

The University of Manchester Research

Rainfall runoff co-relationship using empirical methods for Lower Mahi Basin, India

Document Version

Final published version

Link to publication record in Manchester Research Explorer

Citation for published version (APA):

Bavishi, H., & Bhagat, N. K. (2017). Ráinfall runoff co-relationship using empirical methods for Lower Mahi Basin, India. International Journal of Civil Engineering and Technology, 8(3), 575-581.

Published in:

International Journal of Civil Engineering and Technology

Citing this paper

Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights

Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy

If you believe that this document breaches copyright please refer to the University of Manchester's Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.

International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 3, March 2017, pp. 575–581 Article ID: IJCIET_08_03_056 Available online at http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=8&IType=3 ISSN Print: 0976-6308 and ISSN Online: 0976-6316

© IAEME Publication

Scopus Indexed

Scopus

RAINFALL RUNOFF CO-RELATIONSHIP USING EMPIRICAL METHODS FOR LOWER MAHI BASIN, INDIA

Himanshu Bavishi

U.G Student, Department of Civil Engineering, Indus University, Ahmedabad, India

Bhagat N.K

Assistant Professor, Department of Civil Engineering, Indus University, Ahmedabad, India

ABSTRACT

Rainfall Runoff Co-Relationship done by many approaches such as software, mathematical, empirical, hydrograph. Models of different types provide a means of quantitative extrapolation or prediction that will helpful in decision making. In present paper focused on empirical methods for rainfall runoff co-relationship. Rainfall data for the important rain gauging site was considered for flood years (1991, 1994, 1996, 1997, 1998, 2005, 2006, 2007). INGLIS AND DE SOUZA'S, LACEY'S, PARKER'S BRITISH AND USA, AND TAPI BASIN Formula use for corelationship. Utilizing all formula, a rainfall runoff co-relationship was obtained using the regression equation.

Key words: Rainfall, Runoff, Empirical Methods.

Cite this Article: Himanshu Bavishi and Bhagat N.K, Rainfall Runoff Co-Relationship Using Empirical Methods for Lower Mahi Basin, India. *International Journal of Civil Engineering and Technology*, 8(3), 2017, pp. 575–581. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=8&IType=3

1. INTRODUCTION

Rainfall is the result of water vapour condensing and precipitating, forming droplets that fall from clouds due to gravity. It is an important part of the water cycle. Runoff means the draining or flowing off of rainfall from a catchment area through a surface channel. The relationship between rainfall in a period and the corresponding runoff is quite complex and is influenced by a host of factors relating to the catchment and climate. Further, there is the problem of paucity of data which forces one to adopt simple correlations for adequate estimation of runoff. Commonly adopted method is to fit a linear regression line between Runoff and Rainfall and to accept the result if the correlation coefficient is nearer unity.

Several empirical formulae have been developed by various investigations. These formulae the annual precipitation (p). There are generally of two forms:

(I)
$$R = aP + b$$

(II)
$$R = c P^n$$

Where a, b, c and n are the catchment constants.

There is large number of empirical formula available in literature. These formulae are applicable for the catchment for which they had been derived. However, these are also used for other catchment with similar characteristics. Some of the most commonly formulae are given below:

- INGLIS AND DE SOUZA'S
- LACEY'S
- PARKER'S BRITISH AND USA
- TAPI BASIN

In this study, an attempt has been made to obtain a rainfall runoff relationship for Lower Mahi Basin, India using Empirical equations. Since the data collection is very expensive and time consuming, the rainfall data was collected only for important rain gauge station for period of 20 years. Using the rainfall data, runoff calculated from empirical methods. Observed and calculated runoff co-relation was obtained using regression question.

2. DIFFERENT EMPERICAL METHODS

2.1. INGLIS and DE SOUZA'S formulae

Inglis and De Souza studies the yield of catchments in Western Ghat mountains and Palins of Maharashtra (India) and gave two separate formulae for the ghat areas and plain areas.

(a) Ghat areas	R = 0.85P - 30.5
(b) Plain areas	R = (P - 17.8) P
	254

Where R is the daily runoff (cm) and P is the daily rainfall (cm) over the entire catchment.

2.2. Lacey's Formulae

Lacey gave the following formula for the catchment in the Indo-Gangetic plains.

$$R = \frac{P}{1 + 304.8F}$$
PS

Where F is the monsoon duration factor, whose value is equal to 1.0 for the normal monsoon duration. For very short duration and very long duration, the value of F is, 0.50 and 1.50. S is the catchment factor. The value of S for A, B, C, D and E types of catchments are respectively, 0.25, 0.60, 1.00, 1.70 and 3.45 where types of catchments are as per Barlow's Classification (Table 1). Alternatively, the value of (F/S) for different types of catchments for different monsoon duration factor can be taken from Table 2.

Class of catchment	Description of catchment
Α	Flat, cultivated, absorbent soil
В	Flat, partly cultivated, stiff soil
С	Average catchment
D	Hills and plains with little cultivation
E	Very hilly and steep, with little or no cultivation

 Table 1 Barlow's catchment classification

Himanshu Bavishi and Bhagat N.K

Duration of	Values of (F/S) for the catchment of type				
monsoon	Α	В	С	D	Ε
Very short	2	0.83	0.5	0.29	0.14
Standard duration	4	1.67	1	0.58	0.28
Very long	6	2.5	1.5	0.88	0.43

 Table 2 Value of (F/S) for the catchment of type

2.3. Parker's formulae

Parker gave the following formulae for different countries.

(a) British Isles	R = 0.94P - 35.6
(b) Germany	R = 0.94P - 40.6
(c) U.S.A	R = 0.80P - 41.9 Where R and P in centimetre.

2.4. Tapi basin (Gujarat)

This formula has been developed for Tapi basin Gujarat, India.

R = 0.435P - 17.2 Where R

and P in centimetre.

3. STUDY AREA

Mahi River is one of the major west flowing interstate river of India, draining into the Gulf of Khambhat. The Mahi basin is comprised of two sub-basins: - Mahi upper sub basin of (65.11% of total basin area) consisting of 41 watersheds and Mahi lower sub basin (34.89% of total basin area) consisting of 22 watersheds. It lies between 720 15"00" E to 780 15"00" E and 220 N to 22040" 00" N respectively. The basin map is shown in Fig 1.Only the lower Mahi Basin is considered for the present study. Rain gauging stations was considered Table 3 shows the details of the rain gauging station considered for study.

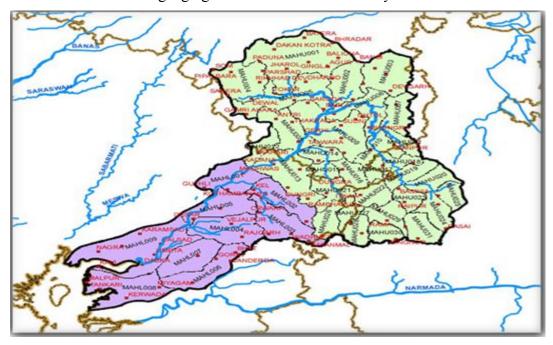
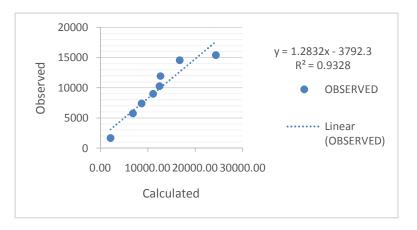


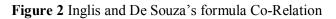
Figure 1 Mahi Basin

577

Rainfall Runoff Co-Relationship Using Empirical Methods for Lower Mahi Basin, India

Station NAME	Latitude	Longitude	Ref. Topo. No
PILOL	22°24'39"	22°24'39"	46F03
SANSOLI	22°24'39"	22°24'39"	46F06
SAVLI	22°24'39"	22°24'39"	00F46
WANAK BORI	22°24'39"	22°24'39"	46F05
KALOL	22°24'39"	22°24'39"	46F06


 Table 3 Details of rainfall gauge station


4. ANALYSIS

4.1. INGLIS and DE SOUZA'S formulae

YEAR	CALCULATED	OBSERVED
1991	12476.10	10293
1994	16742.62	14592
1996	8723.64	7403
1997	12695.85	11956
1998	6893.15	5750.6
2005	2158.36	1674.52
2006	24331.42	31061.91
2007	11111.53	9000.16

Table 4 Inglis and De Souza's Formula Analysis

4.2. Lacey's Formulae

Table 5: Lacey's For	mula Analysis
----------------------	---------------

YEAR	CALCULATED	OBSERVED
1991	12442.41	10293
1994	16744.09	14592
1996	8506.82	7403
1997	12547.41	11956
1998	6859.80	5750.6
2005	2160.54	1674.52
2006	24307.82	31061.91
2007	11114.01	9000.16

Himanshu Bavishi and Bhagat N.K

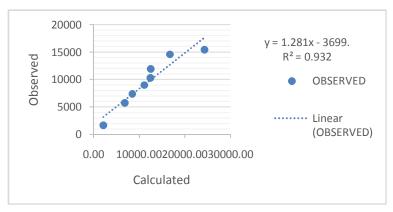


Figure 3 Lacey's formula co-Relation

4.3. Parker's formulae

4.3.1. British Isles

YEAR	CALCULATED	OBSERVED
ILAK	CALCULATED	ODSERVED
1991	12524.38	10293
1994	16727.51	14592
1996	8679.87	7403
1997	12718.09	11956
1998	6966.78	5750.6
2005	2169.91	1674.52
2006	24408.56	31061.91
2007	11093.82	9000.16

 Table 6 Parker's British formula Analysis

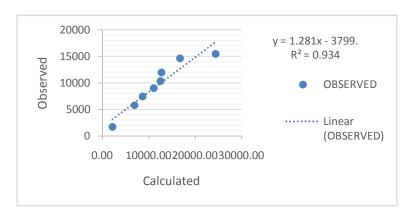


Figure 4 Parker's British formula Co-Relation

4.3.2. U.S.A

 Table 7 Parker's USA formula Analisis

YEAR	CALCULATED	OBSERVED
1991	12465.86	10293
1994	16692.93	14592
1996	8587.19	7403
1997	12630.45	11956
1998	6903.50	5750.6
2005	2130.71	1674.52
2006	24347.66	31061.914
2007	11072.82	9000.16

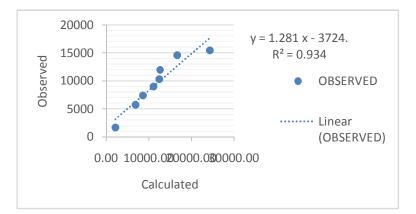


Figure 5 Parker's USA formula Co-Relation

4.4. TAPI BASIN

YEAR	CALCULATED	OBSERVED
1991	12436.66	10293
1994	16726.15	14592
1996	8468.94	7403
1997	12525.33	11956
1998	6861.90	5750.6
2005	2151.88	1674.52
2006	24312.26	31061.914
2007	11100.32	9000.16

Table 8 Tapi Basin formula Analisis

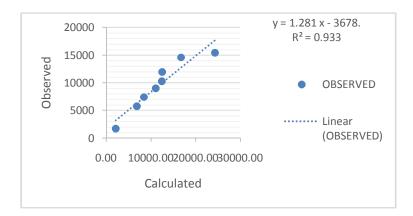


Figure 6 Tapi Basin Formula Co-Relation

5. CONCLUSION

This study is ab attempt to define a Rainfall-Runoff Co-relationship for Lower Mahi Basin, India. Graphical regressions were made relating to rainfall and runoff was determined considering all the important catchment characteristics using the empirical methods. It was found that considerably good results were obtained by correlating rainfall versus run off. The regressions were affected to some extent by the quality of the data from which they were derived. Runoff data was considered fairly well, as it does not take into account the infiltration in the catchment. The infiltration is the start of the event is different when the storm ends and this effects the run off from the catchment. When the "R²" value approaches

580

to 1, it means the river receives a regular rainfall every year and the flow is actually proportional to it.

The co relation "R" for the basin is nearing the unity and such a correlation is said to be very good, which shows the catchment is more responsive to the rainfall it is receiving. The method presented in this study provides a tool for estimating runoff from a rainfall event.

For all this different empirical equations, the regression value was nearing unity. Parker's USA analysis gave the value of R2 as 0.934. So, it is most effective method for runoff calculation for lower Mahi Basin.

REFERNCES

- [1] Bhagat N. K.(2016) Rainfall Runoff Co-Relationship for Lower Mahi
- [2] Basin, India. " PARIPEX INDIAN JOURNAL OF RESEARCH", Volume : 5, Issue : 12, December-2016

Keith Beven Lancaster University, UK "Rainfall-Runoff Modelling" Second edition WIELY-BLACWELL publication

- [3] K. Subramanya "Engineering hydrology" Third Edition TataMcGraw-Hill publication
- [4] Dr. K.R. Arora "IRRIGATION, WATER POWER AND WATER RESOURCES ENGINEERING" Standard Publisher distributors.
- [5] R.K.Suryawanshi., S.S.Gedam and R.N.Sankhua., (2012),"Comparative Analysis of Spatial Rainfall and Runoff estimation using Geospatial Tools, ANN and Empirical approach". International Journal of Emerging Technology and Advanced Engineering, ISSN: 2250-2459, Volume-2, Issue-10, PP 295-299.
- [6] H.L. Tiwari, Ankit Balvanshi and Deepak Chouhan, Simulation of Rainfall Runoff of Shipra River Basin. *International Journal of Civil Engineering and Technology*, 7(6), 2016, pp.364–370.
- [7] Akali Ngaywa Moses, Spatial Variation of Rainfall Runoff Erosivity (R) Factor for River Nzoia Basin, Western Kenya. *International Journal of Civil Engineering and Technology*, 8(2), 2017, pp. 418–422

581