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Abstract—The conditions for minimum losses in a salient-

pole wound-field synchronous machine (WFSM) drive are 

studied in this paper.  The drive comprises a WFSM energized 

by a stator inverter and excited by a dc-dc converter both tied 

to a DC link. The minimum-loss operation is formulated as a 

nonlinear constrained optimization problem with equality 

constraints (e.g. torque command), and inequality constraints 

(flux, voltage and current limits). Lagrange multipliers are 

applied to solve this problem analytically. At low load, the 

torque demand can be met using different values for two 

independent electric variables (e.g. stator flux and field current 

magnitude). These can be optimized, thereby leading to two 

optimal implicit conditions. At higher load, when the stator 

flux reaches the maximum value, the free variables reduce to 

one and yield a single implicit optimal condition. For these two 

scenarios, the paper presents analytical derivations of the 

optimal conditions and numerical validation using MatLab. 

These conditions can be used to devise a control system 

optimizing the drive  operation. 1 

Keywords—Synchronous machine drives, Optimization, 

Minimum loss conditions. 

NOMENCLATURE 
General 

i, I Current (p.u.). 

𝑳𝒅,𝑳𝒒 Stator direct and quadrature inductance (p.u.). 

𝑳𝒎 Mutual inductance (p.u.). 

P Active power (p.u.). 

𝑻𝑳 , 𝑻𝒆 Load, Electromagnetic torque (p.u.). 

u Voltage (p.u.). 

𝒓𝒔,𝒓𝒇 Stator and field resistances (p.u.). 

 Lagrange multiplier.  

𝚫𝑼𝒔 Equivalent VSI voltage drop at rated current (p.u.). 

𝚫𝑼𝒇 Equivalent dc/dc voltage drop at rated current (p.u.). 

𝝍 Flux linkage (p.u.). 

𝝍𝑴 Maximum stator flux linkage (p.u.). 

𝝎, 𝝎𝒎 Mech. angular frequency/speed (p.u.). 

Superscripts 

* Reference value. 

Subscripts 

d, q Variables on rotor moving reference frame. 

N Rated value. 

 

 
1 This work was supported by national funds through FCT-  Fundação para 

a Ciência e a Tecnologia with reference UID/CEC/50021/2019.  

 

I. INTRODUCTION  

In the last decades, the development of power electronics 
made possible running motor and generator drives at 
adjustable speed in order to meet the optimal operating 
conditions dictated by the load or prime-mover. In Vector-
controlled ac machines, regardless to the specific reference 
flux, the supply current can be resolved into direct (in-phase 
with flux) and in-quadrature (torque-producing) components. 
The torque demand can be met by any combination of these 
two currents as long as the resulting flux and current are 
within the rated limits. Such as flexibility has been used to 
minimize losses in Permanent Magnet Synchronous 
Machines (PMSMs) since the mid 1980’s [1]-[2], leading to 
the definition of optimal current trajectories for maximum 
torque per ampere or minimum losses [3]-[4]. A similar 
concept was applied to induction motors by either using 
search algorithms [5] or deriving the analytic expression for 
the optimal magnetizing current [6].  

In multiport machines such as Wound-Field Synchronous 
Machines (WFSMs) and Doubly-Fed Induction Machines 
the stator/rotor magnetizing current split ratio offers a further 
degree of freedom for loss minimization. Analytical 
trajectories for the optimal current components for 
cylindrical WFSMs and DFIGs were derived in [7]-[8] and 
[9] respectively. More recently, the analysis was extended to 
cylindrical-WFSG [10] and DFIG rectifier-based [11] DC 
generation systems, considering the dc voltage or the stator 
frequency as an additional degree of freedom for the 
optimization. Optimal current trajectories for dual-VSI 
DFIG-DC systems were studied in [12] and [13]. 

Salient-pole WFSMs have been traditionally adopted as 
generators and are now receiving increasing attention for 
motoring applications especially in vehicle propulsion [14] 
because of their high efficiency when operating in deep field-
weakening region. To the best authors’ knowledge, however, 
analytic optimal trajectories of stator and field currents for 
loss minimization are only available for cylindrical WFSMs 
[7] and they do not include converter losses.  

This paper presents an optimization study of a salient-
pole WFSM drive and deduces analytical conditions for 
minimum-loss operation with given speed and torque 
demand. The study takes into account Joule, core and 
converter losses and considers two scenarios: 1), operation at 
low torque (i.e. well inside the flux, voltage and current 
capability domain), and 2), operation at maximum stator 
flux. At low torque levels, the optimal flux is below the rated 
value and the optimal d-, q-axis stator currents and field 
current are linked by two optimal conditions. For high torque 
levels, the flux is to be capped at rated value and the 
optimization returns a single optimal condition. The 



analytical conditions are validated using numerical 
optimization techniques. 

The paper is structured as follows. Section II presents the 
layout of the system under study and the classic Park’s 
model of the WFSM. This model already accounts for Joule 
losses, whereas core and converter losses are introduced 
separately in order to implement an algorithm for the 
minimization of total losses at an arbitrary operation point 
with given rotor speed and torque. The optimization problem 
is introduced in Section III. The analytical optimization using 
Lagrange multipliers is presented in section IV by deriving 
two sets of optimal conditions depending on the torque level. 
These results are verified using numerical methods in section 
V. Finally, section VI presents a control system based on the 
analytic optimal conditions in order to generate the reference 
currents that minimize the losses automatically. 

II. LAYOUT AND MODELING 

A. Layout 

The considered system is presented in Fig. 1. The WFSM 
drive is tied to the DC power system using a Voltage Source 
Inverter (VSI) on the stator side and a dc/dc converter on the 
field winding. The rotor dc/dc converter adjusts the field 
current while the VSI controls the stator currents in order to 
obtain the required torque 𝑇𝑒 at a given electrical speed 𝜔𝑚. 

 

Fig. 1. Layout of the Wound field synchronous Machine Drive. 

B. Steady-state Park’s model 

This paper focusses on the conditions for minimum 
losses at steady state. The classic Park’s model of a 
synchronous machine in steady state is represented by the 
following equations in per-unit (p.u.), using motor 
convention and considering the rotor reference frame d-q: 

 𝑢𝑑 = 𝑟𝑠𝑖𝑑 − 𝜔𝐿𝑞𝑖𝑞 () 

 𝑢𝑞 = 𝑟𝑠𝑖𝑞 +  𝜔 (𝐿𝑑𝑖𝑑 + 𝐿𝑚𝑖𝑓)  () 

 𝑢𝑓 = 𝑟𝑓𝑖𝑓 () 

The relations between flux linkages and currents are: 

 [

𝜓𝑑

𝜓𝑞

𝜓𝑓

] = [

𝐿𝑑 0 𝐿𝑚

0 𝐿𝑞 0

𝐿𝑚 0 𝐿𝑓

] [

𝑖𝑑

𝑖𝑞

𝑖𝑓

] () 

The torque in p.u. is given by: 

 𝑇𝑒 = 𝜓𝑑𝑖𝑞 − 𝜓𝑞𝑖𝑑 = (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞 + 𝐿𝑚𝑖𝑞𝑖𝑓 () 

C. Losses in a WFSM drive 

The above described model accounts only for copper 
Joule losses.  

 Joule losses           PJs = 𝑟𝑠𝑖𝑑
2 + 𝑟𝑠𝑖𝑞

2 + 𝑟𝑓𝑖𝑓
2               () 

Iron losses and VSI conducting losses must be included 
in the model in order to carry out the full optimization. This 
paper adopts a simplified representation for core, VSI and 
dc/dc converter losses. These are added separately to the 
model, neglecting the effect on the relationship between 
currents, voltages, and torque, which are assumed to remain 
as in (1)-(4). Assuming a constant voltage-drop model for the 
semiconductors, and considering constant dc voltage and 
switching frequency, converter losses are roughly 
proportional to the current magnitude via coefficients Δ𝑈𝑠 
and Δ𝑈𝑓, as outlined in (7)-(8).  

Stator VSI losses                     𝑃𝑖𝑛𝑣_𝑠 = Δ𝑈𝑠 𝐼𝑠 () 

Field dc/dc converter losses    𝑃𝑑𝑐_𝑑𝑐 = Δ𝑈𝑓  𝐼𝑓 () 

Hysteresis and eddy-current core losses in the stator at 

frequency  are as follows 

 𝑃𝑠ℎ = 𝑃𝑠ℎ0 𝜔 𝜓2 () 

 𝑃𝑒ℎ = 𝑃𝑒ℎ0 𝜔2 𝜓2 () 

Excess and rotor core losses are ignored so the total core 
losses are 

 𝑃𝑓𝑒 = 𝑃𝑠ℎ0 𝜔 𝜓2 +  𝑃𝑒ℎ0 𝜔2 𝜓2 =  𝜓2𝑓(𝜔) () 

III. FORMULATION OF THE OPTIMIZATION PROBLEM  

This paper aims at finding the optimal control variables 
which minimize losses for a given p.u. speed 𝜔 and torque 
𝑇𝑒. The objective function is the expression of total losses:  

𝑊 = 𝜓2𝑓(𝜔) +  𝑟𝑠𝑖𝑑
2 + 𝑟𝑠𝑖𝑞

2 + 𝑟𝑓𝑖𝑓
2 + Δ𝑈𝑠  𝐼𝑠 + Δ𝑈𝑓  𝐼𝑓 () 

The optimization procedure considers the following 
operational constraints in addition to (4): 

1) Equality constraints: 

 𝑇𝐿 = 𝑇𝑒 = 𝜓𝑑𝑖𝑞 − 𝜓𝑞𝑖𝑑 () 

2) Inequality constraints: 

 𝐼𝑠 = √𝑖𝑑
2 + 𝑖𝑞

2 ≤ 𝐼𝑠𝑁 () 

 𝐼𝑓 ≤ 𝐼𝑓𝑁 () 

 𝑈𝑠 = √𝑢𝑑
2 + 𝑢𝑞

2 ≤ 𝑈𝑠𝑁 () 

 𝜓 = √𝜓𝑑
2 + 𝜓𝑞

2 ≤ 𝜓𝑀 () 



The resulting optimization problem can be solved using 
either analytical or numerical methods. In section IV the 
method of Lagrange multipliers is used to obtain simplified 
expressions for the optimal conditions. They are used for the 
control of the machine. In section V, Matlab numerical 
methods are used to validate the simplified results. 

IV. ANALYTICAL OPTIMIZATION  

A. Unconstrained Optimization by Lagrange Multipliers 

When current, voltage and flux are within their limits, the 
appropriate Lagrange function is: 

 𝑊𝐿 = (𝜓𝑑
2 + 𝜓𝑞

2)𝑓(𝜔) +  𝑟𝑠𝑖𝑑
2 + 𝑟𝑠𝑖𝑞

2 + 𝑟𝑓𝑖𝑓
2 +

 Δ𝑈𝑠  √𝑖𝑑
2 + 𝑖𝑞

2 + Δ𝑈𝑓  𝐼𝑓 − 𝜆(𝑇𝐿 −  𝜓𝑑𝑖𝑞 + 𝜓𝑞𝑖𝑑) () 

 By using (4), the fluxes can be eliminated and (18) is 
reformulated as follows 

𝑊𝐿 = ((𝐿𝑑𝑖𝑑 + 𝐿𝑚𝑖𝑓)
2

+ (𝐿𝑞𝑖𝑞)
2

) 𝑓(𝜔) + 𝑟𝑠𝑖𝑑
2 + 𝑟𝑠𝑖𝑞

2 +

𝑟𝑓𝑖𝑓
2 + Δ𝑈𝑠  √𝑖𝑑

2 + 𝑖𝑞
2 + Δ𝑈𝑓  𝐼𝑓 − 𝜆(𝑇𝐿 − (𝐿𝑑𝑖𝑑 + 𝐿𝑚𝑖𝑓)𝑖𝑞 +

𝐿𝑞𝑖𝑞𝑖𝑑)            () 

which contains three residual electric variables {𝑖𝑑 , 𝑖𝑞 , 𝑖𝑓 } 

and two inputs {𝜔, 𝑇𝐿 }. The optimality conditions follows 
from the partial derivatives of (19) with respect to {𝑖𝑑 , 𝑖𝑞 , 𝑖𝑓} 

𝜕𝑊𝐿

𝜕𝑖𝑑
= 2𝑟𝑠𝑖𝑑 +

Δ𝑈𝑠 𝑖𝑑

√𝑖𝑑
2+𝑖𝑞

2
+ (𝐿𝑑 − 𝐿𝑞)𝑖𝑞𝜆 + 2𝐿𝑑(𝐿𝑑𝑖𝑑 +

𝐿𝑚𝑖𝑓)𝑓(𝜔) = 0   () 

 
𝜕𝑊𝐿

𝜕𝑖𝑞
= 2𝑟𝑠𝑖𝑞 +

Δ𝑈𝑠 𝑖𝑞

√𝑖𝑑
2+𝑖𝑞

2
+ (𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝜆 + 𝐿𝑚𝑖𝑓𝜆 + 2𝐿𝑞

2 𝑖𝑞𝑓(𝜔) = 0 

  () 

𝜕𝑊𝐿

𝜕𝑖𝑓
= 2𝑟𝑓𝑖𝑓 + Δ𝑈𝑓 + 𝐿𝑚𝑖𝑞𝜆 + 2𝐿𝑚(𝐿𝑑𝑖𝑑 + 𝐿𝑚𝑖𝑓)𝑓(𝜔) = 0  

  () 

Due to the remaining equality constraint (13), there are only 
two free variables among { 𝑖𝑑 , 𝑖𝑞, 𝑖𝑓 }, so two optimal 

conditions are expected. 

1) First optimal condition 

 Solving (22) with respect to multiplier 𝜆 gives 

𝜆 = −
2𝑟𝑓𝑖𝑓+Δ𝑈𝑓+2𝐿𝑚(𝐿𝑑𝑖𝑑+𝐿𝑚𝑖𝑓)𝑓(𝜔)

𝐿𝑚𝑖𝑞
  () 

Replacing (23) into (20) and rearranging yields 

2𝑟𝑠𝑖𝑑 +
Δ𝑈𝑠 𝑖𝑑

√𝑖𝑑
2+𝑖𝑞

2
+ 2𝑓(𝜔)𝐿𝑞(𝐿𝑑𝑖𝑑 + 𝐿𝑚𝑖𝑓) =

(𝐿𝑑−𝐿𝑞)

𝐿𝑚
(2𝑟𝑓𝑖𝑓 +

Δ𝑈𝑓)    () 

which can be rewritten as 

2𝑟𝑠𝑖𝑑 +
Δ𝑈𝑠 𝑖𝑑

√𝑖𝑑
2+𝑖𝑞

2
+ 2𝑓(𝜔)𝜓𝑑𝐿𝑞 =

(𝐿𝑑−𝐿𝑞)

𝐿𝑚
(2𝑟𝑓𝑖𝑓 + Δ𝑈𝑓)  () 

Equation (24) or (25) represent the optimal relationship 
between voltage drops on the d-axis and excitation and 
contain a saliency-related term. 

2) Second optimal condition 

By using (25) and (4), multiplier 𝜆 in (23) can be rewritten in 
the form  

𝜆 = −
1

(𝐿𝑑−𝐿𝑞)𝑖𝑞
(2𝑟𝑠𝑖𝑑 +

Δ𝑈𝑠 𝑖𝑑

√𝑖𝑑
2+𝑖𝑞

2
+ 2𝑓(𝜔)𝜓𝑑𝐿𝑞) −

2𝑓(𝜔)𝜓𝑑

𝑖𝑞
  () 

By replacing the first 𝜆  in (21) with (26) – i.e. in factor 
(𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝜆 – and the second 𝜆  with (23) – i.e. in factor 
𝐿𝑚𝑖𝑓𝜆 – and rearranging gives   

2𝑟𝑠𝑖𝑑
2 +

Δ𝑈𝑠 𝑖𝑑
2

√𝑖𝑑
2+𝑖𝑞

2
+ 2𝑟𝑓𝑖𝑓

2 + Δ𝑈𝑓𝑖𝑓 + 2𝑓(𝜔)𝜓𝑑
2 = 2𝑟𝑠𝑖𝑞

2 +
Δ𝑈𝑠 𝑖𝑞

2

√𝑖𝑑
2+𝑖𝑞

2
+

2𝑓(𝜔)𝜓𝑞
2     (27) 

The right-hand side of equality (27) contains only losses 
associated with magnetizing terms (d-axis). Conversely, the 
left-hand side contains only losses associated with the q-axis 
are present. Apart from factor “2” weighting Joule losses, 
(27) can be interpreted as “d-axis losses = q-axis losses” and 
may be called “dq-axis loss matching condition”. 

B. Flux constrained optimization 

The optimal stator flux increases with torque. When 
stator flux reaches the limit, the maximum-flux constraint 
applies, turning inequality constraint (17) into an equality 
constraint. The resulting Lagrange function is: 

𝑊𝐿𝜓 = 𝑟𝑠𝑖𝑑
2 + 𝑟𝑠𝑖𝑞

2 + Δ𝑈𝑠  √𝑖𝑑
2 + 𝑖𝑞

2 + 𝑟𝑓𝑖𝑓
2 + Δ𝑈𝑓  𝐼𝑓 −

𝜆1𝜓(𝑇𝐿 − (𝐿𝑑 − 𝐿𝑞) 𝑖𝑑𝑖𝑞 − 𝐿𝑚𝑖𝑓𝑖𝑞) − 𝜆2𝜓(𝜓𝑀
2 −

(𝐿𝑑
2 𝑖𝑑

2 + 𝐿𝑚
2 𝑖𝑓

2 + 2𝐿𝑑𝐿𝑚𝑖𝑑𝑖𝑓) − 𝐿𝑞
2 𝑖𝑞

2) () 

where subscript “” denotes that the optimization problem is 
different from the one in previous Section IV-A. The new 
optimality conditions are: 

𝜕𝑊𝐿𝜓

𝜕𝑖𝑑
= 2𝑟𝑠𝑖𝑑 +

Δ𝑈𝑠 𝑖𝑑

√𝑖𝑑
2+𝑖𝑞

2
+ 𝜆1𝜓(𝐿𝑑 − 𝐿𝑞) 𝑖𝑞 + 𝜆2𝜓(2𝐿𝑑

2 𝑖𝑑 +

2𝐿𝑑𝐿𝑚𝑖𝑓) = 0 (29) 

 
𝜕𝑊𝐿𝜓

𝜕𝑖𝑞
= 2𝑟𝑠𝑖𝑞 +

Δ𝑈𝑠 𝑖𝑞

√𝑖𝑑
2+𝑖𝑞

2
+ 𝜆1𝜓(𝐿𝑑 − 𝐿𝑞) 𝑖𝑑 + 𝜆1𝜓𝐿𝑚𝑖𝑓 +

𝜆2𝜓(2𝐿𝑞
2 𝑖𝑞) = 0 (30)  

 
𝜕𝑊𝐿𝜓

𝜕𝑖𝑓
= 2𝑟𝑓𝑖𝑓 + Δ𝑈𝑓 + 𝜆1𝜓𝐿𝑚𝑖𝑞 + 𝜆2𝜓(2𝐿𝑚

2 𝑖𝑓 +

 2𝐿𝑑𝐿𝑚𝑖𝑑) = 0 (31)  

 
Considering (4) and (31) 

 𝜆1𝜓𝑖𝑞 = −
2𝑟𝑓𝑖𝑓+Δ𝑈𝑓

𝐿𝑚

− 𝜆2𝜓2𝜓𝑑            () 

After some algebraic manipulations, the second Lagrange 
multiplier is: 



 𝜆2𝜓 = −

𝑟𝑠𝑖𝑑
2+

Δ𝑈𝑠 𝑖𝑑
2

√𝑖𝑑
2 +𝑖𝑞

2
+𝑟𝑓𝑖𝑓

2+
Δ𝑈𝑓

2
𝑖𝑓−𝑟𝑠𝑖𝑞

2−
Δ𝑈𝑠 𝑖𝑞

2

√𝑖𝑑
2 +𝑖𝑞

2

𝜓𝑑
2 −𝜓𝑞

2  () 

Multiplying (29) and (30) by 𝑖𝑑  and 𝑖𝑞  respectively, 

summing the resulting equations and using (32) yield: 

2𝑟𝑠𝐼𝑠
2 + Δ𝑈𝑠𝐼𝑠 + 2𝑟𝑓𝑖𝑓

2 + Δ𝑈𝑓𝑖𝑓 +  2𝜆1𝜓𝑇𝑒 + 2𝜆2𝜓𝜓𝑀
2 = 0 () 

Equation (34) gives the condition for minimum losses at 
constant (rated) flux, which is now only one condition since 
there are two functions to impose, the torque and the flux. 
Once again, the Joule losses appear multiplied by factor 2 
when compared to converter losses. According to (34), the 
rotor speed has no influence on the optimal condition. Thus, 
the optimal values of currents depend only on torque. Using 
(34) and (4), (13) and (17) – along with (32)-(33) to 
eliminate multipliers 𝜆1𝜓 and 𝜆2𝜓 – , it is possible to generate 

the optimal variables {𝑖𝑑 , 𝑖𝑞 , 𝑖𝑓}  numerically as a function of 

torque, as shown in Fig 2 for the considered 1750 kVA 
WFSM. Current component  𝑖𝑑  is well approximated by a 
quadratic polynomial. This approximation will be used to 
devise a WFSM control system handling the operation at 
high torque under maximum-flux condition. 

 

Fig. 2. Optimal variables versus torque at maximum flux.  

V. NUMERICAL OPTIMIZATION RESULTS 

The results from the numerical optimization were 
obtained using Matlab optimization package. For a 
comprehensive assessment of the analytical conditions 
obtained in Section IV, the numerical optimization results 
include also a small range of rotor speeds where stator 
voltage limits are hit.  

Results are presented in Fig. 3 to Fig. 10: they refer to a 
1750 kVA salient-pole WFSM with the parameters in the 
Appendix. 

The stator flux is presented in Fig. 3 showing that the 
maximum (rated) flux should be used in the majority of 
plane (𝜔𝑚 , 𝑇𝑒) . The stator voltage is presented in Fig. 4. 
Three regions are shown, including the maximum voltage 
condition, not studied analytically in this paper. 

The d- and q- stator current components are presented in Fig. 
5 and Fig. 6, and the field current is presented in Fig. 7. In 
generating operation, the q-axis current is negative so the 
optimal 𝑖𝑞  would be mirrored on the (𝜔𝑚, 𝑇𝑒) plane, whereas 

the other optimal surfaces remain the same. 

 

Fig. 3. Optimal stator flux 

 

Fig. 4. Optimal stator voltage. 

 

Fig. 5. Stator d- current component. 

 

Fig. 6. Stator q-axis current component. 

Optimal conditions (25), (27), and (34) are verified in Fig. 8, 
Fig. 9 and Fig. 10 respectively. In particular, Fig. 8 and Fig. 
9 show the difference between the left-hand and right-hand 
sides of (25) and (27), so they are zero in the regions where 
(25) and (27) are valid, i.e. when the stator flux is below the 
rated value.  



 

Fig. 7. Field current. 

 

Fig. 8. Equality of d- and q- axes Losses obtained from the optimization. 

 

Fig. 9. D-axis voltage drop condition. 

 

Fig. 10.  Constrained flux condition.  

As mentioned in Section IV, it can be verified that the 
speed has no influence on the optimal state variables in the 
maximum-flux region.  

VI. CONTROL SYSTEM AND RESULTS 

Using the concepts described in Section IV, a control 

system is proposed enforcing optimal conditions (25) and 
(27) or (34), depending on the operating region. Three cases 
are studied. In the first case the torque is small and 
consequently the flux can be automatically adjusted 
depending on torque and speed levels. In the second case the 
torque is higher and so the flux is capped at its maximum 
value. The transition between these two different conditions 
is studied in the third case. The schematic of the control 
system handling these three cases is presented in Fig. 11. 

 

Fig. 11. Control system for adjustable flux region.  

The WFSM is operated using current control 
implemented in the dq rotor reference frame. This needs 
torque and flux estimation. The three reference values 
{𝑖𝑑

∗ , 𝑖𝑞
∗ , 𝑖𝑓

∗} for the WFSM currents are obtained as follows.  

The field current reference  𝑖𝑓
∗ controls the flux level and 

is set by the Proportional Integral (PI) controller “PI Flux”, 
see Fig. 11. The reference command of this controller comes 
from the “PI ref Flux” controller whose output is limited at 
maximum reference flux 𝜓𝑀 . This controller enforces 
optimal condition (27) as shown in Fig. 11, as long as the 
reference flux is lower than 𝜓𝑀. In flux saturation regimen, 
(27) is no longer used. The saturation is implemented 
directly at the output of the PI controller. 

The in-quadrature current component 𝑖𝑞  is used to control 

the torque so its reference value is set by torque controller 
“PI-torque”. 

The reference command  𝑖𝑑
∗  for the direct current 

component depends on the operating point and is calculated 
by two different blocks, depending on low- or high-torque 
operation. In the first scenario (low torque), 𝑖𝑑

∗  is set by a 
third PI controller (PI-low-Te) enforcing optimal condition 
(25), similarly to what done for (27). For high torque values, 
𝑖𝑑

∗  is set from a parabolic approximation of the unique 
optimal condition implicitly defined by (34)-(32) as a 
function of the torque demand and as shown in Fig. 2. 

A. Unconstrained flux control 

For low level torque, where adjustable flux should be 
used, the minimum conditions (25) and (27) are been used. 
Since it is difficult to obtain the reference variables in an 
explicit form, here it is proposed to use PI controllers to 
solve those equations as shown in Fig. 11. Since the torque is 
proportional to 𝑖𝑞 , this variable is used to control the torque 

and is the output of a classical PI controller. Currents 𝑖𝑑 and 
𝑖𝑓 are used to optimize the system.  

Fig. 12 shows a simulation result when ascending and 
descending ramps of torque reference is applied. In this case 



the flux is always adjusted and (25)-(27) are always verified. 

 
Fig. 12.  Results obtained in the adjustable flux region for ramps of 

reference torque.  

B. Control at maximum flux 

Fig. 13 shows the flux and current variables obtained 
when ascending and descending torque ramps are imposed, 
with a minimum torque above the threshold triggering the 
high-torque operating mode. The saturation for stator flux is 
set at 1 p.u. and the reference currents have a behavior 
similar to that in the previous simulation. However, 
conditions (25) and (27) are now violated, as shown in the 
subplot at the bottom of Fig. 13.  

 
Fig. 13.  Results obtained in the maximum flux region.  

C. Transition between the two regions 

The transition between both regions is shown in Fig. 14. 
The reference torque increases from a very low value until 
0.9 p.u.. The transition occurs at t=300ms and t=1.1s 
approximately and is smooth, without considerable 
discontinuities. 

VII. CONCLUSION 

The conditions for minimum-loss operation in a salient-
pole WFSM drive connected to a dc network were discussed 
in this paper. The optimal conditions were obtained 
analytically using Lagrange multipliers and were verified 
with a numerical optimization package. A control scheme for 
minimum-loss operation based on the analytic optimal 
conditions was presented. To that purpose, the implicit 
optimal conditions are enforced using two PI controllers 
returning the d-axis and field reference currents to be 

imposed by vector control. The results obtained in this paper 
can be used for practical implementation of the control. 

APPENDIX 

Per-unit parameters of the WFSM and VSIs used in the 

study: rs=0.0083, rf =0.004, Lm=3.4, Ld=3.66, Lq=1.12, 

Us=0.04, Pfe0=0.01, Uf =0.01. 

 

Fig. 14. Transition between low- and high-torque operating regions.  
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