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Abstract 
 
Astrocytes, a class of morphologically and functionally diverse primary homeostatic 
neuroglia, are key keepers of neural tissue homeostasis and fundamental contributors 
to brain defence in pathological contexts. Failure of astroglial support and defence 
facilitate the evolution of neurological diseases, which often results in aberrant 
synaptic transmission, neurodegeneration, and death of neurones. 
disease (AD) astrocytes undergo complex and multifaceted metamorphoses ranging 
from atrophy with loss of function to reactive astrogliosis with hypertrophy. 
Astroglial asthenia underlies reduced homeostatic support and neuroprotection that 
may account for impaired synaptic transmission and neuronal demise. Reactive 
astrogliosis which mainly develops in astrocytes associated with senile plaque is 
prominent at the early to moderate stages of AD manifested by mild cognitive 
impairment; down-regulation of astrogliosis (reflecting astroglial paralysis) is 
associated with late stages of the disease characterised by severe dementia. Cell-
specific therapies aimed at boosting astroglial supportive and defensive capabilities 
and preventing astroglial paralysis may offer new directions in preventing, arresting 
or even curing AD-linked neurodegeneration.   
    
Keywords: Astrocytes; Astroglial atrophy; Astrogliosis; 
Neurological diseases; Neurodegeneration  
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The epidemic of neurodegenerative diseases 
 

Robert Katzman in 1976 
[63] spreads through the aging world population with little prospective for therapeutic 
containment. Despite remarkable progress in understanding the biochemistry and 
genetics of neurodegenerative processes the genesis and evolution of the majority of 
sporadic cases remain obscure, whereas pharmacological options remain symptomatic 
[122]. The ultimate outcome of neurodegeneration is neural cell death, brain atrophy 
and loss of brain function. A direct link between the decrease in the size (i.e., atrophy) 
of the brain tissue and decrease in cognitive capabilities (i.e., dementia) was 
suggested by Thomas de Willis at the end of 17th century [156]. Aberrant processing 
of proteins lies at the core of neurodegeneration; compromised synthesis/degradation 
or clearance of proteins results in accumulation of intra- 
proteins [55,118]. Despite the multitude of specific pathological pathways 
idiosyncratic for certain disease (e.g. -amyloid accumulation and abnormal tau 
phosphorylation in Alzheim  (AD), -synuclein accumulation in 

disease) all neurodegenerative processes share a common pathological phenotype - 
they all trigger cell death and destroy connectivity in the neural networks.  
 
Extracellular depositions of -amyloid and intracellular accumulation of 
misphosphorylated tau protein (both processes are, most likely, interrelated with 
indications for tau pathology being driven by -amyloid accumulation) are common 
histological denominators of the AD brains. Occurrence of these lesions, however, 
varies and there is no obvious correlation between their densities and the severity of 
dementia. The concept that tissue depositions of pathological material are causative 
for neurodegeneration was proposed by Oskar Fischer in 1907 [39,40]. The specific 
role for -amyloid in the AD (the amyloid cascade hypothesis), remains, however, 
disputed [61,87,23]. Amyloid plaques occur in several neurological diseases; they 
were initially discovered by Paul Blocq and Gheorghe Marinescu in post-mortem 
brains from elderly patients with chronic epilepsy [11]; amyloid depositions populate 
posttraumatic nervous tissues, tissues infected with prions and brains affected by 

 pathology is characteristic of 
fronto-temporal dementia and prion infection. In recent years the new concept of tau 
astrogliopathy had emerged, after the discovery of multiple pathological phenotypes 
of astrocytes infested with tau and related to specific forms of age-associated 
dementia [71]. Even acute sleep deprivation for a single night causes accumulation of 

-amyloid, which is seemingly unrelated to any predisposition to AD [125]. 
 
It is, however, almost beyond dispute that the gross histopathological signs of AD 
became apparent at the late stages of the disease. The AD begins with prolonged (10 - 
15 years) asymptomatic phase, when the overall cognitive function remains (almost) 
intact, although pathological changes begin to accumulate. It is most probable that 
from the very beginning AD-pathology affects synaptic transmission. There is a close 
correlation between synaptic alterations and cognitive impairments in AD patients, 
and these synaptic alterations are often considered to occur at the very early (pre-
plaque) stages of the disease [31,135,55,89]. Nervous tissue, affected by AD is 
characterised by compromised synaptic connectivity and neuronal hyperexcitability, 
which are indicative of dyshomeostasis of ions and neurotransmitters [64,84,42,19]. 
The brain unwiring in AD is also manifested in white matter damage, which is 
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observed from the early stages and correlates with cognitive deficit [14]. Finally, the 
AD alters metabolic homeostasis of the nervous system; region-specific 
hypometabolism underlies AD-specific diagnostic phenotype used for FDG-PET 
diagnostics [59]. All these features indicate that AD (similarly to other 
neurodegenerative diseases) is a chronic homeostatic failure of the brain tissue, 
which, naturally, has to be associated with the failure of the homeostatic neuroglia.    
 
Astrocytes provide homeostatic support and neuroprotection 
 
The human brain evolved for over ~500 million years from the diffuse nervous 
system that appeared in the most primitive multicellular organisms. Evolution of 
nervous system progressed through an increase in the complexity of nervous tissue 
with a parallel increase in heterogeneity and specialisation of neural cells. Emergence 
of the central nervous system (CNS) with intricate synaptic web required 
sophisticated homeostatic support and thus much specialisation has occurred among 
neural cells, which were fundamentally divided into neurones, representing the 
executive arm and neuroglia, representing the housekeeping branch [111,143]. This 
division of responsibilities reflected the perfection of fast neuronal signalling (action 
potentials and synaptic transmission) that requires much energy and high level of 
protein expression with an inevitable loss of neuronal abilities to control tissue 
homeostasis. This task was transferred to neuroglia, which indeed is responsible for 
each and every homeostatic cascade operating in the nervous system. Conceptually, 
the term neuroglia covers cells responsible for homeostasis and defence of neural 
tissue. Neuroglia include several types of heterogeneous (both morphologically and 
functionally) cells of neural (astroglia, oligodendroglia, radial glia, NG2 cells, 
peripheral glia and enteric glia) and non-neural (microglia) origin (for overview and 
references see [67,139,48,144,147,66,129,69]).     
 
The homeostasis of the CNS is mainly controlled by astrocytes, which are arguably 
the most diverse glial cells in the brain and in the spinal cord (Fig. 1). Astrocytes are 
defined as a class of neural cells, which sustain homeostasis and provide for 
neuroprotection and defence of the CNS tissue [144]. Astroglial cells account 
(depending on the brain region) for 20 - 40% of all neuroglial cells [140]. Astrocytes 
demonstrate remarkable adaptive plasticity that defines the functional maintenance of 
the CNS in development and ageing. Astrocytes maintain homeostasis of the CNS at 
all levels of organisation, from molecular to organ. Astroglia contribute to ionostasis 
of the CNS tissue by regulating fluxes of major ions; astrocytes control the turnover 
of major neurotransmitters through dedicated systems responsible for their uptake and 
for release of neurotransmitter precursors. Protoplasmic astrocytes divide (through the 

 single astrocyte (which overlaps in adult healthy 
brain with neighbouring astrocytes only at the level of very distal processes) 
integrates all neuronal elements and establishes direct link (through perivascular 
process and the endfoot) with capillaries [57,56,20,94]. The morphology of astrocytic 
processes defines their function. The processes can be classified into (i) astrocytic 
branches of several orders that contain organelles including endoplasmic reticulum 
Ca2+ stores, (ii) organelle-free perisynaptic leaflets that form astroglial cradle and (iii) 
endfeet tiling the blood vessels [68,101,144]. Astrocytic branches are responsible for 
amplification and propagation of Ca2+ signals within an astrocyte and possibly beyond 
[123]. Astrocytic perisynaptic leaflets are rich in glutamate transporters as well as 
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other homeostatic transporters and selectively approach dendritic spines, providing 
less coverage of presynaptic boutons and little coverage of dendritic shaft [44]. 
Endfeet intimately interact with cells of blood vessels supporting the blood-brain-
barrier [130]. Using perivascular processes and endfeet astrocytes adjust local blood 
flow to the level of neuronal activity [90,165,131,38]. Astrocytes also act as an energy 
source (being the main if not the only producer of glycogen in the CNS) by providing 
neurones with lactate in an activity-dependent manner [104,80]. Furthermore, 
astrocytes synthesize glutamate de novo and supply neurones with glutamine, which is 
the main precursor for glutamate and GABA [54]. Astroglial leaflets cover central 
synapses by a synaptic cradle and control neuronal excitability and synaptic 
transmission in many ways from assisting synaptogenesis and synaptic maintenance 
to regulating extracellular concentration of ions and major neurotransmitters (such as 
glutamate, GABA monoamines and adenosine) [33,12,142,95,91]. Astrocytes are 
central elements for cellular homeostasis of the CNS being responsible for embryonic 
neurogenesis (which relies on radial glia) and for neurogenesis in the adult CNS (that 
occurs from radial astrocytes of the neurogenic niches, [36,13]). Finally, astrocytes 
are fundamental to brain defence through evolutionary conserved and complex 
programmes controlling reactive astrogliosis launched in response to 
polyaethiological insults [103,128,151,102].  
 
Principles and classification of astrogliopathology 
 
Neurological disorders are, in essence, the failures of homeostasis, and neuroglia, 
being the homeostatic neural cells, are central to all types of neuropathologies. 
Whatever the aetiology, neurological diseases are, to a great extent, pathologies of 
neuroglia, the compromised function of which determines the survival or death of 
neurones thus defining the progression and the outcome of neurological diseases. The 
central role for neuroglia in neuropathology begun to be appreciated only recently 
when numerous experimental finding questioned the neuronocentric views 
[103,151,3,150,30,146,17,163,45,16,137,113]. 
 
The pathological potential of neuroglia was contemplated already by Rudolf Virchow 
who prophesied that stitial tissue of the brain and spinal marrow (i.e. 
neuroglia - authors) [153]. A 
fundamental contribution of neuroglia to neuropathology was also considered by 
Alois Alzheimer, Franz Nissl, Santiago Ramon-y-Cajal, Rio-Hortega and William 
Lloyd Andriezen, the latter reflecting that a

 [2]. It is now the fact universally acknowledged that many 
neurological diseases are associated with the astrocytic hypertrophy and activation of 
microglia often referred to as reactive gliosis. For many years the reactive gliosis was 
considered as a general non-specific pathological reaction often regarded as a basis 
for neuroinflammation that is chiefly involved in exacerbating neuronal damage. This 
oversimplification is, however, very much detached from reality. The main function 
of neuroglia is the preservation of the nervous tissue, and as such multiple molecular 
cascades expressed in glia are genuinely neuroprotective. Astrocytes, for example, are 
primarily responsible for homeostasis of ions and neurotransmitters thus fencing 
against excitotoxic damage. Oligodendrocytes maintain axonal survival and the death 
of the former spells the imminent death on the latter. Microglia release multiple 
trophic factors ensuring neuronal survival. The reactive changes instigated by a brain 
lesion, represented by astrogliosis and microglial activation are therefore genuinely 
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survivalistic. These glial responses are complex and multistaged and are, as a rule, 
neuroprotective [103]. Being driven to an extreme by the severity of the insult, glial 
cells can assume the role of natural killer and contribute to the neural cell death, and 
yet even neurotoxicity of glia has, at its core, neuroprotective significance. Indeed, 
astroglial scar limits the area of damage and astrocytes and microglia surrounding the 
lesioned area through the releasing of neurotoxic factors rapidly exterminate 
pathologically affected cells thus contributing to the final clean-up (by phagocytic 
microglia and astrocytes [86,154]) and ultimate protection of the undamaged neural 
circuits lying outside of the damaged area. Finally, neuroglia is primarily responsible 
for the recovery of homeostasis in post-lesioned nervous tissue through promoting 
vascularization, reforming the blood-brain barrier, stimulating synaptogenesis and 
accomplishing re-myelination [128,151,1,18]. Conceptually, disruption of glial 
protection is fatal for the nervous system. All in all, neurones cannot function 
correctly or survive in the absence of glia, whereas glial cells can survive and operate 
in the presence of dead or dying neurones.  
 
Pathological metamorphoses of astrocytes are complex, disease- and disease-stage 
specific and may change substantially in the course of pathological evolution. 
Conceptually, astrogliopathological phenotypes (see Glossary) are classified into 
three major groups: (i) reactive astrogliosis (ii) astrodegeneration with astroglial 
atrophy and loss of function and (iii) pathological remodelling [103,151]. The latter 
two groups of the non-reactive pathological transformation of astrocytes can be 
summarily identified as astrocytopathies to distinguish from reactive astrogliosis [37]. 
Astrocytes in the CNS are organised in the forms of syncytia confined to specific 
anatomical structures [46,47]. Astroglial syncytia are formed by intercellular gap 
junctions, which are composed from connexons (astrocytes express connexins 43, 30 
and 26; with predominant presence of Cx43) permeable for ions and small (<1000 
Da) molecules. Gap junctions participate in regulation of astrocyte electric properties 
[79], redistribution of K+ ( K+ buffering - [155]), diffusional transport of 
glucose [116] and propagation of Ca2+ waves [123,148]. Pathological changes in 
astrocytes frequently affect gap junctional connectivity within astroglial networks; 
which may define various aspects of neuropathological progression, for example, in 
epilepsy [9,106] or neurodegeneration [162].  
 
******************* 
Glossary of astrogliopathology: 
 
Reactive astrogliosis, reactive astrocytes:  
There is no universally agreed definition of the reactive astrogliosis [34]. We define 
reactive astrogliosis as an evolutionary conserved defensive response of astrocytes to 
pathological lesions caused by endo- or exogeneous agents. Reactive astrogliosis 
leads to substantial changes in gene expression, resulting in a remodelling of 
astroglial morphology, biochemistry, and function, thus producing reactive astrocytes 
with multiple phenotypes. These reactive phenotypes are disease- and context- (for 
example ageing) specific, while reactive astrocytes could be either neuroprotective or 
neurotoxic, again depending on the pathology and severity of lesion. Morphology of 
reactive astrocytes is characterised by hypertrophy of somata and primary processes 
and significant up-regulation of intermediate filament proteins GFAP and vimentin 
(see [34,102,103,151] for further details). 
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Astroglial atrophy: 
Defined as decrease in surface area and volume of astroglial morphological profiles; 
astroglial atrophy is manifested in specific diminution of peripheral and perisynaptic 
processes, which decrease synaptic coverage and synaptic homeostatic support. 
Astrogl
epilepsy [106,164,152,93]. 
 
Loss of function:  
Decrease in expression or activity of astroglial homoeostatic molecules or pathways 
(for example decrease in glutamate transporters activity), which reduce glial 
homeostatic support this instigating or exacerbating neuropathology. 
 
Astroglial pathological remodelling: 
Development of specific astroglial phenotype, which drives neuropathology. 
Examples are expression of mutant sporadically mutated GFAP in Alexander disease, 
which affect development of white matter and causes severe leicomalacia [82] or 
changes in glutamate/ammonium handling in hepatic encephalopathy, which affects 
neurotransmission and neuronal excitability thus causing psychotic symptoms and 
ultimately brain oedema [146].  
 
 
********************************** 
 
Reactive astrogliosis is the most characterised response of astrocytes to pathological 
lesions [102]. Reactive astrogliosis can be defined as an evolutionary conserved 
defensive reprogramming of astroglia aimed at: (i) increased neuroprotection and 
trophic support of nervous tissue; (ii) isolation of the lesioned area; (iii) reconstruction 
of the damaged blood-brain barrier; and (iv) providing for post-lesion regeneration of 
brain circuits [102,103,128]. Astroglial reactivity is heterogeneous and disease-
specific; reactive phenotypes may demonstrate both neuroprotective and neurotoxic 
features [76], although generally suppression of astrogliotic response exacerbates 
neuropathology [103]. 
 
Pathological remodelling of astrocytes reflects the emergence of abnormal astroglial 
phenotypes which either cause or drive neuropathological changes. Examples of 
pathological remodelling of astrocytes include for example leukodystrophies, such as 
Alexander disease, megalencephalic leukoencephalopathy with subcortical cysts or 
vanishing white matter syndrome. In all these pathologies pathologically modified 
astrocytes trigger white matter lesions [74]. Pathological remodelling of astrocytes 
was suggested as a contributing factor to mesial temporal lobe epilepsy. In this 
condition astrocytes acquire aberrant morphology, decrease gap junctional coupling 
and reduce K+ buffering capability [9]. Yet another example of pathological 
remodelling of astrocytes is observed following infection with Toxoplasma gondii. 
Infiltration of astrocytes with T. gondii results in abnormal elevation of synthesis and 
release kynurenic acid that, through inhibition of NMDA and acetylcholine receptors, 
affects neurotransmission which may be linked to an increased risk of schizophrenia 
[120]. In AD astrocytes start to express GAD67 that also affects the balance of 
excitation and inhibition in the neuronal network [43,157]. 
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Astrodegeneration appears as a decrease in astroglial density, is often accompanied by 
morphological atrophy, and invariably is associated with a loss of function, i.e. in 
decreased homeostatic, supportive and neuroprotective capabilities, which all 
constitute astroglial asthenia. Astroglial atrophy and asthenia are observed in a wide 
range of neurological disorders including neuropsychiatric diseases, addictive 
disorders, epilepsy and neurodegeneration. Reduction of astroglial numbers, astroglial 
morphological atrophy with decreased expression of GFAP as well as deficient 
glutamate uptake are detected in major neuropsychiatric diseases such as bipolar 
disease, major depression and schizophrenia [28,29,83,92,108-110,149,119]. 
Deficient astroglial support leads to abnormal neurotransmission and oxidative or 
excitotoxic stress which contribute to psychotic symptomatology. Similar 
morphological atrophy of astrocytes associated with decreased expression of 
glutamate transporters and deficient glutamate uptake were identified in the nucleus 
accumbens of cocaine-addicted rats [121]. Significant atrophy of astrocytes which 
may underlie aberrant K+ buffering and glutamate homeostasis has been detected in 
experimental epilepsy [106]. Finally, as will be discussed below, astroglial atrophy is 
often seen in various neurodegenerative disorders.  
 
Astrocytic atrophy may have a complex nature and affect astrocytic branches, leaflets 
and endfeet differently. Since these astrocytic processes have distinct functions, the 
effect on the neuronal network will be different. Atrophy of branches arguably affects 
astroglial Ca2+ signalling possibly inducing further morphological changes [132]. 
Perisynaptic leaflets are highly plastic and their changes accompany (or even drive) 
synaptic plasticity [105]. Hence, changes in perisynaptic leaflets can potentially 
contribute to pathological processes. Finally, atrophy of endfeet can potentially 
damage the neuron-glia-vascular unit, and affect the blood-brain barrier thus 
promoting neurodegeneration [126,133,78]. 
 
Morphological atrophy and functional impairment of astrocytes in 
neurodegenerative disorders 
 
Degeneration of astroglia resulting in astroglial atrophy or death has been recently 
documented for several classes of neurological diseases associated with disruption in 
neural connectivity including excitotoxic neurodegeneration (Wernicke 
encephalopathy) chronic neurodegeneration (amyotrophic lateral sclerosis and 

disease, thalamic dementia, fronto-temporal dementia) and psychiatric 
disorders such as schizophrenia, bipolar disorder and major depression, which all 
affect cognition. These dystrophic changes in astroglia often precede neurological 
symptoms or are key pathogenic factors. 
 
In acute excitotoxic neurodegeneration of Wernicke type massive neuronal death 
results from functional astroglial degeneration manifested by down-regulation of 
expression of astroglial glutamate transporters. This compromises the ability of 
astrocytes to remove the excess of glutamate and to regulate glutamatergic 
transmission, which in turn results in severe excitotoxicity that underlies rapid 
development of severe dementia with prominent psychotic components [51,52].  
 
In amyotrophic lateral sclerosis (ALS) astroglial degeneration precedes the 
development of neuronal death and clinical symptoms in transgenic mice model of the 
disease, in which cells express ALS-associated mutant human gene for superoxide 
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dismutase 1 (hSOD1G93A). At the later stage of the disease neuronal death triggers 
reactive astrogliosis and yet atrophic astrocytes remain in the tissue [114,115,160,4]. 
Astrocytes selectively expressing SOD1 gene acquire vulnerability to glutamate 
excitotoxicity that may underlie their early degeneration. These degenerated 
astrocytes lose their ability to effectively control glutamate homeostasis through 
down-regulation of glutamate transporters expression that further exacerbates 
excitotoxicity and contributes to neuronal death [115]. Critically, specific silencing of 
SOD1 gene in astrocytes delays the progression of ALS symptoms in the mouse 
model [159].   
 
Dystrophic changes in astrocytes have been observed in several types of 
neurodegenereative pathologies including fronto-temporal dementia and Pick's 
disease, some studies mentioned the direct correlation between the degree of glial 
atrophy and the severity of dementia [15,65]. In Huntington disease functional astro-
degeneration is manifested by a decrease in expression of glutamate transporters and 
hence in exacerbated glutamate excitotoxicity [35]; similarly, astrocytes demonstrate 
deficits in K+ buffering [136]. In addition astrocytes in HD reduce production and 
release of glutathione and ascorbic acid that act as major scavengers of reactive 
oxygen species (ROS) in CNS; this further reduces astroglial neuroprotection.   
 

 
 
Astroglial changes in AD are highly heterogeneous in different brain regions and are 
represented by both astrogliosis with astroglial hypertrophy and astroglial atrophy 
(Table 1 and [3,141,145]). When analysing longitudinal changes in expression of 
GFAP, a classic marker for astrogliosis, in a triple transgenic mouse model of AD a 
decrease in the morphological presence of GFAP profiles and an overall decrease in 
GFAP expression was observed in early pre-plaque stages of the disease (Fig. 3 and 
[73,97,98,161]). This decrease in GFAP-positive astroglial profiles appear very early 
(at ~ 1 month of age) in the entorhinal cortex, somewhat later (~ 3 months of age) in 
the prefrontal cortex and even later (~ 9 - 12 months) in the hippocampus. 
Morphological atrophy of astrocytes was also confirmed when analysing profiles 
labelled with antibodies against glutamine synthetase and protein s100b [98,161]; this 
staining reveals full extent of the cells (in contrast to GFAP which stains only primary 
processes). Emergence of senile plaques triggers astrogliosis, which, however, 
similarly differs between brain regions. In hippocampus -amyloid depositions and -
amyloid plaques are surrounded by hypertrophic astrocytes [97], whereas little, if any, 
signs of astrogliosis were found in entorhinal and prefrontal cortices [73,161]. The 
GFAP-hypertrophic astrocytes in hippocampus were associated with -amyloid 
depositions/plaques, while distantly to the plaques GFAP profiles remain atrophic 
[97]. Similar astroglial atrophy has been characterised in other models of AD 
including PDAPP-J20 transgenic mice, 5xTG-AD mice and Swiss 3 mouse AD model 
(Table 1, [58,107,32,8]). Astroglial atrophy was found not only in experimental model 
animals but in post-mortem tissues of patients with advanced (Braak V-VI) stages of 
the disease (Rodriguez and Verkhratsky, personal observations). Similarly, 
morphological atrophy was observed in astrocytes derived from induced pluripotent 
stem cells obtained from patients with both familial and sporadic forms of AD (Fig. 4; 
[60]). Enriched environment as well as physical activity prevents astroglial atrophy in 
an AD mouse model and ameliorates the symptoms, confirming the causal link 
between astrocyte remodelling and dementia [7,112]. 
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It has to be noted, however, that animal models of AD only partially reproduce the 
human disease. For example, while 3xTG-AD mouse develops both plaque and tangle 
pathologies accompanied by some cognitive deficits, there is no massive neuronal loss 
which is a hallmark of AD progression in patients [10]. In this regard, new stem cell 
technologies that enable the generation of astrocytes from the disease-specific 
inducible pluripotent stem cells (iPSCs) [117], or by direct reprogramming  of patient-
specific fibroblasts [21] present a great promise. Although the field is still in its 
infancy, current technologies allow generation of relatively pure populations of cells 
exhibiting molecular and functional properties (electrophysiological signatures, 
generation of spontaneous calcium signals, glutamate uptake, support of synapse 
formation, etc.) similar to those of adult human astrocytes. The disease-specific 
astrocytes also recapitulate some important pathological aspects of AD. Thus, 
astrocytes derived from the familial AD and sporadic AD patients exhibited  a less 
complex morphological appearance, decreased heterogeneity, overall atrophic profiles 
and abnormal localisation of key functional astroglial markers resembling changes 
occurring during glial paralysis at the early stages of the disease [60].  Astrocytes 
derived from familial AD patients also demonstrated -amyloid production, 
deregulated Ca2+  homeostasis, altered cytokine release, increased ROS, decreased 
lactate production and compromised neuroprotection and neuronal support [85,96]. 
Astrocytes differentiated from isogenic APOE4 astrocytes were impaired in their 
ability to clear extracellular -amyloid and displayed aberrant cholesterol 
accumulation [77]. A new culture  model using neurones, astrocytes, 
and microglia in a 3D microfluidic platform has been successfully used to study 
neuroinflammatory responses [100].  These studies demonstrate the substantial 
potential of iPSC-based human astrocyte models to reveal the cellular mechanisms of 
AD. Undoubtedly, these technologies will improve our understanding of the 
molecular mechanisms controlling astroglial response and also help to develop 
astrocyte-specific therapies against AD. 
 
Reactive astrogliosis in AD: does it always signal neuroinflammation? 
 
Reactive astrogliosis is another hallmark of AD; increased expression of GFAP, 
vimentin or S100B protein as well as astroglial hypertrophy has been observed in 
post-mortem tissues from AD patients [6,49,81,88] as well as in brain samples of AD 
animal models [97,145,62,99]. In AD brains reactive astrocytes are mainly associated 
with senile plaques [72,97,99]. The idea that chronic neuroinflammation is directly 
responsible for the progression of idiopathic AD from the very early stages, and may 
even have an etiological significance, become quite popular in recent years [53]. It is 
also generally assumed that this chronic neuroinflammation results from activation of 
microglia and reactive astrogliosis. This statement however, needs clarification, as 
indeed reactive gliosis is far from being a straight pathological reaction ultimately 
resulting in damage to the brain tissue. The reactions of neuroglia to brain lesion 
(reflected by both reactive astrogliosis and activation of microglia) essentially 
represent a defensive response aimed at counteracting pathology and remodelling 
post-lesioned circuitry. Neither astrogliosis, nor microglial activation develops in all-
or-none fashion; to the contrary they represent a continuum of phenotypic 
remodelling, fundamentally associated with neuroprotection. There are many stages 
and degrees in astrogliosis [103,127], and some of these are fully reversible. Limited 
brain lesions trigger astroglial hypertrophy and biochemical remodelling without 
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affecting microdomain organisation (anisomorphic astrogliosis); and only severe 
lesions disrupt astroglial territorial maps, arrange astrocytes in palisades and trigger 
scar formation [127,128]. Even the scar formation is in essence defensive and 
survivalistic reaction aimed at isolation of lesioned area from the healthy tissue. 
Likewise, activation of microglia is a multistage process with a multitude of activated 
phenotypes, many of which have a neuroprotective role [50,66]. In AD, both reactive 
astrogliosis and activation of microglia are directly associated with plaque formation; 
activated glial cells become elements of plaques. Importantly, activated astrocytes 
surrounding the plaques retain their domain organisation and do not express severe 
astrogliotic features; similarly, microglial cells do not turn in all-devouring 
macrophages, but retain intermediate activated phenotype. Suppression of astroglial 
reactivity, contrary to the inflammatory hypothesis, exacerbates -amyloid load and 
reduces neuroprotection [72].       
 
Astroglial atrophy contributes to synaptic dysfunction and cognitive deficits  
 
Atrophic changes in astrocytes, characterised in several AD animal models as well as 
in stem-cells derived astrocytes appear as shrinkage of astroglial territories, with a 
decrease in astroglial coverage of synaptic contacts and other neuronal structures with 
the ultimate decline in astroglial homeostatic support. Astroglial atrophy and loss of 
function may contribute to early cognitive deficits through dwindling synaptic support 
and synaptic malfunction. Decreased astroglial synaptic coverage may also result in 
neurotransmitter spillover with subsequent hyperexcitability of neuronal networks 
often observed in neurodegeneration. In addition enhanced glutamate spillover may 
increase the recruitment of extrasynaptic NR2B subunit-containing NMDA receptors 
associated with long-term depression, LTD [5]. Thus decreased astroglial synaptic 
coverage with a consequent reduction in astroglial glutamate uptake may impair upon 
synaptic plasticity shifting it towards depression, which can in turn negatively affect 
memory [138,27]. 
 
Notably, K+ clearance and glutamate uptake by astrocytes are tightly linked [75]. 
During synaptic transmission most of K+ entering the synaptic cleft is released 
through postsynaptic AMPA and NMDA receptors [24]. Accumulation of K+ in the 
synaptic cleft depolarises presynaptic terminal causing activity-dependent facilitation 
of glutamate release [124,26]. Reduction of glutamate uptake can enhance recruitment 
of postsynaptic AMPA/NMDA receptors and causes further K+ release. This 
instigates positive feedback, which can potentially lead to an uncontrolled increase in 
excitability of the synaptic network, excitotoxity and neuronal death. In physiological 
conditions, these processes are tightly controlled by astroglial glutamate uptake and 
K+ clearance. However, when glutamate uptake is impaired (due to the reduction of 
transporter expression or withdrawal of perisynaptic leaflets) the resulting vicious 
circle may contribute to neurodegeneration.  
 
Furthermore limited astroglial support may instigate early extinction of synapses 
[166]. Dysfunctional synaptic transmission and loss of synapses are indeed the very 
first morphological changes in AD, which mount years before the occurrence of 
specific clinical presentation [134,25,70]. Astroglial asthenia may also suppress 
regenerative synaptogenesis; while the loss of astroglial transporters may contribute to 
excitotoxicity through impaired glutamate and K+ buffering [166,152].  
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Failure of astroglial reactivity paves the way to dementia? 
 
As has been alluded above, astrogliosis represents a powerful defensive program, 
which arguably contains various pathological processes including -amyloid 
pathology and AD. Indeed there is compelling evidence demonstrating the 
neuroprotective potential of reactive astrocytes in AD. In the Tg2576 mice model 
(that bears APPSwe mutation) astrogliosis became prominent rather early and this 
correlates with the relatively slow development of AD. Furthermore, senile plaques in 
these animals resemble human -amyloid deposits being represented by fleecy, 
granular, cored and diffused amyloid plaques [158].  In 3xTg-AD animals reactive 
astrocytes are positioned around senile plaques and close to perivascular -amyloid 
deposits [97,98]. Conversely, in entorhinal and prefrontal cortices, the emergence of 
extracellular -amyloid deposits does not initiate astrogliosis [73,161] which may 
reflect a failure of astroglial neuroprotection. This coincides with (and arguably 
underlines) high vulnerability of both regions to AD pathology; suggesting that 
paralysis of astroglial defence exacerbates AD-like pathology [141]. 
 
This notion also has been indirectly confirmed by the in vivo brain imaging of reactive 
astroglia in AD patients. Astrogliosis was assessed by positron-emission tomography 
detection of 11C-deuterium-L-deprenyl (11C-DED); deprenyl is a specific inhibitor of 
monoaminoxidase-B (MAO-B) localised predominantly in astrocytes. An increase in   
11C-DED signal hence is considered to reflect astroglial hypertrophy [41]. When using 
a multi-tracer PET detecting 11C-PIB (marker of fibrillar -amyloid), 18F-FDG 
(marker of cerebral glucose metabolism) and 11C-DED (marker of astrogliosis) the 
highest binding of 11C-DED (which reflects prominent astrogliosis) was observed in 
patients with mild cognitive impairment (MCI) and high levels of fibrillar amyloid 
plaques in the brain (PIB+) reflecting prodromal AD [22]. The decrease in astroglial 
reactivity parallels the switch from MCI to full blown AD with senile dementia again 
demonstrating the neuroprotective role of astrogliotic remodelling [141].  
 
Conclusions: the need for new astrocentric therapies? 
 
In recent decades astrocytes emerged as a fundamental elements in pathophysiology 
of numerous neurological and neuropsychiatric diseases. Pathomorphological 
examination of astroglia has become a standard in describing the histology of the 
diseased brain. Pathophysiology of astroglia is a complex and multifactorial 
combination of degenerative and reactive remodelling, which can support 
neuroprotection or project neurotoxicity. Failure of astrocytes to support homeostasis 
of neural tissue and to protect this tissue against insults is arguably critical for 
determining the pathological evolution and ultimately neurological deficits. In the 
context of Alzheimer  disease astrocytes undergo atrophy with loss of function 
which may stipulate impairments of synaptic connectivity as well as contribute to 
neuronal death due to deficient neuroprotective support. At the same time, reactive 
astrocytes surround senile plaques in the AD brains; while initial stages of the disease 
are characterised by prominent astrogliosis. Exhaustion of astroglial defensive 
capacities and down-regulation of astrogliosis coincides with (and again may be 
instrumental for) the switch from mild cognitive impairment (characteristic for early 
to moderate AD stages) to senile dementia (which reflects late stages of the disease). 
Cell-specific therapies aimed at boosting astroglial supportive and defensive 
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capabilities and preventing astroglial paralysis may offer new directions in 
preventing, arresting or even curing AD-linked neurodegeneration.   
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Figure legends 
 
Figure 1. Diversity of astrocytes. 
 
Figure 2. Classification of astrogliopathology. Modified from [103]. 
 
Figure 3. Astroglia atrophy in hippocampal (a) and cortical (B) regions of the 
wild type (WT)  and  triple transgenic AD model mouse (3xTG-AD). The images 
show GFAP-positive profiles of astroglial cells. 
Collated from [73,97,161]. 
 
Figure 4. Astrocytes derived from iPSCs isolated from familial AD patient carrying 
PSEN1 M146L mutation and sporadic AD patient carrying ApoE4+/+ demonstrate 
significant atrophy when compared to those from healthy person. 
 
(A) Morphological appearance (arborised, polarised and fibroblast-like) of astrocytes 
derived from iPSCs of healthy controls, familial and sporadic AD (FAD and SAD 
respectively). (B). Exemplar 3D IsoSurface renders constructed from serial confocal 
z-stacks display clear differences in cell size and overall morphology Scale bar = 10 
µm. Quantification of cells using these renders by way of surface area (C), cell 
volume (D) and SA:Vol ratio (E) reveal significant differences in all aspects of 
cellular morphology between healthy and diseased astrocytes. Quantification of mean 
fluorescence intensity per immunoreactive cell reveals no significant difference in 
GFAP staining intensities between AD- and control astrocytes (F) but S100B, EAAT1 
and GS intensities are reduced in both FAD and SAD cells (G, H and I, respectively). 
Asterisks on graph; *** p<0.001, ** p<0.005, * p<0.05.  
Reproduced from [60]. 
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Table 1. Astrocytes in AD: Atrophy and loss of function
 
Model/Age/Preparation Properties Loss of function Reference 
5xFAD/12 - 14 months/ 
Primary culture 

 Reduced -
amyloid42 
uptake; 
reduced 
neuroprotection 
reduced ability 
to promote 
neuronal growth 

[58] 

3xTG/ 4 Month/Fixed brain 
slices/Immunocytochemistr
y 

Reduced 
morphological 
profiles and 
arborization 

Treatment with 
L-norvaline 
rescued 
astroglial 
atrophy, 
increased 
dendritic spines 
densities and 
improved 
memory deficits 

[107] 

Swiss mice/ 3 
month/Intracerebroventricul
ar injection of 10 pM -
amyloid 
oligomers/immunocytochem
istry  

Morphological 
atrophy of 
astrocytes; ~23% 
reduction in a 
number of processes 
and  ~40% reduction 
in surface area. 

Decreased 
neuroprotection; 
increase in 
synaptic loss; 
both effects 
ameliorated by 
intracerebrovent
ricular injection 
of 10 ng 
transforming 
growth factor-
 1  

[32] 

PDAPP-J20 mice/5 
months/Immunocytochemist
ry 

Decreased volume 
and complexity of 
hippocampal 
astrocytes 

 [8] 

3xTG AD mice/1 to 24 
months/Immunocytochemist
ry 

Decreased volume, 
surface area and 
complexity of 
astrocytes in 
entorhinal and 
prefrontal cortices 
and in the 
hippocampus. 

Loss of 
homoeostatic 
support 

[73,97,98,1
61] 
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