in order to optimize the variables
sequentially. In particular, we first use the sequential uncon-
strained convex minimization based algorithm to find the globally
optimal UAV two-dimensional (2D) position. Subsequently, we
can directly obtain the optimal UAV altitude as the objective
function of problem is monotonic decreasing with respect to
UAV altitude. Then, we propose the multiobjective evolutionary
algorithm based on decomposition (MOEA/D) based algorithm
to control the phase of antenna array elements, in order to
achieve high steering performance of multi-beams. Finally, with
the above solved variables, the original problem is reformulated
as a single-variable optimization problem where charging time is
the optimization variable, and can be solved using the standard
convex optimization techniques. Furthermore, we use the branch
and bound method to design the UAV trajectory which can be
constructed as traveling salesman problem (TSP) to minimize
flight distance. Numerical results validate the theoretical findings
and demonstrate that significant performance gain in terms of
sum received power of ERs can be achieved by the proposed
algorithm in UAV-enabled wireless power transfer networks.

Index Terms—Multi-beam, trajectory optimization, UAV 3D
placement, wireless power transfer.
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I. INTRODUCTION

THE Internet of Things (IoT) exploit the interconnection
between heterogeneous smart devices to collect and ex-

change data, which can be used in smart home, intelligent
transportation system (ITS) and smart city [1]–[5]. In par-
ticular, the third generation (3G) and the fourth generation
(4G) cellular networks are the two communication techniques
to support the IoT connectivity and provide wide coverage
area, low deployment cost and high security communications
[6]. However, both of these techniques can not support ef-
fectively Machine-Type communications (MTC) due to many
requirements for MTC devices, such as high data rate, low-
latency, low power consumption, high security and network
scalability and coverage. The fifth generation (5G) mobile
networks are capable of overcoming the limitations of the
current technologies, which provides Gigabit data rate and low
latency communications to connected devices [7]–[12]. As a
result, 5G enabled IoT has attracted a lot of attention in the
research community and industry.

In fact, 5G networks connect massive IoT applications
which causes enormous power consumption. Wireless power
transfer (WPT) and energy harvesting (EH) have been con-
sidered as promising techniques to prolong battery-life in 5G
and beyond [13]. Particularly, inductive coupling and magnetic
resonance coupling are two types of WPT technologies, but
can only transfer power over several centimeters and several
meters, respectively, which are not possible yet for long-
range wireless charging. On the other hand, radio frequency
(RF) energy transfer technique conveys energy contained in
electromagnetic waves (3 kHz ∼ 300 GHz) to the electronics
devices [14]. Since the distance between transmitters and
receivers can be up to several kilometers, RF energy transfer
technique is suitable for far-field wireless energy transfer.
Thus, RF-enabled WPT has attracted much attention in both
academia and industry recently, and adopted in many applica-
tions. However, the ETs may be far away from the energy
receivers (ERs) when they are in disaster areas or remote
mountain areas, and thus the receivers sustain low energy
transfer efficiency due to the path loss effect.

Unmanned aerial vehicles (UAVs), owning to their auton-
omy, flexibility, mobility, can rapidly deploy in rural and
geographically constrained areas and provide reliable and
cost-effective wireless connectivity instead of the local base
stations. Hence, due to many advantages of UAVs, the notion
of UAV-enabled wireless power transfer has been proposed
in recent years. In practice, the UAV flight duration is finite
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due to the limitation of the onboard battery capacity, and
hence, minimizing the aerodynamic power consumption or
maximizing the energy efficiency of UAVs have been studied
by several existing works [15]–[19]. In [15], the authors
maximized the UAV’s energy efficiency via designing flight
trajectory by jointly considering throughput and propulsion
energy consumption. In [16], the authors studied the UAV
trajectory to maximize energy transfer subject to the maximum
UAV flying speed in UAV-enabled WPT networks. In [17],
the authors maximized the minimum uplink throughput by
jointly optimizing UAV trajectory and transmission resource
allocations for UAV-enabled wireless powered communication
networks (WPCN). Based on the aforementioned researches on
two-dimensional (2D) location of UAVs, some existing works
take into account flight altitude which is related to ground
coverage area. In [18], the authors studied 3D placement of
a UAV to maximize the number of covered users under the
constraint of minimum transmit power. In [19], the authors
jointly optimized altitude, beamwidth, location and bandwidth
to minimize the sum power of UAV-enabled wireless commu-
nications.

The main practical challenge for implementing RF-based
WPT is the low energy transfer efficiency caused by power
attenuation due to the path loss. One suitable solution is
to use energy beamforming techniques. Specifically, energy
transmitters with antenna array form an energy beam towards
the corresponding energy receivers to maximize the received
signal strength, which can improve the energy transfer ef-
ficiency due to the increase of effective aperture area1. For
example, the authors in [21] proposed two practical channel
training methods where ETs transmit beamformed energy to a
single-antenna ER for receiving energy feedback. In [22], ETs
generate energy beamforming to ERs in order to obtain energy
measurement feedback by three channel acquisition methods
in multiple-input-multiple-output (MIMO) systems.

A. Main contributions

Previous works in the literature designed the 2D trajectory
planning for UAVs that maximized the energy efficiency
in UAV-aided wireless communication networks [15], UAV-
enabled WPT networks [16] and WPCN [17], where UAV
altitude is not considered to ensure the coverage areas of
UAVs. On the other hand, the works in [18], [19] investigated
the 3D placement of UAVs to maximize the wireless coverage,
but not consider the trajectory planning for UAVs to minimize
the flight distance. In contrast to the previous literature [15]–
[19], in this paper, we investigate an energy harvesting opti-
mization problem for UAV-enabled WPT networks that jointly
optimizes UAV’s 3D placement, beam pattern, charging time
and 3D trajectory. To satisfy the requirement that the UAV
transmits power to multiple energy receivers simultaneously
with high energy transfer efficiency, we design and optimize
the 3D energy multi-beams of antenna array mounted on
UAV with taking into account mutual coupling affected the

1The effective aperture is a measure of how effective an received antenna
absorbing the power of the transmit antenna, defined as the area which
converting the incident power density into collected power [20].

beam patterns, which is different from [21], [22]. Furthermore,
motivated by [19] and [23], we also consider the influence
of UAV’s altitude and area coverage on the proposed UAV-
enabled WPT networks. The main contributions of this paper
are summarized as follows.
• We propose a theoretical model for energy harvesting

maximization in UAV-enabled WPT networks, where
UAV’s 3D placement, beam pattern, and charging time
are jointly optimized, with constraint of drone flight al-
titude and wireless coverage performance. However, this
energy harvesting optimization problem is non-convex.
To tackle the problem, we propose a low-complexity
iterative algorithm through sequentially optimizing the
UAV’s 3D position, beam pattern and charging time.

• First, we adopt sequential unconstrained convex mini-
mization based algorithm [24], [25] to obtain the globally
optimal UAV 2D location. Then, based on the horizonal
position of UAV and the fixed beam pattern and charging
time, the optimal UAV altitude can be obtained easily.
Subsequently, we propose the multiobjective evolution-
ary algorithm based on decomposition (MOEA/D) [26]
based algorithm to adjust the antenna gain, side-lobe
level (SLL) and beamwidth of energy beamforming by
optimizing the phases of array elements. These results
show that the MOEA/D based algorithm can approximate
the Pareto front. Finally, based on the above solved
variables, we use standard convex optimization methods
[27] to obtain the optimal charging time.

• We provide numerical results in order to confirm the va-
lidity of our theoretical findings and draw design insight
into the performance of UAV-enabled WPT networks.

B. Organization and Notation

The remainder of this paper is organized as follows. In
Section II, the UAV-enabled WPT system model is described
and the energy harvesting optimization problem is formulated.
In Section III, we propose the low-complexity iterative algo-
rithm to solve the energy harvesting optimization problem via
sequentially optimizing the UAV’s 3D placement, beam pattern
and charging time. The branch and bound method is used to
design the UAV trajectory in Section IV. Numerical results are
presented in Section V to demonstrate the theoretical findings,
and finally, conclusions are provided in Section VI.

The following notations are used in this paper. Boldface
letters denote vectors. R denotes a set of real numbers, and
R+(R++) is the set of nonnegative (strictly positive) real
numbers. aT and aH are the transpose and complex conjugate
transpose of the vector a, respectively. ‖ a ‖ is the Euclidean
norm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Downlink Channel Model

We consider the downlink WPT system which consists of
a rotary-wing UAV, and K ERs randomly distributed on the
ground. The geographical area is divided into Γ serving areas
according to the distance between ERs. The UAV is mounted
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Fig. 1: Illustration of a UAV-enabled WPT with multi-beams.

with an M×N uniform planar array (UPA) while the ERs have
a single antenna. The UAV first hovers at an initial location
in one serving area and generates multiple narrow beams to
transmit RF signals to ERs simultaneously depending on the
location of each ER. For simplicity, we neglect the variability
of beam angles due to the wind flow and mechanical vibration
of UAV. Subsequently, the UAV will fly to another waypoint
according to the trajectory planning2. On the other hand, after
receiving the RF signals from the energy beamforming, the
ERs convert the RF energy and replenish the energy supply
via RF-energy harvesting devices. The network architecture is
illustrated in Fig. 1. Let ER k ∈{1, 2, · · ·K} have a location on
the ground which is denoted by zk = (xk, yk). The horizontal
location of UAV is given by zu = (xu, yu) and the altitude
is h. We assume that the wireless channel between the UAV
and ER k has the line-of-sight (LOS) path dominated over the
non-LOS (NLOS) paths. Thus, the channel hk between the
UAV and the ER k can be expressed as [28], [29]

hk =
√
β0d
−α
k a(θ, φ), (1)

where α(α ≥ 2) denotes the path loss factor and β0 is the
channel power gain at the reference distance of d0 = 1m. Be-
sides, dk =

√
(xk − xu)2 + (yk − yu)2 + h2 is the distance

between the UAV and ER k. a(θ, φ) is the steering vector with
the elevation θ and azimuth φ angles of the LOS path, which
can be defined as

a(θ, φ) =[1, · · · , ej2π/λdarray sin(θ)[(m−1) cos(φ)+(n−1) sin(φ)],

· · · , ej2π/λdarray sin(θ)[(M−1) cos(φ)+(N−1) sin(φ)]]T,
(2)

where λ and darray are the wavelength and spacing between
antenna elements, respectively. m and n denote the coordinate
of antenna elements in x and y directions, respectively. Fur-
thermore, the effective channel gain between UAV and the ER
k is given by

| hH
kw |2=

β0

[(xk − xu)2 + (yk − yu)2 + h2]α/2
| aH(θ, φ)w |2,

(3)
where w is the beamforming vector which can be linearly ad-
justed to control the main lobe direction. E(θ, φ) = aH(θ, φ)w
is the synthesized pattern of the M ×N antenna array.

2We assume that the UAV flies to next waypoint with a constant flight
speed.
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Fig. 2: A transmit and receive structure of analog beamforming based
UAV-WPT systems.

B. Transmit and Receive Structure of Analog Beamforming
based UAV-enabled WPT Systems

Different beamforming techniques are available to RF ener-
gy transfer. For digital beamforming, each antenna requires
a dependent RF chain to control the phase and amplitude
of digital signals, resulting in complex hardware architecture
and high power consumption. Hence, there are two methods
have been proposed to effectively solve this problem. One
includes two-stage beamformers, termed hybrid beamform-
ing, which exploits few numbers of RF-chains for digital
beamformer while phased shifters are used to perform analog
beamformer. However, it needs two-stage feedback (i.e., digital
beamforming and analog beamforming), leading to high power
consumption for large antenna array. On the other hand, analog
beamforming exploits only phase shifters to perform the direc-
tional beamforming; thus requires lower hardware complexity
and energy consumption [30]. Therefore, in this paper, we
adopt the sub-connected analog beamforming technique with
multiple RF chains, where each RF chain connects to a sub-
array. On the other hand, the receivers collect the RF signals
through their antenna. The received RF signals are converted
to direct current (DC) signals via a wireless energy harvester3

to charge the devices with low power, as shown in Fig. 2. We
assume that the mutual coupling between two sub-arrays can
be ignored, and thus the mutual coupling between antenna
elements of a sub-array has been considered in this work.
In addition, UAV has the onboard global positioning system
(GPS) receiver to estimate geodetic positions. The receivers
equipped with a rechargeable battery which can store the
harvested energy.

C. Multiple Steered Beams Generation

To improve the antenna performance (i.e. antenna gain,
beamwidth and side-lobe level) and promote the harvested
energy of ERs, antenna arrays are used to generate multiple
independent steered beams. In particular, UPA in UAV is
separated into several sub-arrays, and each sub-array forms
an independent steered beam by adjusting their phase shifters.
The direction of beams is determined by ER’s local positions
which are obtained by the UAV onboard GPS receivers.
Thus, for an M × N antenna array, the array factor and the

3The model of wireless energy harvester consists of impendence match
circuit, voltage multiplier and capacitor [14].
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Fig. 3: Antenna array beam pattern of angles (−10◦, 0◦), (0◦, 0◦)
and (30◦, 0◦) simulated by MATLAB and HFSS, respectively.

synthesized pattern can be written as [20], [31]

AF =

M∑
m=1

N∑
n=1

Imn × ejψ(θ,φ), (4)

E(θ, φ) =

M∑
m=1

N∑
n=1

pmn(θ, φ)Imn × ejψ(θ,φ), (5)

where ψ(θ, φ) = 2π/λdarray sin(θ)[(m − 1) cos(φ) + (n −
1) sin(φ)] + βmn, pmn(θ, φ) and Imn are the active pattern
and amplitude excitation of the (m,n)-th array element. βmn
is the progressive phase shift, which can be changed by
phase shifters to control the main beam of antenna array
towards a particular direction. The beamforming vector w =
[w1n, · · · , wmn, · · · , wMN ]T describes the amplitude excita-
tion and phase of each array element, wmn = pmn(θ, φ)Imn ·
ejβmn . We assume that the amplitude excitation of the entire
array is uniform and the spacings between the antenna ele-
ments are equal.

Based on the synthesized pattern E(θ, φ), the antenna array
divides into t sub-arrays generating three steered beams toward
ER 1, ER 2 and ER 3, respectively. The beam patterns of ER 1,
ER 2 and ER 3 are shown in Fig. 3, and the angles are (−10◦,
0◦), (0◦, 0◦) and (30◦, 0◦), respectively4. It can be seen in Fig.
3 that the main-lobe gain of all ERs are 7 dB more than the
maximum side-lobe. Besides, it can also be observed that the
simulation results using MATLAB can effectively match the
one from HFSS.

D. Energy Harvesting Optimization Problem Formulation

We assume the energy-storage capacity of each ER is
infinite. Thus, the total energy received by each ER k can
be written as

Qk = ξk | hH
kw |2 P0τk,γ

4In this paper, we assume that the number of serviced ERs is less than the
number of sub-arrays. Thus, for the case in Fig. 3, t ≥ 3.

(a)
=

ξkβ0P0τk,γ | E(θ, φ) |2

[(xk − xu)2 + (yk − yu)2 + h2]α/2
, (6)

where ξk(0 < ξk < 1) is the energy conversion efficiency
which hinges on the hardware circuits of ER k, P0 denotes
the transmit power of the UAV, τk,γ denotes the charging time
of ER k in the γ-th serving area. According to (a), we note
that the total harvested energy of the ER k is depending on the
charging time, beam pattern and the 3D placement of UAV.
Thus, we design the optimal policy, {z∗u, h∗, τ∗k,γ ,E∗(θ, φ)}
for maximizing the total energy harvested of all ERs, which
can be obtained by solving the following optimization problem

(P1) : max
zu,h,τk,γ ,E(θ,φ)

K∑
k=1

ξkβ0P0τk,γ | E(θ, φ) |2

[‖ zk − zu ‖2 +h2]
α/2

(7)

s.t. ‖ zk − zu ‖2≤ h2 tan2 Θ, (8)
Γ∑
γ=1

τk,γ = T, (9)

hmin ≤ h ≤ hmax. (10)

It should be noted that the coverage region of the UAV hovered
at altitude h with the effective illumination angle 2Θ is a circle
with radius h tan Θ [32]. Constraint (8) specifies the largest
horizontal distance between UAV and the ERs that can not
exceed the coverage radius of UAV. This constraint guarantees
that all the ERs located in the same serving area can be
serviced by the UAV simultaneously. Constraint (9) specifies
the total charging time of ERs in Γ serving areas equals to
the whole charging period T . In particular, we assume that
ERs within the same serving area have the same charging
time. Constraint (10) here is used to limit the feasible region
of UAV altitude. Since hovering at low altitude may have the
safety issues due to the obstacle height, while hovering at high
altitude is also not recommended due to authority regulations.

The energy harvesting optimization problem here, which
jointly optimizes the UAV’s 3D placement, beam pattern and
charging time, is mixed-combinatorial and non-convex. The
solution of the above problem is therefore nontrivial and
cannot be obtained directly. As a result, we develop a joint
UAV’s 3D placement, beam pattern design and time allocation
algorithm to solve the proposed problem by optimizing the
above variables sequentially.

III. JOINT UAV’S 3D PLACEMENT, BEAM PATTERN
DESIGN AND TIME ALLOCATION ALGORITHM

As the energy harvesting optimization problem is non-
convex and difficult to solve it, in this section, we introduce
the low-complexity iterative algorithm to solve the energy
harvesting optimization problem by decomposing the original
problem into four sub-problems and optimizing the UAV’s 2D
placement zu, altitude h, beam pattern E(θ, φ) and charging
time τk,γ , respectively. Since the beam pattern design depends
on the angle of arrival (AOAs) of ERs, it requires to get
angle information by determining the UAV’s 3D placement.
Thus, optimizing the UAV’s 3D location first is essential.
In particular, the UAV’s 2D location should be optimized
before the flight height due to the coverage radius is obtained
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when determining horizontal position of a UAV. Based on
the acquisition of coverage radius, the UAV altitude can be
optimized to guarantee that all serviced ERs are covered. Then,
UAV generates the energy beamforming to ERs according
to the known angle information. Besides, the sum received
power of ERs in different serving areas can be achieved
based on the UAV’s 3D placement and beam pattern, and
optimizing the charging time of ERs can further ensure the
fairness of energy transfer among serving areas. Therefore,
in our proposed low-complexity iterative algorithm, we first
apply the sequential unconstrained convex minimization based
algorithm [24] to find the optimal UAV 2D location. Then,
with the 2D location of UAV and since the objective function
is monotonically decreasing with respect to UAV altitude, we
obtain the optimal altitude directly. Subsequently, we propose
the multi-beam optimal generation scheme based on MOEA/D
[26] to design the steered beam pattern. Finally, we use the
standard convex optimization techniques to obtain the globally
optimal charging time of ERs.

A. Optimal UAV 2D Location

To obtain the globally optimal 2D location of UAV, we fix
the altitude h, beam pattern E(θ, φ) and charging time τk,γ ,
and then problem (P1) is formulated as

(P2) : max
xu,yu

K∑
k=1

Ak
[(xk − xu)2 + (yk − yu)2 + h2]α/2

, (11)

where Ak = ξkβ0P0τk,γ | E(θ, φ) |2 is a constant due to
the fixed h, E(θ, φ) and τk,γ . After defining εk(xu, yu) =
(xk−xu)2 + (yk−yu)2 +h2 and qk(εk(xu, yu)) = Ak[(xk−
xu)2+(yk−yu)2+h2]−α/2, problem (P2) can be reformulated
as

(P2.1) : max
xu,yu

K∑
k=1

qk(εk(xu, yu)). (12)

It should be noted that εk(xu, yu) is a convex function
with respect to (xu, yu), and q(·) is also a strictly con-
vex function with strictly decreasing on R+. It should
also be noted that limxu,yu→∞ εk(xu, yu) = +∞, and
limεk(xu,yu)→∞ qk(εk(xu, yu)) = 0. Hence, the function∑K
k=1 qk(εk(xu, yu)) is neither convex nor concave according

to convex optimization theory [27]. Nevertheless, the refor-
mulated optimization problem (P2.1) can be reformulated to
a convex maximization problem, and optimally solved by
solving a sequence of unconstrained convex minimization
subproblems [24]. In particular, problem (P2.1) can be equiv-
alently expressed in the following problem by introducing an
auxiliary variable t = [t1, t2, · · · , tK ]T

(P2.2) : max
xu,yu,t

K∑
k=1

qk(tk) (13)

s.t. εk(xu, yu) ≤ tk, k = 1, 2, · · · ,K. (14)

Denote

D = {t ∈ Rk
+ : εk(xu, yu) ≤ tk, k = 1, 2, · · · ,K,

∃(xu, yu) ∈ R2}.
(15)

Then, problem (P2.2) can be rewritten as

(P2.3) : max
t∈D

q(t), (16)

where q(t) =
∑K
k=1 qk(tk). Since D is compact convex set

and q(t) is a strictly convex function, problem (P2.3) is a
convex maximization problem [33], and cannot be solved by
the standard convex optimization methods. Next, we show
that problem (P2.3) can be solved by reducing it to solving a
sequence of unconstrained convex minimization subproblems.

Similar as [25], we denote

C = {t ∈ Rk
+ : q(t) ≤ q(t∗)}, (17)

D̃ = {t− t0 | t ∈ D}, (18)

C̃ = {t− t0 | t ∈ C}, (19)

where t∗ is the optimal solution in problem (P2.3), t0 ∈ D and
q(t0) < q(t∗). Since the problem (P2.3) is a convex problem
and strictly decreasing with respect to t, the set C and C̃ are
convex and closed set, 0 ∈ D̃ ∩ int C̃. Besides, (17) and (19)
reveal that the points t in the set C and C̃ are not better than the
current best point t∗ since q(t) ≤ q(t∗), and thus the points
in the set C and C̃ are not the global optimal. If D̃ ⊂ C̃, all
the points in D̃ are not the global optimal. In other words, t∗

is a globally optimal solution. On the other hand, if D̃ 6⊂ C̃, at
least one point t in D̃ may be the globally optimal solution. To
determine whether D̃ ⊂ C̃ or not, we introduce the following
propositions.

Proposition 1 (Theorem 4.1.3 and Exercise 4.1 [34]): Let
Φo be the polar set for Φ, and is defined as

Φo = {ψ ∈ Ψ | max
ψ

ψTx ≤ 1, x ∈ Φ,Ψ ⊂ Rn}. (20)

For the subsets {P,G} of Ψ, proving P ⊂ G implies Go ⊂
P o. Go and P o are the polar sets of G and P , respectively.
We define C̃o and D̃o as the polar sets of C̃ and D̃, respectively,
and we give the properties of the set C̃ in the following
proposition.

Proposition 2: C̃ contains the orthant RK
+ .

Proof: Please refer to [24] and [25] for a proof of
Proposition 2.

Based on the Proposition 2, we have C̃o ⊂ RK
− [35].

Following Proposition 1 and Proposition 2, we can use the
property of polar set to determine whether D̃ ⊂ C̃ or not.
To facilitate the determination of whether D̃ ⊂ C̃ or not,
we introduce a polytope S such that C̃o ⊂ S ⊂ RK

− . The
following proposition can check whether D̃ ⊂ C̃.

Proposition 3: Denote V as the vertex set of polytope S.
C̃o ⊂ D̃o holds if and only if

max
t∈D̃

vTt ≤ 1,∀ v ∈ V, (21)

where v = [v1, · · · , vK ]T.
Proof: D̃o is a convex set according to the property of

polar set [34], and thus we have S ⊂ D̃o, C̃o ⊂ D̃o if and only
if V ⊂ D̃o. To guarantee V ⊂ D̃o, we have v ∈ D̃o,∀ v ∈ V .
According to Proposition 1, v is the polar set of t ∈ D̃ and
v ∈ D̃o if and only if (21) holds. This completes the proof of
the Proposition 2.
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Therefore, when C̃o ⊂ D̃o holds, we can derive D̃ ⊂ C̃
according to Proposition 1. In order to determine whether (21)
holds, we solve the following sub-problem

max
t∈D̃

vTt. (22)

We set −v = w = [w1, · · · , wK ]T and associate (11) and
(18), then problem (22) can be equivalently represented as

min
xu,yu

K∑
k=1

wk[εk(xu, yu)− t0,k], (23)

where t0 = [t0,1, · · · , t0,K ]T. Since −wTt0 is a constant, it
has no impact on the objective function (23) and hence it
can be reduced. Therefore, problem (23) can be equivalently
expressed as

min
xu,yu

K∑
k=1

wk[(xk − xu)2 + (yk − yu)2 + h2]. (24)

As a result, we have the following closed-form solution of
UAV’s 2D location

x∗u =

∑K
k=1 wkxk∑K
k=1 wk

, y∗u =

∑K
k=1 wkyk∑K
k=1 wk

. (25)

We denote µ(w) as the optimal objective value of problem
(24), then the value of vTt in (22) is −µ(w) + wTt0. If the
value of vTt ≤ 1, t∗ is the global optimum according to
Proposition 3. On the other hand, if vTt > 1, there may exist
a feasible solution t̃ = [t̃1, · · · , t̃K ]T better than t∗. Then, we
can obtain

x̃u =

∑K
k=1 w̃kxk∑K
k=1 w̃k

, ỹu =

∑K
k=1 w̃kyk∑K
k=1 w̃k

, (26)

and

t̃k = εk(x̃u, ỹu), k = 1, · · · ,K. (27)

Hence, to obtain the complete solution of the global optimal
UAV 2D location, we check whether feasible solution t̃ better
than t∗ using the following two cases.

Case 1: q(t̃) > q(t∗) denotes feasible solution t̃ is better
than the current solution t∗.

Case 2: q(t̃) ≤ q(t∗) denotes t∗ is the globally optimal
solution.
For case 2, we perform the analytic center cutting plane
method (ACCPM) [22] to separate the points which are not
the global solutions, and the key idea of this algorithm is to
determine the cutting planes by computing

ϑ = sup{ρ : q(t0 + ρ(t̃− t0)) ≤ q(t∗)}, (28)

and ϑ ≥ 1 due to q(t0) < q(t∗) and q(t̃) ≤ q(t∗). Based on
ϑ, we have the following cutting plane.

Proposition 4: The cutting plane

tT(t̃− t0) ≤ 1

ϑ
(29)

excludes t = −w̃ from the polytope S without eliminating
any point of C̃o.

Proof: Setting t = −w̃, we can obtain

tT(t̃− t0) = −w̃Tt̃ + w̃Tt0

= −µ(w̃) + w̃Tt0 > 1.
(30)

Thus, t = −w̃ violates the cutting plane (29). Besides,
according to (29), we have t0 + ϑ(t̃ − t0) ∈ C according
to the definition of C, while ϑ(t̃ − t0) ∈ C̃ according to the
definition of C̃. Then, we have

tT(t̃− t0) ≤ 1

ϑ
, ∀ t ∈ C̃o. (31)

From (31), any point t ∈ C̃o satisfies (29). This completes the
proof of Proposition 4.

Based on the cutting plane (29), we use the ACCPM to obtain
a sequential nested polytope S, and the (m + 1)-th polytope
can be given by

S(m+1) = S(m) ∩
{
t : tT(t̃− t0) ≤ 1

ϑ

}
. (32)

Next, we should construct S(1) of (32) which satisfies Propo-
sition 4, i.e, C̃o ⊂ S(1). We can always select ς > 0
small enough such that −ςe ∈ C̃ due to 0 ∈ int C̃, where
e = [1, · · · , 1]T denotes a vector of ones in RK . Hence, we
have the following proposition to construct S(1).

Proposition 5: If

S(1) =

{
t ∈ RK

− : −
K∑
k=1

tk ≤
1

ς

}
, (33)

we can obtain C̃o ⊂ S(1).

Proof: According to the definition of polar set, we have
tT(−ςe) ≤ 1 for all t ∈ C̃o. Then, we have

−
K∑
k=1

tk ≤
1

ς
, ∀ t ∈ C̃o. (34)

Therefore, C̃o ⊂ S(1) holds.

Hence, starting from S(1), a sequence of nested polytopes
in RK

− can be constructed as

S(1) ⊃ S(2) ⊃ · · · ⊃ S(m) ⊃ · · · C̃o. (35)

Next, we introduce the sequential unconstrained convex
minimization based algorithm to find the optimal UAV 2D
location, and the whole algorithm procedure is summarized in
TABLE I. In the m-th iteration, if all the −w ∈ V(m) satisfies
max−w∈V(m) −µ(w)+wTt0 ≤ 1, then t∗ is the global optimal
solution. Otherwise, computing t̃, if q(t̃) > q(t∗), we then
update t∗. On the other hand, if q(t̃) ≤ q(t∗), we eliminate
the points which are not the global optimal solutions using the
cutting plane S(m+1).

Remark 1: The vertex set of S(1) is v(1) = {− 1
ς ek ∈ RK :

1 ≤ k ≤ K}∪ {0}, and we use the Multi-Parametric Toolbox
3.0 [36] to solve the vertex enumeration problem. In addition,
the convergence analysis of the algorithm is similar to that in
[24], and thus is omitted for brevity.
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TABLE I: THE SEQUENTIAL UNCONSTRAINED CON-
VEX MINIMIZATION BASED ALGORITHM

1) Initialize m = 1, S(1),v(1);
The best available feasible solution of (22): t∗;
Choose t0 to satisfy q(t0) < q(t∗);

2) ITERATE
3) FOR ALL −w ∈ V(m)

4) Solve problem (24) to obtain −µ(w) and (x∗u, y
∗
u);

5) END
6) IF max−w∈V(m) −µ(w) + wT t0 ≤ 1
7) RETURN;
8) END
9) Compute w̃ and t̃ using
10) w̃ ∈ max−w∈V(m) −µ(w) + wTt0 and (27);
11) IF q(t̃) > q(t∗)

12) Update t∗ = t̃;
13) ELSE
14) Compute ϑ and S(m+1) using (28) and (32);
15) END
16) m := m+ 1;
17) Until: Convergence.

B. Optimal UAV Altitude

Based on the solved 2D location of UAV, we are now
optimizing the UAV altitude. Specifically, we fix E(θ, φ) and
τk,γ , and the problem (P1) can be formulated as

(P3) : max
h

K∑
k=1

Ak
[Dk + h2]α/2

(36)

s.t. Dmax ≤ h2 tan2 Θ, (37)
hmin ≤ h ≤ hmax, (38)

where Dk =‖ zk − zu ‖2, Dmax = maxk=1,··· ,K Dk. Con-
straint (37) specifies the largest horizontal distance between
the UAV and ERs can not exceed the coverage radius of
the UAV. This constraint guarantees that all ERs are within
wireless coverage area of the UAV. It is noted that the objective
function of problem (P3) is monotonic decreasing with respect
to h. Thus, we can easily obtain the optimal solution as

h∗ = max

{√
Dmax

tan Θ
, hmin

}
. (39)

The physical meaning of (39) is to obtain the minimum valid
altitude which guarantees that all the ERs are within the UAV’s
maximum wireless coverage, and thus improves the energy
efficiency of UAV with limited transmit power.

C. Optimal Phased-Array Pattern

After obtaining the 3D position of UAV, we then design
the parameters of antenna array (the SLL, antenna gain and
beamwidth) to generate steered beam pattern to a desired
position with fixed charging time τk,γ . Hence, problem (P1)

can be reformulated as

(P4) : max

K∑
k=1

ηk | Ek(θ, φ) |2, (40)

where ηk =
ξkβ0P0τk,γ

[‖zk−zu‖2+h2]α/2
and is constant for ER k. As

mentioned earlier, the M × N antenna array is divided into
several sub-arrays with ignoring the effect of mutual coupling
between sub-arrays, and each sub-array creates a steerable
beam. This implies that the beams Ek(θ, φ)(k ∈ {1, · · · ,K})
generated by sub-arrays are essentially independent of each
other. Thus, problem (P4) can be equivalently expressed as
problem (P4.1) as follows

(P4.1) : max Ek(θ, φ). (41)

In particular, to form a directional beam pattern, the key idea
is controlling the phase of antenna elements to adjust these
array parameters, which can be constructed as a multiobjective
optimization problem. To tackle this problem, we propose the
MOEA/D based algorithm to solve it via iteration process.
Thus, to facilitate the introduction of MOEA/D based algorith-
m, we first provide a definition and a proposition as follows.

Definition 1 ( [26]): A multiobjective optimization prob-
lem (MOP) can be defined as

max F (x) = (f1(x), · · · , fm(x))T (42)
s.t. x ∈ Ω, (43)

where x = (x1, x2, · · · , xn)T denotes decision variables while
Ω = {x ∈ Rn|hj(x) ≤ 0, j = 1, · · · ,m} is decision space.
hj(x) are continuous functions. Based on the definition of
MOP, we construct the beam pattern synthesis problem5 as a
multiobjective optimization problem with respect to phases β
in the following.

Proposition 6: Optimizing the phase of M × N antenna
array elements to adjust the antenna gain, SLL and beamwidth
simultaneously, which can be modelled as a multiobjective
optimization problem

min F (β) = (f1(β), f2(β), f3(β))T (44)

s.t. β ∈ RM×N , (45)

where f1(β) = SLL(β), f2(β) = 1
|E(θ,φ)| , f3(β) = 1

|Θh,e| ,
β = [β1n, · · · , βmn, · · · , βMN ]T and βmn = (m − 1)βx +
(n− 1)βy .

Proof: Please refer to Appendix A for a proof of Propo-
sition 6.

Next, we present the MOEA/D based algorithm to solve
problem (44)-(45), and the steps are summarized in TABLE
II. The proposed algorithm applies Tchebycheff approach [26]
to decompose the multiobjective optimization problem into a
number of scalar optimization problems, and then optimize
all the subproblems simultaneously to approximate the Pareto
front by exploiting their relationship. Specifically, in step
Initiation, we first use the Euclidean distance to compute the
closest Tnei weight vectors of κi(κi = (κi1, · · · , κid)T) in the

5The beam synthesis problem is a problem that designing the number
of array elements, spacing, excitation amplitude and phase according to the
radiation characteristics, such as beamshape, beamwidth, SLL and directivity.



8

TABLE II: MOEA/D BASED ALGORITHM

1) INPUT
Model MOP as (44)-(45);
iter: the number of iterations;
Npop: the number of subproblems in MOEA/D;
κ1, · · · ,κNpop : weight vectors;
Tnei: the number of the weight vectors in the
neighborhood of each weight vector;

2) OUTPUT
3) EP: non-dominated solutions during the search;
4) INITIATION
5) Set EP=∅;
6) FOR each i = 1, · · · , Npop, compute Tnei closest

weight vectors κi1 , · · · ,κiTnei to weight vector κi,
set h̄(i) = {i1, · · · , iTnei};

7) Generate an initiate population β1, · · · ,βNpop
randomly. Set FVi = F (βi);

8) Initiate z = (z1, · · · , zj , · · · , zd)T by
zj = min{fj(β),β ∈ RM×N};

9) UPDATE
10) FOR i = 1, · · · , Npop
11) Randomly select two indexes k, l from h̄(i), and

generate a new solution y from βk and βl;
12) FOR each j = 1, · · · , d, set zj = fj(y),

IF zj > fj(y);
13) FOR each j ∈ h̄(i), set βj = y and FVj = F (y),

IF gte(y | κj , z) ≤ gte(βj | κj , z);
14) Remove all vectors dominated by F (y) from EP;
15) Add F (y) to EP IF no vectors dominate F (y);
16) STOPPING CRITERIA
17) Iterates iter times, stop and output EP.

OTHERWISE, go to UPDATE.

neighborhood for each i ∈ {1, · · · , Npop}, and the indexes
of Tnei contains in h̄(i). Then, according to the number of
subproblems, we generate the decision variables (progressive
phase shift β) randomly. z = (z1, · · · , zj , · · · , zd)T denotes
the best-so-far solution for the objective function fj(β) and
FVi is the F-value of βi. In step Update, for each subproblem
i, we randomly select two indexes k and l from h̄(i), and
then generate a new decision variable y from βk and βl by
differential evolution (DE) algorithm [37]. If zj > fj(y), for
each j = 1, · · · , d, we update the reference point zj . Then, for
each j ∈ h̄(i), if gte(y | κj , z) ≤ gte(βj | κj , z), we replace
the decision variable βj and F -value FVj by y and F (y), re-
spectively, where gte(y | κj , z) = max1≤t≤d{κjt |ft(y)− zt|}
[26]. If the number of iterations is iter, stop and output EP.
Otherwise, go to the step Update. Finally, the convergence to
the Pareto optimal front of the proposed MOEA/D based algo-
rithm has been proven. We first give the following definitions.

Definition 2 ( [26]): Assuming u, v ∈ Rm, u dominates
v6 if and only if

ui ≤ vi, i ∈ {1, · · · ,m} (46)

6This definition of domination is in the case of minimization.

and

uj < vj , ∃ j ∈ {1, · · · ,m}. (47)

Definition 3 ( [26]): A point x∗ ∈ Ω is Pareto optimal
which satisfies no point x ∈ Ω such that F (x) dominated
F (x∗), and F (x∗) is a Pareto optimal (objective) vector.
Based on the above definitions, we can obtain the Pareto set
of problem (44)-(45) as follows.

Proposition 7: The multiobjective optimization problem
(44)-(45) can obtain the Pareto optimal solutions, and the
Pareto set is

P ∗ ={β∗} (48)

={β ∈ RM×N | ¬ ∃β
′
∈ RM×N , fi(β

′
) ≤ fi(β∗)},

i ∈ 1, · · · , 3. (49)

Proof: Please refer to Appendix B for a proof of Propo-
sition 7.
Proposition 7 indicates that MOEA/D based algorithm used
to generate the beam patterns can converge to the Pareto
optimal set. Next, based on the solved variables, we optimize
the charging time using the standard convex optimization
techniques.

D. Optimal Charging Time

Based on the solved UAV 3D placement and the beam
pattern, we finally optimize the charging time of ER k in γ-th
serving area. Thus, problem (P1) can be simplified as

(P5) : max
τk,γ

K∑
k=1

ξkβ0P0τk,γ | E(θ, φ) |2

[‖ zk − zu ‖2 +h2]α/2
(50)

s.t.

Γ∑
γ=1

τk,γ = T. (51)

The solution of problem (P5) may lead to a severe fairness
issue between serving areas. In particular, the sum harvested
energy of ERs in one serving area is larger than the sum
harvested energy of ERs in other serving areas, where ERs
in this region can be charged for a much longer time. Thus, to
overcome this issue, we consider a new optimization problem
which maximizes the minimum sum received energy among
all serving areas, and this formulation can be written as

(P5.1) : max
τk,γ

K∑
k=1

min
k∈K

ξkβ0P0τk,γ | E(θ, φ) |2

[(xk − xu,γ)2 + (yk − yu,γ)2 + h2
γ ]α/2

(52)

s.t.

Γ∑
γ=1

τk,γ = T. (53)

It should be noted that the UAV’s 3D placement in the γth
serving area is (xu,γ , yu,γ , hγ). To solve problem (P5.1), we
introduce an auxiliary variable t and problem (P5.1) can be
equivalently expressed as

(P5.2) : max
τk,γ ,t

t (54)
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s.t.

Γ∑
γ=1

τk,γQ(xu,γ , yu,γ , hγ) ≥ t, (55)

Γ∑
γ=1

τk,γ = T, (56)

andQ(xu,γ , yu,γ , hγ) =
∑K
k=1

ξkβ0P0|E(θ,φ)|2
[(xk−xu,γ)2+(yk−yu,γ)2+h2

γ ]α/2
.

Note that problem (P5.2) is a linear programming problem,
and hence it can be solved directly by standard convex
optimization techniques [27].

IV. BRANCH AND BOUND BASED TRAJECTORY DESIGN

In section III, we optimize 3D hovering location, beam
pattern and charging time in Γ serving areas. In this section, we
design the hover-and-fly trajectory based on the 3D hovering
locations. The key idea of the hover-and-fly trajectory is to
minimize the total flight distance when visiting all Γ serving
areas. To solve this problem, the authors in [16] and [17]
proposed that the minimum total flying distance could be trans-
formed into the traveling salesman problem (TSP). However,
the standard TSP should return to the original point whilst our
problem does not need to return to the start. Thus, to transform
the flying planning problem into the standard TSP, we add a
virtual hovering location as the start point 0 whose distances
to all Γ real hovering locations are zero. After obtaining the
optimal trajectory using branch and bound method, we drop
the two edges associated with the dummy locations (i.e. from
0-th to j-th and i-th to 0-th locations, i 6= 0, j 6= 0), and
thus the optimal flying trajectory is designed. Therefore, the
minimum total flight distance can be determined using the
following optimization problem

(P6) : min

Γ∑
i=0,
i6=j

Γ∑
j=0,
j 6=i

dijcij (57)

s.t.

Γ∑
i=0,
i6=j

cij = 1, (58)

Γ∑
j=0,
j 6=i

cij = 1, (59)

Γ∑
i=1

ci0 = 1, (60)

µi − µj + δcij ≤ δ − 1, (61)

where dij =
√

(xi − xj)2 + (yi − yj)2 + (hi − hj)2 denotes
the distance between the ith hovering location (xi, yi, hi)
and the jth hovering location (xj , yj , hj), and cij ∈ {0, 1}.
The UAV proceeds from location i to location j if and
only if cij = 1, otherwise, cij = 0. Constraint (58) and
(59) specify that each hovering location (other than the start
point 0) is visited exactly once. Constraint (60) denotes the
number of returns to the original hovering location 0 is 1.
In other words, the UAV departs from the start hovering
location 0, then visits Γ hovering locations and finally return
to location 0. The constraint (61) guarantees the number of

0 1 50 100 200 300 400 500 550 570 590
Iterations

20

40

60

80

100

120

140

S
u

m
 r

e
ce

iv
e

d
 p

o
w

e
r 

(m
W

)

SUCM

2D exhaustive search

15W

5W

10W

Fig. 4: Convergence behavior of the SUCM and 2D exhaustive search
scheme in terms of sum received power.

visited hovering locations should not exceed δ(δ ≥ Γ), where
µi(i = 1, · · · ,Γ) are arbitrary real numbers. Problem (P6) is
an integer programming problem [38], and thus we use the
well-known branch and bound algorithm [39] to obtain the
optimal trajectory. In particular, the algorithm first breaks up
the set of all trajectories (feasible solutions) into increasingly
small subsets and calculates the lower bound on the cost of
each subset. Then, the lower bound of a subset which is
no greater than all other subsets will contain in the optimal
trajectory. Finally, the bounds guide and identify an optimal
trajectory.

V. SIMULATION RESULTS

In this section, we present numerical results to evaluate
the performance of our proposed solution to the total energy
harvested maximization problem (P1). Since millimeter-ware
(mm-Ware) communication can provide a high capacity than
traditional low-frequency mobile communications, the mm-
Wave channel [28] [29] between UAV and each ER k is
adopted with a carrier frequency of 25 GHz. We assume that
the minimum altitude hmin and maximum altitude hmax are
21m and 120m respectively [23]. The transmit power P0 of
the UAV is 10W, and the charging period is T = 20s. The
energy conversion efficiency ξk of ER k is set to 0.5, and
the path loss factor α is 2 [25]. The UAV is equipped with
M × N antenna array, and the maximum coverage radius is
h tan Θ. We also assume that there are K ERs with single
antenna which are distributed in a 500× 500 m2 square area,
and are classified into Γ groups according to the distance.

In the first simulation, the performance of the proposed
solution for the energy harvesting maximization problem is
studied. The convergence behavior of the sequential uncon-
strained convex minimization based algorithm is evaluated
by illustration how the sum received power behaves with
the number of iterations. To show the global convergence
property of this algorithm, we exploit the 2D exhaustive
search method for comparison. For convenience, we denote the
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(a)

(b)

Fig. 5: Multi-beam gain performance using analog beamforming with
MOEA/D based solution (a) 3D realized gain patterns of antenna
array. (b) Plot of the non-dominated front by MOEA/D for 3-objective
optimization problem.

sequential unconstrained convex minimization based algorithm
as SUCM. We assume that there are K = 2 energy receivers
existing in the coverage area. On the other hand, we set the
UAV altitude to h = 100m. As it can be observed in Fig. 4
that the proposed SCUM converges after 1 iteration. Besides,
it can be seen that the sum received power increases with
increasing transmit power. This is attributed to the fact that
a higher transmit power increases the harvested DC power of
ERs. Furthermore, as it can be observed that the 2D exhaustive
search scheme requires about 590 iterations to converge. More
importantly, it can also be observed that the simulation results
of the proposed SCUM method match the 2D exhaustive
search scheme, but with much faster convergence speed. This
demonstrate that the proposed algorithm can converge to a
global optimal solution.

We then investigate the antenna array beam pattern synthesis
using MOEA/D based algorithm. The UAV is equipped with an
8×8 antenna array which is divided into four 4×4 sub-arrays.

0 10 20 30 40 50 60 70 80 90 100

Distance between two ERs (m)

1

1.5

2

2.5

3

3.5

4

S
um

 re
ce

iv
ed

 p
ow

er
 (W

)

SUCM

2D exhaustive search

h=90m

h=70m

h=50m

Fig. 6: The performance of two algorithm with different UAV
altitudes (sum received power versus the distance between the two
ERs).

We assume that the amplitude and spacing of antenna array are
1A and 5.5mm, respectively. Besides, the maximum effective
illumination angle 2Θ is set to 80◦. Fig. 5(a) illustrates the
scanning capability in angles of (−10◦, 0◦), (30◦, 0◦), (30◦,
270◦) and (20◦, 90◦). In particular, we first use the MOEA/D
based algorithm to optimize the phases of antenna array and
obtain the Pareto optimal set. Then, we choose a set of phases
and input them into the HFSS to generate the 3D realized gain
pattern towards the above angles. We can observe from Fig.
5(a) that four scanned beams having various SLL, beamwidth
and antenna gain with different design parameters (i.e. phases
β). This is because that the interference of mutual coupling
between antenna elements can be changed by the amplitude
excitation and phase set for each antenna, and thus affects
the beam pattern. On the other hand, Fig. 5(b) shows the
non-dominated set of the above illustrated angles which are
obtained after 300 iterations. It can be observed that most
of the optimal solutions converge to a real Pareto front. It
should be noted that choosing different phases of antenna
array leads to different SLL, antenna gain and beamwidth
of beam pattern, and thus needs the decision-maker to select
the set of phases according to their preference. For instance,
the beams with high antenna gain have typically high SLL
and wide beamwidth. Therefore, there is a tradeoff between
antenna gain, SLL and beamwidth. In addition, if we increase
the number of iterations, all the non-dominated solutions will
converge to a Pareto front. This is due to the fact that the
new non-dominated solution set is closer to the Pareto optimal
solution than the old one. After infinite iterations, the non-
dominated solution will achieve to the Pareto optimal set.

In the next simulation, the sum received power under dif-
ferent constraints are evaluated and presented in Fig. 6-Fig. 7.
The sum received power under different distance between two
ERs are evaluated and presented first. We assume that K = 2
energy receivers are distributed in a serving area. In Fig. 6,
it is expected that the sum received power is monotonically
non-increasing with respect to the distance between two ERs.
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Particularly, the sum received power remains unchanged up to
a certain distance between two ERs, but decreases thereafter.
In fact, with increasing distance between ERs, the horizontal
distance between UAV and ERs increases as well, and hence
the sum received energy of ERs are decreasing due to the path
loss effect. This phenomenon can also be observed with an
increasing UAV altitude, vertical distance between ERs and
UAV, where the sum received power decreases due to the
same reason. On the other hand, we have also investigated the
sum received power versus the minimum UAV altitude, hmin,
for K = 11 energy receivers, for different UAV placement
optimization schemes. In Fig. 7, it can be observed that the
sum received power is the same up to a certain minimum
altitude hmin, i.e., 30 < hmin < 50m, but drops afterwards.
In fact, the minimum altitude below 50m is not exceeding
the optimal altitude of UAV

√
Dmax

tan Θ . Hence, the sum received
power will not change with the minimum altitude below
50m according to the equation (39). On the contrary, for
the minimum altitude beyond 50m, the sum received power
decreases since the optimal altitude should be with the range
of the altitude requirements. Due to the security consideration,
the optimal altitude of UAV in this case is thus set to hmin.

Finally, we investigate the performance of hover-and-fly
trajectory in UAV-enabled WPT system. We assume there
exists a system with K = 11 energy receivers that are
randomly distributed within a 2D area of 500 × 500 m2. For
convenience, B&B denotes branch and bound algorithm. The
UAV will fly over two locations directly according to the
designed flying plan. It can be seen in Fig. 8 that there are
Γ = 4 optimal locations, which are formed by ER 1-2, ER 3-5,
ER 6-9, ER 10-11, respectively. The four hovering locations of
UAV lie within the center of ERs that in the same serving area,
respectively, in order to maximize the sum received power of
ERs. Furthermore, we also investigate the harvested energy
at K = 11 ERs with different UAV placement optimization
schemes. In Fig. 9, it can be seen that the received power
values at different ERs are generally different. Particularly,
the ERs that are closer to the UAV hovering locations can
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Fig. 8: Trajectory design for a UAV-enabled WPT system with K =
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Fig. 9: The harvested energy at the K = 11 ERs.

harvest more power than that of the edge ERs. For example,
ER 7 receives more energy than ER 6, ER 8 and ER 9. This is
because that ER 7 is near to the optimal hovering location than
the others. However, this result further implies that the optimal
hovering location solutions obtained by the low-complexity
iterative algorithm can cause a near-far problem, and we will
explore solutions to this problem in our future work. In fact,
UAV’s 3D position, beam gain and charging time will affect
the energy harvested performance of ERs according to the
equation (6).

VI. CONCLUSION

In this paper, we study the energy harvesting optimization
problem for UAV-enabled wireless power transfer system
where a UAV acts as a wireless charger and delivers energy
to a set of energy receivers. In particular, under the goal of
maximizing energy harvesting of all ERs, a UAV equipped
with antenna array is considered where multi-beams can be



12

generated to serve multiple ERs simultaneously according
to their position information. Due to the intractability and
non-convex property of the energy harvesting optimization
problem, we propose a low-complexity iterative algorithm to
optimize UAV’s 3D placement, beam pattern and charging
time sequentially. Numerical results illustrate that the energy
harvested performance of all ERs can be significantly im-
proved by the proposed low-complexity iterative algorithm.
In the future, joint UAV’s 3D trajectory design and resource
allocation scheme with considering multi-beam generation
mechanism will be studied for UAV-enabled communication
networks.

APPENDIX A
PROOF OF THE PROPOSITION 6

Proof: We first rewrite the array factor of M×N antenna
array in general as [20]

AF =

N∑
n=1

I1n ×

[
M∑
m=1

Im1e
j(m−1)[2π/λdx sin(θ) cos(φ)+βx]

]
·

ej(n−1)(2π/λdy sin(θ) sin(φ)+βy),
(62)

where the spacing and progressive phase shift between ele-
ments along the x-axis and y-axis are presented by dx, dy
and βx, βy , respectively. Assuming (θ∗, φ∗) is the main-lobe
direction of antenna array, we have

φ∗ = tan−1

(
βydx
βxdy

)
, (63)

θ∗ = sin−1

[√
(
βx
kdx

)2 + (
βy
kdy

)2

]
, (64)

where k = 2π/λ. Based on the main-lobe direction, we have
the elevation plane half-power beamwidth

Θh,e =

√
1

cos2(θ∗)[Θ
−2
x∗ cos2(φ∗) + Θ−2

y∗ sin2(φ∗)]
, (65)

where Θx∗ and Θy∗ denote the half-power beamwidth of a
broadside linear array of M and N elements, respectively. On
the other hand, the side-lobe level for antenna array can be
given

SLL = 20 lg
|AFmsl|
|AFmax|

, (66)

where AFmsl denotes the array factor of maximum side-
lobe level and AFmax is the array factor of main-lobe peak
intensity.

We note that (5), (63)-(66) are functions of β =
[β1n, · · · , βmn, · · · , βMN ]T, βmn = (m− 1)βx + (n− 1)βy .
Therefore, we construct the multiobjective optimization prob-
lem with decision variables β as

min F (β) = (f1(β), f2(β), f3(β))T (67)

s.t. β ∈ RM×N , (68)

where f1(β) = SLL(β), f2(β) = 1
|E(θ,φ)| , f3(β) = 1

|Θh,e| .
Therefore, this completes the proof of Proposition 6.

APPENDIX B
PROOF OF THE PROPOSITION 7

During the optimization process of MOEA/D based al-
gorithm, it first randomly generates Npop current solutions
β1, · · · ,βNpop . Based on the parent points β1, · · · ,βNpop , it
randomly chooses two points from the parent points and gen-
erates the new points by DE algorithm. Then, these new points
and the parent points jointly construct the non-dominated
solution set EP0 by eliminating dominated points. However,
EP0 is far away from the globally Pareto optimal solution
{β∗}. Subsequently, it follows the same process in the next
iteration and constructs a new non-dominated solution set
EP1, which is closer to the Pareto optimal solution {β∗} than
EP0. This process is repeated until the new non-dominated
solution set EPi with i → ∞ achieves the Pareto optimal
solution, i.e., limi→∞EPi = EP ∗, EP ∗ ∈ {β∗}. Therefore,
this completes the proof of Proposition 7.
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