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Abstract 

Parentage analysis is a cornerstone of molecular ecology that has delivered fundamental 

insights into behavior, ecology, and evolution. Microsatellite markers have long been the king of 

parentage, their hypervariable nature conferring sufficient power to correctly assign offspring to 

parents. However, microsatellite markers have seen a sharp decline in use with the rise of next-

generation sequencing technologies, especially in the study of population genetics and local 

adaptation. The time is ripe to review the current state of parentage analysis and see how it stands to 

be affected by the emergence of next-generation sequencing approaches. We find that single-

nucleotide polymorphisms (SNPs), the typical next-generation sequencing marker, remain 

underutilized in parentage analysis but are gaining momentum, with 58 SNP-based parentage analyses 

published thus far. Many of these papers, particularly the earlier ones, compare the power of SNPs 
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and microsatellites in a parentage context. In virtually every case, SNPs are at least as powerful as 

microsatellite markers. As few as 100-500 SNPs are sufficient to resolve parentage completely in 

most cases. We also provide an overview of the analytical programs that are commonly used and 

compatible with SNP data. As the next-generation parentage enterprise grows, a reliance on likelihood 

and Bayesian approaches, as opposed to strict exclusion, will become increasingly important. We 

discuss some of the caveats surrounding the use of next-generation sequencing data for parentage 

analysis and conclude that the future is bright for this important realm of molecular ecology. 

 

Key words: sibship reconstruction, paternity analysis, parentage assignment, Bayesian parentage, 

Illumina sequencing, next-generation sequencing, RAD-seq 

 

Introduction 

The analysis of parentage is a key facet of molecular ecology. Since the realization in the 

1970s and 1980s that genetic data could potentially diagnose parent-offspring relationships in nature 

(Thompson 1976a, 1976b; Ellstrand 1984; Gowaty and Karlin 1984), parentage analysis has 

blossomed into an active enterprise spanning numerous fields of inquiry. In the realm of molecular 

ecology, an understanding of parentage patterns can provide indispensable information for the study 

of sexual selection (Coltman et al. 2002; Jones 2009), conservation biology (Haig 1998; Planes et al. 

2009), effective population size (Araki et al. 2007), and even speciation and natural selection (Conner 

et al. 1996; Muhlfield et al. 2009). From its humble beginnings and slow start during the rise of 

allozyme markers, parentage analysis has matured into a sophisticated discipline that continues to 

evolve as new technology becomes available. 

The fundamental idea underlying parentage analysis is actually quite simple. Given Mendel’s 

laws, we know that each individual inherits genetic material from its parents. For diploids, each 

progeny receives precisely one allele from its mother and one from its father at each locus. Thus, a 
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suite of Mendelian loci, genotyped in a sample of individuals, can distinguish parent-offspring 

relationships from other sorts of relationships, including unrelated pairs (Thompson 1975; Thompson 

and Meagher 1987). This analysis requires that the marker loci be polymorphic (i.e., have two or more 

alleles per locus) and that the nature of inheritance at the loci is understood. Even though the 

application of parentage analysis often includes complex equations and arcane implementations, the 

simple fact of Mendelian inheritance always lies at its core. 

The most important recent development in parentage analysis is the introduction of next-

generation sequencing approaches. The concomitant potential to genotype thousands or even millions 

of loci in almost any species has the potential to dramatically transform parentage analysis (Glaubitz 

et al. 2003). The availability of such large genetic datasets makes the choice of genotyping marker 

more difficult than when a single marker type was clearly best, as many factors must now be weighed 

before embarking on a parentage study. Here, we review the current state of parentage analysis, with 

the goal of providing guidelines and important considerations for studies that require parentage 

analysis. We start with a short history of parentage analysis and a review of the current state of the 

field. We then discuss the molecular and statistical approaches currently in use. We follow those 

sections with a discussion of the potential pitfalls in parentage analysis and how to avoid them. We 

conclude with some recommendations regarding how researchers can easily transition into the next-

generation sequencing era of parentage analysis. 

 

A Brief History of Parentage Analysis 

 One of the remarkable features of evolutionary biology in the 20
th
 Century is that much of the 

theory needed to analyze population-level patterns with genetic data had been developed well before 

appropriate markers became available. This statement is especially germane for parentage analysis. 

The most important ideas underlying this area of inquiry were developed in the 1970s and 1980s 

(Thompson 1975, 1976a, 1976b; Meagher and Thompson 1986). At the time, the only readily 

available molecular markers were allozymes (also called isozymes), an ingenious method that 
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launched evolutionary biology into the molecular marker era (Hubby and Lewontin 1966; Lewontin 

and Hubby 1966). The allozyme approach involved electrophoresis of proteins through a matrix, 

followed by visualization of the protein using stains that took advantage of the enzymatic properties 

of specific proteins to produce a visible smudge on a gel. Different alleles at a protein could differ 

with respect to size or net charge, both of which would affect the mobility of the protein, resulting in 

distinguishable allelic variation. In principle, allozymes, as the first easy-to-assay, codominant, 

Mendelian marker, were perfect for parentage analysis. In practice, however, they almost never 

harbored enough variation to diagnose parent-offspring relationships reliably. 

 Nevertheless, the advent of allozymes catalyzed the development of a robust body of theory 

related to parentage analysis. The most important realization was that the genotypes of pairs or triads 

of individuals could be used to develop a rigorous hypothesis-testing approach based on maximum-

likelihood equations (Meagher and Thompson 1986). Around the same time, a method of fractional 

parentage allocation was developed, which retained the inevitable uncertainty in parentage 

assignments during downstream analysis (Devlin et al. 1988). Thus, by the end of the 1980s, just as 

the first wave of hypervariable Mendelian markers began to spread through the field (Tautz 1989), 

researchers already had access to a fairly robust analytical toolkit, which included strict exclusion, 

categorical allocation, and fractional allocation, with the latter two methods taking advantage of 

formal maximum likelihood approaches. Despite the growing toolkit, parentage analysis in the 

allozyme days was nearly impossible given the low information content of the markers, and the few 

successful examples could be counted using the fingers on one hand (Hanken and Sherman 1981; 

Ellstrand 1984; Gowaty and Karlin 1984; Meagher 1986). 

 

The Modern Era of Parentage Analysis 

 We entered the modern era of parentage analysis in the 1990s, when this area of inquiry, 

along with everything else in molecular ecology, was swept forward on the wave of the microsatellite 

revolution (Tautz 1989; Queller et al. 1993; Jarne and Lagoda 1996; Powell et al. 1996). Before 
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microsatellites, multilocus DNA fingerprinting was explored as a way to diagnose extra-pair 

paternity, especially in birds (Burke et al. 1989; Birkhead et al. 1990), but DNA fingerprinting was 

crude in the sense that it relied on patterns of band sharing, and this feature prevented it from 

interfacing with theory developed for Mendelian markers. The fact that microsatellite markers were 

Mendelian (unlike multilocus DNA fingerprinting) and had multitudes of alleles per locus (unlike 

allozymes) allowed empiricism to finally catch up with the theory, and parentage studies in natural 

populations began to appear by the dozens (Brockmann et al. 1994; Morin et al. 1994; Kellogg et al. 

1995; Dow and Ashley 1996; Jones and Avise 1997a, 1997b). Researchers took a second look at the 

theory and developed methods that accommodated the specific strengths and weaknesses of 

microsatellites (Sancristobal and Chevalet 1997; Marshall et al. 1998; Nielsen et al. 2001). As a result, 

we entered the new millennium with even better tools, coupled with the molecular techniques we 

needed to apply them (reviewed in Jones and Ardren 2003; Jones et al. 2010). Those who worked on 

parentage analysis in the 1990s could be forgiven if they looked back upon those times as the golden 

age of parentage.  

 Even though parentage analysis seemed to have been largely solved by microsatellites, some 

problems persisted. For instance, microsatellites were extremely successful in species in which they 

were abundant in the genome and highly polymorphic, such as most fishes (DeWoody and Avise 

2005). However, many species harbor little polymorphism even at microsatellite loci, making robust 

parentage analysis difficult. In addition, microsatellite markers still require quite a large initial 

investment in terms of identifying loci, designing locus-specific primers, and optimizing PCR 

conditions. Moreover, the scoring of microsatellite markers is often an art form of its own, calling for 

often poorly documented criteria regarding the separation of true alleles from artifactual bands on 

sequencing gels. Thus, a successful microsatellite-based study of parentage still represents a 

significant investment in terms of labor and financial resources (see Hodel et al. 2016 for a recent 

review). Given these constraints, microsatellites still have their uses but there does seem to be room 

for newer technologies to supplement, or even supplant, microsatellites as the marker of choice for 

parentage. 
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Parentage Analysis Using Traditional SNPs 

 With the availability of genomic resources and multiplexed methods to assay many single-

nucleotide polymorphisms (SNPs) simultaneously, researchers have moved toward using these types 

of SNP approaches to conduct parentage analysis (Table 1). Some researchers have turned to SNPs 

because of low polymorphism in microsatellites in their species (e.g., Cramer et al. 2011), but SNPs 

also provide other practical improvements such as easier automation and scoring (Anderson and 

Garza 2006), plus lower mutation rates (Amorim and Pereira 2005; Fisher et al 2009). Despite these 

favorable features of SNPs, we found a total of only 38 papers that used these traditional SNP 

approaches for parentage analysis (Table 1). A substantial number of these studies compared the 

power SNPs to microsatellites for parentage analysis (Table 1), and they universally concluded that 

SNPs were entirely appropriate for this endeavor.  

 

Parentage Analysis in the Next-Generation Sequencing Era  

 The use of next-generation sequencing in parentage analysis is rapidly gaining momentum. 

The first application of next-generation sequencing in this arena was to use the easily obtainable 

sequence data to develop microsatellite markers (e.g., Santana et al. 2009; Castoe et al. 2010; 

Guichoux et al. 2011) or SNP markers that can be amplified via PCR and assayed using a highly 

multiplexed approach, such as SNPlex (Cramer et al. 2011), iPLEX/MassARRAY (Sellars et al. 

2014), Fluidigm Integrated Fluidic Circuits (Lew et al. 2015) or any of a number of related 

approaches. Table 2 lists the studies that have taken a next-generation sequencing approach to the 

identification of SNPs in the genome, followed by one of these more traditional assays to score SNPs 

in the context of parentage analysis. With the exception of two studies that used next-generation 

sequencing to develop SNP arrays, these studies generally used less than 200 SNPs to assign 

parentage. The 10 studies listed in Table 2 reinforce the conclusion from traditional SNP studies 

(Table 1) that SNPs perform well in parentage. 
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 A natural next step, facilitated by high throughput sequencing, is to genotype SNPs directly 

by using any one of a number of genotyping-by-sequencing approaches (Table 3). These next-

generation approaches to parentage analysis are conceptually identical to the previous-generation 

approaches, and the new datasets can be analyzed by the current generation of parentage analysis 

software. Despite these similarities, some additional concerns begin to arise with true next-generation 

parentage analysis, and we will discuss these concerns as we describe each method. Due to the 

distinctions between these markers and SNPs derived through more traditional means, we will refer to 

these markers as ‘next-generation markers’ throughout the manuscript.  

A notable feature of the studies of parentage using SNPs (Tables 1, 2, and 3) is that virtually 

all studies have concluded that a relatively small number of SNP markers, from 60-200, usually 

provides resolving power equal to or better than that provided by the available microsatellite markers 

for the species under consideration. The exact number of SNPs required will depend on a number of 

factors, including the minor allele frequencies of the SNPs, linkage disequilibrium among SNPs, the 

frequency of null alleles and genotyping errors, the number of parental pairs, the distribution of 

offspring numbers per family, and the mating design (Jones and Ardren 2003; Anderson and Garza 

2006; Kalinowski et al. 2007). Despite these factors, the empirical results show clearly that as few as 

several hundred SNPs are sufficient for most parentage analyses. The power of SNPs for parentage 

analysis was appreciated over a decade ago by theoreticians (Anderson and Garza 2006), but 

empiricists have been patiently waiting for cheap and effective SNP approaches to catch up with 

theory, especially in non-model systems.  

  Given these new developments on the marker front, as well as continued progress in 

analytical approaches, the parentage analysis landscape is perhaps more confusing than it has ever 

been in the past. In some systems with well-established microsatellite markers, a more traditional 

approach may be best, whereas other systems may call for a next-generation approach. Most of the 

next-generation approaches are extremely cheap on a per-marker basis but expensive on a per-

individual basis. Some of these approaches require well-developed molecular and bioinformatics 

skills, far beyond what is necessary for microsatellite genotyping. The decision of whether or not to 
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adopt a next-generation approach thus involves a careful weighing of the costs and benefits. In 

addition, not all parentage analysis software can accommodate the huge numbers of markers typically 

produced in a next-generation genotyping study, so the decision to use these approaches also narrows 

the scope of possible parentage techniques to some degree. 

 

Approaches to Parentage Analysis 

 Parentage analysis using SNPs and next-generation sequencing relies on the same theoretical 

underpinnings as parentage studies based on traditional markers, which are still much more popular 

than SNP or next-generation methods. While, at the time of this writing, we found 58 studies that 

have employed SNPs for parentage analysis in the last decade (Tables 1, 2, and 3), dozens of 

parentage studies based on microsatellite markers are published annually, and microsatellites remain 

the most popular marker for all types of kinship and relatedness studies (e.g., Städele and Vigilant, 

2016). Even the less popular classes of markers, such as amplified fragment length polymorphisms 

(AFLPs) and allozymes, have been used in more studies of parentage than SNPs. This large number 

of published studies produces a long list of best practices and potential pitfalls, many of which also 

apply to next-generation approaches. 

 

Methods of Analysis. Theory regarding parentage analysis has not changed substantially in the last 

decade, and next-generation markers, which are essentially more of the same (but much more in some 

cases) as far as Mendelian markers are concerned, are not game-changers with respect to the 

analytical techniques needed for successful parentage analysis. Thus, reviews of parentage analysis 

from the last two decades (Jones and Ardren 2003; Jones et al. 2010) effectively summarize the 

underlying logic of the workhorses of the discipline: exclusion, parentage assignment, parental 

reconstruction, and Bayesian parentage analysis. Here, we summarize each approach briefly and 

discuss considerations for the current generation of markers and study designs. More detailed 

descriptions of each approach are given in Appendix 1. 
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Exclusion. The most intuitive approach to parentage analysis is to identify incompatibilities between 

a pair of individuals in a way that conclusively demonstrates that one could not be the parent of the 

other. Given Mendel’s laws, we know that each diploid offspring receives exactly one allele per locus 

from its mother and exactly one from its father. Thus, if a putative offspring shares no alleles at even 

one locus with a putative parent, then the putative parent can be excluded from the pool of potential 

parents (Chakraborty et al. 1974). This exercise assumes that no mutations or scoring errors occurred 

during meiosis or the genotyping technique, an assumption whose validity varies depending on the 

type of locus under consideration.  

While exclusion is conceptually appealing and easy to implement, it should be used with 

caution and its use should dwindle, hopefully to zero, over time. While mutations are relatively rare, 

even at most hypervariable microsatellite loci (Jones et al. 1999; Ellegren 2000), scoring errors are the 

real downfall for strict exclusion approaches. As studies grow in size, in terms of both numbers of 

samples and numbers of markers, an error-free dataset is virtually an impossibility. Consequently, 

most modern implementations of exclusion allow an arbitrary number of mismatches. While this 

approach seems logical and prevents complete exclusion of all candidate parents, including the true 

ones, it suffers from being arbitrary and ignoring the relevant literature regarding likelihoods and 

posterior probabilities of parentage.  

An odd pattern in the literature is that some fields have tenaciously clung to the idea that 

exclusion approaches are the appropriate solution to parentage analysis. This pattern is especially 

evident among breeders of domestic cattle and sheep (Table 1). Not coincidentally, the cattle breeding 

field has arrived at a preliminary consensus that 500 or more SNPs are required to resolve parentage 

confidently (e.g., McClure et al. 2015; McClure et al. 2018), whereas fields using modern analytical 

methods tend to conclude that 100-200 SNPs are usually more than adequate (Abadía-Cardoso et al. 

2013; Steele et al. 2013; Dussault and Boulding 2018). The reason that exclusion performs less well 

than formal maximum likelihood approaches is that it requires implicit assumptions that are ill 

defined and it discards much of the data. For instance, by choosing an arbitrary threshold of 

mismatches to constitute a true exclusion, researchers are implicitly imparting a level of confidence in 
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the reliability of the markers. Although the probability of a given number of Mendelian 

incompatibilities can be estimated from genotyping error rates (Chakraborty and Schull 1976), this 

extra step is rarely taken by users. Therefore the number of allowable mismatches arises from a vague 

feeling of confidence not estimated from genetic data. Furthermore, the exclusion approach for 

biallelic SNPs only uses data from homozygous loci at which a putative parent and offspring have 

different homozygous genotypes. Loci that are heterozygous in parents or offspring also carry 

information regarding the likelihood of parentage (Meagher and Thompson 1986; Marshall et al. 

1998; Kalinowski et al. 2007), but this information is being discarded in an exclusion analysis. In 

general, the use of exclusion for parentage analysis should be phased out, particularly for parentage 

analysis using SNPs or next-generation data.  

 

Parentage Assignment. The most commonly used approach to parentage analysis is assignment. 

Historically, parentage assignment could be divided into two categories: fractional and categorical 

(Jones and Ardren 2003; Jones et al. 2010). Fractional allocation assigns partial offspring to parents as 

a function of posterior probabilities (Devlin et al. 1988; Nielsen et al. 2001), and has now evolved into 

an approach known as “Bayesian parentage analysis”, which we discuss in a separate section below. 

Categorical allocation, on the other hand, assigns each offspring entirely to the parent with the highest 

likelihood and treats the parentage analysis separately from subsequent estimates of population-level 

variables of interest.  

 Parentage assignment rests upon the calculation and comparison of the relative likelihoods of 

different hypotheses regarding the relationships among putative parent-offspring dyads or mother-

father-offspring triads. The likelihood refers to the probability of observing the data given the 

hypothesis. In this case, the data are the genotypes, and the hypothesis is the proposed relationship 

among individuals. The likelihood can then be calculated easily by using the rules of Mendelian 

inheritance (see Marshall et al. 1998; Jones and Ardren 2003; Kalinowski et al. 2007). While absolute 

likelihoods are seldom of interest, they can be used to compare alternative hypotheses by constructing 
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a likelihood ratio of one hypothesis versus a second (often null) hypothesis. In parentage assignment, 

the ratio involves the hypothesis that the dyad or triad represents a true set of parents and offspring 

versus the hypothesis that the individuals are unrelated. Usually, we deal with the logarithms of 

likelihoods, and the likelihood ratio becomes a LOD score (Meagher 1986; Marshall et al. 1998). A 

positive LOD score indicates the parental hypothesis is more likely, whereas a negative LOD score 

indicates the unrelated hypothesis is more likely, given the genetic data. These LOD scores, while 

useful in obtaining a maximum likelihood solution, cannot be interpreted at face value in a statistical 

sense. A major breakthrough in parentage assignment occurred when Marshall et al. (1998) 

recognized that critical values for LOD scores could be determined by simulation. The approach used 

by Marshall et al. (1998) actually uses Δ (delta), the difference in LOD score between the most likely 

and second most likely parent (or the raw LOD score if only one candidate has a positive value), and 

simulates populations of parents and offspring to determine a critical value of Δ that results in a 

desired level of confidence in parentage assignment. This approach, which is still widely used 20 

years after its introduction, was the first to control experiment-wise error in parentage analysis. 

 

Bayesian Parentage Analysis. Bayesian parentage analysis originated as a technique to fractionally 

allocate offspring to parents as a function of posterior probabilities (Devlin et al. 1988). That is, the 

putative parent with the highest posterior probability would be assigned the largest fraction of the 

offspring, but the offspring would also be partially allocated to any parent with a non-zero probability 

of parentage. This fractional approach was intuitively unappealing in the early days of parentage 

because it must be strictly false from a biological standpoint, as fractional parentage has no biological 

analog. An adult cannot be 4% the parent of an offspring, for instance, even though this outcome is 

possible in fractional assignment. This intuitive distastefulness led to widespread adoption of 

categorical assignment, even though fractional assignment has better statistical properties for the 

estimation of many values of interest (Neff et al. 2001; Nielsen et al. 2001). With key developments 

in the mid-2000s, the technique of fractional allocation has matured into full-fledged Bayesian 
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parentage analysis, also called full probability parentage analysis (Hadfield et al. 2006; Jones et al. 

2010). 

 The advantage of Bayesian parentage analysis is that various quantities of interest can be 

estimated simultaneously along with patterns of parentage. Some of these quantities could be 

variables whose values matter for the assignment of parentage, such as the proportion of candidate 

parents sampled (Nielsen et al. 2001). Other quantities could be population variables of interest, such 

as variance in mating success or the rate at which parentage decreases as a function of distance 

between prospective mates (Hadfield et al. 2006). The advantage to this approach for estimating 

variables is that any uncertainty in the parentage analysis is included as uncertainty in the ultimate 

estimates. In the case of categorical assignment, uncertainty in parentage is normally discarded at the 

next phase of analysis, as assignments are treated as the truth during the estimation of population-

level parameters. 

 Another advantage to Bayesian parentage analysis is that prior information can be readily 

incorporated by modifying the priors. Thus, sources of information that imply even subtle differences 

in the probability of parentage for certain individuals can be incorporated naturally into the analysis. 

In categorical allocation, such information can be included, but in a very blunt fashion by either 

including or removing individuals from the list of candidate parents. Clearly, the Bayesian approach is 

more flexible and more statistically defensible. The biggest downside for Bayesian parentage analysis 

is that each analysis requires careful crafting of the posterior probability equation, and the analysis 

may be extremely sensitive to the decisions made during this step. 

  

Parental and Sibship Reconstruction. Knowledge of the nature of Mendelian inheritance naturally 

leads to the conclusion that the full multilocus genotype of one parent can be reconstructed if the 

genotypes of the other parent and many offspring are known (Jones and Avise 1997b). Given that a 

full reconstruction requires many offspring from a family, coupled with a priori knowledge that these 

offspring are either full- or half-siblings, this technique is generally useful only in species in which 
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broods of reasonably large size can be collected together. If such a progeny array is available, then the 

full set of possible parents for the progeny array can be enumerated using a combinatorial or 

maximum likelihood algorithm (Jones 2001, 2005; Wang 2004). In general, maximum likelihood 

approaches are preferable, as exhaustive combinatorial algorithms are prohibitively slow for more 

than a handful of loci and require an error-free dataset of hypervariable loci. 

 Sibship reconstruction possesses many similarities to parental reconstruction, and some 

sibship reconstruction algorithms can be used to perform a very similar analysis (Wang 2004). Sibship 

reconstruction has the advantage that it requires no a priori knowledge of relationships among 

individuals in the genotyped sample. For a sample containing putative full-siblings and half-siblings, 

sibship reconstruction approaches use a clustering algorithm to arrange the genotyped individuals into 

families (Thomas and Hill 2000; Smith et al. 2001; Almudevar 2003). This review is concerned with 

parentage analysis, so we restrict our attention to sibship reconstruction methods that also allow the 

user to identify putative parents in the sample of genotyped individuals (Wang 2004; Jones and Wang 

2010; Huisman 2017). Thus, many additional sibship reconstruction programs exist, beyond the ones 

we mention in the present review.  

 All approaches to sibship reconstruction use similar conceptual ideas for their algorithms. The 

methods use a maximum likelihood approach to evaluate and compare among proposed pedigrees, an 

approach that would, in principle, always yield the best solution given the underlying assumptions. 

However, the constellation of potential pedigrees is so large that an exhaustive search of all pedigrees 

is unfeasible in most cases. Consequently, the algorithms use an optimization procedure to restrict the 

search to a subset of pedigree space. Most of the algorithms use something akin to simulated 

annealing (Kirkpatrick et al. 1983; Almudevar 2003). For the latest developments in sibship and 

pedigree reconstruction (including distant relatives), outside the realm of parentage analysis per se, 

we direct the reader to recent work by Staples et al. (2014), Staples et al. (2016), and Ko and Nielsen 

(2017). 
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Methods of SNP Genotyping 

 Given the existing approaches and the history of parentage analysis, we now consider how 

this research endeavor should evolve with the advent of next-generation genotyping approaches. The 

decision of whether or not to embrace next-generation approaches boils down to whether or not the 

current project calls for the use of next-generation markers in place of the microsatellite markers that 

dominated the field of molecular ecology throughout the 1990s and 2000s. Many considerations come 

into play at the inception of a study regarding the choice of molecular markers. For instance, cost, 

ease of use, and the goals of a study should all be weighed before embarking on a research path that 

represents a significant investment of time and energy by the investigator.  

 The great advantage to next-generation markers is that they are extremely numerous, but their 

abundance comes with the cost that each individual marker, normally assayed as a SNP, harbors very 

little genetic variation. Thus, each individual SNP accomplishes very little but their collective strength 

can resolve almost any problem in parentage or kinship analysis. Next-generation SNP genotyping 

involves several categories of approaches, each of which has its own set of strengths and weaknesses. 

 

Genotyping-by-Sequencing. One set of approaches to next-generation genotyping can be categorized 

as genotyping-by-sequencing methods. These methods include restriction-site-associated DNA 

sequencing (RAD-seq; Baird et al. 2008), multiplexed shotgun genotyping (MSG; Andolfatto et al. 

2011), exome sequencing (Ng et al. 2009), and related approaches where the genotypes are 

determined by short-read sequencing of a vast library of DNA fragments. The advantage of these 

approaches is that they produce genotypes at an extremely large number of loci, often numbering in 

the tens of thousands. However, this huge genotyping throughput carries a number of disadvantages. 

For instance, the reliability of genotypes depends on sequencing coverage, and even with relatively 

high sequencing depth, allelic dropout is guaranteed to occur at a substantial fraction of loci (due to 

simple rules of binomial sampling). Unfortunately, allelic dropout may be the worst type of 

sequencing error for parentage analysis because it is likely to result in apparent Mendelian 
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incompatibilities between parents and offspring (Chakraborty et al. 1994; Pemberton et al. 1995; 

Wang 2010). Other disadvantages include that library preparation requires substantial molecular 

skills, analyzing the data requires some degree of bioinformatics expertise (although pipelines have 

recently been developed to aid in the analysis of RAD-seq data in parentage; Andrews et al. 2018; 

Thrasher et al. 2018), the cost per individual is high (Fig. 1), and most of the methods include sources 

of bias that are not yet well understood. Thus far, only a few parentage studies have used genotyping-

by-sequencing data directly to assign parentage (Table 3). 

 

Targeted Capture. Targeted capture approaches use primers, oligos, or other probes developed from 

genotyping-by-sequencing, whole genomic, or transcriptomic data to sample a chosen subset of the 

genome using high-throughput sequencing technologies such as Illumina Hi-Seq (e.g. GT-Seq, 

Campbell et al. 2014; RADcap, Hoffberg et al. 2016; RAPTURE, Ali et al. 2016). In an attempt to 

reduce error rates, these methods minimize the number of PCR cycles used. Targeted capture 

approaches can produce hundreds or thousands of markers, allowing researchers to increase read 

depth per locus. Careful choice of markers can minimize the sources of bias and error inherent to 

genotyping-by-sequencing and maximize the quality of the generated genotypes. We view these 

methods as promising approaches for parentage analysis in the next-generation sequencing era, 

although they have yet to be widely applied in a parentage context. 

 

SNP-PCR Approaches. Many SNP-based parentage approaches have opted to use some version of 

high-throughput genotyping of SNPs by designing PCR primers and amplifying specific regions 

containing SNPs (Tables 1 and 2). Many such approaches are commercially available, and they 

typically involve a highly multiplexed set of PCR primers, permitting dozens of SNPs to be amplified 

simultaneously. In the modern manifestations of these approaches, the genotypes from PCR products 

are usually obtained through MALDI-TOF mass spectrometry (iPLEX/MassARRAY) or real-time 

PCR (Fluidigm), although other approaches are also possible (e.g., capillary electrophoreses: 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

SNPlex). The only initial barrier to the SNP-PCR approach is the identification of genomic sequences 

containing SNPs. Thus, SNP-PCR is best used in a system in which some population genomic 

information is already available or can be generated. Studies have used data from RAD-seq and RNA-

seq to identify loci suitable for SNP-PCR (Holman et al. 2017; Kaiser et al. 2017; Table 2), indicating 

that a relatively minor investment in next-generation sequencing can be enough to identify a suite of 

loci suitable for parentage analysis. Once the SNP-PCR loci are characterized, their assay generally 

requires specialized equipment, which can often be accessed through core facilities or commercial 

genotyping companies. In comparison to genotyping-by-sequencing approaches, SNP-PCR produces 

more reliable genotypes but involves orders of magnitudes fewer loci. This method also has the 

advantage that it is perhaps the least expensive method to genotype large numbers of individuals at a 

large enough number of loci to completely resolve parentage in most systems (Fig. 1). 

 

The SNP-Chip or SNP Array. An alternative to SNP-PCR is the SNP-Chip or SNP array, which is a 

microarray that can be used to determine genotypes at a large number of SNPs, often tens of 

thousands, simultaneously. Spots on the SNP-Chip correspond to different alleles, and genotypes are 

determined by hybridizing labeled genomic DNA to the array. Because the development of a SNP-

Chip requires detailed knowledge of the genome and is expensive, SNP-Chips are generally available 

only for heavily studied model organisms, such as humans, pigs, cattle, and so forth. The advantages 

to SNP-Chips are that they can be assayed easily and produce a large number of reliable genotypes at 

a much smaller cost than genotyping-by-sequencing. The disadvantages are that the cost per 

individual is high compared to SNP-PCR (Fig. 1) and that the investment in initial development is 

prohibitively large for all but the most heavily studied of organisms. 
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Choosing a Marker System  

Given the proliferation of next-generation approaches, the choice of a marker system for 

parentage analysis may seem difficult. Gone are the days where we can casually recommend 

microsatellites as the resolution to all problems (Glaubitz et al. 2003; Jones and Ardren 2003; Jones et 

al. 2010). However, the classic markers should not be summarily discarded either as the field moves 

forward. 

 The choice of a marker system depends upon the parentage question, the natural history of the 

study system and the state of genomic resources for the target organism, because these factors 

determine the cost of the project and the resolution provided by the chosen marker system. 

Microsatellite markers may be a viable choice if they are already available and they have the power to 

provide the desired level of resolution. If microsatellite markers have not been characterized, 

however, a SNP-PCR or targeted capture approach will generally be easier and more cost effective 

(Fig. 1). The major limitation of any approach based on SNPs is that each marker is usually biallelic, a 

feature that limits its flexibility, especially in species where putative parents are difficult to sample. 

Moreover, if only low-quality DNA is available, SNPs generated by next-generation sequencing 

methods may be less reliable than microsatellites (Andrews et al. 2018) or traditional SNPs (Carroll et 

al. 2018). Nevertheless, for most parentage analysis problems, in which the sample includes a number 

of offspring and a pool of candidate parents, SNPs are entirely appropriate. Empirical work thus far 

indicates that a suite of 100 to 200 SNPs will generally provide resolving power exceeding that of a 

typical panel of microsatellite markers (Table 1). However, choosing the most informative SNPs is 

imperative whether pursuing a SNP-PCR, SNP-chip, or targeted capture method. To maximize power, 

the minor allele frequency of SNPs should be high and the likelihood of allelic dropout should be low. 

If developing SNPs from a genotype-by-sequencing dataset, the program GBSTOOLS (Cooke et al. 

2016) can identify loci that have a likely low allelic dropout rate. Choosing informative SNPs will 

provide higher power for parentage analysis and maximize cost efficiency. 
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 The choice of markers becomes more difficult when offspring can be collected in groups that 

are known to contain half- or full-siblings. This situation may be common when eggs are laid in egg 

masses (e.g., Liebgold et al. 2006; Croshaw et al. 2009) or one parent cares for a large group of 

related offspring (e.g., Mobley et al. 2009; Paczolt et al. 2016). In this scenario, the knowledge that 

progeny occur in family groups can provide additional power for parentage analysis. For instance, an 

approach that can reconstruct parental genotypes can be quite powerful, in some cases completely 

resolving parentage with only three or four hypervariable microsatellites (e.g., Jones et al. 1999, 

2002). As per-locus allelic diversity drops, many more loci become necessary for successful parentage 

reconstruction and a maximum likelihood approach is required. For tightly linked SNPs, however, 

allelic diversity can be recovered by reconstructing haplotypes, as exemplified by a recent study of 

gilthead sea bream (Table 1; García-Fernández et al. 2018). Another viable approach when the sample 

includes groups of full- or half-siblings is to use a technique that reconstructs sibships, while also 

assigning parentage, as implemented in the programs COLONY (Wang 2004; Jones and Wang 2010) 

or SEQUIOA (Huisman 2017). These techniques appear to work equally well with all types of 

markers, so for most systems, SNPs will be the marker of choice, unless hypervariable microsatellites 

have already been developed. 

The considerations above lead to some simple rules of thumb, given the current state of 

genotyping technology. For a new system, with no developed markers, the best approach is usually 

going to be to develop a set of SNP-PCR or targeted capture markers (Fig. 1). A single RNA-seq or 

RAD-seq analysis of a handful of individuals should be enough to permit the identification of 

promising SNP loci (e.g., Andrews et al. 2018; Thrasher et al. 2018). In the case of an organism for 

which microsatellite markers are available, the power of the markers can be assessed by calculating 

exclusion probabilities (Chakraborty et al. 1988) or simulating data in a program like CERVUS 

(Marshall et al. 1998), COLONY (Jones and Wang 2010; Wang 2012, 2013) or GERUD (Jones 2001, 

2005). If the markers are sufficiently polymorphic to answer the question of interest, then the existing 

microsatellites will be a good choice. Other approaches, such as RAD-seq, exome sequencing, RNA-

seq, whole-genome sequencing, and even SNP-Chips will usually be too expensive on a per-
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individual basis to justify their use for most parentage applications (Fig. 1). However, this constraint 

is quickly changing, as evidenced by the recent papers summarized in Table 3. Nevertheless, these 

techniques typically produce genotypes at thousands or tens of thousands of SNPs, when only a few 

hundred SNPs are usually required for complete resolution of parentage (Tables 1, 2, 3). In addition, 

the types of errors typically encountered by microsatellites and traditional SNPs are already well 

accommodated by existing software packages, whereas the errors associated with genotyping-by-

sequencing, especially PCR duplications and allelic dropouts, have yet to be integrated into most 

software packages. We expect this situation to change dramatically in the next few years, however, 

and these developments will make genotyping-by-sequencing methods more appealing for parentage 

analysis. 

 

Choosing Software 

 The last few years have witnessed a proliferation of new software packages for parentage 

analysis. Here we focus on older software packages that have become the workhorses of parentage 

analysis, as well as newer promising programs, some of which may still need further testing. Many of 

the older, less popular software packages are still available, and the interested reader can track them 

down by consulting previous reviews (Jones and Ardren 2003; Jones et al. 2010). Here, we organize 

software packages by analysis approach. These programs are summarized in Table 4, and a bit more 

detail about each package is provided in Appendix 2. 

 Some important issues when choosing software for parentage analysis for next-generation 

markers, beyond whether they can analyze the type of parentage data collected (e.g., parent-offspring 

pairs, groups of putative siblings and putative parents, or parent-parent-offspring triads), are: (1) 

whether the program can handle the number of markers used in the study; and (2) if the method can 

accept genotype likelihoods that reflect the genotype uncertainties characteristic of next-generation 

sequencing or if additional consideration of errors will be required. All of the methods worth 

mentioning incorporate error rates, but most of those error rates are based on expectations for 
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microsatellites and will likely not properly incorporate error arising from sequencing errors, allelic 

dropout, and PCR bias, all of which can dramatically impact genotypes in next-generation sequencing 

datasets such as RAD-seq data (Flanagan and Jones 2017b).  

 

Parentage Assignment Software. The granddaddy of parentage assignment software packages is 

CERVUS (Marshall et al. 1998; Kalinowski et al. 2007), which was the first mainstream program and 

remains by far the most popular, even for SNPs (Tables 1, 2) and next-generation data (Table 3). This 

program was groundbreaking in that it introduced a simulation approach, based on log-likelihoods, to 

control experiment-wise error. One advantage to CERVUS for most users is that it is user-friendly, 

with an intuitive graphical user interface. However, this apparent advantage is a drawback for some 

users, as it cannot be incorporated easily into command-line bioinformatics pipelines. The latest 

version also seamlessly incorporates next-generation SNP data. The most recent next-generation 

alternative to CERVUS is called SNPPIT (Anderson 2010; Anderson 2012). This program only 

allows the analysis of data for pairs of parents and their offspring. SNPPIT also only analyzes biallelic 

SNP genotypes, a design decision that significantly improves the speed of the analysis and allows a 

larger number of SNPs to be used. 

 

Sibship Reconstruction and Parentage Assignment. Probably the second most popular parentage 

analysis program is COLONY, which was the first program to combine sibship reconstruction and 

parentage assignment in a single analytical framework (Wang 2004; Wang and Santure 2009; Jones 

and Wang 2010). On Windows operating systems, COLONY has an intuitive graphical user interface, 

which likely adds to its popularity. A more recent competitor program is the R package SEQUIOA 

(Huisman 2017), which has the advantage of running in R, a platform that supports many other 

analyses of next-generation datasets. SEQUOIA is optimized to run very quickly, relative to previous-

generation parentage approaches. This optimization is achieved partially through an initial filtering 

step, based on loci where the individuals in question show alternatively homozygous genotypes, 
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which removes putative linkages between individuals that are unlikely to be relatives. SEQUIOA also 

differs from COLONY in considering a wider range of possible relationships, making grandparent-

grandoffspring assignments possible, for instance. SEQUIOA performs well with a large number of 

independent SNPs; for datasets with less than about 200 SNPs, COLONY, with its more exhaustive 

search of pedigree space, performs better (Huisman 2017).  

 

Bayesian Parentage Analysis. Bayesian parentage analysis, also known as full probability parentage 

analysis, was first implemented in MASTERBAYES (Hadfield et al. 2006), the R package that still 

provides the only reasonable framework for the implementation of this analysis technique. 

MASTERBAYES can be used to perform a parentage analysis per se, based on posterior probabilities 

(Nielsen et al. 2001), or to implement a full probability parentage analysis that simultaneously 

estimates population-level parameters during the parentage analysis. Of course, the Bayesian 

framework used by MASTERBAYES also allows the incorporation of any prior information that 

sheds light on parentage patterns. For instance, Walling et al. (2010) show that parentage analysis in 

red deer can be improved by using MASTERBAYES to include phenotypic data. MASTERBAYES 

has also been used, in a full-probability framework, to estimate a number of interesting ecological 

parameters, such as the fecundities of dispersing banner-tail kangaroo rats (Waser et al. 2013) and the 

relationships between mating order, sperm package size, and siring success in bushcrickets (Parker et 

al. 2017). Other full probability models, similar to those implemented in MASTERBAYES, have been 

developed independently using the tools available in R, for example to estimate distances of seed and 

pollen movement in the red oak (Moran and Clark 2011; see also Robledo 2012 and Chybicki 2017 

for non-R implementations). Despite a number of successes of the Bayesian parentage approach, full 

probability models remain underutilized in the study of parentage. 
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Niche Programs. A number of niche programs with potential utility for various specific parentage 

scenarios are listed in Table 5. Some of these programs deal with specific issues that apply to certain 

types of biological systems or datasets. For example, FAMOZ (Gerber et al. 2003) provides a 

CERVUS-like analysis framework that also works with dominant markers, such as amplified 

fragment length polymorphisms (AFLPs). Another program, ORCHARD (Spielmann et al. 2015), 

tackles the thorny problem of parentage analysis in autotetraploids. Other niche programs implement 

similar algorithms to mainstream programs, but with modifications that increase computational speed 

or improve them in other ways. For instance, ACCURASSIGN (Boichard et al. 2014) uses a 

CERVUS-like algorithm, restricted to sire-dam-offspring trios, which is optimized to run more 

quickly than a full CERVUS analysis. Similarly, FAPS (Ellis et al. 2018) improves upon the speed of 

COLONY by implementing a hierarchical clustering approach, at the expense of being less general, as 

FAPS requires arrays of half-siblings whose mothers are known. Finally, some of the niche programs 

perform functions that are unique. For instance, GERUD2.0 (Jones 2005) exhaustively searches for 

the genotypes of the minimum number of parents necessary to explain a progeny array, but requires a 

small number of highly polymorphic markers. GRANDPARENT FINDER (Christie et al. 2011) skips 

the parentage analysis step altogether and matches offspring to grandparents through an exclusion-

based approach. See Table 5 for additional programs of interest beyond those mentioned here. 

 

Other Methods of Note. The most widely used techniques for parentage analysis rely upon the 

Mendelian likelihoods derived by Meagher and Thompson (1986) and extended by Marshall et al. 

(1998), but these approaches assume unlinked markers and require knowledge of details like the 

proportion of parents sampled and genotyping error rates. As datasets get larger, some of these 

assumptions will be hard to meet, and researchers are beginning to explore other methods with less 

exacting requirements. For instance, Grashei et al. (2018) develop a method based on the genomic 

relationship likelihood, which uses metrics based on pairwise relatedness estimates among individuals 

that are insensitive to linkage disequilibrium (VanRaden 2008). Their method outperforms COLONY 

when applied to datasets consisting of very large numbers of marker loci (approx. 54,000 SNPs). 
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Other recently developed approaches include constrained genomic regression (Boerner 2017) and 

counting of the number of opposing homozygote loci (Wiggans et al. 2009; Hayes 2011). Before any 

of these new approaches can be considered mainstream alternatives to the tried-and-true approaches 

discussed above, they will have to be subjected to additional rigorous testing.  

 

Avoiding Parentage Analysis Pitfalls 

 A number of additional questions should be considered to avoid critical issues during 

parentage analysis. Linkage disequilibrium is moving to the forefront as a major issue as datasets 

grow to a genomic scale. The calculation of the likelihoods underlying parentage assignment is 

greatly simplified by the assumption that loci are in linkage equilibrium (Thompson and Meagher 

1998), and virtually all mainstream techniques embrace this simplification (but see the previous 

section). For now, the most common solution to this problem is to filter loci so that only a subset of 

statistically independent loci remains. For example, Andrews et al. (2018) illustrate one possible 

approach in their pipeline for RAD-seq data by using the program PLINK (Purcell et al. 2007) to filter 

out tightly linked loci.  

 Historically, one of the most troubling issues in parentage analysis was the occurrence of null 

(i.e., non-amplifying) alleles at microsatellite loci (Callen et al. 1993; Jones et al. 1998; Dakin and 

Avise 2004), and this problem persists in next-generation approaches as allelic dropout (Andrews et 

al. 2016). Null alleles and allelic dropout can lead to false exclusions, and the models of error in most 

assignment programs are not designed to accommodate this source of error. Rather, the advice is to 

remove loci suffering from null alleles or allelic dropout from the analysis, a solution that is relatively 

easy to apply to small microsatellite or SNP datasets but perhaps difficult to apply to the extremely 

large datasets produced by genotyping-by-sequencing approaches. In addition, the rate of allelic 

dropout may vary based on the type of next-generation method used (Flanagan and Jones 2017b). 

Possible approaches are to use a program like GBSTOOLS to estimate which SNPs in the dataset are 

most likely suffering from allelic dropout (Cooke et al. 2016) or to strictly filter loci for adherence to 
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Hardy-Weinberg Equilibrium. The effects of allelic dropout still need to be investigated in more 

detail, particularly in situations in which some parents are missing from the sample, as many 

parentage programs have the potential to assign incorrect parents with surprisingly high confidence 

when the true parents have not been genotyped.  

 Parentage assignment requires some level of understanding of the population from which the 

samples originated, usually including estimates allele frequencies and at least a rough idea of the 

proportion of candidate parents sampled (see Appendix 2). Allele frequencies can be calculated from 

the sample of potential parents, but it is often advisable to have a separate sample of individuals from 

the population. In addition, the progeny usually should not be included in allele frequency estimates, 

because the existence of groups of close relatives can lead to bias and spurious departures from 

Hardy-Weinberg Equilibrium. Most parentage assignment methods also assume that marker loci are 

neutral, but as these loci come to represent a greater fraction of the genome, some may be targets of 

selection (Flanagan and Jones 2017a), possibly affecting the outcome of parentage analysis. In terms 

of the proportion of parents sampled, ignoring this parameter has a direct influence on the confidence 

of assignments (Nielsen et al. 2001). Thus, the study should be designed to deliver population-level 

allele frequencies as well as an estimate of the proportion of candidate parents sampled. 

Another challenge facing parentage assignment using any type of marker is the accidental 

inclusion of family members other than the parents in the pool of candidate parents. Most parentage 

assignment programs assume that the parents are unrelated to each other and that no relatives of the 

offspring other than parents are included in the sample of adults. However, generations often overlap, 

resulting in half- or full-siblings of some of the progeny being included in the putative parent pool. 

This situation can cause problems, because full sibs can have higher assignment likelihoods than the 

true parent (Thompson 1976a; Thompson 1976b; Thompson and Meagher 1987; Marshall et al. 

1998). Sometimes related males will be clustered together, leading to set of related putative fathers, 

which will also bias the results of parentage assignment (Double et al. 1997). If many relatives are 

likely to be present in the sample, one solution might be to use an approach that estimates a broader 

pedigree than just parent-offspring relationships. Programs such as SEQUOIA (Huisman 2017) and a 
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growing list of pedigree reconstruction programs (Ko and Nielsen 2017) can be used to perform these 

sorts of analyses. As genomic resources become available for more species, it may even be possible to 

infer pedigrees using the length and distribution of genome segments that are identical by descent 

(Hill and White 2013), but this sort of approach still requires some development. 

Polyploids pose additional challenges, and consequently fewer approaches exist for assigning 

parentage in polyploids. The primary challenge facing parentage in polyploids is allele dosage. Allele 

dosage occurs when an individual has multiple copies of the same allele – for example, if an 

individual is genotyped with a, b, and c alleles, it could have the genotypes aabc, abbc, or abcc – and 

its exact genotype can only be diagnosed if it is homozygous for one allele or heterozygous for all 

four alleles. Some researchers have ignored the problem of allele dosage by (1) treating alleles as loci 

and transforming codominant microsatellite data into a binary dataset that can be treated like AFLPs 

(e.g., Gerber et al. 2003; Rodzen et al. 2004) or (2) uncertain alleles are recorded as missing data 

(Riday et al. 2013). The program ORCHARD (Spielmann et al. 2015) implements a method that tests 

all possible genotypes in tetraploids, thereby incorporating allele dosage. ORCHARD uses a 

combination of exclusion and likelihood to assign parentage. While ORCHARD is limited to 

tetrapolyploids, POLYPATEX accommodates autopolyploids with 4n, 6n, or 8n duplications (Zwart 

et al. 2016). However, unlike ORCHARD, POLYPATEX conducts only exclusion-based parentage 

analysis, which is the least desirable of the parentage analysis approaches (see above). In short, much 

work remains to be done with respect to parentage assignment in polyploids. 

 

Conclusions and Recommendations 

 Parentage analysis continues to play an important role in molecular ecology, and recent 

technological advances have made generating data used in parentage analysis even more accessible. 

We encourage researchers to carefully consider their questions and budgets before they embrace next-

generation genotyping approaches. Although SNPs may now be the best marker type for parentage 

analysis, the number required is far below what is typically included in genotyping-by-sequencing 
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approaches. Additionally, error arising from allelic dropout can be especially problematic in parentage 

analysis, and more development of analytical techniques will be required to accommodate these types 

of errors. Many of these problems can be circumvented with SNP-PCR approaches, but these methods 

require some up-front development, in the same vein as microsatellite markers. Regardless of how 

SNPs are generated, researchers should ensure that they carefully select markers that will adhere to 

the assumptions of parentage analysis programs and should preferentially choose loci with high minor 

allele frequencies. Researchers will have to weigh the relative strengths and weaknesses of next-

generation approaches against traditional molecular markers, such as microsatellites, which have 

repeatedly proven their worth.  

  In terms of analytical approach, parentage assignment and sibship reconstruction are the 

leading methods. Both methods perform well with a wide range of markers and existing mainstream 

software packages can use next-generation data. Some can even combine data from microsatellites 

and SNPs into a single analysis. Bayesian methods are also a viable alternative, and they are 

particularly appropriate when prior information, such as age or location, can be included in the 

analysis. They also permit a full-probability parentage analysis, which simultaneously estimates 

patterns of parentage and population-level parameters of interest. This latter method is the most 

defensible from a statistical standpoint, but it also requires careful consideration in the construction of 

probability equations. For certain sampling schemes that allow groups of related offspring to be 

collected together, parental reconstruction remains a viable technique and often substantially reduces 

the number of markers required. The one method that should be phased out is strict exclusion. Since 

an error-free dataset is a near impossibility, especially as the number of markers increases, exclusion 

requires arbitrary decisions regarding the number of mismatches required for a true exclusion. This 

number cannot be determined from first principles, and exclusion is divorced from statistical theory. 

Consequently, exclusion-based approaches make poor use of the data and also provide no method to 

assess confidence of assignments. 
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 The final consideration, which we did not discuss extensively throughout this review, is the 

sampling design of the study. The success of parentage analysis depends strongly on the nature of 

samples that can be obtained from the system of interest. Thus, a major consideration is whether or 

not the organism can be sampled in a way that allows parents to be present in the dataset. Now that 

abundant genetic markers can be obtained more easily than at any other time in the history of 

molecular ecology, the sampling plan is perhaps the single most important factor in parentage 

analysis. Thus, a substantial investment of time and effort in the planning and execution of fieldwork 

will certainly pay dividends in the study of parentage. Regardless, the future of parentage analysis is 

bright, and next-generation sequencing promises to deliver answers in systems that were difficult to 

study with traditional markers. With careful thought and experimental design, parentage analysis can 

now be conducted with sufficient power to completely resolve virtually any question in this area of 

inquiry.  
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Table 1. Studies of parentage using ‘classical’ SNPs – including Illumina SNP-Chips. Each method used an existing panel of reference SNPs. SNP-PCR 

refers to any SNP genotyping technique that prominently features a PCR amplification of a small number of specific loci. Examples include SNPlex (ABI; 

e.g., Cramer et al. 2011), Oligo Ligation Assay (OLA; e.g., Landegren et al. 1988), TaqMan (ABI; e.g., Hauser et al. 2011), iPLEX/MassARRAY (Agena 

Bioscience; e.g., Sellars et al. 2014, Weinman et al. 2015, Zhao et al. 2018), Fluidigm Integrated Fluidic Circuits (Fluidigm; e.g., Lew et al. 2015), and Ion 

AmpliSeq (Thermo Fisher Scientific: e.g., Beacham et al. 2017, 2018a,b).  

 

Reference Organism 

Number 

of 

Micro-

satellites 

SNP 

Method, 

Number 

of SNPs 

Parentage 

Analysis 

Software Parentage Relevance and Conclusions 

Abadía-

Cardoso et al. 

(2013) 

Steelhead 

(fish) 

0 SNP-

PCR, 95 

SNPPIT Reconstruction of pedigrees via parentage analysis provided insights 

into aspects of life history and heritability. A panel of 95 SNPs 

resolved parentage in this very large study (N=4,895 samples). 

Bell et al. 

(2013) 

Sheep 

(mammal) 

0 SNP-

PCR, 383 

Custom 

Maximum 

Likelihood 

Approach 

Tested SNP panels for parentage analysis in domestic sheep. As few 

as 127 SNPs resolved parentage well.  

Beacham et al. 

(2017) 

Coho 

Salmon 

(fish) 

0 SNP-

PCR, 304 

 

SNPPIT, 

COLONY 

2.0.6.2 

 

Tested direct sequencing of SNPs located in amplicons for 

parentage-based tagging and genetic stock identification. With the 

304 SNPs, 92% of individuals of known age and origin were 

assigned to parents with 100% accuracy using SNPPIT and 99.9% of 

individuals were assigned with 99.9% accuracy via COLONY. 

Beacham et al. 

(2018a) 

Coho 

Salmon 

(fish) 

0 SNP-

PCR, 304 

COLONY 

2.0.6.2 

Compared parentage-based tagging and genetic stock identification 

to coded wire tags to identify coho salmon sampled in fisheries and 

escapements. Found 100% population assignment accuracy using 

parentage-based tagging, with a total of 94.8% of known-origin 

individuals assigned. Found that the parentage-based tagging system 

is less expensive than the coded wire tagging system and performs at 

least as well, if not better, than coded wire tags in assigning 

individuals to populations of origin. 

Beacham et al. Chinook 0 SNP- SNPPIT, Tested the ability to directly sequence SNPs in amplicons for 
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(2018b) salmon 

(fish) 

PCR, 321 

 

COLONY 

2.0.6.2 

 

parentage-based tagging and genetic stock identification in Chinook 

salmon. 82% of 656 one-year-old individuals of known origin were 

assigned with 100% accuracy to their source population using 

SNPPIT. COLONY assigned 96.9% of known-origin individuals to 

the correct population with 99.8% accuracy. 

Buchanan et 

al. (2017) 

Beef Cattle 

(mammal) 

14 SNP-

PCR, 109; 

SNP-

Chip, 

1000 

Custom 

Exclusion 

Approach 

This comparison of microsatellites and SNPs found both to resolve 

parentage accurately.  

Clarke et al. 

(2014) 

Sheep 

(mammal) 

11 SNP-

PCR, 84 

CERVUS 

3.0.3, Custom 

Maximum 

Likelihood 

Explored the utility of SNPs for parentage analysis in sheep. The 

SNPs resolved parentage almost perfectly, a better result than that 

obtained with microsatellites. 

Cramer et al. 

(2011) 

Banded 

Wren (bird) 

7 SNP-

PCR, 41 

CERVUS 3.0 In a study of extra-pair paternity, 41 SNP loci had greater power than 

7 microsatellites. The combined dataset assigned all offspring with 

>99% confidence. 

Dussault and 

Boulding 

(2018) 

Atlantic 

Salmon 

(fish) 

0 SNP-

Chip, 150 

CERVUS 

3.0.7 

This study investigated how the SNP minor allele frequency impacts 

parentage assignment. Results show that loci with minor allele 

frequencies nearer to 0.5 are more powerful. A set of 50-150 SNPs 

was sufficient to resolve parentage completely. 

Fisher et al. 

(2009) 

Dairy Cattle 

(mammal) 

14 SNP-

PCR, 72 

Custom 

Exclusion 

Software 

In a comparison of marker types, 40 or more SNPs were as effective 

for parentage analysis as 14 microsatellites. 

García-

Fernández et 

al. (2018) 

Gilthead Sea 

Bream (fish) 

9 SNP-

PCR, 58 

CERVUS 3.0 The 58 SNPs were from 7 genes and were used to resolve 

haplotypes, resulting in 3-41 haplotypes per locus. The haplotypes 

(with 99.2 percent accuracy) performed better than either 9 

microsatellites (95.7 percent) or the 58 original SNPs (88.7 percent). 

Microsatellite data are from Borrell et al. (2011). 

Gudex et al. Red Deer 12 SNP- Custom In a comparison of microsatellites and SNPs, 100 SNPs 
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(2014) (mammal) PCR, 100 Exclusion 

Software from 

Fisher et al. 

(2009) 

outperformed 12 microsatellites for parentage exclusion. 

Harlizius et al. 

(2011) 

Pig 

(mammal) 

0 SNP-

PCR, 120 

CERVUS A known pig pedigree was used to develop a battery of SNPs for 

parentage testing. At least 60 SNPs were required for reliable 

assignment. A troubling pattern was that incorrect assignments 

increased with more loci when the true parent was not sampled. 

Hauser et al. 

(2011) 

Sockeye 

Salmon 

(fish) 

11 SNP-

PCR, 80 

CERVUS 3.0, 

COLONY 2.0, 

SNPPIT 

Compared assignment based on microsatellites and SNPs. The SNP 

panel generally outperformed the microsatellites. 

Heaton et al. 

(2014) 

Sheep 

(mammal) 

0 SNP-

PCR, 109 

Manual 

Exclusion 

An examination of 95 tetrad families (one mother, one father, two 

offspring) demonstrated that 109 SNPs can effectively resolve 

parentage. 

Hess JE et al. 

(2016) 

Steelhead 

(fish) 

0 SNP-

PCR, 95 

SNPPIT Used parentage-based tagging to assign individuals to stock 

locations, with the ultimate goal of estimating variation among stocks 

in abundance and migration timing.  

Hess MA et al. 

(2016) 

Steelhead 

(fish) 

0 SNP-

PCR, 95 

SNPPIT Parentage analysis was used to show that steelhead use thermal 

refuges to avoid prolonged exposure to high water temperatures. 

Holl et al. 

(2017) 

Domestic 

Horse 

(mammal) 

0 SNP-

PCR, 101 

Custom 

Exclusion 

Approach 

A panel of SNPs was used to assess parentage in known horse 

families. The 101 SNPs correctly resolved the parentage of 99.9% of 

offspring. 

Ji et al. (2013) Cacao (tree) 0 SNP-

PCR, 70 

CERVUS 3.0 Parentage analysis used to assign parents of farmer varieties of 

cacao. The SNPs assigned parentage for 28/53 varieties at 80% 

confidence. The reference “parents” (cacao clones) were not the 

direct parents of the farmer varieties, hence the low assignment rate. 

Jin et al. 

(2014) 

Pacific 

Oyster 

(mollusk) 

0 SNP-

PCR, 48 

CERVUS 3.0 An analysis of six families showed that 40 SNPs proved sufficient to 

assign all offspring to parents. 

Labuschagne African 10 SNP- CERVUS For parentage analysis in a small captive population, SNPs 
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et al. (2015) Penguin 

(bird) 

PCR, 31 3.03, 

PARFEX 

performed at least as well as microsatellites. 

Liu et al. 

(2016) 

Rainbow 

Trout (fish) 

0 SNP-

PCR, 95 

CERVUS 

3.0.7, SNPPIT 

Parentage was assigned for fish with a known pedigree. The 95-SNP 

panel was sufficient to completely resolve parentage. CERVUS 

slightly outperformed SNPPIT. 

McClure et al. 

(2015) 

Cattle 

(mammal) 

0 SNP-

Chip, 800 

Custom 

Exclusion 

Approach 

Different numbers of SNPs were tested for parentage validation in 

cattle. The authors recommend using at least 500 SNPs. 

McClure et al. 

(2018) 

Cattle 

(mammal) 

0 SNP-

Chip, 800 

Custom 

Exclusion 

Approach 

The goal of this study was to develop better quality control practices 

for SNP-based pedigree validation. The authors recommend at least 

500 SNPs be used for parentage validation.  

Panetto et al. 

(2017) 

Cattle 

(mammal) 

0 SNP-

Chip, 

3894 

Exclusion An analysis of Red Sindhi cattle showed that as few as 71 SNPs were 

sufficient for parentage verification with extremely high confidence. 

Schunter et al. 

(2014) 

Black-Faced 

Blenny 

(fish) 

0 SNP-

PCR, 192 

CERVUS, 

COLONY 

Genotyped recruits to test whether larvae settle back in their natal 

location. Parentage analysis revealed limited successful dispersal and 

only short-term dispersal events. Sibship reconstruction revealed that 

recruitment can still occur quite distant from the natal site. This study 

shows that information provided by parentage analysis and kinship 

reconstruction can be complementary. 

Steele et al. 

(2013) 

Steelhead 

(fish) 

17 SNP-

PCR, 188 

SNPPIT for 

SNPs, 

CERVUS 

3.0.3 for 

microsatellites 

Tested the feasibility of parentage-based tagging (PBT) based on 

SNP markers. As few as 72 SNPs can perform as well for parentage 

analysis as 17 microsatellite markers. 

Strucken et al. 

(2014) 

East Asian 

Cattle 

(mammal) 

0 SNP-

Chip, 200 

Custom 

Exclusion 

Approach 

(Hayes 2011) 

In a test of two commonly used SNP panels in cattle, results showed 

that 100 SNPs produced about 3-4% false positives, whereas 200 

SNPs resolved parentage perfectly. 

Strucken et al. Cattle and 0 SNP- Custom Starting with a panel including tens of thousands of SNPs, multiple 
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(2015) Sheep 

(mammals) 

Chip, 

33159 

(cattle) or 

48599 

(sheep) 

Exclusion 

Approach 

smaller panels were tested. The authors conclude that at least 200 

SNPs are necessary for reliable parentage testing. 

Telfer et al. 

(2015) 

Eucalyptus 

(tree) 

13, 16 SNP-

Chip, 106 

Manual 

Exclusion 

In an exclusion-based analysis, the 106 SNP markers outperformed a 

panel of 13 microsatellites and equaled the performance of 16 

microsatellites. 

Thongda et al. 

(2018) 

Eastern 

Oyster 

(mollusk) 

16 SNP-

PCR, 58 

CERVUS 

3.0.7, SNPPIT 

1.0 

This study developed a panel of 58 SNPs and tested them in farmed 

populations of oysters. Parentage assignments from 58 SNPs largely 

agreed (98.74%) with assignment based on 16 microsatellite loci.  

Tokarska et al. 

(2009) 

European 

Bison 

(mammal) 

17 SNP-

Chip, 960 

CERVUS 

3.0.3 

Low genetic diversity rendered the microsatellites unsuitable for 

parentage analysis. Simulations showed that as few as 60-100 SNPs 

completely resolved parentage. 

Tortereau et 

al. (2017) 

Sheep 

(mammal) 

0 SNP-

PCR, 249  

Custom 

Maximum 

Likelihood 

(Boichard et 

al. 2014) 

A SNP-Chip was used to identify SNPs suitable for a parentage 

testing panel. At least 175 of these SNPs were required for accurate 

parentage assignment. 

Weller et al. 

(2010) 

Holstein 

Cattle 

(mammal) 

0 SNP-

Chip, 

38828 

Custom 

Exclusion 

Approach 

This study genotyped fathers and sons at nearly 40,000 SNPs. These 

genotypes allowed exclusion of bulls incorrectly assumed to be sires 

and an estimate of the SNP genotyping error rate (~0.05%). 

Wiggans et al. 

(2009) 

Dairy Cattle 

(mammal) 

0 SNP-

Chip, 

40874 

Custom 

Exclusion 

Approach 

A comparison of known parent-offspring pairs showed that this panel 

of SNPs could easily distinguish between true parents and unrelated 

individuals. 

Xu et al. 

(2017) 

Common 

Carp (fish) 

0 SNP-

PCR, 48 

CERVUS 

3.0.7 

Efficacy of SNP-based parentage analysis was tested on sire-dam-

offspring trios of common carp. Assignment rates based on CERVUS 

were approximately 87.3%. 

Yu et al. 

(2015) 

Pig 

(mammal) 

12 SNP-

Chip, 960 

CERVUS 3.0 In a sample of 24 pigs, as few as 30 SNPs provided better parentage 

resolving power than a dozen microsatellites. 
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Zhang et al. 

(2018) 

Cattle 

(mammal) 

0 SNP-

Chip, 

774,660 

CERVUS 3.0 After genotyping 1074 calves with an Illumina BovineHD BeadChip, 

303 SNPs were identified as highly informative. The top 50 of these 

were tested in paternity analysis and were found to resolve paternity 

in 99.89% of cases in Chinese Simmental cattle. 
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Table 2. Parentage analysis using some form of novel next-generation sequencing to identify SNPs to subsequently assay. All of these studies used the 

Illumina sequencing platform during the next-generation sequencing step. SNPs were subsequently assayed using techniques such as those listed in the Table 

1 caption. 

 

Reference Organism 

Number 

of 

Micro-

satellites 

Next-Gen 

Method 

Number 

of SNPs 

Parentage 

Analysis 

Software Parentage Relevance and Conclusions 

Gutierrez et al. 

(2017) 

Pacific and 

European 

Oysters 

(mollusk) 

0 Whole-

genome 

sequencing, 

RAD-seq  

~27,000, 

~11,000 

CERVUS 

3.0.7, identity-

by-state 

clustering 

Whole genome sequencing and RAD-seq 

were used to identify SNPs, which provided 

the markers for a SNP array. The SNP array 

was tested in a parentage analysis involving 

three nuclear families (with 5 parents and 

161 offspring). The SNP array performed 

well in assigning offspring to families. 

Harney et al. 

(2018) 

European 

Abalone 

(mollusk) 

0 Transcripto

me (Harney 

et al. 2016) 

123 CERVUS 3.0, 

VITASSIGN 

8.5 

Analysis of known families of abalone 

revealed that CERVUS correctly assigned 

99.99% of offspring to their parents. 

CERVUS slightly outperformed the 

exclusion method implemented in 

VITASSIGN. 

Holman et al. 

(2017) 

Atlantic 

salmon 

(fish) 

0 sdRAD-seq 94 COLONY 

2.0.6.2 

Used RAD-seq to identify SNPs to be 

developed into a marker set. In populations 

involving known crosses, 94 SNPs resolved 

parentage with 100 percent accuracy. 

Kaiser et al. 

(2017) 

Blue 

Warbler 

(bird) 

6 RNA-seq  97 CERVUS 3.0 Novel SNPs, developed using RNA-Seq but 

genotyped by a SNP-PCR technique, were 

compared to microsatellites. A panel of 97 

SNPs had approximately the same parentage 

resolving power as 6 microsatellite loci. 

Laucou et al. Grapevine 20 Whole- 10,207 FAMOZ Whole-genome resequencing, via Illumina, 
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(2018) (plant crop) genome 

sequencing 

was used to develop a SNP-Chip. These 

SNPs were used to investigate parentage for 

783 grapevine cultivars, and the results were 

verified using microsatellite data. 

Lew et al. 

(2015) 

Delta Smelt 

(fish) 

0 sdRAD-seq 24 CERVUS 3.0 A SNP panel consisting of as few as 24 

markers can effectively resolve parentage in 

captive populations. 

Nguyen et al. 

(2014) 

Blue Mussel 

(mollusk) 

10 GBS  179 MasterBayes In a hatchery setting, mussels were assigned 

to families to estimate heritabilities and 

selection on traits. Microsatellites assigned 

only 62.6%, whereas SNPs assigned 92.5%. 

Microsatellite data are from Nguyen et al. 

(2011). 

Sellars et al. 

(2014) 

Black Tiger 

Shrimp 

(crustacean) 

13 RNA-seq 122 Custom 

CERVUS-like 

analysis 

Compared assignment based on 

microsatellites and SNPs. The SNPs 

provided more power. 

Weinman et 

al. (2015) 

Superb 

Starlings 

(bird) 

15 RNA-seq 102 CERVUS 3.0, 

COLONY 2.0 

Compared markers for parentage assignment 

in a cooperative breeder. Microsatellites and 

SNPs performed similarly.   

Zhao et al. 

(2018) 

Florida Bass 

(fish) 

10 GBS  58 CERVUS 3.0, 

SNPPIT 

This study developed a novel SNP panel. A 

comparison of SNPs to microsatellites 

showed that 58 SNPs performed better than 

10 microsatellites. The program SNPPIT 

slightly outperformed CERVUS. 
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Table 3. Parentage analysis using next-generation sequencing to genotype the SNPs. All of these studies used the Illumina sequencing platform during the 

next-generation sequencing step. 

 

Reference Organism 

Number 

of 

Micro-

satellites 

Next-Gen 

Method 

Number 

of SNPs 

Parentage 

Analysis 

Software Parentage Relevance and Conclusions 

Alam et al. 

(2018) 

Macadamia 

(tree) 

0 DArT-seq 3,956 CERVUS 

3.0.7 

DArT-seq is a reduced representation 

sequencing approach, similar to RAD-seq.  

Parentage analysis based on DArT-seq SNPs 

was used to identify the parental cultivars 

for 18 seedlings. 

Andrews et al. 

(2018) 

 

 

 

 

 

Mexican 

gray wolf 

and bighorn 

sheep 

(mammal) 

22 

(wolf), 

14 

(sheep) 

ddRAD-seq  139-363 

(wolf), 

142-523 

(sheep) 

CERVUS 3.0 This study developed a pipeline for 

assigning parentage using RAD-seq data. 

SNPs that were generated from de novo 

RAD-seq analysis and from reference-

guided analysis were compared to 

microsatellites. The results demonstrated 

that SNPs had higher power than the 

microsatellite panels.  

Boyle et al. 

(2018) 

Acacia Ants 

(insect) 

0 ddRAD-seq 309-764 COLONY A ddRAD-seq approach was used to 

generate several hundred SNPs for four 

species of acacia-associated ants. Parentage 

analysis revealed the mating systems of 

these ants and confirmed that ddRAD-seq is 

a viable method for this type of study.  

Head et al. 

(2017) 

Mosquitofis

h (fish) 

0 DArT-seq 3.171 Custom 

Exclusion 

A parentage analysis in captive populations 

was used to examine the effects of sex ratio 

and habitat complexity on sexual selection 

in mosquitofish. Samples were genotyped 

using DArT-seq, and parentage was 
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assigned by comparing Hamming Distances 

(Hu et al. 2015) among offspring and 

putative parents. All offspring were 

unambiguously assigned to parents (but only 

10 candidate males were present per 

population). 

Johnson et al. 

(2017) 

Mountain 

Hemlock 

(tree) 

0 ddRAD-seq  353 CERVUS 

3.0.3 

The goal was to assess mode of reproduction 

and seed sources at the arctic treeline. Only 

18/161 plants were assigned a parent from 

within the 860m × 600m study transect, 

indicating substantial seed dispersal or 

serious technical artifacts. 

Kess et al. 

(2017) 

Marine 

Snail 

(mollusk) 

0 ddRAD-seq 1131 COLONY 

2.0.4.4  

Used ddRAD-seq to determine if the 

sequenced male is the true father of putative 

full-siblings from a cross of a hybrid father 

and parental ecotype mother. All offspring 

were assigned to the sequenced father, 

providing evidence that the female had not 

been multiply mated during crosses. 

O’Brien et al. 

(2018) 

Red-Backed 

Toadlet 

(amphibian) 

0 DArT-seq 15,746 Custom 

Exclusion 

This study examined parentage in the red-

backed toadlet, and assigned parentage 

using the Hamming Distance (Hu et al. 

2015). Cutoffs were determined empirically. 

Results showed that this species is 

polygynous with intense male-male 

competition. 

Palaiokostas et 

al. (2018) 

Common 

Carp (fish) 

0 RAD-seq 12,311 Sibship 

Analysis with 

R/hsphase 

Offspring were produced from controlled 

crosses but raised together, requiring 

parentage analysis to determine family of 

origin. The parentage analysis was 
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conducted with the pedigree analysis 

software R/hsphase (Ferdosi et al. 2014), 

and the data were used to estimate 

heritability and perform a GWAS for body 

size. 

Premachandra 

et al. (2019) 

Yellowtail 

Kingfish 

(fish) 

8 DArT-seq 2,128 COLONY 

2.0.6.4, 

SEQUIOA 

Yellowtail kingfish were sampled from a 

communal rearing tank, and parentage was 

estimated using SNPs and microsatellite 

markers. By altering the subsets of markers 

used, the authors investigated the influence 

of number of SNPs and minor allele 

frequency on parentage assignment. They 

recommend using about 500 SNPs with 

moderate minor allele frequencies. 

Thrasher et al. 

(2018) 

Variegated 

Fairy-Wren 

(bird) 

12 ddRAD-seq 411 CERVUS 

3.0.7 

After stringently filtering the ddRAD-seq 

dataset to 411 marker loci, these SNPs show 

greater power than 12 microsatellites. The 

SNPs slightly outperform the microsatellites 

in a study of extra-pair paternity. 
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Table 4. The leading software packages for parentage analysis. 

Name of 

Software 

Parentage 

Analysis 

Technique 

Are 

Errors 

Taken 

into 

Account? 

Graphical 

or 

Command 

Line? 

Preferred 

Marker 

Type 

Approx. 

Run 

Speed 

Operating 

Systems Reference 

CERVUS Assignment Yes Graphical Micro-

satellites 

or SNPs 

Average Windows, 

Mac 

Marshall et al. (1998) 

SNPPIT Assignment Yes Command 

line 

SNP Fast Windows, 

Mac 

Anderson (2010; 2012) 

COLONY Sibship 

Reconstruction 

Yes Graphical Micro-

satellites 

or SNPs 

Average Windows 

(no GUI 

on Mac or 

Unix) 

Jones and Wang (2010) 

SEQUIOA Sibship 

Reconstruction 

Yes Command 

line, in R 

Micro-

satellites 

or SNPs 

Fast Windows, 

Mac, Unix 

Huisman (2017) 

MASTERBAYES Bayesian Yes Command 

line, in R 

Micro-

satellites 

or SNPs 

Slow Windows, 

Mac, Unix 

Hadfield et al. (2006) 
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Table 5. Niche software packages. 

Name of 

Software 

Parentage 

Analysis 

Technique Description Reference 

ACCURASSIGN Assignment Assigns parent-pairs using maximum-

likelihood based approach similar to 

CERVUS. 

Boichard (2014) 

FAMOZ Assignment A likelihood-based parentage assignment 

program that can use codominant, 

dominant, and cytoplasmic markers. 

FAMOZ also does not require a priori 

information on the proportion of sampled 

candidate parents. 

Gerber et al. 

(2003) 

FAPS Sibship Given half-sibling progeny arrays with 

known mothers, sibships and paternities 

are determined through a hierarchical 

clustering approach. 

Ellis et al. (2018) 

FRANZ Sibship Can make use of prior information, such as 

sub-pedigrees, sex, and age.  

Riester et al. 

(2009) 

GERUD2.0 Parental 

Reconstruction 

Reconstructs parental genotypes when no 

parents are known. 

Jones (2005) 

GRANDPARENT 

FINDER 

Grandparent 

Identification 

Match offspring with missing parents in 

the sample to grandparents using 

exclusion. 

Christie et al. 

(2011) 

ORCHARD Exclusion/ 

Assignment 

Combines exclusion and likelihood-based 

parentage assignment for autotetraploids.  

Spielmann et al. 

(2015) 

PARFEX Assignment Implements exclusion and likelihood-

based parentage assignment in Microsoft 

Excel. 

Sekino and 

Kakehi (2012) 

POLYPATEX Exclusion Applies exclusion methods to polyploids 

with 4n, 6n, or 8n duplication. 

Zwart et al. 

(2016) 

SOLOMON Bayesian Designed for situations where only a small 

fraction of all candidate parents can be 

sampled. In such cases, SOLOMON uses 

Bayes' theorem to determine the 

probability of parent-offspring pairs being 

false given the frequencies of shared 

alleles. See also Anderson and Ng (2014). 

Christie et al. 

(2013) 

VITASSIGN Exclusion Allows for mismatches at one or more 

allele to recover assignment power. 

Vandeputte et al. 

(2006) 
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Figure 1. A decision tree with price estimates for various SNP genotyping based on availability of 

existing resources. The prices assume a study with 192 offspring and a parental pool of 192 adults 

(i.e., 384 total individuals genotyped). Prices do not include DNA extraction, consumable plasticware, 

or reagents used for DNA quantification. Microsatellite prices were developed assuming the use of 6 

microsatellites, following the protocol described in Jones and Avise (1997a). PCR-SNP costs were 

based on Broccanello et al. (2018) and SNP-chip costs were based on the Bovine SNP50 DNA 

Analysis Bead Chip (Illumina). RAD-seq costs were updated from Peterson et al. (2012) for Illumina 

HiSeq pricing. Targeted capture costs were based on Hoffberg et al. (2016). Note that prices may vary 

dramatically depending on availability of core facilities and contract pricing. Asterisks (*) denote 

costs assuming the appropriate machines are already available. The full breakdown of the cost 

estimates is available as Supplementary File 1. 

 

 




