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Abstract

Cardiac and circulartory dysfunction are responsible for approximately a third of all in-

tensive care admissions and deaths in New Zealand, reflecting similar statistics globally.

Diagnosing and treating cardiovascular disease is made more difficult by the complex and

interdependent nature of the circulatory system, where compounding symptomatology

makes it difficult to deduce the specific underlying mechanisms triggering the dysfunc-

tion. The result is high variability and cost of care, and suboptimal outcomes.

Currently, monitoring a patient’s hemodynamic state is undertaken usingmetrics like arte-

rial and venous pressure, heart rate, gas exchange variables and electrocardiogram (ECG).

While these metrics are easy to measure, they also change in response to many physiolog-

ical factors. Thus, they are capable of indicating at a global level potential hemodynamic

instability, but less capable of monitoring cardiac performance directly. Direct cardiac

performance metrics, such as stroke volume (SV)/cardiac output (CO), are called for in

consensus statements, but are difficult to measure. The trade-off between the level of in-

vasion, accuracy and frequency/duration of monitoring, have not yet been satisfactorily

mitigated.

Cardiovascular models provide a potential avenue for clinically applicable, minimally or

non-additionally invasive hemodynamic monitoring. Cardiovascular models exploit the
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relationship between common clinical metrics, like pressure, and the preferred but more

difficult to measure cardiac performance metrics, like SV . The performance of a model is

dictated by two facets. First, the theory of the model, often a mix of physiology and math-

ematics, ultimately seeking to provide a simplified/abstracted representation of the car-

diovascular system. Second, how the method is actually implemented, including aspects

of data acquisition, signal processing and parameter identification. The exact algorithms

used in many commercial devices for monitoring SV /CO, are commercially sensitive and

therefore it is often difficult to critique specific aspects of the underlying model approach.

However, generally there remains an issue of commercial devices performing well in sta-

ble patients, but struggling to capture unstable hemodynamics and stable behaviour there-

after, without re-calibration of the model. Model re-calibration often involves an indepen-

dent measurement of the target variable, SV /CO, thus, frequent re-calibration defeats the

purpose of continuous monitoring. Equally, there can be a delay in outward indicators of

hemodynamic instability, making it difficult to determine when re-calibration is required.

Thus, this thesis sought to develop a clinically applicable, non-additionally invasive cardio-

vascular model for estimating SV to overcome the limitations of similar models, both com-

mercial and in literature. Specifically, the model developed was based on three-element

windkessel theory and parameters were identified via pulse contour analysis (PCA). Identi-

fying parameters via PCA meant the model always reflects the current patient state, rather

than relying solely on model calibration during a prior patient state.

Most models focus on clinically relevant SV /CO measures, despite three-element wind-

kessel theory primarily describing a relationship between the pressure and flow wave-

forms. Thus, this thesis developed novel end-systole detection methods to improve PCA-

based parameter identification, in clinically applicable arterial pressure waveforms. Hav-

ing this focus meant the model implementation reflected the model theory well, enabling

it to estimate the physiologically accurate flow waveforms that other methods cannot.
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Moreover, the results showed failure to derive physiologically accurate profiles meant one

or more of the windkessel model assumptions had been violated. Thus, any accurate SV

estimation from unphysiological flow waveforms, was contingent on the independent SV

calibration, and the resulting model performance would not reflect its underlying theory.

This research clearly delineates when and how these issues arise.

More specifically, a novel aspect of this thesis is its illustration of windkessel model lim-

itations and their impact on PCA-based parameter identification. Specifically, two novel

methods of end-systole detection are developed in the thesis, one specifically for detect-

ing dicrotic notches. However, the three-element windkessel is not capable of describing

reflected wave phenomena, like the dicrotic notch. Thus, the thesis illustrated the detri-

mental effects of dicrotic notch presence in the diastolic part of the pressure waveform

for PCA parameter identification, as well as developing methods to mitigate its effect. Ul-

timately, the second novel end-systole detection method enabled the more clinically ap-

plicable femoral artery waveform to be used. The results showed its shape, often void

of dicrotic notches, was more aligned with windkessel model theory, aiding parameter

identification, as well as making the implementation more clinically applicable. Thus, the

results showed how the advantages of easy end-systole detection, via the dicrotic notch,

can be outweighed by its reduced compatibility with the well-accepted windkessel model

and PCA parameter identification.

The analyses conducted in this research used porcine animal trials for the development,

testing and validation of methods. Since the overall goal of the thesis was to develop a

clinically applicable method for monitoring SV during periods of hemodynamic instabil-

ity, the experimental protocols included clinically relevant disease states and treatments.

Bland-Altman analysis showed beat-to-beat SV error between the model estimated and

aortic flow probe measurement, had limits of agreement (95% of data) of ±32%, where

90% of the data falls within -24.2% and +27.9%. Mean beat-to-beat errors>24% were only
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associated with severe, rapid onset of a sepsis like response, which would be clinically

evident.

The stated results are from the preferred model implementation in the thesis, where the

only fixed model parameter was windkessel characteristic impedance (Zc,w). Specifically,

the static Zc,w value was found via calibration using an independent SV measurement,

during a period of stable hemodynamics. Two methods of updating Zc,w on a beat-to-beat

basis, were also tested, both requiring pulse transit time (PTT) monitoring. One method

was based on the water hammer equation, while the other was a hybrid approach, using

the Bramwell-Hill equation and PCA. However, these dynamic approaches to Zc,w identifi-

cation did not cause significant improvement in the results. Thus, the additional patient

burden of monitoring PTT on a beat-to-beat basis could not be justified.

While it is difficult to compare the model implementation presented in this thesis to com-

mercial devices tested on different data sets, it appears the results represent a significant

improvement over existing methods. In particular, the model developed in this thesis pro-

vides a physiological flowwaveform in conjunctionwith beat-to-beat SV , where the former

enables quantitative and qualitative verification of successful parameter identification, in-

stilling confidence in the subsequent SV estimate.

Finally, successful clinical implementation of the model would significantly impact inten-

sive care unit (ICU) practice. The patient specific manner in which the model is imple-

mented, could enable personalised titrating/optimisation of care to quantitatively estimate

cardiac function on a beat-to-beat basis, something which is not yet possible in a clinical

environment.
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CHAPTER1

Introduction

1.1 Introduction

This chapter outlines the main motivation and goals for the thesis, as well as its novel

aspects. Thus, some basic knowledge of cardiovascular anatomy and function will be re-

quired to understand the context of this chapter. If the reader feels they lack the necessary

background knowledge, they may find it helpful to first refer to Chapter 2 Section 2.2.

1.2 Motivation

Cardiovascular disease (CVD), comprising particularly heart, stroke and blood vessel dis-

ease, accounts for ∼30% of all deaths in New Zealand (Ministry of Health, 2013) and 24.6%

of intensive care unit (ICU) admissions (Kasza et al., 2013). Ischaemic heart disease alone is

the second leading cause of death in New Zealand, killing 5534 people in 2011, or 18.3% of

all deaths that year (Ministry of Health, 2013). The highest leading cause of death includes

all form of cancer (Ministry of Health, 2013).

Cardiovascular dysfunction is not only a New Zealand issue. In the United States 31.3%

of deaths were attributed to cardiovascular disease (Mozaffarian et al., 2015), and accord-
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ing to the European Society of Intensive Care Medicine (ESICM), up to a third of people

admitted to the ICU suffer from some form of circulatory shock (Cecconi et al., 2014). Cir-

culatory shock is defined as a generalised form of acute circulatory failure associated with

inadequate blood flow, resulting in inadequate tissue oxygenation (Cecconi et al., 2014).

The type of shock a patient is suffering depends on the underlying cardiovascular dysfunc-

tion (Cecconi et al., 2014), but ultimately results in oxygen demand exceeding supply to one

or more of the organs:

• Hypovolemic: also known as low volume, where inadequate blood volume leads to

inadequate blood flow.

• Cardiogenic: where inadequate heart/cardiac pumping performance provided by

the ventricles of the heart leads to inadequate blood circulation.

• Obstructive: where obstructions of the large blood vessels leads to inadequate blood

flow down to peripheral vessels.

• Distributive: where abnormal blood distribution in the peripheral vessels leads to

inadequate blood and oxygen supply to certain organs.

For example, septic shock, the most common form of distributive shock, is where an infec-

tion leads to sepsis, where cardiac and circulatory changes result in abnormal blood flow,

low blood pressure and low oxygen perfusion in tissues (Silverman andWang, 2005; Merx

and Weber, 2010). Septic shock has also been shown to reduce oxygen extraction of the

coronary (heart’s) circulation (Cunnion et al., 1986), and a reduction in stroke volume (SV),

the volume of blood ejected by the heart per beat (Young, 2004; Merx and Weber, 2010).

With sepsis already inhibiting normal circulatory function, this reduction in the heart’s

ability to use the oxygen supplied to it, combined with less blood being ejected per beat,

leads to an increased likelihood of mortality. In addition since the heart’s main function

is to circulate blood, any impairment in this function often causes dysfunction for other

organs, due to poor oxygen distribution (Guyton and Hall, 2011), which cascade in turn to

amplify these issues.
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1.3 ICU Monitoring and Management Strategies

Monitoring cardiac performance of patients in the intensive care unit is commonly un-

dertaken by comparing arterial pressure, central venous pressure, heart rate, electro-

cardiogram (ECG) and gas exchange variables to physiological norms (Segal et al., 2002;

Cousins and O’Donnell, 2004; Dickstein, 2005). However, variations in these measures can

be caused by numerous changes in cardiovascular function, particularly in elderly patients

who often have multiple medical issues (Dickstein, 2005). This variability creates uncer-

tainty, and can make decisions on diagnosis and treatment more difficult for clinicians.

In addition, the measures are imperfect surrogates for more desirable, direct measures of

cardiac function, such as SV /cardiac output (CO), where CO is the flow of blood out of the

heart over time, rather than per beat:

CO = SV ×HR (1.1)

Where SV is the average stroke volume over the time interval of the heart rate (HR). Usu-

ally HR is measured in beats per minute, leading to CO in litres per minute. Therefore, SV

represents the superior metric when measured beat-to-beat, compared with the SV of CO.

CO/SV monitoring helps define the initial hemodynamic state of a patient, measure the re-

sponse to therapies and monitor changes in disease progression (Gust et al., 1998; Tibby,

2003; Reuter et al., 2003; Luecke and Pelosi, 2005; Montenij et al., 2011; Cecconi et al., 2014).

More specifically, ESICM stated that evaluation and monitoring of CO and SV , is essential

for determining the type of circulatory shock a patient is suffering and its degree of sever-

ity (Cecconi et al., 2014). As such, the task force went on to recommendmeasurement of SV

and CO to evaluate the response to fluid and inotrope therapies, which are core treatment

modalities (Cecconi et al., 2014). For more on these therapies see Chapter 5, Section 5.2.1

and 5.2.2. However, in a clinical environment, accurately measuring SV /CO is difficult, and

monitoring it even more so.
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1.3.1 Stroke Volume and Cardiac Output Measurement Overview

SV /COmeasurement techniques are covered briefly here as part of articulating the novelty

of this thesis. The methods are covered in more detail in Chapter 3 and 4.

SV measures fall into two broad categories: discrete and continuous. A discrete measure-

ment technique is limited to one-off or short-term SV estimation. Examples include in-

dicator dilution methods, where a bolus of fluid is introduced to the blood and the resul-

tant mixture downstream can provide a SV estimate. Trans-esophageal doppler ultrasound

is another example, which is limited by the requirement of a trained operator holding

the correct positioning of the ultrasound probe in the esophagus (Dark and Singer, 2004;

Marik, 2013). Overall, discrete measures are less suitable for monitoring patients who are

likely to experience sudden and unpredictable hemodynamic changes, which these mea-

sures will often miss.

Direct continuous methods are those that can monitor SV over time, at frequent sampling

intervals. Examples include, aortic flow probes and ventricular admittance catheters. An

aortic flow probe is placed on the aorta and measures flow velocity, computed to flow rate

based on the cross-sectional area of the aorta. Ventricular admittance catheters are placed

inside a ventricle of the heart andmeasure its changing blood volume. The highly invasive

nature of these two examples limit them to experimental settings.

Cardiovascular models use commonly monitored clinical metrics and mathematical rela-

tionships to estimate physiological properties that are otherwise difficult to measure, in-

cluding SV . In this way, they reduce invasion, but are no longer direct measurements of

the variable of interest. Thus, the accuracy of models depends on the assumptions made

in their theoretical formulation, but also on their implementations.

Some of the commercially available devices to indirectlymonitor SV performwell in stable

patients, but can fail to capture changes in SV during and after changes in hemodynamic

state, unless a recalibration is performed (Goedje et al., 1999; Rödig et al., 1999; Gödje et al.,
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2001; Hadian et al., 2010; Marik, 2013). Since unstable patients are arguably those who

might benefit most from continuous SV monitoring, it is critical a model capture changing

hemodynamics. There is currently significant room for improvement in this space.

1.4 Goals of this Thesis

This research aims to fulfil the stated goals of the ESICM, in having a low to non-additionally

invasive, clinically applicable technique to monitor left ventricular SV . In addition, it aims

to improve upon existing commercial devices and experimental methods by not only pro-

viding SV and CO, but provide a physiologically accurate aortic flow waveform, similar

to the ubiquity of pressure waveform in critical care. Without the waveform, it is dif-

ficult for an interpreter to determine the validity of a single value of SV or CO from a

model. The waveform provides an indication as to whether the model parameter identi-

fication is reasonable, thus invoking confidence in the resulting SV /CO estimate. In doing

so it would provide clinicians with a tool to improve diagnostic and therapeutic decision-

making, thereby improving patient outcomes. In addition, the method would not require

proprietary external devices, relying only on common clinicalmetrics. This non-proprietary

approach should improve the clinical applicability of the method by removing cost limi-

tations, and the non-additionally invasive aspect should minimises additional clinician or

nurse workload and patient risk.

To achieve these aims the thesis will improve upon an existing pulse contour analysis (PCA)

method for estimating SV . More specifically, it will:

1. Resolve outstanding issues around the model’s need for pulse wave velocity (PWV)

(definition in Section 2.5), a metric that can be measured in a clinical environment,

but is not commonly monitored.

2. Resolve the parameter identification sensitivity resulting in the prediction of unphys-

iological flow profiles, which are then used to estimate a potentially less accurate SV .



6 1.5. CHAPTER OVERVIEW

3. Establish the impact of pressure waveform measurement location on model imple-

mentation and performance.

1.4.1 Novelty of this Thesis

This thesis ultimately shows that superior start- and end-systole detection leads to im-

proved parameter identification, significantly improving arterial flow waveform track-

ing, and thus SV estimation over existing models. The model is tested on experimental

data captured during severe hemodynamic instability including circulatory failure, and is

shown to monitor and track changes in SV during transient behaviour, without needing

recalibration.

1.5 Chapter Overview

This thesis is broadly structured in the following chapters:

• Chapter 2 outlines the physiological principles and nomenclature necessary to un-

derstand the remaining chapters. It is often referred back to throughout the thesis,

along with the thesis goals (Section 1.4), in order to reinforce the relevance of later

chapter’s analysis and discussion.

• Chapter 3 covers the current common methods by which SV can be measured and

monitored. This was briefly covered in Section 1.3.1, but Chapter 3 will give more

specific detail and qualitative comparison of methods.

• Chapter 4 covers the development of cardiovascular models that aim to simplify the

complex anatomy and function covered in Chapter 2. This chapter can be seen as the

foundational work, upon which the author will build. It outlines the successes but

also the shortcomings of previous models, with respect to Chapters 1 and 2.

• Chapter 5 covers the experimental protocols, data and the initial post-processing that

enabled the more detailed analyses of later chapters.
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• Chapter 6 covers the cardiovascular model developed by Kamoi et al. (2017), which

the author was involved with in the late stages of development. Having identified the

Kamoi models limitations, it acts as the starting point for the author’s own work.

• Chapter 7 covers the development and testing of a novel PWV measurement and

monitoring technique, one that was hoped would improve the clinical applicability

of the original Kamoi et al. (2017) method.

• Chapter 8 develops an improved dicrotic notch detection algorithm. The algorithm

was developed to improve end-systole detection in the Kamoi model of Chapter 6.

• Chapter 9 implements the improved end-systole detection of Chapter 8with the Kamoi

model of Chapter 6. The improved end-systole detection uncovers new aspects of

poor Kamoi model implementation. Specifically, the issues found are a combination

of poor parameter identification methodology and a function of dicrotic notch pres-

ence in proximal arterial pressure waveforms.

• Chapter 10 will cover another novel end-systole detection algorithm, designed to

identify end-systole in dicrotic notch-less pressure waveforms, overcoming the lim-

itations outlined in Chapter 9. Thus, the development was specifically to serve the

SV estimation of a three-element windkessel model, but end-systole detection is not

limited to that singular use.

• Chapter 11 will the cover the latest implementation of the developed model, built

from the knowledge gained in Chapters 6, 7, 9 and achieving the goals set out in

Section 1.4.

• Chapter 12 will then explore the re-introduction of PWV on the more foundationally-

sound model developed in Chapter 11, and assess whether PWV improves SV .

• Chapter 13 will conclude the thesis, summarising what the thesis aims were, which

were achieved, which were not and why.
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• Chapter 14 covers the future work in light of the conclusions in Chapter 13.

1.6 Summary

This chapter provides the motivation for this thesis. Namely, the desire from clinicians

for clinically applicable methods of continuously monitoring SV and/or CO, to improve

detection and assessment of cardiovascular dysfunction, and as a means of assessing in-

tervention success. It briefly covers the current techniques for SV measurement and their

shortcomings, something that will be covered further in Chapters 3 and 4. Finally it cov-

ers the goals of this thesis, to improve on existing PCA method’s shortcomings, creating a

method that more closely meets the needs of clinicians in a critical care environment.



CHAPTER2

Background Physiology

2.1 Introduction

2.2 Cardiovascular Anatomy

Themain function of the cardiovascular system is to transport blood around the body, sup-

plying nutrients and oxygen, and removing waste. It consists of the heart, which contains

two halves, known simply as the left and right heart respectively. Each half of the heart

pumps blood around two circulations. The right heart pumps partially de-oxygenated

blood to the lungs to be oxygenated, before returning to the left heart, and this is known

as the pulmonary circulation. The left heart pumps the oxygenated blood through the sys-

temic circulation, perfusing all tissue with oxygen, after which the partially de-oxygenated

blood returns to the right heart. These three components are shown in Figure 2.1.

2.2.1 Heart

The heart is a muscle, known as the myocardium, which applies pressure to the blood as it

contracts, reducing in volume to ejecting the blood within. It is made up of four chambers,

an atrium and a ventricle pair for each of the left and right hearts, separated by the septum
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Pulmonary circulation

Systemic circulation

Heart

Figure 2.1: Overview of the three components of the cardiovascular system, the heart and the two circula-

tions, systemic and pulmonary (Paeme, 2013).

as shown in Figure 2.2. The atria are priming pumps, contracting to force a final volume of

blood into the ventricles under pressure. About a sixth of a second after atrial contraction,

the ventricles contract, generating themain force of the heart (Guyton and Hall, 2011). The

amount of blood ejected by a single ventricle’s contraction is known as the stroke volume

(SV).

Atrioventricular valves prevent backflow of blood from ventricle to atria. The right and

left heart atrioventricular valves are the tricuspid andmitral respectively. The pulmonary

valve prevents backflow of blood from the pulmonary system into the right ventricle. The

aortic valve prevents backflow from the systemic system to the left ventricle. The valves

are also shown in Figure 2.2.

2.2.2 Blood Vessels

Arteries

The blood exits the right and left ventricles into the pulmonary and aortic arteries respec-

tively, as shown in Figure 2.2. Blood in the arteries is characterised as being under high

pressure and moving away from the heart. The large arteries, and particularly the aorta,

are also highly compliant, meaning they stretch, increasing in cross-sectional area when

under pressure, according to Equation 2.1 (Westerhof et al., 2009; Townsend et al., 2015).



CHAPTER 2. BACKGROUND PHYSIOLOGY 11

Right atrium

Left atrium

Right ventricle

Left ventricle
Tricuspid valve

Pulmonary valve

Mitral valve

Aortic valve

Septum

Inferior vena cava

Superior vena cava

Aorta

Pulmonary Artery

Right pulmonary veins
Left pulmonary veins

Figure 2.2: Anatomy of the heart. Showing the four heart chambers, two atria and two ventricles, the

valves and major arteries and veins. Modified from (Paeme, 2013)

C =
∆V

∆P
=
dV

dP
(2.1)

Where V and P are volume and pressure of a vessel, and C is the compliance. The expan-

sion occurs during systole, when the flow rate ejected from the heart exceeds the flow to

the periphery. Thus, a proportion of the SV is, in a sense, stored, its kinetic energy con-

verted to potential energy in the elastic nature of the large arteries (London and Pannier,

2010). As ventricular ejection slows and eventually ends, the arterial walls begin to pas-

sively relax. This relaxation returns the wall’s stored potential energy to the stored blood

volume, as kinetic energy, maintaining flow to the periphery during diastole. Thus, arterial

compliance enables important physiological functions, smoothing out discrete ventricular

ejection to a more semi-continuous flow to the periphery, and damping the pulsatile pres-

sure produced by the heart’s intermittent ejection (Frank, 1889; Westerhof et al., 1969; Op-

penheim and Sittig, 1995; London and Pannier, 2010; Townsend et al., 2015). Additionally,

the distension helps minimise resistance to flow, with only a 2 – 4 mmHg mean pressure
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drop from the aorta to the peripheral arteries (Westerhof et al., 1969; London and Pannier,

2010; Guyton and Hall, 2011).

Although Equation 2.1 is linear, there is a limit to howmuch the arteries can stretch. In re-

ality, at high pressures or volumes, the arteries will begin to stiffen (reduced compliance),

meaning successive increases in volume will accompany significant increases in pressure

(Segers et al., 2015). Generally however, Equation 2.1 suffices, assuming a constant com-

pliance over normal physiological ranges of pressure and volume.

As the blood moves further from the heart, it distributes down consecutively smaller and

stiffer arteries, reaching the relatively low compliant arterioles (Nichols, 2005; Nichols

et al., 2011; Townsend et al., 2015). Resistance to flow in the arterioles accounts for the

majority of the total peripheral resistance within the circulatory system (London and Pan-

nier, 2010; Townsend et al., 2015). As a result, there is a gradual modifying of themeasured

pressure waveform along the arterial tree, with the most significant decrease in blood

pressure across the arterioles, as shown in Figure 2.3 (Westerhof et al., 2010a; Guyton and

Hall, 2011).

The main large arteries of the systemic circulation are shown in Figure 2.4. This diagram

is by no means exhaustive, but includes the arteries referred to in later analyses. Overall,

arteries are the network ensuring blood is well-distributed throughout the body.

Capillaries

Successively smaller arterioles lead to capillaries, where oxygen exchange occurs. In the

lungs, these capillaries are where oxygen perfuses into the blood, while in the systemic

circulation, capillaries are where oxygen perfuses out to tissues. The delicate nature of

these small vessels is why the balance of compliance and resistance upstream in the ar-

teries is of physiological importance, ensuring adequate blood supply at the right pressure

for perfusion.
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Figure 2.3: Schematic redrawn from (Guyton and Hall, 2011) showing the pressure in the systemic cir-

culation. Note the slight increase in pulse pressure in the large arteries after the aorta, but the slightly

lower mean pressure (dashed line). Additionally, there is little change in mean arterial pressure until the

significant pressure drop at the arterioles.

Veins

The venous system are the blood vessels that return to the atria of the heart. At the capil-

laries the venules begin with a small diameter and as the vessels near the heart, they join

to form the larger veins, the largest being the systemic system’s vena cava, which returns

blood to the right atrium. The veins are characterised by large blood volumes at low pres-

sure that move toward the heart. The systemic circulation contains approximately 84%

of the total blood volume, of which the systemic venous system contains 64% of the total

blood volume or 76% of the blood in the systemic circulation (Guyton and Hall, 2011).

2.3 Cardiac Cycle

The cardiac cycle can be broken down into two stages, systole and diastole. Systole is the

duration from start of ventricular contraction to end of ventricular ejection. Diastole is

the duration of ventricular relaxation and filling, prior to the next cardiac cycle’s systole.

While contraction behaviour is similar for both the left and right heart, this section will
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Thoracic aorta

Renal

Common iliac

Aortic arch

FemoralInternal iliac

Ulnar

Radial

Subclavian

Common carotid

Abdominal aorta

Figure 2.4: The main large arteries of the systemic system. Of particular interest to later analyses will be

the arterial segment from the aorta to the femoral artery. However, discussion will include many of the

other arteries shown.

use examples focusing on the left heart, since the systemic circulation is the focus of later

chapters. The stages of systole and diastole are shown in Figure 2.5, and discussed in

further detail in the subsections.

2.3.1 Systole

Chemical-Electrical Initiation of Contraction

Chemical reactions cause electrical signals, known as action potentials, to travel along the

nervous system. Heart contraction is caused by an action potential changing voltage at the

sinus node, located near the right atrium. The sudden voltage potential results in current

discharging from the sinus node, through the atria and then through the ventricle, causing

depolarization. The depolarization across the myocardium releases calcium ions resulting

in muscle fibre contraction (Guyton and Hall, 2011).
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Figure 2.5: A single cardiac cycle of the left heart, showing different stages of systole and diastole.

Some of the current spreading through the tissues from the sinus node can be detected at

the surface of the skin, using electrodes. The signal detected is known as an electrocardio-

gram (ECG) and can be used to indicate atrial and ventricular contraction. The ECG signal

begins with the P-wave, indicating atria depolarization, causing contraction. Next the QRS

complex, comprised of the Q-wave, R-wave and S-wave, indicates ventricular depolariza-

tion and contraction. Finally, the T-wave is generated by the ventricles as they repolarize

during diastole. An example of an ECG signal is shown in Figure 2.6 and relative to the

stages of the cardiac cycle in Figure 2.5.
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P

Q

R

S

T

Figure 2.6: Example of an electrocardiogram (ECG) signal for a single beat, including the P, Q, R, S and T
waves.

Since systole was defined as starting at the onset of ventricular contraction, it can be iden-

tified from an ECG QRS complex. By the strictest of definitions, systole starts with the

Q-wave (Talley et al., 1971; Newlin and Levenson, 1979; Balmer et al., 2018c). However,

since ECG lead locations influence both the presence of each wave and their peak promi-

nence (Guyton and Hall, 2011), it is not uncommon for systole to be marked by either the

R or S-waves (Guyton and Hall, 2011; Payne et al., 2006; Pitson et al., 1994), depending on

the level of accuracy required.

Isovolumetric Ventricular Contraction

The mitral valve closes when the pressure in the left ventricle reaches the pressure of the

left atrium, as shown in Figure 2.5. As the left ventricle contracts with closed mitral and

aortic valves, pressure builds rapidly at constant blood volume. This ideal case is known

as isovolumetric contraction, and lasts until the aortic valve opens.

Ventricular Ejection

When the pressure in the ventricle exceeds the pressure in the aorta, the aortic valve

opens, ending the period of isovolumetric contraction, as shown in Figure 2.5. Valve open-

ing begins a period of ejection of blood into the systemic circulation. Contraction still con-
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tinues and ventricular pressure continues to increase during the early part of ejection, but

at a decreased rate compared with the isovolumetric phase. During ejection, pressure in

the aorta rises and tracks closelywith the ventricular pressure. Initially, the rate of ejection

into the aorta is higher than the flow of blood to the periphery, causing arterial expansion.

The degree of this expansion depends on arterial compliance and ejection pressure, as per

Section 2.2.2 (Townsend et al., 2015). As the ventricle volume falls, eventually ventricular

pressure begins to fall, even while contraction continues. With up to 50% of the ejected

SV stored in the elastic nature of the large arteries (London and Pannier, 2010), and ven-

tricular ejection no longer exceeding blood flow to the periphery, the arterial walls begin

to passively contract. As this arterial contraction occurs, the aorta remains at a higher

pressure than the left ventricle, meaning the blood in the proximal aorta is driven back

towards the heart. This backflow is stopped by the snapping shut of the aortic valve. Valve

closure causes a dicrotic notch in the aortic pressure waveform, formed by wave reflection

(Section 2.5) off the aortic valve (Lewis, 1906). Thus, the dicrotic notch is clearest in proxi-

mal arterial pressure signals and is often used to determine the transition from systole to

diastole (Oppenheim and Sittig, 1995).

2.3.2 Diastole

Isovolumetric Relaxation

Following the ejection phase, the mitral and aortic valves are again both closed. Further-

more, the ECG T-wave has occurred, indicating ventricular repolarization, which causes

relaxation of the heart muscle, decreasing pressure within the ventricle. While left ven-

tricular ejection was occurring, right ventricular ejection was also occurring in a similar

manner, but moving blood through the pulmonary system, ending with oxygenated blood

filling the left atrium. Thus, as the left ventricular pressure fell through late systole and

start of diastole, the left artial pressure steadily increased, as shown in Figure 2.5. When

the left atrial pressure exceeds the ventricular pressure, the mitral valve opens, ending the

isovolumetric relaxation.
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Ventricular Filling: Rapid Inflow and Diastasis

Once the mitral valve opens, blood rapidly fills the ventricle. Thus, initially the volume

rises rapidly, but as the ventricle approaches its full state, filling plateaus. This plateau

in mid-diastole is known as diastasis and occurs just prior to atrial contraction, causing a

final forcing of blood into the ventricle under atrial induced pressure. This action ends

the cardiac cycle, with the depolarization process about to spread across the ventricle,

beginning the next cycle’s systolic contraction.

During diastole, the aortic pressure falls exponentially, as the stored blood volume in the

arteries moves towards the lower pressure periphery. The rate of decay depends on the

compliance and resistance of the arterial tree (Section 2.2.2), but can also be influenced by

reflected wave behaviour, discussed in Section 2.5.3.

2.4 Cardiac Performance

As discussed in Section 2.2.1, the heart’s main function is to move blood around the two

circulations. It does this task by ejecting a volume of blood into each circulation per cardiac

cycle, known as the stroke volume (SV). Section 2.3 covered the main stages of the cardiac

cycle: isovolumetric contraction, ejection, isovolumetric relaxation and filling. Measured

ventricular pressure and volume over the cardiac cycle forms a PV loop, as shown in Figure

2.7. This loop can be used to analyse cardiac performance (Sagawa, 1978; Knaapen et al.,

2007; Davidson et al., 2018).

The width of the PV loop, defined by the maximum andminimum volume, is the SV . There

are three main mechanisms through which this width and thus SV can change. Firstly, the

heart contractility could change, meaning a change in its force of contraction. Second, the

filling of the ventricle could change, altering the amount of blood in the ventricle at the

start of contraction. This input pressure guiding filling is known as the preload. Finally,

the load ventricular contraction must overcome to eject blood could change, known as a
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Figure 2.7: Example of an ideal PV loop for a single beat, including end-diastolic and end-systolic ventricle

pressures and volumes respectively (EDVP, EDVV , ESVP, ESVV), as well as their relations (ESPVR, EDPVR)
whose origin is the volume at zero pressure (V0). By definition, stroke volume (SV) is the difference be-
tween EDVV and ESVV .

change in afterload. The following sections explore these mechanisms and their effect on

SV through the PV loop.

2.4.1 Contractility/Inotropic State

Section 2.3.1 stated calcium ions resulted in muscle fibre contraction. More specifically,

the individual contractile units of the myocardium (Section 2.2.1), are the sacromeres. The

concentration of calcium ions available to the sacromeres is proportional to the contractile

force they can produce and the velocity with which they contract (Westerhof et al., 2010b).

An increase in contractile force is known as an increase in contractility, or an increase in

the inotropy.

During systole, as the ventricle empties, the pressure within the ventricle would fall with-

out the heart actively continuing to contract against the remaining volume. The change

in volume over which pressure can be maintained, is dependent on the contractility. An

increase in contractility decreases the end-systolic ventricular volume (ESVV) for the same

end-systolic ventricular pressure (ESVP) (defined in Figure 2.7), as per Figure 2.8. In other
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words, higher contractility sustains pressure in the ventricle to lower ventricle volumes.

This sustained pressure increases the ejection fraction, defined as the proportion of the

end-diastolic ventricular volume (EDVV) ejected as SV . Thus, on a PV loop, the contractil-

ity determines the ESPVR, which describes the maximum pressure development for any

given ESVV , the ESVP. An increase or decrease in contractility shifts ESPVR, altering the SV

as shown in Figure 2.8.
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Figure 2.8: Effect of ∆contractility on PV loop, showing an increase in contractility leads to a reduction in
ESVV , and visa versa.

2.4.2 Preload

Preload is defined as the stretch felt by the muscle fibres at end-diastole, as a result of

filling. Specifically, it is the sarcomere length within the muscle fibres that increases as

ventricular pressure and volume increase. The longer the sarcomere length, the more

myosin heads are activated and available for contraction, which is a second mechanism

through which the force of contraction can be increased (Guyton and Hall, 2011). Since

sarcomere length is an infeasible measurement in most situations, surrogate measures of

preload exist, such as EDVV and end-diastolic ventricular pressure (EDVP), which repre-

sent the degree to which the ventricle was stretched during the filling stage. Some of the
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factors that increase ventricular filling and thus preload include:

• Decreased venous compliance, which leads to increased venous pressure and can

increase the pressure gradient to the atria, increasing venous return, the flow rate to

the atria (Guyton and Hall, 2011).

• Increased atrial contraction, increasing volume of blood forced into the ventricle

prior to the atrio-ventricular valve closure described in Section 2.2.1.

• Reduced heart rate, leading to increased ventricular filling duration.

• Increased ventricular compliance, increasing the change in volume or amount of

stretch for a given change in pressure.

Preload is proportional to SV and this relationship is commonly referred to as the Frank-

Starling mechanism (Newlin and Levenson, 1979; Luecke and Pelosi, 2005). The Frank-

Starling mechanism is illustrated for PV-loops in Figure 2.9.
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Figure 2.9: Effect of∆preload on PV loop.
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2.4.3 Afterload

Afterload is the load that ventricular contraction must overcome to sustain the ejection

phase of systole. Section 2.3.1 stated left ventricular ejection begins when left ventricular

pressure (Pvent) > aortic pressure (Pao). Thus, the afterload is initially end-diastolic aortic

pressure (EDAP), signifying the end of diastole with respect to the aorta. EDAP is often a

surrogate measure for afterload (Newlin and Levenson, 1979). EDAP changes with arterial

stiffness and resistance to flow (see Section 2.2.2). Specifically, SV is inversely proportional

to EDAP as shown in Figure 2.10.
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Figure 2.10: Effect of∆afterload on PV loop.

While EDAP provides a simple afterload surrogate, in reality the load the ventricle must

eject against is changing throughout systole. This variability can be seen in Figure 2.5,

with the very nature of ejection increasing Pao, forcing Pvent to increase to maintain ejec-

tion. Therefore, other surrogate measures of afterload are also possible, for example end-

systolic aortic pressure (ESAP) or ESVP (Luecke and Pelosi, 2005).
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2.4.4 Changes in Cardiac Performance

Preload, afterload and contractility are dynamic variables changing in both the short and

long-term to optimise cardiac performance.

Short-Term Changes in Cardiac Performance

An example of short-term changes in cardiac performance occurs during exercise, where

oxygen demand increases. To meet this demand, respiration increases, but so too must

oxygen delivery. The working muscles respond by dilating their blood vessels. The net

effect is a reduction in systemic vascular resistance, which acts to reduce afterload, ulti-

mately increasing the blood flow and oxygen delivery to the tissue. The afterload reduction

increasing arterial blood flow, has a secondary effect of increasing flow to the venous sys-

tem and back to the heart, thus increasing preload. As covered in Section 2.4.2, increased

venous return leads to an increase in preload and subsequent increase in SV through the

Frank-Starling mechanism. This intrinsic autoregulation mechanism of the heart helps it

synchronise with the demands of the circulation (Guyton and Hall, 2011).

The body’s autonomous nervous system can also regulate the cardiovascular system. For

example the sympathetic nervous system can increase contractility and heart rate (HR),

leading to an increase in both SV (Figure 2.8) and cardiac output (CO) (Equation 1.1), re-

spectively. The parasympathetic nervous system can reduce HR and contractility as neces-

sary (Guyton and Hall, 2011).

Long-Term Changes in Cardiac Performance

As a person ages, the stiffness of their aorta increases (Nichols et al., 2011). This stiffen-

ing leads to slow, long-term changes in cardiac performance. Specifically, Section 2.2.2

stated that arterial compliance helped minimise resistance to flow in the arteries. Thus,

the opposite is also true, as compliance reduces, resistance to flow increases, representing

increasing afterload on the ventricle.
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To understand the inverse relationship between arterial resistance and compliance, first

consider the hypothetical case of ventricular ejection into a rigid arterial tree. In order for

the stroke volume to be ejected from the ventricle, it would need to displace an equivalent

volume of blood in the proximal aorta further along the arterial tree. However, in doing

so, the displaced blood from the proximal aorta would also need to find space further

downstream. Hence, the net result is the entire blood volume of the arterial tree would

need to be displaced in order to make room for the stroke volume. The average volume of

blood in a human is 5 l (Guyton and Hall, 2011). Thus, in a rigid arterial tree, the ventricle

would need to overcome the inertia associated with 5 l of blood to eject the stroke volume.

The force necessary to displace such a significant volume is much higher than the force of

contraction provided by the human heart.

Sections 2.2.2 and 2.3.1, highlighted how arterial compliance allowed some of the energy

produced by ventricular contraction to expand the arteries. The higher the compliance,

the larger the proportion of stroke volume stored in arterial expansion, thus reducing the

volume of blood already in the aorta needing to be displaced further along the arterial tree.

Therefore, it is the additional volume provided by the arterial expansion, that significantly

reduces the inertial load on the heart (London and Pannier, 2010).

Finally, as the compliance of the aorta reduces in the elderly, a larger proportion of the

energy produced by contraction, must go into displacing blood already in the aorta, further

along the arterial tree. Hence, the ventricle experiences the decreased aortic compliance

as an increase in proximal arterial resistance and an increase in afterload.

Section 2.2.2 also stated the compliance helped to dampen the pulsatile pressure. Accord-

ing to Equation 2.1 it is now clear that the pulse pressure is higher in elderly due to the

reduction in compliance leading to less change in arterial volume (∆V).

Reflected pressure waves are a second mechanism through which compliance increases

afterload in elderly. Section 2.5 will discuss how ventricular ejection produces a pressure

wave that is partially reflected back to the heart from downstream reflection sites. In
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elderly, the reduced compliance leads to faster return times of the reflected waves. When

the reflected waves return during systole, they act against the continuation of ventricular

ejection. Ultimately, the increase in afterload due to reduced compliance, leads to the

general trend of increasing mean arterial blood pressures with age (Nichols et al., 2011).

Other factors influencing cardiac performance are disease and interventions. Hence the

desire for continuous SV monitoring in a clinical environment, to diagnose cardiovascu-

lar dysfunction and observe the effect of treatments, as covered in Section 1.3. Chapter 5

Section 5.2 will cover the disease states and interventions induced in the experiments as-

sociated with this thesis, along with their effect(s) on preload, afterload and contractility.

The net effect being an alteration of SV , with the aim of capturing it with the developed

model.

2.5 Arterial Wave Theory

The intermittent nature of ventricular ejection causes pressure and flow waves to propa-

gate through the arterial tree. This phenomena is commonly referred to as the pulse wave

and is the focus of this section. The pulse wave should not to be confused with pressure

and flow waveforms, which show how pressure and flow change over time at a particular

point.

2.5.1 Pulse Wave Velocity (PWV)

Section 2.4.4 already alluded to a relationship between compliance and the speed of the

pulse wave. To understand this relationship, consider systolic ejection into a rigid versus

compliant arterial tree, as was done in Section 2.4.4. In the rigid system, ejection at the

aortic valve displaced all the blood along the arterial tree, in a manner that meant blood

downstream moved instantaneously with the push upstream at the valve.

However, as per Section 2.3.1, aortic compliance enables flow into the aorta to exceed

flow to the periphery during early ventricular ejection. The arterial expansion caused
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by the net increase in blood volume begins locally in the proximal aorta, as illustrated in

Figure 2.11. Thus, for a brief moment, blood in the distal aorta and distal arteries does not

experience the force of ventricular ejection. As the proximal aorta expands according to its

compliance (Equation 2.1), the local pressure increases. The net increase in blood volume

in the proximal aorta, combined with the significant increase in local pressure gradient,

eventually leads to the displacing of blood along the arterial tree. As blood is displaced

from the proximal aorta, it occurs in a manner that propagates the arterial expansion and

increases pressure along the arterial length, as shown in Figure 2.11. Thus, the increase in

pressure due to ejection begins locally in the proximal aorta, but takes time to propagate

along the arterial tree, causing arterial expansion as it does so. This propagating arterial

expansion is the pulse wave and the expansion can be felt in large arteries near the surface

of the skin, referred to simply as the pulse.

Left Ventricle Arteries

0.2m 1m

0s

0.1s

0.2s

0.3s

1s

Pulse wave front

Stroke Volume

0m

Figure 2.11: Schematic illustrating how ejection displaces blood along the arteries and expands the arterial

walls (blue pattern). The red pattern is a control volume representing the blood already in the aorta, and

illustrates its displacement contributing to the propagation of the pressure wave and arterial expansion

further downstream. The black arrows indicate the pulse wave front in each frame, illustrating how its

speed is much greater than the velocity of the bulk fluid flow (Modified from (London and Pannier, 2010)).
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Finally, in light of Figure 2.11, consider the effect of reducing compliance on the pulse

wave. As the compliance tends to zero, approaching the hypothetical rigid case, aor-

tic expansion is reduced and the pressure propagates along the arterial tree faster, as a

larger proportion of ventricular ejection goes into displacing blood along the arterial tree.

Assuming the blood is incompressible, when compliance reaches zero, pressure can be

thought of as propagating instantaneously, this limiting case is equivalent to infinite wave

speed.

Figure 2.12 shows how with increasing age, aortic PWV increases, in response to the re-

duced compliance discussed in Section 2.4.4. Since it is not feasible to measure compliance

directly, PWV is a common clinical surrogate. Specifically, when estimating arterial com-

pliance, it is most relevant to use aortic PWV (Blacher et al., 1999b; Laurent et al., 2006;

Nichols et al., 2011; Townsend et al., 2015; Balmer et al., 2018c). Aortic PWV is favoured

because the aorta accounts for most of the compliance of the arterial tree, as per Section

2.2.2, and it also changes significantly over a humans lifetime as per Figure 2.12.

∆
 

Figure 2.12: Changing aortic PWV (∆PWV) with age, as a surrogate for vessel stiffness/compliance. Taken
from (Nichols et al., 2011).

Finally, the inverse relationship between compliance and PWV is described by the Bramwell-

Hill equation (Bramwell and Hill, 1922):
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PWV =

√
V

ρC
(2.2)

Where ρ is blood density, V is the vessel volume and C is the compliance according to Equa-

tion 2.1. The Bramwell-Hill equation can also be expressed in terms of area compliance,

useful for vessels such as the aorta, whose area is easier to measure than its volume:

PWV =

√
A

ρCA
(2.3)

Where A is the vessel cross-sectional area and CA is the area compliance, defined as:

CA =
∆A

∆P
=
dA

dP
(2.4)

Assuming the area compliance is constant along a vessel’s length, the volumetric (Equation

2.1) and area compliances (Equation 2.4) are related by length:

C = CAL (2.5)

Thus, CA is sometimes know as the compliance per unit length.

The speed of the pulse wave can be calculated using two simultaneous pressure measure-

ments, as illustrated in Figure 2.13. When the pulse wave passes a measurement site, it

causes the sudden transition from the negative pressure gradient associated with the last

beats diastolic decay, to the sudden steep positive gradient of the current beats systole.

This transition feature is known as the foot of the waveform. The time difference between

each waveform’s foot, is the pulse transit time (PTT) between the two measurement sites.

If the distance (d) between the two measurement sites is known, the PWV can then be

calculated:
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PWV =
d

PTT
(2.6)

In the aorta, PWV is in the range of 4–12ms−1, and is proportional to the stiffness of the

artery (Murgo et al., 1980; Laurent et al., 2006; London and Pannier, 2010), where stiffness

is the inverse of compliance. PWV is significantly faster than the bulk fluid flow through

the aorta, which is on the order of centimetres per second (London and Pannier, 2010), as

illustrated in Figure 2.11.
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Figure 2.13: Simultaneously measured aortic arch and femoral pressures from a pig, showing the pulse

transit time (PTT), calculated using the foot-to-footmethod.

2.5.2 Waves in a Uniform Tube

If the arterial tree were a uniform tube of infinite length, the outgoing waves would not

be reflected, and the pressure and flow waveforms would have the same shape according

to Poiseuille’s equations (Westerhof et al., 2010e; Westerhof and Westerhof, 2017). In this

reflectionless system, neglecting blood viscosity PWV could be determined from the water

hammer equation (Papageorgiou and Jones, 1988; Khir and Parker, 2005; Westerhof and

Westerhof, 2017):
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PWV =
ZcA

ρ
(2.7)

Where ρ is the density of blood, A is the cross-sectional area and Zc is the characteristic

impedance of the vessel. Zc is defined as the ratio of change in pressure to change in flow,

in a reflectionless system:

Zc =
dPf
dQf

(2.8)

Thus, Pf and Qf are the forward-travelling pressure and flow waves in the tube, respec-

tively. Under these conditions, Zc is real valued, since Pf and Qf are in phase. If they were

out of phase, the impedance (Z) would have deviated from Zc, becoming complex, reflect-

ing their phase difference, and Equation 2.7 would not be applicable.

When using dP and dQ measured from the proximal aorta during the steep early systolic

rise, Equation 2.8 gives a reasonable approximation of aortic characteristic impedance

(Zc,ao) (Khir and Parker, 2005; Hughes and Parker, 2009). This is because in early ejection,

the proximal aortic measurements are the result of the forward-travelling pulse wave,

thus they have similar shape, as shown in Figure 2.14 (Khir and Parker, 2005; Laurent

et al., 2006; Westerhof and Westerhof, 2017). The PWV then calculated by Equation 2.7

will be similar to that found using the foot-to-footmethod of Figure 2.13.

However, the pressure and flow waveform shapes differ following their systolic rises, as

shown in Figure 2.14. Thus, the uniform tube model fails to describe wave propagation

and its effects on measured pressure and flow in the distributive nature of the arterial

tree (Mynard et al., 2015).
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Figure 2.14: Simultaneously measured aortic arch pressure and aortic flow (using aortic flow probe) from

a pig.

2.5.3 Waves and Reflections in a Network of Distensible Tubes

As covered in Section 2.2.2, the arterial tree contains many branches whose vessel prop-

erties change along their length. The aforementioned section explained how this ensured

adequate pressure and flow at the capillaries to optimise perfusion, and partly explained

the spatial dependencies of thewaveforms. However, these changing properties alsomean

impedance is not constant along the arterial tree. At locationswhere there is an impedance

mismatch, like a branching of the vessels, a proportion of the forward-travelling wave is

reflected, given by a reflection coefficient (Γ) in Equation 2.9 (Papageorgiou and Jones, 1988;

Wang and Parker, 2004; Khir and Parker, 2005; Westerhof et al., 2010e; London and Pan-

nier, 2010; Mynard et al., 2012; Mynard and Smolich, 2014b), defined:

Γ =
Zin − Zc
Zin + Zc

(2.9)
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Where Zc is the characteristic impedance, of the mother vessel, describing the forward-

travelling pressure and flow waves, while Zin is the input impedance, or impedance down-

stream of the mother vessel. Their difference is what causes wave reflection. In a re-

flectionless system, the input impedance is equal to the characteristic impedance and the

system is said to be impedance matched (Westerhof et al., 1969). Factors that contribute

to the input impedance include the vessel compliance, dimensions, peripheral resistance,

inertia of blood volume and timing of reflected waves (London and Pannier, 2010).

Given high PWV , a reflected wave can return from a reflection site within the time of a sin-

gle beat (Murgo et al., 1980; Westerhof and Westerhof, 2017). Thus, when measuring pres-

sure and flow in the arteries, their resulting waveforms are due to the initial forward trav-

elling wave, but also reflected waves. The return times of reflected waves vary, depending

on the distance from their reflection sites and if the wave is in fact a compounding of many

reflected waves (Laurent et al., 2006). Thus, reflected waves can be catagorised into two

types: distinct, meaning a reflected wave’s reflection site is known, or diffuse, meaning

a distinct reflection site is unknown since the reflected wave may be a compounding of

many reflected waves from many reflected sites (Westerhof et al., 2010d).

Distinct Waves

Murgo et al. (1980) identified some patients’ peak systolic aortic pressure followed a point

of inflection, and appeared as a secondary rise in pressure. By measuring pressure at

many places along the aorta, Murgo et al. (1980) showed the inflection point would appear

earlier on the systolic rise of a waveform the further themeasurement was from the heart.

This pattern continued until the measured waveform was from or just past the aortic-iliac

branch, causing the inflection point to disappear. Murgo et al. (1980) hypothesised the

aortic-iliac branch caused a distinct reflection site (Westerhof et al., 2010d), and the inflec-

tion point was due to the reflected wave propagating back to the heart. Supporting this

theory Murgo et al. (1980) found the time it took for the inflection point to propagate along

the aorta, back to the heart, was equal to the PTT, calculated from the foot-to-footmethod
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shown in Figure 2.13. Murgo et al. (1980) also noticed the reflected wave seemed to arrive

later in systole or in early diastole in younger patients. This behaviour appeared consistent

with lower PWV recordings in younger, more compliant arteries, where reflected waves

take longer to propagate back to the heart (Laurent et al., 2006; Westerhof et al., 2010d), as

breifly stated in Section 2.4.4. What Murgo et al. (1980) identified was a distinct reflection

site, leading to a distinct reflected wave and its effect of increasing the measured pressure

in the aorta, as shown in Figure 2.15.

Forward 
wavefront

1 second

50 mmHg

Reflected 
wavefront

Figure 2.15: Effect of the distinct aortic-iliac reflection site on measured pressure waveforms in the aorta.

Redrawn from (Murgo et al., 1980).

Diffuse Waves

Generally, the arterial tree is considered to be reasonably well impedance-matched, with

mismatches low enough to cause only partial wave reflection, particularly in the central

arteries (Westerhof et al., 1969). In other words, Zc ≈ Zin, leading to a low Γ in Equation

2.9. What is often less considered, is reflected waves can also be re-reflected, and since

the impedance mismatch in the backwards direction is much greater than the forward, a
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significant proportion of the reflected wave would be re-reflected to once more travel in

the forward direction (Westerhof et al., 1969). This phenomena is thought to focus wave

reflections in the periphery, known as wave trapping (Wang and Parker, 2004; Khir and

Parker, 2005; Mynard et al., 2015). The vast number of branches over short distances in

the periphery leads to diffuse waves: those that combine, making it difficult to identify in-

dividually reflected waves and their distinct reflection site. Inevitably, some diffuse waves

still propagate back to the heart throughout the course of a cardiac cycle.

Clinical Implication of Reflected Waves

Interventions causing vasodilation and vasoconstriction of the peripheral bed have been

shown to reduce and increase reflectedwaves returning to the heart, respectively (Nichols,

2005; Laurent et al., 2006). The early systolic arrival of reflected waves is of clinical rel-

evance since they increase the systolic pressure in the aorta, increasing afterload, as dis-

cussed in Section 2.4.4 (Nichols, 2005; Khir and Parker, 2005; Laurent et al., 2006).

The experimental methods of wave analysis are not of practical use in a clinical environ-

ment. However, the speed at which reflected waves return to the ventricle principally de-

pend on PWV , which increases with arterial stiffness, as discussed in Section 2.5.1. While,

measuring arterial stiffness directly is difficult, PWV serves as a suitable clinical surrogate

and is used as a predictor for future cardiovascular dysfunction (Nye, 1964; Blacher et al.,

1999a,b; Laurent et al., 2001; Cameron et al., 2003; Millasseau et al., 2005; Laurent et al.,

2006; Nichols et al., 2011; Ben-Shlomo et al., 2014).

2.5.4 Difference in Pressure and FlowWaveforms Shapes

Finally, Section 2.5.2 and Figure 2.14 showed the measured pressure and flow waveforms

had different shapes and implied this was due to reflected wave phenomena. So far, the

reflected wave examples focused on pressure, where the reflected waves lead to an in-

crease in the overall measured pressure waveform. These waves are known as compres-

sion waves.
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Flowwaves differ, having a negativemagnitude upon reflection, that is, the flowwaveform

they cause appears inverted (Westerhof et al., 1969, 2010d; Mynard et al., 2012; Mynard

and Smolich, 2014b; Westerhof and Westerhof, 2017). To understand why, consider the

effect of the reflected pressure wave with its positive magnitude on flow. Flow is driven

by a pressure gradient, travelling in the direction of lower pressure. When averaging the

pressure along the length of the arterial tree, this pressure gradient is highest at the heart

and lowest at the periphery, reflected in Figure 2.3. However, as a reflected pressure wave

moves back towards the heart, back towards the region of (on average) higher pressure, it

increases pressure in its local vicinity. Thus, just upstream of the reflected pressure wave

is in fact a region of lower pressure, creating a local pressure gradient that is opposing the

main flow direction. Therefore, the corresponding flow waveform it causes is negative,

acting against the bulk flow direction. Alternatively, the velocity wave can be used in

place of the flow wave, where a backwards travelling pressure wave causes deceleration

of the fluid, reflected in a backwards travelling velocity wave of negative magnitude (Khir

and Parker, 2005).

In addition, Figure 2.14 uses pressure and flowdata from the proximal aorta. It shows near

the aortic valve, once ejection ends, flow quickly measures zero. However, as discussed in

Section 2.2.2, during diastole the decaying pressure reflects the passive relaxation of the

large arteries as they expel flow to the low pressure periphery. Thus, in more peripheral

sites, measured flowwould remain positive through diastole (Mynard and Smolich, 2014b).

In summary, the changes in pressure and flowwaveformsmeasured along the arterial tree

(spatial changes), can be understood as the result of two phenomena: firstly the changing

of vessel properties, and secondly, more indirectly through reflected wave influence. The

temporal difference between pressure and flow waveforms measured at a particular lo-

cation in the arterial tree, are due to the differences in reflected pressure and flow wave-

forms.
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2.6 Summary

This chapter covers the necessary background physiology and nomenclature to under-

stand the analyses and discussion of later chapters. Specifically, it covered the anatomy

and function of the cardiovascular system, with particular focus on the systemic circula-

tion, since it is driven by left ventricular ejection, whose SV and flow waveform will be

estimated in coming chapters.

Furthermore, cardiac performance, measured by preload, afterload and contractility was

discussed. Understanding of these metrics is important in Chapter 5, as part of under-

standing the effect of interventions used in the experiments to attempt to alter SV /CO.

Finally, Section 2.5 covered arterial wave theory. Many of the models discussed through-

out this thesis are lumped models, where arterial properties are averaged, leading to a

simplification of the real cardiovascular dynamics. This aspect will be discussed further in

Chapter 4, but the context of the simplifications and their implications would be lost with-

out first having a background knowledge on the complex wave dynamics that are critical

to normal cardiovascular function.



CHAPTER3

Stroke Volume/Cardiac

Output Measurement

Techniques

3.1 Introduction

Chapter 1 briefly covered the need for monitoring stroke volume (SV)/cardiac output (CO),

with particular focus on unstable patients in intensive care with complex disease states

(Cecconi et al., 2014). It also outlined the limitations of current monitoring techniques,

exposing the potential for research to improve clinical care. However, until sufficient

background physiology and nomenclature could be covered, the specifics of measurement

techniques was not discussed. With a more thorough understanding of the cardiovascular

system from Chapter 2, this chapter examines the current state of the art in clinical and

experimental methods to measure and monitor SV and CO, in more detail.
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3.2 Ultrasound Techniques

3.2.1 Echocardiography

Echocardiography (“echo”) is commonly used to assess cardiac performance (Pandian et al.,

1994; Cecconi et al., 2014) and monitor unstable patients (Marik, 2013). Echo is an ultra-

sound imaging technique enabling a patient’s heart to be viewed non-invasively. Ultra-

sound imaging involves sending sound waves, at a frequency higher than human hearing,

into a medium. At any boundaries between mediums some of the sound will be reflected,

due to a change in the acoustic impedance. The echo is then detected and based on the

time between transmission and reception, and the strength of the echo, an image can be

constructed.

By recording images over time, clinicians can determine a patient’s SV and CO by tracking

volume change of the heart (Cecconi et al., 2014). The main advantage of the technique

is that it is non-invasive, explaining its routine use for diagnosis, management and follow

up of patients with suspected or known cardiac dysfunction. The main disadvantages are

that it is not continuous, the three-dimensional shape is inferred from two-dimensional

images, and that it requires a trained operator.

Despite the low invasiveness of the method, Wetterslev et al. (2016) conducted a system-

atic review comparing COmeasurements from echocardiography and pulmonary arterial

catheters and found the mean error across the studies to be > ± 30% (Wetterslev et al.,

2016). While the gold standard measure of CO is still debated (Wetterslev et al., 2016;

Moise et al., 2002; Tibby et al., 1997; Peyton and Chong, 2010; Dark and Singer, 2004), the

pulmonary arterial catheter is considered, at the least, a clinical standard (Wetterslev et al.,

2016; Dark and Singer, 2004; Yelderman, 1990). Thus, while echo is less invasive, it also ap-

pears less accurate compared to a clinical gold standard, which itself does not have perfect

accuracy (Chase et al., 2014).
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3.2.2 Aortic Flow Probes

Aortic flow probes are one of the most accurate means of measuring flow in the aorta.

The probes have been shown to have a correlation coefficient of r≈1 when used in a pig

study involving heart bypass and a roller pump to control flow (Dean et al., 1996). Some

commercial models are quoted with precisions of ±2% (Yang et al., 2013).

The probe contains a pair of ultrasonic transceivers, one upstream of the other. When the

downstream transceiver emits soundwaves, to be detected by the upstream transceiver,

they must travel against the flow and are slowed. When the upstream transceiver emits

soundwaves, to be detected by the downstream transceiver, they travel with the flow and

hence travel faster compared with their downstream counterparts. The difference be-

tween the transit times of the two transceivers can then be related to the flow velocity in

the aorta and subsequently converted to a volumetric flow rate knowing the area of the

vessel (Eren, 1998). By integrating flow over time, a measure of CO or SV can be found

(Dean et al., 1996), as shown later in Section 5.4.4.

The main disadvantage of this technique, is it is highly invasive, since a probe must be fit

physically around the aorta. For this reason it is limited to experimental studies, rather

than the clinical environment. A second disadvantage is due to the probes location, it is

usually placed near the root of the aorta, but some blood flow can still have passed into

coronary arteries via this juncture (Yang et al., 2013; Kamoi, 2016). Finally, the angular

positioning of the probes transceivers must be correct to minimise constructive and de-

structive interference caused by reflected waves (Eren, 1998).

3.2.3 Trans-Esophageal Doppler Ultrasound

Trans-Esophageal dopplermonitoring can be used to estimate CO relatively non-invasively

by measuring the cross sectional area of the descending aorta and the velocity of blood

(Dark and Singer, 2004; Chaney and Derdak, 2002). As evident from its name, velocity

is computed from the change in frequency of the emitted versus reflected sound waves,
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Figure 3.1: Transonic Scisence’s (Transonic, Ithaca, NY, USA) aortic flow probe, similar to the type used in

the experiments discussed in Chapter 5.

known as the Doppler principle. While it is less invasive than the aortic flow probe, the

trade-off is it is more difficult to position correctly, in the esophagus at an angle of 20°

(Chaney and Derdak, 2002; Marik, 2013), rather than fixed around a vessel. A second issue

with this technique, is vessels have branched off prior to the descending aorta, taking a

proportion of the blood flow . As a result, a correction factor must be applied to account

for the blood not passing the probe when calculating SV /CO (Chaney and Derdak, 2002;

Marik, 2013).

3.3 Ventricular Admittance Catheters

Admittance Catheters measure the changing electrical conductance within the ventricle,

to deduce changes in ventricular blood volume. The catheter itself is comprised of source

and sensing electrodes, as well as a pressure sensor. It is placed directly into the ventricle

where an oscillating voltage is then applied to the source electrodes, and the voltage differ-

ence between the source and sensors electrodes is measured over time (Transonic Sys Inc,

2013). The difference in voltage between the source and sensor is inversely proportional

to the conductance according to Ohm’s law.

The conductingmediumbetween the source and sensor is both the blood andmuscle fibres

of the ventricle (Transonic Sys Inc, 2013). Since the aim is to measure the fluctuations in



CHAPTER 3. STROKE VOLUME/CARDIAC OUTPUT MEASUREMENT TECHNIQUES 41

ventricular blood volume, the conductance of the muscle fibres needs to be accounted for

and its contribution removed. Further complicating the issue, muscle fibre conductance

also varies with time. A time varying correction factor was developed by Wei et al. (2005),

which isolates the conductance’s associated with blood volume and the myocardium re-

spectively (Wei et al., 2005). This empirical correction factor relies on an initial measure

of SV to calibrate. Wei’s Equation is then used to calculate the volume of blood measured

over the duration of a beat (Wei et al., 2005). SV can be calculated via the difference be-

tween EDVV and ESVV , as per Figure 2.7, and discussed later in Section 5.4.4. A detailed

work through of the mathematics relating the conductance to the blood volume can be

found in (Porterfield et al., 2009).

Similar to the aortic flow probe, the clinical applicability of the admittance catheter is

limited by its highly invasive nature. Furthermore, placing a catheter in the ventricle can

impede the function of the atrial-ventricular valves (Evans et al., 2009). As a result, the

risks outweigh the benefits in an ICU environment.

3.4 Indicator Dilution Methods

The general principle of indicator dilution methods, is to introduce a known amount of

a substance into the bloodstream and determine SV /CO based on how the substance dis-

tributes (Tibby et al., 1997). The substance can be a dye or chemical, or fluid at a particular

temperature (Tibby et al., 1997).

Thermodilution is a reliable measure of SV /CO and the most common of the indicator di-

lution methods. It is where a fluid of lower temperature than the blood is injected into

the bloodstream and the temperature change it causes can be measured by a thermistor-

tipped catheter downstream of the injection site. Typically, saline is injected into a blood

vessel upstream of the hearts right atrium and the thermistor is located just downstream

of the right ventricle in the pulmonary artery (Nishikawa and Dohi, 1993; Pearl M.D., Ph.D.

et al., 1986; Sorensen et al., 1976). Cardiac output can be related to the temperature change
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based on the Stewart-Hamilton equation:

CO =
(Tb − Ti)ViK∫

∆Tbdt
where K =

ρiSi
ρbSb

(3.1)

Where Tb is blood temperature before injection of the bolus, Ti is the temperature of the

indicator, Vi is the volume of the indicator and K is a ratio of the density (ρ) and specific

heat1 (S) of blood and the indicator, respectively.

Equation 3.1 has many assumptions resulting in the systems between the injection site

and detection site being treated as a single inflow, single outflow tube (Zierler, 1962). For

example:

• Conservation of mass cannot be achieved if there is branching in the vessel between

the injection site and detection site.

• The volume of indicator injected is time dependent. Only in the ideal theoretical

sense can the indicator volume be injected instantaneously.

However, the violation of these assumptions and others when applying the method to a

real vascular system, have been well justified (Zierler, 1962). As a result, the method is

used in numerous clinical and experimental settings, including thewell-known Swan-Ganz

Catheter, discussed later in Section 3.4.1.

The main disadvantages of thermodilution are it is invasive and discrete, requiring addi-

tional saline injections for an updated CO. These disadvantages makes the technique unde-

sirable for extended monitoring of unstable patients. Continuous thermodilution cardiac

output techniques have been developed (Yelderman, 1990). These techniques can rely on

direct heating of the blood, without needing to introduce an external fluid indicator. How-

ever the fluid bolus method still remains the clinical standard.

Thermodilution is not the only indicator method available. The LiDCO system (Section

1Specific heat is usually given the label C, but in this thesis C is already used for volumetric compliance.
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3.5.2) uses a lithium dilution indicator method, which utilizes the change in concentration

over time tomeasure the cardiac output. However this method is less common and equally

invasive.

3.4.1 Pulmonary Artery Catheter (PAC)

In 1970 Dr William Ganz and Dr Jeremy Swan invented the Swan-Ganz Catheter, known

today as the pulmonary artery catheter (PAC). The PAC is passed through the right heart

and into the pulmonary artery with a thermistor near the tip. Through another port on

the catheter the thermodilution indicator can be introduced directly into the atrium of the

right heart (Sorensen et al., 1976). Hence, the PAC uses thermodilution tomeasure the right

heart cardiac output using Equation 3.1.

Passing a catheter through the right heart is inherently highly invasive and the use of a

PAC in of itself can cause additional complications for a patient (Dark and Singer, 2004;

Evans et al., 2009; Matthieu et al., 2008). Previous studies have shown right heart catheter-

isation in patients suffering from shock, sepsis and acute myocardial infraction in the ICU,

is likely to lead to significant increases in hospital cost, length of stay and mortality (Con-

nors et al., 1996; Dalen and Bone, 1996). For patients with sepsis in combination with right

ventricle dysfunction, is has been suggested PACs may be inadequate for the detection of

left ventricle dysfunction (Vieillard-Baron and Cecconi, 2014).

Furthermore, PAC COmeasurements have recently been shown to have systematic error of

±26%, and are less accurate when therapies that alter CO are used (Yang et al., 2013). These

issues makes it a suboptimal form of COmonitoring for patients with cardiac dysfunction,

which is itself the target patient group. Despite these issues, the PAC is still considered by

some as the gold standard CO technique, to which new technologies are often compared

(Dark and Singer, 2004; Yang et al., 2013; Gust et al., 1998; Sakka et al., 2000). Others still

state there is no gold standard measure of CO, but the PAC is simply a clinical standard

(Wetterslev et al., 2016).
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Despite the general acknowledgement that the PAC is a reliable discrete method, its use is

declining due to it invasiveness, in favour or less invasive methods (Cecconi et al., 2014).

These issues highlight the limited quality of measurement comparators in assessing new

methodologies (Chase et al., 2014).

3.4.2 Transpulmonary Thermodilution

A less invasive alternative to the PAC is a similar method called transpulmonary thermod-

ilution. This method still uses thermodilution, but with a thermistor normally in the ab-

dominal aorta or femoral artery (Cecconi et al., 2014). Transpulmonary thermodilution

still introduces the bolus upstream of the right heart but measures CO of the left ventricle

down at the thermistor (Gust et al., 1998). Depending on the exact location of the ther-

mistor, some introduced indicator will branch down a major artery before reaching the

thermistor. Therefore, conservation of mass will be violated for Equation 3.1. While this

method is less invasive, it still shares many of the same issues as the PAC. The main dis-

advantage being the method on its own is discrete, requiring successive indicator to be

administered to get successive COmeasurements.

In healthy patients, CO measurements at the right and left ventricles usually equate, al-

though transpulmonary thermodilution does tend to result in slightly higher CO than cor-

responding PACmeasurements (Tibby et al., 1997; Gust et al., 1998; Sakka et al., 2000; Godje

et al., 1998; Segal et al., 2002). Transpulmonary thermodilution bias may be due to a com-

bination of indicator loss and a reduction in heart rate (Sakka et al., 2000; Chaney and

Derdak, 2002). In particular, the cold fluid can induce a temporary reduction in heart

rate, the same reason room temperature indicator is argued as being preferable in the

PAC (Nishikawa and Dohi, 1993). Finally, ventricle dysfunction may result in a divergence

of these values (Chaney and Derdak, 2002), as could positive pressure ventilation (Goedje

et al., 1999). Hence, there are several courses for potential bias and error.
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3.5 Commercial Pulse Contour Analysis (PCA) Devices

Chapter 2 described how the heart provides the high pressure necessary to move blood

through the circulation. Thus, there is a relationship between the pressure gradient and

flow through the system. Pulse contour analysis (PCA) methods combine a measured ar-

terial pressure waveform with mathematical models, attempting to relate the measured

pressure to a continuous flow and/or SV estimate (see Chapter 4). They are usually non-

additionally or minimally invasive, with some requiring a calibration SV measure to esti-

mate patient specific model parameters, from the likes of thermodilution or similar tech-

nique (Marik, 2013). Those not requiring calibration, use a patient demographic database

(i.e age, gender) to estimate model parameters (Grensemann, 2018).

Critchley and Critchley (1999) suggested acceptance of new CO estimation methods should

be based on a maximum of ±30% limits of agreement, when using Bland-Altman to com-

pare the new method with a reference method, such as thermodilution. The ±30% cri-

terion considers the reference method to contribute ±10–20% error. This criteria allows

new PCA methods clinical applicability to be assessed.

3.5.1 PiCCO

PiCCO (Pulsion Medical Systems, Germany) is an improvement on PAC, as it is less inva-

sive, sometimes being non-additionally invasive for ICU patients (Segal et al., 2002; Philips

Electronics North America Corporation, 2002). The method requires central venous and

arterial catheterisation, along with a transpulmonary thermodilution measurement to cal-

ibrate the pulse contour analysis parameters relating pressure and flow, to determine CO

(Buhre et al., 1999). Specifically, thermodilution calibration relates the pressure of the

catheterised artery to its compliance. The equation for CO is given in the manufacturers

guide (Philips Electronics North America Corporation, 2002; Gödje et al., 2001), as heart

rate (HR) multiplied by the terms that estimate SV . Although, as a commercial product, the

exact algorithms used for the full implementation are not disclosed, representing some-
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what of a black-box measurement to the user.

As long as a patient remains relatively stable, a single calibration enables CO to be contin-

uously monitored using the arterial pressure pulse contour and a computer algorithm.

However, re-calibration is required when there is a significant change in the hemody-

namic state (Marik, 2013; Goedje et al., 1999; Philips Electronics North America Corpora-

tion, 2002; Rödig et al., 1999). Even in a stable patient, the manufacturer and other studies

recommend recalibration occurs every 4-6 hours (Marik, 2013; Philips Electronics North

America Corporation, 2002; Buhre et al., 1999; de Wilde et al., 2008).

Finally, as previously discussed in this section, it is sometimes desirable to limit fluid ad-

ministration in unstable patients and this issue is a further drawback of all the thermodi-

lution methods. PiCCO is no different, especially when the manufacture still recommends

three transpulmonary thermodilutions per calibration (Philips Electronics North America

Corporation, 2002).

3.5.2 LiDCO

LiDCO (LiDCO System, UK) is a pulse contour analysismethod calibrated using a lithiumbo-

lus. It uses a change in concentration approach, rather than the thermodilution technique,

asmentioned in Section 3.4. Instead of relating pressure to flow, the algorithms relatemea-

sured pressure to volume of the arterial tree (Montenij et al., 2011). This method has been

shown to have similar performance when compared to other thermodilution calibrated

PCA methods like PiCCO (Hadian et al., 2010; Montenij et al., 2011; Marik, 2013). Once

again, recalibration is recommended every 8 hours or after acute hemodynamic changes,

due to either changes in disease state or clinical intervention (Montenij et al., 2011; Marik,

2013).
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3.5.3 FloTrac/Vigileo

FloTracTM (Edwards Lifesciences, USA) is marketed as a PCA method which can calculated

CO and SV variation without requiring external calibration, thus removing the invasive-

ness caused by indicator dilution methods (Slagt et al., 2014). Invasiveness is reduced

further by using a peripheral arterial pressure line (Montenij et al., 2011). Instead of pa-

rameter identification via a calibration, it uses patient demographic and physical charac-

teristics from the waveform. The exact algorithm the device uses is undisclosed and the

method is thus difficult to critique. The device has had numerous software updates, which

are said to improve performance by detecting and accounting for different hemodynamic

conditions, e.g. hypertension.

Slagt et al. (2014) conducted a review of the device, drawing on data collected from 2234

patients. The results suggested the FloTrac/Vigileo was able to monitor CO with an average

error less than 30% relative to a reference method, within the suggested criteria of Critch-

ley and Critchley (1999). However, other studies have shown various FloTrac iterations

have clinically unacceptable error when tracking changes in SV due to interventions (Ha-

dian et al., 2010; Montenij et al., 2011; Marik, 2013), which is a critical clinical goal. It is pos-

sible the methods reliance on population demographic data favours healthy, stable patient

behaviour, or introduces other biases since it is not more patient specific. Thus, in unsta-

ble patients it may bemore beneficial to have patient specificmodel parameters, available,

for example, to LiDCO and PiCCO through an initial calibration and re-calibrations as nec-

essary.

3.5.4 esCCO

esCCO (Nihon Kohden®) is a truly non-invasive CO monitoring method, using an electro-

cardiogram (ECG) and photoplethysmogram (PPG) signals along with a pressure cuff. The

arterial compliance is then estimated using a combination of pulse transit time (PTT), pulse

pressure and patient demographic data (age, sex, height and weight) (Bataille et al., 2012).
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Unfortunately, despite its non-invasive nature, the method has been shown to have poor

performance, falling well outside the clinically acceptable accuracy outlined by Critchley

and Critchley (1999), with errors of 49 - 61% reported (Bataille et al., 2012; Obata et al.,

2017).

Using PTT from the peripherymay be a contributor to the high errors of the device. Specif-

ically, Section 2.2.2 discussed how compliance is mostly associated with the large arteries

and particularly the aorta. Section 2.5.1 went on to explain how compliance was inversely

proportional to pulse wave velocity (PWV), and when assessing arterial compliance/stiff-

ness, it is most relevant to measure PTT along the aorta (Blacher et al., 1999b; Laurent

et al., 2006; Nichols et al., 2011; Townsend et al., 2015; Balmer et al., 2017, 2018c). In con-

trast, measuring PTT to the periphery includes the stiffer peripheral arteries and arteri-

oles, resulting in a more average arterial compliance, underestimating the compliance of

the aorta (Balmer et al., 2018c).

In addition, PTT was measured from the ECG R-wave to the foot of the PPG signal. Thus,

it is in fact not PTT, since the ECG R-wave does not signify the onset of ejection and a

pulse wave, but ventricular contraction (Section 2.3.1). What has actually been measured

is pre-ejection period (PEP)+PTT, where PEP is the duration from start of ventricular con-

traction, up to start of ejection. Therefore, the inclusion of PEP will overestimate the true

PTT, underestimating PWV (Balmer et al., 2017, 2018c). Additionally, since PEP varies in-

dependent of PTT, ∆PWV would also incur error (Balmer et al., 2017, 2018c). These facts

are of particular importance to this research and will be discussed in detail in Chapter 7.

3.6 Summary

This chapter summarised and analysed the commonmethods available to measure SV /CO.

Generally, methods with high accuracy were of limited clinical use, either due to their in-

vasiveness (flow probe and admittance catheter) and/or due to their discrete nature (PAC).

PCA methods sought to overcome the limitations of more direct measures of SV /CO, by
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using mathematical models and parameters to estimate a relationship between arterial

pressure and flow/volume. Models with the highest accuracy tended to be those using

established calibration techniques, which are still invasive, but enable these discrete mea-

sures to facilitate continuous monitoring. PiCCO is one of the more common PCA devices

and has reasonable clinical accuracy, particularly in stable patients.

However there is still room for improvement in this space, particularly with regard to

monitoring patients during unstable hemodynamics. Although PCA methods use a pres-

sure waveform to infer some form of relationship to flow/volume, they return the clin-

ically relevant SV /CO rather than an actual flow waveform estimate. However, Chapter

6 will show a PCA method whose SV accuracy was claimed to be clinically acceptable,

but whose algorithm and implementation can lead to an unphysiological relationship be-

tween pressure and flow (Chapter 9). It is possible other commercial devices SV estimation

is based on the same unphysiological flow waveform behaviour, but without the devices

giving access to a flow waveform, it is not possible to know. However, access to a flow

waveform estimate may help clinicians assess whether the resulting SV /CO estimates are

derived from sound patient parameter identification, particularly following changes in

patient hemodynamic state, which may not be otherwise indicated. This information may

also help to indicate if and when re-calibration of the model is necessary.

The next chapter will explore the progressive development of PCA methods, which are

fully described in literature as a foundation going forward in this research. The founda-

tions of the different methods can be traced back to similar roots, but their implementa-

tion highlights their novel aspects. These models greatly influenced the development of

the PCA method developed in this thesis, and likely the models implemented in the com-

mercial devices of Section 3.5.
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CHAPTER4

Physiological Models

4.1 Introduction

Chapter 3 covered the common commercially available pulse contour analysis (PCA) based

stroke volume (SV)/cardiac output (CO) monitoring devices. The exact algorithms and im-

plementation are not fully disclosed for the commercial products, making their method-

ologies difficult to critique. This chapter focuses on PCA methods fully described in litera-

ture. Their description allows others to test and address their shortcomings, aiding in the

development of improved models.

Often, in experimental settings, it is possible to measure and monitor dynamics not com-

monly measured in a clinical setting. The additional measures available in experimental

settings can lead to the development of more complex cardiovascular models, which cap-

turemore of the dynamic nature of the cardiovascular system. The challenge is then taking

an experimental model and implementing it in a clinically relevant manner. Since clinical

relevance is one of the primary goals of this thesis (Section 1.4), this chapter focuses on

those models and their implementation, leading to the development of the PCA method

presented in this thesis.
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4.2 The Corrected Characteristic Impedance Method

Equation 2.8 presented a method of calculating characteristic impedance as the ratio of

changing pressure with changing flow. Measured pressure and flow waveforms from the

aorta (Pao, Qao) show how these variables change over the time of a beat. Thus, if the

characteristic impedance of the aorta (Zc,ao) was known, Qao could be estimated from the

Pao waveform. However, Section 2.5.2 noted Equation 2.8 applied to the forward travelling

pressure and flow waves, while Section 2.5.4 explained the difference in shape between

Pao andQaowas due to reflectedwaves. This difference is why Section 2.5.2 stated Equation

2.8 is invalid when applied to the whole arterial waveform, but approximated Zc,ao when

using only the systolic upstrokes of Pao and Qao.

Wesseling (1983) recognised, even if Equation 2.8 could not exactly estimate the aortic flow

waveform shape, what was clinically relevant was SV . Since SV was ejected during systole,

Wesseling (1983) hypothesised a reasonable SV estimate could still be achieved using the

whole systolic part of Pao, as shown in Figure 4.1, and Zc,ao, according to the following

equation:

SVest =

tes∫
0

Qest(τ)dτ ≈ 1

Zc,ao

tes∫
0

Pao(τ)dτ (4.1)

Where tes is end-systole and Qest is the estimated flow. Here, the use of approximately

equal to (≈) is in recognition that even though the integration happens only over systole,

as previously stated, this approach will not result in a physiological accurate flow profile.

However, it is still possible a Zc,ao value can be found that scales the unphysiological Qest,

such that a physiological SV value can be found.

For example, Jansen et al. (1990) used this method to estimate cardiac output (COest), by

multiplying Equation 4.1 by heart rate (HR), as per Equation 1.1. Zc,ao was initially esti-

mated (Zc,ao,init) by an empirical equation, depending on patient age, HR and mean Pao.
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Figure 4.1: An example of the systolic area calculated as part of Wesseling (1983) corrected characteristic
impedancemethod.

This method allowed an initial COest (COest,init). The value of Zc,ao was then “corrected”

using a calibrating COmeasure (COmea) from thermodilution:

Zc,ao =
COest,init
COmea

Zc,ao,init (4.2)

Continuous CO could be estimated based on the calibrated Zc,ao. Hence, Wesseling et al.

(1993) later referred to this method as the “corrected characteristic impedance” method,

which, despite its simplicity, provided evidence for the potential of PCA based models to

estimate difficult to (directly) measure physiology. The fact it is possible to estimate an un-

physiological flow profile, which if scaled correctly, can still provide an accurate estimate

of SV , is also relevant to this thesis and will be discussed and further extended in Chapter

9.

Interestingly, PiCCO uses a similar approach to the corrected characteristic impedance

method. While Section 3.5.1 stated the algorithms and implementation of PiCCO are not

fully disclosed, the equation used to estimate CO is shown in the device documentation

alongwith limited explanation (Gödje et al., 2001; Philips Electronics North America Corpo-

ration, 2002). It uses the area under the systolic part of the measured pressure waveform,

as per Figure 4.1, along with a thermodilution calibration of model parameters. It differs
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from the corrected characteristic impedance method by factoring the storage phenomena

of the arterial tree, compliance, as per Section 2.2.2 (Gödje et al., 2001; Philips Electronics

North America Corporation, 2002; de Wilde et al., 2008). Thus, it appears to fit somewhere

between the corrected characteristic impedance method and windkessel based methods.

4.3 The Arterial Windkessel

The arterial windkessel forms the basis of many of the cardiovascular models applied to

the systemic circulation covered throughout this thesis. Thus, this section covers the form

and governing equations as used by the author, with variations covered in later sections

relevant to specific models.

4.3.1 The Arterial Windkessel Theory

As covered in Section 2.2.2, compliance (C) of a vessel describes how its volume changes for

a given change in pressure (Equation 2.1). The relatively high compliance of the large cen-

tral arteries, compared to the periphery, enables them to store and release blood volume,

during systole and diastole respectively. Thus, this compliance smoothes discontinuous

ventricular ejection into semi-continuous blood flow through the arterial system (Frank,

1889; Westerhof et al., 1969; Oppenheim and Sittig, 1995; London and Pannier, 2010).

The storage-like behaviour of the arterial system is well described by Frank (1889), as the

two-element windkessel, represented by a resistor (R) and capacitor (C) in parallel. The

capacitor represents the storage or reservoir (volumetric) compliance of the arterial tree,

and the resistor accounts for the pressure drop associatedwith the reservoir emptying into

the periphery and subsequent venous system (Westerhof et al., 2009, 2010a). By lumping

or averaging the vessel dynamics into single circuit elements, the model does not account

for the wave propagation and reflections covered in Section 2.5.3 (Westerhof et al., 2009;

Westerhof and Westerhof, 2017).

The two-element windkessel closely predicts a measured arterial pressure waveform dur-
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ing diastole, but is a poor predictor of measured systolic pressure (Westerhof et al., 2009;

Westerhof and Westerhof, 2017). Westerhof et al. (1971) sought to improve prediction by

adding an input impedance element (Zin) in series with the parallel RC circuit, to create the

three-element windkessel. This additional element represents the impedance overcome

by ventricular contraction to eject blood into the windkessel/reservoir component (West-

erhof et al., 2009, 2010a). Since reflected waves are still not accounted for by the model,

the windkessel input impedance is in fact a characteristic impedance Zc,w, according to the

definitions given in Sections 2.5.2 and 2.5.3 (Westerhof et al., 2009). Hence, it acts like, and

is represented by, a resistor in Figure 4.2a, causing a pressure drop associated with the

filling of the windkessel.

Specifically, Westerhof et al. (1971) showed by using aortic characteristic impedance (Zc,ao)

for Zc,w, estimated via the water hammer equation (Equation 2.7), the three-element wind-

kessel vastly improved pressurewaveform estimation during systole over the original two-

element model (Westerhof et al., 1971, 2009; Westerhof andWesterhof, 2015). In summary,

the three-element windkessel model, shown in Fig 4.2a, is capable of describing global ar-

terial tree behaviour based on pressure and flow relations in the large arteries. However,

it is limited by design, in its ability to simulate spatially varying properties and dynamics

(Westerhof et al., 2009; Westerhof and Westerhof, 2017).

4.3.2 Three-Element Windkessel Hydraulic Equations

For a particular beat whose start of systole is treated as time zero (t0 = 0), the key model

hydraulic equations, describing the equivalent circuit analogy of Fig 4.2a, are defined:

Pmea(t) = Pex(t) + Pres(t) (4.3)

where Pmea is the pressure waveform measured by an arterial catheter.
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Figure 4.2: The three element windkessel model. Pmea is the measured pressure in an artery. Pres is the

modelled reservoir pressure and Pcvp is the pressure downstream of the reservoir, assumed to be the

central venous pressure. Qin is flow ejected from the ventricle, QC is the flow stored in the reservoir and

QR is the flow out of the reservoir, equivalent to Qout.

In the real arterial tree, Pmea varies over time and space, per Section 2.2.2. However, the

lumping of arterial tree properties removes the spatial dependency, thus Equation 4.3 is

assumed to vary only with time. Pex is the excess pressure produced by ventricular con-

traction in order to eject blood into the reservoir (Qin) (Westerhof et al., 2010a). Therefore,

it is the pressure drop across the Zc,w element, equivalent to Ohms Law and defined:

Zc,w =
d(Pmea(t)− Pres(t))

dQin(t)
=
Pmea(t)− Pres(t)

Qin(t)
=
Pex(t)

Qin(t)
(4.4)

Thus, in theory, if a measured flow waveform is used for Qin, the Pex waveform should

share its shape, where Zc,w is simply the scalar relating them:

Pex(t) = Qin(t)Zc,w (4.5)

Since end-systole (tes) marks the end of ventricular ejection, Qin(t ≥ tes) = Pex(t ≥ tes) = 0.
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Therefore, during diastole (t≥tes), according to Equations 4.3, the measured pressure is

simply the pressure decay associated with the emptying reservoir Pres. The implication of

this will be made clear later in this section.

The flow, Qin, can be separated into QC and QR, analogous to current in an electric circuit.

QC is stored in the capacitor during systole and subsequently released during diastole,

capturing vessel compliance. Flow out of the reservoir is the flow through the resistive

element QR. These definitions yield:

Qin(t) = QC(t) +QR(t) where QR(t) ≡ Qout(t) (4.6)

The pressure drop associated with the emptying of the reservoir is then defined:

Pres(t)− Pcvp(t) = QR(t)R = Qout(t)R (4.7)

Where Pcvp is the central venous pressure downstream of the lumped arterial reservoir, as

shown in Fig 4.2a.

The changing pressure and volume of the modelled reservoir as it fills and empties is gov-

erned by its compliance, analogous to the relationship between stored charge and voltage

potential of a capacitor. The volume stored in the reservoir over time (Vres) depends on

the cumulative difference between flow in (Qin) and out (Qout) and thus QC, according to

Equation 4.6. Therefore, the compliance of the reservoir can be written:

C =
dVres(t)

d[Pres(t)− Pcvp(t)]
=

QC(t)dt

d[Pres(t)− Pcvp(t)]

≈ [Qin(t)−Qout(t)]dt
dPres(t)

when
dPcvp(t)

dt
<<

dPres(t)

dt

(4.8)
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Equation 4.8 assumes changes in Pcvp are small within a given beat, relative to changes

in Pres, simplifying the model equations. Alternatively, similar model accuracy can be

achieved by assuming Pcvp is a constant value (Kamoi et al., 2017).

By rearranging Equation 4.8, an ordinary differential equation (ODE) describing how reser-

voir pressure changes through the course of a beat can be derived:

dPres(t)

dt
=
Qin(t)−Qout(t)

C
(4.9)

Substituting Equations 4.3, 4.5 and 4.7 into 4.9, yields:

dPres(t)

dt
+ Pres(t)

(
1

Zc,wC
+

1

RC

)
=
Pmea(t)

Zc,wC
+
Pcvp(t)

RC
(4.10)

Equation 4.10 can be solved using the integrating factormethod to describe a beat’s reser-

voir pressure in terms of Zc,w, R, and C:

Pres(t) = e
−( 1

Zc,wC
+ 1
RC )t

( t∫
0

[
e
( 1
Zc,wC

+ 1
RC )τ

(
Pmea(τ)

Zc,wC
+
Pcvp(τ)

RC

)]
dτ + Pmea(0)

)
(4.11)

Where Pmea(0) is the pressure at the start of a beat (t0 = 0). A reminder, here Pcvp is still

shown as a variable with respect to time, but, as mentioned earlier, since its magnitude

and variability is much less than arterial pressure, assuming a constant value has little

impact on model performance (Kamoi et al., 2017).

Systolic Versus Diastolic Model Behaviour

Equation 4.11 describes the pressure for the entire beat, both systole and diastole, in terms

of the three-element windkessel model. However, it is worth noting how this equation

behaves during diastole. Returning to Equation 4.5 and how Qin(t ≥ tes) = Pex(t ≥ tes) = 0,
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it was stated this equality would lead to Pres describing Pmea during diastole, according to

Equation 4.3, yielding:

Pmea(t ≥ tes) = Pres(t ≥ tes) (4.12)

Thus, for diastole only (Qin = 0), Equation 4.9 would become:

dPres(t)

dt
=
−Qout(t)

C
where (t ≥ tes) (4.13)

And, similar to the full beat case, substituting Equation 4.7 into 4.13 gives:

dPres(t)

dt
=
Pcvp(t)− Pres(t)

RC
where (t ≥ tes) (4.14)

At this point it should be no surprise the changing reservoir pressure during diastole

(
dPres

dt
) is only a function of parameters R and C, and downstream pressure (Pcvp), since

during diastole the reservoir is strictly emptying, no longer being filled by ventricular con-

traction. This form of the ODE can be solved in a similar manner as Equation 4.10. The

result is an equation describing the diastolic decay of the reservoir pressure, and, accord-

ing to Equation 4.12, it also approximates the measured pressure decay:

Pmea(t ≥ tes) = Pres(t ≥ tes) = e
tes−t
RC Pmea(tes) + e

−t
RC

t∫
tes

e
τ
RC

Pcvp(τ)

RC
dτ (4.15)

By assuming Pcvp is constant over the beat, the equation can be simplified:

Pmea(t ≥ tes) = Pres(t ≥ tes) = (Pmea(tes)− Pcvp)e
tes−t
RC + Pcvp where

dPcvp
dt

= 0 (4.16)
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The key significance is for t ≥ tes, the three-element windkessel behaviour reverts to the

same as the two-element windkessel, describing the pressure decay from Pao(tes) as an

exponential decay with time constant RC (Frank, 1889; Westerhof et al., 2009). Otto Frank’s

two-element model’s ability to accurately estimate diastolic pressure decay was discussed

in Section 4.3.1 (Frank, 1889).

Calculating Qin and Estimating SV

If the parameter products Zc,wC and RC can be found, Pres can be calculated according to

Equation 4.11, and then Pex from Equation 4.3. However, to calculate Qin from Equation

4.5, Zc,w must be known, separately from its product with compliance in Equation 4.11.

Two appropriate methods for estimating characteristic impedance were given in Section

2.5.2, the water hammer equation (Equation 2.7) and the ratio of the early systolic rise in

the measured pressure and flow waveforms, per Equation 2.8. Equation 2.8 considered

wave reflections negligible, consistent with the model assumptions in Section 4.3.1. Using

the water hammer equation would require pulse wave velocity (PWV) and cross-sectional

area to be known from the Pmea site. While Equation 2.8 requires flow to already be known,

making it unsuitable if flow is the variable to be determined. Section 4.2 showed another

method, where an initial estimate of Zc,w could subsequently be corrected using a calibrat-

ing measure of SV /CO.

For now, assuming Zc,w is found, stroke volume can then be estimated (SVest) for a beat by

integrating Qin:

SVest =

t∫
0

Qin(τ)dτ =
1

Zc,w

t∫
0

Pex(τ)dτ (4.17)

Provided Qin and Pex are found to be zero during diastole, the integration limits of Equa-

tion 4.17 need only be the duration of systole. However, imperfect identification of Zc,wC

and RC results in a non-zero Pex during diastole, leading to a non-zero Qin estimate during

diastole. Thus, it is important to estimate Zc,wC and RC as accurately as possible, minimiz-



CHAPTER 4. PHYSIOLOGICAL MODELS 61

ing the error between Pres and Pmea during diastole. Parameter identification is specific to

a given study’s implementation of the method. It critically affects results, all else equal, for

any identifiable model proposed. Therefore, it is discussed with respect to specific imple-

mentations in later sections and chapters, and not in general.

Applying the Three-Element Windkessel Model to an Aortic Pressure Waveform

Figure 4.3 shows Equation 4.11 applied to a measured aortic pressure waveform (Pmea =

Pao), with RC = 1.26 s and Zc,wC = 0.124 s. The method used to find these parameters and

calculate Pres are developed by the author, and covered in detail in Chapter 11.
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Figure 4.3: A realistic example of Pres and Pex calculated from an aortic pressure signal (Pao).

The similar shape of Pex and Qao in Figure 4.3, illustrates the definition of Pex given earlier

in this section. Specifically, although Pex is calculated from the arterial pressure waveform,

it is thought of as being the pressure in excess of the the reservoir pressure (Pres), generated

by ventricular contraction to eject blood into the reservoir (Qin). Therefore, in theory, dur-

ing ventricular ejection/systole as it’s experienced in the aorta (t0,Pao ≤ t ≤ tes,Pao), Equation

4.3 could be re-written:
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Pmea(t) = Pao(t) = Pex(t) + Pres(t) ≈ Pvent(t), where t0,Pao ≤ t ≤ tes,Pao (4.18)

Applying the Three-Element Windkessel Model to a Femoral Pressure Waveform

In a clinical environment, measured central arterial pressure is more likely to come from a

region like the femoral artery, than the aorta, as it is less invasive (Cousins and O’Donnell,

2004). However, as discussed in Section 2.2.2 and 2.5.3, the pressure waveform is modified

by changes in vessel properties and reflectedwaves as it travels away from the heart. Thus,

if Pmea = Pfem, the modified shape and phase delay means Equation 4.18, relating Pvent, is no

longer applicable, as shown in Figure 4.4.
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Figure 4.4: A realistic example of Pres and Pex calculated from a femoral pressure signal (Pfem.

Regardless, Equations 4.11 and 4.3 can still be applied to Pfem, with Figure 4.4 showing

Pres constructed with RC = 1.78 s and Zc,wC = 0.39 s. As expected, the ratio of Pex to Pres

has increased in the femoral signal, reflecting the slightly reduced compliance and the

increase in excess pressure due to the windkessel/reservoir now being modelled using a

Pmea further from the heart, compared to the Pao waveform. Thus, the model behaviour is
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as expected for different Pmea pulse contours (Balmer et al., 2018b), and will be discussed

further in Chapter 11.

4.3.3 Three-Element Windkessel Limitations

As covered in Section 4.3.1, lumping spatially varying arterial properties into parameters

Zc,w, R and C limits the model’s ability to describe spatial dynamics. Depending upon how

the parameters are identified, this limitation means their identified values may not neces-

sarily represent local arterial properties. Therefore, parameter values should be treated

as relevant only within the model context (Westerhof et al., 2009, 2010a; Segers et al., 2015;

Westerhof and Westerhof, 2017).

Despite this limitation, numerous studies have shown the usefulness of the three element

windkessel for estimating global circulatory behaviour that is difficult to measure directly

(Stergiopulos et al., 1992; Wesseling et al., 1993; Aguado-Sierra et al., 2008; Alastruey, 2010;

Segers et al., 2015). The effects of these limitations are dependent on how the model is

implemented, including how parameters are identified. These aspects of model structure

and identification will be presented in detail, as required in later sections and chapters.

4.4 Wesseling’s Three-Element Windkessel CO Estimation

Although Westerhof et al. (1971) created the three-element windkessel, it was Wesseling

et al. (1993) who sought to use it as a method of estimating SV from a pressure waveform.

Although the article does not define the specific hydraulic equations, as per Section 4.3.2,

it refers to a figure equivalent to Figure 4.2a and states “we would compute flow by simulat-

ing the response of a three-element model of arterial input impedance to arterial pressure”

and subsequently “left ventricular SV is computed by integrating model flow during systole”.

Additionally, it has reference to the time constants RC and Zc,wC of Equation 4.11. Thus it

is reasonable to believe the paper used the same fundamental theory expressed in Section

4.3.2, although the exact implementation is not specified.
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For example, there is no clear explanation for how start and end-systole were identified in

the study’s measured pressure and estimated flow signals. The study used aortic pressure

and radial pressure. It is possible end-systole was identified as the dicrotic notch in the

aortic signal, as discussed in Section 2.3.1 and later in Chapter 8. However, the dicrotic

notch is not visible on a radial pressure waveform under normal conditions.

4.4.1 Initial Parameter Identification

Parameter identification was not entirely based on pulse contour analysis. Instead, cross-

sectional area compliance or compliance per unit length (CA) was calculated as the deriva-

tive of Langewouters et al. (1984) equation, describing aortic area as a function of aortic

pressure and maximum aortic area, (Amax), which itself was an empirical value based on

patient age and sex. Since windkessel compliance (Equation 4.8) simulates volumetric

compliance (Equation 2.1), converting CA to C involves assuming a length as per Equation

2.5. Specifically, since the windkessel model does not have a physical length, a characteris-

tic length (Lc) is assumed:

C = CALc (4.19)

As per Section 4.3.3, the windkessel compliance is not the true compliance of the aorta, or

any specific part of the arterial tree. Instead, it is only the lumped compliance assumed to

best describe the arterial tree globally. Hence, characteristic length is the length necessary

for CA’s value to describe C as desired. Therefore a justification had to be made for the

choice of Lc. Since Wesseling et al. (1993) had calculated CA from the aorta, they also

assumed Lc as a fixed aortic length of 80 cm. The fact the aorta represents most of the

compliance of the arterial tree (Section 2.2.2) means this choice of Lc seems justifiable.

Zc,w was approximated from a combination of the water hammer equation (Equation 2.7),

which depended on cross-sectional area, and the area compliance form of the Bramwell-
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Hill equation (Equation 2.3) (Wesseling et al., 1993):

Zc,w =

√
ρ

ACA
(4.20)

Finally, R was initially assumed as the ratio of an assumed, generic mean pressure of 100

mmHg and a CO of 3 lmin−1. Rwas then iteratively updated per beat, based on the previous

beat’s measured mean pressure and modelled cardiac output (COest).

4.4.2 Calibrating Parameters with Measured Cardiac Output (COmea)

Once initial parameters were identified, the initial empirically based patient Amax value

was updated such that COest matched a COmea by thermodilution. This approach uses a

similar method as used for Zc,ao in Wesseling’s corrected characteristic impedance method

(Equation 4.2). Calibrating the aortic area in this manner subsequently updated its depen-

dencies, CA and Zc,w.

4.4.3 Estimating Flow and CO

Using the three-element windkessel and thermodilution CO calibration, Wesseling et al.

(1993) managed to estimate flow profiles (Qest) from the human aorta and radial artery,

which appeared physiological. Thus, this approach improved upon the limitations of the

corrected characteristic impedance method of Section 4.2. Unfortunately, the study on hu-

man patients only had access to intermittent CO measures, meaning the accuracy and

physiological validity of the flow profiles could not be validated. However, the model did

perform with similar accuracy to the corrected characteristic impedance method in esti-

mating CO from the thermodilution measures (Wesseling et al., 1993).
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4.5 The Reservoir-Wave Approach

Wang et al. (2003) rearranged Equation 4.7 for Qout and substituted it into Equation 4.9 to

yield the following differential equation:

dPres(t)

dt
=
Qin(t)

C
− Pres(t)− P∞

RC
(4.21)

With the exception, instead of Pcvp, Wang et al. (2003) used a constant P∞, which was still

considered the pressure downstream of the windkessel, but whose value was the asymp-

totic pressure of the diastolic exponential decay. Given a long enough diastole P∞ would

be the mean circulatory pressure (Pmc), the pressure when there is no blood flow, whose

value is similar to Pcvp (Mynard and Smolich, 2017).

In a similar manner to the ODEs in Section 4.3.2, Equation 4.21 can be solved to give1:

Pres(t) = (Pao(0)− P∞)e−
t
RC + P∞ + e−

t
RC

t∫
0

e
τ
RC

Qin(τ)

C
dτ (4.22)

Where, as a reminder, Pao(0) is the aortic pressure at the start of the beat, considered time

zero (t0 = 0).

Equation 4.22 describes the pressure of the windkessel/reservoir in terms of R and C,

thus representing the two-element windkessel or the parallel RC component of Figure 4.2a

(Westerhof et al., 2009). In particular, the similarities, as well as the differences, of Equa-

tion 4.22 with Equation 4.16 should be noted. Specifically:

• As mentioned, P∞ is used instead of Pcvp.

• Equation 4.22’s initial condition is start-systole Pao(0), instead of end-systole, since the

full beat is being described, as opposed to just diastole.

1Wang et al. (2003) mistakenly dropped the first exponential terms t, the correct solution is also shown in
(Aguado-Sierra et al., 2008; Alastruey, 2010)
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• The first two terms of Equation 4.22 are of the same form as Equation 4.16, describing

how the pressure decays in the reservoir.

• Equation 4.22 includes the integral of inflow divided by compliance, which according

to Equation 2.1, describes the increase in reservoir pressure for Qin.

To solve Equation 4.22 for Pres, Wang et al. (2003) needed Pao, Qao (for Qin) and the param-

eters R, C and P∞. The waveforms Pao and Qao were measured in dogs, using a pressure

catheter and aortic flow probe, respectively. The parameters, R, C and P∞ were found us-

ing “fminsearch”, a nonlinear least squared error search algorithm provided in MATLAB

(Mathworks, Natick, MA, USA). More specifically, the parameters were identified using the

condition outlined in Equation 4.12, with the optimization performed on the final two-

thirds of the diastolic part of the measured pressure signal. This method of parameter

identification is a specific example of the more general concept of fitting an equation to

data in order to identify its parameters and will come up in later sections and chapters.

Implementing the model in this way, Wang et al. (2003) found the resulting difference be-

tween the Pao and Pres was a pressure waveform whose shape matched the measured flow

waveform. In other words, Wang et al. (2003) had found the excess pressure described by

Equations 4.3 and 4.5. Wang et al. (2003) also found the ratio of Pex and Qao gave a value

similar to the aortic characteristic impedance (Zc,ao).

The results ofWang et al. (2003) were supportive evidence for the the inclusion of the third

impedance element to the two-element windkessel (Westerhof et al., 2009). Furthermore,

it improved on Wesseling et al. (1993) (Section 4.4) by validating the estimated flow wave-

forms of the three-element windkessel. However, Wang et al. (2003) interpreted the result

more literally, citing the pressure and flow dynamics of the real arterial tree appeared to

follow a description of wave propagation given by Lighthill (1978), where measured pres-

sure was the sum of an “undisturbed pressure with its hydrostatic distribution” (Pres) and

an “excess pressure whose gradients produce fluid accelerations” (Pex). Thus, the method

in Wang et al. (2003) became known as the reservoir-wave approach (RWA), for which an
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Pres Pex Pmea+ =

+ =

Figure 4.5: The reservoir-wave approach assumes a measured pressure can be represented as two compo-

nents, a hydrostatic reservoir and an excesswave component that travels along the reservoir, much like a
wave appears to travel across the surface of a body of water.

analogy is shown in Figure 4.5 (Tyberg et al., 2014; Mynard and Smolich, 2014a; Westerhof

and Westerhof, 2015).

By attributing all the wave behaviour to Pex, Wang et al. (2003) re-interpreted Equation 4.3

as capable of describing both time and spatial dynamics:

Pmea(x, t) = Pex(x, t) + Pres(t) (4.23)

This subtle change in the equation and its literal interpretation is what differentiates the

RWA from the traditional lumped windkessel models.

4.5.1 Reservoir-Wave or Waves?

The RWA interpretation called into question a lot of the wave behaviour covered in Sec-

tion 2.5. In particular, Wang et al. (2003)’s RWA concluded the difference between the

shape of the measured pressure and flow waveforms had been explained by separation

of pressure into reservoir and wave components. Specifically, the fact Qao had the same

shape as Pex implied the Qao profile was not due to reflected wave behaviour, per Section

2.5.4, but simply due to the forward travelling wave and entirely attributed to Pex. With

wave behaviour confined to Pex and thus systole, diastolic decay of Paomust be interpreted

as volume-related pressure of the emptying reservoir, per Equation 4.12 - 4.16. Thus, the

RWA interpretation of arterial pressure and flow dynamics concluded there is minimal

reflected wave behaviour under normal conditions (Segers et al., 2012).
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While this dualistic interpretation is simple and its mechanisms intuitive, it does present

some inconsistencies. First, as discussed in Section 4.3.2 and seen from a comparison of

Figures 4.3 and 4.4, the reservoir pressure does propagate along the arterial tree, and its

waveform shape changes with respect to measurement location. Thus, Pres is in fact wave

like, as others have also found (Segers et al., 2012, 2015; Mynard et al., 2012; Mynard and

Smolich, 2014a).

Pres waveform shape being spatially dependent should not come as a surprise, the reason-

ing has already been given. Specifically:

• It is dependent on compliance, which changes throughout the arterial tree (Section

2.2.2).

• The storage of blood in the arteries was due to a rapid ventricular ejection exceeding

flow to the periphery, which began by expanding the aorta and this expansion prop-

agated along the arterial treemaking room for the ejected SV (Section 2.3.1) (London

and Pannier, 2010; Mynard et al., 2012).

It is only if the heart stopped beating, that pressure would equally distribute throughout

the arterial tree, to the so called mean circulatory pressure (Pmc). This pressure would

be the true “undisturbed pressure with its hydrostatic distribution” described by Lighthill

(1978), not Pres as in Wang et al. (2003), (Mynard and Smolich, 2014b).

Secondly, Figure 4.3 shows in early diastole, following the dicrotic notch, it is possible for

the aortic pressure to briefly rise. This phenomena is not captured by the exponential

decay of Pres and is thus attributed to Pex through Equation 4.3. However, this non-zero

Pex in diastole, contradicts its definition according to Equation 4.5. Specifically, since Qao

= 0, Pex should be zero. This issue is an example of the imperfect parameter identification

outlined in Section 4.3.2. However, and in contrast, the parameters in Figure 4.3 have

minimized the error between Pres and Pao as per the condition of Equation 4.12.

Hence, if there is no better choice of parameters, the behaviour being observed falls out-
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side of the behaviours described by the model, outside of Zc,w, R and C, outside of Pres and

Pex, and thus outside of the RWA. So the question is, what causes the rise in pressure after

the dicrotic notch? And why can it not be described by RWA? The answer to the former

was covered in Section 2.5.3, it is caused by the reflected pressure waves arrival in late

systole/early diastole, increasing pressure as observed by Murgo et al. (1980). The reason

this rise cannot be described by the RWA is it assumes no wave behaviour during dias-

tole, consistent with the limitations of the windkessel models on which it is based (Section

4.3.3). Thus, the ease of fitting Pres to Pmea is conditional on the measured diastolic decay

being exponential (Segers et al., 2012). This limitation is possibly why Wang et al. (2003)

chose to only use the last two-thirds of diastole when enforcing the condition of Equation

4.12.

The implications of the RWA internal inconsistencies have been covered well by others

(Segers et al., 2012; Mynard et al., 2012; Mynard and Smolich, 2014a,b; Segers et al., 2015;

Westerhof and Westerhof, 2015, 2017). For example, Segers et al. (2015) evaluated the as-

sumption changes in Pres were proportional to changes in reservoir volume and showed

during systole, Pres was lower than expected for the increase in volume (Segers et al.,

2015). Mynard et al. (2012) showed by attributing all wave phenomena to Pex, the RWA did

not accurately represent wave travel in a system with known reflection sites and known

impedance mismatches (Mynard et al., 2012; Mynard and Smolich, 2014a).

The fact Pres is a propagated disturbance and therefore not all wave behaviour can be at-

tributed to Pex, was later acknowledged by proponents of RWA (Tyberg et al., 2014). How-

ever, a significant amount of debate has continued to occur throughout the last decade

about the validity of the approach (Aguado-Sierra et al., 2008; Alastruey, 2010; Borlotti and

Khir, 2011; Mynard et al., 2012; Segers et al., 2012; Mynard and Smolich, 2014a,b; Tyberg

et al., 2014; Mynard et al., 2015; Segers et al., 2015; Westerhof and Westerhof, 2015; My-

nard and Smolich, 2017; Westerhof and Westerhof, 2017). The benefit of such debates is

it has encouraged a re-examining of the different methods used for analysing arterial dy-
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namics (Westerhof andWesterhof, 2017), and an addressing of conventional wave analysis

methods shortcomings (Mynard and Smolich, 2014a, 2017).

4.6 Pressure Pulse Contour Derived Model Parameters

Wang et al. (2003) found Pres using a measured flowwaveform. A flowwaveform is a mea-

surement usually confined to experiemental settings due to its invasiveness, as discussed

in Chapter 3. Aguado-Sierra et al. (2008) implemented what they called the RWA in a man-

ner that did not require Qin. Although they acknowledged the three-element windkessel

was an “alternative way to express the reservoir component of the model” they proposed,

they also believed they were the first to hypothesis the electrical analogy as a description

for the combined reservoir and wave components. However, the electrical circuit analogy

had previously been shown in bothWesterhof et al. (1971) andWesseling et al. (1993). The

only difference is these earlier studies did not interpret their models literally, as per the

RWA.

Therefore, it should be clear from Section 4.3.2 and 4.4 that Aguado-Sierra et al. (2008)

was not the first to describe a method of calculating Pres without Qin, nor were they the

first to imploy the electrical analogy. It is possible the lack of derived hydraulic equations

relating to the electrical circuit in Wesseling et al. (1993) made Aguado-Sierra et al. (2008)

believe their formulation of the equations was more novel than it was. Although this con-

clusion is speculatory, as the authors do not citeWesseling et al. (1993), so it is possible they

were unaware of the study. Nonetheless, despite different nomenclature for parameters

in Aguado-Sierra et al. (2008), the resulting equations derive from the traditional three-

element windkessel exactly, with parameters equivalent to Zc,w, R and C.

What is slightly different is how Aguado-Sierra et al. (2008) calculates Pres. Instead of solv-

ing Equation 4.10 for Pres of the whole beat, giving Equation 4.11, they solved it separately

for systole and diastole. The diastole part being the the same as Equation 4.16, except like

Wang et al. (2003), P∞ was used in place of Pcvp. However, of the two analyses conducted in
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Aguado-Sierra et al. (2008), one assumed P∞ = 0, the other P∞ ≈mean Pcvp (Aguado-Sierra

et al., 2008).

The author of this thesis assumes they used two different equations for Pres to simplify

parameter identification. They identify their equivalent form of RC by fitting Equation

4.16 to measured data, similar to Wang et al. (2003) in Section 4.5. Their systolic equation

for Pres depends on their equivalent forms of parameters RC and Zc,wC. Zc,wC is found,

along with Pres during systole, by enforcing (zeroth order) continuity with the diastolic

equation. However, Figure 4.6 shows their resulting Pres can be first order discontinuous

(discontinuous in its first and higher derivatives) in terms of continuity and thus physical

and physiological relevance.

tes

Figure 4.6: Example from Aguado-Sierra et al. (2008), showing the measured pressure waveform with Pres.
Figure has been modified to show tes and respective systolic and diastole Pres.

By solving Pres for a whole beat, as per Equation 4.11, Figures 4.3 and 4.4 show Pres should

be continuously differentiable. Another interesting feature of Figure 4.6 is the measured

diastolic pressure not being well described by the assumption of exponential decay. This

limitation of the three-element windkessel was discussed in Section 4.5.1 and will be dis-

cussed further in Chapter 9.

Regardless, Aguado-Sierra et al. (2008) showed it was possible to estimate Pres from just

the pressure waveform contour. The study did not rely on population demographic data
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to estimate model parameters like Wesseling et al. (1993), in Section 4.4. However, this

choice means parameters were only identified in their product forms, RC and Zc,wC, and

not individually. The advantages of calculating parameters in this way will be discussed

further in Section 4.7.2.

4.7 Patient Specific Model Parameters

Sections 4.4 and 4.6 each included different approaches to windkessel model parameter

identification. Firstly, Wesseling et al. (1993) (Section 4.4) calculated the model parameters

individually. This had the advantage of knowing precisely how each lumped parameter

would contribute to model behaviour. The first foreseeable disadvantage was Zc,w and C

initially relied on population demographic data (Section 4.4.1), meaning the initial values

were not patient specific. Estimating parameters, based on patient demographics, seems a

reasonable approach for monitoring healthy, stable patients for whom the population data

is likely representative. But Section 3.5.3 suggested the population demographic parame-

ter identification may have contributed to FloTrac’s poor performance when monitoring

changes in SV (Hadian et al., 2010; Montenij et al., 2011; Marik, 2013).

4.7.1 Static Model Parameters

Wesseling et al. (1993) mitigated the potential issue of estimating parameters based on

demographic data, by subsequently updating them with a CO calibration (Section 4.4.2).

This ensured the parameters were patient specific at the time of the calibration. Thus, cal-

ibrated parameters can be considered static and are sufficient provided the patients state

does not change, else re-calibration would be required. The need for PCA re-calibration

was discussed for the PiCCO and LiDCO devices covered in Section 3.5.

4.7.2 Dynamic Model Parameters

Aguado-Sierra et al. (2008) (Section 4.6) calculated the parameters in their product form,

Zc,wC and RC, as they appeared in Equation 4.11. This method had the disadvantage of not
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knowing how each individual parameter was effecting the resulting Pres. However, the ad-

vantage was Zc,wC and RC are found beat-to-beat, specific to each beat’s measured pressure

waveform. Thus, the product forms of the parameters are dynamic, changing to reflect the

current hemodynamic state. In this way, assuming perfect parameter identification, and

valid model assumptions, Pres and Pex would always be found satisfying Equation 4.3.

4.8 Summary

This chapter covered the development of arterial models from literature with the ability to

relate measured pressure to Qao/SV /CO. This section was by no means exhaustive, with far

more complex models, which are not readily identified at the bedside (Chase et al., 2018),

not considered here (Smith et al., 2004, 2005; Pironet et al., 2013, 2016). Their exclusion is

with regard to the goals of this thesis, a model must by dynamic enough to adequately cap-

ture changing patient hemodynamics, but simple enough to be implemented in a clinical

environment. Thus, this section covers the necessary background literature informing the

decisions for the model development and testing in this thesis.

This chapter gave particular focus to the arterial system modelled as a windkessel. When

interpreted literally, as in the RWA, it vastly oversimplifies the complex wave propagation

of the arterial tree. However, even those that spoke against the RWA, acknowledge the

usefulness of the three-element windkessel (Segers et al., 2012, 2015; Mynard et al., 2015;

Westerhof and Westerhof, 2017). After-all, 32 years passed between the three-element

windkessels development, in Westerhof et al. (1971), and the RWA of Wang et al. (2003).

The debates of the last decade were a re-evaluating of the windkessel limitations, covered

extensively in Sections 4.3.3 and 4.5. To quote Nicolaas Westerhof, with who the three-

element windkessel was credited, “Windkessels model the arterial system but the arterial

system is not a Windkessel.” Or George E. P. Box, a famous 20th century statistician, “all

models are wrong, but some are useful”. The subsequent chapters will show the ways in

which the windkessel model is wrong and in what ways it can still be useful.
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Experimental Data

5.1 Introduction

The previous chapters have covered the thesis goals and necessary background literature

for a reader to understand the authors ownwork, which is covered in the remaining chap-

ters. To begin with, this chapter details the experimental protocols for the three data sets

used throughout this thesis (Balmer et al., 2017, 2018c,a,b). It also covers the initial signal

processing common to all later analyses, enabling the more in-depth analysis presented

in later chapters. These signal processing functions include filtering and discrete deriva-

tive implementations, as well as development of specific algorithms for peak, trough, and

start-of-systole detection. End-systole detection was critical only in some analyses and is

thus covered later in Chapters 8 and 10.

5.2 Porcine Trial Protocols

Data in this study was obtained from a prior series of pig experiments conducted at the

Centre Hospitalier Universitaire de Liège, Belgium. Ethics approval for the experimental

procedures, protocols and use of the data was provided by the Ethics Committee of the
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University of Liège Medical Faculty, permit numbers 1452 & 14–1726, respectively. Their

guidelines are consistent with the Guide for the Care and Use of Laboratory Animals pub-

lished by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996), as

well as EU DIRECTIVE 2010/63/EU on the protection of animals used for scientific purposes.

15 pure pietrain pigs, weighting 18.5–29kg, were used in the analysis across 3 protocols.

Initial sedation and anaesthesia was achieved using Zoletil (0.1ml kg−1) and diazepam

(1mgkg−1). Continuous infusion of sufentanil (0.1ml kg−1 h−1 at 5µgml−1), Thiobarbital

(0.1ml kg−1 h−1) and Nimbex (1ml kg−1 h−1 at 2mgml−1) was delivered via a superior vena

cava catheter to maintain sedation and anaesthesia. A GE Engstrom CareStation mechani-

cal ventilator (GE Healthcare, Waukesha, US) was used via a tracheostomy with a baseline

positive end-expiratory pressure (PEEP) of 5 cmH2O and tidal volume of 10ml kg
−1. Blood

pressure was measured in the aortic arch (Pao) and either the abdominal aorta, iliac or

femoral artery. For simplicity, the distal arterial pressure is referred to as Pfem. Pressure

measurements used high fidelity pressure catheters (Transonic, Ithaca, NY, USA). Left ven-

tricular pressure (Pvent) and volume (Vvent) were directlymeasured using 7Fmicromanometer-

tipped admittance catheters (Transonic Ithaca, NY, USA) inserted into the ventricle through

the right carotid artery. Some protocols had access to additional measures, including elec-

trocardiogram (ECG), proximal aortic blood flow (Qao) and central venous pressure (Pcvp).

These additional measures are discussed in the Sections 5.2.1, 5.2.2 and 5.2.3, and the im-

plications for a protocol not having access to the additional measures are discussed Section

5.4.3, 5.4.4 and 12.2.1. A summary table of the relevant measures available from each pro-

tocol is included in Section 5.2.4 Table 5.1, after the protocol descriptions.

Once the pigs were sedated, anaesthetised and instrumentation was in place, a period

of baseline/control data was recorded before any interventions. At the end of the pro-

tocol, euthanasia was performed via a bolus of pentobarbital (30mgkg−1) and sufentanil

(5 µgkg−1) causing respiratory arrest.
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5.2.1 Protocol D, Dobutamine

Pigs D1–D5 are associated with the dobutamine protocol. In addition to the instrumenta-

tion covered in Section 5.2, this protocol included an ECG signal measurement. The exper-

imental procedure was defined:

1. The first intervention was a ventilation recruitment manoeuvre (RM), where each

pig underwent several step-wise changes in positive end-expiratory pressure (PEEP).

RMs involved increasing PEEP with 5 cmH2O steps to a maximum of 15 cmH2O for

Pig D5 and 20cmH2O for Pigs D1–D4. Increases in PEEP can reduce systemic venous

return to the right heart and increase pulmonary resistance, representing decreased

preload and increased afterload, respectively (Luecke and Pelosi, 2005; Marik, 2010).

Thus, if flow in and out of the right ventricle is impeded, flow into the left ventricle

can also fall, decreasing left ventricular preload, ejected SV and arterial pressure

(Wallace et al., 1963; Luecke and Pelosi, 2005; Marik, 2010).

2. Rapid fluid boluses were administered in 180ml steps, up to a total of 900ml for

Pigs D1 –D4, and 720ml for Pig D5. Fluid boluses are common therapies in intensive

care, used to increase the blood volume in the hope of improving preload and stroke

volume (SV) (Michard and Teboul, 2002; Reuter et al., 2002; Cecconi et al., 2015). How-

ever, the response to fluid administrations is clinically variable and depends on how

the body distributes the introduced bolus (Michard and Teboul, 2002).

3. The protocols name is characterised by the use of a continuous dobutamine infusion.

Pigs D3 and D4 were infused at a rate of 2.5 µgkg−1min−1 while Pigs D1, D2, and D5

were infused at 5µgkg−1min−1. Dobutamine increases contractility of the heart and

is commonly used to increase cardiac output (CO) in a clinical setting, but it can also

act as a vasodilator (Ruffolo, 1987; Ellender and Skinner, 2008).

4. During the dobutamine infusion, a RM was performed in the same manner as de-

scribed in 1.
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5. In the transition between interventions, a vena cava occlusion (VCO) was first per-

formed, using a Fogarty balloon. This technique allows changes in the contractile

state of the heart to be assessed through the gradient of the end-systolic pressure

volume relationship (ESPVR) (Sato et al., 1998).

5.2.2 Protocol S, Sepsis

Pigs S1–S6 are associated with the sepsis protocol. In addition to the instrumentation cov-

ered in Section 5.2, this protocol included an aortic flow probe (Transonic, Ithaca, NY, USA)

and a pressure catheter in the superior vena cava Pcvp. A flow probe clamps around the

aorta in a manner that does not constrict it. It was placed near the aortic valve to measure

ventricular ejection, Qao. Probe placement was achieved via median sternotomy, after

which the thorax was clamped closed for the remainder of the experiment. The experi-

mental procedure was defined:

1. A RM like those in the dobutamine protocol, outlined in Section 5.2.1, is performed.

Pig S4’s RMmaximum PEEP reached 15 cmH2O, while the other sepsis pigs maximum

PEEP was 20 cmH2O.

2. A 500ml infusion of saline solution, over a 30min period. Fluid resuscitation ther-

apy is one of the primary clinical interventions used for patients with severe sepsis,

aiming to increase the circulatory volume, ventricular preload and SV (Michard and

Teboul, 2002; Reuter et al., 2002; Cecconi et al., 2015).

3. E. Coli lipopolysaccharide (endotoxin) was infused over a 30min period (0.5mgkg−1).

This produces a septic shock like response: inflammation, capillary leakage, decreased

afterload, hypovolemia, tissue hypoxia and eventual cardiac failure (Nguyen et al.,

2006; Merx and Weber, 2010).
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5.2.3 Protocol V, Vena Cava Occlusion (VCO)

Pigs V1–V4 are associated with a study involving extracorporeal support (Habran et al.,

2018). However, aspects of interest from this protocol include the vena cava occlusions

(VCO) preformed using a Fogarty balloon prior to extracorporeal support initiation. The

VCO was a short term event designed to cause rapid reduction in preload, and thus SV per

Section 2.4.2 and Figure 2.9 (McKay et al., 1986; Sato et al., 1998). This specific event, is the

only data used from these experiments in this research.

5.2.4 Data Summary

Table 5.1 summarizes the measured data captured in each protocol.

Table 5.1: Summary of measurements available to each experimental protocol.

Protocol ECG Pvent Vvent Pao Qao Pfem Pcvp
D X X X X X

S X X X X X X

V X X X X X

5.3 Data Selection

Each pig experiment was recorded as a single Notocord data file (Instem, Croissy-sur-Seine,

France). Acquisition rates varied, with 1000Hz used for Protocol D, and 250Hz for Protocols

S and V. As experiments lasted for several hours, data was subsequently separated into

shorter distinct stages of the experimental protocol for analysis:

5.3.1 Protocol D Stages (Figure 5.1):

1. Control:

Period of stable baseline measures, prior to hemodynamic interventions.

2. High PEEP:

The highest PEEP of the RM following Control.
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3. High fluids:

The period following the pigs final 180ml fluid administration, taking it to its highest

fluid state.

4. Dobutamine:

During continuous dobutamine admission.

5. Dobutamine High PEEP:

The highest PEEP of the RM during continuous dobutamine admission.

Control

Pig stabilised
Maximum PEEP 

reached

High PEEP

Maximum fluid 
state reached

High Fluids

Stable dobutamine 
response

Dobutamine

Pig 
prepared

PROCEDURE

Recruitment 
manoeuvre 

(RM)

Fluid boluses 
administered

Continuous 
dobutamine 
administered

POST PROCESSING
STAGES

Maximum PEEP 
reached

Dobutamine High 
PEEP

RM during 
dobutamine 

administration

Figure 5.1: Dobutamine protocol experimental procedure and post processing stages. The experimental

procedure was captured as a single data file, sampled at 1000 Hz.

5.3.2 Protocol S Stages (Figure 5.2):

1. Control:

Period of stable baseline measures, prior to hemodynamic interventions.

2. High PEEP:

The highest PEEP of the RM following Control.

3. Before endo:

Data measured just prior to the start of endotoxin infusion and following 500ml

saline infusion.

4. Start endo:

Data measured during the start of endotoxin infusion.

5. End endo:

For Pigs S2, S3 and S5, this stage refers to beats just prior to the endotoxin infusion

finishing. Pigs S1, S4 and S6 responded more dramatically to the endotoxin infusion

and thus, various pressuremeasures dropped so low as to suggest cardiac/circulatory

failure before the full 30min was complete. Therefore, the End endo stage for Pigs
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S1, S4 and S6 are during the late part of their rapid decline in hemodynamic stability.

Control

Control/Baseline
15cmH2O  PEEP 

reached

High PEEP

500ml fluid state 
reached

Before endo

Early response to 
endotoxin

Start endo

Late response to 
endotoxin

End endo

Pig 
prepared

PROCEDURE

POST PROCESSING
STAGES

Recruitment 
manoeuvre

Fluid boluses 
administered

Endotoxin 
infusion begins

Endotoxin infusion 
continues.

Figure 5.2: Sepsis protocol experimental procedure and post processing stages. The experimental proce-

dure was captured as a single data file, sampled at 250 Hz.

5.3.3 Protocol V Stages

1. Control:

Period of stable baseline measures, prior to hemodynamic interventions.

2. VCO:

Data captured during Fogarty balloon inflation, causing vena cava occlusion, and

subsequent recovery following balloon deflation.

Subsequent analysis chapters refer back to these protocols, and outline specifically which

protocol(s) and pigs were used, as well as the number of heart beats. The number of beats

used from each stage was analysis specific, since it depended on which pigs were used and

the relevance of weighting/equal representation of pigs and stages to the analysis.

5.4 Initial Signal Processing

5.4.1 Discrete Derivatives

Some analyses in later chapters use the first (
dP
dt
) and/or second derivative of pressure

with respect to time (
d2P
dt2
). As data from experiments are discrete, having been sampled

digitally, these derivatives are calculated using central difference methods, whose general

formula are defined:
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df

dx
=
f(x+ h)− f(x− h)

2h
(5.1)

d2f

dx2
=
f(x+ h)− 2f(x) + f(x− h)

h2
(5.2)

where h is the step size, in our case the sampling interval (dt). Unlike with a continuous

signal, taking the derivative twice with Equation 5.1 results in a poorer second derivative

approximation than applying Equation 5.2.

The exception to using Equations 5.1 and 5.2 are for the first (x0) and last (xf ) points in a

signal, where x0 − h and xf + h are undefined. Thus, for the first and last points of a signal

being differentiated, the single sided difference approach is used, defined:

df(x0)

dx
=
f(x0 + h)− f(x0)

h
(5.3)

df(xf )

dx
=
f(xf )− f(xf − h)

h
(5.4)

d2f(x0)

dx2
=
f(x0 + 2h)− 2f(x0 + h) + f(x0)

h2
(5.5)

d2f(xf )

dx2
=
f(xf )− 2f(xf − h) + f(xf − 2h)

h2
(5.6)
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5.4.2 Filtering

Filtering Pressure Derivatives

Taking the derivative of a discrete signal amplifies noise. Thus,
dP
dt
and

d2P
dt2
were passed

through a finite impulse response (FIR) Hamming low pass filter, with cutoff frequency (fc)

of 20Hz and transition band width (ftb) of 5Hz. Figure 5.3 shows examples of Pao and Pfem,

and their unfiltered and filtered derivatives, using beats from Pig D4’s Control stage. As

can be seen, the higher order the derivative, the smaller the signal to noise ratio becomes.
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Figure 5.3: Example of unfiltered and filtered aortic arch and femoral pressure waveforms, using beats

from Pig D4’s Control stage.
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Filtering Admittance Catheter Volume Signal

The ventricular admittance catheter data, Vvent, was also filtered to reduce noise, of which

the majority was greater than 100Hz. Once again, a FIR Hamming low pass filter was used,

with fc = ftb = 10Hz, sufficiently above expected heart rate. An example of the unfiltered

and filtered Vvent is shown in Figure 5.4. It includes the filtered signal with a phase delay,

whose removal is covered at the end of Section 5.4.2.
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Figure 5.4: Example of unfiltered and filtered ventricle volumewaveform, showing the effects of the phase

delay as well as its correction and subsequent zero-phase with the unfiltered ventricle and aortic pressure

using beats from Pig D4’s Control stage.

Filtering Aortic Flow Probe Signal

Data from Pigs S3 and S4 have high frequency noise content of considerable magnitude

during systole. This noise was attenuated by filtering with a fc = 30Hz and ftb = 10Hz.

These values were chosen to preserve the dicrotic notch, the period of negative flowwhich

causes aortic valve closure at end of systole (Hoeksel et al., 1997; Smith et al., 2004). While

the other pigs of Protocol S had significantly less noise in their measured data, they too

were passed through the filter for consistency. As can be seen in Figure 5.5, preserving the
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dicrotic notch does result in noise less than fc remaining in the signal. Since the flow probe

is simply used as a reference measure during later analysis, the remaining noise content

was tolerable.
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Figure 5.5: Example of unfiltered and filtered aortic flow, using a beat from Pig S4’s Control stage as aworst

case example. aortic arch/proximal aortic pressure (Pao) shown for reference.

Filter Phase Delay and Edge Effects Correction

Aside from high frequency content removal, the FIR filter implementation also changes

the output (filtered) signal relative to the input signal (unfiltered) in two other ways:

• A phase delay between the output signal relative to the input signal.

• The first Nf − 1 discrete samples in the filtered signal are not filtered to within fc and

ftb, and therefore must be discarded.

The resulting phase delay must be removed, since many analyses in later chapters rely on

zero phase delay between signals. Secondly, any sampled data points rendered unusable

by filtering, must also be removed. The phase delay is found according to (Ifeachor and

Jervis, 2001):
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∆s =
Nf − 1

2
phase delay in number of samples (5.7)

∆t = ∆s dt phase delay in seconds (5.8)

Where ∆s is the phase delay each sampled data point experiences as it passes through the

filter, calculated as a number of samples and is dependent on the filter length Nf. ∆t is

the phase delay expressed in units of time, based on the dt, and ∆s. Nf for a Hamming FIR

filter is determined by ftb and dt, according to (Ifeachor and Jervis, 2001):

Nf =
3.3

ftbdt
(5.9)

Thus, removing the first ∆s points in the filtered signal, removes the phase delay induced

by filtering.

Equation 5.9 states a filter length of Nf is required to achieve the desired ftb. Thus, filtering

a data point to meet the desired specification requires the previous Nf − 1 data points.

Hence, the first Nf − 1 data points are not filtered according to both fc and ftb and this edge

effect needs to be removed before subsequent analysis. Since ∆s points were already re-

moved correcting the phase delay, only (Nf − 1)/2 unusable points remain to be removed.

However, after removing the first Nf − 1 points of the filtered signal, it is once again phase

shifted, but now (Nf − 1)/2 earlier than other signals. It is also Nf − 1 points shorter

in length. Thus, the non-filtered signals must have (Nf − 1)/2 points removed from the

beginning and ends of their signals, such that they are in phase with the filtered signals

and of the same length. Since
dP
dt
,
d2P
dt2
, Vvent and Qao have different ftb and thus Nf, they will

require different amounts of data trimming. Hence, in later chapters, after filtering, all

filtered and unfiltered signals are trimmed so they are the same length as the filtered signal
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with the largest Nf, and such that all signals have zero phase delay. Figure 5.4 includes an

example of the filtered signal prior to the phase delay correction.

5.4.3 Start-Systole Detection

Many of the later chapters involve the calculation of beat-wise metrics, including the main

focus of this thesis, SV . Therefore, to estimate these metrics, their dependent waveforms

must first be separated into individual beats (single periods). As discussed in Section 2.3,

each cardiac cycle begins with start of systole, t0, marked by the ECG QRS complex, sig-

nalling ventricular depolarization causing contraction (Guyton and Hall, 2011; Newlin and

Levenson, 1979). However, there is electro-mechanical delay between the QRS complex

and the steep rise in Pvent due to ventricular contraction. Additionally, Section 2.5 discussed

how once ventricular ejection begins, pressure and flow waveforms propagate along the

arterial tree, meaning there is a delay between measuring the effects of systole at the ven-

tricle verses a central or distal artery. In otherwords, t0 can be relative to themeasurement

location and thus, remaining chapters refer to the following:

• t0,ECG: absolute start of systole, the onset of ventricular depolarization,

marked by the ECG Q-wave (Newlin and Levenson, 1979).

• t0,Pvent : start of systole as measured by onset of ventricular contraction, the

foot of the Pvent waveform.

• t0,Pao / t0,Qao : start of systole in the aorta corresponds with ventricular ejection,

causing feet in Pao and Qao waveforms.

• t0,Pfem : start of systole in the femoral artery, marked by the pulse arrival

causing a foot in the Pfem waveform.

Thus, in the remainder of this thesis, unless stated otherwise, the nth period of a wave-

form, usually referred to as a beat, ranges t0,n ≤ t < t0,n+1. For example, the nth Pao beat

ranges t0,Pao,n ≤ t < t0,Pao,n+1. However, when a beat is considered in isolation for beat-wise

calculations, t0,n becomes t = 0 and time extends to T, the duration of the beat (0≤ t≤ T).
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Ventricular Depolarization — t0,ECG

The ECG signal was covered in Section 2.3.1 with its ideal waveform shown in Figure 2.6.

Figure 5.6 shows how the individual waves of the QRS complex were identified in real

data. A threshold is constructed as an 81ms central moving mean of the signal, with a

vertical offset applied. The central moving means odd number ensures an even number

of data points forward and backward of the current data point being averaged. In other

words, point n is averaged using itself, along with points n − 40 to n + 40 inclusive. The

window length choice of 81ms, was simply because it smoothed out the high frequency

QRS complex but retained the low frequency signal, such as the T-wave. As such, after

applying the vertical offset, the R-wave still crosses above the threshold, but the moving

mean ensures the T-wave does not, as seen in Figure 5.6.

The offset was adjusted based on the peak prominence of the R-wave, which is influenced

by the ECG lead location (Guyton and Hall, 2011). Peaks are then identified as points above

the threshold, whose immediate neighbouring points are of a lower value. Peaks are ig-

nored if they have insufficient prominence or are too close to previous R-waves, as shown

in Figure 5.6a. The S-wave can be found using the same methodology as finding the R-

wave.

The Q-wave of each beat was found by shear-transforming a segment of the ECG signal,

shown in Figure 5.6b. The shear line end point is the R-wave and the start point was

10% of the distance back toward the R-wave of the previous beat. The shear transform is

calculated as the vertical difference between the ECG segment and the shear line. Thus,

the Q-wave is the minima in the transformed ECG signal, or the point of maximum vertical

displacement from the shear line in the ECG segment. In later analyses, and by the strictest

of definitions, t0 in the ECG signal (t0,ECG) is the Q-wave (Talley et al., 1971; Newlin and

Levenson, 1979; Balmer et al., 2018c), although some studies will use the R-wave since it is

easier to detect (Payne et al., 2006; Pitson et al., 1994).
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Figure 5.6: (a) an ECG QRS complex, with the Q-wave, R-wave and S-wave identified. The threshold used to

find the R-wave is shown, along with an ignored false peak. (b) the Q-wave is found as the minima in the
shear transformed ECG segment. The example uses beats from Pig D3’s Control stage.

Pressure Waveform Feet — t0,Pvent , t0,Pao , t0,Pfem

As shown in Table 5.1, ECG was not measured for Protocols S and V. For these protocols,

the start of ventricular contraction (t0,Pvent) is still clear on Pvent as a foot, formed by the

sudden steep rise in pressure. This same foot feature is present in Pao and Pfem, but is due

to the pulse wavefront arrival at the respective pressure catheters, indicating t0,Pao and

t0,Pfem respectively. Once again, shear transforms are used to identify the feet as shown in

Figure 5.7.
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For Pvent, the shear line start point was theminimumpressure of the preceding beat (Pvent, min).

Due to the difference between diastolic pressure relaxation in the ventricles versus the ar-

teries, Pao, min and Pfem, min often appear close to, or at the same time as, the foot in their

respective waveforms, as shown in Figure 5.7. This similarity makes Pao, min and Pfem, min

inappropriate as shear line start points for their respective signals. Instead, their shear

line start points are protocol dependent, Protocol D using ECG R-waves, while Protocols S

and V use Pvent feet.
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Figure 5.7: Example of how start-systole (t0) for each pressure waveform beat is found as feet of the wave-
form. The example uses Pig D2, thus it includes the ECG R-wave, used as the shear line start point for
arterial pressure foot detection. Protocols S and V used the time of Pvent feet in place of the R-waves,
for arterial shear line start points. Additionally, the time of the ECG Q-wave is shown on the Pvent signal,
indicating the electro-mechanical delay between t0,ECG and t0,Pvent .
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The shear line ends at a point where pressure is halfway between the pressure at shear

line start and Pmax. Pmax in the ventricular and arterial signals lack the peak prominence

necessary for the threshold algorithm used to detect ECG R-waves, shown in Figure 5.6a.

Instead, a threshold is constructed from a central moving mean with window length of

approximately 1 s (251 points in Protocols S and V, and 1001 points in Protocol D), and

minima or maxima are found between the intercepts of the threshold with the pressure

waveform. Finally, the shear transform is performed in the same manner as was shown

with the ECG Q-wave, in Figure 5.6b.

t0 and Cardiac Performance

Section 2.4.2 discussed how end-diastolic ventricular pressure (EDVP) and volume (EDVV)

were surrogate measures of preload, as shown in Figure 2.9. Since start systole, t0, is also

the end of diastole, Pvent(t0,Pvent) and Vvent(t0,Pvent) represent EDVP and EDVV respectively.

Similarly, Section 2.4.3 discussed how end-diastolic aortic pressure (EDAP) is often used as

a surrogate measure of afterload. EDAP is equally the aortic pressure at start of systole,

Pao(t0,Pao). Thus, by identifying the feet of the Pvent and Pao waveforms, later analyses can

monitor changes in preload and afterload respectively.

5.4.4 Stroke Volume Measurement

Admittance Catheter SV

Table 5.1 showed all protocols measured Vvent using an admittance catheter. SV for a beat

can be calculated from Vvent as the difference between the maximum and minimum vol-

ume, as shown in Figure 5.8, and defined:

SV = Vvent,max − Vvent,min (5.10)
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Figure 5.8: Example of how SV is calculated from the admittance catheters Vvent signal. This example uses
Pig D3 Control stage, thus, t0,ECG is used for beat separation. t0,Pvent is shown for reference as Protocols S
and V use it for beat separation, but this can lead to slight error in Vvent,max identification.

Because the admittance catheter measured both Vvent and Pvent, t0,Pvent is applicable to both

signals when separating beats in Protocols S and V. However, in Protocol D, t0,ECG was used

to separate Pvent and Vvent into individual beats. This choice is because Vvent,max can occur

slightly before t0,Pvent , as shown in Figure 5.8. Thus, using t0,ECG where possible means the

electro-mechanical delay of ventricular depolarization and contraction improves Vvent,max

identification slightly, and subsequently measured SV .

It is also worth noting, although Protocols D and V did not record flow via an aortic flow

probe, an estimate of the flow waveform can be derived from the admittance catheter:

QVvent(t) =


dVvent(t)

dt
: t0 ≤ t < tes

0 : t ≥ tes

(5.11)

Where the derivative of Vvent can be computed with Equation 5.1.
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Aortic Flow Probe SV

Protocol S also measured the rate of ventricular ejection (Qao), using an aortic flow probe

located on the proximal aorta. Like the pressure waveforms, Qao has a foot feature en-

abling t0,Qao to be found via a shear transform. The shear line start point is one third the

distance back from Qao, max to the previous beats maximum point. The shear line end is a

point whose flow is halfway between Qao, max and the flow at shear line start. The shear

line and t0,Qao detection is shown in Figure 5.9.
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Figure 5.9: Example of how SV is calculated from the aortic flow probeQao signal. This example uses Pig S1
Control stage, whose aortic flow probe was furthest from the aortic arch pressure catheter, representing

the largest difference between t0,Pao and t0,Qao points.

Once Qao beats are separated via t0,Qao , SV can then be calculated as the integral of the flow

over a beat:

SV =

tes∫
0

Qao(τ)dτ (5.12)
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Since, there is no ventricular ejection during diastole, the limits of integration need only

cover systole, where time of end-systole in Qao (tes,Qao) can be identified as the first zero

crossing following a beats Qao, max. Figure 5.9 shows the Qao area integrated to give an SV

measure.

Although the aortic flow probe was positioned near the pressure catheter in the aortic

arch, no effort was made to perfectly match their positions, meaning t0,Pao was often near,

but not necessarily the same as, t0,Qao . Simiarly, tes for each signal could differ slightly.

End-systole in Pao was marked by a beats dicrotic notch, tes,dic, as discussed in Section 2.3.1,

and whose detection is covered in Chapter 8. The flow waveform also exhibits a dicrotic

notch as negative flow for a brief period when Pao > Pvent, leading to aortic valve closure

(Hoeksel et al., 1997; Smith et al., 2004). However, if the dicrotic notch in Qao was used to

obtain tes in Equation 5.12, the negative flow would result in underestimation of SV .

Figure 5.9 illustrates the difference in systolic time intervals t0 and tes for the aortic signals.

It uses data from Pig S1, whose t0,Qao had the largest disagreement when compared to t0,Pao .

Finding t0 and tes separately for Pao and Qao ensures the disagreement has no impact on

later analyses.

5.5 Summary

This chapter covered aspects relevant to later chapters, included the experimental proto-

cols, their hemodynamic interventions and data acquisition. It also covered the common

initial data processing techniques, which enabled the later chapters analyses. Some of the

processing used standard techniques, such as differentiating discrete signals and filtering.

Other aspects were developed by the author specifically for this thesis, the algorithms for

peak detection and waveform separation into individual beats. Finally, the two methods

of measuring stroke volume, used in the thesis, were covered, one for the ventricular ad-

mittance catheter and the other for the aortic flow probe, respectively.



CHAPTER6

Advantages and Limitations

of the Kamoi model

6.1 Introduction

This chapter introduces a pulse contour analysis (PCA) stroke volume (SV) estimationmodel,

whose development drew upon much of what was learned from the models covered in

Chapter 4. Although many people were involved in the development of the model, in-

cluding the author of this thesis, for simplicity it will be referred to as the Kamoi model,

named after the lead developer (Kamoi, 2016; Kamoi et al., 2017). Having been apart of the

Kamoi model’s later stages of development, it became a benchmark and starting point for

this thesis. Therefore, the chapter focuses on the successes and limitations of the Kamoi

model and how they relate to the thesis goals (Section 1.4). The limitations identified sub-

sequently enabled the improvements presented in later chapters.
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6.2 The Kamoi method

The Kamoi model (Kamoi et al., 2017) was similar to Wesseling et al. (1993), using a three-

element windkessel model to calculate SV . However, Kamoi et al. (2017) parameter identi-

fication was a hybrid between Westerhof et al. (1971), Wesseling et al. (1993) and Aguado-

Sierra et al. (2008). Specifically, it would calculate RC in Equation 4.11 using PCA, as per

Aguado-Sierra et al. (2008). However, Kamoi et al. (2017) factored in pulse wave velocity

(PWV) to estimate reservoir pressure (Pres) and stroke volume (SVest).

6.2.1 Incorporating PWV into the Three-Element Windkessel

Section 4.7 discussed the desire for parameters to be dynamic, reflecting the current hemo-

dynamic state of a patient. Knowing two of the parameters of the windkessel model had

previously been estimated using PWV , namely windkessel characteristic impedance (Zc,w)

and compliance (C), Kamoi et al. (2017) hypothesised continuously monitoring PWV could

improve model performance.

Specifically, as per Sections 4.3.1, Westerhof et al. (1971) used the water hammer equa-

tion (Equation 2.7) to estimate Zc,w. While Wesseling et al. (1993) estimated Zc,w from the

combined water hammer and Bramwell-Hill equations (Section 4.4.1). Kamoi et al. (2017)

utilized both approaches.

Redefining Zc,wC using PWV

Kamoi et al. (2017) combined the water hammer equation (Equation 2.7) and the vol-

ume form of the Bramwell-Hill equation (Equation 2.2), to estimate the parameter product

Zc,wC. Specifically, the product of Equation 2.7, in terms of Zc,w, and Equation 2.2, in terms

of (volumetric) compliance results in:

Zc,wC =
PWV ρ

A
× V

ρPWV 2
=

Lc
PWV

(6.1)
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This formulation allows Equation 4.11 to be rewritten using PWV and characteristic length

(Lc):

Pres(t) = e−(
PWV
Lc

+ 1
RC )t

( t∫
0

[
e(
PWV
Lc

+ 1
RC )τ

(
PWV

Lc
Pmea(τ) +

Pcvp(τ)

RC

)]
dτ + Pmea(0)

)
(6.2)

PWV for Dynamic Zc,w

The identification of model parameters for Equation 6.2 will be discussed in Section 6.2.2,

so for the moment, consider it possible to identify Pres. Aguado-Sierra et al. (2008) did not

use Pres to solve for SV . Doing so would require Zc,w to be known separate from its product

with compliance, as per Equation 4.17.

One way to identify Zc,w would be to use a calibration stroke volume measurement (SVcal)

and rearrange Equation 4.17, yielding:

Zc,cal =
1

SVcal

t∫
0

Pex(τ)dτ (6.3)

Where Zc,cal is the calibrated characteristic impedance, found from SVcal. However, as per

Section 4.7.1, using Zc,cal for Zc,w makes it a static parameter.

Since monitoring PWV was necessary for solving Pres according to Equation 6.2, Kamoi

et al. (2017) decided to use the water hammer equation (Equation 2.7) to estimate Zc,w, as

Westerhof et al. (1971) had done at the inception of the three-element windkessel. The

difference being, Kamoi et al. (2017) would monitor PWV continuously and thus update

Zc,w every beat, making it a dynamic parameter.

However, the water hammer equation also requires cross-sectional area to be known.

Kamoi et al. (2017) used the experimental data of Protocol D (Section 5.2.1), which did
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not include measurement of the aortic area, but did have an admittance catheter for mea-

suring left ventricular volume (Vvent). This measurement allowed stroke volume to bemea-

sured (SVmea) throughout the experiment according to Equation 5.10. Thus, Kamoi et al.

(2017) back calculated Zc,cal from Equation 6.3, and used this value with the water hammer

equation to calibrate calibrated cross-sectional area (Acal):

Acal =
PWV ρ

Zc,cal
(6.4)

Kamoi et al. (2017) used the measured SV from multiple calibration beats to find an aver-

age Zc,cal and Acal.

Kamoi et al. (2017) also assumed the relative change in aortic area throughout an experi-

ment, would be inversely proportional to changes in systolic duration:

A =
Tsys,cal
Tsys

Acal (6.5)

Where A and Tsys represent the current beats cross-sectional area and systolic duration

respectively. Tsys,cal is the mean systolic duration during the calibration of Acal.

Tsys was identified as the time between the times of start-systole (t0) and end-systole (tes).

Start-systole was identified as t0,P, the foot of the arterial pressure waveform, as discussed

in Section 5.4.3, but used a different method than the authors shear-transform approach

of Figure 5.7. A beat’s point of maximum negative pressure gradient,
dP
dt min

, was used

to estimate end-systole. However, a generic weighting function was first applied to
dP
dt
,

attenuating the signal the further it was from the centre of the beat. This weighted first

derivative based estimate of the time of end-systole (tes,dP/dt) will be discussed further in

Chapters 8 and 10.

Finally, by measuring PWV via foot-to-foot pulse transit time (PTT), as shown in Figure

2.13, Kamoi et al. (2017) estimated Zc,w on a beat-to-beat bases using the water hammer
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equation (Equation 2.7), modified with Equation 6.5, yielding:

Zc,w =
PWV ρ

Acal

Tsys
Tsys,cal

(6.6)

6.2.2 Kamoi Model Pres Calculation

Lc Calibration

The Kamoi model implementation requires Lc, as per Equation 6.2. Like Wesseling et al.

(1993) (Section 4.4.1), Kamoi et al. (2017) treated Lc as a constant value representing the

“anatomical length” of the aorta1. Thus, in the Kamoi model’s case, Equation 6.1 essentially

attributes changes in Zc,wC to PWV . However, instead of using an assumed aortic length

like Wesseling et al. (1993), Kamoi et al. (2017) used a grid search technique to calibrate Lc.

The grid search involved iterating Lc over a range of potential values. Each iteration is

referred to using the subscript ‘ i ’. For each Lc,i, RC was also iterated over a range of

values. For each pair of Lc,i and RCi, Pres,i could be calculated according to Equation 6.2 for

the whole beat. The error, E , was then calculated over the diastolic part of the pressure

waveform for each Pres,i, using the condition given in Equation 4.12. Specifically2:

E =
∑(

Pmea(t ≥ tes)− Pres(t ≥ tes)
)2

(6.7)

For every Lc,i, one of the RCi values minimises E (RCmin E ). Pres for each Lc,i and RCmin E pair

is shown in Figure 6.1, referred to as Pres,min E . Figure 6.1 shows Pres,min E (t ≥ tes,dP/dt) can be

very similar for different values of Lc,i. Thus, according to Kamoi et al. (2017), minimising

the error according to Equation 6.7, was not enough to identify a best fit or optimal Lc

value. Therefore, Kamoi et al. (2017) introduces a second condition:

1Kamoi et al. (2017) refers to this as Lao, rather than a characteristic length.
2Kamoi et al. (2017) only states “the discrepancy between Equation 10 and measured diastolic pressure decay

was minimized”, where Equation 10 in Kamoi et al. (2017) is Equation 6.2 in this thesis. Shun Kamoi’s thesis
(Kamoi, 2016) has a similar statement. Thus, although no explicit equation is given for the error minimisation,

Equation 6.7 represents a common error minimisation approach known as the sum squared error.
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Pmea(tes) = Pres(tes) (6.8)

Where in Kamoi et al. (2017), end systole was tes,dP/dt, as per Section 6.2.1. Thus, a calibra-

tion beat value for Lc was found as the value used in Pres,min E that satisfied, or came closest

to the condition of Equation 6.8, which is referred to as Pres,cal in Figure 6.1. Although

Figure 6.1 shows only one beat used for identification of Lc, Kamoi et al. (2017) used an

average Lc from the beats used when identifying Zc,cal (discussed in Section 6.2.1). This

averaged Lc value was then fixed on the basis length will not change over time. Therefore,

according to Equation 6.1, changes in Zc,wC are attributed to changes in PWV .

Pres Calculation Post Lc Identification

Unlike Lc, the value of RC was not fixed to the value used in calculating Pres,cal. RCmin E

was still found beat-wise by minimizing the error according to Equation 6.7, but applied to

Equation 4.16 (Kamoi, 2016). It is unclear exactly how Kamoi et al. (2017) performed the

error minimization, but the authors approach will be discussed later in Section 9.3.2. For

now, an example of RC identification, post Lc calibration, is shown on the second beat of

Figures 6.1a and 6.1b. Specifically, Pres,dia refers to the exponential decay of Equation 4.16

according to the RCmin E . With Lc from the calibration and each beats RCmin E , Pres was then

able to be calculated, with the measured PWV of the beat, according to Equation 6.2.

6.2.3 Kamoi Method Stroke Volume Estimation

With Zc,w identified per Section 6.2.1, and Pres found per Section 6.2.2, the Kamoi model

then estimates stroke volume (SVest) using the fundamental three-elementwindkesselmodel

equations, of Section 4.3.2. Specifically, Equation 4.3 is used to find excess pressure (Pex),

and subsequently SVest is found via Equation 4.17.

However, it is worth noting, the SVest is actually calculated by integrating the estimated

flow waveform of the model (Qest), per Equation 4.17. Although Kamoi et al. (2017) ac-
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Figure 6.1: Kamoi model Lc calibration and subsequent beats RC and Pres calculation. (a) and (b) show the
method applied to Pao and Pfem, respectively. The grid search is applied to the first beat of each subplot,
where Pres,min E minimised the error according to Equation 6.7. The grid search bounds were 0.01≤ RC ≤ 5
and 0.1 ≤ Lc ≤ 3.5, where Lc ∝ 1/Pres. The phase delay has been removed from the femoral pressure signal
relative to the flow probe, for easier comparison of the excess pressure and flow waveform shapes in (b).

The beats analysed are from Pig S5’s control stage.
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knowledged the model’s ability to predict flow, the results of the study focus on the more

clinically relevant SVest. The implications of presenting SVest, but without presenting the

mechanisms through which it is found, will be covered in Chapter 9.

6.2.4 Kamoi Method Implementation Summary

It should now be clear, using the Kamoi model implementations results in Lc as a static

parameter, while parameters RC and Zc,w are dynamic. Additionally, the hybrid PWV and

PCA approach developed has been shown, with Lc and RC being identified via PCA, but

Zc,wC and Zc,w being found from PWV . Therefore, PWV will influence the shape of Pres

and thus Pex according to Equation 4.3. However, it also impacts the SV estimation more

directly through changes in Zc,w according to Equation 6.6 and Equation 4.17.

6.3 Limitations of the Kamoi Method

The Kamoi model is essentially a three-element windkessel, with novel implementation,

through the inclusion of PWV . Thus, Section 4.3.3, which covered the three-element wind-

kessel limitations, is relevant to the Kamoi model. However, this section will cover the

limitations specific to the Kamoi model implementation.

6.3.1 Clinical Applicability Challenges

The Kamoi method requires PWV , which can bemeasured in a clinical environment, but is

not usually monitored continuously. For the model to meet the goals of this thesis (Section

1.4), a method of measuring PWV , using clinically available metrics, would need to be

found. This issue will be discussed further in Chapter 7.

The second clinical limitation is cross-sectional area (A) must be known to estimate Zc,w

from Equation 6.6. In a clinical environment, it is possible to measure the aortic cross-

sectional area non-invasively, using trans-esophageal doppler ultrasound (Section 3.2.3).

While measuring aortic area, trans-esophageal dopplier ultrasound could conveniently

give you access to a calibration SV at the same time.
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6.3.2 Signal Processing Limitations

The Kamoi method implementation is also sensitive to start and end-systole detection (t0,

tes), through two mechanisms. First, t0 to tes defined systolic duration, Tsys. Beat-to-beat

changes in systolic duration (∆Tsys), relative to the calibrated value (Tsys,cal), are propor-

tional to the value of Zc,w for a beat, through Equation 6.6. Subsequently, ∆Zc,w will effect

SVest through Equation 4.17. Calibrating systolic duration (Tsys,cal), makes Equation 6.6 sen-

sitive to tes precision rather than accuracy. For example, consider Figure 6.2.

In Figure 6.2, dicrotic notches can be seen on the Pao waveform, indicated by arrows. As

discussed in Section 2.3.1, the dicrotic notch marks end-systole (tes,dic) in Pao. For these

example Pao waveforms, tes,dP/dt misidentifies tes,dic, but in a manner which consistently

overestimates Tsys,ao. Therefore, the aortic pressure tes,dP/dt values have low accuracy, but

high precision, resulting in ∆Tsys,ao ≈ 0 and minimal SVest,ao error according to Figure 6.2.

In contrast, the central beat of Pfem in Figure 6.2, has a shorter Tsys than the other beats.

This difference has little effect on Pres,fem and Pex,fem, because Lc has already been cali-

brated. However, due to the reduction in ∆Tsys,fem, the modelled characteristic impedance

(Zc,w) from the femoral signal falls according to Equation 6.6, increasing the estimated flow

(Qest,fem) according to Equation 4.5. This overestimation of the flow leads to a significant

spike in SVest,fem error for the beat.

The value of Lc is also largely dependent on end-systole detection, since Lc is found via the

condition of Equation 6.8. The implications of this issue in end-systole detection will be

explored in detail in Chapters 8, 9 and 10. However, for now, the impact of tes identifica-

tion can be seen through the comparison of Figure 6.1b with Figure 4.4. Figure 4.4 uses

an improved end-systole detection method covered in Chapter 10. The improved tes esti-

mation contributes to Figure 4.4’s lower error according to Equation 6.7, when compared

with Figure 6.1b.
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Figure 6.2: Example of how tes,dP/dt precision, rather than accuracy, influences SVest. This example uses
beats from Pig D3, high PEEP stage. Note that QVvent refers to the flow waveform estimated from Equation
5.11.
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6.3.3 Stroke Volume Error and Clinical Accuracy

Kamoi et al. (2017) stated 95% of the estimated SV was within the ±30% criteria outlined

by Critchley and Critchley (1999) (Section 3.5). However, it is worth noting, the criteria

appears to be applied to each individual pig, rather than the sample of pig data as a whole

(Kamoi, 2016; Kamoi et al., 2017). Furthermore, although it is not entirely clear3, it ap-

pears the percentage error for each pig was calculated with respect to the mean SVmea of

the experiment (SVmea). If so, this approach leads to an under-representation of the error

for beats whose SVest < SVmea, but an over-representation for beats whose SVest > SVmea.

More accurately, stroke volume estimation error (SVerr) as a percentage (SV%err) should be

calculated for each beat according to the estimated and measured SV for that beat:

SVerr = SVest − SVmea (6.9)

SV%err =
SVerr
SVmea

=
SVest − SVmea

SVmea
(6.10)

An exceptional case can be argued for beats with very low SVmea. For example, consider

SVmea = 8ml and SVest = 5ml, that is only SVerr = 3ml, but the percentage error would be

37.5%. In this case it could be argued the percentage error over-represents what is actually

very good absolute error.

6.4 Summary

This chapter outlined the Kamoi method, upon which this thesis is founded. The method

combines the three-element windkessel model with continuous PWV monitoring. Specifi-

cally, the model used PWV to aid in parameter identification and subsequent Pres estima-
3Kamoi et al. (2017) states the “95% range was within±10ml (approximately 30%) for all pigs”, consistent with

each pigs SVmea ≈ 30ml. Additionally, the individual pig’s Bland-Altman figures and summary table include the
2.5th-97.5th percentiles only in millilitres, but the caption states the “Precision is calculated as half the 95% range

divided by mean SV for each pig”.
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tion. Although Kamoi et al. (2017) makes reference to the model’s ability to estimate flow,

the results do not include the modelled Pres, Pex or Qest, as in Figure 6.1 and 6.2. Instead,

the results largely focus on estimating SV , which is more clinically relevant as per Chapter

1.

However, as discussed in Section 1.4, a physiologically accurate flow waveform shape

acts as an indication of correct parameter identification, and may be useful when es-

tablishing whether the PCA method requires re-calibration. Essentially, Chapters 4 and

6 have demonstrated the potential of the three-element windkessel based models to esti-

mate global physiology. The methods presented have drawn on the same theory, but their

different implementations lead to different results. Thus, working towards the thesis goals

of Section 1.4, the following chapters will attempt to overcome the limitations of the Kamoi

model. Specifically, they will focus on improving the implementation of the method and

its clinical relevance.



CHAPTER7

Pre-ejection Period and

Inadequate Pulse Transit

Time Estimation

7.1 Introduction

Chapter 6 outlined the advantages and limitations of the Kamoi Model. One limitation was

the model’s reliance on pulse wave velocity (PWV), for its implementation of the three-

element windkessel model. In a clinical environment, PWV is used as a surrogate measure

of arterial stiffness, as discussed in Sections 2.5.1 and 2.5.3. However, it is not common to

continuously monitor PWV , as required by the Kamoi model. This chapter presents and

tests a non-additionally invasive method of beat-to-beat estimation of PWV suitable for a

clinical environment.
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7.2 PWV Clinical Relevance

Section 2.5.1 and Figure 2.11 covered pulse wave velocity and its physiological mecha-

nisms in detail. In summary, PWV is the speed the blood pressure pulse travels through

the arteries. As the pulse travels, vessel wall expansion stores energy from the wave front,

reducing its speed. This relationship between PWV and compliance (C) is described by the

Bramwell-Hill equation, Equations 2.2 and 2.3 (Bramwell and Hill, 1922).

Since PWV is easier to measure than arterial stiffness/compliance, PWV is often used clini-

cally as a surrogate of arterial stiffness, which is itself a predictor for future cardiovascular

dysfunction (Nye, 1964; Blacher et al., 1999a,b; Laurent et al., 2001; Cameron et al., 2003;

Millasseau et al., 2005; Laurent et al., 2006; Nichols et al., 2011; Ben-Shlomo et al., 2014).

Similarly, PWV is used in cardiovascularmodels to describe or capture the properties upon

which it depends (Asmar et al., 1988; Pitson et al., 1994; Fung et al., 2004; Kamoi et al., 2015,

2017). This approach was the case in the Kamoi model of Chapter 6.

7.3 Clinical Methods for Measuring Pulse Transit Time

(PTT) for PWV

PWV is usually measured as the PTT between two arterial sites a known distance apart,

as per Figure 2.13 (Loukogeorgakis et al., 2002; Millasseau et al., 2005; Laurent et al., 2006;

Payne et al., 2006; Dogui et al., 2011; Kamoi et al., 2015, 2017). Thus, PWV and PTT are

inversely proportional, and dependent on the same underlying physiological factors. PTT

can be measured locally, or more generally as an average over the length of the arterial

system.

Local PTT can be found non-invasively using tonometry, magnetic resonance imaging

(MRI) techniques and other separate medical devices (Yamashina et al., 2002; Rajzer et al.,

2008; Townsend et al., 2015; Pereira et al., 2015; Joseph et al., 2016). The complexity and
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cost of some of these techniques limits them to singular or short term measurements

(Townsend et al., 2015).

Amore general PTT can be estimated non-invasively and continuously using photoplethys-

mogram (PPG) signals (Loukogeorgakis et al., 2002; Fung et al., 2004; Payne et al., 2006;

Muehlsteff et al., 2006; Lazaro et al., 2016). This method was discussed in Section 3.5.4,

where it was used as part of the esCCO device (Nihon Kohden®). However, in a clinical set-

ting, it is most relevant to measure local PTT along the aortic pathway as a surrogate for

arterial stiffness (Blacher et al., 1999b; Laurent et al., 2006; Nichols et al., 2011; Townsend

et al., 2015). This clinical relevance arises because the aorta is less stiff than the periph-

eral arteries, and shows a much larger change in stiffness over a human’s lifetime (Nichols

et al., 2011; Townsend et al., 2015), as discussed in Section 2.5.1. Thus, the ‘gold stan-

dard’ measure for arterial stiffness is a PTT from the pressure waveform foot of the com-

mon carotid artery to the femoral artery (Laurent et al., 2006; London and Pannier, 2010;

Townsend et al., 2015), usually achieved by catheterisation of both sites (Laurent et al.,

2006; Hanya, 2013). However, where applicable, such as when singular or short termmea-

surements are desired, non-invasive methods can be used (Townsend et al., 2015). In this

thesis, the target cohort are patients in critical or acute care environments, where catheter-

isation is more common, and thusmore likely to be available for this type of measurement.

However, dual catheterisation represents an undesirable increase in clinical workload and

patient burden over the typical single catheterisation of cardiovascular intensive care unit

(ICU) patients. Therefore, for those ICU patients already (singly) catheterised, replacing

one of the two required catheters with non-invasive pulse detection would enable non-

additionally invasive, continuous estimation of PTT and arterial stiffness. Thus, there is a

need for an accurate non-invasive surrogate measure from which to calculate PTT.
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7.4 ECG based Non-Additionally Invasive PTT Surrogate

A popular non-invasive pulse detection surrogate is the ECG QRS complex (Figure 2.6),

which is used in place of the centrally located pressure catheter (Katz et al., 2003; Chua

and Heneghan, 2005; Liu et al., 2016). The advantages of an ECG signal are it is extremely

common in medical care, non-invasive, and a central measurement. However, the QRS

complex represents the electrochemical initiation of ventricular contraction, and not aor-

tic valve opening (Guyton and Hall, 2011), as covered in Section 2.3.1. Thus, the QRS com-

plex does not directly correspond to the actual onset of blood ejection from the ventricle.

The time interval between the Q-wave of the QRS complex and aortic valve opening is

the pre-ejection period (PEP) (Talley et al., 1971; Newlin and Levenson, 1979). It is associ-

ated with the isovolumetric contraction of the heart overcoming upstream pressure in the

aorta. Hence, the time between the Q-wave and the pulse arriving at a downstream site

is not the true PTT, but is instead known as the pulse arrival time (PAT). PAT is the direct

sum of PEP and the subsequent PTT from the aortic valve to the downstream detection

site.

Despite this issue, many studies measure PAT, but incorrectly call it PTT, either without

reference to PEP or by assuming PEP is negligible (Cameron et al., 2003; Fung et al., 2004;

Chua and Heneghan, 2005; Kim et al., 2006; Liu et al., 2016). PEP has long been known to

vary with cardiac performance metrics, such as contractility, preload and afterload (Sec-

tion 2.4) (Harris et al., 1967; Newlin and Levenson, 1979). Thus, using PAT and assuming it

is equivalent to PTT introduces the PEP as an error (Balmer et al., 2017, 2018c).

Several studies have already found neglecting PEP to be a poor assumption. For example,

Payne et al. (2006) and Muehlsteff et al. (2006) found while changes in PTT can be used

to non-invasively monitor blood pressure, PAT was less suitable. An advantage of these

studies was the use of human subjects. However, this choice in turn, prevented the use of

highly invasive ‘gold standard’ PTT and PEPmeasures or dramatic alteration of circulatory
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system behaviour.

A similar study performed in dogsmeasured PTT between catheters in the ascending aorta

and femoral artery (Zhang et al., 2011). However, the study does not identify the time of

aortic valve opening, implying instead that PEP was overestimated as the time from the

ECG Q-wave to the arrival of the pulse at the first catheter. Additionally, these studies

generally used a 200–500Hz sampling rate, meaning a resolution of only 2ms–5ms was

available.

Overall, there remains a need to accurately measure and quantify the variability and im-

pact of PEP on PTT, and thus the level of variability, error and clinical utility of PAT. This

study improves on previous studies by using a dual catheter aortic PTT measure, which is

better than the clinical gold standard, and by using a ventricular catheter to detect aortic

valve opening, providing highly accurate PEP. In addition, data was sampled at 1000Hz, at

least double the measurement resolution available in previous studies, minimising inher-

ent timing error.

The overall aim of this study is to use high resolution, gold standard measurements to

investigate the relationship between PAT, PEP and PTT across several controlled clinical

interventions commonly used to improve cardiac performance in a critical care environ-

ment. The results should determine the viability of using PAT as a surrogate for PTT across

a range of cardiovascular conditions and behaviour commonly observed in a critical care

environment. If PAT proves a reliable surrogate of PTT, it may be possible to estimate PWV

in a clinically applicable manner for use with the Kamoi model of Chapter 6, dramatically

improving the methods clinical applicability, one of the goals of this thesis (Section 1.4).
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7.5 Method

7.5.1 Porcine Trials and Measurements

The data for this study comes from five pure Pietrain pigs, specifically Pigs D1–D5 of the

dobutamine protocol, described in Section 5.2.1. Preparation of the pigs, including seda-

tion and euthanasia, was covered in Section 5.2. The measurements available were sum-

marised in Table 5.1.

7.5.2 Hemodynamic Modifications Effects on PEP & PTT

The hemodynamic modifications of Protocol D were covered in Section 5.2.1, and the sub-

sequent data used in analyses, including this one, was given in Section 5.3.1 and Figure

5.1. The exception is the Dobutamine High PEEP stage, which was not used in this study.

Thus, Figure 7.1 is a modified version of Figure 5.1, specific to this study.

Control
(95 beats)

Pig stabilised
Maximum PEEP 

reached

High PEEP
(46 beats)

Maximum fluid 
state reached

High Fluids
(139 beats)

Stable dobutamine 
response

Dobutamine
(115 beats)

Pig 
prepared

PROCEDURE

Recruitment 
manoeuvre

Fluid boluses 
administered

Continuous 
dobutamine 
administered

POST PROCESSING
STAGES

Figure 7.1: Dobutamine protocol experimental procedure, post processing stages and number of heart

beats used from each stage, specific to this study. For full details on the protocol, refer to Section 5.2.1.

The remainder of this section summarises the interventions and predicts their effect on

cardiac performance and the systolic time intervals of interest to the study. The degree to

which each pig responds depends on its sensitivity to the specific intervention, as well as

its state following prior interventions.

Recruitment Manoeuvre High PEEP Stage

The data analysed from the recruitment manoeuvre (RM), was captured during the dura-

tion of maximum positive end-expiratory pressure (PEEP), called the high PEEP stage. Per
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Section 5.2.1, increases in PEEP can decrease preload and increase afterload (Luecke and

Pelosi, 2005; Marik, 2010). In turn, the decreased left ventricular preload can increase PEP

(Wallace et al., 1963). PTT changes during this modification are harder to predict, since the

pressure in vessels lying outside the thorax are less effected by PEEP (Luecke and Pelosi,

2005).

Fluid Administration High Fluids Stage

The high fluids stage covers the time following each pig’s final 180ml fluid bolus adminis-

tration, taking a pig to its highest fluid state. Section 5.2.1 explained fluids are adminis-

tered in critical care to increase the blood volume in the hope of improving preload, and

thus stroke volume (SV) through the Frank-Startling mechanism (Section 2.4.2) (Michard

and Teboul, 2002; Cecconi et al., 2015). However, the aforementioned section highlighted

response to fluid administrations is clinically variable and depends how the body dis-

tributes the introduced bolus (Michard and Teboul, 2002). Thus, it is possible little change

in cardiac performance will occur for those pigs that are fluid unresponsive.

Dobutamine Administration

The final stage analysed is the continuous dobutamine infusion. Section 5.2.1 explained

how the inotrope dobutamine is administered to increase contractility, and can lead to an

increase in SV , as per Figure 2.8. Previous studies have shown PEP decreases with the

increased velocity of muscle fibre shortening associated with increased contractility, pro-

vided other PEP influences remain unchanged (Harris et al., 1967; Newlin and Levenson,

1979).

Dobutamine can also act as a vasodilator. However, this effect is subject specific (Ruffolo,

1987; Ellender and Skinner, 2008). Significant vasodilation would increase PTT / reduce

PWV , according to Equation 2.3 and 2.7.
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Assessment of Contractile State

In the transition between interventions, a vena cava occlusion was performed. This tech-

nique allows changes in the contractile state of the heart to be assessed through the gradi-

ent of the end-systolic pressure volume relationship (ESPVR), as per Figure 2.8.

7.5.3 Identification of PAT, PTT and PEP

PTT calculation

In this study, PTT was directly measured using the foot-to-footmethod of Figure 2.13. The

feet of the aortic (Pao) and femoral (Pfem) pressure waveforms, t0,Pao and t0,Pfem , were iden-

tified using the shear transform method shown in Figure 5.7. Figure 7.2 re-presents PTT

detection, but also includes identification of PEP, pulse delay time (PDT) and PAT.

PEP calculation

PEPwas measured as the time from absolute start of systole, t0,ECG, to aortic valve opening.

Identification of the ECG Q-wave as t0,ECG was discussed in Section 5.4.3 and shown in

Figure 5.6. Aortic valve openingwas identified as the time Pvent exceeded Pao, as per Section

2.3.1 (Guyton and Hall, 2011), and is shown as a black ‘×’ on Figure 7.2.

PDT calculation

The time delay between the aortic valve opening and t0,Pao represents the time it took for

the pulse wave to reach the first catheter. This duration is shown on Figure 7.2, referred

to as the pulse delay time (PDT), to distinguish it from PTT. Figure 7.2 specifically uses Pig

D4, since it had the longest PDT of the cohort, with an average of 12ms.

Some studies estimate PEP as the time from the ECG R-wave to t0,Pao (Zhang et al., 2011).

However, this time period includes PDT and therefore PEP estimated in this manner will

be overestimated.
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Figure 7.2: Example of how PEP, PDT, PTT and PAT were found for each beat. The example waveform
comes from a control stage beat of Pig D4, which had the the longest PDT of the pigs in the study. The shear
transform foot detection method shown, is the same as Figure 5.7.

PAT calculation

Finally, PAT was measured from the ECG Q-wave to the foot of Pfem, as shown in Figure

7.2. Thus, PAT is a sum of the other systolic time intervals mentioned, PEP, PDT and PTT,

respectively. Each of the systolic time intervals are illustrated in Figure 7.3 to help distin-

guish between them.
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ECG QRS Complex Open Aortic 
Valve

Proximal Aortic 
Pressure Waveform

Femoral Arterial
Pressure Waveform 

PEP PDT

Foot-to-foot 
PTT

PAT

Q-wave

R-wave

S-wave

Figure 7.3: Qualitative representation of the systolic time intervals.

7.5.4 Estimation of Cardiac Performance Metrics

Sections 2.4.2 discussed how end-diastolic ventricular pressure (EDVP) and volume (EDVV)

were ventricular preload surrogates. Similarly, Section 2.4.3 discussed how end-diastolic

aortic pressure (EDAP) was a surrogate measure of ventricular afterload. As explained

in Section 5.4.3, Pvent(t0,Pvent), Vvent(t0,Pvent) and Pao(t0,Pao) are equivalent to EDVP, EDVV and

EDAP, respectively. Thus, changes in ventricular preload and afterload were monitored

using Pvent(t0,Pvent)/Vvent(t0,Pvent) and Pao(t0,Pao), respectively.

7.5.5 Data Analyses

A specific number of heart beats was used from each stage for data analysis, based on

the pig with the fewest beats recorded for the stage. For example, Pig D4 had the shortest

control stage with 95 beats before the recruitment manoeuvre began. Thus, the first 95

beats of the other pigs control stages were analysed and successive beats were ignored

from the analysis. The remaining stages, high PEEP, high fluids and dobutamine, used 46,

139 and 115 beats respectively, as shown in Figure 7.1. This approach ensured each pig

has equal representation in any comparisons.

Using the method in Figure 7.2, PEP, PTT and PAT were measured for each heart beat, and

the mean and standard deviation calculated for each particular stage for each pig. The

strength of relationship between PAT and PTT was evaluated for each stage using linear

regression analysis and the coefficient of determination (r2). The r2 value represents the
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fraction of the total observed variation in PAT due to the observed variation in PTT. Thus,

(1–r2)× 100 is the percent of behaviour not captured by the linear model.

After individual stages were analysed for a particular pig, an overall analysis for that pig

was conducted. The pig specific relationship of PTT and PAT are therefore accessed over

the range of hemodynamic modifications. Finally, the inter-subject variability between

pigs is evaluated. Comparing the overall analyses of each pig, differences in pig specific

response to the hemodynamic modifications is observed, as well as the overall PTT, PAT

relationship. Thus, similarities or inter-subject variability are highlighted.

7.6 Results

Table 7.1 presents the mean and standard deviation for PEP, PTT and PAT for each pig

and each stage. Additionally, mean PDT was determined for each pig during the control

stage and was found to range from <1ms to 4ms for Pigs D1, D2, D3 and D5, while Pig D4

had a mean PDT during control of 12ms (results not shown). PDT was then re-measured

during subsequent stages and did not change significantly, meaning the upstream catheter

(measuring Pao) moved little throughout the experiment.

Table 7.2 shows each stages mean change in preload (∆EDVV) and afterload (∆EDAP)

measures, as well as mean changes in systolic time intervals. This result provides a more

quantitative view of pig response to each stages intervention, which is referred to during

the discussion.

Figure 7.4 shows the degree to which changes in PEP and PTT affected PAT, for each in-

tervention. Coefficients of determination were also calculated for each pig individually,

across all its stages, and were found to vary between r2 = 0.05–0.60 (results not shown).

In all cases, there is significant inter- and intra- pig variation and no strong relationship

appears consistently between variables.
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Table 7.2: Mean change in afterload (∆EDAP), preload (∆EDVV), pre-ejection period (∆PEP), pulse transit
time (∆PTT) and pulse arrival time (∆PAT), between intervention stages.

Pig

D1 D2 D3 D4 D5

Control to High PEEP

∆EDAP +2% -12% -26% -5% -15%

∆EDVV +8% -20% -49% -38% -17%

∆PEP +5% -1% +2% +10% +7%

∆PTT -2% +1% +10% -2% +10%

∆PAT +1% 0% +6% +1% +9%

Control to High Fluids

∆EDAP +12% -3% +6% +23% +22%

∆EDVV +6% +7% +25% +31% +1%

∆PEP +30% +11% +12% +14% +11%

∆PTT -1% +4% +1% -6% -9%

∆PAT +16% +7% +9% +6% -1%

High Fluids to Dobutamine

∆EDAP -2% -1% -9% -9% 0

∆EDVV -19% -4% -24% -24% -1%

∆PEP -44% +4% +9% -9% +25%

∆PTT -9% +2% +6% +4% -8%

∆PAT -31% +2% +7% -5% +4%
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Figure 7.4: The percentage change (∆) in each pig’s systolic time interval with respect to control for the
high PEEP and high fluids stages, and with respect to high fluids for the dobutamine stage.



CHAPTER 7. PRE-EJECTION PERIOD AND INADEQUATE PULSE TRANSIT TIME

ESTIMATION 121

7.7 Discussion

7.7.1 Response to Interventions

Response to High PEEP Stage

PEEP directly effects lung mechanics, rather than directly changing cardiac behaviour.

Thus, PEP and PTT are indirectly effected by this intervention. PEEP caused significant

reductions in preload (EDVV) and afterload (EDAP) in Pigs D2-D5, as seen in Table 7.2.

Independently, a decrease in preload and afterload should have opposing effects on PEP,

with preload being inversely proportional to PEP, while afterload is directly proportional

(Weissler et al., 1968; Talley et al., 1971; Bendjelid et al., 2004). Preload appeared to dom-

inate the response of Pigs D4 and D5 showing an increase in PEP, while Pigs D2 and D3

showed little change in PEP possibly due to the cancelling effect of their preload and af-

terload changes. Pig D3 and D5 also showed significant increases in PTT, coupled with the

largest reductions in mean arterial pressure (MAP) (results not shown).

PAT increased in four of the five pigs, given its dependence on PTT and PEP. Under the

relatively short term high PEEP stage, overall variation in PAT was largely explained by

variation in PTT (r2 = 0.69 in Figure 7.4b). However, the overall correlation is slightly

misleading, since for any individual pig, variation in PEP correlated highly with PAT, ex-

plaining the lower individual correlation of PAT with PTT. Thus, the PEP increase would

still cause an overestimate in the change (∆) in PAT if it were to be used as a surrogate for

∆PTT.

Response to High Fluids Stage

The fluid administration caused significant increases in preload (EDVV) and afterload

(EDAP), as seen in Table 7.2. However, it appears afterload dominated response in these

cases, with increases in PEP of from 11%-30%. PTT was less effected, although it did show

a notable reduction in Pigs D4 and D5. The lack of correlation between changes in PAT and
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PTT (r2 = 0.33) compared with changes in PAT and PEP (r2 = 0.68), in Figures 7.4c and 7.4d,

respectively, shows variation in PAT was dominated by changes in PEP during this stage.

Thus, during this stage, the surrogate measure (PAT) performed poorly.

Response to Dobutamine Stage

The final intervention, dobutamine administration, successfully increased contractility for

all pigs whose contractility was measured, namely Pigs D1, D3, D4 and D5, whose ESPVR

slopes increased 104%, 16%, 55% and 79%, respectively (results not shown). Because dobu-

tamine administration followed the high fluids stage, the effects of the dobutamine are

compared with the hemodynamic state during the high fluids stage. This timing of the two

therapies is a limitation of the study.

During dobutamine admission, significant pig specific changes in many of the measured

hemodynamics was observed, as well as the largest intra- and inter- pig variation in PEP,

PTT and PAT. Although PEP is known to change inversely to contractility (Harris et al.,

1967; Newlin and Levenson, 1979), the relationship can be obscured by other factors, such

as preload and afterload changes, which also were observed in this stage in Table 7.2. It is

thus difficult to find consistent reasoning for the changes in PEP during this stage. How-

ever, this variability represents typical behaviour in a critical care environment, where

patients have multiple contributing factors to any observed changes in hemodynamic be-

haviour.

For example, Pigs D1 and D5, show the largest contrasting changes in PEP of the study,

with Pig D1 having a 44% mean reduction and Pig D5 having a 25% mean increase. Pig

D1 went on to show the largest mean change in PAT of the study, falling 31%, significantly

overestimating it’s mean reduction in PTT of 9%. Pig D3 on the other hand showed a mean

increase in PAT of 4%, driven by the PEP increase, despite PTT falling 8%. This stage then

provides perhaps the best example of why PAT may be an inadequate surrogate of PTT

under clinical conditions, with changes in PTT being both under and over estimated by

reflected changes in PAT, according to Figure 7.4f.
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7.7.2 Overall PAT and PTT relationship

Considering the effects of each stage individually and across pigs, the range of r2 values

(0.32-0.69, Figures 7.4b, 7.4d and 7.4d) and range of regression line slopes implies the rela-

tionship between PAT and PTT, is intervention specific. Additionally, the intra-pig PTT and

PAT correlations for all stages were pig specific (r2 = 0.05-0.60 results not shown). Thus,

∆PAT cannot be guaranteed to accurately reflect ∆PTT, even if an initial calibration of

PTT occurs.

The low r2 values show variation in PTT accounts for a small proportion of the variance in

PAT. Since only a weak relationship exists between PAT and PTT, the results suggest PAT

is an undesirable surrogate measure of PTT. Despite this evident variability and potential

introduced error, PAT is still used as a surrogate for PTT in several studies (Pitson et al.,

1994; Cameron et al., 2003; Katz et al., 2003; Chua and Heneghan, 2005; Kim et al., 2006; Liu

et al., 2016).

However, given these results, the PAT surrogate should be used with caution. In a clinical

environment where different therapies may be utilized across a wide range of patient dis-

ease states, and patient hemodynamic state can change unexpectedly, this study suggests

using PAT as a surrogate to monitoring PTT is inappropriate.

7.7.3 Overall Effect of PEP

Looking at Table 7.1, mean PEP ranges from 53ms (Pig D5 control) to 104ms (Pig D3 dobu-

tamine). The similar magnitudes of PEP and PTT explains why using PAT as a direct sur-

rogate measure of PTT can result in a significant overestimate. It also explains why even

a modest variation in PEP, independent of PTT, can cause poor correlations between PAT

and PTT, as seen following two of the three clinical interventions. The results of this study

suggest the variation in PEP is the main reason PAT is unsuitable as a surrogate for PTT,

making it consistent with some other literature (Newlin and Levenson, 1979; Payne et al.,

2006; Zhang et al., 2011).
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In some studies, PTT is estimated by measuring PAT and subtracting an assumed constant

PEP (Fung et al., 2004). However, variability between each pig’s control stage PEP (Table

7.1) emphasises why a generic constant PEP assumption is problematic. Thus, it shows

constant PEP would likely be incorrect for clinically unstable patients, where an accurate

estimation is most needed.

For example, the two pigs with the least variability in PEP, Pigs D2 and D4, had mean

values of 58ms and 79ms during the control stage, and 61ms and 85ms when averaged

across all stages. Furthermore, Table 7.2 and Figure 7.4 show PEP is highly dependent

on the hemodynamic state, which is itself also pig specific, rendering a constant PEP as-

sumption even less valid if hemodynamic modifications are applied or the patient/subject

is hemodynamically unstable.

Hence, in this study, PEP could not have been ignored or estimated from a population value

to accurately capture changes in PTT using PAT. Therefore, the results also suggest any

population based mean for PEP is not reliable for clinical analysis, evaluation or decision

making.

7.7.4 Possible Solutions to PEP Bias

One solution to minimize bias due to PEP is to increase the distance over which the PTT

portion of PAT is measured, for example measuring to a peripheral artery. This change

would lead to PEPmaking up a smaller proportion of PAT relative to PTT and thus reduce

the error in PAT as an estimate of PTT (Loukogeorgakis et al., 2002; Fung et al., 2004). How-

ever, a common clinical motivator for calculating PTT was the determination of arterial

stiffness, specifically along the aortic pathway, as previously discussed in Section 7.3. Us-

ing the periphery for estimations of PTT, shifts the physiological area of interest to include

a far greater part of circulation and thus leads to an overestimate in aortic arterial stiffness

and incorrect diagnostic information.

The previous argument used the desire for a local/aortic stiffness as a reason PAT or PTT
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from the heart to the periphery was undesirable. However, a more global PTT value is ad-

equate for other uses, such as monitoring changes in blood pressure (Geddes et al., 1981)

and a more averaged measure of PWV from heart to periphery. A global measure of PAT

could also be fully non-invasive, as discussed in Section 7.1. Unfortunately, PAT measured

to the periphery has still been shown to correlate poorly with other physiological metrics

known to have strong relationships with PTT (Geddes et al., 1981), suggesting PEP dura-

tion and variability is still significant and must be directly accounted for. For example

Pitson et al. (1994) measured PAT in humans from the ECG R-wave to a PPG signal from

a finger pulse oximeter, and found it to be “approximately 250ms”, while PEP was found

to be “approximately 160ms”, meaning PEP still contributed over 60% to PAT. In another

study using humans and similar methods, Payne et al. (2006) showed PAT values similar to

Pitson et al. (1994) while mean baseline PEP was found to be approximately 95ms, mean-

ing PEP could still realistically contribute 30%-40% of PAT (Payne et al., 2006). Thus, PEP

is significant and highly variable, and use of PTT without this value could be significantly

misleading.

Despite these issues, in more recent years, non-invasive measures of PAT have still been

used as a measure for PTT and as a marker for blood pressure changes and arterial stiff-

ness in several studies (Pitson et al., 1994; Bulpitt et al., 1999; Cameron et al., 2003; Katz

et al., 2003; Chua and Heneghan, 2005; Kim et al., 2006; Liu et al., 2016). Once again, the

evidences suggests assuming PEP is negligible or constant, is invalid, even over the longer

pulse distance.

Furthermore, using the same analysis as in Figure 7.4, no relationship was seen between

change in PEP and change in PTT (r2 < 0.1, results not shown). It is thus unlikely a cal-

ibration measure of PEP would enable PAT to act as a PTT surrogate. Hence, unless an

accurate measure or estimate of PEP is obtained per beat, PAT is an unreliable surrogate

for a PTT measurement in a clinical environment or cardiovascular model.
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7.8 Limitations

The study was motivated by a desire to investigate the suitability of PAT as a surrogate

measure of PTT in an ICU environment. Therefore, the experimental protocol used in this

study reflected the common therapies in a critical care setting. It is possible that in an

outpatient or community health application, where patients typically present more sta-

ble hemodynamics, less variability in PEP may be present, and as such, PAT may be an

applicable PTT substitute. However, confirming this possibility would require additional

investigation.

7.9 Summary

This study showed changes in pulse arrival time from the ECG Q-wave to a downstream

arterial site (PAT), cannot be assumed to reflect changes in pulse transit time (PTT) in

patients with unstable hemodynamics or who are given therapies altering hemodynamic

state. The weak relationship between PAT and PTT within pigs and across interventions

(r2 = 0.32-0.69), and changes in PAT and PTT across pigs (r2 = 0.05-0.60), was shown to be

due to variability in PEP, independent of changes in PTT. PEP appeared to be pig specific

and changed inconsistently across intervention stages, with means of the stages ranging

from 53ms to 104ms. Therefore, PEP had a similar magnitude to PTT, but with significant

variability, meaning its contribution to PAT could not be neglected.

In a clinical setting where patients can have multiple disease states and be receiving mul-

tiple treatments simultaneously, prediction of PEP response may be more difficult. Hence,

under these circumstances, this study concludes PAT is an inappropriate surrogate for

PTT if an accurate estimate of PEP cannot be found. This conclusion holds regardless of

whether the downstream pulse detection is in a proximal or peripheral artery.

This research has extended initial results in this area. They confirm the conclusions hold

over a range of therapies common in the critical care cohorts that were the focus of this
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study and which alter hemodynamic state. It is thus a fully general result in these clinical

relevant patient populations.

Finally, these conclusions strongly suggest using PAT to monitor changing central PWV

beat-to-beat, is inadvisable. The reason for monitoring PWV beat-to-beat was for its use

in the Kamoi model. Chapter 6 highlighted the potential for the Kamoi model to contin-

uously monitor SV , which has significant use in clinical management of circulatory and

cardiac shock (Cecconi et al., 2014). However, one of the limitations was the Kamoi model

required continuously monitored PWV to do so. Thus, the Kamoi model represented an

experimental, rather than clinically applicable model, until a method of monitoring PWV

in a convenient manner could be found. Since unstable patients are those that stand to

benefit most from continuous SV monitoring, as per Section 1.3.1, PAT appears to be an

inappropriate surrogate measure for PTT and thus PWV .
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CHAPTER8

Dicrotic Notch Detection

8.1 Introduction

Chapter 6 discussed how the Kamoi method identified end systole using a weighted first

derivative method (tes,dP/dt). Section 6.3.2 and Figure 6.2 highlighted the method’s inability

to accurately detect the dicrotic notches marking end-systole in proximal aortic pressure

waveforms (tes,dic). It also showed the resulting poor precision in tes,dP/dt caused subse-

quent error in both the Kamoi method’s estimated flowwaveform (Qest) and stroke volume

(SVest).

This chapter develops a more robust method of dicrotic notch detection, for the purpose

of end-systole detection. Specifically, the new method is an adaptive shear transform al-

gorithm, which accounts for changes in the pressure waveform shape due to intervention

and/or disease progression. A more robust method of identifying the time of end-systole

(tes), may contribute to improving the Kamoi method parameter identification and subse-

quent flow waveform estimation. This outcome would achieve one of the thesis goals in

Section 1.4.
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8.2 Dicrotic Notch as End-Systole

The dicrotic notch is a distinct stationary point in proximal arterial (often aortic) pressure

signals, following a beat’s maximum pressure (Pmax). It may be a point of inflection with

(approximately) zero gradient, or a combination of two turning points with respective local

minimum and maximum, resulting in a trough type notch. An example of each type is

shown in Figure 8.1. Figure 8.1a also illustrates how end-systole is marked by the dicrotic

notch, but the onset of diastolic pressure decay begins from the local maximum after the

notch.

Trough type
dicrotic notch

Start of diastolic
relaxation

(a) Trough type dicrotic notch example, from Pig D2’s con-

trol stage. Note, start of diastolic relaxtion is delayed

briefly by the dicrotic notch, beginning at the local maxi-

mum.

Inflection type
dicrotic notch

(b) Inflection type dicrotic notch example, from Pig D5’s

dobutamine high PEEP stage.

Figure 8.1: Examples of the the two types of dicrotic notch shape in Pao. The trough type (a) is clearest in
proximal pressure signals, but can be attenuated, either partly (b), or fully, when measured at distances

further from the heart or due to abnormal cardiovascular behaviour.

Section 2.3.1 explained the dicrotic notch is formed by wave reflection off of the aortic

valve, following valve closure (Lewis, 1906). Thus, it is clearest in proximal pressure

signals and crucial for determining transition from systole to diastole in aortic pressure

waveforms (Oppenheim and Sittig, 1995). Specifically, aortic systolic duration (Tsys,ao), as-

sociated with left ventricular ejection, lasts from the foot of the aortic pressure waveform,

marking start systole (t0,Pao), as per Section 5.4.3, to the time of the dicrotic notch, marking

end systole (tes,dic) (Talley et al., 1971; Payne et al., 2006; Marik, 2013). Diastolic duration,

associated with aortic relaxation, is the remaining time from the dicrotic notch to the next

pressure waveform foot, signifying start-systole of the next beat.
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Given the notch’s physical significance as a systolic/diastolic time reference, it has been

used in numerous applications, including pulse wave velocity (PWV) calculations (Hermel-

ing et al., 2009), models estimating cardiovascular function (Stevenson et al., 2010, 2012b;

Balmer et al., 2018b)), and the previously stated left ventricular ejection time (Tsys,ao).

Therefore, there are many different algorithms applying different signal processing meth-

ods to dicrotic notch detection (Oppenheim and Sittig, 1995; Takazawa et al., 1995; Hoeksel

et al., 1997; Stevenson et al., 2012a; Balmer et al., 2018a).

To simplify tes estimation, some studies have assumed it is located at the point of maxi-

mum negative pressure gradient with respect to time (
dP
dt min

) (Abel, 1981; Aguado-Sierra

et al., 2008; Kamoi et al., 2014, 2017), typically occurring between the maximum pressure

of a beat and before the start of diastolic relaxation. This simplification underestimates

Tsys and overestimates duration of diastole (Balmer et al., 2018a). However, it provides

consistent predictable performance in signals with and without dicrotic notches.

8.3 Kamoi’s Weighted First Derivative Dicrotic Notch

Detection

An example first derivative based end-systole method was briefly described in Chapter

6. Specifically, Kamoi et al. (2017) applied a “generic” weighting function to the beat’s

first derivative, before identifying end-systole as the point of minimum pressure gradi-

ent (
dP
dt min

), referred to as tes,dP/dt. The method of finding tes,dP/dt is shown in Figure 8.2,

using the same beats shown in Figure 8.1. The first derivative was calculated using Equa-

tions 5.1, 5.3 & 5.4, and subsequently filtered using the method outlined in Section 5.4.2.

The weighting is calculated and applied to each beat’s
dP
dt
signal individually, considering

the start of each beat (t0,Pao) to be time zero:

w(t) =

(
0.5−

∣∣0.5− t
T

∣∣)2
0.25

where 0 ≤ t ≤ T (8.1)
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Wherew is the weighting and T is the duration of the entire beat. The author of this thesis

also added the 0.25 denominator to normalized the function (0 ≤ w(t) ≤ 1).

The main limitation of identifying tes,dic as tes,dP/dt, is the dicrotic notch, being a turning

point, has a gradient
dP
dt
= 0, not the resulting minimum gradient of the weighted signal.

The second limitation is the weighting is centred at the middle of the beat, as shown in Fig-

ure 8.2. This generic weighting function often results in attenuation of the first derivative

around the dicrotic notch, counter to the intention of the method.

Figure 8.2 also includes the estimated time of end-systole based on theminimum of a shear

transform (tes,shear) (Balmer et al., 2018a). The method used to identify tes,shear is the focus

of this chapter, and is only shown here for comparison and motivation.

8.4 Methods

8.4.1 Porcine Trials and Measurements

The data for this study comes from Pigs D1, D2, D4 and D5 of the dobutamine protocol,

covered in Section 5.2.1. Preparation of the pigs, including sedation and euthanasia, was

covered in Section 5.2. The measurements available were also covered in the aforemen-

tioned sections, and summarised in Table 5.1. Specifically, since this study is focused on

dicrotic notch detection, the primary measurement of interest is the proximal aortic pres-

sure (Pao).

8.4.2 Hemodynamic Modification

The original purpose of Protocol D was to assess the accuracy of a stroke volume (SV)

model under induced hemodynamic modifications outlined in Section 5.2.1 (Kamoi et al.,

2015, 2017). However, this study is not concerned about the hemodynamic interventions

effect on SV . Instead, the protocol simply provided a variety of pressure waveform shapes

to test an improved dicrotic notch detection algorithm.
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(a) Kamoi et al. (2017) end-systole detection method applied to Pig D2.
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(b) Kamoi et al. (2017) end-systole detection method applied to Pig D5.

Figure 8.2: Kamoi et al. (2017) end-systole detection method (tes,dP/dt) applied to the beats shown in Figure
8.1. The figures also included as a reference tes,dic and tes,shear, the definitive dicrotic notch location from
Figure 8.1, and the improved method of dicrotic notch detection developed in this chapter, respectively.
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8.4.3 Data Selection Summary

The data used to test the dicrotic notch detection algorithm is taken from two distinct sec-

tions of the experiment: the baseline control and dobutamine high PEEP stages. The con-

trol stage was when a pig was at rest following anaesthesia, but before any hemodynamic

modifications were applied. Dobutamine high PEEP data was captured during the highest

PEEP level of the recruitment manoeuvre (RM) during dobutamine admission, per Figure

5.1. For each pig, from each stage, 10 heart beats were used, leading to a total of 80 beats

for the analysis. These two stages were chosen as they represented contrasting hemody-

namic states, causing significant change in the aortic pressure waveform analysed.

8.4.4 Beat Separation and Manual Dicrotic Notch Identification

Before dicrotic notch identification began, the Pao signal for each pig and stage was sep-

arated into the 10 individual beats, using start-systole (t0,Pao). Once again, t0,Pao was iden-

tified as the foot of each waveform, using the established algorithm discussed in Section

5.4.3 and shown in Figure 5.7 (Balmer et al., 2018c).

To measure the accuracy of a dicrotic notch detection algorithm, the definitive dicrotic

notch locations must be known. Since there is no gold standard algorithm, the best com-

parison is to locations chosen by trained eye, from the discrete aortic pressure signal.

Therefore, points were found manually prior to the algorithm estimates. To aid in se-

lection, the left ventricular pressure (Pvent) waveform could be plotted with the Pao signal,

since after aortic valve closure, different ventricular and aortic relaxation rates lead to the

divergence of the two pressure signals, as seen in Figures 2.5, 4.3 and 5.4. This divergence

served only as a secondary reference for manual notch location. The primary identifier

being the turning point or point of inflection in the signal, following a beats Pmax.
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8.4.5 Adaptive Shear Transform Algorithm Implementation for

Dicrotic Notch & Start of Diastolic Relaxation Identification

The dicrotic notch detection algorithm utilizes a shear transform, applied to each beat in

a similar manner to time of start-systole (t0) in the electrocardiogram (ECG) and pressure

signals in Section 5.4.3. The shear line start (SP) and end points (EP), and hence gradient,

are adaptive and dependent on waveform shape.

Both the SP and EP have separate rationales for being iterable. The aim for SP is for it

to reside in the region of consistent negative pressure gradient, following the maximum

pressure, but prior to the dicrotic notch. EP on the other hand, is used to ensure the shear

line is quasi-parallel to the pressure over the region the dicrotic notch is expected to reside.

The process is defined in three sections (A, B, C) comprising a total of 10 steps:

A. Shear Line Start Point (SP) Calculation

1. Identify the maximum pressure in a beat, Pmax. For this data, Pmax was actually found

prior as part of t0,Pao identification, as per Section 5.4.3.

2. In the region from Pmax and up to a 1/3 of the remaining time toward the end of the

beat, identify the beat’s point of minimum gradient (Pmin dP/dt). dP
dt
is calculated and

filtered as per Sections 5.4.1 and 5.4.2.

3. Identify the point where pressure is halfway between Pmax and Pmin dP/dt, as the shear

line start point (SP).

4. Identify an initial shear line end point (EP), being a certain time between SP and the

end of the current beat, based on Pmax:

• If Pmax < 100 mmHg: initial EP is 3/4 of the way from SP to end of beat.

• If 100 mmHg < Pmax < 140 mmHg: initial EP is 1/2 of the way from SP to end of

beat.
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• If Pmax > 140 mmHg: initial EP is 1/3 of the way from SP to end of beat.

EP initial location being later in time for beats with low Pmax values, is simply based

on observation of later and lower pressure dicrotic notches (relative to Pmax) in low

pressure signals.

5. Construct the shear line over the section of pressure signal between SP and EP. Cal-

culate the shear transform, from the section of pressure signal to the shear line, the

calculation process is the same as performed for t0 in Section 5.4.3. Check the result-

ing shear transform:

• If more than 50% of the shear transform is greater than zero, i.e. if more than

50% of the shear line is below the corresponding pressure section, assume the

shear line start point was poorly identified. This may be due to unexpected phys-

iological behaviour, or simply signal noise. Return to step 2, using the next most

minimum gradient point to find a new SP. An example of this situation is shown

in Figure 8.3.

• Else, assume SP has been correctly identified and move on to check and possibly

update the initial EP.
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(a) More than 50% of the shear lines length is under the pressure signal, failing the condition outlined in Step 5.
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(b) Iterated Pmin dP/dt until Step 5 condition is met.

Figure 8.3: Example of how incorrect choice of Pmin dP/dt can lead to a shear line start point (SP) that results
in the shear line passing under the pressure signal (a). This is resolved by iterating Pmin dP/dt, using the next
most minimum gradient point to find a new SP (b).

B. Shear Line End Point (EP) Calculation

EP condition is based on the orthogonal distance from points on the shear line to points on

the pressure waveform:

6. Normalize the shear line and the section of pressure associated with the shear line,

in both time and pressure, so that it is scale invariant.

7. For each point on the normalized shear line, calculate the orthogonal distance to

a point on the normalized pressure signal. If any point’s orthogonal distance > a

tolerance of 0.3, shift EP closer to SP until orthogonal distance ≤ 0.3, at which point

assume EP location is adequate1. An example of this process is shown in Figure 8.4.

C. Identifying the Dicrotic Notch and Start of Diastolic Relaxation

8. Re-calculate the shear transform from the section of pressure signal, between the fi-

nalised SP and EP points, to the shear line. The calculation process is the same as per-

formed for t0 in Section 5.4.3. The point of most negative shear (Pmin,shear) is initially
1If EP needs to be updated, the root-finding bisection method is used to solve for EP that satisfies the orthogonal

distance condition, since it is more efficient than an iterative approach.
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(a) Example initial and final shear lines, where the initial shear lines gradient was too low in magnitude relative to the
signals gradient in the region of expected tes,dic. The shear line is then updated via Step 7, illustrated in Figure 8.4b.
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(b) Upper panel shows the initial and final shear lines of Figure 8.4a and their corresponding pressure signals, after nor-

malization. The lower panel shows the orthogonal distance from each normalized shear line to the normalized pressure

signal, as well as the orthogonal distance tolerance of 0.3.

Figure 8.4: Example of how the end point (EP) is shifted until the resulting shear line is considered quasi-
parallel with the pressure waveform in the region of tes,dic.

assumed to be a point within the trough of a dicrotic notch. However, it is possible

the Pmin,shear is not the lowest point of a trough type dicrotic notch. Furthermore, the

dicrotic notchmay not be a notch at all, it could simply be the inflection type of Figure

8.1b. Thus, additional steps address theses possibilities.

9. Find the start of diastolic relaxation/decay (tdr), as the point of maximum pressure

between the point Pmin,shear and the end of the beat. If the dicrotic notch is a trough,
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this will find the local maximum turning point following the trough and is assumed

the start of diastolic relaxation (tdr), as per Figure 8.1a.

10. Search from Pmin,shear (inclusive) to tdr for any points lower than Pmin,shear. The lowest

of these point is the estimated dicrotic notch and end-systole, tes,shear, based on the

adaptive shear transform. If there are multiple points with equal lowest values, take

the middle of the lowest points as the dicrotic notch.

Shear Transform Algorithm Summary

The algorithm outlined may initially appear complex due to the number of steps, but each

step individually is simple and the intention for the final shear line is conceptually easy to

understand. Specifically, the steps aimed to construct a shear linewhose gradient is similar

to the average gradient of the pressure signal below the shear line. The shear transform

itself is simply the vertical distance between each point on the pressure waveform, and

the corresponding point in time on the shear line. The expectation is as the pressure falls

rapidly in late systole, leading into the local minimum of a dicrotic notch, the vertical

displacement from the shear line will be greatest. Figure 8.5 shows the overall method

applied to each type of dicrotic notch shown in Figure 8.1, including the final tes,shear and

tdr points.

8.4.6 Analyses

Rather than directly comparing the difference between the algorithmically estimated di-

crotic notch location (tes,shear) and its location by eye (tes,dic), the systolic duration resulting

from each is compared, Tsys,shear & Tsys,mea respectively. This approach is because, as dis-

cussed in Section 8.2, the dicrotic notch is often used to determine systolic and diastolic

time intervals (Talley et al., 1971; Payne et al., 2006; Marik, 2013). In addition, the shear

transform method Tsys,shear, is compared with the systolic duration measured to tes,dP/dt

(Tsys,dP/dt), the systolic duration used in Kamoi et al. (2017), as outlined in Chapter 6.
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(b) The grey shear line has too greater orthogonal distance from the pressurewaveform,misidentifying the dicrotic notch.

The black shear line shows the iteration of EP using the orthogonality condition, and subsequent dicrotic notch detection.

Figure 8.5: Complete algorithm process for identifying tes,shear and tdr on the two types of dicrotic notches
originally shown in Figure 8.1. Each subfigure also includes its initial shear line and the dicrotic notch

estimate which would have resulted if it were not for the adaptive approach of the shear line start and end

points.

The accuracy of the two algorithmic dicrotic notch detection methods (tes,shear and tes,dP/dt)

were analysed using their respective Tsys values in two formats. First, regression analysis

and coefficients of determination (r2), both overall and for individual pigs and stages. The

coefficient of determination, r2, represents the fraction of the total observed variation in

the algorithmically estimated systolic duration (Tsys,shear or Tsys,dP/dt) due to the observed

variation in themeasured systolic time (Tsys,mea). The closer r2 is to 1.0, the better the ability

of the algorithm to track changes in Tsys,mea.
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Table 8.1: Coefficient of determination (r2) for each Tsys estimate (Tsys,shear & Tsys,dP/dt) vs Tsys,mea, for each
stage.

Pig

D1 D2 D4 D5

Control

Tsys,shear 1.0 1.0 1.0 1.0

Tsys,dP/dt 0.83 0.69 0.89 0.82

Dobutamine High PEEP

Tsys,shear 0.99 1.0 1.0 0.21

Tsys,dP/dt 0.97 0.01 0.68 0.01

However, correlation does not imply agreement or causality in the absolute sense (Bland

and Altman, 1986). Therefore, Bland-Altman analysis was used to assess the agreement be-

tween the estimated and measured systolic time, and hence agreement between estimated

and measured dicrotic notches locations.

8.5 Results & Discussion

Figure 8.6 shows the regression analyses and overall coefficients of determination. Indi-

vidual pig stages r2 are shown in Table 8.1. Bland-Altman plots are seen in Figure 8.7.

Overall, the plots show improved trending and agreement for the shear transform algo-

rithms over Kamoi’s method.

8.5.1 Correlation Outcomes

Figures 8.6a & 8.6b show excellent overall correlations outcomes. However, the overall

result alone is misleading, due the clustering of each pig’s individual stage data (Bewick

et al., 2003). The difference between the two algorithmic methods ability to track changes

in systolic time becomes clearer when comparing the coefficients of determination (r2)

for the individual pigs and stages, referring to Table 8.1. In all pigs and stages, the shear

transform method of dicrotic notch detection performs better than the Kamoi method,

resulting in individual pig stage r2 values closer to 1.0.
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Figure 8.6: Regression Analysis: (a) and (b) show the overall and individual regression analyses for the

pigs, for both the shear line estimated systolic time and Kamoi method estimated systolic time, respec-

tively. Coefficients of determination in the legend were rounded to three decimal places and dobut high

PEEP refers to the dobutamine high PEEP data.

In addition, the Kamoi method’s ability to track variation in systolic time decreased follow-

ing hemodynamic modification, from baseline to the dobutamine high PEEP state, which

is coupled with a reduction in systolic time. This result is evident in the reduced coeffi-

cients of determination during dobutamine high PEEP stages. With the exception of Pig

D5, the shear transform method showed no significant change in performance between

hemodynamic states.
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Figure 8.7: Bland Altman analysis: Bland Altman plots show the degree of agreement between the esti-

mated and measured systolic times. The mean bias between the measured and estimated systolic times

are shown (d̄), as well as the limits of agreement (d̄ ± 1.96 × SD) to indicate the expected variation be-
tween measure and estimate. Note, dobut h PEEP label is an abbreviation of dobutamine high PEEP.

The reason for the lower performance of the Kamoi method following the hemodynamic

modifications, and for the shear method in Pig D5’s case, appears due to changes in the

dicrotic notch shape. Taking Pigs D2 and D5 as examples, Pig’s D2 dicrotic notches, in gen-

eral became wider during dobutamine high PEEP (≈ 28ms), compared with the baseline

stage (≈ 8ms), whenmanual measurements were made from the waveform plots between

the widest points of the dicrotic notches. This change results in more points forming the

dicrotic notch shape, increasing the possibility the algorithm finds a point different from
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that chosen manually. This issue is discussed further in Section 8.5.3. In contrast, Pig D5

showed an almost disappearing of its dicrotic notch during dobutamine high PEEP com-

pared to baseline, as seen in the example Figures 8.1b and 8.5b. Naturally, when the di-

crotic notch is difficult to detect by eye, a human observer’s ability to accurately identify

it is reduced. This makes it more difficult to say with certainty which dicrotic notch repre-

sents aortic valve closure best, the point identified by the algorithm or chosen manually.

Hence, in Pig D5’s dobutamine high PEEP stage, poorer correlation outcomes were unsur-

prising.

In summary, inter-pig and stage correlation analysis results suggest both algorithmicmeth-

ods track significant changes in systolic time well. However, the tracking of the shear

transform method is superior to the Kamoi method in all cases.

8.5.2 Bland Altman Outcomes

The contrasting systemic error of the Kamoimethod relative to the shear transformmethod,

as shown by the mean differences of ddP/dt = 11.6ms verses dshear = 0.5ms respectively, is

the most obvious result of Figure 8.7. This much lower dshear value represents the higher

accuracy of tes,shear, verse tes,dP/dt. Additionally, Figure 8.7b shows the limits of agreement

(d̄ ± 1.96 × SD) are wider for the Tsys,dP/dt estimate, with 17.1ms vs 6.8ms of Tsys,shear.

The wider limits of agreement of Tsys,dP/dt indicate the lower precision of tes,dP/dt. Given the

measured systolic times ranged from 149ms to 337ms, both estimates limits of agreement

may prove satisfactory. However, this conclusion would depend on the specific use of the

systolic duration estimate. For example, if the systolic duration is a particularly sensitive

parameter in a model, as in Equation 6.6 of the Kamoi model, the accuracy and precision

of estimation will be an important consideration.

Another interesting and obvious result, evident in both Figures 8.7a & 8.7b, is the bias lead-

ing to the lack of negative difference values. In the weighted first derivative method’s case,

this issue is easily explained. Because points just prior to the dicrotic notch tend to have a
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more negative gradient than points associated with diastolic relaxation, tes,dP/dt is usually

found just prior to the dicrotic notch, as in Figures 8.2a and 8.2b. The approach of using

the point of most negative gradient for tes detection, may not make sense when a dicrotic

notch is present. However, for waveforms with difficult to identify or even non-existent

dicrotic notch features, tes,dP/dt offers a consistent and predictable method of estimating

its location, as stated in Section 8.2, despite the early onset of diastole bias. This issue is

clinically relevant given the distinct dicrotic notch shape is known to deteriorate with age

(Dawber et al., 1973).

In contrast, the shear transform method is developed specifically to identify turning and

inflection points of the dicrotic notch. It also never over estimated the duration of systole.

A positive bias indicates the dicrotic notches identified by the shear transform method,

occurred before the location found by eye, and is a result of the shear transform bias dis-

cussed in the limitations section below.

8.5.3 Shear Transform Algorithm Limitations

The correlation analysis in Section 8.5.1 revealed an increase in variation between the

shear transform identified dicrotic notches and those found by eye, when a distinct turning

point was not present. Second, the Bland-Altman analysis of Section 8.5.2, showed the

shear transform algorithm consistently predicted a dicrotic notch location earlier or equal

too those found by eye, but never later. The reason for both of these observations is evident

in the way the algorithm is implemented.

The first and most obvious limitation is if the dicrotic notch depth is small or even simply

flat, as it was for Pig D5’s dobutamine high PEEP waveforms (Figure 8.2b), it becomes dif-

ficult to identify the notch’s exact location. This difficulty occurs because the shear trans-

form will have a similar shape to the signal from which it is derived. Thus, if no trough

type notch is present in the pressure signal, none will be evident in its shear transform

either.
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The second less obvious impact of the dicrotic notch shape is the shear transform algo-

rithm’s bias. When the shear transform is applied in algorithm Step 8, points just left of the

true dicrotic notch minimum will have a sheared value that is more negative than points

just right of the minimum. In this sense, Step 8 favours points left of the minimum to be

the dicrotic notch, more than the points right of the minimum. This bias arises because of

the shear line negative gradient, leading to a lower value with each time step, meaning, the

vertical distance from the shear line to the dicrotic notch (the shear transform) is greatest

for the points tending down into the trough of the dicrotic notch, compared to a point of

equal pressure but whose rising out of the trough. The same is true for cases where the di-

crotic notch is in fact a flat section, or point of inflection, where points left of the inflection

point are favoured more than those to the right.

The impact of this bias is most evident when algorithm Steps 9 & 10 are ignored and a

pressure signal with wide dicrotic notches is analysed. As previously discussed, Pig D2’s

dicrotic notches, became wider during dobutamine high PEEP (≈ 28ms), compared with

the baseline stage (≈ 8ms). The wide dicrotic notches often had minimums with multi-

ple points of equal pressure. Step 8 of the algorithm would find the left-most point of the

minimum, while the human observer is likely to choose the middle of the multi-point min-

imum. Ignoring Steps 9 & 10 would result in a consistent mean difference, for Pig D2’s

dobutamine high PEEP stage, of 3ms and range of 1ms to 7ms (results not shown). While

the addition of Steps 9 & 10, result in perfect dicrotic notch detection by the algorithm,

with respect to those found manually by eye.

Thus, the accuracy of the algorithm without the final two steps is still an improvement

over the Kamoi method, andmay be sufficient depending on the application. However, the

final steps are crucial for identifying the true dicrotic notchminimum, thusminimising the

positive bias and maximising accuracy. Additionally, the final steps identify the true start

of diastolic relaxation, which will be of subsequent value in Chapter 9.

A final limitation of the study is its limited data and single location fromwhich the pressure
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waveformwas drawn. In the study, only 80 beats were used from two hemodynamic states

and all from aortic pressure recorded in the aortic arch of pigs. While this proved adequate

as a proof of concept, Chapter 10 will discuss its reduced performance on pressure signals

common in a clinical setting, such as a femoral artery pressure waveform. If clinical data

was used, it is also likely Step 4’s pressure conditions would need to be adapted to reflect

hypo- and hyper- tension cases in humans.

8.6 Summary

This chapter presented a new method of dicrotic notch detection, utilizing adaptive shear

transforms whose transform region was optimized to favour detection of turning points

associated with the dicrotic notch. While Section 8.2 highlighted the physiological rele-

vance and uses of dicrotic notch detection, the motivation of this study was for improved

physiological flow waveform prediction and more robust SV estimation from the Kamoi

model, as per Section 8.1. Thus, the method was tested against the original, weighted

first derivative based end-systole detection method, presented with the Kamoi model in

Chapter 6 (Kamoi et al., 2017). The shear transform method was shown to be superior to

weighted first derivative method of end-systole detection, when compared with dicrotic

notches identified manually by eye. In addition, the shear transform method included

steps enabling it to identify the start of diastolic relaxation, showing the dicrotic notch

causes a delay in the onset of diastolic pressure exponential decay. Chapter 9 will apply

this new adaptive shear transform end-systole method to the Kamoi model and assess how

it impacts both estimated flow and stroke volume performance.
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CHAPTER9

The Dicrotic Notch and The

Kamoi Model

9.1 Introduction

Chapter 8 developed an improved method for identifying the time of the dicrotic notch

(tes,dic), whichmarks end-systole in a proximal aortic pressure waveform (Pao). Specifically,

the method used an adaptive shear transforms algorithm to identify the dicrotic notch

and was denoted tes,shear. The results discussed in Section 8.5.2, highlighted the superior

accuracy and precision of tes,shear over the original end-systole detection method used in

the Kamoi model, tes,dP/dt. Thus, the expectation was using tes,shear in the Kamoi model

would reduce the limitations associated with poor tes,dic detection, covered in Section 6.3.2.

Specifically, the hypothesis was using tes,shear would improving the Kamoimodel parameter

identification and subsequent estimation of flow (Qest) and stoke volume (SVest). If the

hypothesis were correct, one of the thesis goals laid out in Section 1.4, would have been

achieved. However, Chapter 8 did not include analysis or discussion of the impact of tes,shear

on the Kamoi method estimate of stroke volume (SV), as the method was presented to be
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independent of any specific model or application.

Therefore, this chapter assess the impact of dicrotic notch detection on the Kamoimodel. It

is also worth noting, as outlined Section 6.3, the Kamoi model is an implementation of the

three-element windkessel model covered in Section 4.3. Thus, the analysis in this chapter

is relevant to other implementations of the three-element windkessel, particularly those

using pulse contour analysis (PCA) as part of the parameter identification process.

9.2 Flow and Stroke Volume Estimation Recapitulation

It is first worth re-summarising the mechanisms through which accurate estimation of

flow (Qest) and stroke volume (SVest) are achieved. This recapping is for two reasons. First,

the mechanisms inform how the figures in this section are presented. Second, Chapter 6

focused on the implementation of the Kamoi model and how it was used to estimate SV ,

but little emphasis was given to the estimated flow waveform.

Calculating Qest and SVest with the three-element windkessel model, was covered in detail

in Section 4.3.2. The fundamental theory was no different for the Kamoi model in Chapter

6, the only difference being the parameter product Zc,wC, in the reservoir pressure (Pres)

Equation 4.11, was replaced by pulse wave velocity (PWV) and characteristic length (Lc) as

per Section 6.2.1 and Equation 6.2.

9.2.1 Model Parameter Identification Relationship with Profiles of

Excess Pressure (Pex) and Proximal Aortic Blood Flow (Qao)

Regardless of themethod/implementation bywhich Pres is found, the Equation for calculat-

ing Pex is the same, using Equation 4.3. The shape of Pex is then the shape of Qest, according

to Equation 4.5. Therefore, identification of Zc,w is not necessary for indicating whether

the parameter identification led to a physiological flow waveform shape, instead this is

possible by simply comparing the measured flow waveform (Qao) in conjunction with Pex.

This approach of plotting Pex and Qao was also utilized in Figures 4.3, 4.4 and 6.1.
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9.2.2 Accurate Estimated Stroke Volume (SVest), from an

Unphysiological Estimated FlowWaveform (Qest)

Using the approach in Section 9.2.1, if the shape of Pex is found to be substantially different

fromQao, this does not necessarily guarantee error between SVest andmeasured stroke vol-

ume (SVmea). Equations 4.17 and 5.12 are used to calculated SVest and SVmea, respectively.

Equating these two equations, assuming SVest = SVmea, yields:

SVmea =

tes∫
0

Qao(τ)dτ =

t∫
0

Qin(τ)dτ =
1

Zc,w

t∫
0

Pex(τ)dτ = SVest (9.1)

Where Qin ≡ Qest, the former being the nomenclature used in Section 4.3 to signify the

models estimated flow into the windkessel/reservoir. Equation 9.1 shows Zc,w can scale Pex

so the integrated flow Qin/Qest is equivalent to the integrated measured flow, Qao. Thus, it is

still possible to achieve perfect SVest, even if the resulting Qest of Equation 4.5 is unphysio-

logical. Section 4.2 discussed how the Corrected Characteristic Impedancemethod was able

to estimate SV in this manner, from potentially unphysiological flow waveforms. Further-

more, Section 3.6 alluded to this possibility, and stated this chapter would show examples

of unphysiological flow waveforms predicting accurate SV .

9.3 Improved Dicrotic Notch Detection and the Kamoi

Model

9.3.1 Impact of tes,shear on Characteristic Length Lc Calibration

Section 6.2.2 discussed the Kamoi method of identifying Lc, via the condition in Equation

6.8. With the detection of the dicrotic notch now significantly improved, its impact on the

subsequent Lc calibration can be assessed. Figure 9.1 shows the updated Lc calibration

using tes,shear for end-systole, using the same beats originally used in Figure 6.1a.
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Figure 9.1: Kamoi model method (Chapter 6) applied to the same aortic pressure waveform as in Figure

6.1a (Pig S5’s control stage), but using improved dicrotic notch detection, tes,shear.

Typical Trough Type Dicrotic Notch Example

Comparing the systolic portions of Figures 9.1 and 6.1a, the Pex resulting from using tes,shear

for Lc calibration, more closely predicts themeasure flowwaveform shape (Qao). However,

during diastole, the opposite is true, Pres calculated from Lc (Equation 6.2) using tes,shear,

deviates further from the measured Pao during diastole. This deviation results in a larger

non-zero Pex during diastole according to Equation 4.3, rather than the desired Pex =Qao = 0.

In other words, even during calibration of the Kamoi model, when accuracy is expected to

be highest, using tes,shear results in positive flow prediction during the first half of diastole,

and then negative flow, representing the direction back toward the ventricle, during the

second half of diastole.

Section 4.3.2 discussed the example shown in Figure 9.1, where imperfect parameter iden-

tification leads to non-zero Pex during diastole. It stated that by using systole only for
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Figure 9.2: Kamoi model method (Chapter 6) applied Pig S6’s control stage beats, using improved dicrotic

notch detection, tes,shear.

the integration limits of Equation 4.17, it would be possible to accurately estimate stroke

volume SVest. However, doing so is contrary to the goal of this thesis, which is for the

developed model to estimate SV from physiologically sound flow waveforms.

Large Trough Type Dicrotic Notch Example

The reduction in model performance, inadvertently caused by tes,shear, is even more pro-

nouncedwith larger dicrotic notches. Figure 9.2 shows the large dicrotic notches of Pig S6’s

control stage. In this case, the upper bounds of Lc,i and RCi for the grid search, were cho-

sen to ensure the condition in Equation 6.8 was met using tes,shear. Specifically, the bounds

used were 0.01 ≤ RCi ≤ 5 and 0.1 ≤ Lc,i ≤ 3.5.

The resulting Pres calculation led to systolic Pex closely matching systolic Qao, satisfying

Equation 4.5. However, the larger dicrotic notches exacerbate the diastolic error accord-

ing to Equation 6.7, and subsequently Pex(t>tes,shear) causes the model to estimate flow dur-
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ing diastole according to Equation 4.5. Thus, calculation of the Pres during systole has im-

proved using tes,shear in place of tes,dP/dt. However, the error during diastole, as per Equation

6.7, has increased.

Impact of Assumed Anatomical Lc

Contrary to the bounds used in Figures 6.1, 9.1 and 9.2, Section 6.2.2 stated Kamoi et al.

(2017) treated Lc as the “anatomical length” of the aorta. This assumption is reflected in

the grid search bounds used in Kamoi et al. (2017), specifically, 0.5 ≤ Lc,i ≤ 1.5.

However, it is worth noting, as per Section 4.4.1, Lc describes the volumetric compliance of

themodel and therefore is not necessarily representitive of a true physiological or anatom-

ical value. This was also covered in Sections 4.3.3, which cautioned treating three-element

windkessel parameters as representative of local physiology. Had the bounds of Lc been

restricted to anatomical values, it would have been impossible to meet the condition in

Equation 6.8, for Figure 9.2. Thus, the narrower bounds imposed in Kamoi et al. (2017)

limited insight into the implications of different Lc values impact on the predicted flow

waveform shape, Qest.

Section 1.3.1 outlined the target cohort that stands to benefit most from SV monitoring is

critical care patients. It is possible these patients may present periods of abnormal or less

common physiological behaviour, including the variety of dicrotic notches shapes (Dawber

et al., 1973). Therefore, it is critically important the behaviour presented in Figure 9.2, is

factored in model development, rather than simply considering it an outlying case.

9.3.2 Impact of tes,shear on RC Identification

Accurate dicrotic notch detection has not only adversley impacted Lc calibration, but also

RC identification in subsequent beats. As a reminder, Section 6.2.2 explained Kamoi et al.

(2017) identified RCmin E , for non-calibration beats, by minimising the error between the

measured diastolic aortic pressure (Pao(t ≥ tes)) and the calculated diastolic reservoir pres-

sure (Pres(t ≥ tes)), according to Equation 6.7. Pres(t ≥ tes) was calculated using Equation
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4.16 (Kamoi, 2016), which assumes Pao(t ≥ tes) follows an exponential decay. The rationale

for this approach was covered in Section 4.3.2, where the three-element windkessel model

estimated diastolic pressure as the exponential pressure decay of an emptying reservoir,

according to the time constant RC (Equations 4.15 and 4.16).

It is unclear how Kamoi et al. (2017) performed the error minimisation to identify each

non-calibration beat’s RCmin E . However, the author of this thesis does so by using linear

regression, on a linearised1 Equation 4.16. The linearisation (in the statistical sense) is

achieved by taking the natural log of the equation, which can subsequently and conve-

niently be re-arranging into to the form y = mx+ c, making it also a linear function:

ln(Pao(t)− Pcvp) =
tes − t
RC

+ ln(Pao(tes)− Pcvp) where t ≥ tes (9.2)

A reminder, when measuring Pao and assuming a constant value for central venous pres-

sure (Pcvp), the only unknown in Equation 9.2, is RC, the parameter to be identified. The au-

thor used Equation 9.2 and linear least squares regression (programmed in Python 3.7.2),

to identify RCmin E for non-calibration beats, including the the second beats of Figures 6.1a,

6.1b, 9.1 and 9.2. Finding RC in this manner means it is no longer bound as it was in the

grid search, allowing it to take on the much larger value than the calibration beat.

Regardless, the second beat in Figure 9.2 shows Equation 4.16, cannot adequately describe

the diastolic pressure when it is taken to be Pao(t ≥ tes,shear). This outcome is no surprise,

since measured Pao(t ≥ tes,shear) is clearly in violation of the approaches main assumption.

Specifically, in this case, Pao(t ≥ tes,shear) no longer resembles simple exponential decay in

diastole. Thus, it is not possible for RCmin E and Equation 4.16, to predict a Pres(t ≥ tes,shear)

≈ Pao(t ≥ tes,shear).
1Linearisation in the context of statistical linear models, is different from linear functions in calculus. How-

ever, in this case, the linear model (Equation 9.2) is also a linear function.



156 9.3. IMPROVED DICROTIC NOTCH DETECTION AND THE KAMOI MODEL

9.3.3 The Dicrotic Notch and The Three-Element Windkessel

Figure 9.2 illustrates the impact of “imperfect [parameter] identification”, discussed in Sec-

tion 4.3.2. However, interestingly, in this context, parameter identification of Lc has been

improved, by improved end-systole detection, but at the expense of RC identification, and

the violation of the foundational model assumption governed by Equation 4.12. Thus, the

behaviour seen in Figures 9.1 and 9.2 is not strictly a poor parameter identification, but

rather a re-surfacing of the three-element windkessel limitations.

Specifically, Sections 4.3.1, 4.3.2 and 4.3.3 exhaustively stated the three-element wind-

kessel model cannot describe wave phenomena. Furthermore, Section 8.2 explained the

dicrotic notch is caused by wave phenomena. Moreover, Section 4.5.1 highlighted the diffi-

culty of fitting Pres to Pao during early diastole, due to reflected wave behaviour, as part of

the critique of the reservoir wave approach (RWA). So, in hindsight, it is unsurprising that

relatively large dicrotic notches, as in Figures 9.1 and 9.2, lead to model implementation

issues.

Interestingly, the poor flow waveform prediction in this section, has essentially been due

to model parameter identification via PCA. Recalling Section 4.4, Wesseling et al. (1993)

successfully estimated physiological flow waveforms from both the aortic and radial pres-

sure waveforms. Reflected waves often cause a turning point that appears similar to a

dicrotic notch in the radial artery pressure signal, but do not correspond to end systole

(Oppenheim and Sittig, 1995; Hoeksel et al., 1997). The natural question, in light of the

issues highlighted in the chapter, is how did Wesseling et al. (1993) overcome the issue of

reflected waves? The author thinks the answer likely lies in the method Wesseling et al.

(1993) used to identify the model parameters. Specifically, parameters were not based on

PCA, not in the sense of fitting parameters to the pressure waveform shape as in the Kamoi

model. Instead, parameters were calculated individually using patient demographic data

and empirical equations. Section 4.7 highlighted the limitations of non-patient specific pa-

rameter identification. However, in this section, a potential advantage is identified. Specif-
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ically, Wesseling et al. (1993) parameter identification was not subject to the three-element

windkessel model’s inherent limitations.

9.4 Start of Diastolic Relaxation and the Kamoi Model

Section 9.3 showed identifying end-systole as the dicrotic notch (tes,dic), with tes,shear, and

using it for Equation 6.7 and the condition in Equation 6.8, led to significant error accord-

ing to Equation 6.7. However, more importantly, it showed this undesirable behaviour

of the Kamoi model was due to the measured diastolic pressure (Pao(t ≥ tes,shear)) not re-

sembling exponential decay, as the model assumes. Therefore, the reduced performance

was not explicitly caused by improved end-systole detection, but nonetheless needs to be

addressed.

The final two steps of the shear transform method, in Section 8.4.5, identified the start of

diastolic relaxation tdr. The rational for defining and identifying tdr, was the recognition

pressure rises out of the dicrotic notch, prior to diastole resembling exponential decay.

Thus, a hypothesis was made that treating end-systole (tes) as tdr, in Equations 6.7 and

6.8, would improve model performance. In other words, as far as the model would be

concerned, measured diastolic pressure is treated as Pao(t ≥ tdr). Figure 9.3 shows the

Kamoi method outlined in Section 6.2.2, but applied treating tdr as end-systole.

Impact of tdr on Reservoir and Excess Pressure Calculations

Comparing Figures 9.1 & 9.2 to Figures 9.3a & 9.3b, respectively, it is clear using tdr has led

to the opposite behaviour of tes,shear. Specifically, tdr led to the Lc calibration approaching

the lower bounds of the grid search, subsequently improving fitting of Pres according to the

model assumption of Equation 4.12. However, it also reduced the model’s ability to predict

Pex with a similar shape to Qao during systole. Additionally, what is not immediately clear,

due to the different scaling of the excess pressure axes of Figures 9.1 & 9.2 compared with

Figures 9.3a & 9.3b, is the excess pressure for the tdr cases, is significantly smaller.



158 9.4. START OF DIASTOLIC RELAXATION AND THE KAMOI MODEL

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Time (s)

0

50

100

150

Q
ao

 (m
l/s

)

Qao
Pex, cal
Pex

35

40

45

50

55

Pr
es

su
re

 (m
m

Hg
)

0.1 Lc, i 3.5
Lc = 0.1 RC = 1.1 Lc = 0.1 RC = 1.3

Pao
Pres, min
Pres, cal

tes, dP/dt
tdr
Pres, dia
Pres

2.5

0.0

2.5

5.0

7.5

P e
x (

m
m

Hg
)

(a) Kamoi model method (Chapter 6) applied to the same aortic pressure waveform as in Figure 6.1a and Figure 9.1 (Pig

S5’s control stage), but using tdr to define the start of the diastolic pressure decay.
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(b) Kamoi model method (Chapter 6) applied the same beats as shown in Figure 9.2 (Pig S6’s control stage), but using tdr
to define the start of the diastolic pressure decay.

Figure 9.3: Illustrating the effect of assuming measured diastolic pressure lasts from tdr to the end of
the beat, Pao(t ≥ tdr), on resulting Kamoi model parameter identification and subsequent Pres and Pex
prediction.
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Figure 9.4: Qest from the two beats in Figure 9.3b.

Impact of tdr on Estimated Qest and SVest

It is still possible to predict an accurate stroke volume using Pex for the beats in Figure 9.3,

as outlined in Section 9.2.2. First, Zc,w needs to be found, relating Pex to Qest, per Equation

4.5. Section 6.2.1 explained Kamoi et al. (2017) used calibrating stroke volume measure-

ments to calibrate Zc,w, according to Equation 6.3. The same approach was used for the

beats shown in Figure 9.3b, where Protocol S’s aortic flow probe enabled SVmea for every

beat, according to the process outlined in Section 5.4.4. Figure 9.4 shows the resulting Qest

that satisfies Equation 9.1.

Figure 9.4 shows, despite the equivalent SV from the flow probe and model, the estimated

flowwaveform predicts more than double the peak measured flow. Additionally, Qest from

mid to late systole falls rapidly, to an equally significant negative flow value. This nega-

tive value would represent flow back towards the ventricle of the heart, and in a healthy

patient, cause abrupt aortic valve closure, as per Section 2.3.1. It is also worth noting,

accurate SVest still requires precise end-systole detection, since it is sensitive to systolic du-

ration (Tsys), as covered in Section 6.3.2. Chapter 8 showed tes,shear improved both accuracy

and precision of end-systole detection, over the Kamoi models original tes,dP/dt. Thus, SVest

is more reliable using tes,shear, thanks to improved tracking of ∆Tsys.
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9.5. IMPLICATIONS OF UNPHYSIOLOGICAL FLOW ESTIMATION IN A CLINICAL

ENVIRONMENT

9.5 Implications of Unphysiological Flow Estimation in a

Clinical Environment

Sections 9.3 and 9.4 showed the Kamoi model parameter identification process was highly

sensitive to the relative size of a dicrotic notch in the pressure waveform. For each as-

sumed end-systole point, tes,shear and tdr respectively, very different Qest shapes were pro-

duced. If either of the approaches were implemented in a clinical setting, clinicians pro-

vided with Qest may attribute the flow waveforms unconventional shape to disease, rather

than recognising it as a product of the parameter identification process.

Nonetheless, Sections 9.2.2 and 9.4 showed it is still possible to have reasonable SVest, from

poorQest prediction. Poor flow predictionmay bewhymany of the PCAmethods, including

the Corrected Characteristic Impedance Method (Section 4.2), the Kamoi model (Chapter 6)

and many of the commercial devices (Section 3.5), provide only a SVest, excluding Qest, as

alluded to in Sections 3.6, 4.2 and 6.2.3. Importantly, accurately capturing Qest, as well as

SVest, would provide greater clinical insight and greater confidence in the SVest value.

However, although SVest is correct for the calibration beats and those soon after, this ac-

curacy is only due to the calibration of Zc,w to a measured stroke volume. In reality, the

underlying model parameters Lc and RC, led to a Pres and Pex that failed to accurately rep-

resent the dynamics of aortic ejection. Moreover, a fixed and incorrect Lc will restrict the

model’s ability to accurately reflect changes in patient state through the Qest waveform.

It would still be possible to monitor patient state through changes in SVest, provided any

changes are adequately captured by the dynamic parameters, PWV and Tsys (updating Zc,w

through Equation 6.6), and RC, as per Section 6.2.4. However, Figure 9.2 shows significant

changes in RC beat-to-beat, have less influence on the final Pres and subsequent Pex profiles,

compared with the Lc parameter.

In summary, the Pres and Pex/Qest profiles, provide a qualitative and quantitative measure
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of the parameter identification quality. Without the expected Pres shape, the model can

still predict and track changes in SV . However, these SVest values would be from model

behaviour which is, in reality, far from the three-element windkessel theory, as is the case

in Figure 9.4.

9.6 Parameter Identification via Diastolic Best Fit

After the learnings in the earlier sections of this chapter, a natural question is, is there

a better way to identify the parameter Lc? Preferably one which lessens the effects of

the dicrotic notch in the pressure waveform. To answer this question, consider how the

condition of Equation 6.8 arose. Section 6.2.2 explained how Kamoi et al. (2017) used a

grid search to identify an array of potential parameter pairs, (Lc,i & RCi), each resulting

in some amount of error between Pres and measured pressure (Pmea) during diastole, per

Equation 6.7. This approach was aligned with the windkessel assumption in Equation 4.12,

that Pex = 0 during diastole. However, rather than just use the pair of parameters giving the

minimum error for diastole, Kamoi et al. (2017) placed the final emphasis on the Lc, RC pair

which yielded a Pres waveform that passed through a single point, tes, a condition enforced

with Equation 6.8. The approach was used since many of the grid search Lc,i iterations

have very similar Pres,min E (t ≥ tes), as discussed in Section 6.2.2 and seen in Figure 6.1a.

However, the repercussion of the approach is, the choice of end-systole, tes,dP/dt, tes,shear or

tdr, dramatically effects the Lc value chosen, and subsequently the systolic ratio of Pres to

Pex as seen in Figures 9.1 – 9.3.

However, as covered in Section 4.5, Wang et al. (2003) identified windkessel parameters

with a least squared error algorithm applied to the final two-thirds of diastole. This ap-

proach is equivalent to the grid search parameters that minimised the diastolic error ac-

cording to Equation 6.7, but using only the last two-thirds of diastole has the advantage of

ignoring the transient effects of the dicrotic notch.

Thus, attempting a similar approach, diastole is treated as t ≥ tdr, ignoring the effects of
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the diacrotic notch (tes,dic < tdr), which led to better diastolic fitting of Pres to Pao, in Sec-

tion 9.4. Furthermore, using only the final two-thirds of diastole for the error minimi-

sation, excludes the pressure rise associated with the distinct reflected pressure wave of

late-systole/early-diastole in Pao waveforms, as covered in Sections 9.3.3 and 4.5.1.

The optimisation/error minimisation used SciPy’s (v1.3.0) non-linear least squares trust

region reflective algorithm2 (implemented in Python 3.7.2), to identify the parameters Lc

and RC, for the calibration beat, shown in Figure 9.5. Specifically, the optimisation function

calculates Pres using Equation 6.2, for the whole beat, for iterations of the parameters Lc

and RC. However, the error minimisation within the function uses Equation 6.7, but only

the final two-thirds of diastole, where t2/3 marks the start of this final two-thirds. This

process is also far more efficient than employing the grid search approach.

As can be seen from Figure 9.5, both the dicrotic notch, and the rise in pressure before di-

astolic exponential decay, still lead to an imperfect fit of Pres to Pmea during all of diastole.

However, while not being ideal, the approach strikes a balance between achieving a rea-

sonably close physiological match of Pex to Qao, without causing too significant non-zero

Pex, and thus Qest, during diastole.

9.7 Ideal Parameter Identification from Aortic Flow

Access to the aortic flow probe signal Qao, in the Protocol S pigs, makes it possible to back-

calculate the ideal parameters. Ideal parameters are the combination Lc, RC and Zc,w, used

in Equation 6.2 and 4.11, which result in the closest possible match between Qest and mea-

sured Qao. To identify the ideal parameters, non-linear least squares fitting of Qest to Qao is

performed. This process is similar to using non-linear least squares fitting applied to Pres(t

≥ t2/3) and Pao(t ≥ t2/3) in Section 9.6, except, in the flow case, it calculates the error for the

entire flow waveform, not just systole or diastole. Figure 9.6 shows the approach, using

the same beats shown in Figure 9.5.

2SciPy is a open source software library, compatabile with the Python programming language.
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(a) Example beat from Pig S5 control stage, showing the Pres and Pex waveforms from non-linear least squares parameter
identification.
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(b) Example beat from Pig S6 control stage, showing the Pres and Pex waveforms from non-linear least squares parameter
identification.

Figure 9.5: Calculating Pres using parameters identified from non-linear least squared error fitting of Pres
to Pmea, during the final two-thirds of diastole. The beats shown in (a) and (b) are the calibration beats
used in Figures 9.1, 9.2 and 9.3, for consistency.
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(b) Example beat from Pig S5 control stage, showing the closest possible fit ofQest toQao, and back calculated paramaters,
which in conjunction with Pao would return the Pres and Pex, leading to Qest.

Figure 9.6: Calculating Pres using parameters identified from non-linear least squared error fitting of Qest
to Qao, for the entire beat. The beats shown in (a) and (b) are the same beats as in Figure 9.5, for compari-
son of the Pres with the pressure based non-linear parameter fitting.
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Figure 9.6 is further evidence to the fact the three-element windkessel, as described in

Section 4.3, cannot describe the phenomina of the dicrotic notch, or any significant rise

in pressure following it, prior to the start of diastolic exponential pressure decay. Thus,

this result confirms what was already stated in Sections 9.3.3. However, by comparing

Figures 9.6 and 9.5, it is clear the parameter identification approach described in Section

9.6 provides Qest close to the ideal model behaviour.

9.8 Summary

This chapter assessed the impact of improved dicrotic notch detection on the Kamoimodel.

Section 6.3.2 identified two mechanisms through which the Kamoi model was negatively

impacted by poor end-systole identification (tes). Specifically, these where through esti-

mation of systolic duration (Tsys) and calibration of the parameter Lc. The dicrotic notch

(tes,dic) provided a definitive tes marker in Pao signals, and an improved detection method,

tes,shear, was developed in Chapter 8. Robust detection of the notch immediately resolved

the limitations associated with poor Tsys precision. However, Lc identification, being de-

pendent on PCA, was shown to be highly sensitive to the profile of the dicrotic notch. In

fact, when the notch was relatively large, the improved dicrotic notch detection led to Lc,

and subsequent Pres and Pex, which estimated an unphysiological flow waveform.

In an attempt to overcome the negative effects of the dicrotic notch on parameter identifi-

cation, tdr was treated as end-systole. The point tdr was identified as part of the improved

end-systole detection in Chapter 8. It is the time point when the pressure has risen out of

the dicrotic notch, and thus better marks the start of diastolic exponential pressure decay.

However, using tdr revealed a limitation of the Kamoi model’s implementation. Specifi-

cally, attempting to force Pres = Pao at the start of diastole, could lead to very small systolic

Pex and additionally unphysiological Qest profiles.

Instead, a more reasonable approach for parameter identification was to simply minimise

the error according to Equation 6.7. This approach is aligned with the three-element wind-
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kessel model assumption of Equation 4.12, onwhich the Kamoimodel is based. Oncemore,

transient pressure effects caused by the dicrotic notch, and possible influence of distinct

reflected wave behaviour during early diastole, was mitigated by using the last two-thirds

of diastole, when start of diastole was treated as tdr. The resulting parameter identification,

and flow waveform profile estimation from the non-linear least squares diastolic pressure

error minimisation, was shown to be similar to ideal parameters back-calculated from the

measure flow waveform Qao.

Therefore, a key conclusion of this chapter is although tes is easily identified using dicrotic

notches in a Pao waveform, parameter identification via PCA is made more difficult by the

transient dicrotic notch behaviour and possibly distinct reflected waves. Moreover, no

combination of three-element windkessel/Kamoi model parameters were able to describe

wave propagation phenomena. This limitation of the three-element model had been dis-

cussed in Sections 4.3.1 – 4.3.3. However, this analysis, illustrates the issues numerically

and conclusively for the first time in literature, as far as the author is aware.

Finally, although the aorta represents a significant amount of the arterial tree’s compli-

ance, and thus seemed suitable for modelling the lumped windkessel/reservoir behaviour

of the arterial system, these advantages in favour of Pao, appear to be outweighed by the

presence of dicrotic notches. Considering the acquisition of the aortic pressure waveform

requires a much higher level of invasion, compared with the more clinically common

femoral artery pressure (Cousins and O’Donnell, 2004), it may in fact be advantageous

to develop a three-element windkessel model implementation that does not require the

presence of dicrotic notches to facilitate robust end-systole detection.

More succinctly, in cardiovascular modelling it has often been assumed the dicrotic notch

is “your friend”, delineating elements of the cardiac cycle. This chapter analytically demon-

strates this assumption is not always the case.



CHAPTER10

Dicrotic Notch-less End-Sytole

Detection

10.1 Introduction

Chapter 6 highlighted the Kamoi-model-identified end-systole (tes) time point, using aweighted

first derivative method (tes,dP/dt), which was subsequently illustrated in Figure 8.2. Section

6.3.2 outlined the sensitivity of the method’s stroke volume (SV) estimate to end-systole

detection, which became the focus of Chapter 9. Chapter 9 concluded some of the limi-

tations were specific to the Kamoi model, in particular the process by which Kamoi et al.

(2017) had identified the parameter characteristic length (Lc). However, Chapter 9 also

showed dicrotic notch and other reflected wave behaviour impacted three-element wind-

kessel models more generally.

Despite the difficulties produced by the presence of a dicrotic notch, Section 9.4 showed

it was still possible to estimate SV from the proximal aortic (Pao) signal, regardless of the

estimated flowwaveform (Qest) shape. However, to achieve a reasonably physiologicalQest

from pulse contour analysis (PCA), robust end-systole detection was required. This end-
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systole point was subsequently used to identify the end of transient pressure behaviour,

which is followed by exponential pressure decay.

The main reason for the focus on Pao in Chapters 8 and 9, were the ease of identification

and validation, of the end-systole point via the dicrotic notch. In addition, physiologi-

cal values associated with the aorta, had previously been used to estimate windkessel pa-

rameters. Specifically, Westerhof et al. (1971) showed the aortic characteristic impedance

(Zc,ao), was a reasonable value to use for the three-element windkessel model character-

istic impedance, Zc,w, as discussed in Section 4.3.1. Moreover, Section 4.4.1 covered how

Wesseling et al. (1993) calculated windkessel (volumetric) compliance (C) using an aortic

area compliance and length, per Equation 4.19. The methods employed byWesterhof et al.

(1971) andWesseling et al. (1993) did not utilize PCA in conjunction with fitting techniques

as in Chapter 9, thereby mitigating the effects of the dicrotic notch on the parameter iden-

tification process.

However, Sections 4.6 and 4.7 highlighted a potential advantage of parameter identifica-

tion via PCA. Specifically, beat-to-beat PCA allowed parameters to be patient specific and

represent the current hemodynamic state. However, the parameter identification difficul-

ties caused by the dicrotic notch, covered in Chapter 9, can outweigh the advantages of

the easily identified end-systole, on which the parameter identification process relies. Fi-

nally, in a clinical environment, it is not common to monitor central arterial pressure via a

catheter in the proximal aorta (Cousins and O’Donnell, 2004; Watson andWilkinson, 2012).

Considering these limitations, identified over Chapters 6 – 9, an ideal alternative arterial

pressure waveform to Pao, for use with the three-element model, would have the following

traits:

• Limited/relatively small distinct reflected wave behaviour contributing to the wave-

form during diastole.

• The typical measured diastolic pressure would have exponential decay, improving
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compatibility with windkessel model assumptions, as a result of the first require-

ment.

• Non-additionally invasive measurement location, in-line with the thesis goals in Sec-

tion 1.4.

Pressure measured in the femoral artery, seen in Figure 2.4, has these traits. Being down-

stream of the aortic-iliac branch, it is less effected by the distinct reflection site identified

by in Murgo et al. (1980), discussed in Section 2.5.3. Its distance from the aortic valve

means the dicrotic notch is attenuated, sometimes to a notch-less point of inflection or

simply a slight change in curvature (Oppenheim and Sittig, 1995; Watson and Wilkinson,

2012). Exacerbating the attenuation is the reduced compliance associatedwith aging (Daw-

ber et al., 1973), covered in Section 2.4.4. Moreover, the femoral artery is a more common

clinical catheterisation site, considered a suitable surrogate for the more invasive aortic

pressure measurement (Cousins and O’Donnell, 2004; Watson and Wilkinson, 2012).

However, the attenuation of the dicrotic notch makes tes more difficult to identify in dis-

tal pressure waveforms (Oppenheim and Sittig, 1995). This difficulty is a severe limitation

when finding the estimated end-systole time based on the minimum of a shear transform

(tes,shear), developed in Chapter 8. The tes,shear method assumed distinct dicrotic notches

were present in the signal, and as stated in Section 8.5.3, if there is no clear dicrotic notch

in the pressure waveform, there will be none in the shear transformed signal either. Thus,

this method is less appropriate for the more clinically relevant arterial pressure wave-

forms without dicrotic notches.

The potential lack of any dicrotic notch in arterial signals highlights an advantage of as-

suming tes at the point ofmaximumnegative pressure gradient with respect to time (dPdt min)

(Aguado-Sierra et al., 2008; Kamoi et al., 2014, 2017). Specifically, as stated in Section 8.2,

themethod provides consistent predictable performance, since it does not actually attempt

to identify a dicrotic notch per se. However, this simplification underestimates systolic du-

ration (Tsys) and overestimates diastole (Balmer et al., 2018a), as shown in Figure 8.7b.
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In a previous study by the author, the iliac pressure was found to return similar estimated

stroke volume (SVest) performance to a Pao signal when using the Kamoi model (Balmer

et al., 2018b). However, the study had assumed end-systole occurs at the start of diastolic

relaxation/decay (tdr), as per Section 9.4. This study, although not part of the published

results, contributed to Section 9.4, where the resulting estimated flow could be unphysio-

logical. Moreover, the accuracy of end-systole detection using tes,shear of Chapter 8, in the

dicrotic notch-less iliac pressure waveforms, was found to be no better than the original

tes,dP/dtmethod described in Section 8.3. Thus, the study’s end-systole detectionwas plagued

by the same issues described in Section 6.3.2, where the shear transform end-systole de-

tection has low accuracy, but high precision in signals without dicrotic notches.

Finally, to achieve both accurate SVest and Qest using the femoral pressure (Pfem) or simi-

lar arterial pressure, an accurate method of end-systole detection needs to be found. This

method is the focus of this chapter, to develop yet another method for end-systole de-

tection, but this time with particular focus on tes in signals without dicrotic notches. In

addition, the method should be robust enough to also identify tes in signals with dicrotic

notches, since, as already stated, in a clinical setting it is still possible for the dicrotic notch

to propogate to the femoral artery, albeit in an attenuated state.

10.2 End-Systole in Arterial Pressure Signals

Chapter 8 focused on the dicrotic notch as delineating end-systole with respect to the aorta

and left ventricle, provided Pao was measured proximal to the aortic valve, as discussed in

Sections 2.3.1 and 8.2. However, it is worth considering end-systole and its effect on the

arterial pressure waveform more generally, doing so will make the fundamental theory

behind the new tes detection method and its validation clearer.
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10.2.1 End-Systole Propagation and Pulse Transit Time

Like start-systole, there is a time delay between the effects of absolute end-systole, the time

of aortic valve closure, and its effect being experienced in different parts of the arterial

tree. Section 5.4.3 defined absolute start of systole, as the time of the electrocardiogram

(ECG) Q-wave (t0,ECG), but the effects of systole were experienced later in the arteries (t0,Pao

& t0,Pfem). The aforementioned section explained the absolute and relative nature of start-

systole being due to the delay between start of ventricular contraction and ejection, as

well as the propagated nature of the pulse wave. The time delay associated with the pulse

wave travelling between different locations in the arterial tree, was defined in Section 2.5.1

as the pulse transit time (PTT). Later, in Chapter 7, the other time delays were formally

defined (PEP, PDT and PAT).

Figures 2.13 and 7.2 showed PTT was the delay between start-systole as experienced in

the aortic (t0,Pao) and femoral arteries (t0,Pfem). Similarly, there is a delay in the effects of

aortic valve closure propagating along the arterial tree. Section 2.3 discussed how dur-

ing diastole, the passive contraction of the arteries, particularly the aorta, helps sustain

blood pressure and flow to the periphery. At absolute end-systole/start diastole, diastolic

pressure decay can also be described as wave propagation, with valve closure causing a

forward travelling expansion wave, reducing pressure as it travels along the arterial tree

(Mynard and Smolich, 2014b, 2017). It is important to note, expansion here refers to the

pressure reducing aspect of this wave, not expansion of the arteries. The expansion wave

simply describes the decay in pressure originating in the proximal aorta, and, as the aorta

passively contracts, it delays the passive relaxation and pressure decay of downstream

arteries.

The implication of recognising the effects of absolute end-systole as a propagation, means

the time delay between the relative end-systole experienced at two different sites, should

be the same as the time it took the pulse wave to propagate the distance between the two

sites. In other words, PTT should predict the time delay between the start of diastolic decay
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at different pressure measurement locations, just as it did for the relative start-systole

(t0) of different arterial sites. Figure 10.1 shows this phenomina of PTT predicting the

propagation of end-systole1.
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Figure 10.1: Simultaneously measured aortic arch and femoral pressures from Pig D2 control stage. This

shows the foot-to-foot PTT detection in the same manner as Figure 2.13. However, this figure also shows,
forward projecting the PTT from the dicrotic notch of a proximal aortic signal, strongly predicts the be-
ginning of diastolic relaxation in the downstream pressure measurement.

However, it is worth noting the end-systole point predicted in the downstream signal

(tes,PTT), is not definitive, since the approach negates the effects of the changing waveform

shape as it travels along the arterial tree (Westerhof et al., 2010c; Guyton and Hall, 2011),

discussed in Sections 2.2.2 and 2.5.4. Additionally, tes,PTT requires two pressure measure-

ment sites, one with a distinct identifiable tes point, such as the dicrotic notch of Pao. Two

arterial pressure measurements are not common in a clinical setting, as covered in Section

7.3. Thus, the method is not viable in a clinical setting. However, it still provides a means

of validating the end-systole point in a dicrotic notch-less signal in an experimental setting.

1An aside, PTT can also be used to forward project the start of diastolic relaxation/decay (tdr) point, but the
need to do so is outside the scope of this particular analysis
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10.2.2 End-Systole, Attenuated Dicrotic Notches and Measures of

Curvature

Section 8.3, stated the dicrotic notch has a gradient
dP
dt
= 0, not

dP
dt min, as predicted by

tes,dP/dt (Kamoi, 2016; Kamoi et al., 2017). Attenuated dicrotic notches transition to points

of inflection or simply just a change in curvature, where the latter is seen in Pfem of Figure

10.1, where tes,PTT marked the transition from a steep negative gradient in late systole, to

a less negative gradient in exponential decay. Thus, end-systole in a dicrotic notch-less

signal resembles a point of downward concavity, a point of distinct change in curvature.

Moreover, the curvature or concavity of the pressure signal corresponds to its second

derivative,
d2P
dt2
. Specifically, the local change in curvature at end-systole is measured as

a peak in
d2P
dt2
, as illustrated in Figure 10.2. The larger the change in curvature, the less

attenuated the dicrotic notch, and the more prominent the
d2P
dt2
peak. Thus, the hypothesis

is
d2P
dt2
provides a more appropriate signal for tes detection than dP

dt
.

100

120

140

P f
em

 (m
m

Hg
)

0 100 200 300 400 500 600 700
Time (ms)

−0.02

0.00

0.02

0.04

d
2 P

fe
m

/d
t2

 (m
m

Hg
/s

2 )

t es, d2P/dt2

Figure 10.2: The rationale for identifying end systole as a prominent peak in the filtered second derivative

(tes,d2P/dt2 ), corresponding to the transition to start of diastole. This beat is taken from Pig D2’s high PEEP
stage.
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However, since the arterial pressure waveform has other regions of changing curvature,

such as the t0 or the maximum pressure of a beat (Pmax), identification of the correct peak

associated with tes is made more difficult. To overcome this issue, the aim was to weight

d2P
dt2
, so the resulting peak corresponds to the local maximum curvature in the region of

downward concavity, making it appropriate for signals with and without dicrotic notches.

End-systole identified with the weighted
d2P
dt2

is referred to in this thesis as tes,d2P/dt2 , to

distinguish it from the other end-systole detection methods covered in this thesis.

The remaining sections of this chapter cover the development of the tes,d2P/dt2 method, and

test its performance. Specifically, the accuracy and robustness of the newmethod is tested

on the more difficult, dicrotic notch-less signals, increasing its clinical applicability as per

Section 10.1. It is also compared to tes,dP/dt, since as per Sections 8.2 and 10.1, an advantage

of tes,dP/dt was its consistency in signals with and without dicrotic notches, as well as it

being the method of choice for other implementations of three-element windkessel based

models2 (Aguado-Sierra et al., 2008; Alastruey, 2010; Kamoi et al., 2017)

10.3 Methods

10.3.1 Porcine Trial and Measurements

The data for this study comes from Protocols D and S. Specifically, it uses data from Pigs D1,

D2, D4 and D5 of the dobutamine protocol, covered in Section 5.2.1, and Pigs S1– S6 of the

sepsis protocol, covered in Section 5.2.2. Preparation of the pigs was covered in Section

5.2, and available measurements summarised in Table 5.1. Since this study is focused

on dicrotic notch-less end-systole detection, the primary measurement of interest is the

femoral pressure (Pfem), although Pao is used as part of the validation process, covered in

Section 10.3.5.

2Aguado-Sierra et al. (2008) states end-systole is “the time of the first zero crossing of the second derivative”,
which is equivalent to a minimum in the first derivative. Alastruey (2010) does not outline their algorithm for

end-systole detection, but Figure 11 of the publication strongly suggests the point of maximum negative gradient,

with the dicrotic notch clearly attributed to early diastole.



CHAPTER 10. DICROTIC NOTCH-LESS END-SYTOLE DETECTION 175

10.3.2 Hemodynamic Modification

The hemodynamic modifications of Protocols D and S were originally used to assess dif-

ferent cardiac performance metrics, such as SV and PV-loops (Kamoi et al., 2015; Kamoi,

2016; Kamoi et al., 2017; Davidson et al., 2018). However, similar to Section 8.4.2, this study

is not concerned with the hemodynamic interventions effects per se. Instead, the proto-

cols simply provide a variety of pressure waveform shapes to test an improved end-systole

detection algorithm.

10.3.3 Data Selection Summary

The data used in the analysis is taken from distinct stages of the two experimental pro-

tocols. All the stages of each protocol were shown in Figures 5.1 and 5.2, respectively.

However, not all stages and beats were used in this analysis, thus, this section summaries

those that were used.

Specifically, 30 heart beats are used for each stage to ensure equal representation in statis-

tical comparisons. The control stage was when a pig was at rest following anaesthesia, be-

fore any hemodynamic modifications were applied. Both protocols included recruitment

manoeuvres (RM). However, some pigs maximum PEEP during the RM reached 15 cmH2O,

while others reached 20 cmH2O. For consistency, the high PEEP stage in this study used

data associated with a PEEP level of 15 cmH2O, for all pigs. Pigs associated with Protocol

D have the dobutamine stage, where the 30 beats are during the continuous dobutamine

infusion. Protocol S’s final stage is end endo, which for Pigs S2, S3 and S5 refers to 30 beats

just prior to the cessation of the endotoxin infusion. Pigs S1, S4 and S6 responded more

dramatically to the endotoxin infusion causing cardiac/circulatory failure before the full

30min was complete. Therefore, the end endo stage for these pigs is during the late part of

their rapid decline in hemodynamic stability.
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10.3.4 Weighted Second Derivative Algorithm Implementation

Summarising Section 10.2.2, end-systole in Pfem occurs in the region of downward concav-

ity leading into diastolic decay. Concavity can be measured using the second derivative

with respect to time (
d2P
dt2
). End systole (tes,d2P/dt2) corresponds to a prominent peak in d2P

dt2
,

in the region after the peak pressure, as shown in Figure 10.2.

However, as covered in Section 5.4.2, noise is amplified when calculating discrete data’s

derivatives, making
d2P
dt2

peak detection more difficult. Although filtering
d2P
dt2

removes

most of the noise, noise at a similar frequency to the peak associated with tes,d2P/dt2 cannot

be removed, as seen in Figure 10.2. Therefore, a weighting function, w(t), is applied to

attenuate
d2P
dt2
peaks based on their distance from the region in which tes is expected to oc-

cur. The weighting is based on a normalized beta distribution probability density function

(Johnson et al., 1994), so its magnitude ranges from 0 to 1. The algorithm implementation

is as follows:

1.
d2P
dt2

is calculated as per Section 5.4.1, using Equations 5.2, 5.5 and 5.6. It is subse-

quently passed through a zero phase delay Hamming low pass filter, with a cutoff

frequency (fc) of 20 Hz and transition band width (ftb) of 5 Hz, per Section 5.4.2 and

Figure 5.3.

2. Time of start of systole for each beat (t0,fem) is identified as the feet in the pressure

waveform, along with the time of each beats peak pressure (tPmax). The algorithm

used is outlined in Section 5.4.3 and illustrated in Figure 5.7 (Balmer et al., 2018a,c).

3. The weighting is calculated and applied to each beat individually according to the

following steps:

(a) The nth beat (t0,fem,n ≤ t ≤ t0,fem,n+1) is considered in isolation, so time is with

respect to the start of the beat, ranging 0 ≤ t ≤ T, where T is the duration of the

beat.
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(b) The weighting function w(t) is calculated:

w(t) =


0 : t ≤ tPmax

τα−1(1− τ)β−1 : t > tPmax where τ(t) =
t−tPmax
T−tPmax

(10.1)

Where for t > tPmax , w(t) becomes a beta distribution probability density func-

tion, distributed over the remainder of the beat. With 0 ≤ τ ≤ 1 and β = 5, the

basic shape ofw(t) is defined. The α value allows control over the final shape by

shifting its peak, as shown in Figure 10.3.
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Figure 10.3: Two different possible weighting functions are shown, illustrating the effect of α on the
weightings peak location, twmax and τwmax

respectively. The example uses the same beat as for Figure 10.2.

More specifically, α ensures an adaptive beat specific weighting, that places the

w(t) peak (twmax) in the expected vicinity of tes. The value of α is calculated:
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α =
βτwmax − 2τwmax + 1

1− τwmax
where τwmax =

twmax − tPmax
T − tPmax

(10.2)

Equation 10.2 is derived from recognition τwmax
comes from

dw(t>tPmax)

dt
= 0. Thus,

all that is necessary is to define twmax in the location of the expected end systole

point (tes) for the nth beat according to the following:

i. If n ≤ 3, an empirical relationship gives an estimate of systolic duration

based on heart rate (Tsys,HR), where heart rate (HR) is in beats per second

(Gemignani et al., 2008):

twmax = Tsys,HR = −0.1HR + 0.45 (10.3)

where Tsys,HR is used to define twmax with respect to the start of the beat.

ii. If n > 3, twmax is the mean systolic duration (Tsys) from the previous three

beats identified tes,d2P/dt2 points:

twmax = Tsys =
1

3

3∑
i=1

Tsys,n−i (10.4)

The value of α is also constrained between 1.5 and 4.5, ensuring twmax is not

placed too early in systole, or too late in diastole.

4. With w(t) calculated using Equation 10.1, tes,d2P/dt2 is found as the time of the most

prominent peak in the product w(t)d2P
dt2
, the weighted second derivative. The culmi-

nation of all steps is shown in Figure 10.4, using the third and fourth beats of Pig D2’s

high PEEP stage. This way, both steps 3(b)i and 3(b)ii, for twmax determination, are

illustrated in this figures choice of heart beats.

5. This final step is only necessary for dicrotic notches and subsequent identification of tdr.
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Thus, while not necessary for this dicrotic notch-less analysis, the step is outlined here

for completeness. As stated in Section 10.2.2, tes,d2P/dt2 identification is easier when ap-

plied to proximal pressure signals, because the second derivative peak associated with

a dicrotic notch has much more prominence. However, filtering the second derivative

in Step 1 will shift the tes,d2P/dt2 peak due to the removal of some frequency content. To

account for this, Steps 9 and 10 from the dicrotic notch detection algorithm in Section

8.4.5, can also be implemented here. Specifically, check whether a local maximum in

pressure occurs following tes,d2P/dt2 , if so this point is identified as tdr. Subsequently,

update tes,d2P/dt2 to the minimum that resides between the initial tes,d2P/dt2 and tdr. An ex-

ample of the tes,d2P/dt2 method applied to Pao, including these additional steps, is shown

in Figure 10.5.

The main purpose of Figure 10.4 is to illustrate the tes,d2P/dt2 method. However, it also

includes the tes,dP/dt and tes,PTT methods, for comparison. The tes,dP/dt algorithm was cov-

ered in Section 8.3, but only illustrated for waveforms with dicrotic notches in Figure 8.2.

Since tes,dP/dt performance will be compared to tes,d2P/dt2 in the subsequent analysis, tes,dP/dt

is shown here applied to the dicrotic notch-less case. The method for identifying tes,PTT was

illustrated in Figure 10.1, and is used as a validation reference method, to quantify the per-

formance of the two derivative based approaches (tes,dP/dt and tes,d2P/dt2), discussed further

in Section 10.3.5.

10.3.5 Validation of Time of End-Systole Point

Since, by eye, there is no definitive tes location in a dicrotic notch-less arterial pressure

waveform, validation of tes,d2P/dt2 for notch-less waveforms is difficult. However, as covered

in Section 10.2.1, PTT can be used to forward project the dicrotic notch location from Pao

onto the the Pfem signal. Despite the lack of a definitive end-systole point in Pfem, forward

projected tes,PTT provides a physiologically based estimate of tes, as shown in Figure 10.1.

Thus, tes,PTT is considered the reference end-systole point in Pfem for the analysis, to which,

tes,dP/dt and tes,d2P/dt2 can be compared to assess their performance.
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Figure 10.4: Example tes,d2P/dt2 end systole detection, using the 3rd and 4th beats of Pig D2’s high PEEP stage.
Note, beats 1-3 use Equation 10.3 to define twmax location. Subsequent beats move twmax using the mean
systolic duration of the previous three beats, per Equation 10.4, thus, beat four uses the mean of beats

1-3, Tsys,1,2,3. Additionally, the comparison method tes,dP/dt is shown, identified via the first derivative, and
tes,PTT the reference/validation end-systole point. Finally, the derivatives shown are post filtering.
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Figure 10.5: Example of tes,d2P/dt2 detection in a pressure waveform with a dicrotic notch. The example
uses a proximal pressure waveform from Pig D4’s control stage.

Per Table 5.2.4, Pao was measured for both protocols in this study. Thus, dicrotic notch de-

tection (tes,dic) in Pao was performed using the adaptive shear transformmethod developed

in Chapter 8, tes,shear.

10.3.6 Analyses

Rather than directly comparing the difference between the derivative based end systole

estimates (tes,dP/dt & tes,d2P/dt2) and tes,PTT, their resulting systolic durations are compared.

The three systolic durations are shown in Figure 10.6 and summarized below, with their

respective end-systole estimates:

• Tsys,PTT, where end-systole is tes,PTT

• Tsys,dP/dt, where end-systole is tes,dP/dt

• Tsys,d2P/dt2 , where end-systole is tes,d2P/dt2

The reason for using Tsys to assess each methods end-systole performance, is the same as
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when assessing tes,shear in Chapter 8. Specifically, Section 8.2 outlined how the end-systole

time point is often found to determine systolic and diastolic time intervals (Talley et al.,

1971; Payne et al., 2006; Marik, 2013), as in Kamoi et al. (2017).
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Figure 10.6: Example of how pulse transit time (PTT) was used to compare the tes algorithms using Tsys
estimates. The example uses pressure waveforms from Pig S5’s control stage.

The accuracy of Tsys,dP/dt and Tsys,d2P/dt2 compared with Tsys,PTT, are analysed using two for-

mats. First, regression analysis and coefficients of determination (r2), both overall and

for individual pigs. The coefficient of determination, r2, represents the fraction of the to-

tal observed variation in Tsys,d2P/dt2 or Tsys,dP/dt, due to the observed variation in Tsys,PTT.

However, correlation does not imply agreement (Bland and Altman, 1986) and therefore

Bland-Altman analysis is also used.
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10.4 Results & Discussion

10.4.1 Correlation Outcomes

Overall correlations are shown in Figure 10.7, with r2 = 0.77 verses 0.87, for Tsys,dP/dt and

Tsys,d2P/dt2 respectively. The results suggest more of the variability in Tsys,d2P/dt2 is explained

by Tsys,PTT, compared with Tsys,dP/dt. However, Table 10.1 shows the individual r2 for Pigs

S1 and S4 was higher for Tsys,dP/dt than Tsys,d2P/dt2 . These two higher individual pig r2 values

can be misleading if used to assess agreement (Bland and Altman, 1986), since for Pig S1,

tes,d2P/dt2 was closest to tes,PTT for 87 of its 90 beats, with only 3 beats during end endo where

tes,dP/dt was closer to tes,PTT. Similarly tes,d2P/dt2 was the better estimate in 17 of 30 beats in

Pig S4 end endo.

As stated in Section 10.3.3, inadequate pulse pressures led to circulatory failure prior to

the full 30min of endotoxin infusion in Pigs S1 and S4. This circulatory failure is to blame

for the reduction in end-systole detection accuracy and outliers in Figures 10.7 and 10.8.

Specifically, Pig S4’s femoral pressure fell to a mean value of 24 mmHg, with a pulse pres-

sure of only a few millimetres of mercury, at which point the near non-pulsatile signal

makes end-systole detection difficult for any algorithm. Since Pao was maintained longer

than Pfem during the end endo stage, a dicrotic notch still enabled reasonable tes,PTT estima-

tion.

Table 10.1: Coefficient of determination (r2) for each Tsys estimate (Tsys,dP/dt & Tsys,d2P/dt2 ) vs Tsys,PTT, for
each individual pig (rounded to 2 d.p.).

Pig

D1 D2 D4 D5 S1 S2 S3 S4 S5 S6

Tsys,dP/dt 1.0 1.0 0.99 0.83 0.59 0.93 0.98 0.44 0.98 0.87

Tsys,d2P/dt2 1.0 1.0 0.99 0.83 0.01 0.94 0.97 0.0 0.98 0.87
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Figure 10.7: Regression analysis: (a) and (b) show the overall coefficient of determination (round to 2 d.p.),

for both Tsys,dP/dt and Tsys,d2P/dt2 estimation methods. Pig markers are according to their label, and while
all beats contribute to the overall r2, the 10 beats of highest error are shown for each pigs stage, to improve
clarity.

10.4.2 Bland Altman Outcomes

Figures 10.8 shows the mean systematic error of the weighted second derivative method

(tes,d2P/dt2 /Tsys,d2P/dt2) was lower than its weighted first derivative counterpart (tes,dP/dt/Tsys,dP/dt),

−8.7ms versus −23.2ms respectively. Additionally, the new algorithm has narrower limits

of agreement (mean ± 1.96 standard deviations), of ±26.6ms verses ±37.7ms, confirming

across all pigs and stages its superiority over the old algorithm.

Notably, ignoring Pig S4’s end endo stage outliers, explained in Section 10.4.1, tes,dP/dt consis-

tently underestimates systolic duration, with all data points in Figure 10.8a being less than

zero, ensuring negative mean bias. This limitation is expected, since a trough in the first

derivative describes a local point of maximum negative gradient, as opposed to a station-

ary point. Figure 10.4 shows this max negative gradient lies between tPmax and tes,PTT, with

the magnitude of the gradient reducing through tes,PTT and into diastole. This behaviour is

mirrored in the results of Section 8.5.2, where tes,dP/dt consistently underestimated Tsys in
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Figure 10.8: Bland Altman analysis: the mean bias between Tsys,PTT and the derivative based Tsys estimates
are shown as well as the limits of agreement. Pig markers are according to their label, and while all beats

contribute to the mean bias and limits of agreement, the 10 beats of highest error are shown for each pigs

stage, to improve clarity.

Pao with dicrotic notches3 (Balmer et al., 2018a).

In contrast, the weighting in tes,d2P/dt2 is developed specifically to estimate the location of

an attenuated dicrotic notch. The results indicate, despite no dicrotic notch being present,

physiologically based end-systole detection is still possible, without having to compromise

accuracy using the first derivative method. More importantly, the approach significantly

improves the clinical applicability of other algorithms and methods requiring end systole

detection as an input.

10.4.3 End Systole Detection Limitations

The study is generalizable to human arterial signals measured from the proximal aorta

to the femoral artery, shown in Figure 2.4. However, a reduction in performance may

occur in even more peripheral arterial signals, where reflected waves can cause turning

points that appear similar to a dicrotic notch, but do not correspond to end systole. Such

signals are found, for example, in the radial artery (Oppenheim and Sittig, 1995; Hoeksel

3Figure 8.7b error was calculated as Tsys,mea - Tsys,dP/dt, i.e. reference Tsys - estimated Tsys. Figure 10.8a calcu-
lated error as Tsys,dP/dt - Tsys,PTT, i.e. estimated Tsys - reference Tsys. Thus, the positive error in Chapter 8’s analysis,
represents equivalent behaviour as the negative error in this chapter.
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et al., 1997), as stated in Section 9.3.3. The algorithm has not yet been tested on such

peripheral signals, as this study extends only as far as the femoral artery, which as per

the desired traits in Section 10.1, is readily accessible in intensive care and similar clinical

situations (Cousins and O’Donnell, 2004; Watson andWilkinson, 2012), and is less prone to

wave reflection induced distortions (Westerhof et al., 2010c). However, methods do exist

to approximate a central arterial pressure waveform from the likes of a measured radial

waveform, which may help to extend clinical applicability further (Gao et al., 2016).

This study used a range of hemodynamic states found in an intensive care setting, includ-

ing recruitmentmanoeuvres, dobutamine admission and septic shock like response. While

this diversity ensured both stable and unstable hemodynamics were tested, it is possible

other behaviour not tested could cause issues. For example, cardiac arrhythmia can sig-

nificantly alter expected pressure waveform shape beat-to-beat. It is likely the algorithm

presented in this study would suffer reduced performance under these conditions. How-

ever, in a clinical setting, severe cardiac arrhythmia would not be left unresolved and end

systole detection under such conditions is unlikely of immediate clinical need or interest.

10.5 Summary

The study developed a simple end-systole detection algorithm for use in arterial pressure

waveforms, with or without dicrotic notches. The analysis was conducted on the more

difficult dicrotic notch-less case, and results showed improved end-systole detection over

an existing method. Specifically, the novel adaptively weighted second derivative method,

tes,d2P/dt2 , was better able to monitor systolic duration, with less bias and narrower lim-

its of agreement, when compared with the existing tes,dP/dt method (−8.7± 26.6ms verses

−23.2± 37.7ms).

While end-systole detection is a useful tool, which can be used for many purposes, the

authors motivation for developing tes,d2P/dt2 was to overcome the limitations summarised

in Section 9.8. Specifically, the hypothesis was, with limited effect of distinct reflectedwave
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phenomena in the femoral pressure waveform, the three-element windkessel parameter

identification via PCA might be improved, subsequently improving the aortic flow and SV

estimation. However, before this hypothesis could be assessed, a robust method of end-

systole detection in femoral pressure waveforms needed to be developed, which was the

goal achieved in this chapter.
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CHAPTER11

Clinically Applicable,

Physiologically Accurate,

Model Based Flow Estimation

11.1 Introduction

Chapters 6 introduced the Kamoi model, a unique hybrid implementation, of the three-

element windkessel (Section 4.3) with pulse wave velocity (PWV). Section 6.1 stated it was

a benchmark and starting point for this thesis. Thus, Chapter 6 was particularly focused on

the limitations of themodel, discussed in Section 6.3. Subsequently, Chapters 7 – 10 focused

on addressing each of the limitations associated with the Kamoimodel. The learnings from

the previous chapters will be summaries with respect to the intent of this chapter.

Chapter 7 tested pulse arrival time (PAT) as a surrogate for pulse transit time (PTT). As

explained in Section 7.3, aortic PWV is usually measured by measuring PTT. In Kamoi

et al. (2017), PTT was measured via dual arterial catheterisation, which is not common

clinically and contradicts this thesis’s goals of developing a clinically applicable method
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for flow and stroke volume (SV) estimation, per Section 1.4. PAT represented a potential

clinical surrogate for PTT, but was shown to be inappropriate due to variability in the pre-

ejection period (PEP). Thus, an accurate clinically applicable method of monitoring PWV ,

in a critical care environment, was not found.

Chapter 8 focused on improving end-systole (tes) detection in proximal aortic pressure

waveforms (Pao). Section 8.1 summaries how the end-systole method employed in Kamoi

et al. (2017), tes,dP/dt, had low accuracy, and hypothesised an improved tes detection method

would improve the flow and SV estimation accuracy of the Kamoi model. As shown in

Section 8.5, the newly developed dicrotic notch detection method, tes,shear, was a significant

improvement over tes,dP/dt. However, Chapter 9 showed, despite improved detection using

tes,shear, the transient behaviour of the dicrotic notch made the Kamoi model’s method of

parameter identification more difficult.

The erroneous effect of the transient dicrotic notch behaviour was minimised in Section

9.6, by using a more efficient method for model parameter identification than Kamoi et al.

(2017), in conjunction with tdr. Importantly, tdr is defined as the start of diastolic relaxation,

a point after the transient dicrotic notch behaviour, marking the approximate start of di-

astolic exponential pressure decay. However, Section 9.8 ultimately concluded the advan-

tages of easy end-systole detection, via the dicrotic notch and tes,shear, were outweighed by

the mechanisms responsible for the dicrotic notch being in conflict with the core assump-

tions and limitation of the three-element windkessel model. Additionally, the invasiveness

of a Pao measurement made it uncommon in a clinical setting and therefore at odds with

the thesis goals of Section 1.4.

In Chapter 10, the decision was made to use the clinically more acceptable femoral arte-

rial pressure waveform (Pfem) to test an implementation of the three-element windkessel

model. Section 10.1, explained Pfem was less impacted by dicrotic notch and distinct re-

flected wave behaviour, and was a common clinical pressure measurement. Thus, the

hypothesis was Pfem would not present the same limitations as Pao in Chapter 9. However,
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the obvious repercussion was end-systole would be more difficult to identify in Pfem, hav-

ing negligible dicrotic notch behaviour.

Chapter 10 developed an improved end-systole detection method, tes,d2P/dt2 , which did not

rely on leveraging the contour of a dicrotic notch per se, as tes,shear had done. Instead,

tes,d2P/dt2 used an adaptive weighted second derivative (d
2P
dt2
), to identified end-systole as a

local point of maximum changing curvature. This approach made tes,d2P/dt2 appropriate for

pressure waveforms, with or without dicrotic notches.

While Section 4.3 discussed windkessel theory and limitations, in practice, actually imple-

menting a model gave greater clarity as to windkessel behaviour. Considering Chapters

7 – 10 in aggregate, the three-element windkessel model is now better understood, with

much of the analysis illustrated, not having been found elsewhere in the existing litera-

ture. Thus, this chapter applies all that has been learnt so far, and attempts to implement

a three-element model which meets all the goals outlined in Section 1.4.

11.2 Methods

11.2.1 Porcine Trial and Measurements

The data for this study comes from Protocol S, outlined in Section 5.2.2. Specifically, it uses

Pigs S1, S2 and S4 – S6. Pig S3was ignored due to suspected issues with the instrumentation

and/or data acquisition from the aortic flow probe and aortic pressure catheter. First, the

aortic flow probe data, Qao, had significant noise throughout the entire cardiac cycle, much

more than the other pigs in the cohort. Second, its Pao signal also had significant noise, but

confined only to early systole. Moreover, during early systole, Pao was much lower than

left ventricular pressure (Pvent), rather than the physiologically expected tracking outlined

in Section 2.3.1 and Figure 2.5. The erroneous Pao signal being limited to early systole of

each beat, meant it was still usable for the analysis of Chapter 10.

Since this study plans to use Pfem for the measured pressure input to the model, Pao acqui-
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sition issues would not directly matter. However, the unreliable Pao and Qao signals cast

enough doubt over the acquisition of the remaining experimental data, so the decision was

made to simply exclude the pig from this chapters analysis.

Preparation of the pigs, including sedation and euthanasia, was covered in Section 5.2.

The measurements available were also covered in the aforementioned sections, and sum-

marised in Table 5.1. Specifically, since this study is focused on estimating aortic flow (Qest)

and stroke volume (SVest) via Pfem, the two primary measurement of interest are Pfem and

Qao, where the latter enables validation of excess pressure (Pex) shape, explained in Section

9.2.1, and calculation of measured stroke volume (SVmea) via Equation 5.12.

11.2.2 Hemodynamic Modification

The hemodynamic modifications of Protocol S were covered in detail in Section 5.2.2 and

included expected effects on cardiac performance. Specifically, Qao and SVmea will change

in response to changes in cardiac preload, afterload and contractility, as noted in Section

2.4. In this section, a summary of the interventions is provided:

1. The first intervention was an recruitment manoeuvre (RM), where the increase in

positive end-expiratory pressure (PEEP) can reduce left ventricular preload and thus

SV , per Figure 2.9 (Wallace et al., 1963; Luecke and Pelosi, 2005; Marik, 2010). How-

ever, the interventions effectiveness may be limited by the opening of the chest to

place the aortic flow probe. Specifically, as per Section 5.2.2, the chest was closed

with clamps after placing the probe, but the clamps do not provide a perfect seal.

2. The 500ml fluid infusion can increase preload through the increased circulatory vol-

ume (Michard and Teboul, 2002; Reuter et al., 2002; Cecconi et al., 2015). Thus, it can

increase SV per Figure 2.9.

3. The E. Coli lipopolysaccharide (endotoxin) infusion produces a septic shock like re-

sponse, after which the protocol is named. The endotoxin infusion represents the

main hemodynamic intervention of interest in this analysis. As per Section 5.2.2, it
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can cause inflammation, capillary leakage, decreased afterload, hypovolemia, tissue

hypoxia and eventual cardiac failure (Nguyen et al., 2006; Merx and Weber, 2010).

Thus, it represents a severe life threatening case, which can occur clinically, provid-

ing a worst case scenario test of the developed three-element windkessel model.

The degree to which each pig responds depends on its sensitivity to the specific interven-

tion, as well as its state following prior interventions.

11.2.3 Data Selection Summary

As per the previous analyses in this thesis, the experimental datawas separated into stages.

The stages of Protocol S were detailed in Section 5.3.2, and all stages shown in Figure 5.2

were used in this analysis. Specifically, 30 heart beats were extracted from each stage,

making a total of 750 heart beats used in the analysis. An equal number of beats was used

per stage for equal representation in any statistical analyses. As a reminder, recall the end

endo stage was characterised by either the end of the 30min endotoxin infusion (Pigs S2

and S5), or being in the later stages of circulatory failure (Pigs S1, S4 and S6).

11.2.4 The Three-Elements Windkessel Implementation

Many different implementations of three-element windkessel models have been presented

and discussed throughout this thesis. However, this section outlines the implementation

used by the author, and its rationale, in light of what has been learned in the preceding

chapters, and aligning the method with the original thesis goals. For convenience, Figure

11.1 summarises the implementation process, including references to key sections within

the thesis, key equations as they are used in this chapter, and key signals used in this

chapter.
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The Return to Zc,wC

The most important difference between the Kamoi model of Section 6.2, and the three-

elementwindkesselmodel used in this chapter, is the returning to a standard three-element

model, describing reservoir pressure via Equation 4.11. Specifically, this choice means

PWV and characteristic length (Lc) are not incorporated into this model. Thus, Equation

6.1 is ignored and reservoir pressure (Pres) is once more described by the parameter prod-

ucts Zc,wC and RC.

There are two main reasons for not using PWV and Lc in the model. First, as stated in Sec-

tion 11.1, no clinically feasible means of monitoring PWV was found in Chapter 7. Without

the ability to monitor PWV , the Kamoi model could not be implemented clinically. Second,

and more importantly, Section 9.5 discussed how treating Lc as a fixed anatomical length

hindered the Kamoi model’s ability to predict physiologically relevant flow (Qest). On the

contrary, allowing Zc,wC to vary per beat will ensure Pres is always found minimising the

error in Equation 6.7, thus reflecting the assumed model behaviour in Equation 4.12.

Therefore, the hypothesis in this chapter is using Zc,wC, as a dynamic parameter, identified

beat-to-beat, will enable improved Pex shape prediction and lead to physiologically accu-

rate Qest and subsequent SV values. With the improved end-systole detection provided by

tes,d2P/dt2 , it would be possible to use a femoral pressure waveform (Pfem) as the measured

pressure input to Equation 4.11, as originally shown in Figure 4.4.

Reservoir and Excess Pressure Calculation

The parameters product forms in Equation 4.11, Zc,wC and RC, would need to be identi-

fied for each beat to estimate model Pres. Section 9.6 showed the most effective approach

thus far in the thesis, identifying parameters via pulse contour analysis (PCA) and SciPy’s

(v1.3.0) non-linear least squares error minimisation function. Section 9.6, achieved the

best fit of Pres to Pao, according to Equation 6.7, by minimising the error for the final two-

thirds of diastole, t2/3, mitigating the effect of the dicrotic notch on parameter identifica-
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Figure 11.1: Model implementation summary, including reference to the chapter, section and figure/equa-

tion that explains each step in detail. For convenience, the referenced equations are also shown in their

form applied in this analysis.
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tion. Since in this analysis, it was known a priori that dicrotic notch behaviour in Pfem was

negligible, using t2/3 was not necessary. Moreover, the lack of dicrotic notches also implies

tes,d2P/dt2 ≈ tdr, when identifying tes,d2P/dt2 and subsequently tdr.

Therefore, in this analysis, the optimisation calculates Pres using Equation 4.11, for the

whole beat, for iterations of the parameter products Zc,wC and RC. However, the error

minimisation within the function uses Equation 6.7, where tes = tes,d2P/dt2 . In a clinical en-

vironment, or situation where dicrotic notch-less waveforms cannot be guaranteed, using

t2/3 to define end-systole/start-diastole in Equation 6.7 for the parameter identification pro-

cesses, is advisable.

Finally, for transparency, since central venous pressure (Pcvp) was measured in the exper-

iment, it was treated as a variable in Equation 4.11. However, as stated in Section 4.3.2,

and shown later in Section 11.4.2, assuming a constant Pcvp for the model leads to similar

results.

Windkessel Model Characteristic Impedance Calculation and Subsequent Flow and

Stroke Volume Estimation

Once again, as in all previous three-element model implementations discussed in this the-

sis, Pex and Qest were calculated via Equations 4.3 and 4.5, respectively. Thus, in order to

calculate Qest, Zc,w would need to be found, separately from its product with windkessel

compliance, Zc,wC. This same situation arose in Section 6.2.1, where Zc,w was identified as

Zc,cal, using a calibrating stroke volume measurement, SVcal, and Equation 6.3. Thanks to

the aortic flow probe measurement providing SVmea, this same approach can be applied to

the control stage of this analysis, according to the following equation:

Zc,w = Zc,cal =

30∑
n=1

[
1

SVmea,n

tes,d2P/dt2,n∫
t0,fem,n=0

Pex(τ)dτ

]
30

(11.1)
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Where subscript ‘ n ’ indicates the variable is associated with the nth heart beat. Thus,

Equation 11.1 simply states Zc,w is the mean of all 30 control stage beats individually cal-

culated Zc,cal values, from each beats respective SVmea and Pex. It is also worth noting, the

integral of Pex is performed beat-wise considering the start of the beat, start-systole (t0), as

time zero, and lasting the duration of systole Tsys,d2P/dt2 , identified by tes,d2P/dt2 . As discussed

in Section 4.3.2, integrating Pex only over systole reflects the expectation Pex(t > tes,d2P/dt2)

≈ 0, requiring Pres to have been calculated satisfying the condition in Equation 4.12. Since

during the control stage, the pigs are stable with waveforms unaltered by interventions,

Equation 4.12 is more easily met. In a clinical environment, calibrating the model to an al-

ready unstable patient would potentially present more of a challenge, as will be discussed

in Section 11.4.5.

Once Zc,w was found during the control stage, it was treated as a constant value for each

successive stage of the analysis. Their were two reasons for fixing Zc,w, the first was ne-

cessity, as the analysis was not using PWV and therefore could not use the water hammer

or Bramwell-Hill equations as in Kamoi et al. (2017). Second, it was hypothesised that any

and all changes to hemodynamic state could be captured through Pfem and the parameters

products Zc,wC and RC, i.e. through Pres and subsequent Pex. In other words, the hypothe-

sis was using PCA with Pfem, in conjunction with the now improved end-systole detection

tes,d2P/dt2 , would capture any changing hemodynamics, after Zc,w calibration. Assuming the

hypothesis was correct, Zc,w would always provide a reasonable scaling of Pex to correctly

estimate flow Qest and SVest via Equations 4.5 and 4.17, respectively.

Importantly, in contrast to Equation 11.1, the integration limits for Equation 4.17 used the

entire beat when calculating SVest. This difference is because, unlike during the Zc,w cali-

bration, following the hemodynamic modification of later stages, no assumption is made

that Pex(t > tes,d2P/dt2) ≈ 0. Of course, Pex(t > tes,d2P/dt2) ≈ 0 for all pigs and stages is the de-

sired outcome of the analysis. However, it is important to let any non-zero diastolic Pex

contribute to SVest, rather than conveniently disregard this form of error.
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11.2.5 Data Analysis

Bland-Altman analysis is used to assess the beat-to-beat error in SV (SVerr) and thus the

overall agreement between SVest (from Equation 4.17) and SVmea (from Equation 5.12).

Intra-pig SV error across the different stages enables identification of times of high or low

SV accuracy. However, this analysis does not quantify how well changes in SV are tracked

by the estimation method (Marik, 2013). Change in SV (∆SV) due to the interventions is

not a beat-wise metric like SVmea, SVest or SVerr, it is the difference between the mean SV

(SV) of consecutive stages, calculated as follows:

∆SVs→s+1 = SV s+1 − SV s (11.2)

Where s and s+ 1 are a stage (s) and its consecutive stage (s+ 1) as depicted in Figure 5.2,

for example, from the control stage to the high PEEP stage. In this manner, ∆SVmea and

∆SVest can be calculated between stages.

Thus, the error in the estimation methods ability to track changes in SV (∆SVerr) is defined:

∆SVerr,s→s+1 = ∆SVest,s→s+1 −∆SVmea,s→s+1 (11.3)

∆SVerr,s→s+1(%) =
∆SVerr,s→s+1

SV mea,s+1

(11.4)

Where Equation 11.4 represents the error as a percentage with respect to stage s + 1’s

mean measured stroke volume (SVmea,s+1).

There are two limitations when calculating ∆SV in the above manner, first using SV of

each stage means the variability within a particular stage is not captured. Second, it dra-

matically reduces the number of measures when compared to the Bland-Altman beat-to-
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beat analysis. Specifically, 5 pigs and 5 stages (4 interventions) gives 20∆SVerr data points.

Thus, it becomes more appropriate to assess the tracking performance of the method

across the cohort of 5 pigs using cumulative distribution functions (CDF), quantifying the

proportion of ∆SVerr falling within a particular range. However, ∆SVerr is still reported

for each individual pig and intervention, to rationalise times of high tracking error.

Finally, the strength with which Pex estimates the shape of the measured flow waveform

(Qao), is assessed using linear regression and the coefficient of determination, r2. In other

words, the validity of Equation 4.5 is assessed. Additionally, comparing r2 of the control

stage to the other stages, also allows Section 11.2.4’s constant Zc,w assumption (Equation

11.1) to be checked.

11.3 Results

Figure 11.2 shows each pig’smeasured pressure (Pfem), flow (Qao) and stroke volume (SVmea),

as well as modelled reservoir pressure (Pres), estimated flow (Qest) and stroke volume

(SVest). The final five pressure and flow waveforms of each stage are shown for clarity,

but all 30 beats measured and estimated SV are shown. Hence, the different time axis

limits for the pressure/flow rows verses the stroke volume row.

Bland-Altman analysis compares beat-wise SVest to SVmea. Figure 11.3 shows the error

(SVerr) in millilitres (ml) and percentage error respectively. Figure 11.3b does not include

the end endo stage of Pig S4, due to its measured SV being very low, as seen in Figure 11.3a.

This low SVmea causes the percentage error to be very high, despite comparatively low er-

ror in millilitres, as discussed further in Section 11.4.2. Mean SVerr for each pig and stage

is also shown in Table 11.1.

Table 11.2 quantifies∆SVerr for each pig, expressed in millilitres as per Equation 11.3 and

percentage as per Equation 11.4. This table was then used to assess the overall ∆SVerr

across the cohort of pigs in the CDF’s of Figure 11.4.
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(b) Pig S2 pressure, flow and stroke volume waveforms for each stage.
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Figure 11.2: Each Pig’s pressure, flow and stroke volume waveforms for each stage. The first two rows

show the last five beats of the stage to enhance clarity. The final row shows stroke volume for all 30 beats

of each stage.

Lastly, the assumption that Zc,w remains constant and Equation 4.5 holds, is assessed using

a simple linear regression and coefficient of determination (r2). The r2 in this analysis,

represents the percentage of variation in Pex reflected in the variation in Qao. Figure 11.5

shows the analysis for each pig, notably with some hysteresis behaviour. Thus, Section

11.4.4, along with Figure 11.6, consider the hysteresis behaviour in further detail.

Table 11.1: Pigs stroke volume estimation percentage error (%): presented asmean (± standard deviation).

Pig Control High PEEP Before endo Start endo End endo

S1 -0.2 (± 10.9) 3.7 (± 11.7) -17.5 (± 7.6) -15.7 (± 8.0) -46.5 (± 17.7)
S2 -0.1 (± 2.8) 3.9 (± 2.9) 6.3 (± 2.2) 6.4 (± 2.2) 40.2 (± 3.8)
S4 0.2 (± 6.1) -10.0 (± 5.8) 23.3 (± 3.9) -12.1 (± 5.4) -87.5 (± 3.2)
S5 -0.1 (± 3.3) -7.0 (± 1.2) -10.6 (± 2.4) -5.7 (± 2.0) 0.8 (± 1.6)
S6 0.5 (± 3.8) 0.5 (± 2.0) -6.0 (± 1.9) -6.4 (± 3.1) -0.9 (± 4.0)
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Figure 11.3: Bland Altman analysis. The mean bias between the measured and estimated SV are shown, as

well as the limits of agreement (± 1.96 standard deviations) to indicate the expected variation.

Table 11.2: Stroke volume tracking error between interventions (∆SVerr), expressed in millilitres and
(absolute percentage) for each pig intervention.

Pig Control→
High PEEP

High PEEP→
Before endo

Before endo→
Start endo

Start endo→
End endo

S1 1.8 (4.3%) -10.5 (20.4%) 1.0 (2.0%) -7.9 (22.0%)

S2 0.9 (4.1%) 1.0 (3.4%) 0.02 (0.06%) 4.8 (28.9%)

S4 -3.1 (10.1%) 13.4 (30.2%) -14.8 (39.7%) -3.1 (36.3%)

S5 -1.3 (6.8%) -1.9 (6.2%) 1.8 (6.7%) 1.7 (9.9%)

S6 0.01 (0.1%) -0.8 (6.3%) -0.1 (0.6%) 0.7 (13.7%)
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(b) Absolute∆SVerr as a percentage of the mean measured SV.

Figure 11.4: Cumulative distribution function for the error in the model estimated changes in SV (∆SVerr).
Percentage error is relative to the mean measured SV of a particular stage.
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Figure 11.5: Linear regression analysis on excess pressure and measured flow for each pig. Note, the

gradient of each linear fit represents the Zc,w, that in conjunction with modelled Pex, best describes the
measured flow (Qao) according to Equation 4.5.
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Figure 11.6: Hysteresis example beats using Pig S2. The colour-time relationship is shown in the lower

(waveform) panels of each subfigure.

11.4 Discussion

11.4.1 Response to Interventions

With the exception of the fluids admission, Figure 11.2 shows the desired variation in

SVmea, due to the interventions discussed in Section 11.2.2, was achieved across all pigs

and stages, particularly during both the high PEEP and end endotoxin stages. Fluids ad-

ministration, which finished just prior to the before endo stage, per Figure 5.2, appeared

to only impact S5, with an ≈ 40% increase in SVmea relative to its control stage value. How-

ever, this lack of fluid responsiveness is also common in a critical care environment and

therefore not entirely surprising (Michard and Teboul, 2002).

Sections 5.3.2 and 11.2.3 stated Pigs S2 and S5 were more resilient to the endotoxin infu-

sion than the other pigs, remaining stable throughout the 30min. This resiliance is now

illustrated in Figures 11.2b and 11.2d. In contrast Pigs S1, S4 and S6 succumbed to the

effect of the endotoxin infusion faster, with marked falls in Pfem and SVmea, to inadequate

levels, as seen in Figures 11.2a, 11.2c and 11.2e, respectively. As a result, the experimental

protocol provided a suitably severe range of hemodynamic states to test the model.
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11.4.2 Absolute Stroke Volume Estimation Performance

The Bland-Altman plots in Figure 11.3 differ in the exclusion of Pig S4’s end endo stage

from the analysis on the percentage error. During this stage, seen in Figure 11.2c, Pfem fell

to a mean value of 24 mmHg with a pulse pressure of only a few millimetres of mercury.

The resulting negligible Pex, caused the model to estimate SV ’s of between 0–2ml. The flow

probe also measured a small mean SV of 8.6ml, indicating the approaching death of Pig

S4. Despite the mean error of the stage being only −7.5ml, the percentage error is -87.5%,

as seen in Table 11.1. Thus, when dealing with very small measured values tending to

zero, the percentage error can over represent what is actually acceptable absolute error,

previously discussed in Section 6.3.3. Hence, the Pig S4 end endo stage is excluded from

Fig 11.3b.

As first discussed in Section 3.5, Critchley and Critchley (1999) stated new cardiac output

(CO) techniques should have ±30% limits of agreement when compared to an existing

technique (Critchley and Critchley, 1999). The limits of agreement for the data shown in

Figure 11.3b, are +29.6% and -34.0% respectively, thus adjusting for the -2% bias, these

limits represent ±32%. Thus, the method falls just outside the criteria. Importantly how-

ever, Protocol S end endo, causing the errors >30%, represents rapid hemodynamic de-

cline from a health state, in excess of what is expected in a typical clinical environment.

Moreover, with the exception of Pigs’ S1, S2 and S4 end endo stages, all other pigs and

stages had mean beat-to-beat error <24%, according to Table 11.1. Thus, while this result

does not meet the±30% criteria of Critchley and Critchley (1999), the model performance

is promising given the severity of the interventions tested. Furthermore, by using non-

parameteric median and the 5th to 95th percentiles of this non-normally distributed data,

90% of the data falls within -24.2% and +27.9%. The beat-to-beat SV estimates could also

be filtered/averaged the to reduce the random error shown in Fig 11.3.

The error in Figure 11.3 is similar to those listed in Kamoi et al. (2017). However, as dis-

cussed in Section 6.3.3, it appears Kamoi et al. (2017) calculated the limits of agreement
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on a per pig basis, biasing narrower limits relative to a cohort based assessment. Thus,

the similarly valued limits in this analysis, but for the whole cohort of pigs, represents

measurable improvement over the Kamoi model implementation.

Pig S1’s end endotoxin stage contributes the most towards the SV error in Figure 11.3b.

Figure 11.2a shows while there is a significant offset between SVmea and SVest during this

stage, the model accurately predicts a significant decrease. So although the model failed

to accurately track the absolute value of SVmea during this stage, the ability to capture

the dramatic fall is clinically useful. Thus, ignoring this stage, the traditional limits of

agreement improve to±25% (results not shown).

Finally, as stated in Section 11.2.4, this implementation of a three-element model treated

Pcvp as time variable, using the data measured during the experiment. However, the

aforementioned section, along with Section 4.3.2, stated similar model performance can

be achieved assuming a constant Pcvp. Assuming Pcvp = 8.7 mmHg (Hannon et al., 1990),

all else unchanged, the Bland-Altman mean bias remains at -2% and the limits of agree-

ment change negligibly from the values in Figure 11.3b, to +30.0% and -33.0% (results not

shown).

11.4.3 Stroke Volume Tracking Performance

In a clinical situation, accurately estimating the change in SV , following either a clinical

or patient based change in hemodynamic state, is of value, independent of the absolute

accuracy in SVest (Marik, 2013). Thus, ∆SVerr is quantified using Equations 11.3 and 11.4,

and displayed using CDF’s shown in Figure 11.4. Figure 11.4a shows a narrow interquar-

tile range of −2 to 1ml. Fig 11.4b shows 85% of∆SVerr fell below 30%. Table 11.2 shows Pig

S4 is responsible for ∆SVerr > 30%. The 36.3% error in ∆SVerr, start endo→ end endo is largely

as a result of SVmea, end endo being very small, at 8.6ml, with the∆SVerr in millilitres of only

−3.1ml. Thus, despite the 36.3% error, the method did in fact accurately estimate the dra-

matic fall in SV to a very low level as the endotoxin led to eventual circulatory failure.
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The high PEEP to before endo, and before endo to start endo transitions also had ∆SVerr

of more than 30%. While this magnitude is higher than desirable, Figure 11.2c shows SVest

throughout the experimental protocol still provides the correct directions of change, with

reasonable absolute SV estimation, and is thus still of clinical value.

11.4.4 Linear Relationship between Pex and Qao

Figure 4.2a and Equation 4.5 result in the flow into the aorta (Qin) being modelled as lin-

early dependent on Pex and Zc,w. The coefficients of determination seen in Figure 11.5,

suggest strong linear relation within each stage between Pex and Qao. This outcome is a

significant improvement on the issues highlighted in Chapter 6, where the Kamoi model

had similar SV monitoring, but could estimate unphysiological flow waveform shapes.

However, Figure 11.5 still contains some interesting nonlinear behaviour worth explain-

ing. At end-systole, as both Pex and Qao should be tending to zero, Qao often momentarily

measures negatively, leading to its dicrotic notch behaviour discussed in Section 5.4.4 and

seen very clearly in Figure 5.9. This behaviour is also evident in Figures 11.6 and 11.2

of this chapter’s analysis. Because the excess pressure is derived from dicrotic notch-less

Pfem, the magnitude of negative values at end-systole in Pex, and thus Qest, are negligible.

The linear regression analysis also tests whether characteristic impedance, Zc,w, is rela-

tively constant for each pig throughout the experiment, as assumed in Section 11.2.4. Un-

like parameter products Zc,wC and RC, Zc,w was calibrated during the control stage, per

Equation 11.1. Section 11.2.4 hypothesised variation in flow after the baseline control

stage, would be accounted for by changes in Pex, which, as exhaustively shown throughout

the thesis, relies on correct identification of Zc,wC and RC. If characteristic impedance were

indeed constant for a pig, the lines of best fit for stages with hemodynamic modifications,

would share the control stage gradient. Thus, the relatively consistent gradients associ-

ated with Pigs S2, S5 and S6 (Figures 11.5b, 11.5d and 11.5e, respectively), strongly support

the constant Zc,w approach. However, Pigs S1 and S4, in Figures 11.5a and 11.5c, showed
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variability in the characteristic impedance (gradient) that best fit each stage. Unsurpris-

ingly, Table 11.1 shows Pigs S1 and S4 had higher percentage error (SVerr) as a result. Pig

S2 still shows the impact of invalidly assuming a constant Zc,w, where Fig 11.5b shows the

end endotoxin stage best fit gradient, and thus Zc,w value, has deviated from the calibrated

Zc,w from control and Equation 11.1. As a result, Table 11.1 and Figure 11.2b show end

endotoxin SV being overestimated.

Another interesting feature is the hysteresis behaviour. Figures 11.6a and 11.6b illustrate

this phenomena using single beats from Pig S2’s start and end endotoxin stages, respec-

tively. Colour mapping most of the systolic points on the scatter plot enables them to be

located on the waveform. From this plot, it is clear hysteresis is caused by the modifying

of the femoral pressure and thus excess pressure shape, relative to the flow measurement

further upstream. These effects of changing arterial properties and wave behaviour, on

measured waveforms, was covered in Sections 2.2.2 and 2.5.3. Since Pex defines the shape

ofQest via Equation 4.5, the difference in Pex shape andQao also contribute to the difference

in measured and estimated SV .

With the region of nonlinear behaviour at end-systole, due to the dicrotic notch in Qao, and

the hysteresis behaviour accounted for, it is clear strong linearity exists. This result is in

line with the linearity reported by Wang et al. (2003) and discussed in Section 4.5 (Wang

et al., 2003; Tyberg et al., 2014). However, the difference is, Wang et al. (2003) used Qao

to derive Pres via Equation 4.22 and subsequently Pex via Equation 4.23. In contrast and

importantly, this study modelled the same behaviour using only clinically available Pfem

measures1.

11.4.5 Implementation Limitations

One of the constraints in development of the method, was it needed to be clinically appli-

cable and not additionally invasive, in line with the thesis goals in Section 1.4. The result is

1The common clinical measure Pcvp was used, but as per Section 11.4.2, treating this as a constant rather than
a measured variable, has negligible impact on model performance.
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a relatively simple and identifiable model (Chase et al., 2018) capable of accurately track-

ing flow and SV . However, as discussed in Section 4.3.3, the simplicity of three-element

windkessel based models, means the parameters do not necessarily represent physiologi-

cal values and should only be viewed from within the model framework (Westerhof et al.,

2009; Westerhof and Westerhof, 2017; Segers et al., 2015). Thus, while it is possible for val-

ues to be similar to physiology, it is not guaranteed and should not be assumed, particularly

when applied to unstable patient dynamics, as seen in the end endo stages here.

On the topic of unstable patients, this analysis calibrated the model during a period of

stable hemodynamics, and required an independent SV measurement to do so. While

Section 11.4.4 showed each pig’s calibrated Zc,w value remained relatively constant, despite

the hemodynamic interventions, trying to calibrate the value during unstable behaviour in

a clinical environment may prove difficult. This issue may present a significant limitation,

since as per Section 1.3.1, it is unstable patients who stand to benefit most from continuous

monitoring.

In this study, the femoral pressure was used as the measured pressure input to the model

(Pmea). It would be clinically even more desirable to use a peripheral pressure measure-

ment. However, peripheral arterial signals are more prone to reflected waves causing

turning points that appear similar to a dicrotic notch, but do not correspond to end-systole.

These notches may cause two issues, both previously discussed.

First, reflected waves in a peripheral arterial pressure waveform, may make end-systole

detection more difficult, since the turning points due to reflected waves could lead to false

positive tes,d2P/dt2 . This issue was alluded to in Section 10.4.3. While Chapter 9.1 focused on

the dicrotic notch, more generally, it illustrated the importance of accurate and precise tes

identification for correctly estimating the the proportions of Pres and Pex that make up Pmea

according to Equation 4.3.

Second, as discussed in Sections 4.3.1, 4.3.2, 4.3.3 and 9.3.3 the three-element windkessel

model cannot describe wave propagation phenomena. Again, although Chapter 9 focused
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on the dicrotic notch, more generally in Sections 9.6 and 9.7, it illustrated the impact of

reflected wave behaviour on PCA based windkessel parameter identification. Specifically,

when the measured diastolic pressure (Pmea(t >tes)) varied from the model expected expo-

nential decay, the variation led to non-zero Pex during diastole and subsequent unphysio-

logical aortic flow profile prediction during diastole. The limitations caused by reflected

waves weremitigated specifically by using amore distal waveform like Pfem, where Section

10.1 outlined the traits that made it desirable for use with the model.

Another possible issue with a peripheral arterial pressure waveform, would be relative

changes in how the ejected SV distributes within the arterial tree. In smaller, more periph-

eral arteries, the distribution of blood may vary more dramatically in response to patient

state, than the larger central arteries. This behaviour could contribute to model SVerr.

Finally, the study tested only a few hemodynamic interventions, namely the recruitment

manoeuvre, fluid admission (before endo stage) and endotoxin. While the assumption

of a constant characteristic impedance (Zc,w) proved sufficient under these conditions, it

may not necessarily hold in other hemodynamic events. Therefore, there is room for fur-

ther investigation and potential improvement by introducing a more dynamic calibration

method, rather than fixing a parameter constant (Kamoi et al., 2017).

11.5 Summary

This chapter implemented the three-element windkessel model in a non-additionally inva-

sive manner, increasing the utility of already available clinical measures. Specifically, the

model used a femoral artery pressure waveform to derive parameters via pulse contour

analysis (PCA), for estimating physiologically accurate flow waveforms and subsequent

SV .

Thus, this implementation overcame the limitations identified in other three-elementwind-

kessel based models, covered in this thesis. First, parameters were identified in a patient
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specific manner, where Pres/Pex were calculated per beat, always reflecting current patient

state, as portrayed via Pfem. Second, and more importantly, Pex described a physiologi-

cally accurate flow profile, in line with model theory. In contrast, other implementations

have focused mainly on SV , where parameters may have been identified in a beat-to-beat

manner, but subsequently relied on the calibrating Zc,w to correct for any poor model im-

plementation causing unphysiological flow, per Section 9.2.2.

While the correcting quality of the Zc,w calibration represents useful redundancy, the au-

thor would argue it should not be the main mechanism by which model implementation is

forced to succeed. The aim should still be to implement the model in a manner that reflects

the theory and assumptions that went into its development. Afterall, a model’s theory is

only as good as its implementation. In the case of the three-element windkessel, its theory

was outlined in Section 4.3.2.

Thus, in this thesis, one of the main avenues of improved implementation was the end-

systole detection. As hypothesised in Section 6.3.2, accurate end-systole detection was

shown to improve calculation of Pres/Pex according to the model expectations, particularly

Equations 4.5 and 4.12, for Pao in Chapter 9. Subsequently, in this chapter, robust, ac-

curate and precise end-systole detection has also improved Pres/Pex calculation from the

more clinically applicable Pfem. Thus, although it is difficult to compare results of different

model implementations across different study protocols, it appears adhering to the foun-

dational windkessel model assumptions has resulted in similar, if not better performance,

than more complex implementations.

The overall SV error had a mean bias of -2% and 90% of errors fell within -24.2% and

+27.9%. Moreover, 4 of the 5 pigs error in change in SV , following interventions, was <

30%. However, there are still two shortcomings associated with this analysis. First, the

limits of agreement (95% of errors) were greater than the ±30% acceptable criteria out-

lined by Critchley and Critchley (1999). Specifically, adjusting for the bias, the limits of

agreement in Figure 11.3 were ±32%. Failing this criteria was partly due to the analysis



CHAPTER 11. CLINICALLY APPLICABLE, PHYSIOLOGICALLY ACCURATE, MODEL BASED

FLOW ESTIMATION 213

including near death cardiovascular behaviour. Thus, the ability to achieve this criteria

is heavily dependent on the severity of the hemodynamic changes within the experimen-

tal data. If the model were tested in an observational clinical trial and retrospectively

validated, the expectation is the model errors would be much lower on the less severe

hemodynamic changes. However, a more typical, less worst case data set has not yet been

analysed.

The other issue still to be resolved is the handling of the parameter Zc,w. In this analy-

sis, the model implementation still required calibration via a SV measurement, similar to

many of the commercial PCA devices covered in Section 3.5. The calibration in this analy-

sis scaled the excess pressure (Pex) to an estimated flow (Qest) of the samemagnitude as the

measured flow (Qao). The hypothesis was that Zc,w would remain constant throughout the

experiment and changes in hemodynamic state would simply be reflected in the propor-

tions of Pres and Pex that described Pfem, according to Equation 4.3. The results showed the

hypothesis of a constant Zc,w was largely correct, with 4 of the 5 pigs having overall coef-

ficients of determination r2 ≥ 0.8 for variation in Pex reflected in Qao, supportive evidence

for the validity of Equation 4.5. This result represents significant improvement over other

commercial PCA methods covered in Section 3.5, which required re-calibration following

significant hemodynamic changes. However, there were times, particular during the most

severe hemodynamic changes, where an updated Zc,w value would have improved model

performance. Rather than require re-calibration, it may be possible to update the Zc,w pa-

rameter in a dynamic manner, as attempted in Kamoi et al. (2017) covered in Section 6.2.1.

Regardless, the overall thesis goals of Section 1.4 have been achieved. The implemented

model no longer relies on PWV . Themodel now predicts accurate flow profiles. Finally, the

windkessel limitations regarding dicrotic notches and reflected waves suggest the femoral

arterial pressure, or similar waveform, is most appropriate for the measured pressure

input to the model.
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CHAPTER12

Re-accessing the use of Pulse

Wave Velocity in the Model

12.1 Introduction

Chapter 11 used a three-element windkessel model to estimate physiologically accurate

flow profiles and subsequently estimate stroke volume (SV). Considering the severity of

the interventions, causing circulatory failure, the method showed a reasonable level of

accuracy. The strengths of the implementation lay in the novel end-systole detection meth-

ods (tes,shear and tes,d2P/dt2) and subsequent insight they provided in regard to parameter

identification. Ultimately, tes,d2P/dt2 , end-systole detection via an adaptive weighted second

derivative algorithm, enabled windkessel model parameters to be identified via pulse con-

tour analysis (PCA) in the dicrotic notch-less femoral pressure (Pfem). Thus, the clinically

applicable Pfem signal became a robust choice for estimating physiological flow profiles

and SV using the three-element windkessel model, achieving the goals of Section 1.4.

The implementation in Chapter 11 differed from the Kamoi model in Chapter 6, return-

ing to the standard three-element windkessel model described in Section 4.3.2. Essentially,
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Chapter 11 improved performance by simply ensuring the implementation reflected the

foundational/fundamental windkessel model theory, before introducing further complex-

ity, like pulse wave velocity (PWV). However, now the foundations of the model have been

well tested and are better understood, the potential of PWV to improve model perfor-

mance can be better assessed. Thus, re-introducing PWV into the model implementation

is the focus of this chapter.

High accuracy and precision in the end-systole detection using tes,d2P/dt2 , led to robust iden-

tification of the resevoir (Pres) and excess (Pex) windkessel model pressure components in

Chapter 11. Thus, contrary to Kamoi et al. (2017), Chapter 11’s results suggest it is unneces-

sary to use PWV to estimate Pres via Equation 6.2. Doing so could possibly be detrimental,

since∆PWV , post Lc calibration, could make satisfying the measured pressure (Pmea) and

Pres relationship in Equation 4.12 more difficult. Thus, it seems most appropriate to simply

identify Zc,wC and RC via PCA from Pmea.

However, one of the limitations in Sections 11.4.4 and 11.4.5, was the assumption Zc,w re-

mained constant throughout the experiment. While this assumption was generally true

for most pigs and interventions in the analysis, the results suggested treating Zc,w as a dy-

namic, patient specific parameter could improve performance further. Advantages and

disadvantages of dynamic versus static model parameters were covered in Section 4.7.

This chapter will assess two potential methods of updating Zc,w after calibration, both us-

ing PWV , and compare model performance with the constant calibrated Zc,w approach of

Chapter 11.

12.1.1 Two Avenues for Dynamic Zc,w Parameter Identification

Section 2.5.2 showed how (general) characteristic impedance (Zc) is related to PWV in the

water hammer equation (Equation 2.7). Modified water hammer equations were used by

bothWesseling et al. (1993) (Section 4.4.1) and Kamoi et al. (2017) (Section 6.2.1) to identify

Zc,w. Thus, using the water hammer equation will be the first of two methods tested for
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dynamically identifying/updating Zc,w post calibration.

The second method assumes Zc,w could be identified or updated from changes in the Zc,wC

parameter, identified via PCA. In Chapter 11, Zc,wC and RC were calculated on a beat-to-

beat basis, adapting to the each beat’s waveform per Section 11.2.4, ensuring Equation 4.12

was met. The windkessel compliance, C in Zc,wC, is a volumetric compliance as explained

in Section 4.3.1 and Equation 4.8. Change (∆) in volumetric compliance (∆C) could also

be described by∆PWV via the Bramwell-Hill equation, per Section 2.5.1 and Equation 2.2.

Thus,∆C could subsequently be used to update Zc,w on a per beat basis. The exact process

by which the updating of Zc,w occurs is elaborated on in detail in Section 12.2.4, here, only

the rationale of each method was explained.

12.2 Method

12.2.1 Porcine Trial and Measurements

The data for this study uses all three protocols outlined in Section 5.2. All pigs from each

protocol are used, with the exception of Pig S3, which is excluded due to data acquisition

issues explained in Section 11.2.1.

The measurements available to each protocol were outlined in Table 5.1 and shows cen-

tral venous pressure (Pcvp) was not available in Protocol D. However, calculation of Pres via

Equation 4.11 requires Pcvp, but, as explained in Section 4.3.2, it can be treated as a con-

stant. Additionally, Section 11.4.2 showed assuming a constant value of Pcvp = 8.7 mmHg,

for the Protocol S pig analysis, made little difference to the model performance. Thus, for

consistancy, in this analysis, Pcvp is treated a constant for all protocols, with the value of

Pcvp = 8.7 mmHg (Hannon et al., 1990).

Chapter 11 focused on assessing the accuracy of model estimated aortic flow (Qest) and

left ventricular ejected stroke volume (SVest), and used the aortic flow probe measurement

available in Protocol S for validation. The same approach is used once more for Protocol
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S pigs, where measured stroke volume (SVmea) is found via Equation 5.12. However, Pro-

tocols D and V only have access to the left ventricular volume (Vvent), via the ventricular

admittance catheter, per Table 5.1. Thus, for Protocols D and V, SVmea is calculated via

Equation 5.10. However, an approximation of the equivalent aortic flow can still be cal-

culated from Vvent and Equation 5.11, defined QVvent to signify it is not the true measured

aortic flow.

Finally, it is also worth noting the different data acquisition sampling rates outlined in Sec-

tion 5.3. Specifically Protocol D was sampled at 1000 Hz, while Protocols S and V were

sampled at 250 Hz. While Protocol D could be downsampled so the sampling rate is consis-

tent in the analysis, the decision was made not to do so, on the basis high sampling rates

lead to better resolution of changes in pulse transit time (PTT) and thus PWV , which is

crucial in this analysis.

12.2.2 Hemodynamic Modification

The interventions associated with each protocol were covered in Sections 5.2.1 – 5.2.3.

Since Protocol V has not been used in a prior chapters analysis, a brief summary is given

here. The vena cava occlusion (VCO) associated with Pigs V1–V4 is a short term event

designed to cause rapid reduction in preload and thus SV , according to Section 2.4.2 and

Figure 2.9. Similar to the induced septic shock in Protocol S, the VCO in Protocol V repre-

sents a dramatic change in hemodynamics, more rapid than would typically be expected

clinically. Thus, across all three protocols, a vast range of hemodynamic conditions can be

assessed.

12.2.3 Data Selection Summary

Per the previous analyses in this thesis, the experimental data was separated into stages.

The stages of each protocol were detailed in Sections 5.3.1 – 5.3.3. Specifically, 30 heart

beats were extracted from each stage, making a total of 1,590 heart beats across the 14

pigs used in the analysis. As in previous chapters, the reason for using an equal number
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of beats per stage is for equal representation of each pig and stage in statistical analyses.

As a reminder, recall the end endo stage was characterised by either the end of the 30min

endotoxin infusion (Pigs S2 and S5), or being in the later stages of circulatory failure (Pigs

S1, S4 and S6).

12.2.4 The Three-Elements Windkessel Model Implementation

The implementation in this chapter is identical to Chapter 11, which was covered in de-

tail in Section 11.2.4. The exception is, unlike the single Zc,w identification method used in

Chapter 11 (Zc,cal from Equation 11.1), this chapters analysis will test two additionalmeth-

ods of Zc,w identification, where both additional methods require beat-to-beat PTT. Thus,

the two methods requiring continuous PTT monitoring are not clinically applicable, as ex-

plained in Sections 6.3.1 and 11.2.4. However, since PTT is available in the porcine trials

via dual arterial catheterisation and the foot-to-foot method shown in Figure 2.13, it is still

worth exploring whether PTT could improve model performance.

To re-iterate, this chapter tests a total of three Zc,w identification methods. Therefore, to

clearly distinguish between the different Zc,w identification methods, three different labels

will be used. First, Zc,cal, which refers to the constant control calibration approach used in

Chapter 11 (Equation 11.1). The two additional PTT based methods for calculating Zc,w, are

labelled Zwh,cal and Zbh,cal. All three methods are detailed:

Static Control Calibration, Zc,cal

The first method, Zc,cal, is the static control stage calibration used in Chapter 11, covered

in Section 11.2.4 and Equation 11.1. The static calibration acts as the reference method,

on which the dynamic methods could improve. A reminder, Equation 11.1 also used the

general windkessel characteristic impedance subscripts Zc,w, since no other methods for

calculating Zc,w were tested in Chapter 11. However, as explained above, to distinguish

the static control calibration based Zc,w from the other two dynamic methods tested in this

chapter, it is labelled Zc,cal.
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Dynamic Water hammer based Zwh,cal

The second method will use the water hammer equation to update the value of Zc,w on a

per beat basis, post calibration. In other words, Zwh,cal is the updating of Zc,cal, defined:

Zwh,cal,n = Zc,cal ×
Zwh,n

Zwh,control
(12.1)

Where Zwh is the Zc found from the water hammer equation (Equation 2.7) and the sub-

script ‘ n ’ signifies it is calculated on a per beat basis, making Zwh,cal a dynamic beat-to-beat

variable. Zwh,control is the mean Zwh value from the 30 beats of a pigs baseline control stage:

Zwh,control =

( 30∑
n=1

Zwh,n

30

)
control

=

( 30∑
n=1

ρPWVn
A

30

)
control

=

( 30∑
n=1

ρd

A PTTn
30

)
control

(12.2)

The final form of the equations uses the substitution of Equation 2.6 to express Zwh,control

in terms of PTT. Blood density (ρ), cross-sectional area (A) and the distance over which

PWV is measured (d) are treated as constants. Thus, the only variables are PWV or PTT,

enabling simplification of Equation 12.1 by substituting Equation 2.7 for Zwh, and Equation

12.2 for Zwh,control:

Zwh,cal,n = Zc,cal ×

1

PTTn(
1

PTT

)
control

(12.3)

Where again, the subscript ‘ n ’ represents the value for a particular beat, and, importantly,

the denominator is the mean value of the 30 control stage beats reciprocal PTT values. The

remainder of this chapter refers to Zwh,cal as the water hammer based Zc,w method.
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Dynamic Bramwell-Hill based Zbh,cal

The final method of determining Zc,w uses a combination of PCA and the Bramwell-Hill

equation (Equation 2.2), as alluded to in Section 12.1.1. Specifically, Zc,wC is identified

via PCA as part of calculating Pres for a particular beat, pre Section 11.2.4. Bramwell-Hill

provides a method of calculating volumetric compliance using PWV and Equation 2.2, en-

abling the separation of a beats Zc,wC parameter product:

Zc,w,n =
(Zc,wC)n
Cbh,n

= (Zc,wC)n ×
ρPWV 2

n

V
= (Zc,wC)n ×

ρd2

V PTT 2
n

(12.4)

Where once more, the subscript ‘ n ’ indicates the beat-wise variables and the final form

of the Equation 12.4 used the substitution of Equation 2.6 to express it in terms of PTT.

Furthermore, the subscript ‘ bh ’ in Cbh is to indicate it is the compliance calculated via the

Bramwell-Hill equation (Equation 2.2), assumed to be equivalent to the compliance C in

the PCA parameter product Zc,wC.

However, to actually calculate Zc,w per beat via Equation 12.4, a value for the volumewould

be required. As outlined in Section 4.4.1, Wesseling et al. (1993) calculated volume using

aortic cross-sectional area via an empirical equation (Langewouters et al., 1984), and as-

sumed an aortic length of 80 cm. Similarly, Sections 6.2.1 and 6.2.2 explained how Kamoi

et al. (2017) calibrated cross-sectional area per Equation 6.4 and found an “anatomical

length” using a parameter grid search. This analysis uses a different approach, not needing

to justify a particular volume used with the three-element windkessel. Instead, Equation

12.4 is used to update Zc,cal beat-to-beat, rather than calculate Zc,w directly:

Zbh,cal,n = Zc,cal ×

(Zc,wC)n
Cbh,n(
Zc,wC

Cbh

)
control

= Zc,cal ×

(Zc,wC)nρd
2

V PTT 2
n(

1

30

30∑
n=1

(Zc,wC)nρd
2

V PTT 2
n

)
control

(12.5)
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Where, the subscripts of Zbh,cal indicate it is the calibrated characterisitic impedance up-

dated via changes in PCA found Zc,wC, but facilitated by the Bramwell-Hill Equation. Simi-

lar to the formulation of Equation 12.3, assuming ρ, d and V are constants means Equation

12.5 can be simplified to:

Zbh,cal,n = Zc,cal ×

(Zc,wC)n
PTT 2

n(
1

30

30∑
n=1

(Zc,wC)n
PTT 2

n

)
control

= Zc,cal ×

(Zc,wC)n
PTT 2

n(
Zc,wC

PTT 2

)
control

(12.6)

Thus, any particular beat’s Zc,w value can be approximated by Zbh,cal from Equation 12.6,

provided PTT is monitored. The remainder of this chapter refers to Zbh,cal as the PCA-

Bramwell-Hill based Zc,w method.

It is also worth noting the similarities and differences between the PCA-Bramwell-Hill

based Zc,w method and the Kamoi model outlined in Section 6.2.1. Specifically, both the

Kamoi model and the Zbh,cal method are hybrid PCA and PTT/PWV approaches to param-

eter identification. However, the Kamoi model used PWV to identify Pres, and Chapter 11

showed this approach added unnecessary complexity for accurate Pres/Pex estimation, as

explained in Section 12.1. Thus, this chapter’s hybrid approach differs from Kamoi et al.

(2017), opting to identify Zc,w from PCA and PTT.

Flow and Stroke Volume Estimation

In this analysis, each methods of calculating Zc,w, leads to a different Qest and SVest per

Equations 4.5 and 4.17. Specifically, each estimated flow (Qest) and stroke volume (SVest)

share the subscript of the Zc,w method from which they are derived:

• Zc,cal estimated flow Qest,c, stroke volume SVest,c, and stroke volume error SVerr,c

• Zwh,cal estimated flow Qest,wh, stroke volume SVest,wh, and stroke volume error SVerr,wh
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• Zbh,cal estimated flow Qest,bh, stroke volume SVest,bh, and stroke volume error SVerr,bh

Implementation Summary Flow Chart

For clarity and convenience, the process flow chart first shown in Figure 11.1 is included

here, but with changed/additional boxes specific to this chapter’s analysis shown in bold.

Specifically Zc,w can be calculated as either Zc,cal (the same method used in Chapter 11) or

via the additional step using Zwh,cal and Zbh,cal.

12.2.5 Data Analysis

Bland-Altman analysis is used to assess each Zc,w methods (Zc,cal, Zwh,cal, Zbh,cal) beat-to-beat

error in SV (SVerr,c, SVerr,wh, SVerr,bh) and thus the overall agreement between each methods

SVest and SVmea.

Since Protocols D and V do not have an aortic flow probe measurement (Qao) the linear

relationship between Pex and Qao is not assessed in the same way it was in Section 11.4.4 of

Chapter 11. Instead, linear regression between each Zc,w estimation method (Zc,cal, Zwh,cal

and Zbh,cal), and the ideal Zc,w (Zc,ideal) is performed. Zc,ideal is not dissimilar from a calibra-

tion of Zc,w using SVmea and Pex, like Equations 6.3 and 11.1. However, unlike the control

calibration, it is calculated for every beat using each beat’s unique SVmea and Pex:

Zc,ideal =
1

SVmea

t∫
0

Pex(τ)dτ (12.7)

Of course Zc,ideal is only correct provided Pex is well identified. However, Chapter 11 con-

firmed the implementation in Figure 12.1 does robustly identify Pex. Furthermore, Pex has

no effect on the Zc,w identification methods comparison, since all methods (Zc,cal, Zwh,cal,

Zbh,cal and Zc,ideal) use the same Pex.
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Figure 12.1: Model implementation summary, specific to this chapter. At each step, reference to the chap-

ter, section and figure/equation is included formore detail. For convenience, the referenced equations are

also shown in their form applied in this analysis. The flow chart is very similar to Figure 11.1, but includes

the two additional methods methods of calculating Zc,w this chapter.
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12.3 Results

Figures 12.2 – 12.4 show each pig’s measured pressure (Pfem), flow (Qao), stroke volume

(SVmea) and reciprocal PTT, as well as modelled reservoir pressure (Pres), and estimated

flow (Qest) and stroke volume (SVest) for each Zc,w method. The final five pressure and flow

waveforms of each stage are shown for clarity, but all 30 beats measured and estimated SV

are shown, and reciprocal PTT. Hence, the different time axis limits for the pressure/flow

rows versus the stroke volume row.

Bland-Altman analysis in Figure 12.5 compares each Zc,w method (Zc,cal, Zwh,cal, Zbh,cal) beat-

wise SVest (SVest,c, SVest,wh, SVest,bh) to SVmea, where the error is represented as a percentage.

Since this chapter is interested in the comparison of the three Zc,w prediction methods, the

presentation of the Bland-Altmans plots differs slightly from those shown previously in

the thesis. Specifically, the Bland-Altman plots use non-parametric median bias and 5th

and 95th percentiles, better reflecting the non-normal distribution of the methods errors

(Motulsky, 2010).

Furthermore, the control stage is shown in Figure 12.5, but is not included in the calcula-

tion of median bias and percentiles. The quasi-steady state dynamics of the control stage

means Zwh,cal and Zbh,cal do not change significantly from the Zc,cal, according to Equation

12.3 and 12.6, respectively. Thus, including the stage in the Bland-Altman analysis would

be clinically relevant, and indeed narrow the percentiles considerably. However, by not

doing so, the percentiles better reflect only the periods of high hemodynamic change, for

better method comparison, the focus of this study.

Finally, unlike in Section 11.3, no pig’s stages are excluded from the Bland-Altman analysis.

Given the number of pigs and stages, it can be difficult to determine the error of individual

pig’s stages in Figure 12.5. Thus, Table 12.1 presents the individual pig and stage stroke

volume estimation error (SVerr) for each of the Zc,w methods.
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Figure 12.6 compares how much variation in each of the stroke volume estimates (SVest,c,

SVest,wh, SVest,bh) is reflected in the measured stroke volume (SVmea), using an overall co-

efficient of determination (r2). Additionally, Figure 12.7 assesses each Zc,w identification

method more directly, comparing it with the calculated Zc,ideal. Figure 12.7 only shows the

overall r2 for each Zc,w identification method compared to Zc,ideal. However Table 12.2

shows the individual pig r2 values for the dynamic methods (Zwh,cal and Zbh,cal) versus

Zc,ideal.

Table 12.1: Stroke volume estimation percentage error (%) for each individual pigs and stages, presented

as mean SVerr,c, SVerr,wh and SVerr,bh, respectively. The value(s) of minimum error for a particular pig and
stage are shown in bold. Additionally, 1 decimal place is included where SVerr < 10%.

Protocol D

Pig Control High PEEP High fluids Dobutamine

D1 3.0, 2.9, 6.1 11, 12, 9.0 107, 105, 7.9 8.4, 11, 34

D2 7.8, 7.4, 8.9 43, 42, 24 26, 31, 10 32, 41, 24

D3 3.2, 3.3, 4.3 29, 22, 4.2 22, 24, 9.9 20, 29, 25

D4 4.6, 5.0, 5.4 39, 40, 37 33, 25, 37 123, 119, 82

D5 5.3, 5.9, 9.3 22, 15, 8.6 34, 21, 23 31, 11, 21

Protocol S

Pig Control High PEEP Before endo Start endo End endo

S1 9.8, 9.8, 10 10, 16, 15 17, 13, 10 15, 11, 12 46, 34, 44

S2 2.1, 5.8, 9.9 3.8, 9.4, 11 7.4, 8.2, 10 7.5, 6.7, 8.4 39, 48, 21

S4 4.7, 4.2, 5.5 10, 7.2, 8.4 24, 24, 6.4 11, 4.0, 14 87, 82, 69

S5 2.9, 3.2, 4.4 6.6, 4.5, 15 6.2, 4.8, 6.0 3.8, 2.6, 3.0 1.4, 10, 8.4

S6 2.9, 2.7, 5.1 1.8, 7.2, 6.5 5.2, 6.5, 20 5.9, 7.4, 21 3.8, 29, 87

Protocol V

Pig Control VCO

V1 4.6, 4.4, 6.1 41, 35, 44

V2 3.9, 5.7, 10 46, 41, 31

V3 11, 11, 12 30, 25, 54

V4 3.7, 3.1, 5.2 10, 4.9, 19

Table 12.2: Coefficient of determination (r2) for each dynamic Zc,w estimate (Zwh,cal & Zbh,cal) vs Zc,ideal, for
each individual pig (rounded to 2 d.p.). Zc,cal is not included, as it is a constant for each pig and therefore
individual pig r2 values would be meaningless.

Pig

D1 D2 D3 D4 D5 S1 S2 S4 S5 S6 V1 V2 V3 V4

Zwh,cal 0.06 0.17 0.18 0.0 0.72 0.41 0.12 0.74 0.02 0.01 0.63 0.74 0.4 0.63

Zbh,cal 0.71 0.73 0.57 0.06 0.60 0.04 0.15 0.53 0.01 0.27 0.24 0.56 0.57 0.18
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Figure 12.2: Each Protocol D Pig’s pressure, flow, stroke volume and reciprocal PTT waveform for each
stage. The first two rows show the last five beats of the stage to enhance clarity. The final row shows

stroke volume for all 30 beats of each stage.
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Figure 12.3: Each Protocol S Pig’s pressure, flow, stroke volume and reciprocal PTT waveform for each
stage. The first two rows show the last five beats of the stage to enhance clarity. The final row shows

stroke volume for all 30 beats of each stage.



232 12.3. RESULTS

50

75

100

Pr
es

su
re

 (m
m

Hg
) Contro VCO

36 37 38 39

0

100

F 
o(

 (m
 /s

)

2484 2485 2486 2487 2488

15 20 25 30 35 40
10

20

30

40

St
ro

ke
 V

o 
um

e 
(m

 )

2465 2470 2475 2480 2485

Measured Pfem, Qao, SVmea

tes, d2P/dt2

Mode  ed Pres

Zc, cal based Qest, SVest

Zwh, cal based Qest, SVest

Zbh, cal based Qest, SVest

1
PTT

0.010

0.012

0.014

1 PT
T

 (m
s)1

)

Time (s)

(a) Pig V1 pressure, flow and stroke volume and reciprocal PTT waveforms for each stage. Note, the 5 VCObeats illustrated for this particular
pig are its recovery, as occlusion is slowly reduced, hence the increasing pressure.

40

60

80

100

Pr
es
su
re
 ( 
 
Hg
) Control VCO

1200 1201 1202 1203
(100

0

100

200

Fl
ow
 ( 
l/s
)

1101 1102 1103 1104 1105

1180 1185 1190 1195 1200
10

20

30

40

St
ro
ke
 V
ol
u 
e 
( 
l)

1080 1085 1090 1095 1100 1105

Measured Pfem, Qao, SVmea

tes, d2P/dt2
Modelled Pres

Zc, cal based Qest, SVest

Zwh, cal based Qest, SVest

Zbh, cal based Qest, SVest

1
PTT

0.012

0.014

1 PT
T
 ( 
s(
1 )

Ti e (s)

(b) Pig V2 pressure, flow and stroke volume and reciprocal PTT waveforms for each stage.
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Figure 12.4: Each Protocol V Pig’s pressure, flow, stroke volume and reciprocal PTT waveform for each
stage. The first two rows show the last five beats of the stage to enhance clarity. The final row shows

stroke volume for all 30 beats of each stage.
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Figure 12.5: Bland-Altman analysis assessing the SV estimation performance of each Zc,w method (Zc,cal,
Zwh,cal and Zbh,cal). Pig markers are according to their labels and the median bias between the measured
and estimated SV is shown, as well as the fifth and ninty-fifth percentiles, indicate the variation.
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Figure 12.6: Stroke Volume regression analysis showing the overall coefficient of determination (round to

2 d.p.) for each Zc,w method (Zc,cal, Zwh,cal and Zbh,cal). Pig markers are according to their label.
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Figure 12.7: Ideal versus estimated characteristic impedance regression analysis, showing the overall co-

efficient of determination (round to 2 d.p.) for each Zc,w method (Zc,cal, Zwh,cal and Zbh,cal). Pig markers
are according to their label.



CHAPTER 12. RE-ACCESSING THE USE OF PULSE WAVE VELOCITY IN THE MODEL 237

12.4 Discussion

12.4.1 Static versus Dynamic Zc,w Effect on Stroke Volume Estimation

Figure 12.5 illustrates the stroke volume estimation performance has been improved by

updating Zc,w in a dynamic manner, using Equations 12.3 and 12.6. Notably, no method

comes close to the ± 30% limits of agreement criteria outlined by Critchley and Critchley

(1999) (limits of agreement not shown). This result is partly due to the severity of the

interventions, where the stages of high error represent more dramatic deliberate changes

in hemodynamics than is typically encountered in a clinical environment. However, these

same dramatic changes enable more robust testing of the different Zc,w methods and thus

suit this study’s aim.

Water hammer based Zc,w method, Zwh,cal

Overall, the median bias of each SVest is similar, but the percentiles are narrower for both

SVerr,wh and SVerr,bh, compared with SVerr,c. However, the improvement shown in Figure

12.5bwhen using Zwh,cal (SVerr,wh), is slight comparedwith Zc,cal (Figure 12.5a). Theminimal

change in SVerr,c versus SVerr,whmeans Zc,cal and Zwh,cal had similar values, confirmed when

comparing Figures 12.7a and 12.7b. Notice their respective overall coefficient of determi-

nation, r2 ≈ 0.7, suggesting a reasonable and similar relationship between the Zc,cal/Zwh,cal

and Zc,ideal. However, the overall r2 result can be misleading and the similarity of the two

results is not a good outcome for the Zwh,cal method. For example, the very motivation for

developing a dynamic Zc,wmethod is shown in Figure 12.7a, where no variation in Zc,ideal is

reflected in Zc,cal, since the latter is treated as a constant for each pig. Therefore, and sim-

ilarly, the lack of variation in Zwh,cal compared with the pigs Zc,ideal, shown in Figure 12.7b

confirms Zwh,cal actually failed to updated Zc,cal in a meaningful way. The individual pig’s r2

values in Table 12.2, confirm the conclusion that updating Zc,cal via Equation 12.3 did little

to improve model performance. Since Equation 12.3 relied on PTT the same conclusions

are drawn from regression analysis of PTT versus Zc,ideal, were the overall r2 = 0.08 and
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the individual pig’s r2 values are very similar to those of Zwh,cal in Table 12.2 (results not

shown).

Interestingly Figures 12.2 – 12.4 still do suggest a relationship between PTT and SV , as

previously found in literature (Kamoi et al., 2015). However, it seems the Zwh,cal method

employed in Section 12.2.4, does not improve model performance significantly enough to

justify the additional model complexity, or invasiveness of continuously monitoring PTT

in a clinical environment.

PCA-Bramwell-Hill based Zc,w method, Zbh,cal

Considering all the data shown in Figure 12.5c, SVerr,bh of the Zbh,cal method, had the lowest

median bias and narrowest percentiles of the three Zc,w identification methods. Thus, a

general conclusion is Equation 12.6 successfully improved model performance. However,

the overall result does not capture the method’s performance for individual pigs. Specif-

ically, some pig’s individual stage errors were reduced, for example, Pigs D1 high fluids,

D4 dobutamine and S4 end endo, while others showed an increase in SVerr using the Zbh,cal

method (Pigs S1 start endo, S6 end endo, V3 VCO).

The updating of Zbh,cal has two avenues, ∆Zc,wC or ∆PTT, both with respect to their con-

trol stage values, according to Equation 12.6. In contrast, Zwh,cal was only updated via

PTT. Therefore, comparing the three subfigures of Figure 12.5, the fact SVerr,wh≈ SVerr,c for

Pigs S1 start endo, S6 end endo, V3 VCO indicates changes in Zc,wC were the source of the

increased error associated with SVerr,bh. By the same logic, ∆Zc,wC enabled the dramatic

improvement in D1 high fluids stage. Specifically, as shown in Table 12.1, SVerr reduced

from ≈ 100% to 8%. Thus, it is difficult to predict when estimating Zc,w via Zc,wC will lead

to improved performance and when it will be detrimental.

This issue is reflected in Table 12.1, where with the exception of Protocol D High PEEP, no

Zc,w method showed consistent performance across a pig or stage. Even in Protocol D High

PEEP, only 3 of the 5 pigs showed significant improvement due to Zbh,cal.
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Therefore, despite the overall performance shown in Figure 12.5, individual protocol Bland-

Altman analyses showed a different result. Specifically, only Protocol D stroke volume

estimation is significantly improved using Equation 12.6, where the median bias was im-

proved from 6% ( SVerr,c) to 1% (SVerr,bh), and the 5th – 95th percentiles were improved from

-42% – 113.1% (SVerr,c) to -38.5% – 54.5% (SVerr,bh), respectively (results not shown). Individ-

ual Bland-Altman analysis for Protocols S and V showed very similar model performance

between Zc,cal, Zwh,cal and Zbh,cal (results not shown).

The regression analysis for Zbh,cal versus Zc,ideal in Figure 12.7c once more shows an over-

all result similar to Zc,cal versus Zc,ideal. However, the variability in Zbh,cal is significantly

increased compared with either Zc,cal or Zwh,cal. However, Table 12.2 shows generally for

individual pigs, variability in Zbh,cal does not describe change in Zc,ideal well, consistent with

the variable impact of Zbh,cal on stroke volume estimation. Therefore, like Zwh,cal, Zbh,cal does

not appear to significantly improve flow (Qest) and subsequent stroke volume estimation

(SVest) in a reliable manner. The added model complexity and invasion of monitoring PTT

outweighs the small apparent benefit.

12.4.2 Limitations

One of the limitation of this analysis was the 250 Hz data acquisition sampling rate for

Protocols S and V, alluded to in Section 12.2.1. Given both Zwh,cal and Zbh,cal depend on

PTT, the 250 Hz sampling rate limited time resolution to 4ms, possibly affecting results.

However, Protocol D was sampled at 1000 Hz, and, while the higher rate did make for

finer PTT measurement, the results did not change. It is thus unlikely 1000 Hz sampling of

all data would have change the results and conclusions.

12.5 Summary

In Chapter 11 PWV did not feature in the improved three-element windkessel implemen-

tation, contrary to the Kamoi model of Chapter 6. However, Chapter 11, unlike Kamoi
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et al. (2017) only used a static calibration of Zc,w, rather than update it via PWV . Thus,

with Pres/Pex now robustly identified, this chapter sought to re-introduce PWV /PTT as a

means of updating the only static parameter in Chapter 11’s implementation, Zc,w. The

first dynamic method of updating Zc,w was Zwh,cal whose Equation 12.3 was derived from

the water hammer equation (Equation 2.7). It appeared that∆PTT were insignificant rela-

tive to the changes in the ideal characteristic impedance, Zc,ideal, whichwas back-calculated

from the measured stroke volume per Equation 12.7. Thus, unsurprisingly, the model es-

timated stroke volume of Zwh,cal had similar performance to that seen already when using

the constant Zc,w calibration (Zc,cal) which had previously been used in Chapter 11.

The other dynamic method of calculating Zc,w used a hybrid PCA-Bramwell-Hill equation

approach, via Equation 12.6. Specifically, the hypothesis was changes in the PCA identified

Zc,wC could be used to estimate Zc,w, where the Bramwell-Hill equation (Equation 2.2) was

used to account for the ∆C component of the parameter product. However, while this

method showed improved performance compared with the Zwh,cal method, Zbh,cal did not

significantly improve stroke volume estimation over Zc,cal. Moreover, on an individual pig

basis, there were times where the approach increased, rather than reduced error.

As covered in Section 7.1, PTT is not monitored continuously in a clinical environment.

Thus, implementing either Zwh,cal or Zbh,cal clinically would represent increased clinician

workload and potentially increased patient invasion. Since neither method showed sig-

nificant stroke volume estimation improvement over the calibrated constant Zc,calmethod,

the additional complication of using PTT seems unjustified.
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Conclusions

Cardiovascular disease is the second leading cause of mortality in New Zealand and its

treatment represents a significant portion of healthcare costs. The complex nature of the

cardiovascular system means disease can be multifaceted, making diagnosis of the indi-

vidual disease mechanisms difficult. This difficulty is exacerbated by common clinical

measures, such as pressure, heart rate and electrocardiogram (ECG), changing in response

to many different factors. In an ideal case, more direct measures of cardiac performance,

such as stroke volume (SV) and cardiac output (CO), would be available and monitored

continuously, for a clearer, more unambiguous picture of a patient’s current state.

This issue informed the thesis goal of developing a clinically applicable SV estimation

method. Specifically, this research opted to use a three-element windkessel, pulse con-

tour analysis (PCA), model-based approach, so the overall method was non-additionally

invasive and increased the utility of already ubiquitous arterial pressure measurements.

Historically, the potential of PCA model-based methods to estimate flow and stroke vol-

ume, had already been shown (Wesseling et al., 1993). However, many of the commercial

devices incorporating windkessel theory, only output the clinically relevant SV and/or CO,

even though the windkessel model predicts SV from a flow waveform estimate. Further-
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more, many of the commercial devices use a calibrating SV measure to identify patient

specific parameters, but subsequent accuracy is conditional on the patient’s hemodynamic

state remaining relatively constant. If a specific implementation’s parameters are not dy-

namic, then really, its performance becomes contingent on the SV calibration and is thus

more similar to the likes of the characteristic impedance method developed by Wesseling

(1983), than the windkessel model theory.

Therefore, this thesis focused on developing a model whose implementation closely re-

sembled the foundational three-element windkessel theory. The first barrier to achiev-

ing robust model parameter identification and thus overall implementation, was the end-

systole detection in the arterial pressure waveform input to the model. Initially, a novel

dicrotic notch detection method was developed, which successfully increased the robust-

ness of systolic duration estimation, with both high accuracy and precision. However, it

also unveiled further underlying limitations of the windkessel model and PCA based pa-

rameter identification. Specifically, the three-element windkessel model predicts diastolic

pressure as exponential decay, but cannot describe reflected wave behaviour, such as a

dicrotic notch or other distinct reflected waves. Thus, using a measured pressure wave-

form to back-calculate windkessel parameters via PCA, was made much more difficult in

the presence of the dicrotic notch.

The identification of this issue in this research, also somewhat inadvertantly answered

the question as to how Wesseling et al. (1993) had managed to successfully use the three-

element windkessel model using an aortic pressure waveform. The answer lay in Wessel-

ing et al. (1993) identifying parameters via population based empirical equations, rather

than relying solely on PCA. The Wesseling et al. (1993) implementation thereby mitigated

the impact of the windkessel model limitations on the parameter identification process

and produced better than expected results.

However, parameter identification via PCA has the distinct advantage of being patient spe-

cific and enables parameters to be identified beat-to-beat, helping the model monitor flow
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and SV during and post changes in hemodynamic state. Thus, PCA was seen as a crucial

means of achieving the clinical desire for the method to be reliable at monitoring changes

in patient state, be it disease progression or recovery.

Therefore, after identifying the challenges imposed by dicrotic notch presence for PCA pa-

rameter identification, the next step was to overcome this issue using the femoral pressure

waveform. Specifically, the attenuated, or near dicrotic notch-less nature of the clinically

more common femoral artery pressure waveform, made it resemble a shape similar to

that predicted by the three-element windkessel model. Hence, it was hypothesised the

femoral pressure would lend itself to easier windkessel model parameter identification

via PCA. The caveat was end-systole detection became more difficult, as the method de-

veloped for dicrotic notch detection worked poorly when notches were not present. Thus,

the thesis developed a second, more robust end-systole detection method, with high accu-

racy and precision, capable of detecting both dicrotic notches and end-systole in notch-less

pressure waveforms, like the femoral artery. In achieving a robust end-systole detection

method, the femoral pressure could now be used with PCA parameter identification and

thewindkessel model. Moreover, the femoral pressure beingmore common clinically than

the aortic pressure waveform, meant the model implementation was better aligned with

the clinically applicable goal of the thesis.

Focusing on implementing a three-element windkessel model, in a manner aligned with

the foundational theory, meant this thesis was able to resolve “the parameter identifica-

tion sensitivity resulting in the prediction of unphysiological flow profiles”, a thesis goal in

Section 1.4. The novelty associated with achieving this goal, was the illustration of how

the windkessel models inability to describe spatially varying dynamics (reflected wave

phenomena), significantly impacted PCA parameter identification techniques. In particu-

lar this thesis illustrated the detrimental effects of the dicrotic notch and early diastolic

distinct reflected wave behaviour on parameter identification. While it successfully im-

plemented a method of parameter identification in the presence of these phenomena, ulti-
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mately it illustrated waveforms without this behaviour, like the femoral artery, were more

compatible with the PCA-based windkessel models. Furthermore it hypothesised the even

more ubiquitous radial artery pressure would present the same issues as the aortic wave-

form, since it contains notches in diastole due to wave reflection that could cause similar

parameter identification issues as the dicrotic notch. Thus, as part of identifying and re-

solving the parameter identification issues arising from the different pressure waveform

shapes, this thesis also achieved the secondary goal of establishing “the impact of pressure

waveform measurement location on model implementation and performance”.

Ultimately, having resolved both the end-systole detection and parameter identification

issues, the thesis subsequently achieved its overall goal to develop a clinically, applicable,

non-additionally invasive, model-based method for accurately estimating arterial flow wave-

forms and subsequent SV, per Section 1.4. The only measure necessary for flow and stroke

volume estimation was the clinically common femoral artery pressure waveform.

The resulting model was also simpler than the Kamoi model method, which required con-

tinuously measured pulse wave velocity (PWV) (Kamoi et al., 2017), and whose perfor-

mance was a benchmark/starting point for this thesis. PWV is a metric this thesis tried

and failed to estimate in a clinically applicable manner. Specifically, a gold standard PWV

measure can use dual arterial catheterisation to measure pulse transit time (PTT), but dual

catheterisation is undesirable in a clinical environment. However, some literature had as-

sumed pulse arrival time (PAT) was a suitable surrogate of PTT. This research explored

the option of using PAT to achieve the secondary thesis goal of “resolving the outstanding

issues around the [Kamoi] model’s need for PWV”, per Section 1.4. However, this research

found PAT variation was equally caused by pre-ejection period (PEP), a variable with little

apparent relationship to PTT. Therefore, this analysis found PAT to be an inappropriate

surrogate for PTT, despite it being used in this role in some literature.

However, without a clinical means of identifying PWV , the Kamoi model would not meet

this thesis’s goal of being non-additionally invasive and clinically applicable. Thus, it was
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fortunate the model developed by the author was found to not require PWV , only requir-

ingmore careful implementation, in linewith the three-elementwindkesselsmodel theory,

and thereby resolving the outstanding PWV issue.

After the thesis goals were achieved, the re-introduction of PWV was attempted to see if

it offered further improvements, despite a clinical means of implementing such a model

having not been found. Specifically, themodel developed in this thesis for flow and SV esti-

mation, still had a single static calibration parameter, windkessel characteristic impedance

(Zc,w). Analysis had shown, treating Zc,w as a constant and assuming the other parameters

would capture changing hemodynamics, was generally sufficient. However, there were in-

stances where an updated Zc,w parameter would have improved performance. Two meth-

ods of updating the calibrated Zc,w value were attempted, both relying on PWV /PTT. How-

ever, neither dynamic Zc,w method significantly improved model performance over the

static calibration. Hence it was concluded the additional invasiveness currently required

for accurate PTT monitoring, was not worth the potential benefits.

While the analyses used clinically applicable disease states (sepsis, vena cava occlusions

(VCO)) and therapies (recruitment manoeuvre (RM), fluid and dobutamine admission), the

protocols often included intervention cases more severe thanmay typically be observed in

a clinical environment. Thus, the cardiovascular model implementation developed in this

thesis, with the worst case experimental data, was unable to met the clinically applicable

criteria for new SV /COmethods outlined by Critchley and Critchley (1999). Specifically, the

criteria is ±30% limits of agreement with respect to a reference method. The model per-

formance fell just outside this criteria (±32%) using the porcine trial data were aortic flow

was measured (Protocol S). Specifically, it was only during the most severe intervention,

the rapid onset of a septic shock like response, where errors were outside the criteria, and

this was only for 2 of the 5 pigs1. For all other pigs and hemodynamic interventions, the

model implemented showed mean beat-to-beat error <24%, with excellent tracking and

1Where once more the -7.5ml error of Pig S4 end endo is considered highly accurate despite the percentage

error being -87.5%, for the reasons explained in Section 11.4.2.
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was thus able to reflect changes in state well. Therefore, it would be beneficial to test the

model in a observational clinical trial to better assess whether the method could meet the

clinical criteria of Critchley and Critchley (1999), rather than judge based on the severe

experimental protocols.

Finally, if the model implementation developed in this thesis were successfully imple-

mented in a intensive care unit (ICU) setting, it could significantly improve patient mon-

itoring and care. Specifically, the patient specific manner in which the model is imple-

mented, in conjunction with its beat-to-beat nature, enables a personalised approach to

titration of treatment, informed by the quantitative estimation of cardiac function via aor-

tic flow and ventricular SV .



CHAPTER14

Future Work

14.1 Introduction

This chapter explores the avenues of potential future work. Some of the avenues seek to

overcome the short comings identified but unresolved within this thesis. Others avenues

seek to translate the work from an experimental to the clinical setting, which is the ulti-

mate end goal for the research in the institute from which this research was conducted.

14.2 Observational Clinical Trial

Thanks to the hard work of Shun Kamoi and his supervisors (Kamoi et al., 2017), the Kamoi

model was a successful proof of concept, illustrating the possibility of using a cardiovas-

cular model, nearly simple enough to be clinically applicable and whose theory was in-

terpretable by any and all clinical staff. Unfortunately, the one draw back of the method

was it required pulse wave velocity (PWV) to be continuously monitored, and thus was not

able to be easily implemented in a clinical environment. However, this thesis build on the

previous work of Kamoi et al. (2017) and others outlined in Chapter 4, to develop a model

which truly could be implemented in a non-additionally invasive manner.



248 14.2. OBSERVATIONAL CLINICAL TRIAL

Thus, the first proposal would be to run an observational clinical trial, where femoral

artery pressure data is captured in humans in a variety of clinical scenarios likely to alter

stroke volume (SV)/cardiac output (CO), the likes of cardiac surgery and intensive care. The

trial need not influence clinical practice in any significant manner, it would only seek to

assess the performance of the model against some form of common, clinically accurate, SV

measure, the likes of thermodilution or trans-esophageal doppler, both covered in Chapter

3.

From this data, the true clinical potential of the method could be assessed, overcoming one

of the challenges in this thesis. Specifically, this thesis used a variety of clinically applicable

interventions, but at times in a severe manner. The severe hemodynamic changes were

crucial in the development and testing of the model, as without them the limitations of

the implementation would remain unknown. However, the experimentally induced and

therefore highly controlled scenario, meant the model in this thesis at times had error

higher than the clinically acceptable requirement of Critchley and Critchley (1999), by with

other methods and devices have been assessed. However, based on the results of this

research, it seems plausible the model will perform within the criteria in a clinical setting.

However, a clinical setting will also likely present different challenges to model implemen-

tation, than the experimental settings the model has currently been implemented in. For

example, the first foreseeable challenge is getting both enough SV variability in a clinical

trial, but also capturing that variability with frequent and reliable SV measures. After all,

this is essentially the challenge this model is trying to overcome, and therefore validation

itself is a barrier to creating clinically applicable methods.

A second challenge will be the reliability of the pressure waveforms measured in the clin-

ical environment. This thesis used data captured from high fidelity pressure catheters

where the sensor was mounted at the tip, ensuring a high degree of accuracy and preci-

sion. In contrast, fluid filled catheters are common in a clinical setting, and are vulnerable

to under-damped frequency response behaviour. In the time domain, an under-damped
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pressure waveform results in notches in the pressure signal (Watson andWilkinson, 2012).

Like the dicrotic notch in an aortic pressure waveform, or the reflected wave in the radial

waveform, notches due to an under-damped catheter would likely increase the difficulty

of identifying end-systole, estimating reservoir pressure (Pres)/excess pressure (Pex), and

ultimately flow and SV .

This also highlights the authors reasoning for suggesting the clinical trial begin focusing

on patients with a femoral arterial measurement. Doing so minimises the number of new

variables introduced into the model implementation. When implementation differs from

the steps previously used successfully, the cause of any issues that arise are more difficult

to discern. For example, if the model is tested on patients with radial arterial pressure

measurements and performs poorly, this may not reflect poor model theory, only new im-

plementation issues to be overcome. Thus, the suggestion first and foremost is to initially

minimise the potential for new implementations issues. This may mean forgoing the test-

ing of the most desirable common pressure measurement, the radial artery, but only in

the short term. Success in the femoral artery would re-enforce the potential for the model,

instilling confidence in both the developers and end users. Thus early success in a clinical

setting could create the momentum necessary to take the model much further.

14.3 Radial Artery Implementation

Despite Section 14.2’s suggestion that initial clinical focus should use the femoral artery, the

radial artery does present themost desirable arterial pressuremeasurement location from

a clinical perspective. Specifically, the radial artery is the most commonly catheterised

artery for hemodynamic monitoring (Cousins and O’Donnell, 2004), thus explaining its

ubiquity in clinical care. Therefore, when the goal is to develop a truly non-additional

invasive, pulse contour analysis (PCA) model-based method, the radial artery represents

the pinnacle arterial measurement.

As outlined in Section 11.4.5 and 14.2, the challenge of the radial pressure waveform will



250 14.3. RADIAL ARTERY IMPLEMENTATION

be the identification of end-systole and subsequently calculation of Pres per Equation 4.12.

Failure to achieve the latter would lead to a Pex that inaccurately predicts the flow pro-

file, per Chapter 9. The issue is the possible reflected wave behaviour causing notches

in diastole that do not represent end-systole, but whose curvature will be detected by the

weighted second derivative based estimate of the time of end-systole (tes,d2P/dt2), developed

in Chapter 10. A potential avenue to overcome this problem is using a transfer function

(Gao et al., 2016), to estimate a central arterial pressure waveform without reflected wave

behaviour.

A second potential challenge of using the radial artery may be its lower arterial compli-

ance, compared with the larger central arteries. Section 2.2.2 stated most of the arterial

compliance is associated with the aorta, and since the windkessel model mechanism cen-

ters around a compliant reservoir, many previous implementation, including this thesis,

focused on large central arteries. However, when comparing Figures 4.3 and 4.4 in Sec-

tion 4.3.2, the three-element windkessel applied to the femoral artery predicted a the lower

proportion of Pres, reflecting its reduced compliance, compared with Pres in the proximal

aortic signal (Pao) (Balmer et al., 2018b). Thus, it is possible the same behaviour will oc-

cur in the radial artery, where the proportion of Pres and Pex reflects the model theory of

reduced compliance and higher impedance to drive blood to a more peripheral location.

Since Wesseling et al. (1993) successfully predicted physiological flow profiles from the

radial artery pressure waveform, it seems likely the lower compliance will not present a

problem. However, this hypothesis was not tested in this thesis.

A final potential challenge when using the radial pressure waveform will be the much

smaller proportion of SV that reaches the radial artery. While the calibration of wind-

kessel characteristic impedance (Zc,w) using a SV measurement would account for this, if

the proportion of blood to the radial artery changes after calibration, due to disease pro-

gression or treatment, the Zc,w valuemay no longer be optimal.
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14.4 Dynamic Zc,w Parameter Identification and a

Non-invasive PWV Measurement

In Chapter 12, the parameter Zc,w was unsuccessfully updated via pulse transit time (PTT).

Given the already established relationship between (general) characteristic impedance

(Zc) and PWV via the water hammer equation (Equation 2.7) and compliance (C & CA)

via Bramwell-Hill (Equations 2.2 and 2.3), it seems plausable these relationships could be

leveraged to improve model performance. Indeed, these relationships have already been

used in other windkessel implementations covered in this thesis (Wesseling et al., 1993;

Wang et al., 2003; Kamoi et al., 2017).

More specifically, the model developed in this thesis found it unnecessary to use PWV to

calculate Pres/Pex, and the subsequent flow and SV estimation. The fact the implementa-

tion did not require a continuous PWV measurement for its performance was cited as an

advantage. However, the implementation did rely on an independent SV measurement

to calibrate Zc,w. In a clinical environment, while it is possible to estimate SV , it is not

common and does present an added workload in order to implement the model. In an

ideal implementation, the model would require only the arterial pressure measurement

and possibly some other simple means of identifying the Zc,w parameter. Thus, PWV may

still prove a useful metric for this purpose. To realise this potential, further testing and de-

velopment of PWV /PTT with the windkessel model would be require. Moreover, a method

of monitoring PWV in a clinically applicable manner would be required. This latter chal-

lenges is already being addressed by research from within the institute, but as yet results

are unpublished.
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