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 10 
Abstract: Organic halides are important building blocks in synthesis but their use in (photo)redox 
chemistry is limited by their low reduction potentials. Halogen-atom transfer still remains the most 
reliable approach to exploit these substrates in radical processes despite its requirement for 
hazardous reagents and initiators such as tributyltin hydride. Herein, we demonstrate that a-
aminoalkyl radicals, easily accessible from simple amines, promote the homolytic activation of 15 
carbon–halogen bonds with a reactivity profile mirroring that of classical tin radicals. This strategy 
conveniently engages alkyl and aryl halides in a wide range of redox transformations to construct 
sp3–sp3, sp3–sp2 and sp2–sp2 carbon–carbon bonds under mild conditions with high 
chemoselectivity. 
 20 

One Sentence Summary: a-Aminoalkyl radicals enable halogen-atom abstraction from 
unactivated alkyl and aryl halides with a reactivity profile analogous to the one of tin radicals. 
 
Main Text: Carbon radicals are versatile synthetic intermediates central to the preparation of high-
value compounds (1, 2). The advent of visible-light photoredox catalysis (3) has offered a broadly 25 
applicable radical generation protocol, transforming a variety of redox-active precursors into open-
shell intermediates by single-electron transfer (SET) and fragmentation (4-6). However, 
photoredox activation has thus far rarely extended to organic halides, one of the largest class of 
building blocks available to organic chemists. The current synthetic gap is especially evident in 
the case of unactivated alkyl halides, where only dehalogenation and intramolecular cyclization of 30 
iodides have been reported (7-10). The difficulties in engaging these feedstocks in redox chemistry 
arise from their highly negative reduction potentials (Ered < –2 V vs SCE for unactivated alkyl and 
aryl iodides), which in turn necessitate the use of strongly reducing systems (11, 12) (Fig. 1A). 
Furthermore, the mechanisms involved in photoredox reactions are often uncertain (9), displaying 
large redox mismatches (> 1 V) for SET activation, which has in turn thwarted the exploitation of 35 
the carbon radicals accessed in this manner.  
This lack of synthetic applicability stands in stark contrast to the fundamental role alkyl and aryl 
halides have played in the development of radical chemistry. Methods based on tin/silicon reagents 
and trialkylboranes–O2 have proven to be highly reliable in accessing carbon radicals from organic 
halides, generating the open-shell intermediate by homolytic carbon–halogen bond cleavage via 40 



Submitted Manuscript: Confidential 

2 
 

halogen-atom transfer (XAT) (13-15). However, the toxic, hazardous nature of these reagents and 
initiators is problematic and has been one of the main drives towards the identification of 
alternative precursors and chemical strategies for carbon radical generation. Nevertheless, silicon 
radicals has been recently used in metallaphotoredox catalysis to overcome sluggish carbon–
halogen oxidative additions with transition metals (16, 17). 5 

We questioned whether  a-aminoalkyl radicals could serve as a distinct class of halogen-
abstracting reagents (Fig. 1B). Our idea for this reactivity stemmed from the fact that although 
classical XAT processes benefit from the formation of strong halogen–tin/silicon bonds, it is the 
high degree of charge-transfer in the transition state that facilitates halogen-atom abstraction by 
these nucleophilic radicals (18). We therefore reasoned that strongly nucleophilic a-aminoalkyl 10 
radicals might benefit from related kinetic polar effects and manifest the same reactivity. Such 
radicals can be easily generated from simple amines, a class of abundant and inexpensive reagents 
that would offer ample opportunity for fine steric and electronic tuning.  
Here, we report the successful realization of this concept and its implementation as part of a mild 
and general strategy for the engagement of unactivated alkyl and aryl halides in redox chemistry 15 

(Fig. 1C). As  a-aminoalkyl radicals display a reactivity profile similar to that of tin radicals, their 
capacity to abstract iodine and bromine atoms has enabled the development of deuteration, cross-
electrophile coupling, Heck-type olefination and aromatic C–H alkylation protocols. 
 

 20 
Figure 1. Homolysis of carbon-halogen bonds by a-aminoalkyl radicals. (A) Activation modes 
for the generation of carbon radicals from alkyl and aryl halides. (B) Nucleophilic a-aminoalkyl 
radical abstracts halogen atoms (X) through polarized transition states in analogy to tin and silicon 
radicals. (C) Outline of the transformations possible using alkyl and aryl halides activated via a-
aminoalkyl radical-mediated XAT. 25 
 
We initiated our study by evaluating the iodine-atom transfer reaction from cyclohexyl iodide 2 to 
the a-aminoalkyl radical I-a, derived from triethylamine (Et3N, 1a) (Fig. 2A). Density functional 
theory (DFT) calculations predicted this XAT to be kinetically feasible, involving a polarized 
transition state with a notable charge-transfer character (dTS = 0.42), which supports the anticipated 30 
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interplay of polar effects. Although the XAT is only slightly exothermic,(19) it is the fast and 
irreversible dissociation of the resulting a-iodo-amine III-a into the iminium iodide IV-a that 
provides the thermodynamic driving force to the process. To gather direct experimental evidence, 
we generated and monitored I-a using laser flash photolysis (20, 21) and observed a noticeable 
reactivity towards 2. Data analysis provided a fast rate constant (kXAT = 3.6 108 M–1 s–1) that is just 5 
one order of magnitude slower than reported rates for I-abstraction by Bu3Sn• and (Me3Si)3Si• 
(~109 M–1 s–1) (22), showing promising potential for implementation in synthetic radical chemistry. 
To explore the applicability of this strategy in radical reactions, we chose the dehalogenation of 4-
iodo-N-Boc-piperidine 3 using Et3N as XAT-agent precursor and methyl thioglycolate–H2O as the 
H-atom donor (Fig. 2B). At the outset, we were particularly interested to evaluate if the various 10 

modes for a-amino-radical generation, photochemical or thermal, could be recruited for XAT 
reactivity. We therefore started by testing four known systems based on amine SET oxidation 
(Et3N: Eox = +0.77 V vs SCE) followed by deprotonation (i.e. photoredox catalysis (23), triplet 
benzophenone (24) and SO4•– (25)) or direct H-atom transfer (HAT) (Et3N: a-N-C–H BDE = 91 
kcal mol–1) using t-BuO• (26). The desired product 4 was obtained in all cases in excellent to good 15 

yields, exemplifying the ample variety of conditions for a-amino-radical generation and ensuing 
XAT. 
The proposed mechanism under photoredox conditions is depicted in Fig. 2C. Upon blue light 
irradiation, the excited organic photocatalyst 4CzIPN (*Ered = +1.35 V vs SCE) oxidizes 1a which, 
after subsequent deprotonation, furnishes the key  a-aminoalkyl radical I-a. This species 20 
undergoes XAT with 3 and the resulting alkyl radical V provides the product 4 by a favorable HAT 
from methyl thioglycolate (S–H BDE = 87 kcal mol–1). Lastly, SET between the thiyl radical and 
4CzIPN•–, followed by protonation with H2O, regenerate the thiol along with the ground-state 
photocatalyst. The choice of 4CzIPN and Et3N is relevant to our mechanistic hypothesis because 
neither the excited nor the reduced state of the photocatalyst (*Eox = –1.04 V; Ered = –1.21 V vs 25 
SCE(27)) nor I-a (Eox = –1.12 V vs SCE (26)) are strong enough to promote direct SET reduction 
of 3 (Ered = –2.35 V vs SCE). This means that the carbon-radical generation is now dissected by 
the redox requirements of the system and therefore the reductive ability of the photocatalyst is not 
crucial to the outcome of the reaction. Indeed, this process can be achieved with a diverse range 
of photocatalysts including those of limited reductive power (e.g. Fukuzumi’s acridinium; *Eox = 30 
–0.57 V vs SCE). The replacement of Et3N with other common electron donors (e.g. Ph2N(PMP), 
sodium ascorbate or Hantzsch ester) suppressed the reactivity, despite all effectively quenching 
the excited photocatalyst.(19) Moreover, other alkyl amines were tested but crucially only those 
able to generate an a-aminoalkyl radical promoted the desired reactivity.(19) These results suggest 
alkyl iodide activation via a reductive-quenching photoredox cycle is not operative and that the 35 
amine plays a fundamental role in the C–I bond cleavage that goes beyond its capacity to act as an 
electron donor. 
The high yields obtained with the photoredox system along with the use of H2O as stoichiometric 
H-atom source prompted exploration of dehalogenation-deuteration reactions using D2O (Fig. 2D). 
After optimization, we achieved efficient deuteration of primary, secondary and tertiary alkyl 40 
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iodides in nearly quantitively yields (5–12). The mild reaction conditions tolerated multiple 
functional groups showcasing the strong chemoselectivity of this XAT approach. Activation of 
alkyl bromides is still a challenging task in radical chemistry and, for example, it is considered 
unfeasible using trialkyl borane–O2 systems (28). We were pleased to see that our a-aminoalkyl 
radical-based XAT strategy was applicable to bromides albeit in lower conversion compared to 5 
the iodides. 
 

 
Figure 2. Mechanistic analysis and application to dehalogenation and deuteration reactions. 
(A) Computational [B3LYP-D3/def2-TZVP] and laser flash photolysis studies on a model XAT 10 

reaction with an alkyl iodide. (B) Evaluation of photochemical and thermal strategies for a-
aminoalkyl radical generation and their use in the dehalogenation of alkyl iodide 3. (B) Proposed 
mechanism for the photoredox-based dehalogenation of alkyl iodide 3. Mechanistic studies 
support the intermediacy of a a-aminoalkyl radical in the activation of the C–I bond. (C) 
Application of the XAT methodology in deuteration of alkyl halides. All yields are isolated. 15 
Deuteration determined by GC-MS/quantitative 13C NMR spectroscopy. * Tribenzylamine 1b was 
used as the amine. r. t., room temperature. 
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The XAT strategy generates carbon radicals from organic halides oxidatively, which represents an 
umpolung approach relative to the natural redox requirement for SET activation of these building 
blocks. We posited that the generated radicals could therefore be used in similar mechanistic 
scenarios to carboxylic acids or potassium trifluoroborates, allowing their modular application in 
net reductive processes, such as cross-electrophile couplings (29, 30). 5 
We explored this premise by developing Giese-type hydroalkylation of electron-poor olefins. 
Although these transformations have been performed with the aid of nickel catalysis, they typically 
require the use of stoichiometric metal reductants (e.g. Mn0, Zn0) or silane H-donors (31, 32). In 
our case, as a-aminoalkyl radicals have been used as substrates in Giese additions (33), the success 
of this strategy hinged on their capacity to undergo preferential XAT over their known reaction 10 
with the olefin. Exploration began with 3-iodo-N-Boc-azetidine in the presence of Et3N and 
4CzIPN under blue light irradiation (Fig. 3A see Fig. S10 for a proposed mechanism). A diverse 
range of electron poor olefins were efficiently converted into the corresponding products in high 
to excellent yields (13–23). A variety of functionalities were readily accommodated including 
polar groups such as free carboxylic acid, primary amide, pyridine and boronic ester. When the 15 
same reactions were attempted using 3-bromo-N-Boc-azetidine, no desired product was obtained 
and a significant amount of the adduct arising from the direct addition of I-a to the olefin acceptor 
was identified (Fig. 3B). In this case, owing to the stronger nature of the C–Br bond, XAT is slower 
thus rendering the direct Giese reaction of I-a with the acceptor competitive (kobs ~ 107 M–1 s–1 
(21)). We therefore reasoned that the modulation of the electronic and steric properties of the a-20 
aminoalkyl radical could be used to tune its reactivity. Indeed, by using tribenzylamine (1b) we 
restored XAT as the favored pathway for reactions of unactivated alkyl bromides in these 
hydroalkylations. As the stabilized a-aminoalkyl radical I-b was essentially unreactive towards 
electron poor olefins (kcalc ~ 10–1 M–1 s–1 (21)), bromine abstraction was now possible providing 
the desired products in good yields. 25 
We next explored the alkyl iodide scope using Boc-protected dehydroalanine as olefin acceptor, 
providing convenient access to unnatural amino acids (24–35). Also in this case, a wide variety of 
organyl groups bearing common functionalities such as free alcohol, alkyl chloride, silane and 
terminal alkyne were compatible, reflecting the mildness of the reaction conditions. Furthermore, 
this protocol has also been carried out at gram-scale without erosion in yield. The ability to 30 
generate primary alkyl radicals complements approaches using oxalates and trifluoroborates which 
are known to suffer from sluggish fragmentations (34, 35). When alkyl halides activated towards 
SN2 attack by Et3N were employed (e.g. 29 and 32), not surprisingly the desired products were 
obtained in low yields. This hurdle was addressed by adjusting the steric properties of the XAT-
reagent: using the bulkier amine 1,2,2,6,6-pentamethylpiperidine (1c), efficient couplings were 35 
achieved. We have also been able to extend this methodology to unactivated aryl iodides using the 
more hindered but less stabilized a-aminoalkyl radical derived from triisobutylamine (1d). These 
conditions enabled direct access to aryl radicals by sp2 C–I bond cleavage and were applied to the 
one-pot transformation of tosylated serine into phenylalanine derivatives (36–39). Overall, these 
results illustrate how the large structural diversity of available tertiary amines facilitates the 40 
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rational tailoring of the  a-aminoalkyl radical reactivity to address different challenges in carbon–
halogen bond activation.  
The XAT strategy for cross-electrophile coupling is not restricted to electron poor olefins. We also 
achieved efficient allylation of alkyl/aryl halides using simple allyl chlorides and other 
pseudohalides (40–50) (Fig. 3C, see Fig. S12 for a proposed mechanism). This approach bypasses 5 
the conventional conversion of one of the two coupling partners into a Grignard/organozinc 
reagent (36) and therefore tolerates functionalities, such as free alcohol and ketone, that are often 
troublesome with organometallics. 
 

10 
Figure 3. Application to hydroalkylation and allylation. (A) Scope for the alkylation of alkyl 
iodides, alkyl bromides and aryl iodides. (B) Tailoring XAT reactivity by modifying the a-
aminoalkyl radical structure. (C) Scope for the allylation of alkyl iodides, alkyl bromides and aryl 
iodides. All yields are isolated. * 1a was used as the amine. † 1b was used as the amine. ‡ 1c was 
used as the amine. § 1d was used as the amine. ¶ The corresponding allyl sulfone was used.  15 

4CzIPN (5 mol%)
R3N (2.0 equiv.)

CH3CN–H2O (10:1) (0.1 M), r.t., 16 h
blue LEDsalkyl & aryl halide

(1.0 equiv.)

X
EWG

(2.0 equiv.)

EWG
+

34
78%*

33
80%*

25
86%*

26
96%*

31
55%*

27
quant.*

28
66%*

30
34%*

29
X = Br: 40%‡

32
53%‡

35
70%*, dr 3:2

EWG

N
Boc

CO2MeN

36
42%§

37
55%§

38
53%§

39
22%§

Boc

Boc
CO2MeN

Boc

Boc
CO2MeN

Boc

Boc
CO2MeN

Boc

Boc

CO2MeN
Boc

Boc
CO2MeN

Boc

Boc
CO2MeN

Boc

Boc

CO2MeN
Boc

Boc
CO2MeN

Boc

Boc
CO2MeN

Boc

Boc
CO2MeN

Boc

Boc
CO2MeN

H

Boc CO2MeN
H

Boc CO2MeN
H

Boc

N
Boc

Me

Me Ph

Me3Si(pin)B CF3

Ac MeO

CO2MeN
H

Boc

H2N

CO2Me

N
Boc

Me
CO2Me

N
Boc

Me

B(pin)

N
Boc

Ph

CO2MeN
Boc

Boc

N
Boc

N
Boc

N O

19
X = I : 91%*

X = Br : 73%†

20
X = I : quant.*
X = Br : 48%†

24
X = I : quant.*

[91% gram-scale]
X = Br : 52%†

21
X = I : 71%*

X = Br : 19%†

22
X = I : 98%*

X = Br : 53%†

23
X = I : 66%*

X = Br : 66%†

Me N
Et

Et

N O
Boc

EWG
CN

CO2Me
CO2H

C(O)NH2
C(O)Me

P(O)(OEt)2

X = I*
93%
90%
63%
80%
73%
88%

X = Br†

70%
56%
40%
61%
50%
53%

13:
14:
15:
16:
17:
18:

O

OH

O

O
Me
Me

I-a

A

N

Br

Boc
N

Boc

Me N
Et

Et

CN
CN

vs
Ph N

Bn

Bn
Me N

Et

Et
N Me

MeMe
Me

Me
N
i-Bu

i-Bu

Me

Me
1a 1b 1c 1d

Ph N
Bn

Bn
I-b

N

Br

Boc
N

Boc

Ph N
Bn

Bn

CN
CNalkyl iodides alkyl bromides SN2-activated

alkyl halides
aryl iodides

R3N B

Ph

O

O

O

O

OH

Me
Me

N
Ts

41
X = Br : 68%‡

43
71%*

45
70%*

44
32%*

Me

O49
39%‡

50
47%‡

N
Boc

47
74%*,¶

48
35%*

46
80%*, E:Z = 1.4:1

N Ph
Boc

N
Boc

N
Boc

B(pin)

40
X = I : 78%*

X = Br : 55%‡

Me MeO

Y
OTs

OP(O)(OMe)2

SO2Ph

42%*
70%*
62%*

alkyl & aryl halide
(1.0 equiv.)

X

(2.0 equiv.)

+ Cl

C

N
Ts

42
70%*,¶

Ph

Cl

Y
4CzIPN (5 mol%)
R3N (2.0 equiv.)

CH3CN–H2O (10:1) (0.1 M), r.t., 16 h
blue LEDs

VI-a VI-b
fast slow



Submitted Manuscript: Confidential 

7 
 

 
To further demonstrate the versatility of this activation mode, we sought to adapt it to target the 
use of alkyl halides in Heck-type olefinations, a long-standing challenge in conventional palladium 
catalysis due to undesired b-hydride-elimination (37-39). Specifically, we questioned whether, 
after addition of alkyl radicals to suitable olefins (VII), a cobaloxime co-catalyst might trigger a 5 
dehydrogenation reaction (40), thus leading to sp3–sp2 C–C bond formation (via VIII) without the 
need for precious metals (see Fig. S14 for a proposed mechanism). As shown in Fig. 4A, we found 
this dual XAT–[Co] protocol feasible thus allowing the direct olefination of primary, secondary 
and tertiary alkyl iodides and bromides exclusively as the E-isomers (51–74) (with the exception 
of 54 and 62). The broad functional group compatibility was demonstrated with the successful 10 
engagement of substrates containing phenol, aniline and benzoic acid moieties as well as aryl 
bromide, boronic acid and phosphine groups that could limit application under transition metal 
catalysis. The olefination was also very effective in intramolecular settings as showcased by the 
construction of tricyclic 75 in good yield. Couplings with aryl iodides were attempted but generally 
resulted in low yields. 15 
 

 
Figure 4. Application to olefinations and arylations. (A) Scope for olefination of alkyl iodides 
and alkyl bromides. (B) Scope for the C–H alkylation and arylation of aromatics. All yields are 
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isolated. * 1c was used as the amine. † Me3N was used as the amine. ‡ Bu3N was used as the amine. 
§ The reaction was run with 50 equiv. of the arene. 
 
In a final effort to establish the generality of this XAT strategy, we turned our attention to the 
direct aromatic C–H alkylation via radical intermediates (Fig. 4B, see Fig. S15 for a proposed 5 
mechanism). Recently, the use of zinc-alkylsulfinates has provided a powerful and effective 
solution to this synthetic challenge (41, 42). However, as these reagents are often prepared from 
the corresponding halides, a methodology that directly used these building blocks would obviate 
multistep synthesis of any reactive intermediate. In this case however, a photoredox system for a-
aminoalkyl radical generation is difficult to implement due to the mechanistic requirement of a 10 
second oxidation after radical addition to the arene in order to allow re-aromatization (IXàX). 
The broad set of reactivity modes for  a-aminoalkyl radical generation enabled identification of 
simple thermal, net oxidative conditions for the direct alkylation of caffeine with alkyl iodides 
without the need for light or catalysts (76–80). This manifold for aromatic C–H alkylation was 
compatible with the installation of primary, secondary and tertiary alkyl groups and could be 15 
extended to other heteroarenes commonly found in bioactive molecules such indole and azoles as 
well as benzenoids (43) (81–87). Furthermore, we demonstrated that aryl iodide activation and 
subsequent sp2–sp2 coupling (44) is also possible, as shown by the successful preparation of 88–
91.  
The results presented here demonstrate that alkyl and aryl halides can be converted into carbon-20 

radicals by halogen-atom transfer using a-aminoalkyl radicals. We believe that the broad scope, 
functional group tolerance and modularity of this approach for carbon–halogen bond activation 
will be of great utility to chemists working in both academia and industry.  
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