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Abstract

Background: With the advent of new high-throughput electron microscopy techniques such as serial block-face
scanning electron microscopy (SBF-SEM) and focused ion-beam scanning electron microscopy (FIB-SEM) biomedical
scientists can study sub-cellular structural mechanisms of heart disease at high resolution and high volume. Among
several key components that determine healthy contractile function in cardiomyocytes are Z-disks or Z-lines, which
are located at the lateral borders of the sarcomere, the fundamental unit of striated muscle. Z-disks play the
important role of anchoring contractile proteins within the cell that make the heartbeat. Changes to their
organization can affect the force with which the cardiomyocyte contracts and may also affect signaling pathways
that regulate cardiomyocyte health and function. Compared to other components in the cell, such as mitochondria,
Z-disks appear as very thin linear structures in microscopy data with limited difference in contrast to the remaining
components of the cell.

Methods: In this paper, we propose to generate a 3D model of Z-disks within single adult cardiac cells from an
automated segmentation of a large serial-block-face scanning electron microscopy (SBF-SEM) dataset. The proposed
fully automated segmentation scheme is comprised of three main modules including “pre-processing”,
“segmentation” and “refinement”. We represent a simple, yet effective model to perform segmentation and
refinement steps. Contrast stretching, and Gaussian kernels are used to pre-process the dataset, and well-known
“Sobel operators” are used in the segmentation module.

Results: We have validated our model by comparing segmentation results with ground-truth annotated Z-disks in
terms of pixel-wise accuracy. The results show that our model correctly detects Z-disks with 90.56% accuracy. We
also compare and contrast the accuracy of the proposed algorithm in segmenting a FIB-SEM dataset against the
accuracy of segmentations from a machine learning program called Ilastik and discuss the advantages and
disadvantages that these two approaches have.

Conclusions: Our validation results demonstrate the robustness and reliability of our algorithm and model both in
terms of validation metrics and in terms of a comparison with a 3D visualisation of Z-disks obtained using
immunofluorescence based confocal imaging.

Keywords: Cardiac ultrastructure, Image segmentation, Serial-block-face scanning electron microscopy, Focused
ion-beam scanning electron microscopy, Computational biology
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Introduction
The Z-disk (also known as Z-line or Z-band) forms the
boundaries of sarcomeres, which are contractile com-
ponents of striated muscles such as cardiac myocytes.
Z-disks provide mechanical stability to cardiac and
skeletal muscle [1]. α-actinin bridges (Z-bridges) cross-
link the ends of thin filaments from adjacent sarco-
meres, which are opposite in polarity. Z-disks stabilize
the ends of these thin filaments, which are extended
from Z-line towards the middle of sarcomere. These
Z-lines are shown to be involved in very important
processes of governing muscle homeostasis and stretch
sensing. Moreover, several Z-disk proteins have re-
cently been implicated in cardiomyopathies and cardiac
diseases. Hence, an understanding of the structure of the
Z-disk and changes to its topology may provide important
insights into the development of cardiomyopathies [2].
Several microscopy studies have examined Z-disk top-

ology and the distribution of other components (such as
sarcoplasmic reticulum) relative to the Z-disk. Jayasinghe
et al. [3] used confocal imaging to trace the organization
of the Z-disks in rat ventricular myocytes. They reported
that the Z-disks formed three-dimensional helical ar-
rangements and exhibited dislocations through the
myocyte volume. With the advent of serial block-face
scanning electron microscopy (SBF-SEM), the limitation
of targeted immunolabeling in confocal microscopy
could be circumvented. The distribution of the Z-disks
and its relation to other structures can be simultan-
eously visualized with these datasets. Studies such as
[4, 5] have examined the distributions of other compo-
nents relative to the Z-disks using SBF-SEM data. The
authors investigated the three-dimensional structure of
the intercalated disc and cardiac sarcoplasmic reticulum
in relation to the Z-disks and reported that patterns of
these structures are correlated with heart failure.
However, no studies to date have reported on image

processing algorithms to extract Z-disks from SBF-SEM
datasets. This is a significant challenge due to the inher-
ently low contrast images that SBF-SEM produce. The
z-disks occupy a relatively small fraction of the image
volume when compared to other structures as well. A
segmentation of the 3D organization of Z-disks from
SBF-SEM data is also an important step towards build-
ing more detailed computational models of cardiomyo-
cytes [6, 7]. Incorporating realistic distributions of Z-
disks into these computational models would garner
quantitative insights into the effect of changes to z-disk
organization on the development of cardiomyopathies.
Here we propose to generate a 3D model of cardiac Z-

disks based on image segmentation and edge detection.
This work is an extension of our previous work [8],
where we generated a publicly available automated
workflow for segmenting single adult cardiac cells. We

used a large volume serial block-face scanning electron
microscopy (SBF-SEM) dataset to generate 3D meshes
of myofibrils, mitochondria and nuclei. The dataset
spans a volume of 215 μm × 46 μm × 60 μm at 50 nm
isotropic voxel spacing and, as far as we know, it is the
largest dataset of a single cardiac cell acquired by SBF-
SEM. Here we aim to segment the Z-disks from this
dataset to fuse the resulting segmentation with previ-
ously obtained results so that a more complete
geometric model of a cardiomyocyte can be used to in-
vestigate the relationship between cardiomyocyte form
and function [6].
SBF-SEM and other high throughput electron micros-

copy imaging techniques have the capability to provide a
full three-dimensional view of large tissue blocks at reso-
lutions ranging 10–50 nm, thus filling the gap between
high resolution electron tomography and high contrast,
confocal microscopy. However, manually segmenting the
ultrastructural components from these large datasets is
time-consuming, impractical and can lead to human-
related errors [8]. On the other hand, machine learning
methods such as convolutional neural networks [9], need
pre-segmented and labelled datasets as annotations or
ground-truth (GT) references, which also requires hu-
man intervention. We present an automated framework
to segment cardiac Z-disks, with minimal human inter-
vention where the intervention will only be necessary to
validate the segmented results.
The rest of this paper is organized as follows: in sec-

tion two, the methods and materials of the proposed
image processing algorithm are outlined. Section three
represents the output of the algorithm and the validation
results. We also compare the robustness of the algo-
rithm in segmenting Z-disks from a publicly available
FIB-SEM dataset. Discussion is provided in section four
where we compare the performance of the proposed
method against the performance of a machine learning
approach. In section five we conclude the paper and will
discuss future work.

Methods
In this section we first provide some details about the
material and dataset used in our modelling. Next, we
will outline the modules of the model in detail.

Material
Tissue sample preparation
The tissue samples used for SBF-SEM imaging were
prepared at the University of Auckland. All animal
procedures followed guidelines approved by the Uni-
versity of Auckland Animal Ethics Committee (for ani-
mal procedures conducted in Auckland, Application
Number R286).
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The tissue blocks were dissected from the left ven-
tricular free wall of 16 week-old male Sprague-Dawley
rats. For more information regarding tissue preparation
guidelines, the readers are encouraged to refer to “Tissue
sample preparation” section of the previous work [8].

SBF-SEM
After the samples were collected, the orientation of
muscle fibers was determined using microCT (GE nano-
tom microCT, TrACEES platform, The University of
Melbourne) images of the whole resin block. The block
was then trimmed to a square block face of 1 mm2 and
300 μm deep with fibers running perpendicular to the
future cutting face. The sample was imaged in low vac-
uum mode (50 mbar) at 3 kV, 0.1 nA current using a
backscattered detector. The acquisition pixel size was set
at 10 nm for X and Y [8].
An example slice from the tissue block is shown in

Fig. 1. For this tissue block, 1019 serial sections of 50
nm thickness were acquired. The data was binned to
an isotropic voxel size 50 nm × 50 nm × 50 nm [8]. The
stack contains 600 sections with 466× 2156 pixels in
each section. As shown in Fig. 1, the stack contains
two cells in which “cell 1” is outlined by a red contour.
We aim to generate a model based on cell 1, since it
contains the largest volume of heart cell structure in-
formation as the block captures the entire cell cross
section and its length. Nevertheless, the proposed

segmentation algorithm does segment the Z-disks in
the entire image stack.

Image processing
We propose an image processing framework to seg-
ment the Z-disks, by which we can generate a 3D
model of them. Figure 2 represents the schema of the
proposed image processing module. This framework
comprises of three modules including pre-processing,
segmentation and refinement. After the data is ac-
quired, the pre-processing is performed. Then its out-
puts are treated in segmentation step. Finally, the
segmentation results are refined in step three. These
modules are performed on MATLAB R2017b, and for
3D reconstruction we have used ImageJ. The dataset
(*.MRC format) was first loaded into ImageJ, and then
image sequences were exported in TIFF format for fur-
ther image processing to be performed on MATLAB.

Pre-processing
Pre-processing is known as one of the important tasks in
pattern recognition and computer vision. Aside from in-
trinsic problems of datasets such as speckles, noise etc.,
they might contain information which are not necessary
or required in our model. This extra information in the
data could increase the complexity and computational
cost. We utilize pre-processing to reduce noise in the
data. Pre-processing also performs “feature selection”

Fig. 1 The outline of cell 1 (red contour) along with parts of the second cell that is adjacent to it in the bottom right

Fig. 2 Schema of main image processing modules, corresponding sub-modules and 3D structure of Z-disk as output of model rendered
in ImageJ
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and “size reduction”, since it is manipulating the orienta-
tion of the feature space towards target space [10].
In our dataset, the image intensity distributions of the

nuclei (μ = 71.17, σ = 12.53), myofibrils (μ = 55.57, σ =
6.19), I-bands (μ = 24.87, σ = 8.25), and Z-disks (μ =
63.57, σ = 11.07) are very similar, where “ ” and “ σ ”
refer to the mean and standard deviation of the inten-
sities, respectively.
Figure 3 shows a schema of the structure of one sarco-

mere, the locations of corresponding I-bands and the Z-
lines. These intensity distribution properties form the
building blocks for the segmentation algorithm.
We perform local contrast stretching (LCS) which

equalizes the contrast of the image to differentiate
pixels in the I-band from the remainder of the sarco-
mere pixels. The LCS is conducted using a sliding
kernel across the image and adjusting the central pixel
by Eq. (1). The equation boosts the appearance of
large-scale light-dark transitions [11]:

Ioutput ¼ 255: Iinput− min
� �

= max− minð Þ ð1Þ

where,
Ioutput is the intensity level for the output pixel after

LCS.

Iinput is the intensity level for the input pixel (input
data).
max and min are the maximum and minimum values

for intensity level (gray level in our case) in input image,
respectively.
Since our aim is to localize and isolate the I-bands and

Z-disks, we chose the values of max = 59 and min = 0
heuristically. The maximum value is very close to the
average of the means of two intensity distributions cor-
responding to myofibrils and Z-disks: μaverage :M& Z =
59.57. This implies that the resulting image after LCS
would help differentiate myofibrils and the Z-disks from
I-bands, simultaneously. After LCS is performed, a
Gaussian kernel with standard deviation of σ = 1.2 is
used to smooth the output of LCS. Figures 4 and 5
represent the sample outputs of LCS and Gaussian
smoothing, respectively.

Segmentation
As can be seen in Figs. 3 and 4, we observe a repeating
pattern of vertical stripes which are specific to the na-
ture of Z-disks. The Sobel operator is widely used for
edge detection. The result of the Sobel operator is the
image intensity gradient vector or the norm of this
vector. The Sobel operator has two main advantages:
(1) it has some smoothing effect on inherent random

Fig. 3 Structure of one sarcomere, alongside the definitions of I-band and Z-disk. The reader should note that this structure is only suited to
represent our dataset, in which the M-band is not discoverable, i.e. myofibrils are located between two I-bands in our dataset

Fig. 4 Output of local contrast stretching with max = 59 and min = 0
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noise in the image;(2) it is a differential form of two
rows or two columns, so the elements of the edge on
both sides are enhanced, thus improving the edge qual-
ity and intensity [12, 13].
We perform a Sobel edge detection using 3 × 3 kernels

as follows:

Tx ¼
−1 0 þ1
−2 0 þ2
−1 0 þ1

������
������ Ty ¼

−1 −2 −1
0 0 0
þ1 þ2 þ1

������
������ ð2Þ

where Tx and Ty are horizontal and vertical templates
to be convolved with the image of interest.
Considering the patterns of I-bands and Z-disks as dis-

cussed above, we propose to employ the vertical Sobel
operator templates to segment these components. The
structure of the I-band consists of two vertical edges at
the right and left ends of the I-band and the Z-disk is
centered between these two edges. Hence, we can obtain
a segmentation of Z-disks by first segmenting the I-band
edges. However, we shall see that due to the value of
max = 59 in Eq. (1), which is a trade-off between the
mean values of intensity distributions of myofibrils and
Z-disks, segmenting the edges of I-bands to be differen-
tiated from myofibrils results in differentiation of Z-
disks from I-bands.

We define Right Edge (RE) and Left Edge (LE) of I-
band as its right and left borders, respectively (RE and
LE are denoted in Fig. 2). The template operators of RE
and LE are defined as follows:

TRE ¼
−1 0 þ1
−2 0 þ2
−1 0 þ1

������
������ TLE ¼

þ1 0 −1
þ2 0 −2
þ1 0 −1

������
������ ð3Þ

To segment the right and left edges of I-bands, we
convolved the corresponding templates with the output
images from the pre-processing step. Figure 6 shows the
output of these convolutions, where we have defined set
of right and left edges as R and L, Z-disks as z and arti-
facts as Θ which are defined by Eq. (4) and (5):

R∪z∪Θ ¼ TRE⊛I ð4Þ
L∪z∪Θ ¼ TLE⊛I ð5Þ

where, ⊛ denotes two-dimensional signal processing
convolution operation, and I is the output image
sequences from pre-processing step. From Fig. 6 we
observe that the result of convolution is segmentation
of Z-disks alongside right and left edges of I-bands,
respectively. The RE and LE are located at the right
side and left-side of Z-disks in Fig. 6, top and bottom,
respectively. From the definitions provided in Eqs. (4)

Fig. 5 Output of Gaussian smoothing kernel with σ = 1.2

Fig. 6 Top: output of convolution by T_RE, RE is highlighted in green color; Bottom: output of convolution by T_LE, LE is highlighted in yellow
color; Z-disk and artifacts are shown in magenta and blue, respectively

Khadangi et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 6):272 Page 5 of 14



and (5), we seek to find set z by first finding the inter-
section between the left sides of (4) and (5) by Eq. (6),
and then removing the artifacts Θ. This step is per-
formed in refinement module. Eq. (6) has the form as
follows:

∪Θ ¼ R∪z∪Θf g∩ L∪ ∪Θf g ð6Þ

Equation (6) proves to be correct due to our defini-
tions about R and L where R∩L ¼ ∅. The outputs of
Eq. (6) applied to both images of Fig. 6, are shown in
Fig. 7. The procedure presented above is applied to all
the image slices after the preprocessing step, which in-
volved in 1200 convolutions and 600 intersection
operations.

Refinement
Figure 7 shows a sample output of the intersection oper-
ation that was applied to images shown in Fig. 6. Some
of the artifacts highlighted in Fig. 6 are also present in
Fig. 7. To remove these artifacts, we isolate the regions
where we are sure the Z-disks are present, i.e. between
the Lower Membrane Edge (LME) and Upper Mem-
brane Edge (UME). These edges are very hard to track
through the image sequence because their shape and
position can drastically change between any two images.
Hence, the correct and reliable detection of these edges
is vital to obtain reliable results. Figure 8 shows an ex-
ample of an image slice that illustrates the challenge of
finding the UME and LME.
To refine the segmented images, we propose to isolate

Z-disk zones by finding LME and UME by convolving
the images using horizontal templates of the Sobel oper-
ator as follows:

TLME ¼
−1 −2 −1
0 0 0
þ1 þ2 þ1

������
������ TUME

¼
þ1 þ2 þ1
0 0 0
−1 −2 −1

������
������ ð7Þ

Considering the longitudinal orientation of the cells in
the image sequences as shown in Fig. 1, we observe that
after horizontal convolution operations are performed,
the resulting segments would also contain some edges
due to intensity changes between borders of mitochon-
dria and myofibrils as well. However, due to lower inten-
sity differences between mitochondria and myofibrils, as
compared to that between mitochondria/myofibrils and
the background (black spot), the resulting edges are very
weak in terms of width and intensity.
Moreover, by convolving images with these templates,

we obtain a set of fixed patterns of edges which pertain
to the difference between background (black) and grey
area in Fig. 1. In addition to the above, some of the arte-
facts have the form of densely packed clusters which do
not pertain to Z-disks. These are shown in lower blue el-
lipses in Fig. 6.
To overcome the first issue above, we employed an

erosion operator with a structuring element of 2 × 2
matrix of ones to erode the resulting images. This pre-
serves the target edges of interest, since the edges corre-
sponding to the first issue are too weak when compared
to target edges of interest. The second issue related to
fixed patterns of edges are simply removed by finding
their coordinates. Finally, to remove the densely packed
clusters, we employed a consecutive operation of erosion
and dilation with structuring elements of 5 × 5 matrix of
ones to first isolate these clusters and then dilating them
to be removed from images.

Fig. 7 Sample output of intersection operation applied to images shown in Fig. 6

Fig. 8 A sample of image sequence where more artifacts could arise due to cross-sectional drastic changes in intensities
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After the initial step is performed to resolve the above
issues arising from convolution, the resulting fine edges
are presented in Fig. 9. As shown, more edges are ob-
tained for this image because of significant changes in
the structure of the cell. Moreover, some discontinuities
are present in the edges. We are only interested in
extracting edges highlighted by yellow circles.
According to Figs. 8 and 9, the target area where Z-

disks are present, is the area between edge (1) of the top
image and edge (2) of the bottom image in Fig. 9, as well
as the area between edge (3) of the top image and edge
(4) of the bottom image in Fig. 9. We perform another
refinement procedure by defining a rule-based edge ex-
traction method. To find the area between edge (1) and
edge (2), and the area between edges (3) and (4) in Fig. 9,
we propose the following rules to isolate Z-disks:

1. (iL, jL) = find (ILME(i, j) > 0) i, j ≤ size(ILME)
2. define vector Ψ21 × 1; |Φ| = (iL, jL)
3. ΨLME(:) = ILME(i

L − 10 : iL + 10, jL + 1)
4. Λ = find(ΨLME > 0), 1)
5. if Λ is empty : go to step 6;

else : Φ ¼ Φ; iL þ Λ−11; jL þ 1
� �� �

; iL ¼ iL þ Λ−11

6. jS = find(ILME(i, j), 2) > 0; i
L − 20 ≤ i ≤ iL + 20

if jS− jL < 10 : Φ ¼ Φ; iL; jL þ 1
� �� �

;

else : Φ

¼ Φ;
i−iL

jS− jL
� J þ iL

� �
; J

� �� �
; jL≤ J ≤ jS; jL

¼ jS

7. j
L
+ = 1; loop 3 − 6 until j

L
≤ size(I

LME

, 2)

8. I(2) = ILME; I(0)(:) = 0; I(2)(Φ) = 255

The definitions above illustrate necessary steps leading
to isolating edge (2) in Fig. 9.
For the rest of the edges, the same rules apply, where

steps 4 and 5 are modified to find the initial edge track-
ing point. The rule base for edge (2) of LME is inter-
preted as follows:

1. Find the pixel coordinates of ILME, where ILME(i
L, jL) >

0, starting from the i = j = 1, and then shuffling
through the columns and then incrementing through
rows of the pixel coordinates. This will find the left tail
of edge (2) in Fig. 9. This step could be interpreted as
seeding the initial coordinates (iL, jL) of target edge of
interest.

2. We define Ψ21 × 1 as a column vector to scan
through a radius of 10 pixels around the
neighborhood of current coordinate and store them
temporarily. A matrix Φ is defined to store
coordinates of edge of interest.

Fig. 9 Resulting fine edges after the issues discussed in refinement section are resolved. Top: UME; Bottom: LME

Fig. 10 Resulting contiguous fine edges after performing refinement stage
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3. Scan through 10 pixels above and below the current
row coordinate of the next column and store them
in Ψ.

4. Find the first index of the elements of vector Ψ,
where ΨLME > 0 and store in Λ. This is mainly
because we are only interested in finding the upper
edge (only for the case of edge (1) or (2). By
contrast, for the case of edges (3) and (4) this is
changed to finding the last element since we are
interested in finding lower edge).

5. There are some regions where Λ could be empty
i.e. edges are disjointed and there is no edge present
in that coordinate, such as the case of edge (4) in
LME in Fig. 9. In this case we propose to use one of
the approaches presented in step 6. Step 6 isolates
target regions since these discontinuities might arise
from problems where some of the Z-disks could be
excluded from the isolation regions. Otherwise, if
the Λ is not empty, we will add the new coordinates
to edge matrix Φ.

6. Find the first element of the left tail from next
distant chunk as jS by shuffling area of radius 20
centered at iL. If the longitudinal distance
between jS and previous jL is less than 10 (the
values of 20 for radius and 10 for longitudinal
distance are chosen heuristically), then the edge
coordinates will continue same as previous
coordinates located at right tail of previous chunk,
resulting in horizontal edge. Threshold value of 10
here ensures Z-disks will be preserved in regions
where discontinuities might be extensive as the case
of edge (4) in Fig. 9. If the longitudinal distance is
equal to or greater than 10, we will use a linear
transformation between jL and jS i.e. a line-shaped

edge connecting these two coordinates together.
This will help preserve Z-disk information which
exceeds the performance of case where we only
stuck into continuing horizontal line. This is proved
to be effective for the case of edge (4) in Fig. 9,
where in an extreme condition, the cell area is
adjacent to grey area in Fig. 8, where horizontal
edge will result in great loss, because in this
scenario, some of the Z-disks will fall below the
edge, thus will be excluded.

7. Shuffle through the columns by incrementing jL.
Loop through steps 3 to 6 until the stopping
criterion is met which is defined as jL ≤ size(ILME, 2).

8. After the coordinates of edges are found we will
pad the resulting edge to a zero-binary image I(0) as
size as original image ILME. The resulting edge is
defined as I(2).

This framework is applied to extract and pad the
edges I(1), I(3) and I(4) along with edge I(2) to I(0). The
result of applying this framework on images of Fig. 9,
is shown in Fig. 10. After we obtained the contiguous
fine edges illustrated in Fig. 10, we keep the informa-
tion within the shaded area as shown in Fig. 11 which
correspond to Z-disks and remove the remaining infor-
mation. The output of refinement step applied to the
sample image of Fig. 7 is shown in Fig. 12. After the
refinement module was performed we obtained image
sequences corresponding to segmented Z-disks. To en-
sure that we capture all the necessary information re-
quired for a fine 3D model, the segmentation results
were refined further by implementing steps outlined in
the image processing module on the other two orthog-
onal planes of the collected volume data, as we did in

Fig. 11 Shaded area corresponding to Z-disks region. The coordinates of these regions are utilized to isolate Z-disks by extracting these
coordinates from z∪Θ outlined in Eq. (6)

Fig. 12 Fine segmentation result of Z-disks after performing refinement on sample image shown in Fig. 7
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previous work for segmenting myofibrils, mitochondria
and nuclei [8]. In the next section we generate a 3D
model of Z-disks and validate the segmentation results.

Results
Visualization
For visualization purposes, we have used 3D plugin of
ImageJ [14] and Imaris v9.2.1 software available at
http://bitplane.com. After the obtained segmented image
sequences were imported to the software, we rendered
the volume by using its 3D plugin. Figure 13 represents
the output of the segmentation model as generated 3D
model of cardiac Z-disks from different angles of view,
rendered in ImageJ.

Validation
After the set of ground-truth (GT) images are deter-
mined, we have compared them with the final seg-
mented Z-disks. Table 1 shows the validation results in
terms of accuracy, sensitivity and specificity. To define
these metrics, we have categorized the individual pixels

in both sets of GT and model outputs into four classes
as TP, TN, FP and FN defined as follows:

� TP (True-Positive): it is a set of pixels segmented as
Z-disks by model which match manual annotations.

� TN (True-Negative): it is the set of pixels that are
not segmented as Z-disks in model, which match
the background of manual annotations.

� FP (False-Positive): it is a set of pixels segmented as
Z-disks by model, which are not present as Z-disks
in manual annotations.

� FN (False-Negative): it is a set of pixels which are
not segmented as Z-disks by model, while are
segmented as Z-disks in manual annotations.

Fig. 13 Generated 3D model of cardiac Z-disks. The volumes are rendered in ImageJ and Imaris

Table 1 Model validation metrics and their corresponding
values

Model
validation

Metrics

Accuracy Specificity Sensitivity

Values % 90.56% 89.27% 92.23%
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� Considering definitions above, validation metrics are
defined as follows:

accuracy ¼ TP þ TN
TP þ TN þ FN þ FP

ð8Þ

specificity ¼ TN
TN þ FP

ð9Þ

sensitivity ¼ TP
TP þ FN

ð10Þ

The corresponding values of validation metrics are
outlined in Table 1. The values of metrics show that the
algorithm is robust, and we can rely on the generated
3D model of the cardiac Z-disks.
In addition to validating results with manual annota-

tions, we have made a comparison between our results
and a previously published 3D structure of Z-disks
rendered from rat ventricular myocyte [15]. Soeller
et al. had performed double labeling with an antibody
to α-actinin to visualize Z-line structure. The authors
had obtained interesting results which showed Z-disks
in ventricular myocytes are not flat but curved with
frequent bifurcations that form connections to adja-
cent Z-disks. Figure 14 illustrates a comparison

between longitudinal distribution of Z-disks obtained
by Soeller et al. (Fig. 14, left, Z-disks are marked in
green), and slices 900 to 1000 of segmented Z-disks by
our model rendered in 3D (Fig. 14, right). This illustra-
tion adds extra degree of reliability to our model along
with the promising validation metric values provided
in Table 1.

Performance in segmenting FIB-SEM data
To test whether our proposed method [16] can be
applied to datasets other than that acquired using
University of Melbourne Teneo Volumescope machine,
we used the method to segment Z-disks on another
published FIB-SEM dataset of cardiomyocyte ultra-
structure [17]. We applied the same procedure as ap-
plied to SBF-SEM data to process the FIB-SEM dataset
except for the pre-processing stage. For the LCS, we
chose the values of max = 160 and min = 0 in Eq. (1).
The maximum value is very close to the average of the
means of the two intensity distributions corresponding
to myofibrils and Z-disks: μaverage :M& Z = 160.32. After
LCS was performed, we utilized a Gaussian kernel with
standard deviation of σ = 2 to smooth the output of
LCS. Figures 15, 16 and 17 represent a sample slice of
the FIB-SEM data, the outputs of LCS and Gaussian
smoothing, respectively.

Fig. 14 Comparison between obtained results and ground-truth 3D structure of cardiac Z-disks; left: 3D rendering of Z-disks (marked in green)
from stained myocyte with antibody to α-actinin [15]; right: rendered 900–1000 segmented sequences of proposed model (surface accuracy
400 um)

Fig. 15 A sample slice from FIB-SEM dataset used for evaluation of proposed segmentation method
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To validate the segmentation results obtained from
processing the new dataset, we manually annotated
three randomly chosen slices from a total 792 slices,
each having 2922 × 1166 pixels. We used the same val-
idation metrics as used for the SBF-SEM dataset. The
corresponding values of validation results are outlined
in Tables 2 and 3, where the first represents the results
of applying the same refinement step used for SBF-
SEM data and the second shows the results after a
disk-shaped structuring element with diameter of 1
was used for dilating the obtained Z-disks masks. As
shown, adding dilation to the refinement step im-
proved the validation results. This is mainly because of
the spatial resolution at which the Z-disk structures
were imaged in the two different datasets.
Segmentation of Z-disks in the FIB-SEM data using

MATLAB required less than 20 min to segment the
whole volume (792 slices in Z direction). Table 3
shows that the proposed model can segment about
90% of the pixels in the new dataset correctly. How-
ever, the sensitivity or true positive rate was lower by
approximately 10% in comparison with the validation
results of SBF-SEM data. Our analysis showed that the
proposed model segments membranes of mitochondria
as Z-disks in some regions and misses the Z-disks
where the corresponding structures deviate from the
characteristic vertical line.

Discussion
Machine learning approaches adapt their underlying
parameters to the data and learn to extract valuable in-
formation from data structures as features [9, 18].
After such features are extracted, a classifier can be
used to classify the data into desirable target classes.

Machine learning is widely used with applications in
biological image analysis and many software packages
are available with applications in biological image
analysis that utilize such automated methods for appli-
cations including pixel classification. Among commer-
cial software packages used for processing SBF-SEM
data, the most commonly used tools are Digital Micro-
graph (DM; Gatan, UK), Amira (FEI, UK) and Imaris
(Bitplane, Switzerland). Some of the widely used open
source packages also utilised for processing such 3D
data volumes include IMOD [19], ImageJ [14] and ilas-
tik [20]. Such software packages provide a variety of
image analysis tools ranging from annotating, image
enhancement, transform, denoising, annotating tools
and 3D rendering for visualisation purposes to embed-
ded trainable segmentation tools which use machine
learning methods to segment data.
Ilastik provides a user-friendly pixel classifier module

where the user can import the raw images, select pre-
defined features or add more custom features, define
labels and annotate the images for training. The soft-
ware offers a batch processing module which can be
used to generate predictive segmentation masks for a
given dataset. Moreover, the module provides a feature
selection tool in which the software performs a grid
search to suggest features to the user that would en-
able reliable segmentation of specific labels in the data-
set. The module includes 37 pre-defined features in
total and a user can select any arbitrary subset of them
to train ilastik on the dataset.
We experimented with several pixel classification

tasks within ilastik 1.3.0 to segment Z-disks in the
SBF-SEM and FIB-SEM datasets. Our experiments
showed that ilastik was not able to segment the Z-
disks accurately within the SBF-SEM dataset. This is

Fig. 16 Output of local contrast stretching with max = 160 and min = 0

Fig. 17 Output of Gaussian smoothing kernel with σ = 2
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likely due to the low contrast between Z-disks and the
remaining components of the cell in the dataset and
also because of the few pixel-widths with which the Z-
disk segments were represented in the data (1–2 pixels
in width). However, in the FIB-SEM data the width of
Z-disk segments ranges from 5 to 7 pixels and we
therefore found that ilastik performed better on this
dataset.
All our experiments were implemented on HP Z440

Workstation with Intel® Xeon® CPU E5–1620 @ 3.5
GHz, with 32 GB Memory. We trained the ilastik classi-
fier to segment FIB-SEM data with 4 distinct experi-
ments, where we used 1, 2, 3 and 8 ground-truth images
for training the classifier which took approximately 0.5,
0.72, 1.10 and 4.25 h to train the model. These images
were chosen randomly and none of the 3 manually seg-
mented (validation set) images were used during the
training. One user spent 1.5 h on average to manually
annotate the background and Z-disk labels on each
image which took about 12 h in total to finish the label-
ing. Moreover, to segment the whole volume we used
the batch processing module of ilastik and it took fur-
ther 10 h to process the remaining 784 images.
Figure 18 shows the results obtained by our experi-

ments on ilastik to segment Z-disk structures on FIB-
SEM data. As shown, by increasing the number of
ground-truth images for training, the validation metrics
improve as the experiment with 8 ground-truth images
achieves maximum validation accuracy, sensitivity and
specificity. Noteworthy is the trend in specificity values
as we increase the training dataset from 1 ground-truth
image to 8 ground-truth images. The change in specifi-
city shown in red in Fig. 18 can be attributed to the rela-
tively small number of pixels representing Z-disks when
compared to non-Z-disk, background pixels. The classi-
fier learns to favor the true negative rate or specificity
much more, as there is a total of approximately 10 mil-
lion non-Z-disk pixels within three image slices, while
there are only approximately 100,000 Z-disk pixels (~ 1%
of one slice of FIB-SEM data). As shown in Fig. 18,

increasing the number of ground-truth images results in
minor improvement. Table 4 shows the comparison
between the results of our proposed method and ilastik
on segmenting Z-disks from the FIB-SEM data. Ilastik
outperforms our proposed model in segmenting Z-disks
by a small percentage.
We analyzed the results on the validation dataset in

more depth by overlaying the output masks in ImageJ.
As shown in Table 4, ilastik can segment the Z-disk
structures correctly by about 82% whereas this value
is about 80% for our proposed model. Our analysis
showed that ilastik performs better than our proposed
model in segmenting the Z-disks in terms of the ac-
curacy of the Z-disk cluster width. The width of seg-
mented structures using ilastik was about 6 pixels on
average, whereas this value was 5 pixels on average
using the proposed method after the dilation step. In-
creasing the width of the dilatation structural element
to compensate for the reduced accuracy of the seg-
mented Z-disk width using the proposed algorithm
did not improve results. This is because the pixels
representing false positive Z-disks using the proposed
algorithm also increased when the structural element
width was increased.
In summary, ilastik failed to segment the Z-disks on

SBF-SEM data where the Z-disk structures were 1-
pixel wide or at most 2 pixels wide, whereas our pro-
posed method was able to segment this dataset. Ilastik
outperformed our proposed model on segmenting the
FIB-SEM dataset, however, it took more than 22 h to
segment the whole volume, whereas it took only 20
min (~40x faster) for our proposed method to segment
these structures in the FIB-SEM volume with compar-
able results as shown in Table 4.

Conclusion
In this paper we have developed an automated frame-
work to segment cardiac Z-disks from SBF-SEM stack
data and consequently generate a 3D model of this
component of cardiac myocytes from the left ven-
tricle of a rat heart. Our validation results demon-
strate the robustness and reliability of our algorithm
and model both in terms of validation metrics and in
terms of a comparison with a 3D visualisation of Z-
disks obtained using immunofluorescence based con-
focal imaging.

Table 2 Validation metrics on the performance of the proposed
algorithm on a fib-sem dataset of cardiac ultrastructure

Model
validation

Metrics

Accuracy Specificity Sensitivity

Values % 78.42% 99.74% 57.10%

Table 3 Validation metrics for proposed algorithm with a z-disk
dilatation step on a fib-sem dataset of cardiac ultrastructure

Model
validation

Metrics

Accuracy Specificity Sensitivity

Values % 90.56% 99.74% 80.85%

Table 4 Comparison between the validation results of proposed
model and ilastik on segmenting Z-disks in FIB-SEM data

Method Metrics

Accuracy Specificity Sensitivity

Proposed method 90.56% 99.74% 80.85%

ilastik 91.03% 99.78% 82.67%
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We proposed to segment the Z-disks using image
processing methods that minimise manual annotation.
Approaches like machine-learning require annotations
and labeling prior to training. This is a very time-
consuming task for the case of Z-disks. In addition,
manual segmentations are not reliable always due to
human error and are known to hinder effective diagno-
sis in the context of medical image processing [21], es-
pecially where the details are very subtle as in the case
of the Z-line. Secondly, we performed experiments to
test the robustness of our algorithm by segmenting Z-
disks from an SBF-SEM and a FIB-SEM dataset. We
also compared its performance relative to the open
source software ilastik. The experiments showed that
ilastik outperformed the proposed method in segment-
ing Z-disks on the FIB-SEM dataset but was not able
to segment 1–2 pixel-width Z-disks in the SBF-SEM
dataset. Ilastik also took ~40x more time than our pro-
posed method to prepare training data (manual anno-
tation) and segment the volume.
We seek to merge the resulting structure of Z-disks

into the results of the previous work [8], where we gen-
erated 3D finite model of ultrastructures including mito-
chondria, myofibrils and nuclei. A more complete model
that included Z-disks, myofibrils, mitochondria and nu-
clei could be used to study the relationship between car-
diac cell form and function in greater detail.
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