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The worldwide prevalence of sleep disorders is approximately 50%, with an even 
higher occurrence in a psychiatric population. Bipolar disorder (BD) is a severe mental 
illness characterized by shifts in mood and activity. The BD syndrome also involves 
heterogeneous symptomatology, including cognitive dysfunctions and impairments of the 
autonomic nervous system. Sleep abnormalities are frequently associated with BD and 
are often a good predictor of a mood swing. Preservation of stable sleep–wake cycles is 
therefore a key to the maintenance of stability in BD, indicating the crucial role of circadian 
rhythms in this syndrome. The symptom most widespread in BD is insomnia, followed 
by excessive daytime sleepiness, nightmares, difficulty falling asleep or maintaining sleep, 
poor sleep quality, sleep talking, sleep walking, and obstructive sleep apnea. Alterations 
in the structure or duration of sleep are reported in all phases of BD. Understanding the 
role of neuroglia in BD and in various aspects of sleep is in nascent state. Contributions of 
the different types of glial cells to BD and sleep abnormalities are discussed in this paper.

Keywords: astroglia, microglia, oligodendroglia, bipolar disorder, depressive behavior

INTRODUCTION

Bipolar disorder (BD) is a recurrent disorder that affects in excess of 1% of the world population 
and usually has its onset in young age. The resulting cognitive deficits, the high risk of suicide, and 
the occurrence of severe psychiatric and medical comorbidities all make BD one of the major causes 
of mortality and disability worldwide (1). The concept of BD was introduced at the end of the 19th 
century by Emil Kraepelin (2) who referred to this disorder as “manic depressive insanity.” About 70 
years later, the term “bipolar” was proposed to indicate the condition in which both depression and 
mania, the opposite poles of mood, alternate in the course of the illness (3). In modern psychiatry, 
BD is conceptualized as a cyclical mood disorder involving episodes of mania, hypomania, and 
alternating or intertwining episodes of depression. The last edition of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5) categorizes clinical features of BD according to severity 
(4). Classical BD type I is identified by the occurrence of major depression and full-blown manic 
episodes, whereas in BD type II, depression is more prominent, with interspersed episodes of less 
severe manic symptoms, classified as hypomanic episodes. However, despite this general description, 
the clinical presentation of BD is polymorphic with regard to symptomatology, progression, efficacy 
of therapies, and functional outcome. Consequently, the DSM-5 introduces additional specifics for 
diagnosis, such as BD “with mixed features,” or “with rapid cycling,” or “with melancholic features,” 
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or “with mood congruent or incongruent psychotic features,” to 
mention only a few. Far from being a discrete diagnostic entity, 
there is increasing recognition of a spectrum of BDs that ranges 
from marked and severe mood disturbance into milder mood 
variations (5). In this context, “cyclothymia” is the term assigned 
to recurrent hypomanic episodes and subclinical episodes of 
depression. It represents a subsyndromal condition, although 
mood disturbance is a continuing problem and interferes with 
everyday functioning (5). Moreover, unlike previous versions that 
included BD along with all other mood disorders, DSM-5 now 
assigns a separate chapter to BD and places it between depressive 
disorders and the spectrum of schizophrenia and other psychotic 
disorders. The rationale for this new diagnostic taxonomy stems 
from the assumption that BD could be considered as a bridge 
that, in terms of genetics, familiarity, and clinical picture, holds 
together the other two pathologies, sharing some clinical aspects 
of both.

Despite numerous studies performed in recent decades, little 
is known about the etiopathogenetic mechanisms responsible 
for the BD. The most recent research is focusing on the possible 
biologic mechanisms underlying the disorder, including genetic 
components, neurochemical abnormalities, and morphostructural 
brain differences, along with psychosocial factors, such as life 
experience and social environment context (6). Hitherto, there is 
no sufficient explanation to account for the pathobiology of such 
a multiform condition while the disease heterogeneity prompts us 
to contemplate multifactorial genesis. Indeed, no single paradigm 
can explain the occurrence and the variability in course and 
severity of manic-depressive disorder. Because the key phenotype 
of BD is a biphasic dysregulation in mood, behavior and sleep 
remain of great interest and could help expand the understanding 
of pathogenic mechanisms.

Sleep has a critical significance in the regulation of mood, and 
sleep disturbances can be seen in BD primarily or because of BD 
itself (7). These alterations have been linked to a lower quality of 
life, suicide attempts, poorer clinical and cognitive functioning, 
and higher relapse rates of mood episodes (8).

SLEEP DISORDERS AND BIPOLAR 
DISORDER: EPIDEMIOLOGY

The “sleep disorders” are defined as every significant alteration 
of quality of sleep, timing, and quantity, with different adverse 
impacts on function and quality of life (9). Sleep disturbances 
are very common in the general population (10). The prevalence 
of symptoms of sleep disorders range between 41% and 52% 
worldwide, with the most widespread symptoms being insomnia, 
followed by excessive daytime sleepiness, nightmares, difficulty 
falling asleep or maintaining sleep, poor sleep quality, sleep 
talking, sleep walking, and obstructive sleep apnea (11).

Sleep disorders also have a high prevalence in the psychiatric 
population. Furthermore, sleep disturbances exert a negative 
impact on the course and treatment of every psychiatric illness, 
and aberrant sleep represents a core symptom of BD. For example, 
23% to 78% of patients with BD have reported symptoms of 
hypersomnia (10). The circadian rhythm hypothesis of BD 

postulates that variability of the circadian rhythms represents a 
critical step in BD evolution, whereas disturbances in circadian 
rhythms are considered a core element for the onset and progress 
of BD (12, 13). It is universally acknowledged that the increased 
risk of suicidal ideation and manic switch is linked to insomnia 
(14, 15).

Sleep disturbances are frequent in BD patients in different 
phases of illness, including the euthymic state (16) and 
remission (17). These sleep aberrations are represented not 
only by insomnia but also by sleep–wake rhythm disorders, 
especially delayed sleep–wake phase disorders (18–20) albeit the 
disturbance pattern can change with the specific mood phase. 
During the manic state, most patients (66–99%) experience a 
reduced need for sleep (21–23) and longer sleep onset latency 
(7), and vice versa sleep deprivation is well known as a trigger 
factor for manic episodes (24). Likewise, in the depressive state, 
insomnia (40–100%) and hypersomnia (23–78%) are commonly 
observed (25–27). A prevalence of 32.4% of circadian rhythm 
sleep–wake disorders (CRSWD) was found in a sample of 127 
patients affected by BD type I or II, whereas younger onset age of 
BD and family history of suicide were associated with CRSWD 
in BD patients (28). Meta-analyses of trials conducted on remitted 
BD patients demonstrated prolonged total sleep time, increased 
awakenings after sleep onset, greater variability of sleep–wake 
variables, and reduced sleep efficiency (16, 29).

Overall, all kinds of sleep disorders and parasomnias are 
very common especially in youth patients with BD (30). Thus, 
compared to the general population, youth with BD exhibit lower 
sleep efficiency, longer slow wave sleep, and reduced REM sleep, 
features that could affect the genesis and prognosis of the disorder 
(7, 31). Sleep disturbances may also be used as predictors of the 
onset of BD in a subset of high-risk young subjects (32).

CIRCADIAN RHYTHMS AND BIPOLAR 
DISORDER

Several types of rhythms rule the human body. Based on the 
approximate duration, these rhythms can be classified as circadian 
(about of 24 h), infradian (of longer duration), and ultradian (of 
shorter length). Temporal organization of physiological, cellular, 
organ, biochemical, and behavioral processes is controlled by 
circadian clocks (33).

Endogenously generated circadian rhythms are tuned by 
and adapted to the environment so that the body is able to 
synchronize the internal time with the geophysical time. The 
clock system captures exogenous time signals, called “zeitgebers,” 
which include the day/night (or light/dark) cycle, temperature, 
and food intake (33). Environmental information is processed 
by a central clock, which is located in the anterior region of the 
hypothalamus, in the suprachiasmatic nuclei (SCN) (34). The 
central clock receives light and dark information from the visual 
input through the retino-hypothalamic tract; increased levels of 
light elevate alertness whereas decreased levels of light reduce sleep 
latency (35, 36). The processed information is transmitted to the 
peripheral clocks and to other clocks in the brain (located in other 
hypothalamic nuclei, thalamus, amygdala) to synchronize all 
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individual endogenous rhythms (33, 37). The stable relationship 
between internal rhythms and the external environment is 
ensured by exposure to a normal light–dark schedule (Figure 1) 
(36). Lack of coordination between the endogenous circadian 
system and the sleep/wake cycle is a critical factor in the clinical 
status of illness associated to the disruption of the circadian 
timing of sleep and the alteration levels of alertness, vigilance, and 
performance (36, 38). In pathological conditions, the SCN and 
peripheral clocks lose their normal phase relationship, and thus, 
a state of internal desynchronization develops that, if sustained, 
may predispose individuals to a disease (36). The SCN received 
multiple feedbacks from the periphery that include information 
regarding metabolic status and the levels of activity (39).

Various pathological conditions are associated with sleep 
and circadian disturbances, including allergies, hypothyroidism 
and hyperthyroidism, coronary artery disease, congestive heart 
failure, diabetes, arthritis, asthma, gastroesophageal reflux 
disease, and chronic pain (40). Disorderly circadian system 
contributes to the etiology and progression of major psychiatric 
disorders (38, 41, 42). About three-quarters of individuals with 
delayed sleep phase syndrome have a past or current history 
of depression, whereas depression severity correlates with 
circadian misalignment (43). Patients with different psychiatric 
conditions, such as anxiety disorders and schizophrenia, often 
show circadian deregulation contributing to major functional 
impairments (44).

Sleep disturbances are common in BD with a great variability in 
sleep duration (45). The decreased need for sleep predicts the onset 
of a manic or hypomanic episode the following day (46), whereas 
sleep extension occurs frequently in the depressive episode (13, 16, 
47, 48). The disruption in sleep–awake cycle tends to precipitate 
or exacerbate mood episodes (49), and they are risk factors for the 
recurrence of a mood episode (Figure 2) (50). Sleep deprivation 
was also found to induce manic episodes in animal BD models 
(51, 52). Loss of sleep confers a poor prognosis, increasing the risk 
of suicide in patients with a suicide attempt history (53). Even in 
euthymia, sleep alterations occur in BD patients (16). Given all 
this evidence and based on the rhythmic nature of BD, it has been 
suggested that the endogenous circadian system may play a role in 
BD etiology, clinical manifestations, and outcome (42, 54).

The activity of a group of clock genes governs the generation 
of circadian rhythms. There are molecular positive and negative 
transcriptional/translational feedback loops that drive the 
expression of different genes to stabilize 24-h periodicity (55). 
Several of these clock genes have been linked directly to the 
abnormal sleep/circadian phenotypes (36). Mutations of any 
of these circadian genes can potentially have an impact on the 
circadian clock and thus subtly or dramatically alter sleep, mood, 
or behavior in ways that contribute to physical and mental 
illness, and indeed many circadian genes have been associated 
with BD (56). The strongest evidence for genetic abnormalities is 
associated with polymorphisms of clock genes and an increased 

FIGURE 1 | Circadian rhythms. The clock system captures exogenous “zeitgebers” (light/dark cycle, temperature, exercise, food intake) and triggers the 
central clock in the suprachiasmatic nucleus (SCN) of the hypothalamus through the retino-hypothalamic tract. The activity the group of clock genes governs the 
generation of circadian rhythms. The genes CLOCK and ARNTL encode the transcription factors CLOCK and ARNTL, which together activate the transcription 
of Per, Cry, RORα, and REV-ERBα genes. The proteins PER1, PER2, PER3, CRY 1, and CRY 2 combine to inhibit their own transcription, whereas RORα and 
REV-ERBα act on ARNTL to activate and inhibit transcription, respectively. The processed information is transmitted to the peripheral clocks and to other clocks 
in the brain to stabilize 24-h periodicity. The stable relationship between internal rhythms and the external environment is needed to ensure the synchronization 
of individual endogenous rhythms.
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susceptibility to BD (57). In humans, genetic association studies 
of patients with BD have suggested that polymorphisms in the 
period gene (PER) is linked to specific phenotypes, such as a 
good lithium responder (36).

Particularly, a variant of PER3 gene has been linked to different 
chronotypes. The PER3 gene contains a variable number tandem 
repeat polymorphism, in which a 54-nucleotide coding-region 

segment is repeated four (PER4/4) or five (PER 5/5) times. The 
long allele variant of PER5/5 has been linked to extreme morning 
chronotypes, whereas the shorter allele PER4/4 is associated with 
extreme eveningness and delayed sleep phase syndrome (58). 
Incidentally, the early onset in BD is associated with the longer 
allele (PER5/5), whereas the later onset is associated with the 
shorter allele (PER4/4) (36) (Table 1).

FIGURE 2 | The disruption in sleep–awake cycle ends to precipitate or exacerbate mood episodes.

TABLE 1 | Main polymorphism of clock genes and their association in bipolar disorder.

Clock gene Polymorphism Association found in bipolar disorder References

PER3 rs57875989 Extreme morning and early onset Dijk and Archer (58)
Extreme eveningness and later onset

PER 2 rs934945 Diurnal preference for eveningness Song et al. (59)
CLOCK rs10462028 Association with BD aetiology Nievergelt et al. (60)

Dmitrzak-Weglarz et al. 
(61)
Soria et al. (62)

rs11932595 Sleep disorders Maciukiewicz et al. (63)
rs1801260 Early stress, history of suicide attempt and 

persistence of the idea of suicide
Benedetti et al. (64)
Bollettini et al. (65)

rs11932595 More depressive episode and appetite disorder Maciukiewicz et al. (63)
rs1801260 Influence on sleep pattern, daytime preference, 

age at onset, and response to treatment
Bollettini et al. (65)

ARNTL (BMAL1) rs2279287
rs1481892
rs1982350

Seasonal pattern
Higher susceptibility to the disease

Geoffroy et al. (66)
Rajendran and 
Janakarajan (67)

TIMELESS rs2291738
rs10876890

Suicide attempts
Insomnia

Pawlak et al. (68)

PPIEL* Lower methylation level Altered dopaminergic transmission or 
neuroendocrine system functions

Kuratomi et al. (69)

NR1D1 promoter rs2071427 Good response to treatment McCarthy et al. (70)
CRY1 rs8192440 Good response to treatment McCarthy et al. (70)
GSK-3β rs6438552 Robust and additive response to treatment if 

associated with NR1D1 (rs2071427)
Oliveira et al. (71)

ARNTL (BMAL1), Aryl hydrocarbon receptor nuclear translocator like protein-1; CRY 1-2, Cryptochrome circadian regulator; GSK-3β, Glycogen synthase kinase-3; NR1D1, Nuclear 
receptor subfamily 1 group D member 1; PER3, Period circadian regulator-3; PPIEL, E-like peptidilprolil isomerase; TIMELESS, Timeless Circadian Clock. *pseudogene.
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One of the consequences of sleep/circadian disruption is 
an abnormality in the stress axis, with particular emphasis on 
atypical neurotransmitter release. The hypercortisolemia can 
arise from a breakdown in glucocorticoid receptor-mediated 
negative feedback mechanisms in the hypothalamic–pituitary–
adrenal (HPA) axis (36). Circadian disturbances, such as a phase 
advance of the diurnal rhythm of plasma melatonin (72) and 
plasma cortisol (73), have been observed in BD, although these 
were not universally confirmed (74). In relation to oxidative 
stress, circadian rhythm disturbance was associated with 
increased lipid peroxidation in BD (75). Studying alteration of 
the wake–sleep rhythm may provide yet unknown insights into 
the pathophysiology of BD.

NEUROGLIA IN BIPOLAR DISORDER 
AND SLEEP DISORDERS

Neuroglia: An Overview
Neuroglia represent the homeostatic and defensive arm of 
the nervous system; neuroglial cells of the central nervous 
system (CNS) are classified into astrocytes, microglia, and 
oligodendrocytes and their precursors, also known as NG2 glia 
(76). The functions of neuroglia are diverse; these nonexcitable 
cells are indispensable companions of neurons, supporting 
them in physiology and protecting them against pathological 
lesions. Astrocytes are the main homeostatic cells of the CNS, 
which control the homeostasis of the nerve tissue at all level 
of organization from molecular to organ (77, 78). Astroglial 
perisynaptic processes cover synaptic contacts and form 
synaptic cradle, which through various mechanisms control 
synaptogenesis, synaptic maturation, synaptic maintenance, 
and synaptic extinction (79). Microglial cells invade the neural 
tube early in development and are fundamental for early shaping 
of neuronal connections by synaptic stripping (80). Finally, 
oligodendrocytes support and protect axons and provide for gray 
and white matter myelination, which supports brain connectome 
(81). The fundamental role of neuroglia in neuropathology has 
been considered by many prominent neuroanatomists (including 
Santiago Ramon y Cajal, Alois Alzheimer, Nicolas Achucarro, 
and Franz Nissl, to name a few) a century ago. The recent decade 
has witnessed the revival of interest to pathological potential 
of neuroglia, challenging universally accepted neurono-centric 
neuropathological doctrine (82–86).

Pathological Classifications of Neuroglia
Conceptually, neuroglial cells contribute to all neurological 
diseases either as primary elements driving pathology or by 
responding to lesions through an evolutionary conserved 
defensive program of reactive gliosis. Neuroglial changes in 
pathological conditions are context- and disease-specific, are 
complex, and evolve through the stages of neuropathology. 
Astrogliopathology in particular is subclassified (86) into 
i)  reactive astrogliosis, which represents a graded response to 
various types of lesions.Reactive astrogliosis is fundamentally 
neuroprotective and produces a wide spectrum of reactive 

phenotypes that are disease- and disease stage-specific (84, 
86–90); ii) pathological remodeling of astrocytes—when 
astrocytes acquire new properties driving neuropathology, 
Alexander disease (91) being a signal example; and iii) astroglial 
atrophy and loss of function. Similarly, microglial cells in 
pathology assume a multitude of phenotypes with various 
degrees of activation with both neuroprotective and neurotoxic 
functions. In chronic pathologies, microglial cells often undergo 
degeneration that limits their defensive capabilities (92, 93) or 
pathological remodeling (94). Pathological classification of 
oligodendrocytes is yet to be produced.

Neuroglial Abnormalities in Psychiatric 
Disorders
Neuroglial abnormalities are widely manifested in all major 
psychiatric diseases; and they are particularly prominent in 
bipolar disease and in major depression (95–98). In contrast to 
many other neuropathologies, there are no signs of astroglial 
reactivity in BD (as well as in other major psychiatric diseases); 
instead, astrocytes demonstrate prominent atrophy and asthenia, 
which most likely is associated with loss of homeostatic and 
supportive functions that in turn underlie failures in information 
processing and neurotransmission. Already in early stereological 
studies using Nissl staining (that revealed a total glial population), 
a prominent decrease in the overall number of neuroglial cells has 
been described in human postmortem samples from both major 
depressive disorder and BD (99). Subsequent morphometric 
studies have confirmed a significant reduction in glial numbers 
(up to 20–40%) in relevant brain regions (including the prefrontal 
cortex, orbitofrontal cortex, subgenual cortex, anterior cingulate 
cortex, and amygdala) in BD and major depression (95, 100–104). 
The expression of glial fibrillary acidic protein (GFAP), the 
marker of astroglial reactivity, which reveals the cytoskeleton of 
astrocytes, is generally suppressed in brain samples from young or 
adult subjects with depression and BD (105–107). In older subjects, 
GFAP expression was sometimes increased, which reflects general 
age-dependent changes or neuroinflammatory changes (105). 
Very significant (up to 95%) decrease in GFAP expression and 
GFAP-positive astroglial profiles have been recently detected 
in the white matter of the ventral prefrontal cortex of subjects 
with major depression (108). Impairment of astroglial networks 
and aberrant signaling in astroglial syncytia were evidenced 
by a significant decrease in the expression of major astroglial 
connexins XC30 and Cx 43 in the prefrontal cortex of depression-
associated suicide victims (109). Major depression (but not BD) 
was found to be associated with a significant decrease in the 
density of astrocytes expressing glutamine syntethase and with 
downregulation of astroglial expression of glutamate transporter 
GLT-1, suggesting thus aberrant operation of glutamine–
glutamate shuttle (110, 111). Likewise, the population of S100B-
positive astrocytes was decreased in hippocampi of patients with 
BD and major depression (112).

Similar reduction in glial numbers and GFAP expression and 
astroglial morphological profiles have been detected in animal 
models of depressive behavior. These models are often based 
on exposure of animals to various types of chronic stress that 
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instigate depressive-like behavior manifested by anhedonia or 
aberrant social communications. The density of GFAP-positive 
astrocytes and morphological astroglial profiles were reduced 
after the stress of separating juveniles from their family (113), 
chronic social defeat (114), or chronic mild stress (115), which 
induces prominent morphological atrophy of astroglial cells 
(116). Astroglial atrophy in chronic stress animal models may 
be associated with aberrant glycogen processing and decreased 
glycogen content (117). Significant astroglial atrophy was also 
observed in the repeated corticosterone injection-induced mouse 
depression model (118). Likewise, the density of astrocytes was 
significantly reduced in the prefrontal cortex, anterior cingulate 
cortex, amygdala, and hippocampus of Wistar–Kyoto strain of 
rats susceptible to depressive-like behavior (119). Chronic stress-
induced astroglial asthenia and loss of function, as well as depressive 
behavior, were reversed by treating animals with riluzole, the 
drug that limits glutamate excitotoxicity (115). Selective ablation 
of astrocytes after injection of L-α aminoadipic acid into either 
rodent prefrontal cortex or prelimbic cortex triggered depressive-
like behavior (120, 121); injection of neuronal toxin ibotenate had 
no such an effect (120). Emergence of depressive phenotype is 
associated with astroglia-specific decrease of expression of several 
genes associated with signaling systems, including serotonin 
5-HT2B receptors, cytosolic phospholipase 2α, ionotropic kainate 
receptor GluK2, and adenosine deaminase acting on RNA 2 
(ADAR2); treatment with fluoxetine restored altered expression 
(122, 123). The chronic stress-induced depressive phenotypes 
were also linked to a downregulation of astroglial expression 
of multiple endocrine neoplasia type 1 gene encoding protein 
menin; the efficiency in menin was associated with increased 
activation of NF-κB activation and elevated production of IL-1β 
(124). Depression after traumatic brain injury was associated with 
a decrease in astroglial expression of glutamate transporters (125), 
this being another example of astroglial asthenia with loss of 
function. All in all, these data underlie the hypothesis of the role 
of astroglial asthenia in the pathophysiology of mood disorders, 
including BD (97, 126, 127).

Astrocytes are recognized as therapeutic targets for the 
treatment of psychiatric disorders and, in particular, depression 
and BD (128–130). Treatment of animals subjected to psychosocial 
stress prevented the loss of astrocytes (114), whereas riluzole (the 
drug that limits glutamate excitotoxicity) similarly prevented 
loss of astrocytes in animals subjected to mild chronic stress 
(115). Even electroconvulsive therapy (ECT) has been shown to 
increase the expression of GFAP in the piriform cortex, amygdala, 
and hippocampus (131). Recent findings identified astrocytes 
as primary targets for transcranial direct current stimulation 
used for the management of depression (132). Moreover, it has 
been documented that two classical mood stabilizers used as 
first-line therapy for BD, lithium (Li+) and valproic acid (VPA), 
have a neuroprotective role reducing neuroinflammation 
through modulating the activation of astrocytes (133). Chronic 
treatments of astrocytes in vitro with Li+, VPA, and another classic 
antidepressant, carbamazepine (CBZ), suppress glutamate release, 
thus contributing to alleviation of excitotoxicity (134). Long-lasting 
exposure of astrocytes to antidepressant fluoxetine, a selective 
serotonin reuptake inhibitor, increased cytosolic pH from 7.18 to 

7.58 by stimulating sodium-proton transporter 1, thus affecting 
brain pH homeostasis (135). Fluoxetine, as well as Li+, VPA, and 
CBZ, also affects astroglial glycogen content in a concentration-
dependent manner, increasing glycogen at low concentrations and 
decreasing at high concentrations—this action being mediated by 
caveoline-1 (Cav-1) - phosphatase and tensin homologue (PTEN) 
- phosphoinositide 3-kinase (PI3K) - glycogen synthase kinase 3 
(GSK-3β) cascade (Figure 3) (136, 137). These multiple actions 
of fluoxetine on astrocytes are mediated through direct activation 
of serotonin 5-HT2B receptors and transactivation of epidermal 
growth factor receptor (EGFR) (138, 139). Chronic treatment 
with antidepressants, as well as stimulation of adrenoceptors, 
was also reported to stimulate astroglial secretion of brain-
derived neurotrophic factor (BDNF), which may boost synaptic 
transmission and provide neuroprotection (140, 141).

Analysis of lipopolysaccharide (LPS)-induced inflammation 
in rat primary mixed (80% astrocytes and 15% microglia) glial 
cultures found that Li+ decreases the secretion of TNF-α, IL1-β, 
prostaglandin E2, and nitric oxide (142). Pretreatment of LPS-
stimulated microglial cells with Li+ significantly inhibited LPS-
induced microglial activation and proinflammatory cytokine 
production (143). Similarly, VPA modulates microglial response 
to inflammatory insults mediated by LPS and may affect the 
synaptic excitatory inhibitory balance through its effect on 
astrocytes in rats (144, 145).

ASTROCYTES AND SLEEP REGULATION

The role of astroglia in the regulation of sleep has been suggested 
more than a century ago by Santiago Ramon y Cajal, who suggested 
that astroglial processes, by entering the synaptic cleft, may slow 
down communication in neuronal networks, thus instigating 
sleep (146); a very similar mechanism was also considered by 
Carl-Ludwig Schleich (147) as a basis for general anesthesia.

Astrocytes of the suprachiasmatic nucleus do contain clock 
genes and do produce circadian rhythms of GFAP expression; 
astrocytes, in addition, may contribute to timekeeping through 
regulating glutamate levels (148). Nonetheless, it seems that the 
major role of astrocytes is the regulation of sleep homeostasis. 
The latter refers to a regulation mechanism that increases urge 
to sleep proportionally to the time spent awake (149). Sleep 
homeostasis is regulated by accumulation of adenosine in the 
brain during wakefulness (150), and the data accumulated 
demonstrated that the main source for adenosine in the 
physiological conditions is associated with astrocytes (151). 
Another important role of astroglia in sleep is associated with 
cleansing the brain parenchyma (152). It is, therefore, plausible 
to speculate that astroglial asthenia observed in mood disorders 
and in BD impairs astroglial sleep-regulating capabilities.

SLEEP, ASTROGLIA, AND BIPOLAR 
DISORDER

As has been mentioned above, sleep plays a key role in the 
clinical manifestations of BD. Alterations in the structure or 
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duration of sleep are reported in all phases of the disorder—
in the manic, depressive, and euthymic phases (65). During 
manic or hypomanic episodes, there is a reduced need for sleep, 
whereas during depressive episodes, there may be difficulty in 
achieving adequate quality or amount of sleep or, alternatively, 
patients experience hypersomnia (12, 153). Sleep abnormalities 
are strongly associated with immune dysfunction. Aberrant 
sleep is associated with increased levels of proinflammatory 
cytokines with a bidirectional causal association identified (154, 
155). As such, interest has grown in immune dysfunction as 
a potential link that underwent two-way interaction between 
sleep dysfunction and BD (156, 157). Both postmortem and in 
vivo studies showed that microglial activation is involved in the 
neurobiology of BD (158, 159). These findings agree with the 

presence of peripheral inflammatory markers and the blood–
brain barrier disruption revealed by meta-analyses. If as it seems it 
is true that modifications of inflammatory markers and microglial 
function may play an important role in progression of BD, several 
drugs used in the treatment of this disorder could have effects on 
glial cells, and future studies may use these cells as targets for the 
development of new treatments in this way (160, 161).

CONCLUSION

Sleep disturbances are common in patients with BD; these sleep 
alterations are present even during euthymia, as insomnia, 
increased sleep latency, and variability in sleep hours. Recent 

FIGURE 3 | Schematic illustration of biphasic concentration-dependent regulation of Cav-1 gene expression and GSK-3β activity by fluoxetine in astrocytes. Acute 
treatment with fluoxetine stimulates 5-HT2B receptors, induces transactivation of EGF receptors and activates its MAPK/ERK and PI3K/AKT signal pathways that, 
in turn, regulate gene expression in astrocytes. Chronic treatment with fluoxetine at low concentrations (green triangle) decreases Cav-1 gene expression, which 
decreases membrane content of PTEN, induces dephosphorylation and inhibition of PI3K and elevates GSK-3β phosphorylation thus suppressing its activity. At higher 
concentrations (red triangle) fluoxetine increases Cav-1 gene expression that acts on PTEN/PI3K/AKT/GSK-3β in an inverse fashion. Reproduced from Ref. (139).
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research has sought to identify the biological markers that 
underlie sleep disorders in patients with BD. The focus of 
the latest studies has highlighted the role for neuroglial cells. 
Astrocytes, the primary homeostatic cells of the CNS, undergo 
atrophy, asthenia, and loss in BD-specific brain regions, and 
deficiency in glial support and neuroprotection may have a key 
role to the pathophysiology of BD (84, 160), even though the 
precise mechanisms need to be further explored and clarified. 
Several drugs used for the treatment of BD have specific effects 
on glial cells indicating neuroglia as a target for the development 
of new treatments. Further research should concentrate 
on investigations of glial cells in vivo and in “humanized” 
preparations to increase our understanding of the role of glia 
in sleep regulation in people with BD. Additional systematic 
studies are also needed to highlight the importance of sleep 

disorders in patients with BD to offer a tailor-made treatment 
for these patients.
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