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Abstract of a Dissertation submitted in partial fulfilment of the 

requirements for the Degree of Bachelor of Science with Honours. 

Abstract 

Using Burkholderia sp. as a biocontrol agent in kiwifruit plants against 

Neofusicoccum parvum 

 

by 

Shixi Wu 

 

Actinidia chinensis (kiwifruit) is an important horticultural crop in New Zealand. A fungal 

pathogen, Neofusicoccum parvum (teleomorph Botryosphaeria), was found causing fruit drop 

symptoms in kiwifruit orchards. To target this issue, a potential bacterial biocontrol agent, 

Burkholderia sp. (isolate W4R11), was used to test its efficacy against N. parvum in planta.  

Molecular approaches and in vitro testing were conducted prior to the glasshouse trial to provide 

insights on understanding the biology of N. parvum and Burkholderia sp. This work demonstrated 

the in vitro antagonist effect of Burkholderia sp. against N. parvum. Cultural practices on the two 

organisms were also conducted in the laboratory, providing inoculant material for the in planta 

testing. 

This is the first study testing the use of Burkholderia sp. (isolate W4R11) as a wound protectant in 

one-year old kiwifruit plants against N. parvum. It demonstrated an apparent competition 

between the two organisms and provided suggestions on colonization and movement of 

Burkholderia sp. and N. parvum in kiwifruit plants. The Burkholderia strain can colonise 15 -30% 
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of the plants, which had no substantial differences compared to N. parvum. When examining the 

stems further from the wound site, Burkholderia sp. showed suppression on N. parvum, resulting 

in a non-fungal colonization. The result suggested: (1) Burkholderia sp. may have a better 

colonization ability and faster movement than N. parvum in kiwifruit plants; (2) Burkholderia sp. 

can be used as a wound protectant after pruning or harvesting of the kiwifruit to inhibit wound-

invading pathogens; and (3) to prune the kiwifruit stem 20 cm from the infected site and then 

applying the biocontrol agent may reduce disease incidence in planta.  

Future studies should utilize more replicates and field testing to confirm the biocontrol ability of 

this particular strain.  

Keywords: Neofusicoccum parvum, Burkholderia sp., biocontrol, kiwifruit, in vitro, in planta 
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Chapter 1 

General Introduction 

 

1.1 Kiwifruit 

 

1.1.1 Taxa and morphology 

 

The genus Actinidia Lindl. contains around 60 plant species . Actinidia chinensis, known as kiwifruit, is one 

of the species that have been most commonly commercialized. It was originated from mainland China, and 

was divided into two varieties: A. chinensis Planch. var. chinensis and A. chinensis var. hispida. The latter 

variety was previously described as A. chinensis var. deliciosa, which then separated as a distinct species 

by itself. 

 

Kiwifruit is a woody plant and as a climbing shrub, it may reach 10 meters in length. It is dioecious, with 

white to cream-colored flowers. Branches are reddish, with oblong lenticels present. Leaves are papery, 

pale to dark green, broadly obovate or suborbicular shaped. They are often associated with hair on the 

abaxial surface. In wild A. chinensis, the fruit are often small and rounded (Ferguson 1999). Commercially 

selected cultivars give bigger fruits, which are almost hairless when mature. The fruit has a smooth skin 

with a beak shape at the stem end. The colors of the flesh vary from green to yellow, and one variety has 

red inner pericarp flesh. The flavor of the gold kiwifruit, A. Chinensis, is sweet and aromatic, which is 

considered to be more appealing to the market than the green kiwifruit, A. deliciosa.  

 

The kiwifruit industry had suffered significant losses between 2010 to 2013, due to the outbreak of one 

bacterial disease, Psa (Pseudomonas syringae pv. actinidiae). Actinidia chinensis Planch. var. chinensis 
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'Gold3' was found to be more disease resistant. It is now grafted in place of the old variety,“Hort16A”, and 

been marketed as “SunGold” in New Zealand (PlantandFood 2012).  

 

1.1.2 Distribution and economic role 

 

Kiwifruit can grow under temperate climate. It requires well-drained, fertile soil, irrigation and protection 

against wind and frost (Ferguson 1991). Kiwifruit growing regions in New Zealand are locating in the 

coastal areas of the North Island including Auckland, Bay of Plenty, Hawkes Bay area, Wanganui and the 

top of the South Island near Nelson. The major growing area among which is situated in the Bay of Plenty, 

with Te Puke known as the kiwifruit capital of the world (KVH 2016).  

 

The global market demand for kiwifruit has increased significantly since the 1980s, with kiwifruit 

production exceeding 1.1 million tons in 2009. New Zealand, the third largest kiwifruit producing country 

in the world, yielded 400,000 tons of fruit in 2014. In the same year, the NZ kiwifruit exports earned 930 

million dollars, and the growing regions covered 10944 hectares (FreshFacts 2014). Competition from 

international growers from countries like Chile, exporting duty and tariff levels, have put New Zealand 

growers and exporters under pressure. They have also been challenged to use less chemicals, due to the 

minimal chemical residue requirements (MAF 2011). An integrated pest management system that 

incorporates sustainability and market demands should therefore be considered for the kiwifruit industry 

(Suckling et al. 2003).  

 

1.1.3 Kiwifruit production 

 



11 
 

A series of processes, from breeding, pollination, harvesting and storage, takes place in the kiwifruit 

orchard. The production year starts when the vines drop leaves and winter dormancy takes place. Fruited 

canes should be pruned at this period of time. The break in winter dormancy is indicated by bud break, 

followed by shoot and flower growth in spring. The timings of which can be affected by weather 

conditions like frost. In the summer, flowers need to be pollinated and thinned, and successful pollination 

requires 30-125 pollen grains per stigma (Hopping & Hacking 1982). Damaged fruit and excessively 

growing vines need to be removed to prevent pest and disease infection. Harvesting takes place in 

autumn, when the fruit reaches the desired dry matter content. Freshly-picked fruit goes through a 

storage process where it will be graded, put into trays and placed in cool storage. Kiwifruit suffers from 

various fungal diseases. Disease management in the production process is therefore important. Various 

disease control strategies and the understanding of different pathogens are required to achieve an 

effective control. 

 

1.2 Common fungal disease in kiwifruit 

 

Most fungal diseases show symptoms at the post-harvest stage (Pennycook 1985; Barkai-Golan 2001; 

Zhou et al. 2015). Common pathogens are Botryosphaeria, Botrytis, and Sclerotinia species. 

 

Botryosphaeria species can induce fruit rot and shoot blight in kiwifruit (Pennycook 1985; Thomidis & 

Exadaktylou 2010). Disease symptoms on the fruit can develop after harvesting or after fruit removal from 

storage. The disease can deteriorate the flesh quality of the fruit and give an unpleasant smell. Dimples 

can develop on the fruit surface and grow into lesion during the fruit ripening process. The lesion can 

expand rapidly into pale brown oval shapes, up to 30 mm long, with a glassy dark green margin. It can 

develop in all parts of the fruit (e.g. side, distal end or center), resulting in a soft and squashy surface that 
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is slightly depressed (Koh et al. 2005). Inside the lesion, the flesh is macerated and once the skin is peeled 

off, the oval lesion inside is water-soaked and yellowish or white. Botryosphaeria species can also cause 

canker and shoot blight (Thomidis & Exadaktylou 2010). Common Botryosphaeria species that affect 

kiwifruit are B. dothidea, Neofusicoccum luteum, N. parvum and Lasiodiplodia theobromae (Pennycook 

1985). 

 

Botrytis species can cause early infection in the orchard and the symptoms can remain latent until the fruit 

transferred into the cool storage at 0 to 1oC (Pennycook 1985). This is often caused by one species, B. 

cinerea, and the disease is often known as storage rot or grey mold in kiwifruit. In cool storage, an external 

darkening at the stem end of the fruit becomes conspicuous. The infected area can develop a defined 

front, with a darker green color compared to the normal flesh, and the fruit feels soft. The un-infected 

area of the fruit remains healthy looking. As the rot advances, it may spread all over the fruit, yet often 

leaves the distal end uninfected. Infected fruit flesh appears water-soaked with a faint pink discoloration 

(Elmer & Michailides 2004). As the disease progresses, flocculate, dull white mycelium is visible on the 

outside of the fruit, which will darken into a grey appearance due to dark conidiophores bearing powdery, 

grey conidia. The mycelium may also form irregular shaped, black sclerotia on the surface of the fruit 

(Pennycook 1985; Niklis et al. 1997). 

 

There are three Sclerotinia species that can cause plant disease, and only S. sclerotorium has been 

reported on kiwifruit (Pennycook 1985). It can cause blossom blight that turns blossoms and pedicels pale 

brown, leaving clusters of blossoms soft and water-soaked in the summer. The symptoms are common in 

male vines and less in female buds and blossoms (Pennycook 1985). The dead brown tissues can spread 

onto the pedicel as well. Under dry conditions, secondary spread of infection is less likely to occur, as 

there are no visible mycelial growth on dead plant tissues. In wet seasons, the rotting blossom can be 
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covered with aggregated mycelium, which darkens and forms sclerotia. The rot lesions from the pedicels 

can quickly spread onto the shoots, leaves and petioles, especially in rainy seasons, giving necrotic lesions 

(Hoyte 2001). Fruit rot symptoms can develop during fruit set but are common in late summer after petal 

fall. Sclerotinia infection give a watery, sunken, and whitish lesion on surface of the fruit, with black 

sclerotia produced amongst the mycelium. Dried and shrunken whole fruits are observed on the vine and 

can also fall on the ground (Michailides & Elmer 2000). During dry seasons, shoot blight can also develop, 

especially on male plants (Pennycook 1985). 

 

1.3 Disease management in kiwifruit 

 

Various methods are applied for disease management in kiwifruit orchard. The following are factors for 

growers to consider, from planting to the storage process, as a general guideline. 

 

1.3.1 Site selection 

 

Kiwifruit requires well drained soil with regular nitrogen, and phosphorous fertilizer application. Poor 

drainage of the soil or high rainfall areas can provide favorable conditions for fungal spores to spread and 

germinate (Carlile et al. 2001). At places with standing water (e.g. low point of the field, irrigation 

overlapped areas or shaded areas), modification to the landscape is required. Besides, when the 

temperature reaches a preferable range for the pathogen growth, a high incidence of fungal infection may 

occur (KVH 2017a). 

 

Ensuring adequate air movement and windbreak protection are necessary in disease management. 

Downwind areas should be avoided, where previous year spores can be trapped and accumulated from 
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plant debris or volunteer plants (Ogaraku 2010). Adequate spacing between the plants (5-6 metre spacing 

between rows) is necessary. It allows a good airflow and hence reduces relative humidity that may favor 

pathogen dispersal and growth (KVH 2017a). Site selection should also consider its practicability for 

fungicide application. High slope or hilly locations should be avoided for an easy machinery operation. 

 

1.3.2 Resistant cultivars 

 

Selection of disease-resistant cultivars can play a great part in disease management. By understanding the 

biology of fungal populations and the complicated interaction between the host and pathogen, one may 

be able to select a better performance plant (Beever et al. 2005). 

 

Traditional breeding for resistant cultivar started in the early 21st century. Before which, for a long period 

of time, the green kiwifruit variety, “Hayward”, was the only cultivar commercially grown in New Zealand 

(Ferguson et al. 1990). Nowadays, cultivar selections and breeding programs are conducted all over the 

world in countries like China, France and New Zealand, offering entries of new Actinidia fruit into 

international markets (Ferguson 1999). However, instead of enhancing the disease resistant ability, most 

new cultivars are selected to obtain an early maturing and better taste of the fruit. Previous work on 

“Hayward”, in regard to fruit susceptibility of pathogens during cool storage (Pennycook 1985), may lead 

to studies on the susceptibility of different cultivars to these pathogens. 

 

Genetic studies of host genes has been carried out in several studies, offering insights to the vast genetic 

sources of this plant, which could hopefully aid future breeding work (Ferguson et al. 1990; Beatson et al. 

2014). Identifying particular desirable genes can be a long process. Take the interactions between Botrytis 

cinerea and kiwifruit for example: biochemical and genetic markers were used in determining host 
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resistance. By using microarray of gene expression and monitoring biochemical activity of defensive 

compounds like specific proteins and enzymes, certain genes were correlated with the onset of pathogen 

infection. Real-time Polymerase chain reaction (PCR) was also used to quantify time of gene expression 

and its relationship with disease resistance (Beever et al. 2005). The use of these genetic markers can be 

divided into two. Firstly, markers can be used to screen breeding populations. Resistant lines or seedlings 

containing these genes can then be selected. Secondly, the genetic marker can also be used to develop 

post-harvest treatments for kiwifruit. Antifungal volatile can be found in particular hosts, whose genetic 

markers could then be used in identification and screening (Kulakiotu et al. 2004).  

 

1.3.3 Cultural management in orchard: 

 

From planting till harvest, several aspects of cultural management should be addressed to reduce fungal 

disease incidence. 

 

Canopy air flow is important in plant growth and disease management. A metal arch system, developed by 

NZ growers, can provide headroom under the canopy for pruning and harvesting, and frost protection that 

allows cold air to flow downward and settle on the ground (Morton 1987). It offers better plant growth, 

making the host plant less susceptible to pathogens and creating an unfavourable environment for disease 

establishment. However, pruning and trimming of the shoots can give entry points for infection. 

Therefore, fungicide application or related treatments on these wounds need to be conducted to reduce 

disease incidence (Bester et al. 2007). 

 

Removal and disposal of diseased material are also crucial in disease control. It can eliminate overwinter 

inoculum like pycnidia or mycelium that survive in dead plant material (Pennycook 1985). This can be 
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achieved via cleaning of infected plant materials from previous years and maintaining the general hygiene 

of the orchard (e.g. machinery). KVH (2017b) offers a detailed infected material disposal protocol that can 

be applied to fungal disease management. The protocol includes laundry materials, heat treatment, burial 

and burning of infected materials. Elimination of alternative host plants and weeds are also required for 

the same purpose (Pennycook 1985).  

 

During the growing season, proper irrigation and fertilization application in managing plant growth also 

contribute to the disease management. For instance, an overhead irrigator that can help spore dispersal 

should be avoided (Pennycook & Samuels 1985; Koh et al. 2005). Shoot growth management can also 

reduce disease incidence. Greaves et al. (2001) suggested a low carbon treatment on floral shoot. By 

shading individual shoot, this treatment was able to reduce lesion growth from B. cinerea on leaves.  

 

Besides, Botrytis, Botryosphaeria or Sclerotinia related fungal disease often show latent disease 

symptoms, and similar cases can be found in Phomopsis and Cryptosporiopsis species (Fullerton et al. 

2007). Therefore, cultural practices as such may reduce disease incidence at the post-harvest stage.  

 

1.3.4 Fungicide and biocontrol agents 

 

Numerous fungicides can be used for fungal disease control in kiwifruit. Chemicals like inorganic copper, 

carboxamide and strobilurin are most commonly used, which can inhibit the early stages of pathogen 

development like spore production (Novachem 2017). Application of fungicide should strictly follow the 

specific application rates (e.g. under highest label rate and maximum amount of active ingredients). 

Toxicity of fungicide to the ecosystem should also be considered (Matthew et al. 2014). Most of the 

fungicide should be applied pre-flowering and pre-harvest to reduce the inoculum levels in the orchard. 
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For instance, to control Botrytis inoculum level, timings are crucial on limiting the buildup of spore 

population and secondary infection (Pennycook 1985). Additional spraying may also be required, 

depending on disease severity. Fungicide application should take place under appropriate weather 

conditions to take full effect. For example, no wind and rain, with suitable temperature, can prevent spray 

drift. Equipment and individuals that conduct the work should be standardized to achieve a uniform 

application (Matthew et al. 2014). 

 

Scouting is necessary for updating and monitoring disease incidence, and it is a common practice in many 

crops that can aid on deciding timings of the fungicide application (Coolong & Hanks 2009). By updating 

climate conditions and disease forecast, a real time monitoring of the orchard can detect disease epidemic 

in the early stage and allow actions to take place. It can also help to decide the intervals between fungicide 

applications. 

 

Bio-control products are also commercially available. Some derived from natural occurring bacteria and 

can suppress spore germination, germ tube elongation and penetration. For example, Serenade Max that 

based on dried Bacillus subtilis (var. amyloliquefaciens strain D747) can be applied when Botrytis infection 

takes place during later flowering to early fruit set (Novachem 2017), and is found to be effective in 

disease control in several other crops like apple and strawberry (Toure et al. 2004; Hang et al. 2005). Some 

biocontrol agents are also found to induce host resistance. For instance, a yeast biocontrol agent, Candida 

sake, is applied during fruit curing and can inhibit B. cinerea activity (Cook et al. 1999). Antifungal volatile 

phenolics derived from Eucalyptus has been found to be effective against Botrytis and Botryosphaeria 

species in Korea (Oh et al. 2008). 
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1.3.5 Harvest and storage management 

 

Harvesting of kiwifruit requires snapping the fruit off the stalks. The fruit should then be stored at an 

ambient temperature at 13-15oC for a period of time, which is called “curing”, that can let the fruits soften 

and sweeten. The fruit is then transferred into cool storage for up to nine months. The picking wounds 

offer potential entry points (Poole & McLeod 1994) and cool storage provide a favorable environment for 

the pathogen to infect and establish (Pennycook 1985). 

 

With these risks presenting, some alternative storage conditions were proposed by several studies. 

Pennycook and Manning (1992) suggested that a curing for up to a week before the cool storage can 

significantly reduce Botrytis conidial infection from 49% to 6%. Poole and McLeod (1994) suggested a cool-

storage delay after harvesting, which can reduce pathogen incidence of Botrytis. There are also controlled 

atmosphere treatments using 1-MCP, salicylic acid, CO2 or calcium prior to the storage process. All showed 

inhibition of fruit damage (Manning & Lallu 1997; Basiouny & Basiouny 2000). 

 

Treatments on harvested fruit have also been used. In Kim and Yook (2009), gamma radiation on 

harvested fruit showed less infection from Botrytis and Botryosphaeria species. However, like most 

chemical and physical approaches (e.g. soaking in water, chemical wash), these treatment can potentially 

reduce the marketability of the fruit (Brigati et al. 2010). Wurms et al. (2011) suggested an alternative 

volatile treatment. It was based on a salicylate compound that was shown to be effective in reducing fruit 

ripe riot incidence by 50-75%. Future studies are required to find more effective storage methods and 

treatments to reduce disease incidence. 

 

1.4 Aims and objectives of this research 
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In recent years, fruit drop symptoms have occurred in New Zealand kiwifruit orchards prior to harvesting. 

Field isolates showed several fungal pathogens that may be the cause of the symptom. Among which, 

Botryosphaeria spp. were considered important. The industry therefore seeks biocontrol agents to target 

this issue. One potential bacterial agent, Burkholderia sp., was previously isolated from mānuka plants, 

and showed antagonist effect to Botryosphaeria species in vitro (Wicaksono et al. 2017).  

 

In this study, the Burkholderia sp. isolate will be used in a greenhouse trial, to test its biocontrol efficacy 

against Botryosphaeria infection. The treatment effect will be observed and described. To achieve this 

aim, objectives were developed as below: 

 

1. To identify and culture the Botryosphaeria pathogen and the Burkholderia isolate. 

2. To observe the in vitro interaction between the pathogen and the bacteria, as reference for in 

planta testing. 

3. To evaluate the plant inoculation results, which may give indication on the efficacy of the bacteria 

as a biocontrol agent. 
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Chapter 2 

Identifying and culturing of Neofusicoccum parvum from Actinidia species 

 

2.1 Introduction 

 

2.1.1 Botryosphaeriaceae species 

 

Phylogeny based on DNA sequences has greatly shaped the taxonomy of Botryosphaeriaceae species over 

the years (Wikee et al. 2013). The order Botryosphaeriales represents several families of fungi that are 

isolated from woody plants. In the Botryosphaeriaceae family, morphological evolution may have occurred 

more than once, giving morphological traits that are difficult to use for the identifying phylogenetic signal 

(Slippers et al. 2013). The species within the Botryosphaeriaceae have been redefined based on their 

anamorphs only (Crous et al. 2006). Within the Botryosphaeriaceae family, there are several plant 

pathogens including Botryosphaeria, Neofusicoccum and Dothiorella that cause damage in kiwifruit 

production. 

 

The most abundant species of Botryosphaeriaceae family is Neofusicoccum parvum. Its teleomorph, 

Botryosphaeria, is seldom seen in culture, whereas the anamorphic stage is common (Pennycook and 

Samuel 1985). Ascostromata, the teleomorph structure, is often erumpent on stromatic tissues and 

clustered. Ascomata is 150-250 m in the diameter and black with white content, inside containing eight-

spored, bitunicate asci. Ascospores are often unicellular, hyaline and ellipsoid to fusoid in shape. In the 

anamorph of N. parvum, globose pycnidia are often present. The pycnidia contain conidia that are ellipsoid 

with an obtuse apex and a flat base. The conidia are often unicellular, hyaline, becoming light brown with 

1–2 septa with age. The middle section of the conidia are often dark brown (Pavlic et al. 2009).  
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2.1.2 Cultural morphology of Neofusicoccum parvum 

In culture, the N. parvum mycelium looks white or greenish-white, then changes to blackish-brown on the 

upper side after 7 days at 25oC (Koh et al. 2005). The fluffy, aerial mycelium shows faster growth rate (at 

around 20 mm/day) than other Botryospheria species. It is initially white and turns pale grey from the 

middle of the colony after 3 to 4 days. The mycelium columns in the middle of the plate can reach the lid. 

On the reverse side of the plate, a faint yellow tint shows and can persist for up to a week, which will then 

change to bluish black (Pennycook & Samuels 1985). Pycnidia are formed in stromatic masses. They are 

globose-shaped and uniformly spread on culture plate. Around 9 days after the formation of pycnidia, 

conidia are produced (Crous et al. 2006; Pavlic et al. 2007) 

 

2.1.3 Inducing sporulation 

 

Neofusicoccum species utilize conidia or ascospores to infect their hosts (Pennycook 1985). Therefore, to 

replicate natural infection, sporulation inducement is important for inoculation. However, many species 

do not readily produce pycnidia and conidia in culture. For pycnidial formation, a period of stress is often 

required. 

 

The difficulties in inducing sporulation on agar plate for N. parvum can be solved by incorporating stress 

factors during the culturing process. Cultural media including pine needle agar and prune agar have 

proved successful in inducing sporulation (Leng et al. 2009). These agars may have certain chemical 

compounds or can create an acidic environment that triggers the pycnidia to be produced. A detached 

stem assay on grape and blueberry also yielded successful sporogenesis (Amponsah et al. 2008; 

Tennakoon et al. 2017). With wounded plant tissue inoculation, sporulation occurred readily after the 
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infected tissue was incubated on an agar plate. Disruption of mycelium growth was also found to 

facilitated the production of pycnidia and conidia for Neofusicoccum species (Yang et al. 2017). 

 

2.1.4 DNA sequence 

 

Studies often combine morphological observation with DNA sequence to identify Botryosphaeria species. 

Molecular approaches in fungal identification often involves using the internal transcribed spacer (ITS) 

gene region of the rDNA operon (Denman et al. 2000; Crous et al. 2006). Due to the complicity of the 

classification and the taxonomy within the Botryosphaeria species, ITS regions may not be sufficient in 

differentiating species level. For example N. parvum and N. ribis are closely related cryptic species, making 

it difficult to distinguish if based only on single gene genealogy (Slippers et al. 2004; Pavlic et al. 2009). 

Multiple gene regions such as beta-tubulin and alpha elongation factors can be utilised that enable such 

differentiation (Phillips et al. 2008; Ismail et al. 2013). This method is also used to determine the taxonomy 

and phylogeny of fungi that look morphologically like Botryosphaeria. 

 

The aim of this chapter is to identify the fungal isolate. The most appropriate culturing methods for the 

fungal isolate will also be investigated to induce spore production which will be used an inoculum in the in 

planta biocontrol efficacy experiment (Chapter 4). 

. 

 

2.2 Material and Methods 

 

2.2.1 Isolation of endophytic fungi from plant tissue 
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The fungal isolate was obtained from the Plant Pathology group, Lincoln University. The isolate was sub-

cultured on water agar (Fischer Scientific, Thermofisher Scientific Inc.) with a mycelial discs (Ø 3mm). The 

processes were conducted in the laminar flow using a scalpel blade and a 3mm core borer, sterilised in 

90% ethanol and subsequently flamed prior to sub-culturing. The plates were incubated at 20℃ in dark for 

two to three days to obtain hyphal growth. A hyphal tip isolation was conducted for each plate, by finding 

a single hyphae at the edge of the culture under the microscope in the laminar flow. A hyphal tip was cut 

prior to the last branching point using a sterile scalpel blade. The tips were then transferred on ⅕ Potato 

dextrose agar (PDA) (Fischer Scientific, Thermofisher Scientific Inc.). The plates were incubated at 20℃ in 

24-hour dark. 

 

2.2.2 Fungal culturing 

The hyphal-tip plates described in Section 2.2.1 were sub-cultured onto ⅕ PDA agar, prune agar and 

vegetable juice agar (V8) (Appendix A) and incubated in 20℃ in the dark, as described in Section 2.2.1. 

Morphology observation were conducted during the incubation process. 

 

2.2.3 Inducing sporulation 

Several different media were used to culture isolates described in Section 2.2.1 for the purpose of inducing 

sporulation. Mycelial discs (Ø 3mm), were sub-cultured on prune agar and pine-needle agar (Appendix A). 

The plates were incubated at 20℃ in a 12-hour photoperiod for up to a month. 

 

Detached plant stems were also used to induce sporulation following modification of the method 

described by Tennakoon et al. (2017). Plant materials included: young grapevine, kiwifruit and camellia 

shoots, all collected from Lincoln University, New Zealand. A mycelial disc (Ø 3mm) was placed onto 

wounds cut in the centres of washed shoots, with 20 shoots per treatment. The base of each shoot was 
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inserted into a Universal bottle containing sterile distilled water and placed in a completely randomized 

design within an enclosed transparent chamber for 10 days at around 20℃. Frequent misting of water was 

applied inside the chamber for the first three days. After incubation, the shoots with visible lesions were 

surface sterilized in 1% sodium hypochlorite for one minute, then transferred to 70% alcohol for 30 

seconds, followed by rinsing in sterile water twice for one minute each. The shoots were dried on sterile 

tissue paper in the laminar flow for 6 hours. For each dried shoot, it was placed on two toothpicks with 

moist filter paper at the bottom of a Petri dish (Figure 1). The plates were then incubated for two or three 

days under 20℃ in a 12-hour photoperiod to induce pycnidial formation. Pycnidia were crushed on a slide 

and placed under a cover slip to examine for conidia. 

 

Figure 1: Neofusicoccum parvum inoculated young camellia stem sections after surface sterilization and 

ready for incubation.  

 

Disruption of the mycelium mat was also undertaken. Fungal isolates were grown in ⅕ PDA at 20℃ for a 

week to allow mycelium growth. Sterile glass rods were used to disrupt the mycelium mat in a 

perpendicular grid pattern for each plates, with a total of 10 replicates for the isolate. The plates were 

then rinsed with sterile distilled water, and placed in the laminar flow to dry for an hour. Afterwards, each 

plate was covered with sterile filter paper (Labserv, Thermofisher Scientific Inc.) on the top of the 

disrupted mycelium mat. The plates were incubated at room temperature at around 20℃ on the bench 
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under natural light. Plates were monitored after seven days incubation for sporogenesis. Plates with 

pycnidia were examined in the same manner as described previously. 

 

2.2.4 DNA extraction and amplifying 

 

A 10% Chelex 100 resin solution (Bio-Rad, Bio-Rad laboratories.) was made and stored at 4℃. For each 

fungal isolate, sterile forceps were used to remove around 2 mm of the mycelium from the plates 

described in Section 2.2.2. The mycelium was placed with 200 l 10% Chelex solution in a sterile 1.7 ml 

tube, with two replicates for each isolate. The tubes were vortexed and placed on a heating block at 100℃ 

for ten minutes. They were removed to vortex and replaced on the heating block for a further 10 minutes. 

Centrifugation (Thermofisher Scientific Inc.) followed for ten minutes at 12300 x g. DNA quality and yield 

were determined using a Nanodrop 2000 UV-Vis spectrophotomter (Thermo Fisher scientific Inc. New 

Zealand). Samples were placed at -18°C. 

 

Three gene regions were amplified: ITS, Beta-tubulin and Alpha-elongation factor. Approximately 500-600 

bp of the ITS region was amplified with ITS1 (5’-TCC GTA GGT GAA CCT GCG G-3’) and NL4 (5’-GGT CCG 

TGT TTC AAG ACG G-3’) (Romanelli et al. 2014). A 500 bp of Beta-tubulin region was amplified with T1(5’-

AAC ATG CGT GAG ATT GTA AGT-3’) and T22(5’-TCT GGA TGT TGT TGG GAA TCC-3’) (O'Donnell & Cigelnik 

1997). A 500 bp of Alpha-elongation factor region was amplified with 983F(5’-GCY CCY GGH CAY CGT GAY 

TTY AT) and 2218R(5’-ATG ACA CCR ACR GCR ACR GTY TG) (Rehner & Buckley 2005).  

 

For the ITS region, PCR was performed in a thermal cycler (Applied Bio system Veriti, Life Technologies Ltd, 

New Zealand) in a total volume of 20 l containing 10 l of DreamTaq (Life Technologies, Thermo Fisher 

Scientific Inc., USA), 4 l of 0.5 M of each forward and reverse primer (IDT, Integrated DNA Technologies 
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Inc., Australia), 2l 10-20 ng/mg DNA template, and nanopure water added to make up to the final volume 

of 20 l. The amplifying cycle was initiated with 3 minutes at 95°C, then 35 cycles of 1 minute at 94°C, 30 

seconds at 55°C and 1 minute at 72°C, followed by 7 minutes at 72°C and a final hold at 4℃.  

 

For the Beta tubulin region, PCR was performed in a thermal cycler (Applied Bio system Veriti, Life 

Technologies Ltd, New Zealand) in a total volume of 20l containing 10l of DreamTaq (Life Technologies, 

Thermo Fisher Scientific Inc., USA), 0.2M of each forward and reverse primer (IDT, Integrated DNA 

Technologies Inc., Australia), 1l 10-20 ng/mg DNA template and nanopure water added to make up the 

final volume of 20l. The amplifying cycle was initiated with 2 minutes at 94°C, then 36 cycles of 35 

seconds at 94°C, 55 seconds at 56°C and 2 minute at 72°C, followed by 10 minutes at 72°C and a final hold 

at 4℃. 

 

For the alpha elongation factor region, PCR was performed in a thermal cycler (Applied Bio system Veriti, 

Life Technologies Ltd, New Zealand) in a total volume of 20l containing 10l of Reddymix (Life 

Technologies, Thermo Fisher Scientific Inc., USA), 0.4l of 100 x Bovine serum albumin (New England 

Biolabs.Inc.), 1M of MgCl2 (Life Technologies, Thermo Fisher Scientific Inc., USA), 0.3M of each forward 

and reverse primer (IDT, Integrated DNA Technologies Inc., Australia), 1l 10-20 ng/mg DNA template and 

nanopure water added to make up the final volume of 20l . The touchdown amplifying cycle was initiated 

with 2 minutes at 95℃, then 9 cycles of 30 seconds at 95°C, 30 seconds at 64°C and 90 seconds at 72°C, 36 

cycles of 30 seconds at 95°C, 30 seconds at 56°C, 90 seconds at 72°C, followed by 10 minutes at 72°C and a 

final hold at 4℃. 

 

For each PCR product, 8l aliquot combined with 3 µl loading dye (40% (w/v) sucrose; 0.25% bromophenol 

blue; 0.25% xylene cyanol) was loaded onto a 1% agarose gel together with a 1 Kb plus DNA ladder 
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(Invitrogen). Gels were run in 1 x TAE (Tris-acetate-EDTA) buffer for 30 minutes at 90 V. They were then 

stained for 15 minutes in ethidium bromide (0.5 µg / ml, AMRESCO®, OH, USA), de-stained in water for 15 

minutes and observed under ultraviolet light using an UVIreader.  

 

The PCR-amplified products were sequenced at the Lincoln University Sequencing Facility. The sequences 

obtained were viewed using Chromas Lite 2.1 (Technelysium Pty Ltd, Australia) and trimmed and 

assembled to approximately 100-500 bp, depending on the gene region and sequence quality, using 

DNAMAN 5.0 (Lynnon Biosoft, Canada) to give high quality sequences. The edited sequences were 

compared with sequences database using the Basic Local Alignment Search Tool (BLAST) in “The National 

Center for Biotechnology Information” (NCBI). 

 

2.3 Results 

 

2.3.1 Cultural description 

 

On agar plates, the white or greyish-white, flocculate mycelium changed to greyish-black on the upper side 

after around 7 days at 20°C. The mycelium has a growth rate at around 15-20 mm/day. On the reverse side 

of the plate, there was a faint yellow tint that persisted up to a week and subsequently changed to black. 

At the edge of the plate, clustered mycelium reached the top of the lid. No pycnidia were observed to be 

produced on colonies growing on PDA and V8 agar (Figure 2).  
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Figure 2: Reverse side of 1/5 PDA plate after 3 days of incubation shows faint yellow (left) and upper 

side of V8 plate shows mycelium growth of the fungal colony after 7 days of incubation (right). 

 

2.3.2 Sporulation inducing 

 

The prune agar plates showed formation of pycnidia in stromatic masses. The pycnidia were globose-

shaped and uniformly spread on the plates. On the cover-slip slides, conidia released from pycnidia were 

observed. These were hyaline, unicellular, thin-walled and septate (Figure 3). The pine-needle agar failed 

to induce sporulation and only mycelium growth was observed. 

 

Figure 3: Crushed open pycnidia from prune agar plate shows releasing of conidia. Scale bar represents 

50 µm. 
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. 

 

For detached stem inoculation, after ten days inoculation, the grapevine shoot produced black lesions, 

both upward and downward of the inoculated point. In the Petri dishes, black pycnidia were observed on 

the shoot (Figure 4). On the cover-slip slides, crushed open pycnidia were empty and no conidia were 

observed. The kiwifruit and camellia shoot blackened after ten days of incubation, with no visible lesions 

or pycnidial formation on the shoots. 

 

Figure 4: Stereo-microscope examined grapevine tissue shows formation of black pycnidia as indicated 

by arrows. 

 

2.3.3 Identification of the fungi using DNA sequence 

 

The Chelex DNA extraction yielded a DNA sample with around 10-20 ng/ml, with 260/280 ratio at around 

1.7-1.9. PCR products from the DNA extractions of most replicates give bright band on agarose gels. The 

products were approximately 1000-1200 base pair (Figure 5).  
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Figure 5: Agarose gel band picture from (A) ITS gene region amplified PCR products with eight replicates 

showing bright bands and negative control (NC) at the end; (B) Beta-tubulin gene region amplified PCR 

products with seven replicates showing bright bands and negative control at the end; (C) Alpha 

elongation factor gene region amplified PCR products with seven replicates showing bright bands and 

negative control at the end. Labelled band size of the molecular ladder is shown in arrow with base pair 

units. 

 

The sequences obtained had a high similarity to Neofusicoccum parvum sequences from BLAST (Table 1). 

The ITS region showed ambiguity between identifying N. parvum and N. ribis, which lead to a lower than 

100% similiarity. This problem is solved by amplifying two smaller gene regions (Appendix B). The 

amplified beta-tubulin gene region showed 100% similarity to N. parvum, and the amplified alpha 

elongation factor region 99%.  

 

Table 1: BLAST results shows three gene region amplified sequences with high similiarity (>98%) to N. 

parvum. From top to bottom, the amplified gene regions comparsion are with ITS, ITS, beta-tubulin, 

beta-tublin and alpha elongation factor respectively.  
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2.4 Discussion 

 

This study confirmed the identity of the fungal isolate from kiwifruit as N. parvum. By using cultural and 

molecular techniques, the fungal isolate showed morphological features and sequencing result confirming 

previous studies (Pennycook 1985; Zhou et al. 2015). Here the first two steps of Koch’s postulate was 

demonstrated, with successful isolation of a pathogen and the ability for it to grow in pure culture (Koch 

1876).  

 

Morphological observation of the pathogen sample showed high similarity to previous studies (Pennycook 

& Samuels 1985; Zhou et al. 2015). Mycelium growth rate, color and formation in agar plates showed 

typical Neofusicoccum morphology. This part of the study facilitated the initial identification of the fungi. 

As morphological similarity may occur between different Neofusicoccum species (Denman et al. 2000; 

Slippers et al. 2004), DNA sequencing was required.  

 

In the sporulation inducement, only prune agar was able to induce pycnidial and conidial formation. The 

12 hour photoperiod may be the key to pycnidial formation. In Smith and Fergus (1971), different light 

intensities were examined to test their effects on sporulation. In their study, with a 12-hour photoperiod 

at 27°C, pycnidial formation occurred after 4 days. Copes and Hendrix (2004) also stated that for B. 

dothidea, maximum sporulation occurred at 24°C. They also found a curvlinear response between 

temperature and conidial maturation. In this study, natural light was used, which may have fulfilled the 

light intensity requirement for sporulation of N. parvum. However, the time of pycnidial formation was 

much longer (a month) compared to other studies. This may be due to the lower incubation temperature 

at 20°C. This factor may prolong the process of pycnidial formation and the development of conidia. 

 



32 
 

Pine needle agar failed to produce pycnidia and had very sparse mycelium growth. In Su et al. (2012), pine 

needle medium was able to induce sporulation of 40% of the plant pathogens, including Botryosphaeria 

species. In contrast, although Amponsah et al. (2008) reported production of pycnidia containing conidia 

on pine needle agar for isolates of four Botryosphaeriacea species (Neofusicoccum luteum, N. australis, B. 

obtusa and B. stevensii), the N. parvum isolates failed to sporulate, indicating an effect of species on 

sporulation on this agar. In our experiment, the reason of failed sporulation may also due to the 

insufficient initial mycelium growth. The level of stress placed on the fungi may be too high and that may 

have led to starvation; hence stunting further fungal development. Nevertheless, the process of 

sporogenesis can be affected by various environmental and nutritional factors. Future studies on testing 

such parameters are required to contribute to the understanding on the development of N.parvum. 

 

The detached stem assay also failed to give successful sporulation. In Amponsah et al. (2008), N. parvum 

produced fewer number of pycnidia than other Botryosphaeria and Neofusicoccum species and it did not 

release any conidia. In this experiment, grapevine shoot did produce pycnidia, yet they were empty with 

no conidial formation. Therefore, further pathogen identification was not possible. For the other two plant 

medium, kiwifruit and camellia, no obvious lesion was visible after inoculation. Although studies suggested 

that these two plants are known as host of Botryosphaeria species (Manning et al. 2003; Jayawardena et 

al. 2016) and often young plant parts can stimulate sporulation (Su et al. 2012), this experiment did not 

yield satisfying results. Unsuccessful initial inoculation may be the cause. Besides, the mycelium discs may 

not be sufficient pathogenicity-wise to initiate infection. Additionally, the humid condition for tissue 

incubation may require adjustment to obtain a more suitable environment for infection. For future work, 

the pathogenicity of this species, especially its mycelium, may under further examination under different 

abiotic parameters. 
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Molecular work in this study yielded a detailed identification of the fungal species. The Chelex DNA 

extraction offered a cheap and easy way to extract fungal DNA. Different extraction methods using Chelex 

were mentioned in other studies (Möhlenhoff et al. 2001). In this experiment, the incubation time of the 

DNA samples on a block heater was adjusted and concluded that 20 minutes of heating resulted in a 

better quality DNA extraction. The PCR cycles of this experiment also underwent several adjustment. The 

number of cycles was not only based on previous published studies, as described in Section 2.2.4, but also 

on our own adjustment to suit the specific samples. The agarose gel indicated that the DNA of the samples 

were sufficiently amplified. Sequence modified and assembled give a BLAST result that leaded to 

conclusion of the fungal isolate to be N. parvum.  

 

In all, the fungal isolate identified in this study, which had previously associated with fruit drop in kiwifruit, 

was confirmed for the first time. Future fungal identification work to achieve a faster DNA extraction, 

amplification and sequence process is underway (Schuster 2008). A time and financially economic 

alternative may be expected. 
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Chapter 3 

Identifying and culturing of the potential bio-control agent Burkholderia sp. 

 

3.1 Introduction 

 

3.1.1 The Burkholderia family  

 

Burkholderia species are gram-negative, rod-shaped bacteria. They can be found in soil, water, and the 

rhizosphere of plants. The type specie of this genus is B. cepaciam. It was originally described as 

Pseudomonas cepacia, isolated as the causal agent of sour skin of onion (Burkholder 1950). In 1992, this 

species reclassified from the genus Pseudomonas and placed in the new genus Burkholderia.Taxonomic 

evaluation found 128 B. cepacia strains, mostly from patients with cystic fibrosis (Vandamme et al. 1997). 

The B. cepacia was then split into eight genetic species, including five named species, which in 

combination, known as the “B. cepacia complex” (Bcc). The 16S gene region can be used to differentiate B. 

multivorans and B. vietnamiensis, but not for other species. The large genome size that ranges from 4 to 9 

Mb is one of the distinguishing characteristics of this bacteria (Mahenthiralingam et al. 2008).  

 

3.1.2 Niche filling capacity 

 

The niche filling capacity describes how an organism responds in natural conditions with various 

distribution of resources and competitors. This ability of the bacteria can assist our understanding of how 

well it can colonize space in plant and soil, which may indicate a promising biocontrol effect (Coenye & 

Vandamme 2003). 
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Burkholderia spp. can occupy various ecological niches, from soils and plants rhizosphere to human and 

other animals. For example, B. cepacia isolates showed growth promotion when colonizing bean and 

sorghum (Chiarini et al. 1998; Peix et al. 2001). The B. cepacia complex strains are also known to be plant 

pathogenic, and have been isolated from environmental and clinical sources. For example, the bacteria 

can be found as a contaminant in water supplies and agricultural products. Burkholderia mallei is known to 

cause glander issues in animals, and B. pseudomallei is correlated with human disease (Coenye & 

Vandamme 2003). Burkholderia. glathei, B. phenazinium and B. graminis have been isolated from a range 

of soils and plant rhizospheres (Viallard et al. 1998). Its ability to use a large array of compounds as 

nutrient sources and its metabolic versatility may be the reason why it comprises a large proportion of the 

endophytic bacterial community in plants (Whitby et al. 2006). 

 

With the wide host range, some Burkholderia cepacia complex strains are potentially able to control 

diseases or enhance plant fitness. Application time, amount and methods may affect its ability to colonize 

and persist in inoculated plants or soil. Seedling inoculation with “Bcc” at 106 to 108 colony forming units 

(CFU) per seed at planting is often used (Coenye & Vandamme 2003). Soil drenches and drip irrigation 

delivery systems are also common practice. However, plant colonization by such application cannot be 

granted for all strains. Moreover, there are cases of an introduced strain being replaced by the indigenous 

Burkholderia species occurred during seedling treatments (Parke & Gurian-Sherman 2001). Therefore, 

during the entire growing season, to maintain a stable population of specific strains that can secure an 

initial biocontrol ability, selection for specific strains and molecular techniques in tracing the introduced 

species are necessary.  

 

3.1.3 Analyzing Burkholderia spp. biocontrol abilities 
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Numerous antibiotics are produced by Burkholderia species, including cepacin, cepaciamide, xylocandins, 

pseudanes and phenazine (Parke & Gurian-Sherman 2001). Antibiotics activity is analyzed via assessing its 

inhibition on fungal growth. Although it is uncertain whether to attribute the results to antifungal 

metabolites production, fungal pathogens like Rhizoctonia solani and Fusarium spp. were shown to be 

sensitive to such antibiotics (Quan et al. 2006). For example, there was a 50 to 80% reduction in incidence 

of Fusarium wilt in tomato seedlings treated with B. cepacia (Larkin & Fravel 1998). Repeated dipping of 

bananas in a bacterial solution of 1010 CFU per millilitre was used to control crown rot caused by 

Colletotrichum spp. with high efficacy (De Costa & Erabadupitiya 2005). Burkholderia cepacia can also 

produce lipopeptide. For example, one lipopeptide, AFC-BC11, is largely responsible for effective control of 

damping-off of cotton caused by R. solani (Kang et al. 1998). 

 

Siderophores, which are iron chelating compounds, are also produced in vitro by Burkholderia species. 

Compounds produced by Burkholderia spp. which have siderophore activity include ornibactins, pyochelin, 

and aerobactin (Sokol et al. 1999), which possess antifungal growth characteristics. For example, salicylic 

acid accumulation is essential for expression of disease resistance in plants (Delaney et al. 1994). 

Ornibactin production by some Burkholderia species demonstrated biocontrol ability against several fungal 

diseases such as Rhizoctonia, Helminthosporium, Fusarium and Pythium (Meyer et al. 1995). Burkholderia 

tropica showed fungal growth inhibition of Fusarium culmorum, F. oxysporum and Sclerotium rolffsi, which 

may related to siderophore production, such as acetic acid, isobutylether and toluene (Tenorio-Salgado et 

al. 2013). 

 

In the absence of disease, Burkholderia species also show plant growth promotion, such as induction of 

plant hormones such as auxins and suppression of deleterious rhizosphere bacteria (Kurepin et al. 2015). 

B. phytofirmans on Arabidopsis thaliana plants showed increasing of several growth parameters and 
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growth rate of the plants, which may due to the bacterial inducement of plant auxin and gibberellin 

pathways (Poupin et al. 2013). The same species of Burkholderia was also found to be able to induce 

endogenous changes in plant growth hormone levels on other plant species like potato (Kurepin et al. 

2015). This ability of the bacteria may promote a disease resistant in plants and hence achieve indirect 

biocontrol. 

 

Although most in vitro testing shows promising results, in vivo testing can yield different outcomes. A 

rhizosphere strain of Burkholderia, which was found as an antagonist of Alternaria panax on ginseng, 

showed poor survival on leaf surfaces (Parke & Gurian-Sherman 2001), indicating instability of certain 

strains. Whereas the application of the bacteria on postharvest disease in fruit production showed 

effective control. For instance, control of B. cinerea on grape (Reglinski et al. 2005), and various diseases 

on citrus (Scuderi et al. 2009) were recorded.  

 

The aim of this section is to understand the biocontrol ability of Burkholderia (isolate W4R11) in vitro. 

Through identification and culturing processes, a more comprehensive knowledge of this bacteria is 

required which will be used to assist in planta testing. 

 

3.2 Material and Methods 

 

3.2.1 Bacteria isolation 

 

The endophytic bacterial isolate, Burkholderia sp. W4R11, was selected due to previous evidence of its in 

vitro activity against Botryosphaeria spp. (Wicaksono et al. 2017). This particular strain was obtained from 

the Plant Pathology group, Lincoln University. For long term preservation, a single colony of the bacteria 
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was taken from the original King agar B (Duchefa Biochemie) and transferred into 500 l of nutrient broth 

(NB; Difco, Becton, Dickinson and Company) in a 1.7 ml sterile tube. Two replicates were made for the 

bacteria and the tubes were placed in a shaking incubator (Labnet, Labnet International Inc.) at 28℃ and 

200 rpm. After around 14 hours of growth, 500 l of 50% glycerol was added to the broth culture and the 

tubes were stored at -80℃. Before each experimental assay, the bacteria was recovered from the -80℃ by 

taking 10 l of the broth culture and spreading on King agar B (Duchefa Biochemie). The plates were 

incubated at 25℃ in the dark until used in the assays. 

 

3.2.2 Production of spontaneous mutant using chloramphenicol 

 

To enable the selective reisolation of the Burkholderia sp. isolate W4R11 from inoculated plant tissue, a 

chloramphenicol spontaneous mutant strain, Burkholderia sp. isolate W4R11C, was produced. The 

spontaneous mutant was developed by repeated sub-culturing Burkholderia sp. W4R11 onto King agar B 

containing incremental increases in chloramphenicol concentration. At the start, the Burkholderia sp. 

isolate W4R11 was plated onto King agar B containing 10 ppm chloramphenicol (Sigma-Aldrich, Sigma-

Aldrich Co. LLC.). The plate was incubated at 25℃ in dark for a week until single colonies formed. A single 

colony was then sub-cultured onto King agar B plate with 20 ppm and incubated again at 25℃ in dark for a 

week. The same processes was repeated with a 10 ppm increment for each subculture until the 

chloramphenicol concentration reached 125 ppm. To determine the stability of the mutant strain 

(W4R11C), a single colony was taken from each of the plates and went through two subsequent sub-

culturing on King agar B without antibiotics. It was then sub-cultured on 125 ppm chloramphenicol agar 

plates. The single colony from each plate was preserved in glycerol at -80℃ as described in Section 3.2.1. 

 

3.2.3 Testing Bacterial growth rate 
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An optical density test was carried out to estimate the growth rate of the chloramphenicol mutant strains 

of Burkholderia sp. W4R11 (strain W4R11-C) obtained in Section 3.2.2. For the strain, a single colony from 

the agar plate was taken and put into 1 ml nutrient broth (NB; Difco, Becton, Dickinson and Company) in a 

1.7 ml sterile tube. Two replicates were made for the bacteria strain and the tubes were placed in a 

shaking incubator (Labnet, Labnet International Inc.) at 28℃ and 200 rpm overnight. This is called the 

mother culture. The mother culture was then stored in 4℃. At the same time, 10 l of the mother culture 

was taken from each tube and put into 10 ml nutrient broth in a sterile Falcon® tube. The Falcon® tubes 

were put in a shaking incubator (Labnet, Labnet International Inc.) at 28℃ and 200 rpm. During the 

incubation process, samples were removed from the Falcon® tubes after 4, 6, 8, 12, 19 and 24 hours 

incubation. Optical density test and serial dilution plating were carried out each time interval. 

 

An optical density test was carried out by using a spectrophotometer. The OD reading was taken at 

OD600nm for the bacteria isolate. A 1 ml aliquot of the mother culture was put in a cuvette and optical 

density measured, thus acting as a calibration for other samples. Samples from the shaking incubation 

procedures were processed in the same manner. 

 

At the same time when testing optical density, a serial dilution plating was carried for the sample at each 

assessment time. A 100 l aliquot of the sample from each falcon tube was put into 900 l of phosphate 

buffer saline (PBS) pH 7.2 in a 1.7 ml sterile tube. The tubes were then vortexed and 100 l of the mixture 

from the tube were taken and put into 900 l of PBS in a second 1.7 ml sterile tube. The original sample 

was diluted in 10-1 increments until the final solution reached10-7. A 100 l aliquot of the 10-5,10-6 and 10-7 

dilutions were pipetted and spread onto King agar B, with 3 replicates for each dilution. The plates were 
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then incubated at 25℃ in the dark for 1 to 2 days, after which the number of colonies were counted. An 

equation as follows was made to calculate the CFU per ml of the original mixture: 

 

CFU

ml
=

number of single colony X dilution factor

volume
of bacteria on each plate 

 

A growth curve correlating the optical density and CFU per ml from the different assessment times was 

then made.  

 

3.2.4 DNA extraction and sequencing 

 

The DNA extraction of the Burkholderia sp. strains W4R11C from Section 3.2.2 was made, using PUREGENE 

DNA isolation kit (PUREGENE, ProGENZ Limited, New Zealand) according to manufacturer's instruction. 

Around 800-900 bp of the 16S rRNA gene was amplified with F27 (5’-AGA GTT TGA TCM TGG CTC AG-3’) 

and R1494 (5’-CAT CGG YTA CCT TGT TAC GAC-3’) (Heuer et al. 1997). PCR was performed in a thermal 

cycler (Applied Bio system, Veriti, Life Technologies Ltd, New Zealand) in a total volume of 20 l containing 

12.5 l of DreamTaq (Life Technologies, Thermo Fisher Scientific Inc., USA), 0.3 M of each forward and 

reverse primer (IDT, Integrated DNA Technologies Inc., Australia), 0.5 l 100ng/mg DNA template, and 

nanopure water added to make up the final 20 l. The amplifying cycle was initiated with 3 minutes and 

30 seconds at 95℃, then 35 cycles of 30 seconds at 94℃, 30 seconds at 55℃ and 1 minute at 72℃, 

followed by 7 minutes at 72℃ and a final hold at 4℃. The PCR products were then loaded on agarose gel 

and send to sequenced as described in Section 2.2.4. 

 

3.3 Results 
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3.3.1 Bacteria culturing and production of spontaneous chloramphenicol mutant 

 

Single colonies of Burkholderia sp. isolate W4R11 were observed to develop on the Kings B agar plates 

after around 5 days incubation. A chloramphenicol-resistant mutant, Burkholderia sp. isolate W4R11C, was 

developed successfully, which was able to grow on 125 ppm chloramphenicol agar. During the process, on 

the 50 ppm, the mutant strain took two weeks to form colonies, compared to one week for the other 

chloramphenicol concentrations. 

 

3.3.2 Bacterial growth rate 

 

By correlating the optical density with CFU count from the plates and using the equation to calculate the 

CFU/ml, an approximate CFU/ml in a pre-determined incubation time frame was able to be obtained. 

Firstly, there was a linear relationship between optical density (OD) reading and incubation time. As the 

incubation time increased, the OD reading increased (Figure 6). Then the OD reading and CFU/ml was 

correlated and showed a linear relationship. As the OD increased, the CFU/ml also increased (Figure 7). 

These two linear relationships can therefore be used to predict that after a specific incubating time, how 

much CFU/ml one can obtain from the mixture. 
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Figure 6: A linear relationship between optical density reading (abs) and time of the incubation (hour). 

 

 

Figure 7: Bacteria growth rate indicated by a linear relationship between optical density (taken at 

OD600nm) and CFU (107/ml). 

 

 3.3.3. DNA sequencing results 
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The PCR products from amplification of 16S region showed bright bands from two replicates of the 

bacteria strain, Burkholderia sp. W4R11C. The product was approximately 1500 base pair (Figure 8). 

 

Figure 8: Agarose gel band picture from 16S gene region amplified PCR products with two replicates 

showing bright bands and negative control (NC) at the end. 

 

The bacterial isolates had high similiarity to the genus Burkholderia when compared with sequences from 

the BLAST (Table 2), which conferred with the genus of the original strain obtained from the Plant 

Pathology group, Lincoln University (Appendix B).  

 

Table 2: BLAST results show bacterial isolate with high similiarity to Burkholderia species(=100%). 

 

 

3.4 Discussion 
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The work demonstrated the basic techniques with culturable bacteria and provided insights on further 

usage of this bacteria. The aim of producing a bacterial mutant was to make it traceable for further 

inoculation process. By applying high antibiotic concentration into the agar plates, the growth of other 

bacterial isolates can be suppressed during later reisolation process. Whereas if the mutant strain was 

present inside the plant, it can then be able to reisolated onto the antibiotic amended agar. A clean 

technique and strictly following of the protocols were necessary in the bacterial culturing, which 

eliminated confounding artifacts.   

 

The basic protocol of testing bacterial growth rate was designed by Contois (1959). It provided a detailed 

procedure from bacteria culturing to measurement of the colony density. In our experiment, the O.D. 

reading from each time interval was a long process, due to the uncertainty on the sampling times. The 

final time intervals were adjusted several times before consistent data could be obtained. The correlation 

between time and CFU/ml can be obtained from the results, which can give an approximate predication of 

the bacterial growth as the unit of CFU/ml under the same incubating environments. 

 

Using less selective agar aided in the isolation and identification of this bacterial isolate. Studies have 

reported that accurate identification of Bcc bacteria is difficult to achieve and suggested to combine 

commercial biochemical analysis kits with other specific test (Mahenthiralingam et al. 2008). Moreover, 

partial 16S rRNA gene sequencing may not be sufficient to discriminate all the species in the Bcc. For the 

purpose of this study, since the original isolates had already been identified, understanding its function 

and biological characteristics should be the primary targets instead. Identifying to species level is not the 

aim of this part of the study, yet it may be useful in future work on screening and selection of biocontrol 

bacteria. 
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Chapter 4 

Using Burkholderia to control kiwifruit fungal disease 

 

4.1 Introduction 

 

Bacterial biocontrol agents are often available in horticultural practices. An example of a product available 

in New Zealand is Blossom Bless™, a wettable powder containing the bacterium (Pantoea agglomerans 

P10c). It can be used as a foliar spray on pipfruit plants against fire blight infection (Vanneste et al. 2002a). 

The product is known for producing plant elicitors that can induce disease resistant in kiwifruit (Vanneste 

et al. 2002b). Serenade Max, containing a bacterium Bacillus subtilis QST 713, was found to control 

Botrytis related disease and has been reported to result in a slight decrease in Psa population in kiwifruit 

(Gould et al. 2014). Overseas studies have also used Bacillus species like Bacillus subtilis OSU142 and 

Bacillus RC03 in horticultural production. These are plant growth promoting rhizo-bacteria that can be 

applied in general nursery potting mix, to enhance root growth of kiwifruit stem cutting (Erturk et al. 

2010). For kiwifruit production, which suffers from post-harvest disease, due to wound-invading 

pathogens like Botrytis and Botryosphaeria, biological control may offer an effective alternative compared 

to the traditional chemical control. Antagonists can be applied directly to target areas like fruit wounds. A 

single application of Bacillus-based product was found to reduce fruit decay (Jacobsen et al. 2004). 

 

Bacterial biocontrol agents are usually isolated from plants and soil. Their biocontrol ability can be 

achieved via acting against disease infection, or supporting plant growth. These traits are supported by the 

production of antifungal or antibacterial metabolites, volatile compounds like siderophores and/or by 

inducing of systematic resistance of the plant (Santoyo et al. 2012). A vast number of bioassays were used 

to screen biocontrol traits of the bacteria. For example, siderophore production can be detected by 
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Chrome Azurol S (CAS) agar plates. Antagonist effect against pathogens can also be assessed by dual 

plating using Waksman agar. Field testing of the biocontrol agent for its effect on selected pathogens and 

host plants is also necessary, before considering its marketability (Utkhede 1996).  

 

A few points should be noted when applying such products. Wojciech and Korsten (2002) suggested that 

rapid colonization by the antagonist may not be necessary for the control of fruit rot caused by latent 

pathogen infection, such as Botryrosphaeria related fungal disease. This is because fast growing 

antagonists may only provide a protective defense rather than being curative against the pathogen, which 

offers little effect on latent infection. Although most biocontrol bacterial strains were found to be effective 

for in vitro studies, field trial may fail to achieve satisfying results (Parke & Gurian-Sherman 2001). These 

limitations can be addressed by enhancing biocontrol through manipulation of the application 

environment, using mixtures of beneficial organisms, physiological and genetic enhancement of the 

biocontrol mechanisms, manipulation of formulations, and integration of biocontrol agents with other 

alternative control methods (Wilson & Wisniewski 1989). For example, to control grey mold caused by B. 

cinerea in kiwifruit, an integrated pest management system and cold storage using non-chemical methods 

has been a success. This involved a combination of cultural practices and post-harvest curing (Michailides 

& Elmer 2000). Besides, it may be unfair to equate or compare biological control agents to chemical 

treatments, since they each have their own limitation and merits. The post-harvest diseases of kiwifruit 

usually take place in a well-defined environment. This enables a great opportunity to utilize 

microorganisms like bacterial biocontrol agents to take effect.  

 

In this study, Burkholderia sp., (isolate W4R11), has shown a biocontrol effect in vitro again N. parvum 

from kiwifruit in a previous study (Wicaksono et al., 2017). In this chapter, the isolate was used as a wound 
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protectant in one-year old kiwifruit plants to determine its efficacy on disease control of N. parvum. The 

colonization and movement of the Burkholderia sp. and N. parvum were also examined. 

 

4.2 Materials and Methods 

 

4.2.1 Bioactivity assays 

 

4.2.1.1 Production of siderophores 

 

Siderophore production by the chloramphenicol mutant strain of Burkholderia sp. W4R11C, using Chrome 

Azurol S (CAS) agar plates (Schwyn & Neliands 1987), was tested to ensure that the mutant strain was still 

able to produce siderophores to the same level as the original strain. The agar plate was divided into four 

equal sections and in each section, a loop of single colony bacteria (described in section 3.2.2) was 

inoculated. The plates were incubated at 25℃ in the dark for seven days. The ability of the bacteria to 

produce siderophores was determined by measuring the clear zone around the colony.  

 

The clear zone (X) and colony (Y) diameters (mm) were measured in two perpendicular directions using a 

digital caliper. The average size (mm) of the clear zone was substracted from the average colony size (X-Y) 

(Figure 9). This yielded a final value (mm) to indicate the siderophore production.  
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Figure 9: Closed view from CAS agar showing clear zone around the bacteria colony. X and Y represent 

diameter (mm) of the clear zone and bacterial colony, respectively. 

 

4.2.1.2 Dual culture assay against the Neofusicoccum parvum 

 

The ability of the chloramphenicol mutant strain of Burkholderia sp. W4R11C from Section 3.2.2 to inhibit 

the growth of the kiwifruit pathogen, N. parvum, from Section 2.2.3 was tested using a dual culture assay, 

to show that the mutant strain acts the same way as the original type and has not lost any of its activity. A 

6 mm diameter agar disc was taken from the edge of a 7-day old culture of N. parvum, as described in 

Section 2.2.2 and placed in the centre of a Waksman agar plate. The bacterial inoculation was done onto 

the same agar by placing a loop of bacteria at equidistant points around the pathogen colony, making four 

bacterial inoculation sites on the same plate. A total ten replicates were set up. The plates were incubated 

at 25℃ in a 12-hour photoperiod for seven days. Antagonist activity of Burkholderia sp. W4R11C was 

determined by measuring the average inhibition zone (mm) between the Burkholderia sp. W4R11C and N. 

parvum colonies in two perpendicular directions using a digital caliper (Figure 10). 
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Figure 10: Inhibition of the growth of N. parvum by Burkholderia sp. Isolate W4R11C (left) compared to 

normal growth of N. parvum (right) after 3 days of incubation. Black lines indicated measurement for 

inhibition zone. 

 

4.2.2 Fungal and bacterial cultures  

 

The Botryosphaeria species used in this experiment is N. parvum. The conidia was prepared by harvesting 

the pycnidia from the prune agar plates, as described in Section 2.2.3. The pycnidia were crushed on a 

sterile glass slide and washed off with distilled water to obtain a spore suspension. A spore count was then 

conducted by using haemocytometer for each spore suspension. An adjustment was made by crushing and 

washing more pycnidia to obtain the final concentration of 6 x 104 spore per ml. 

 

Burkholderia sp. W4R11C was sub-cultured from stocks (described in Section 3.2.2) stored at -80℃ onto 

King agar B (Duchefa Biochemie) containing 125 ppm chloramphenicol at 25℃ for two days. Once bacterial 

colonies appeared, a single colony was taken and placed in 1 ml nutrient broth (NB; Difco, Becton, 

Dickinson and Company) in separate 1.7 ml sterile tube. A total three replicates were set up. The tubes 

were placed in a shaking incubator (Labnet, Labnet International Inc.) at 28℃ and 200 rpm for 14-15 
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hours. Bacterial cells were then harvested by centrifugation at 4000 x g for 10 minutes in a refrigerated 

centrifuge. The supernatant was then discarded and the pellets at the bottom of the tubes were 

resuspended in 10 ml phosphate buffered saline (PBS) pH 7.2 to achieve the final concentration of the 

suspension to 106 CFU/ml based on OD measurements (Section 3.3.2). 

 

4.2.3 Antagonism of Burkholderia spp. against N. parvum in planta 

 

The experiment was conducted during late winter from June 2017 till August 2017. Forty-two dormant 

Actinidia chinensis Planch. var. chinensis 'Gold3' rootstock (one year old) were delivered in a 6L plastic 

potting bags containing potting mix from Waimea Nurseries Ltd., New Zealand. The plants were placed in 

4℃ for 2 weeks and then transferred into a greenhouse with a 12-hour photoperiod till the end of the 

experiment; this ensure plant dormancy was broken.  

 

Inoculants of N. parvum and chloramphenicol resistant Burkholderia sp. Isolate W4R11C were prepared as 

described in Section 4.2.2. There were six treatments in total: (1) Burkholderia sp. inoculation and 48 

hours later N. parvum inoculation; (2) N. parvum inoculation and 48 hours later Burkholderia sp. 

Inoculation; (3) Single inoculation of Burkholderia sp.; (4) Single inoculation of N. parvum; (5) N. parvum 

and Burkholderia inoculation at the same time and (6) Negative control (water only). Plants were placed in 

an unbalanced randomized block design, with eight replicates for Treatments 1, 2, 4, 5 and five replicates 

for Treatments 3 and 6.  

 

To commence the inoculation, a wound was created on the top of the main stem for each plant using 

sterile secateurs. A 10 l aliquot of a Burkholderia W4R11-C1 cell suspension or N. parvum spore 

suspension at the required concentrations as described in Section 4.2.2 was pipetted onto the wound. For 
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the negative control, 10 l of sterile water was applied onto the wound. All the inoculated plants were 

placed in a 12-hour photoperiod in the greenhouse and watered as required.  

 

One month after inoculation, all plants were harvest. Each inoculated stem, was divided into 4 sections, 

each 5 cm in length, from the top (the wound site) to the bottom of the stem. Each section was labeled 

from 1 to 4, indicating the top to the bottom of the stem, respectively (Figure 11).  

 

 

Figure 11: Inoculated kiwifruit stem showing sections 1, 2, 3 and 4, indicating the top (wound site) to the 

bottom of the stem respectively. Each section was 5 cm in length. 

 

All plant tissue sections were surface sterilized, prior to placing on agar plates. The stems were debarked 

and soaked in a 25% sodium hypochlorite solution for 2 minutes, followed by rinsing 2 times in sterile 

water for 1 minute each time. Each section of the branch was then divided vertically into two and one half 

pressed gently into the surface of a ⅕ PDA (Difco, Becton Dickinson and Company) plate and the other half 

onto the surface of a King B agar amended with 125 ppm chloramphenicol. To validate the surface 

sterilization, randomly selected sterilized plant tissue (around 15% of the sample) were pressed onto the 
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surface of King agar B and ⅕ PDA, prior to planting on the isolation media (1/5 PDA and King agar B 

amended with 125 ppm chloramphenicol). 

 

The plates were incubated in 20℃ with a 12-hour photoperiod. The plates were monitored daily to record 

any microbial growth. To further confirm the species grow on the plates, glass slides were made when 

sporulation occurred and morphological structures were recorded after around 2 weeks of incubation. 

Hyphal tipping and sub-culturing, as described in Section 2.2.1, were also conducted from plates that 

shown fungal/bacterial growth. Plates that show fungal growth resembling N. parvum were sub-cultured, 

identity confirmed using DNA sequencing as described in Section 2.2.4. 

 

4.3 Results 

 

4.3.1 Bioactivity assays 

 

Burkholderia strain W4R11C inhibited the radial growth of N. parvum in the dual cultural assay. The fungal 

hyphae were observed to be deformed and hyphal tip lysis was noted. The inhibition area ranged from 4.6 

to 9.8 mm. The replicate value was compared to the mean value obtained from all replicates, which is 7.2 

mm. The data is homogenous, with no substantial differences between each replicate (P=0.941) (Table 3). 
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Table 3: Inhibition area of each replicate from dual plating of Neofusicoccum parvum and Burkholderia 

sp. isolate W4R11C. 

 

 

In the siderophore production assay, clear zones occurred around Burkholderia sp. isolate W4R11C 

colonies in the replicates, ranging from 9.35 to 12.76 mm. The replicate value was compared to the mean 

value obtained from all replicates, which is 10.87 mm. The data is homogenous, with no substantial 

differences between each replicate (P=0.99) (Table 4).  

 

 

 

 

 

 

 

 

Replicates Inhibition area (mm) Expected value

1 4.61 7.2

2 5.76 7.2

3 8.61 7.2

4 5.61 7.2

5 8.65 7.2

6 7.2 7.2

7 9.77 7.2

8 6.11 7.2

9 7.64 7.2

10 8.17 7.2

                       P value = 0.947364387
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Table 4: Clear zone measurement from CAS agar plates of Burkholderia sp. isolate W4R11C colony. 

 

 

4.3.2 Glasshouse inoculation 

 

Upon visual inspection, there was no macroscopic evidence of fungal or bacterial growth nor any visible 

lesion on the wounded plant stem. However, isolation from the stem confirmed that inoculation was 

successful with both Burkholderia sp. isolate W4R11C and N. parvum being recovered based on growth on 

chloramphenicol and colony morphology, respectively. On the 125 ppm chloramphenicol amended King B 

agar plates, creamy yellowish white bacterial colonies were present from Treatments 1, 2 3, 5. These 

resembled the morphological features of Burkholderia strain W4R11C used for inoculation (Figure 12).  

 

Replicates clear zone (mm) Expected value

1 9.84 10.87

2 11.38 10.87

3 11.52 10.87

4 11.36 10.87

5 10.42 10.87

6 10.36 10.87

7 11.18 10.87

8 12.76 10.87

9 9.35 10.87

10 10.5 10.87

             P value = 0.999790663
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Figure 12: Bacterial colonies growing from the kiwifruit stem tissue plated onto King agar B amended 

with 125 ppm chloramphenicol from Treatment 1 after 3 days incubation at 20℃ in 12-hour 

photoperiod. 

 

Colonies morphologically identified as N. parvum were reisolated from the plant material. Reisolation 

plates showed mycelium growth that resembled the morphological features of N. parvum (Figure 13). 

Colonies with greyish mycelium were found on several plates from Treatments 1, 2, 4 and 5, which had a 

fast growth that covered the whole agar plates in seven days after incubation. 

 

For the uninoculated negative control, no fungal colonies morphologically identified as N. parvum, and no 

bacterial colonies resistant to chloramphenicol were recovered. 
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Figure 13: Fungal colonies morphologically identified as Neofusicoccum parvum growing from the 

kiwifruit stem tissue plated onto 1/5 PDA agar plate from Treatment 2 showing greyish white fungal 

mycelium growth after 3 days incubation at 20℃ in 12-hour photoperiod. 

 

The sequence results, from DNA extractions of samples resembled typical Botryosphaeria morphological 

look, indicated a high similarity to N. parvum in BLAST (Table 5). 

 

Table 5: BLAST results shows alpha elongation factor gene region amplified sequences with high 

similiarity to N. parvum (99%). 

 

 

Successful inoculation and colonization results were shown in Table 6, as a percentage of the total 

replicates within each treatment. The data yielded an abnormal distribution due to a large number of 

unsuccessful inoculation (e.g. non-presence of the inoculants on the agar plates). Therefore, statistical 

analysis was confined to examining successful inoculation results only. 
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Table 6: Successful inoculation of Burkholderia sp. W4R11C and N. parvum as a percentage of the total 

number of replicates for the six different treatments.1 

 

1 1st and 2rd indicated sequences of inoculants application, with 1st being first inoculated and 2rd being inoculated 48 hours after the first one. 

 

Results indicated an interaction between the two organisms in regard to their colonization ability in the 

host plant. From the successful reisolation of the two inoculants, a significant difference (P=0.04) between 

numbers of Burkholderia colonization compared with that of N. parvum was found in Treatment 5), where 

the Burkholderia sp. was recovered three times more colonization than the N. parvum. In Treatments 1 

and 2, no substantial differences were found between the colonization ability of the two isolates.  

 

Section-wise inspection of the inoculum colonization was also conducted, which indicates an organisms’ 

movement within plant tissue. In Treatment 1, 2 and 5, Burkholderia sp. isolate W4R11C colonization was 

less than N. parvum at the top section of the stem. Proceeding down to section 2 (10cm from the wound) 

and 3 (15 cm from the wound), the Burkholderia sp. colonization often exceeded the N. parvum 

colonization. At section 4 (20cm from the wound), all three treatments showed no N. parvum present. 

Detailed inoculant movement and colonization of the inoculants from each treatment are presented. 

 

  

Burkholderia N. parvum

1 Burkholderia   1st & N. parvum  2rd 13.33% 27.66%

2 N. parvum  1st & Burkholderia 2rd 15.63% 15.63%

3 Burkholderia  only 0% 25%

4 N. parvum only 36.84% 0%

5 Burkholderia  & N. parvum  same time 18.75% 6.25%

6 Negative control 0% 0%

Treatments
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Each section from Treatment 1 was examined to compare the changes of two inoculants recovery (Figure 

15). The top two section showed fungal colonization only (Figure 15A and B). In section 3, Burkholderia sp. 

colonization emerged, yet did not make a substantial higher colonization than N. parvum (Figure 15C). In 

section 4, the Burkholderia colonization reached 30% of all the treatment plants, and no fungal 

colonization can be found (Figure 15D).  

 

Figure 15: Section-wise comparison between the presence of N. parvum (Bot) and Burkholderia sp. 

(Burk) (as a proportion of the total number of replicates) from Treatment 1. (A) Section 1 (0-5 cm from 

wounded site). (B) Section 2 (5-10 cm from wounded site). (C) Section 3 (10-15 cm from wounded site). 

(D) Section 4 (15-20 cm from wounded site). Error bars indicate the standard deviation of the mean. 
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wound), Burkholderia sp. colonized 25% of the treated plants and no fungal colonization can be found 

(Figure 17D). 

 

  

Figure 17: Section-wise comparison between the presence of N. parvum (Bot) and Burkholderia sp 

(Burk) (as a proportion of the total number of replicates) from Treatment 2. (A) Section 1 (0-5 cm from 

wounded site). (B) Section 2 (5-10 cm from wounded site). (C) Section 3 (10-15 cm from wounded site). 

(D) Section 4 (15-20 cm from wounded site). Error bars indicate the standard deviation of the mean. 

 

4.3.2.3 Treatments 3 and 4: single inoculation of Burkholderia sp. W4R11C and N. parvum, respectively 

 

The inoculants colonization as proportion to the replicates from treatment 3 and 4 was shown in Figure 18 

and 19 respectively, which was indicated by the inoculant’s recovery. The Burkholderia sp. colonization 
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Each section from Treatment 5 was then examined to compare the two inoculants colonization changes 

(Figure 21). The first sections showed a similar colonization proportion-wise between the two inoculants, 

as indicated by the error bar (Figure 21A). Section 2, 3 and 4 showed non-colonization of N. parvum and 

around 12-30% colonization of Burkholderia sp.(Figure 21B, C and D). 

    

Figure 21: Section-wise comparison between the presence of N. parvum (Bot) and Burkholderia sp 

(Burk) (as a proportion of the total number of replicates) from Treatment 5. (A) Section 1 (0-5 cm from 

wounded site). (B) Section 2 (5-10 cm from wounded site). (C) Section 3 (10-15 cm from wounded site). 

(D) Section 4 (15-20 cm from wounded site). Error bars indicate the standard deviation of the mean. 

 

4.3.3 Other organism 

 
Besides the presences of the two inoculants, other organism was consistently isolated from the plant 

tissue. Cover-slip slides showed spores that resemble Arthrinium spp. (Figure 22). 
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Figure 22: Arthrinium spores showing typical morphology being dark brown, oval shaped and a germ slit 

in the middle. 

 

4.4 Discussion 

 
This work has demonstrated for the first time the apparent competition between N. parvum and 

Burkholderia sp. isolate W4R11C, with the Burkholderia sp. appearing to have an antagonistic effect on N. 

parvum in planta. In vitro assessment had also shown antagonist effect conferred with previous studies 

(Wicaksono et al. 2017). A study by Tenorio-Salgado et al. (2013) also reported some Burkholderia strains 

were able to produce volatile compounds and inhibit hyphal growth of phytopathogenic fungi 

 

Both Burkholderia sp. W4R11C and N. parvum were able to colonizes the one year old A.chinesis “Gold3” 

plants in the glass house experiment. The colonization of Burkholderia sp. W4R11C on the kiwifruit plants 

was confirmed in previous study (Wicaksono et al. 2017). The same study also indicated that deliberately 

wounded tissues provided suitable inoculation courts for the bacteria. To create a stable concentration 

that being effective, an upper and lower inoculum threshold was defined, namely as the Allee effect 
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(Etienne et al. 2002).In this experiment, 106 CFU/ml was used and achieved some successful colonisation 

of the tissue (at around 15-30%). Besides, the wounding treatment mimics the common agronomic 

practices such as pruning in the orchard, which provide a similar condition for the inoculation as to natural 

infection. Several studies that utilized wounding treatments for bacterial inoculation also showed effective 

colonization results (Wulff et al. 2002; Rezgui et al. 2016). Future studies on applying biocontrol agents 

should consider the use of different concentrations of the bacterial suspension to achieve a higher 

colonization of host plant tissue. 

 

The movement and interaction between Burkholderia W4R11C and N. parvum were also examined. From 

the results, the colonization of N. parvum decreased from section2, 3 and 4 of the stem (5-20 cm from the 

wound), where Burkholderia sp. colonization persisted. This finding conferred with the common practice in 

the kiwifruit industry, which suggested to prune 20 cm off the stem from the infected site to eliminate 

inoculum sources in the plant (Honer et al. 2015).  

 

The interaction between the Burkholderia sp. and N. parvum confirm the antagonism of the bacteria. In 

cases with the successful inoculation, the Burkholderia sp. colonization outnumbered N. parvum further 

down of the stem (Section 4.2.3.1-4.3.2.4). This may indicate a suppression effect on N. parvum growth by 

the Burkholderia sp. W4R11C. Although some may argue that N. parvum inoculation may result in a weak 

colonization, the positive control from Treatment 4 suggested the persistency of N. parvum throughout 

the host tissue. Therefore, one should be able to conclude that the non-recovery of N. parvum from 

sections 3 and 4 of the stem was due to the presence and inhibitory action of Burkholderia sp. W4R11C. 

 

Some research has indicated that a biocontrol product can be more effective in disease inhibition if 

applied prior to pathogen arrival (Halleen et al. 2016). However, it is contradictory to our finding of a 
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better colonization from the Burkholderia sp. W4R11C when inoculated at the same time as N. parvum. 

Different fungal species can have varied sensitivity to biocontrol bacteria, which may explain this variation 

in results. For instance, Mazzola & Cook (1991) reported that different Pythium species can affect the 

colonization rate of bacteria in wheat. Besides, the N. parvum inoculant has a high spore concentration at 

104 spore/ml, which should give a more readily colonization. Under such conditions, Burkholderia sp. 

W4R11C still maintained its colonization ability, which showed similiar colonization levels as the non-

disease circumstances(Treatment3). The fact that the Burkholderia sp. W4R11C has a strong colonization 

and survival regardless of the presence of the pathogen N. parvum, is therefore clear. It indicated a 

potentially stronger biocontrol ability from this particular strain. 

 

There are a few points that should be considered to improve this experiment. First of all, N. parvum 

incoulated plant material yielded very few reisolations. The low disease incidence in this experiment was 

contradictory to those reported by Michailides (1991) and Milholland (1972). A study focused on different 

spore concentrations may explain the low fungal colonization rate. In Biggs (2014), there seems to be a 

great increase in disease incidence from around 40% to 70%, when the spore concentration was increased 

from 106 to 107 spore/ml. For future work to increase inoculation success, a different spore concentration 

may be considered. 

 

Secondly, the bacterial movement was examined in a previous study on cotton, which showed limited 

movement (none beyond 5 cm) in planta (Chen et al. 1995). This is contradictory to our results that 

indicated a rapid colonization of the plant tissues by Burkholderia sp. W4R11C. Yet it may explain the 

inconsistency of Burkholderia sp. colonisation between the replicates. Limited movement of the bacteria 

may occur in our experiment that restrict its access to plant nutrients. The result of our experiment was 

not sufficient in supporting the colonization ability of Burkholderia sp. W4R11C, and further studies are 
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required. Alternative methods in analyzing the locality of the bacteria in plant tissue can be applied. For 

instance, fluorescence in situ hybridization confocal laser scanning microscopy can be used (Cardinale 

2014). 

 

Nevertheless, from these results, we can conclude that the colonization and movement of Burkholderia sp. 

W4R11C may contribute to its biocontrol ability and can be affected by application time. The inhibition 

effect from the bacteria may take place more readily during pruning time, serving as a wound protectant 

during seasons when N. parvum inoculum level are high in the orchard. Due to the limited number of 

replicates, this advice may not be suitable for all kiwifruit orchards. Further studies on examining the 

interaction between N. parvum and the Burkholderia sp. are required. 
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Chapter 5 

Concluding discussion 

 

The overall objective of this thesis was to test the biocontrol ability of one Burkholderia strain, as a wound 

protectant, against the pathogen Neofusicoccum parvum in planta. This work presented information about 

a colonization and movement of the bacterial agent, which offered a comprehensive understanding of its 

biocontrol ability in kiwifruit. Actinidia chinensis is an important horticultural crop in New Zealand. The 

outcome of this study may contribute to an integrated pest management for N. parvum for the kiwifruit 

industry.  

 

The culturing and identifying of the fungal pathogen, Neofusicoccum parvum, was performed in Chapter 2. 

Morphological observation and molecular approaches based on sequencing several gene regions were 

used. The highlight of this part of the study was these multiple approaches on examining and 

understanding the fungal biology of N. parvum. The morophological identification, such as color, shape 

and growth rate of the fungi, can aid in initial identification to genus level. It was then followed by DNA 

extraction and sequencing to distinguish morphologically alike species within the genus. The ITS regions 

cannot distinguish between different Botryosphaeria species. Two other gene regions, beta-tubulin and 

alpha elongation factors were used, which which did enable the differentiation between two closely 

associated species N. parvum and N. ribis. For future studies, species-specific primers should be designed 

to enable quick and accurate identification of these two species. Induction of sporulation by the N. parvum 

isolate using different agar media and detached plant tissue was also assessed in this part of the study. 

Production of conidia was only observed on prune agar, with these being used as inoculum for the in 

planta biocontrol experiment in Chapter 4. 
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In Chapter 3, the aim was to culture, identify and develop an antibiotic resistant mutant of the bacterial 

isolate, W4R11C, that was previously identified as a potential biocontrol agent. The Burkholderia sp. grows 

well in liquid nutrient broth and King agar B in solid form. For identification, the16S gene was used, which 

identified the isolate aa a member of the genus Burkholderia, but was unable to differentiate Burkholderia 

species. An antibiotic resistant mutant strain was created to enable the selective isolation and thereby 

traceability of Burkholderia sp. W4R11to be determined from the inoculated plant tissue in Chapter 4.  

Further studies to create alternative methods to enable the colonization of plant tissue by Burkholderia sp.  

should be considered, particularly methods such as fluorescent in situ hybridization which would enable 

colonization of plant tissue by this isolate to be visualizedwhich may offer a more definite correlation 

between in vitro performance and in planta. 

 

In Chapter 4, the biocontrol ability of the Burkholderia strain against N. parvum was tested.  Burkholderia 

sp. W4R11C, the chloramphenicol resistant mutant strain, was used as a wound protectant. This study 

showed the ability of Burkholderia sp. W4R11C to colonize the stem of kiwifruit plants. Of particular note 

was that Burkholderia sp. inhibited the N. parvum colonisation in planta. Burkholderia sp. W4R11C was 

seen to colonise  further down the stem from the inoculation point than N. parvum, when both isolates 

were present. When both Burkholderia sp. W4R11C and N. parvum were applied to the stem, only the 

Burkholderia sp. colonised the plant stem tissue 10 cm from the inoculation point; no N. parvum could be 

reisolated. These results may give a better understanding of specific circumstances in using the bacteria. 

For example, since the bacterial biocontrol agent can colonize further than the pathogen in the stem, the 

standard practice of cutting infected kiwifruit vine 20 cm from the visible lesion and then applying the 

biocontrol agent may eliminate the pathogen. Since the inoculation was not successful in a large number 

of plants, future studies should use a greater number of replicates (maximum 8 replicates in current 
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study). Future work could also focus on seeking a more effective inoculation method, which could be 

tested on mature plants in the field. 

 

In summary, this work combined the understanding of the biology of the microbial organisms and in 

planta testing, to elucidate the capacity of the bacterial biocontrol agent, Burkholderia sp. W4R11, for the 

control of the kiwifruit pathogen, N. parvum. Burkholderia sp. W4R11 could potentially be utilized as part 

of an integrated pest management program for better disease control. Further work on testing the 

bacterial biocontrol ability and understanding the pathogenicity of N. parvum are required to progress this 

research further.   
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Appendix A  

Recipes of media types used for culturing and functionality assay 

 

Chrome Azurol S (CAS) agar (Schwyn & Neilands 1951) 

The following solutions were prepared separately.  

 

Blue Dye: 

a. Solution 1: Dissolve 0.06 g of CAD (Fluka Chemicals) in 50 ml of distilled water. 

b. Solution 2: Dissolve 0.0027 g of FeCl3-6H2O (LabServ, Thermofisher Scientific Inc.) in 10 ml of 10 

mM HCl (FIsher Scientific, Thermofisher Scientific Inc.). 

c. Solution 3: DIssolve 0.073 g of HDTMA in 40 ml of distilled water. 

d. Mix Solution 1 with 9 ml of Solution 2. Then mix with Solution 3.  

The solution should be blue color and autoclaved. 

 

Mixture Solution  

a. Minimal Media 9 (MM9) Salt solution stock: Dissolve 15 g KH2PO4, 25 g NaCl and 50 g NH4Cl in 

500 ml of distilled water. 

b. 20% Glucose stock: Dissolve 20 g glucose in 100 ml of distilled water. 

c. NaOH Stock: Dissolve 25 g of NaOH in 150 ml of distilled water. Its pH should be around 12. 

d. Casamino Acid solution: Dissolve 3 g of Casamino acid in 27 ml of distilled water. The solution 

should then be filter sterilized. 

 

To make the CAS agar:  
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a. Add 100 ml of MM9 solution to 750 ml of distilled water. 

b. Dissolve 32.24 g piperazine-N, N’-bis (2- ethanesulfonic acid) PIPES (Sigma-Aldrich, Sigma-

AldrichCo. LLC). Noted that PIPES will not dissolve below pH of 5. Bring pH up to 6 and slowly add 

PIPES while stirring. The pH should drop as PIPES dissolves. While stirring, slowly bring pH up to 

6.8. Do not exceed pH of 6.8. 

c. Add 15 g Bacto agar.  

d. The MM9/PIPES mixture should be autoclaved and cool to 50℃. 

e. Add 30 ml of sterile Casamino acid solution add 10 ml of sterile 20% glucose soluton to 

MM9/PIPES mixture. 

f. Slowly add 100 ml of Blue Dye solution along the glass wall with enough agitation to mix 

thoroughtly 

 

Prune extract agar 

 

Prune extract:  

Destone the dried prune to get 50 g of the flesh in 1 litre of distilled water. Place the mixture to boil and 

simmer for 30 minutes. The solution should then be strained by a sterile muslin cloth. The strained 

solution need to add distilled water to bring up to 1 litre.  

 

To make around 1 L of the prune extract agar: 

prune extract         100 ml 

sucrose (LabServ, Thermofisher Scientific Inc.)     5 g 

Difco yeast (Difco, Becton, Dickinson and Company)    1 g 

agar          30 g 
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distilled water        1 L 

 

Pine needle agar       per litre 

agar          20 g 

distilled water      q  1 L 

 

Autoclave the above mixtures. Place 1-2 previously autoclaved pine needle in the plates and pour the 

water agar mixture in the same plates.  

 

Vegetable juice agar       per litre 

V8 juice        200 mL 

Davis agar        15 g 

1.0 M NaOH        6 mL 

distilled water        800 mL 

 

Waksman agar         per litre 

Bacteriological pepton (Difco, Becton, Dickinson and Company)  5 g 

Beef extract (Acumedia, Neogen)     5 g 

Sodium Chloride (LabServ, Thermofisher Scientific Inc.)    5 g 

Glucose (Scharlau, Scharlab S. L.)      10 g 

Difco agar (Difco, Becton, Dickinson and Company)   15 g 

 

pH adjust to 7.2 
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Appendix B  

DNA sequence results 

Neofusicoccum parvum isolate: 

(1): the ITS region 

AGGACCATAAAACTCCAGTCAGTGAACTTCGCAGTCTGAAAAACAAGTTAATAAACTAAAACTTTCAACAACGGATCT

CTTGGTTCTGGCATCGATGAAGAACGCAGCGAAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGA

ATCTTTGAACGCACATTGCGCCCCTTGGTATTCCGAGGGGGCATGCCTGTTTCGAGCGTCATTTTCAACCCTCAAGCT

CTGCTTTGGGTATTGGGCCCCGTCCTCCACGGACCGCGCCTTAAAGACCTCGGGGGTGGGCGTCTTGCCTCAAGCGT

AGTAGAAAACACCTCGCTTTGGAGCGCACGGCG 

 

(2) the Beta-tubulin region 

TTCACCTCCAGACCGGCCAATGCGTAAGTCTCCTCGCATCCGCTGCACTCGCTGCACCGCGCTGACTTTGCCCAGGGT

AACCAAATCGGTGCCGCCTTCTGGTTTGTTGCCAAAACACTCCCGCTCCCGCG 

 

(3) the Alpha-elongation factor region (Section 2.2.4) 

AACTGGTGAGTTCGAGGCTGGTATCTCCAAGGATGGCCAGACTCGTGAGCACGCTCTGCTCGCCTACACCCTGGGTG

TCAAGCAGCTCATCGTCGCCATCAACAAGATGGACACCACCAAGTGGTCTGAGGAGCGTTACCAGGAGATCATCAAG

GAGACCTCCAACTTCATCAAGAAGGTCGGCTACAACCCCAAGACCGTTCCCTTCGTCCCCATCTCCGGCTTCAACGGC

GACAACATGATCGAGGCCTCCACCAACTGCCCCTGGTACAAGGGCTGGGAGAAGGAGACCAAGACCAAGTCCACCG

GCAAGACCCTCCTCGAGGCCATCGACTCCATCGATACCCCCGTCCGCCCCTCGGACAAGCCCCTCCGTCTTCCCCTCCA

GGACGTCTACAAGATTGGCGGTATTGGCACGGTCCCCGTCGGCCGTGTCGAGACTGGTGTTATCAAGGCCGGCATG

GTCGTCACCTTCGCCCCCGCTGGTGTCACCACTGAGGTCAAGTCCGTCGAGATGCACCACGAGCAGCTTGTCGAGGG

TGTCCCCGGTGACAACGTCGGCTTCAACGTCAAGAACGTCTCCGTCAAGGAGATCCGTCGTGGCAACGTCGCCGGTG

ACTCCAAGAACGACCCCCCCAAGGGCTGCGACTCCTTCAACGCCCAGGTCATCGTCCTCAACCACCCCGGTCAGGTCG
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GTGCTGGCTACGCTCCCGTCCTGGACTGCCACACTGCCCACATTGCTTGCAAGTTCTCTGAGCTGCTCGAGAAGATCG

ACCGCCGTACCGGCAAGTCTATTGAGAACAGCCCCAAGTTCATCAAGTCTGGTGATGCCGCCATCGTCAAGATGATT

CCCTCCAAGCCCATGTGCGTTGAGGCTTTCACCGAGTACCCCCCTCTTGGCCGTTTCGCCGTCCGTGACATGGTATGT

CCCTC 

 

(4)the  Alpha-elongation factor region (Section 4.2.3) 

ACTCATTGCCGCCGTACTGGTGAGTTCGAGGCTGGAATCTCCAAGGATGGCCAGACTCGTGAGCACGCTCTGCTCGC

CTACACCCTGGGTGTCAAGCAGCTCATCGTCGCCATCAACAAGATGGACACCACCAAGTGGTCTGAGGAGCGTTACC

AGGAGATCATCAAGGAGACCTCCAACTTCATCAAGAAGGTCGGCTACAACCCCAAGACCGTTCCCTTCGTCCCCATCT

CCGGCTTCAACGGCGACAACATGATCGAGGCCTCCACCAACTGCCCCTGGTACAAGGGCTGGGAGAAGGAGACCAA

GACCAAGTCCACCGGCAAGACCCTCCTCGAGGCCATCGACTCCATCGATACCCCCGTCCGCCCCTCGGACAAGCCCCT

CCGTCTTCCCCTCCAGGACGTCTACAAGATTGGCGGTATTGGCACGGTCCCCGTCGGCCGTGTCGAGACTGGTGTTAT

CAAGGCCGGCATGGTCGTCACCTTCGCCCCCGCTGGTGTCACCACTGAGGTCAAGTCCGTCGAGATGCACCACGAGC

AGCTTGTCGAGGGTGTCCCCGGTGACAACGTCGGCTTCAACGTCAAGAACGTCTCCGTCAAGGAGATCCGTCGTGGC

AACGTCGCCGGTGACTCCAAGAACGACCCCCCCAAGGGCTGCGACTCCTTCAACGCCCAGGTCATCGTCCTCAACCA

CCCCGGTCAGGTCGGTGCTGGCTACGCTCCCGTCCTGGACTGCCACACTGCCCACATTGCTTGCAAGGTTCTCTGAGC

TGCTCGAGAAGATCGACCGC 

 

Burkholderia sp.: 

16S region 

GAAAGCCGGATTAATACCGCATACGATCTACGGATGAAAGCGGGGGACCTTCGGGCCTCGCGCTATAGGGTTGGCC

GATGGCTGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAGGACGACCA

GCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGCGAAAG
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CCTGATCCAGCAATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTTGTCCGGAAAGAAATCCTTGAC

CCTAATACGGTCGGGGGATGACGGTACCGGAAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATAC 
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