
Huff-like Stackelberg location problems on the
plane

José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Abstract The so-called leader-follower (or Stackelberg) problem is researched. A

chain, the leader, wants to locate a single new facility in a region of the plane. After

that, as a reaction, the competitor chain, the follower, will locate a single new facility

too, knowing the decision taken by the leader. Several variants of the problem are

analyzed. In the simplest one, the objective of both the leader and the follower is

to maximize the market share, the qualities of the facilities to be located are given

beforehand, and the demand is fixed (no costs are considered). In the second one, the

qualities of the facilities to be located are considered variables of the problem, and

costs related both to location and quality are taken into account; the demand is fixed

as in the first model. Finally, the last model extends the previous one considering that

the demand varies depending on the location and the quality of the facilities. Exact

(for the first problem) and heuristic (for the second and third problems) approaches

proposed for the aforementioned location models are described and analyzed. High

performance computing approaches for the heuristic methods are also reviewed. A

new exact branch-and-bound method for the last two problems is also suggested.

José Fernández

Dpt. Statistics and Operations Research, University of Murcia, Campus de Espinardo, 30100 Es-

pinardo, Murcia, Spain, e-mail: josefdez@um.es

Juana L. Redondo

Dpt. Informatics, University of Almería, ceiA3, Ctra. Sacramento s/n, La Cañada de San Urbano,

04120 Almería, Spain, e-mail: jlredondo@ual.es

Pilar M. Ortigosa

Dpt. Informatics, University of Almería, ceiA3, Ctra. Sacramento s/n, La Cañada de San Urbano,

04120 Almería, Spain, e-mail: ortigosa@ual.es

Boglárka G.-Tóth

Dpt. Differential Equations, Budapest University of Technology and Economics, Egry József u. 1.,

1111 Budapest, Hungary, e-mail: bog@math.bme.hu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTE Publicatio Repozitórium - SZTE - Repository of Publications

https://core.ac.uk/display/286894419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

1 Introduction

Locating a new facility usually requires a massive investment. In order to guarantee

the survival of the facility, especially in a competitive environment (where other fa-

cilities offering the same product or service exist), the locating firm tries to take all

the factors which may affect the market share captured by the facility (or its profit)

into account. A well-known aphorism states that ‘the most important attributes of

stores are location, location and location’. The literature about facility location cor-

roborates that point as the number of papers devoted to that topic is huge. Mathe-

matical location models try to combine all the factors of interest for the facility into

neat equations which try to faithfully represent (a simplified version of) reality. The

location decisions provided by the location models can be of invaluable help to the

decision-maker, as the location of a facility cannot be easily altered.

Depending on the location space, competitive facility location models can be

subdivided, as any other type of location problems, into three main categories: (i)

continuous problems, where the set of feasible locations for the new facility (or

facilities) is (a subset of) the plane; (ii) network problems, where any point in a

network (on an edge or a vertex) is a possible location, and (iii) discrete problems,

when the set of potential locations is reduced to a finite set of points. In this chapter

we restrict ourselves to continuous models, as this is the main research field of the

authors, but the interested reader can find many references on network and discrete

competitive location models in literature, see for instance [3, 4, 16, 29, 30, 45] and

references therein.

In competitive models there is a demand which has to be, or may be, served

by the facilities. This demand is commonly assumed to be concentrated at a finite

set of points, called demand points (also referred to as customers). In most of the

research works it is assumed that the demand is fixed, regardless the conditions of

the market (price, distance to the facilities,. . .). This implicitly assumes that goods

are ‘essential’ to the customers. It is only recent that the case of ‘inessential’ goods

has been addressed [28, 35]. In those models it is assumed that the demand varies

depending on the location of the facilities.

The attraction of a customer towards a facility depends on both the location and

the characteristics of the facility. Usually the characteristics are combined into a

single figure which represents the quality of the facility. The closer the facility to the

customer and the higher its quality, the higher the attraction of the customer towards

the facility. Although there are many ways to model the attraction (see [34]), the

formula quality divided by a function of the distance (already proposed in [22]) is

the most popular in literature, and the one followed in this chapter.

The patronizing behavior of customers, which establishes how customers split

their demand among the available facilities, is another key factor of the model. Two

rules dominate literature. In the deterministic rule it is assumed that customers only

buy at a single facility, the one to which they are attracted most [7, 33]. However, this

hypothesis has not found much empirical support, except in areas where shopping

opportunities are limited and transportation is difficult. On the contrary, in the prob-

abilistic rule customers patronize all the facilities. However, the demand served at

Huff-like Stackelberg location problems on the plane 3

each facility is not the same: it is proportional to the attraction. Hence, more attrac-

tive facilities capture more demand than less attractive facilities. The probabilistic

rule was already suggested in [22] to estimate the market share captured by com-

peting facilities, and first used in a location model in [8]. In that paper, as in most

of the ones using the probabilistic rule, the quality of the facility to be located was

fixed, given beforehand. It was in [18] when quality was first considered an addi-

tional variable to the problem to be determined. In fact, it was empirically proved

that both the location and the quality of the facility to be located have to be found

simultaneously, as the location influences the quality, and vice-versa. In general, the

probabilistic rule has proved to approximate the market share captured by the facili-

ties more accurately than other alternatives, and it will be the one used in the models

in this chapter.

Another point to be taken into account is the possible reaction of the competitors.

In most competitive location models it is assumed that the competition is static. This

means that competitors are already present in the market, the locating chain knows

their characteristics and no reaction to the location of the new facility (or facilities) is

expected from them. However, there are situations where the competitors do react to

the location of the new facilities. In those cases, it is very important to foresee those

reactions, as the market share and profit obtained by the locating chain may vary

substantially. Although there are dynamic location models, where competitors can

change their decisions indefinitely, and then the existence of equilibrium situations

is of major concern (see for instance [6, 27, 19]), in this chapter the focus is on

the so-called ‘leader-follower’ (or Stackelberg) problems. The scenario considered

in that type of problems is that of a duopoly. A chain, the leader, makes the first

movement, and locates p new facilities in the market, where similar facilities of a

competitor (the follower), and possibly of its own chain, already exist. Then, the

follower, as a reaction, decides to locate r new facilities. Hakimi [20] seems to be

the first considering this type of two-level optimization problems. He introduced

the term (r|Xp) medianoid to refer to the follower’s problem of locating r facilities

in the presence of the p new leader’s facilities located at the set of points Xp. And

the term (r|p) centroid problem to refer to the leader’s problem of locating p new

facilities, knowing that the follower, as a reaction, will locate r new facilities by

solving the corresponding (r|Xp) medianoid problem. In this chapter only the (1|1)
centroid problem will be considered, i.e., it is assumed that the leader will locate

only one new facility, and the follower’s reaction consists of the location of a new

single facility too.

Even in this simple case the leader-follower problem is very hard to solve. In

fact, the follower’s problem is already a highly nonlinear global optimization prob-

lem (see [8, 18]). The literature on leader-follower location problems is scarce (see

[15] for a review on the topic until 1996). And this shortage is even more pro-

nounced in the case of continuous problems, largely due to the complexity of this

type of bilevel programming problems. Drezner [14] solved the (1|1) centroid prob-

lem for the Hotelling model and Euclidean distances exactly, through a geometric-

based approach. Bhadury et al. [2] considered the (r|p) centroid problem also for

the Hotelling model with Euclidean distances, and gave an alternating heuristic to

4 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

cope with it. In [10] Drezner and Drezner considered the Huff model, and proposed

three heuristic approaches for handling the (1|1) centroid problem (see also [11]).

More recently, the authors of this chapter have worked and extended the Huff-

like Stackelberg problems. In [44] an exact branch-and-bound method is proposed

for a model closely related to that in [10]. This model was later extended in [37] to

consider the quality of the new facilities as additional variables of the model, and

also changing the objective from market share maximization to profit maximization;

both sequential and parallel heuristics were proposed to cope with it (see [37, 41]).

Finally, in [36], the model was extended to take into account the possibility of the

variability of the demand (see also [1]); again, sequential and parallel heuristic pro-

cedures were proposed. The goal of this chapter is to make a critical review of those

papers and to point lines for future research. First, in the next section, the basic

notation is introduced, and then, in the three following sections, the three aforemen-

tioned models are reviewed. Finally, in the last section we point out an idea which

may be used to develop exact methods for the last two models.

Although here we only consider that, as a reaction, the follower will locate an

additional facility too, other alternatives have been recently proposed in literature.

They all consider that the follower can change the quality of its existing facilities. In

particular, in [43], the leader locates one single facility in a region of the plane, and

then the follower may increase the quality of some of its facilities. The follower does

not locate any new facility. In [26] the leader enters the market by locating several

facilities at some of the points of a finite set of feasible locations (discrete problem),

and then, the reaction of the competitor is to adjust (i.e., increase or decrease) the

attractiveness of its existing facilities so as to maximize its own profit. However, it

cannot open new facilities and/or close existing ones, either. The model is extended

in [25], where the follower can also open new facilities or close some existing ones.

The probabilistic rule is used in the three aforementioned papers. A different ap-

proach is followed in [13] (see also [12]) where a discrete location model based

on the concept of coverage is presented. Each facility attracts consumers within a

sphere of influence defined by a radius. The leader and the follower, each has a bud-

get to be spent on the expansion of their chains either by improving their existing

facilities or constructing new ones.

2 Notation

A chain, the leader, wants to locate a new single facility in a given area of the

plane, where m facilities offering the same goods or product already exist. The first

k (≥ 0) of those m facilities belong to the chain, and the other m− k (> 0) to a

competitor chain, the follower. The leader knows that the follower, as a reaction,

will subsequently position a new facility too.

The following notation will be used throughout this chapter:

Huff-like Stackelberg location problems on the plane 5

Indices
i index of demand points, i = 1, . . . ,n.
j index of existing facilities, j = 1, . . . ,m. The first k of those m facilities

belong to the leader’s chain, and the rest to the follower’s.

l index for the new facilities, l = 1 for the leader, l = 2 for the follower.

Variables
zl = (xl ,yl) location of the new leader’s (l = 1) or follower’s (l = 2) facility.

αl quality of the new leader’s (l = 1) or follower’s (l = 2) facility (in

case the quality is to be determined by the model).

nfl = (zl ,αl) variables of the new leader’s (l = 1) or follower’s (l = 2) facility.

Input data

pi location of the i-th demand point.

ŵi fixed demand (or purchasing power) at pi, ŵi > 0 (when the demand is

assumed to be fixed).

wmin
i minimum possible demand at pi, wmin

i > 0 (when the demand is assumed

to be variable).

wmax
i maximum possible demand at pi, wmax

i ≥ wmin
i (when the demand is

assumed to be variable).

f j location of the j-th existing facility.

di j distance between pi and f j, di j > 0.

β j quality of f j, β j > 0.

γi weight for the quality of (both existing and new) facilities as perceived

by demand point pi, γi > 0.

dmin
i minimum distance from pi at which the new facilities can be located,

dmin
i > 0.

Sl location space where the leader (l = 1) or the follower (l = 2) will

locate its new facility.

αmin
l minimum level of quality for the new leader’s (l = 1) or follower’s

(l = 2) facility, αmin
l > 0 (when the quality is a variable of the model).

αmax
l maximum level of quality for the new leader’s (l = 1) or follower’s

(l = 2) facility, αmax
l ≥ αmin

l , (when the quality is a variable of the model).

Miscellaneous
gi(·) a non-negative, non-decreasing function, which modulates the

decrease in attractiveness as a function of distance.

di(zl) distance between pi and zl , l = 1,2.

ui,nfl attraction that pi feels for nfl , l = 1,2, ui,nfl = γiαl/gi(di(zl)) .

Ui(nf1,nf2) total utility perceived by a customer at pi provided by all the

facilities.

wi(Ui(nf1,nf2)) actual demand at pi (when the demand is assumed to be

variable).

Computed parameters

ui j attraction that pi feels for f j (or utility of f j perceived by the people at pi),

ui j = γiβ j/gi(di j).

6 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Market share and profit functions

Ml(nf1,nf2) market share obtained by the leader (l = 1) or the follower (l = 2)

after the location of the new facilities.

Πl(nf1,nf2) profit obtained by the leader (l = 1) or the follower (l = 2) after

the location of the new facilities.

The profit functions Π1 and Π2 vary in each of the problems analyzed, and are

detailed in the corresponding sections.

In all the models in this chapter it is assumed that the patronizing behavior of

customers is probabilistic, that is, demand points split their buying power among all

the facilities proportionally to the attraction they feel for them. Using these assump-

tions, the market share attracted by the leader’s chain after the location of the leader

and the follower’s new facilities is

M1(nf1,nf2) =
n

∑
i=1

wi

ui,nf1 +∑
k
j=1 ui, j

ui,nf1 +ui,nf2 +∑
m
j=1 ui, j

, (1)

where wi stands for ŵi when the demand is fixed, and for wi(Ui(nf1,nf2)) when the

demand is variable. Analogously, the market share attracted by the follower’s chain

is

M2(nf1,nf2) =
n

∑
i=1

wi

ui,nf2 +∑
n
j=k+1 ui, j

ui,nf1 +ui,nf2 +∑
m
j=1 ui, j

. (2)

Given nf1, the problem for the follower is the (1|nf1) medianoid problem:

(FP(nf1))

max Π2(nf1,nf2)
s.t. z2 ∈ S2

di(z2)≥ dmin
i , i = 1, . . . ,n

α2 ∈ [αmin
2 ,αmax

2]

(3)

whose objective is the maximization of the profit obtained by the follower (once

the leader has set up its new facility at nf1). In case the problem (FP(nf1)) has

multiple optimal solutions, then it is assumed that the follower selects an optimal

solution which provides the worst possible objective function value for the leader

(the so-called pessimistic approach in bilevel programming [5]).

Let us denote with nf ∗2 (nf1) an optimal solution of (FP(nf1)) for which the objec-

tive value of the leader is minimum. The problem for the leader is the (1|1) centroid

problem:

(LP)

max Π1(nf1,nf ∗2 (nf1))
s.t. z1 ∈ S1

di(z1)≥ dmin
i , i = 1, . . . ,n

α1 ∈ [αmin
1 ,αmax

1]

(4)

As we can see, the leader problem (LP) is much more difficult to solve than

the follower problem (FP(nf1)). Notice, for instance, that to evaluate its objective

function Π1 at a given point nf1, we have to first solve the corresponding medianoid

problem (FP(nf1)) to obtain nf ∗2 (nf1).

Huff-like Stackelberg location problems on the plane 7

3 A model without costs

3.1 The model

The first model we will describe is that in [44]. Essential goods are considered.

Therefore, the demand has to be served by the facilities. The demand quantities

are assumed to be known and fixed. Also the quality values of the new facilities

to be located, α1 and α2, are assumed to be given, i.e., they are not variables of

the model. As the qualities are fixed, no cost related to the achievement of a given

level of quality is considered. No cost related to the setting-up of the facilities at a

given location is considered either. Then, taking into account that the profit obtained

by a player is an increasing function of the market share it captures, the objective

functions considered in [44] were

Πl(nf1,nf2) = Ml(nf1,nf2), l = 1,2.

In addition to this, no weights for the quality of facilities as perceived by demand

points are used (i.e., it is assumed that γi = 1, i = 1, . . . ,n), and the location space

is the same for the leader and the follower, i.e., S1 = S2. No other constraints are

considered in the model. The corrected Euclidean distance [9] was used as distance

function.

Since the demand is fixed and has to be served, then

M1(nf1,nf2)+M2(nf1,nf2) =
n

∑
i=1

ŵi. (5)

In particular, what is a gain for one chain is a loss for the other. This zero-sum

concept is the key used in [44] to develop a Branch-and-Bound (B&B) procedure to

solve the leader problem rigorously, to have a guarantee on the reached accuracy.

3.2 A B&B algorithm for the follower problem

Branch-and-bound (B&B) algorithms recursively decompose the original problem

into smaller disjoint subproblems until the solution is found. The method avoids

visiting those subproblems which are known not to contain a solution. The initial

set C1 = S1(= S2) is subsequently partitioned in more and more refined subsets

(branching). At every iteration, the method has a list Λ of subsets Ck of C1. The

method stops when the list is empty. For every subset Ck in Λ , upper bounds UBk of

the objective function on Ck are determined. Moreover, a global lower bound GLB

is updated. If UBk < GLB for a given subset Ck, it can be removed from the list,

since it cannot contain a maximum.

The steps of the method can be seen in Algorithm 1. In the solution procedure

for the leader problem, a similar problem to that of the follower, in which the leader

8 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

wants to locate a new facility at n f1, given the location and the quality of all the

facilities of the competitor (the follower), has to be solved. In this case, the leader

has to solve a medianoid problem in which the roles of leader and follower are

interchanged. We will call this problem a reverse medianoid problem. To take both

the medianoid and the reverse medianoid problems into account, in Algorithm 1 the

new facility of the competitor is denoted by n f , the objective function by M(n f a)
(where M(n f a) = M2(n f ,n f a) when solving a medianoid problem and M(n f a) =
M1(n f a,n f) when solving a reverse medianoid problem), and the feasible set by C.

Algorithm 1: B&B algorithm for the (reverse) follower problem: Function

FunctB&B(M,n f ,C,ε f)

1: Λ := /0.

2: C1 :=C.

3: Determine an upper bound UB1 on C1.

4: Compute n f a1 :=midpoint(C1), BestPoint := n f a1.

5: Determine lower bound: LB1 := M(n f a1), GLB := LB1.

6: Put C1 on list Λ , r := 1.

7: while Λ 6= /0 do

8: Take subset C from list Λ and bisect into Cr+1 and Cr+2.

9: for t := r+1 to r+2 do

10: Determine upper bound UBt .

11: if UBt > GLB+ ε f then

12: Compute n f at :=midpoint(Ct) and LBt := M(n f at).
13: if LBt > GLB then

14: GLB := LBt , BestPoint := n f at and remove all Ci from Λ with UBi < GLB.
15: if UBt > GLB+ ε f then

16: save Ct in Λ .

17: r := r+2.
18: OUTPUT: {BestPoint,GLB}.

The B&B method introduced in [44] uses boxes (2-dimensional intervals) as sub-

sets of the initial region and the subdivision rule bisects a box C over its longest

edge. Several selection rules of the next box to be selected (Step 8 of Algorithm 1)

were tested in [44], see Section 3.4.

Concerning the computation of bounds, the global lower bound is updated by

evaluating the objective function at some points (the centers of the boxes). As for

the upper bounds, four variants were proposed in [44]. The simplest one (which

turned out to be competitive with the other three more elaborated bounds based on

D.C. decompositions of the objective function) is based on the underestimation of

the distance from demand point pi to facilities in a box C. Since the new facility is

only located at one point within the box, we obtain an overestimation (upper bound)

of the market captured by the new facility. The idea developed in [44] is similar to

that in [32].

The demand points pi within box C have a distance ∆i(C) = 0 from C. For de-

mand points out of box C, pi /∈ C, the shortest distance ∆i(C) of pi to the box is

calculated, ∆i(C) = minx∈C d(x, pi). The distance ∆i(C) can be determined as fol-

Huff-like Stackelberg location problems on the plane 9

lows. Box C is defined by two points: lower-left point LL = (ll1, ll2) and upper-right

point UR = (ur1,ur2). The shortest distance from demand point pi to the box C can

be computed by

∆i(C) =

{
0 if pi ∈C√

∆ 2
i1 +∆ 2

i2 if pi /∈C

where
∆i1 = max{ll1 − pi1, pi1 −ur1,0}
∆i2 = max{ll2 − pi2, pi2 −ur2,0}

Notice that this distance calculation can be extended to higher dimensions.

The output of Algorithm 1 is the best point found during the process and its

corresponding function value. The best point is guaranteed to differ less than ε f in

function value from the optimal solution of the problem.

Another B&B algorithm which can be used to solve the follower problem is

described in [18]. It uses interval analysis tools (see [47]) and can also handle the

follower problems in the next two sections.

3.3 A B&B algorithm for the leader problem

The corresponding B&B method for the leader problem is given in pseudocode

form in Algorithm 2. The branching and selection rules used were the same as in

Algorithm 1, as well as the computation of the global lower bound.

The key point in the algorithm is computation of the upper bounds. Let C ⊆ R
2

denote a subset of the search region of the leader problem (LP). An upper bound

of the objective function M1(nf1,nf ∗2 (nf1)) over C can be obtained by having the

leader solve the reverse medianoid problem, as the following lemma proves.

Lemma 1. Let n f2 be a given solution for the new follower’s facility. Then

UB(C,n f2) = max
n f1∈C

M1(n f1,n f2)

is an upper bound of M1(nf1,nf ∗2 (nf1)) over C.

Proof. According to (5), maximizing the market share captured by the follower

given n f1 is equivalent to finding the facility n f2 that minimizes the market share

captured by the leader. Hence, M1(nf1,nf ∗2 (nf1))≤ M1(n f1,n f2) such that

max
n f1∈C

M1(nf1,nf ∗2 (nf1))≤ max
n f1∈C

M1(n f1,n f2) =UB(C,n f2). ⊓⊔

For a given box Ct , the choice of n f t
2 for the upper bound calculation is done as

follows. First, the midpoint of Ct is computed, and considering it as the new leader’s

facility, n f t
1, the corresponding follower’s problem is solved, (FP(n f t

1)), obtaining

n f t
2. Then, the upper bound is obtained by solving the reverse medianoid problem

up to an accuracy εl

10 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Algorithm 2: B&B algorithm for the leader problem

1: Λ := /0.

2: C1 := S.

3: Compute n f 1
1 :=midpoint(C1), BestPoint := n f 1

1 .

4: Solve the problem for the follower: {n f 1
2 , lbob j} := FunctB&B(M2,n f 1

1 ,C1,ε f).
5: Determine an upper bound UB1 on C1 solving a reverse medianoid problem:

{n f a,UB1} := FunctB&B(M1,n f 1
2 ,C1,εl).

6: Determine lower bound: LB1 := M1(n f 1
1 ,n f 1

2), GLB := LB1.

7: Put C1 on list Λ , r := 1.

8: while Λ 6= /0 do

9: Take subset C from list Λ and bisect into Cr+1 and Cr+2.

10: for t := r+1 to r+2 do

11: Compute n f t
1 =midpoint(Ct).

12: Solve the problem for the follower: {n f t
2, lbob j} := FunctB&B(M2,n f t

1,C1,ε f).
13: Determine upper bound UBt solving a reverse medianoid problem:

{n f a,UBt} := FunctB&B(M1,n f t
2,Ct ,εl)

14: if UBt > GLB+ εl then

15: Determine LBt := M1(n f t
1,n f t

2).
16: if LBt > GLB then

17: GLB := LBt , BestPoint := n f t
1, and remove all Ci from Λ with UBi < GLB.

18: if UBt > GLB+ εl then

19: save Ct in Λ .

20: r := r+2.

21: OUTPUT: {BestPoint,GLB}.

UBt =UB(Ct ,n f t
2) = max

n f1∈Ct

{M1(n f1,n f t
2)}= FunctB&B(M1,n f t

2,Ct ,εl).

Again, the output of the B&B method (see Algorithm 2) is the best point found

during the process and its corresponding function value, which differs less than εl

from the optimum value of the problem.

3.4 Computational studies

A random problem with n = 10 demand points and m = 4 existing facilities was

first solved to illustrate the algorithm. The number k of facilities belonging to the

leader’s chain was varied from k = 0 to 4. The other parameters of the problem were

chosen from uniform distributions (see [44]). Table 1 shows the resulting optimal

locations and market capture of both chains. In the last line, the gain or loss for the

leader, to be understood as the difference between the market captured by the leader

after and before the location of the facilities, is given. The accuracy for algorithms

1 and 2 were set both to εl = ε f = 10−2.

One can observe a characteristic of the problem, where leader and follower tend

to co-locate when the number of existing facilities of the leader is low. Notice also

that when the leader is dominant in the market then the leader suffers a decrease

Huff-like Stackelberg location problems on the plane 11

Table 1 Optimal locations and market capture for different number of leader facilities, k = 0, . . . ,4;

locations and market captures are rounded to two decimals.

k = 0 k = 1 k = 2 k = 3 k = 4

Optima location Leader

(
2.44

3.97

) (
5.03

0.69

) (
5.33

4.34

) (
5.33

4.34

) (
5.03

0.69

)

Follower

(
2.44

3.97

) (
5.03

0.69

) (
1.41

4.65

) (
1.75

3.79

) (
1.75

3.79

)

Market Capture Leader 186.29 367.87 497.70 611.07 773.44

Follower 813.71 632.13 502.30 388.93 226.56

Gain or loss for the leader 186.29 100.67 14.17 -72.46 -226.56

in market share after the location of the two new facilities (see the negative values

in the last line of Table 1). This is because in those cases the follower increases its

market share more than the leader.

Concerning the efficiency of the selection rule of the next box to be processed,

breadth-first and best-bound strategies were researched. The results in [44] con-

cluded that best-bound strategy is the one providing the best results, as in average,

the number of iterations employed by Algorithm 1 was reduced significantly. The

influence in the number of iterations of Algorithm 2 was not so clear when using the

upper bound described in Section 3.2, but when additional bounds are employed the

best-bound selection rule was also clearly the best for Algorithm 2.

As for the memory requirement, it is known that branch-and-bound algorithms

are usually hindered by huge search trees that need to be stored in memory. This

complexity usually increases rapidly with dimension and with accuracy. Interest-

ingly, this does not seem to be the case for this problem. There are never more

than 30 boxes in the storage tree. And the same remains valid when the accuracy is

increased up to 0.0001 for both algorithms 1 and 2.

Fig. 1 Average number of iterations and memory requirement (rectangles) over ten random cases

varying number of demand points n = 20, . . . ,110, existing facilities m = 5,10,15 and k = [m/2].
εl = ε f = 0.01

The last set of experiments done in [44] studied whether larger problems could

be solved in reasonable time. To this aim, random problems were generated varying

the number of demand points (n = 20,30, . . . ,110), number of existing facilities

12 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

(m = 5,10,15) and number of those facilities belonging to the leader’s chain (k =
[m/2]). For each (n,m) setting, ten problems were generated by randomly selecting

the parameters of the problem from uniform distributions. The results can be seen in

Figure 1. It can be seen that increasing the number of demand points does not make

the problem more complex in terms of the memory requirement. The leader problem

neither needs more iterations, although the follower problem needs more iterations

on average. Hence, the results suggest that no exponential effort is required to solve

the problems with increasing number of demand points, confirming the viability of

the approach.

4 A model with costs assuming fixed demand

4.1 The model

The scenario considered in this section (see [37]) is similar to the one previously

described. The demand is again supposed to be fixed and known. But now, both the

location and the quality (design) of the new facilities have to be found and several

types of costs are considered.

The objective function Π2 for the follower problem (see Eq. 3), is now formulated

as the difference between the revenues obtained from the captured market share

minus the operating costs of the new facility:

Π2(nf1,nf2) = F2(M2(nf1,nf2))−G2(nf2). (6)

Similarly, the profit obtained by the leader (see Eq. 4) is given by:

Π1(nf1,nf ∗2 (nf1)) = F1(M1(nf1,nf ∗2 (nf1)))−G1(nf1). (7)

Functions Fl , l = 1,2, are strictly increasing differentiable functions that transform

the market share into expected sales. In the computational studies in [37], they are

linear, Fl(Ml) = cl ·Ml , where cl is the income per unit of goods sold.

Functions Gl , l = 1,2, are the operating costs functions. Gl should increase as

zl gets closer to any demand point, since it is rather likely the operating costs of

the facility will be higher as the facility approaches the demand points. Further-

more, Gl should be a nondecreasing and convex function in the variable αl , since

the more quality the facility requires, the higher the costs will be, at an increas-

ing rate. In [37] it is assumed that functions Gl consist of the sum of the loca-

tion costs and the costs needed to achieve a given level of quality, i.e. Gl(n fl) =
Ga

l (zl) + Gb
l (αl). In the computational experiments the following choices were

made: Ga
l (zl) = ∑

n
i=1 Φ i

l (di(zl)), with Φ i
l (di(zl)) = ŵi/((di(zl))

φ i0
l +φ i1

l), φ i0
l ,φ i1

l >
0 and Gb

l (αl) = exp(αl/ξ 0
l +ξ 1

l)− exp(ξ 1
l), with ξ 0

l > 0 and ξ 1
l ∈ R given val-

ues. See [18] for a detailed explanation of these functions, as well as other possible

expressions for Fl and Gl(n fl).

Huff-like Stackelberg location problems on the plane 13

Notice that the key to solving the problem of the previous section with precision

was that what is a gain for one chain is a loss for the other, see (5). This is no

longer true for this model: notice that now Π1(nf1,nf2)+Π2(nf1,nf2) is not neces-

sarily constant due to the cost functions. This fact impedes using the methodology

employed in the previous section to develop a B&B method for the new leader’s

problem (Lemma 1 does not hold any more). That is why heuristic procedures are

proposed in [37] to cope with the new problem. However, other strategies are pos-

sible, as described in Section 6.

4.2 Solving the medianoid problem

The algorithm UEGO is used here to deal with the medianoid problem. UEGO,

which stands for Universal Evolutionary Global Optimizer, is a memetic multi-

modal global optimization method especially suitable to be parallelized and highly

adaptable to different problems [24, 31, 38, 39, 40, 42].

The key concept of UEGO is that of species, which is defined by a center and a

radius. The center is a solution, and the radius is a positive number that defines an

attraction area and hence, multiple solutions. In particular, for the medianoid prob-

lem, a species is an array of the form (nf2,Π2(nf1,nf2),R) (we also store informa-

tion about the objective value at the center of the species). During the optimization

procedure, UEGO works with a set of species stored in the species_list.

The adaptability of UEGO mainly relies on being defined in two levels, global

an local. In the global level, UEGO defines an iterative and progressively cooled

management process over a set of available species, and this process is the same

for all the problems to which UEGO is applied. In the local one, a particular local

optimizer is selected for the studied problem at the context defined by every species.

For the current problem, a Weiszfeld-like method (WLM) has been considered as a

local optimizer. The UEGO algorithm executed with WLM to solve the medianoid

problem will be called UEGO_med throughout.

A global description of UEGO_med is given in Algorithm 3. The input given

parameter n f1 indicates the additional leader facility, which has to be taken into

account apart from the m pre-existing facilities. Additionally, UEGO_med has four

more user given parameters: (i) N, the maximum number of function evaluations

(f.e.) allowed for the entire optimization process; (ii) L, the maximum number of

levels (iterations) of the algorithm; (iii) M, which refers to the maximum length

of the species_list, and (iv) RL, which indicates the minimum radius that a species

can have. Furthermore, from these four input parameters, three important values

are computed at each level i: the maximum number of f.e. for the creation of new

species (newi), the maximum number of f.e. for the optimization of species (ni),

and the radius assigned to the new species (Ri). The equations linking all these

parameters are detailed in [23, 31].

In the following, the different key stages of UEGO_med are described:

14 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Algorithm 3: Algorithm UEGO_med(n f1,N,L,M,RL)

1: Init_species_list

2: Optimize_species(n1)

3: for i = 2 to L do

4: Determine Ri, newi, ni

5: Create_species(newi) {# budget_per_species = newi/length(species_listi)}

6: Fuse_species(Ri)

7: Shorten_species_list(M)

8: Optimize_species(ni) { # budget_per_species = ni/M}

9: Fuse_species(Ri)

• Init_species_list: The initial species_list is composed of a single species. The

value of n f2 is randomly computed and the corresponding radius is set to R1.

• Create_species(create_evals): In terms of evolutionary computation, this proce-

dure can be interpreted as an algorithm to create offspring. The input parameter

create_evals indicates the number of function evaluations allowed for the cre-

ation procedure at the current level. The most remarkable aspect of this mecha-

nism is that every species in the species_list is able to generate a new progeny

without participation from the remaining ones. The parameter create_evals is in-

ternally divided by the current number of existing species (length(species_listi)),
which means that the budget available per species for the creation of new points

is equal to:

budget_per_species = newi/length(species_listi).

For each single species, the creation method proceeds as follows: New random

exploratory points are created within the area defined by its radius, and for every

pair of those points, a new candidate solution is created at the middle of the seg-

ment connecting the pair. Then, all the candidate points are evaluated, and the one

with the best objective function value replaces the center of the original species

in the case that it improves the objective function of the center. Later, the merit

of the extreme points to become a new species, is analyzed. Both extreme points

are inserted into the species_list if their objective function values are better than

the one at the corresponding midpoint. Every new inserted species is assigned

the current radius value (Ri).

• Fuse_species(radius): This procedure unites species from the species_list that

are closer than the distance defined by the parameter radius. Then, for every pair

of species in the list, the Euclidean distance is computed. If such a distance is

smaller than the given radius, the species with the lowest fitness are removed.

The radius of the species that remains is set equal to the maximum of the radii of

the original two species.

• Shorten_species_list (max_list_length): It deletes species to reduce the list length

to max_list_length value. The species with the smaller radius are deleted first.

• Optimize_species(opt_evals): In this procedure, every species calls a local op-

timizer once, using the n f2 value of the caller species as initial point. If after

Huff-like Stackelberg location problems on the plane 15

the execution of the local method a new point with a better objective function is

found, then the original n f2 is updated. The budget per species for the optimiza-

tion process, in terms of number of function evaluations, is ni/M. For the problem

at hand, a Weiszfeld-like algorithm has been considered as local optimizer.

4.2.1 Weiszfeld-like algorithm WLM

This algorithm is a steepest descent method. The derivatives of the objective func-

tion are equated to zero and the next iterate is obtained by implicitly solving these

equations. Notice that, here, the derivatives are computed taking the Fl and Gl func-

tions described in subsection 4.1 into account. Of course, they should be recomputed

if any other expression is considered.

If we denote

ri =
m

∑
j=1

ui j, ti = ŵi

m

∑
j=k+1

ui j,

Hi(n f2) =
∂Π2

∂di(z2)
=−

dF2

dM2
·

α2γitig
′
i(di(z2))

(γiα2 + rigi(di(z2)))2
−

dΦ i

ddi(z2)
,

and di(z2) is a distance function such that

∂di(z2)

∂x2
= x2Ai1(z2)−Bi1(z2),

∂di(z2)

∂y2
= y2Ai2(z2)−Bi2(z2), (8)

then the Weiszfeld-like algorithm for solving the corresponding problem is de-

scribed by Algorithm 4 (for more details see [18]).

Algorithm 4: WLM (Weiszfeld-like algorithm)

1: Set iteration counter ic = 0

2: Initialize n f
(0)
2 = (x

(0)
2 ,y

(0)
2 ,α

(0)
2)

3: while stopping criteria are not met do

4: Update n f
(ic+1)
2 = (x

(ic+1)
2 ,y

(ic+1)
2 ,α

(ic+1)
2)

5: if n f
(ic+1)
2 is unfeasible then

6: n f
(ic+1)
2 ∈ [n f

(ic)
2 ,n f

(ic+1)
2]∩∂S2

7: ic = ic+1

Values of x
(ic+1)
2 and y

(ic+1)
2 in Algorithm 4 are obtained as:

x
(ic+1)
2 =

n

∑
i=1

Hi(n f
(ic)
2)Bi1(z

(ic)
2)

n

∑
i=1

Hi(n f
(ic)
2)Ai1(z

(ic)
2)

, y
(ic+1)
2 =

n

∑
i=1

Hi(n f
(ic)
2)Bi2(z

(ic)
2)

n

∑
i=1

Hi(n f
(ic)
2)Ai2(z

(ic)
2)

16 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

and α
(ic+1)
2 as a solution of the equation:

dF2

dM2
·

n

∑
i=1

γitigi(di(z
(ic+1)
2)))

(γiα2 + rigi(di(z
(ic+1)
2))2

−
dG2

dα2
= 0.

Two stopping rules are applied in WLM: (i) the algorithm stops if

‖(x
(ic−1)
2 ,y

(ic−1)
2)− (x

(ic)
2 ,y

(ic)
2)‖2 < ε1 and |α

(ic−1)
2 −α

(ic)
2 |< ε2,

for given tolerances ε1,ε2 > 0; and (ii) the procedure finishes if a maximum number

of iterations icmax is achieved or the number of function evaluations exceeds the

budget assigned.

In Step 6 of Algorithm 4, n f
(ic+1)
2 is set to a point in the segment [n f

(ic)
2 ,n f

(ic+1)
2]

which is also on the border ∂S2 of the feasible region S2.

The l2b distance, given by

di(zl) =
√

b1(xl − pi1)2 +b2(yl − pi2)2,

satisfies the conditions in (8). Furthermore, it has proved to be a good distance pre-

dicting function (see [17]), and it is therefore a good distance function to be used

in competitive location models, as it measures distances (or travel time) as they are

perceived by customers on their ways to and from facilities.

4.3 Solving the centroid problem

Four heuristics are introduced in [37] for handling the centroid problem, namely, a

grid search procedure (GS), an alternating method called AlternatMed and two evo-

lutionary algorithms based on the UEGO_med structure. These two variants, which

differ basically in the considered local optimizer, are named UEGO_cent.WLM and

UEGO_cent.SASS.

A comprehensive computational study in [37] shows that UEGO_cent.SASS is the

algorithm which provides the best results. In fact, in all the considered problems, it

is the algorithm giving the best solutions. In view of those results, only the algorithm

UEGO_cent.SASS is explained below. For the sake of brevity, only the fundamental

differences concerning UEGO_med are mentioned. The interested reader can always

consult [37] for a detailed account of the remaining methods.

Species definition: A species is now defined by the vector (n f1,n f2,R), where n f1

refers to the leader point, n f2 is the solution obtained by UEGO_med when taking

the original m existing facilities and n f1 into account, and R is the radius of the

species.

Huff-like Stackelberg location problems on the plane 17

Create_species procedure: This procedure is, in essence, the same as the cre-

ation process described in subsection 4.2. However, some amendments have been

made to comply with certain computational requirements.

In this procedure, random trial points for n f1 are also created within the area

defined by the radius of the species. Additionally, similar to what is done in

UEGO_med, the midpoint of each pair of solutions is also computed. However,

not all candidate solutions are evaluated, but only the most promising ones, i.e.,

we do not solve the corresponding medianoid problem associated to each new

point to obtain the follower’s facility. This is done in this way because this pro-

cedure is too costly and the number of points to be evaluated is very high. On

the contrary, we first analyze the merit of the candidate solutions by computing

an approximate objective value. More precisely, the follower’s facility associated

to the species from which they were generated is used to obtain an approximate

fitness for the leader’s candidate solutions.

After this process, for every species in the species_list we have a sublist of ‘can-

didate’ points to generate new species. Notice that in this creation process, the

candidate solutions never replace the original species, as happens in UEGO_med.

This is because the comparison in terms of fitness may be misleading, since the

objective value at the midpoints or at the endpoints of the segments is only an

approximation.

Furthermore, in order to reduce the large number of candidate points, those ‘can-

didate’ points are merged as described in subsection 4.2 (using the procedure

Fuse_species). Finally, for each candidate point in this reduced list, its corre-

sponding follower’s facility is computed applying UEGO_med, and the objective

value for the leader’s facility is evaluated. The new species (with the correspond-

ing radius according to the iteration) are inserted in the species_list.

Optimize_species procedure: For every species in the list, the local optimization

process described in Algorithm 5 is applied. In Step 2, the SASS+WLM lo-

cal search is applied (see [37]). This method tries to obtain a better solution

for the leader (n f1) based on the current choice of the follower (n f2). To do

so, this algorithm uses the stochastic hill climber SASS (see [46]) for updat-

ing the leader’s facility and WLM for updating the follower’s. Notice that the

algorithm WLM is used because obtaining the exact new follower’s facility ev-

ery time the leader’s facility changes, using UEGO_med, makes the process very

time-consuming. Nevertheless, to prevent that the objective value for the leader

becomes misleading (overestimated), UEGO_med is used in Step 3 of Algorithm

5. Finally, the species is replaced only in case a better objective function value is

obtained (see steps 5 to 9 of Algorithm 5).

4.4 The cost of a myopic decision

A study is carried out to know how important it is to consider the follower’s reaction.

To this aim, for fourteen problems, we have calculated the leader’s profit by solving

18 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Algorithm 5: Algorithm LeaderOpt

1: Let (n f1,n f2,R) be the species to be optimized.

2: opt_n f1 = SASS+WLM(n f1,n f2,R)

3: opt_n f2 = UEGO_med(opt_n f1)

4: if opt_n f1 = n f1 then

5: if Π2(n f1,n f2)> Π2(n f1,opt_n f2) then

6: opt_n f2 = n f2

7: Update the original species to (n f1,opt_n f2,R).
8: else if Π1(opt_n f1,opt_n f2)> Π1(n f1,n f2) then

9: Update the original species to (opt_n f1,opt_n f2,R)

the medianoid problem but interchanging the roles of the leader and the follower

and only taking the original m facilities into account, i.e., the reverse medianoid

problem. The corresponding optimal solution will be denoted by n f
(myop)
1 . Then,

we have solved the corresponding medianoid problem, taking the existing m facil-

ities and n f
(myop)
1 into account, using UEGO_med. And finally, we have evaluated

Π
(myop)
1 = Π1(n f

(myop)
1 , UEGO_med(n f

(myop)
1)).

Table 2 shows the obtained results. The first column refers to the setting of the

problems solved (for three settings, more than one problem was generated, and

the letters a, b, and c at the end of the setting has been added to highlight it).

Columns two and three show the values of n f
(myop)
1 and Π

(myop)
1 . The following

two columns provide the values of the facility (n f ∗1) and the profit (Π ∗
1) obtained

with UEGO_cent.SASS. Finally, the loss in profit caused by the myopic decision as

compared to the long term decision, in percentage, is shown.

Table 2 Comparison between the myopic and the long term view.

(n,n,k) n f
(myop)
1 Π

(myop)
1 n f ∗1 Π ∗

1 % loss

x1 x2 α1 x1 x2 α1

(21,5,2) 2.234 3.352 1.524 226.645 2.981 4.482 2.218 228.394 0.76

(21,5,3) 3.024 6.576 0.536 363.451 2.234 3.352 1.162 379.943 4.34

(50,5,0)a 6.082 2.378 2.230 9.156 6.082 2.378 2.230 9.156 0.00

(50,5,0)b 5.419 6.411 5.000 67.569 5.417 6.906 4.851 94.044 28.15

(50,5,1) 4.452 5.920 3.839 116.424 4.917 5.150 3.418 143.498 18.87

(50,5,2)a 2.264 2.096 2.421 189.113 2.228 2.138 2.122 189.653 0.28

(50,5,2)b 3.573 4.044 2.554 109.514 3.572 4.044 2.549 111.246 1.56

(50,6,3)a 1.122 3.362 3.224 291.052 1.161 4.222 3.663 292.554 0.51

(50,6,3)b 1.733 5.848 3.991 194.486 7.151 3.487 3.123 212.358 8.42

(50,6,3)c 6.851 3.459 4.486 218.890 4.103 3.055 4.255 230.329 4.97

(50,8,4) 5.677 2.830 2.973 198.546 5.893 2.629 2.864 223.983 11.36

(100,2,0) 4.471 4.704 5.000 168.430 4.724 4.591 5.000 169.717 0.76

(100,2,1) 3.379 6.298 5.000 271.951 3.255 6.366 5.000 272.027 0.03

(100,10,0) 2.758 5.119 5.000 40.944 2.758 5.119 5.000 40.944 0.00

Huff-like Stackelberg location problems on the plane 19

As can be seen, the loss is less than 1% for half of the problems, it is over 4%

for 6 out of 14 problems, and it exceeds 11% in three of them. This clearly indi-

cates how important anticipating the competitor’s reaction is, since the loss that can

be produced may be substantial. Furthermore, note that the obtained results are in-

dependent of the setting (n,m,k) of the problem. Notice, for example, that the two

extreme cases, with 0% loss and 28.15% loss, have the same configuration (50,5,0).
What is important is the actual distribution of the demand points and the actual lo-

cations and qualities of the existing facilities. Notice also that even though n f
(myop)
1

may be close to n f ∗1 , the value of Π
(myop)
1 may be very different from Π ∗

1 , see prob-

lem (50,5,0)b.

4.5 High performance computing for the leader-follower problem

UEGO_cent.SASS is a costly algorithm, since the evaluation of the objective func-

tion value implies the resolution of a global optimization problem. Its parallelization

may allow to reduce the execution time and to increase the size of the problems that

can be solved. In [41], a master-slave algorithm and four coarse-grain methods

are presented to parallelize UEGO_cent.SASS. The efficiency of the parallel algo-

rithms is tested through an extensive computational testbed. Results showed that

the master-slave method outperforms all the coarse-grain proposals, i.e. it is able

to solve more instances using fewer processing elements and to obtain efficiencies

close to or even greater than the ideal one.

In the following, the main features of the master-slave strategy are detailed.

Readers interested in delving into the coarse-grain methods as well as into the per-

formance comparison among parallel algorithms are referred to [41].

4.5.1 A master-slave strategy (MS)

Broadly speaking, in this parallel strategy, two types of processing elements are

considered: the master processor, which makes global decisions and delivers data

among the slaves, and the slaves, which execute different tasks simultaneously.

In our particular master-slave (MS) model (see Algorithm 6), the master proces-

sor executes UEGO_ cent.SASS sequentially. The parallelism has been included in

new creation and optimization procedures (see Steps 5 and 8 in Algorithm 6). Next,

they are briefly described.

• Create_species_paral: In this procedure, the master obtains a new offspring of

candidate solutions for the leader sequentially. The parallelism comes from the

simultaneous resolution of the medianoid problems to evaluate the new leader’s

trial points. To do so, the master divides the list of candidate solutions by the

number of processors P and delivers the resulting sublists among all the process-

20 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Algorithm 6: Algorithm MS

1: Init_species_list

2: Optimize_species(n1)

3: for i = 2 to L do

4: Determine Ri, newi, ni

5: Create_species_paral(newi)

6: Fuse_species(Ri)

7: Shorten_species_list(M)

8: Optimize_species_paral(ni)

9: Fuse_species(Ri)

ing elements (including itself). Each processing element applies UEGO_med to

every received leader’s facility to obtain the associated follower’s location.

The master processor does not receive information from the slaves until it has

finished its work (first synchronization point). When it does so, it picks up all the

follower sublists sent by the slaves, updates the candidate solutions list with such

information and includes it in the species_listi, with the radius value associated

to the current level i.

• Optimize_species_paral: In this procedure, the master divides the species_listi
among all the processing elements (again including itself). Once the sublist has

been received, each slave applies the local optimization process SASS+WLM

to every leader’s facility and executes UEGO_med to obtain the corresponding

follower (see [41]). Finally, once the master finishes its work, it starts to receive

the new species sublists from the slaves (second synchronization point).

Note that the synchronization points are imposed because the master is working

with the whole species_listi, or because it is needed to know the fitness value at the

points of the leader before executing the next stage of the optimization procedure.

4.5.2 Improving the quality of the solution: a new creation procedure

Parallel algorithms can use more computational resources. Then, they can incor-

porate computationally intensive techniques that help at intensifying the search

for more effective solutions. In [41], new alternative procedures to be included

in UEGO_cent.SASS are studied. In particular, new creation methods that ex-

plore the search space deeper are analysed. After an exhaustive computational

study, where several options are examined, it is found that the procedure named

Create_species21 is the best choice, since it maintains a good balance between the

quality of the final solution and the execution time and memory resources required

by UEGO_cent.SASS.

The idea behind this method is to take advantage of the non-consumed evalua-

tions of the previous level. The budget per species in the Optimize_species proce-

dure is boi = ni/M. This means that there is a remainder of ni−boi ·length(species_listi)
function evaluations in the optimization process, when the length of the species_listi

Huff-like Stackelberg location problems on the plane 21

is not equal to the maximum allowed. Then, these function evaluations can be used

to force the creation of more candidate solutions at the next level. Therefore, the

budget per species in the level i+1 is:

bci+1 =
newi+1 +ni −boi · length(species_listi)

length(species_listi+1)
.

As a consequence of the previous generation procedure, a huge list of candidate

solutions is obtained. To reduce the list length while keeping the most promising

solutions, a fusion procedure with the radius set to 2Ri is applied.

This new creation procedure makes the sequential UEGO_cent.SASS run out of

memory most of the times. Then, to be able to use it, high performance computers

are required. In [41], this new proposal is checked with the master-slave parallel

model, since this algorithm does not modify the behavior of the sequential version,

i.e., it considers the same number of function evaluations and acts over the species

in the same way as the sequential algorithm. For the studies, the use of 2 processing

elements has been enough to solve all the problems. An exhaustive analysis has

proved that the Creation_species21 method can improve the objective value more

than 1% in some instances, which is not a negligible value.

4.5.3 Efficiency results of MS

In this subsection the behavior of MS is analyzed by solving a representative set of

location problems. The settings (n,m,k) employed in this experiment can be seen

in Table 3. For every setting, five problems are generated. Furthermore, all the in-

stances are solved 5 times and average values are considered.

Table 3 Settings of the larger test problems.

n 100 150 200

m 1 2 5 1 3 7 2 5 10

k 0 0, 1 0, 2 0 0, 1 0, 3 0, 1 0, 2 0, 5

Table 4 shows average results (for all the values of m and k) for each value of

n and P. In the column labelled Av(Ob j), the average objective function value is

given, in Av(T) the average computational time and in the last column E f f (P,Q),
efficiency values are given.

Results reveal how costly solving the centroid problem is. As can be seen in

Table 4, the higher the number of demand points of the problem at hand, the larger

the minimum number of processing elements required to solve it. Nevertheless, the

performance of the parallel algorithm is good, i.e. its efficiency is larger than the

ideal one for problems with 100 and 200 demand points, and very close to ideal for

problems with n = 150.

22 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Table 4 Efficiency results.

n P Av(Ob j) Av(T) E f f (P,Q)
100 2 472.66 2512.24 -

4 472.66 1218.48 1.03

8 472.67 580.96 1.08

16 472.66 271.28 1.06

32 472.66 152.44 1.03

150 4 646.90 2271.08 -

8 646.90 1161.28 0.99

16 646.90 582.28 0.98

32 646.90 295.71 0.96

200 8 850.70 964.53 -

16 850.70 474.53 1.02

32 850.70 238.74 1.01

5 A model with costs and variable demand

5.1 The model

The model considered in this section, introduced in [36], extends the previous model

by relaxing the assumption that the demand is fixed. On the contrary, an endogenous

(variable) demand is contemplated so that it varies depending on several factors.

In real problems, for example, consumer expenditures on services or products that

are offered by the facilities may increase depending on different reasons related to

the location of the new facility. So, opening new outlets may increase the overall

utility of the product. Also, the ‘marketing presence’ of a product may be increased

with the marketing expenditures resulting from the new facilities. Another thing that

can happen is that some consumers who did not patronize any of the facilities may

now be induced to do so. The quality of the facilities may also modify consumer

expenditures because a better service usually leads to more sales. The fact that the

demand is endogenous is commonly disregarded in literature, usually due to the

difficulty of the problems to be solved (see [35]).

The demand at a demand point pi is now assumed to be a function of Ui(n f1,n f2)=
ui,nf1 +ui,nf2 +∑

m
j=1 ui, j, in the form

wi(Ui(n f1,n f2)) = wmin
i + incri · ei(Ui(n f1,n f2)),

where incri = wmax
i −wmin

i , and wmax
i (resp. wmin

i) denotes the maximum (resp. min-

imum) possible demand at pi. Function ei(Ui(n f1,n f2)) can be interpreted as the

share of the maximum possible increment that a customer decides to spend given a

location scenario.

The objective functions Π2 for the follower problem and Π1 for the leader

one, are formulated as in Section 4.1 (see (6) and (7), respectively), although

Huff-like Stackelberg location problems on the plane 23

the market share function expressions (Ml) contain the variable demand function

wi(Ui(n f1,n f2)) instead of the constant ŵi:

M2(nf1,nf2) =
n

∑
i=1

wi(Ui(n f1,n f2))
ui,nf2 +∑

m
j=k+1 ui, j

ui,nf1 +ui,nf2 +∑
m
j=1 ui, j

,

M1(nf1,nf2) =
n

∑
i=1

wi(Ui(n f1,n f2))
ui,nf1 +∑

k
j=1 ui, j

ui,nf1 +ui,nf2 +∑
m
j=1 ui, j

.

The operating costs also are modified to include the variable demand in the

Φ i
l (di(zl)) functions, so that now

Φ i
l (di(zl)) = AverAi

(wi(Ui(n f1,n f2)))/((di(zl))
φ i0

l +φ i1
l).

AverAi
(wi(Ui(n f1,n f2))) stands for the average value of wi(Ui(n f1,n f2)) over the

feasible set and can be thought of as an estimation of the demand at pi by a

fixed number (see [35] for more details about how to compute this average). In

[36] linear expenditures is considered, i.e., wmin
i = 0, wi(Ui(n f1,n f2)) = wmax

i ·
ei1(Ui(n f1,n f2)), where ei1(Ui(n f1,n f2)) = qiUi(n f1,n f2), with qi a given constant

such that qi ≤ 1/Umax
i , where Umax

i is the maximum utility that could be observed

by a customer at i.

Certainly, other functions could be defined depending on the real problem consid-

ered, and for each real application the most appropriate Fl and Gl functions should

be discovered. In [48] a pseudo-real application to the case of the location of su-

permarkets in the Autonomous Region of Murcia, in Southern Spain, can be found.

Although in that paper the demand was assumed to be exogenous (fixed) and no

reaction from the competitor was expected, the parameters and functions have the

same meaning as those in this section.

It must be emphasized that although the objective function of the follower’s prob-

lem with exogenous demand is multimodal, it tends to be smoother than the one of

the follower’s problem with endogenous demand, which has much more local op-

tima and whose landscape is much steeper. Consequently, the complexity of the

centroid problem is greatly increased due to the endogenous demand assumption.

5.1.1 A real example

In order to show the difficulty of the problem at hand, and its differences with the

exogenous demand case, in [36] the quasi-real example introduced in [48] dealing

with the location of supermarkets in an area around the city of Murcia was solved.

There are five supermarkets in the area: three from a first chain, ‘E’, and two from

another chain, ‘C’. Two problems have been considered: the first one assumes that

the leader belongs to chain ‘E’ and the second one assumes that it belongs to chain

‘C’. Each problem was solved both considering fixed and variable demand. The

numerical results are shown in Table 5. The interested reader can find a detailed

description of the example with some illustrative figures in [36].

24 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Table 5 Examples.

Demand nf1 M1 m1 Π1 nf2 M2 m2 Π2

Leader: chain E

Exogenous (3.303, 6.433, 0.500) 18.915 2.112 593.352 (3.259, 4.285, 3.696) 16.625 7.123 461.776

Endogenous (5.407, 5.798, 0.961) 2.807 0.419 73.454 (5.190, 6.276, 0.571) 3.618 0.249 101.563

Leader: chain C

Exogenous (8.487, 3.026, 3.277) 15.961 6.247 442.122 (3.274, 6.441, 0.500) 19.579 2.187 614.652

Endogenous (5.368, 6.166, 1.042) 3.822 0.453 106.320 (5.298, 6.228, 0.571) 2.6378 0.2489 70.227

As can be seen, when the leader belongs to chain ‘E’, in the exogenous de-

mand case, the optimal location for the leader is near the city of Alcantarilla

(x1 = 3.303,y1 = 6,433), with a quality of 0.5. At that location, the market share

captured by the new leader’s facility is m1 = 2.112, which coincides with the 5.94%

of the total market share. Taking into consideration all its facilities, chain ‘E’ obtains

53.22% of the market, and a profit Π1 = 593.352. The location for the follower’s

facility is near the city of Molina (x1 = 3.259,y1 = 4.285), with a quality of 3.696,

where it captures 20.04% of the total market share. However, the results are rather

different for the endogenous case, where the leader’s optimal location is in the sub-

urb of Puente Tocinos (x1 = 5.407,y1 = 5.798), in Murcia city, with a quality of

0.961. The market share captured by the facility is 0.419, which is only 5.94% of

the total one. The whole chain obtains 43.68% of the market and a smaller profit

Π1 = 73.454. The location for the follower’s facility is near the suburb of San Ben-

ito (x1 = 5.190,y1 = 6.276), in Murcia city, with a quality of 0.571, where it only

captures 3.875% of the total market share.

For the second problem, where it is assumed that chain ‘C’ is the leader, then, in

the exogenous demand case, the optimal location for the leader is near the city of

Orihuela, with a quality of 3.277, where the facility gets 17.57% of the total market

share. The location for the follower’s facility is near the city of Alcantarilla, with

a quality of 0.5, where it captures 6.15% of the total market share. However, the

leader’s optimal location in the endogenous demand case is near the suburb of San

Benito, in Murcia city, with a quality of 1.042 and only captures 6.52% of the total

market share. The location for the follower’s facility is near the suburb of San Benito

too, with a quality of 0.571, where it captures 3.88% of the total market share.

These two examples indicate how important it is to consider endogenous de-

mand. As can be seen, depending on whether endogenous or exogenous demand is

considered, the maximum profit for a chain is obtained at different locations and

with different qualities. Additionally, it is interesting to remark that even the per-

centage of market share captured by the chains may change to the point that the

chain obtaining more profit may be the competitor’s one.

Huff-like Stackelberg location problems on the plane 25

5.2 Solving the centroid problem

Considering the algorithms proposed for solving the centroid problem with exoge-

nous demand (see section 4.3), the following three algorithms are implemented to

solve the centroid problem with endogenous demand [36]: a grid search procedure,

a multistart method named MSH, and an evolutionary algorithm named TLUEGO.

MSH and TLUEGO require the use of a local optimizer. In particular, a local opti-

mizer based on SASS and WLM has been designed. In fact, two variants of the local

optimizer have been implemented, leading to two versions of MSH and TLUEGO.

Next we describe the corresponding algorithms.

5.2.1 The local optimizer SASS+WLMv

In [37], after studying several strategies, a local procedure SASS+WLMv, similar

to SASS+WLM in Section 4.3 is proposed. The main differences between this local

algorithm and SASS+WLM are:

• The Weiszfeld-like algorithm used now for updating the follower’s facility is

WLMv, a variant of WLM to take the variability of the demand into account (see

[35]). Similar to what was considered for WLM (see Subsection 4.2.1), WLMv

stops when either two consecutive iterations are closer than the tolerance ε1 =
ε2 = 0.0001, or when a maximum number of icmax = 400 iterations is reached.

• Due to the high increment in the complexity of the problem when using en-

dogenous demand, the WLMv algorithm is not as reliable as the corresponding

method WLM for the fixed demand case. Consequently, due to the cumulative

error, a large number of consecutive iterations in SASS could give rise to the

leader achieving overestimated solutions. To deal with this drawback, the num-

ber of consecutive iterations in SASS+WLMv has been reduced to only 15. In

addition, in order to compensate the possible error obtained using WLMv, after

every 15 iterations, the medianoid problem is solved accurately using a reliable

global optimizer. Two global optimizers have been considered: iB&B [18] or

UEGO_med (see Section 4.2), resulting in two versions of the local optimizer.

5.2.2 TLUEGO: A two-level evolutionary global optimization algorithm

The evolutionary algorithm TLUEGO is rather similar to the UEGO_cent.SASS

algorithm introduced in section 4.3 for the fixed demand case. The main differences

are the following:

• Create_species procedure: In the same way that for UEGO_cent.SASS, after the

creation procedure it is very important to precisely evaluate the fitness of the

new species. In this problem, two alternative algorithms to compute a reliable

follower solution have been implemented: iB&B or UEGO_med.

26 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Algorithm 7: Algorithm SASS+WLMv(nf1,nf2, itermax(= 15),σub)

1: Initialize SASS parameters. Set iter = 1,nf
opt
1 = nf1,Π

opt
1 = Π1(nf1,nf2).

2: while iter ≤ itermax do

3: Update SASS parameters considering the previous successes at improving

the objective function value of the leader.

4: Generate a location for the leader nf
(iter)
1 within the updated radius.

5: Solve the corresponding medianoid problem using WLMv and let nf
(iter)
2

denote the solution obtained.

6: if Π1(nf
(iter)
1 ,nf

(iter)
2)> Π

opt
1 then

7: set nf
opt
1 = nf

(iter)
1 and Π

opt
1 = Π1(nf

(iter)
1 ,nf

(iter)
2).

8: iter = iter+1.
9: Compute the corresponding follower nf

opt
2 for nf

opt
1 using either iB&B or

UEGO.

10: if Π1(nf
opt
1 ,nf

opt
2)> Π1(nf1,nf2) then

11: return (nf
opt
1 ,nf

opt
2)

12: else

13: Return (nf1,nf2).

• Optimize_species procedure: The local optimizer algorithm used in TLUEGO

is SASS+WLMv. There is another difference: this local optimizer is executed

twice in order to have more chances of obtaining a better point. The input param-

eter value of σub passed to SASS+WLMv is always (the two times it is called)

the radius associated to the calling species. Therefore, the scope of the local

optimizer coincides with the region covered by the species. As it has been men-

tioned in 5.2.1, the execution of SASS+WLMv implies that a reliable optimiza-

tion algorithm, iB&B or UEGO_med, is run at the end of the algorithm (Step 9 in

Algorithm 7). As a result, the inclusion of iB&B or UEGO_med in TLUEGO

derives two algorithms for solving the centroid problem, TLUEGO_BB and

TLUEGO_UE, respectively. The reader is referred to [36] for a more detailed

description of these procedures.

5.2.3 MSH: A multistart heuristic algorithm

The MSH algorithm consists of randomly generating MaxStartPoints feasible can-

didate solutions for the leader and then applying a local optimizer to each one in

order to improve it to an optimized leader solution. The final solution provided by

the algorithm will be obtained by selecting the solution with best objective function

value.

For this problem with exogenous demand, the considered local optimizer has

been SASS+WLMv (see Algorithm 7). In order to provide a better balance between

exploitation and exploration of the search space, this method has also been exe-

cuted twice as in TLUEGO, but with different values for σub because the multistart

heuristic does not have a cooling process for the radius. In the first call, a value of

σub = 2.083895 (the one corresponding to level 10 in TLUEGO) was considered.

Huff-like Stackelberg location problems on the plane 27

This value was chosen because then the initial random candidate solutions in the

multistart strategy can cover the whole searching space, and at the same time, they

can search on an area small enough so that the local procedure can find a good local

optimum. In the second call, a value of σub = 0.162375 (level 23 in TLUEGO) was

used to improve the quality of the local optima obtained with the first call. These σub

values were selected after doing some preliminary studies, in which eight problems

of different sizes were solved trying different strategies for the heuristic algorithm.

As in TLUEGO, two versions of the MSH method have been implemented:

MSH_BB and MSH_UE. They differ in whether iB&B or UEGO_med is used as

a method of computing the follower nf
opt
2 in Step 9 of Algorithm 7.

5.2.4 Computational studies

To study the performance of the algorithms, a set of 24 problems has been generated

varying the number n of demand points, the number m of existing facilities and

the number k of those facilities belonging to the leader’s chain. The actual settings

(n,m,k) employed are detailed in Table 6. For each setting, the problem has been

generated by randomly choosing its parameters within given intervals. In all the

problems, S1 = S2 = ([0,10], [0,10]) and α1,α2 ∈ [0.5,5].
For every heuristic algorithm, each problem has been solved ten times and aver-

age values have been computed. However, the heuristic GS has only been run once

and the results obtained in that run (no average results) are given. All results for all

the problems are shown in [36]. In this section only some average results for n = 15

and n = 50 are shown in Table 7. In the column labeled ‘Time’, the average time in

the ten runs (in seconds) of each problem is shown; the ‘MaxDist’ column indicates

the maximum Euclidean distance (for the three variables (x1,y1,α1)) between every

pair of solutions provided by the algorithm in different runs, which gives an idea of

how far these solutions can be; in the following three columns, the minimum, the

average and the maximum objective value are computed. Finally, in the ‘Dev’ col-

umn, the standard deviation is shown. As can be seen in these tables, two versions

of TLUEGO and MSH algorithms have been executed. It is worth mentioning that

the number of times that MSH_BB (resp. MSH_UE) was allowed to repeat its ba-

sic local optimizer was chosen so that the CPU time employed by MSH_BB (resp.

MSH_UE) was, on average (when considering all the problems with the same value

of n), similar to the CPU time employed by TLUEGO_BB (resp. TLUEGO_UE)

or a bit higher. In particular, for the problems with 15 and 50 demand points, the

number of starting points were 150 and 250, respectively.

Table 6 Settings of the test problems.

n 15 25 50

m 2 5 10 2 5 10 2 5 10

k 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4

28 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Table 7 Results for the problems with n = 15 and n = 50. TLUEGO_BB (ε1 = ε2 = 0.0001),

TLUEGO_UE, MSH_BB and MSH_UE and GS.

Max Objective Function

(n) Algorithm Time Dist Min Av Max Dev

15 TLUEGO_BB 226 0.015 15.478 15.478 15.479 0.000

TLUEGO_UE 891 0.009 15.478 15.478 15.479 0.001

MSH_BB 258 1.164 15.350 15.413 15.453 0.038

MSH_UE 1091 0.516 15.290 15.409 15.469 0.067

GS 490338 - - 15.445 - -

50 TLUEGO_BB 9470 0.186 39.866 39.960 40.065 0.081

TLUEGO_UE 8259 0.185 39.912 40.072 40.174 0.102

MSH_BB 11090 2.855 25.597 31.329 37.722 4.508

MSH_UE 9911 2.769 23.769 33.088 38.084 5.346

GS 3003794 - - 37.280 - -

Analyzing the results, it can be seen that the method used to reliably solve the

medianoid problem does not seem to have an influence on the quality of the fi-

nal solution, i.e., TLUEGO and MSH behave similarly, regardless whether iB&B

or UEGO_med is employed. This is due to the reliability of UEGO (in spite of its

metaheuristic nature). The iB&B technique is faster than UEGO_med for small size

problems (n = 15), which directly reduces the execution time of both TLUEGO and

MSH. Specifically, the use of iB&B reduces the computing time of TLUEGO_BB

by 74.6% as compared to TLUEGO_UE. A similar behavior in computing time

can be seen in MSH when iB&B is used instead of UEGO_med. Nevertheless, for

medium size problems (with n = 50 demand points), TLUEGO_UE and MSH_UE

reduce the computing time as compared to TLUEGO_BB and MSH_BB, by 12.79%

and 10.63%, respectively. These results are also consistent with the ones showed in

[39], where it was observed that the increase of requirements for iB&B with the size

of the problem was greater than for UEGO_med.

Focusing now on the strategies proposed to solve the current centroid problem,

it can be stated that TLUEGO (in both versions) is the algorithm achieving the

best results. Their average objective function values are always higher than the ones

provided by both MSH and GS. It is also remarkable that the minimum objective

function value found by TLUEGO in the ten runs is always better than the average

values obtained by both MSH and GS (see columns ‘Min’ and ‘Av’). Additionally,

TLUEGO is the most robust algorithm in the sense that it usually attains the same

solution in all the runs, whereas MSH is more erratic, and can provide different

solutions in each run (see the values of ‘MaxDist’ and ‘Dev’).

5.3 Influence of the fuse process in the creation procedure

Taking into account the main structure of TLUEGO, based on UEGO_cent.SASS

algorithm, it can be seen that in the creation procedure, for every species in the list,

a set of possible new solutions is computed, fused and evaluated with the objective

Huff-like Stackelberg location problems on the plane 29

of finding new promising species, and therefore increasing the species-list. This cre-

ation process is applied independently to each species as no relation among species

exists.

Taking into consideration that the evaluation of a single species in TLUEGO

requires intensive computational effort, since it implies the execution of another ex-

pensive optimization algorithm (UEGO_med or iB&B) to obtain the optimal location

of the follower (by solving the corresponding medianoid problem), TLUEGO had

to be designed to maintain a small-size species-list. This was done by including a

‘fuse’ process just after the creation of candidate solutions and before the evaluation

of the resulting ones.

However, it is known that working with larger species-list sizes helps to explore

the search space deeply and consequently to obtain better solutions. With this aim, in

this section, new creation procedures are proposed, where the fuse process is relaxed

in part by modifying the threshold distance to apply the fusion of two species. Now

two species will be fused if the distance between their centers is smaller than the new

thresholds Rt , Rt/2 or 0 instead of 2Rt . In what follows, only TLUEGO_UE will be

used, since it can solve larger instances. It will simply be denoted by TLUEGO.

For the analysis at hand, only medium size problems have been considered, i.e.

n = 50,100 (the actual settings can be seen in Table 8).

Table 8 Settings of the test problems.

n 50 100

m 2 5 10 2 5 10

k 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4

Table 9 Effectiveness evaluation of the fuse process in TLUEGO (sequential algorithm) for prob-

lems with n = 100 and n = 50 demand points.

n threshold Time MaxDist Π1 Dev Dif Π1 Dif Sol

50 2Rt 10993 0.520 148.316 0.578 - -

Rt 17689 0.307 149.616 0.177 0.782 1.812

Rt/2 18686 0.129 150.296 0.113 1.235 2.364

0 22898 0.135 151.002 0.064 1.794 2.940

100 2Rt 32029 0.755 177.364 1.992 - -

Rt 52125 0.146 183.341 0.490 3.260 4.221

Rt/2 56932 0.133 185.710 0.272 4.562 5.998

0 65470 0.056 186.551 0.058 5.033 7.027

Considering that each run of TLUEGO may provide a different solution, each

problem has been solved ten times and average values have been computed. Table 9

shows the average results obtained by the algorithms considering all the configura-

tions for the problems with n = 50 and n = 100, respectively. In [36] a complete set

of tables with detailed results for each configuration can be found. The first column

gives the size of the problem. The second one indicates the threshold value used in

the fuse process. In the third column, the average time in the ten runs (in seconds) is

computed. The MaxDist column provides the maximum Euclidean distance (for the

30 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

three variables (x1,y1,α1)) between any pair of solutions provided by the algorithm

in the ten runs, which gives an idea of how far the solutions computed by the algo-

rithm in different runs can be. The average objective function value (column Π1) in

the ten runs and the corresponding standard deviation (column Dev) are given next.

Column Dif Π1 shows the relative improvement in the objective function value be-

tween the solution obtained by the algorithms when a threshold different from 2Rt

is used as compared to the result obtained when using 2Rt . The final column shows

the relative difference between the solutions.

As can be seen, the CPU time increases as the threshold decreases, and when this

is set to 0, the time is more than double as compared to the 2Rt case. The algorithm

also becomes more robust (see the decrease in columns Dev), in the sense that the

objective function value at different runs are more similar. In addition, analysing

column Π1 it can be deduced that the quality of the solution also becomes better.

Regarding the relative improvement in the objective function value, it can be seen

that for the problems with n = 50 demand points is moderate, with an average of

1.794%. However when the threshold is set to 0, for the problems with n = 100 it

attains a significant 5.033%. This clearly shows that the smaller the threshold, the

better the solutions are. Unfortunately this is at the cost of increasing the CPU time

and the memory requirements.

5.4 High performance computing

Due to the high computational cost of TLUEGO, which is even higher than that of

UEGO_cent.SASS, a parallelization of the algorithm is required, especially if real

problems, with more demand points than the studied in the previous section must

be solved. In [1], three programming paradigms for the parallelization of TLUEGO

are designed. More specifically, a pure message passing paradigm, a pure shared

memory programming model and a hybrid one which combines message passing

with shared memory are implemented and their efficiency and effectiveness are

analyzed and compared. Results showed that both pure message passing and pure

shared memory paradigms have almost the same performance, while the hybrid one

shows less efficiency though it can exploit all computational resources of the parallel

architecture.

Considering that TLUEGO structure is similar to UEGO_cent.SASS, the mes-

sage passing algorithm is based on a master-slave strategy like the one described in

section 4.5. For this reason only the main features of pure shared memory strategy

are detailed here. Readers interested in a deep description of the three strategies as

well as in the performance comparison among them are referred to [1].

Huff-like Stackelberg location problems on the plane 31

5.4.1 Shared memory programming for TLUEGO: SMP_TLUEGO

For the implementation of this parallel strategy, OpenMP has been selected, since

it is a portable and scalable model, and gives programmers a simple and flexible

interface for developing parallel applications.

Concerning the parallel model, it can be considered a pseudo master-slave tech-

nique, similar to the MS described in section 4.5. OpenMP includes mechanisms to

distribute the species list among the different processors without the existence of a

master processor. Therefore there does not exist a master processor which globally

controls the algorithm and manages the species list. This task can be done in parallel

by all the processors. However, the existence of a kind of pseudomaster processor

to be in charge of applying the Selection procedure and updating the species list that

will be accessible to all processors, is still necessary. Accordingly, the parallelism

is applied to the evaluation of the new candidate solutions in the Creation and Opti-

mization procedures. Consequently, new creation and optimization procedures have

also been designed. They are briefly described next.

The parallel algorithm developed considers that the species-list is stored in shared

memory. When the Create_species_paral is executed, each processor picks up a new

single species and evaluates it. Once a processor has finished this task, it collects

another species. This cyclical process finished when all the new offspring are eval-

uated. Notice that mutual exclusion is not needed because each processor accesses

different memory areas.

The Optimize_species_paral procedure maintains a similar structure to the pre-

vious method Create_species_paral. But instead of only evaluating the species, it

applies the local search procedure. Considering that the number of function evalu-

ations required to optimize a single species, and therefore, the computational load

assumed by each processor, may be quite different, this strategy of selecting the

species one by one helps to balance the computational burden and to reduce the

waiting time of the processors.

5.4.2 Efficiency results of SMP_TLUEGO

In this subsection the behavior of SMP_TLUEGO is analyzed by solving a set of 24

problems whose settings can be found in Table 10. For every setting one problem

was generated. Additionally, all the instances are solved 10 times and average values

are considered.

Table 10 Settings of the test problems.

n 50 100

m 2 15 25 2 15 25

k 0,1 0,5,10 0,7,15 0,1 0,5,10 0,7,15

32 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Table 11 Efficiency results for SMP_TLUEGO.

P n Time Ef f (P) n Time Ef f (P)
1 100 65470 - 500 565358 -

2 32878 1.00 283707 1.00

4 16928 0.97 143416 0.99

8 8703 0.94 73065 0.97

Table 11 shows, for the problems with n = 100 and n = 500 demand points,

the average computing time (in secs.) and the mean efficiency Ef f (P) obtained. As

can be seen, SMP_TLUEGO has either optimal or near-optimal efficiency for up to

P = 8 processors. For a given n the efficiency values slightly decrease as the number

of processors P increases. Notice, however, that the algorithm is scalable, as it shows

a better performance (see Ef f (P) columns) when the problem size increases, i.e. the

efficiency improves with higher n values.

6 Solving the models with costs exactly

In this section we propose an exact solution method for the problems described

in sections 4 and 5, i.e. when operational costs are taken into account. As already

mentioned, the B&B method described in Section 3 works only when no costs are

present, that is, the zero-sum property holds for the objective functions of the leader

and follower. The method we propose to solve these harder problems exactly is a

generalization of the algorithm presented in [49]. In that paper almost the same prob-

lem is solved exactly on networks, although with fixed qualities. Here, we propose

a modification of this method to be able to solve the problem on the plane having

the quality as additional variables for the new facilities.

In [49] a B&B method is used to solve the leader problem, while in an embedded

way another B&B was used to refine the follower. The main difference between this

method and algorithms 2 and 1 is that the follower problem has to be solved for a

set of leader placements instead of for a leader point. This is much more challeng-

ing, and it may even be impossible if the aim is to solve the problem with a small

accuracy. Therefore, instead of solving the follower problem in the inner B&B to

optimality, its searching set is only refined, and the solution (set of sets) is stored

together with the leader set. The method proposed next differs from that in [49]

mainly in the searching space and the solution sets, that instead of being segments

of edges of the network, they are now 3-dimensional boxes (vector of intervals) in

R
3.

Huff-like Stackelberg location problems on the plane 33

6.1 Overcoming the difficulty of the lack of the zero-sum property

In Section 3 we have already seen that when the objective function is the market

share (no costs are present), and the qualities of the facilities are given parameters,

the problem can be solved efficiently by a B&B method. The key point there is

the zero-sum property of the objective functions: minimizing the objective of the

leader, one directly maximizes the objective of the follower and vice-versa. What

makes the method very efficient is that although (reverse) medianoid problems have

to be solved to obtain bounds, the other new facility is always fixed to a point.

This is no longer the case when costs are taken into account. It may even happen

that changing the location of the follower increase both the leader and the follower

objective. Therefore the result of Lemma 1 cannot be used directly, and so a new

trick is needed to overcome this difficulty.

When operational costs are present, for the bound calculations of the leader, all

possible locations (and qualities) of the follower have to be considered. On the one

hand, until the follower is not enclosed tightly in a set of boxes, it might mean that

the obtained bounds are very loose. On the other hand, until the leader box is not

small enough, it is not possible to enclose the follower tightly. Thus, what is needed

is a good and possibly cheap bound calculation procedure in order to overcome the

above problem. One promising approach is to use interval bounds, as done in [49].

6.2 Interval arithmetic bounds

We propose to use Interval Arithmetic to obtain lower and upper bounds of the ob-

jective functions automatically when one or both facilities are in boxes. The main

idea of Interval Analysis is to change all real arithmetic operators and elementary

real functions to their interval versions. As a result, an interval containing all possi-

ble results from points from the input intervals is obtained, maybe with some over-

estimation. See [21] for details of interval analysis in global optimization.

Let us denote intervals with capital letters, e.g. X = [x,x], where x ≤ x are the

lower and upper bounds of X , respectively.

For a given box NFl containing a new facility n fl , an interval Ui,nfl containing

the utility of any point within NFl can be computed as

Ui,nfl = [ui,nfl ,ui,nfl] = [γiαl/gi(di(Zl)),γiαl/gi(di(Zl))]

where

di(Zl) =
√
(max{xl − pi1, pi1 − xl ,0})2 +(max{yl − pi2, pi2 − yl ,0})2,

di(Zl) =
√

max{(xl − pi1)2,(pi1 − xl)2}+max{(yl − pi2)2,(pi2 − yl)2}.

34 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

Given a fixed box (or a point) ÑF2 for the follower, an upper bound of Π1 at the

box NF1 can be calculated with interval arithmetic as

UB(Π1(NF1, ÑF2)) = c ·UB(M1(NF1, ÑF2))−LB(G1(NF1)),

where the upper bound of the market share is given by the formula

UB(M1(NF1, ÑF2)) =
n

∑
i=1

ŵi

ui,nfl +∑
k
j=1 ui j

ui,nf1 +ui,nf2 +∑
m
j=1 ui j

,

when the demand is fixed, and

UB(M1(NF1, ÑF2)) =
n

∑
i=1

wmax
i qi(ui,nfl +

k

∑
j=1

ui j),

when the demand is endogenous but linear as introduced in Section 5.

The lower bound LB(G1(NF1)) of the operational cost function G1, when it has

the form

G1(n f1) =
n

∑
i=1

wi/((di(z1))
φ i0

1 +φ i1
1)+ exp(α1/ξ 0

1 +ξ 1
1)− exp(ξ 1

1)

(where wi stands for ŵi when the demand is fixed, and for wi(Ui(n f1,n f2)) when

the demand varies) can be computed as

LB(G1(NF1)) =
n

∑
i=1

ŵi

di(Z1)
φ i0

1 +φ i1
1

+ exp(α1/ξ 0
1 +ξ 1

1)− exp(ξ 1
1)

when the demand is fixed, and as

LB(G1(NF1)) =
n

∑
i=1

wmin
i

di(Z1)
φ i0

1 +φ i1
1

+ exp(α1/ξ 0
1 +ξ 1

1)− exp(ξ 1
1)

when it varies.

Of course, if an upper bound for the leader’s profit is required when the follower

is in a set of boxes NF2, it can be obtained as

UB(Π1(NF1,NF2)) = c · max
NF2∈NF2

UB(M1(NF1,NF2))−LB(G1(NF1)).

The interval arithmetic lower bound of the profit can be obtained by interchang-

ing upper bounds and lower bounds in the above formulae. The bounds for the fol-

lower are straightforward by the rules above.

One can see that even those computations might be time-consuming for obtaining

an upper or a lower bound. However, notice that in the fixed demand case, we can

still use the zero-sum property of the market share for its bound calculations, so that

Huff-like Stackelberg location problems on the plane 35

if bounds for the follower’s market share are known, they can be used directly for

the leader’s bounds on the market share and vice-versa.

6.3 Solution method

A B&B method is designed to solve the leader’s problem, and consequently the

follower’s problem as well. The main goal of the method is for every subproblem to

simultaneously tighten the set containing the global optimizer of the leader and the

set that contains all the global optimizers for the follower problem.

Without loss of generality, it is assumed that the feasible set of both the leader

and the follower is a box. We define subproblems of the leader as boxes. For a

given box of the leader, the follower’s possible position can be in many places, and

until the leader is not enclosed tightly, the follower can only be bounded to a set

of boxes. Therefore, for every box of the leader we need to store the subboxes that

may contain the global optimal solutions of the follower. Hence, a partial solution

or subproblem of the leader refers to a box containing the leader and the set of boxes

that contain the corresponding solution of the follower problem.

An inner B&B method tightens the boxes of the follower, and a main (outer)

B&B method tightens the boxes of the leader. Thus, lower and upper bounds for

the leader’s (follower’s) profit are needed when the follower (leader) is enclosed

in a box. For the calculation of the lower and upper bounds of the follower in a

given box NF2, its corresponding single leader’s box NF1 is taken into account.

These lower and upper bounds are LB(Π2(NF1, n̂ f 2)) and UB(Π2(NF1,NF2)), re-

spectively, where n̂ f 2 ∈ NF2 is a feasible solution within the follower’s box. For the

calculation of the bounds for a leader’s box NF1, every box of the follower corre-

sponding to it has to be considered, i.e. LB(Π1(n̂ f 1,NF2)) and UB(Π1(NF1,NF2)),

where n̂ f 1 is a feasible solution in the leader’s box and NF2 ∋ NF2 the set of the

corresponding boxes of the follower.

6.3.1 Inner B&B

Both the leader’s and their corresponding follower’s boxes need to be refined for the

algorithm to converge. The inner B&B takes care of the refinement of the follower’s

boxes.

The termination criterion of the inner B&B is to have the size of each follower’s

box at least as small as the corresponding leader’s box. The algorithm returns the

modified list of the boxes of the follower. The selection rule chooses the largest box,

while the branching rule bisects the box perpendicularly to the coordinate direction

of maximum width.

Given a leader box, this method is applied to the set of follower boxes associated

to it, until the corresponding follower’s sub-boxes have a size smaller than or equal

36 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

to that of the leader’s box. Each time a new leader box is created, the inner B&B is

run until its follower’s boxes are refined.

6.3.2 Outer B&B

The outer B&B refines the leader’s boxes and calls the inner B&B method for each

new box of the leader. Recall that a subproblem of the leader is a box with the cor-

responding set of boxes for the follower. Thus, the initial subproblem is the starting

box of the leader, and the starting box of the follower. However it might be more

efficient to make a pre-division at the very beginning, as the first lower and upper

bounds obtained by the algorithm are usually useless, but computing them needs

time.

The output is a set of boxes containing any global optimizer, and the interval

containing their objective values contains the global optimum of the problem. The

selection rule selects the leader box with the highest upper bound of the leader’s

profit, while the branching rule bisects the leader’s box perpendicularly to the coor-

dinate direction of maximum width and leaves the follower’s boxes unchanged but

duplicated for the new boxes of the leader. The algorithm stops when the interval

containing the objective values of all leader’s boxes gets smaller than a prescribed

tolerance or the size of all the boxes becomes smaller than another tolerance param-

eter.

6.4 Algorithm

The pseudocode of the inner and outer B&B algorithms are given in Algorithm 8.

For the sake of simplicity let us denote the objective function as Π (Π1 for the outer

and Π2 for the inner B&B).

In line 3 we remove each box known not to contain any global optimizer from

list Λ . The main cycle of the general B&B method is listed from line 4 to line 19.

The main difference of the outer B&B from the inner B&B is the call of the inner

method added in lines 15 and 16. In fact, the additional differences between the

inner and outer procedures are hidden in the bound calculations, as well as in the

selection and termination rules.

The output of Algorithm 8 is the set of boxes which could not be eliminated and

thus contain any global optimizer, and the point at which the best lower bound was

achieved.

The proposed method should be tested on a set of test problems to know the

size of the problems that it can solve, for both exogenous and endogenous demand.

However, this is not the aim of this section, but to show that an exact algorithm can

be designed even if operational costs are considered, the qualities are variables of

the model and the demand is endogenous.

Huff-like Stackelberg location problems on the plane 37

Algorithm 8: The inner and outer B&B methods

1: Input: Λ ,GLB for the inner B&B

2: Λ = {S},GLB =−∞ for the outer B&B

3: Remove all NF i from Λ with UBi < GLB

4: while Λ 6= /0 do

5: Select NF from Λ
6: Bisect NF into NF1 and NF2

7: for i := 1 to 2 do

8: Determine an upper bound UBi on NF i

9: if not UBi < GLB then

10: Compute a lower bound LBi of Π at midpoint(NF i)
11: if LBi > GLB then

12: GLB := LBi, BestPoint := midpoint(NF i)
13: Remove all NF j from Λ with UB j < GLB

14: if not TerminationCriterion(NF i) then

15: if outer then

16: Call the inner B&B on the set of follower boxes of NF i

17: Λ := Λ ∪{NF i}
18: else

19: Γ := Γ ∪{NF i}
20: Output: Γ ,BestPoint

7 Conclusions and future research

Despite its inherent difficulty, facility location leader-follower (or Stackelberg)

problems can be addressed when the location space considered is the plane, at least

in its simple case, when only one new facility is going to be located by the leader

and the follower. Exact (interval) branch-and-bound methods can be put to work

for solving small instances, whereas evolutionary algorithms can handle large in-

stances. If so required, parallel implementations of the algorithms can help to solve

larger instances and with more accuracy.

Dealing with problems where more than one facility is to be located by the leader

and/or the follower seems to still be a challenge when the location space is the

plane. An extension which deserves to be explored is to allow the existing facilities

to modify their quality, or even close some of them. Studying the problems with

other patronizing behavior of customers is another line of future research. From the

computational point of view, the design of high performance computing approaches

for the exact branch-and-bound algorithms is also worth exploring.

Acknowledgements This research has been supported by grants from the Spanish Ministry of

Economy and Competitiveness (MTM2015-70260-P, and TIN2015-66680-C2-1-R), the Hungar-

ian National Research, Development and Innovation Office - NKFIH (OTKA grant PD115554),

Fundación Séneca (The Agency of Science and Technology of the Region of Murcia, 19241/PI/14),

Junta de Andalucía (P11-TIC7176 and P12-TIC301), in part financed by the European Regional

Development Fund (ERDF). Juana López Redondo is a fellow of the Spanish ‘Ramón y Cajal’

contract program.

38 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

References

1. A.G. Arrondo, J.L. Redondo, J. Fernández, and P.M. Ortigosa. Solving a leader-follower facil-

ity problem via parallel evolutionary aproaches. The Journal of Supercomputing, 70(2):600–

611, 2014.

2. J. Bhadury, H.A. Eiselt, and J.H. Jaramillo. An alternating heuristic for medianoid and cen-

troid problems in the plane. Computers and Operations Research, 30(4):553–565, 2003.

3. B. Biesinger, B. Hu, and G. Raidl. Models and algorithms for competitive facility location

problems with different customer behavior. Annals of Mathematics and Artificial Intelligence,

76(1):93–119, 2016.

4. M.S. Daskin. Network and discrete location: models, algorithms and applications. Wiley,

1995.

5. S. Dempe. Foundations of Bilevel Programming. Springer, 2002.

6. P. Dorta-González, D.R. Santos-Peñate, and R. Suárez-Vega. Spatial competition in networks

under delivered pricing. Papers in Regional Science, 84:271–280, 2005.

7. T. Drezner. Locating a single new facility among existing unequally attractive facilities. Jour-

nal of Regional Science, 34(2):237–252, 1994.

8. T. Drezner. Optimal continuous location of a retail facility, facility attractiveness, and market

share: an interactive model. Journal of Retailing, 70(1):49–64, 1994.

9. T. Drezner and Z. Drezner. Replacing continuous demand with discrete demand in a compet-

itive location model. Naval Research Logistics, 44:81–95, 1997.

10. T. Drezner and Z. Drezner. Facility location in anticipation of future competition. Location

Science, 6(1):155–173, 1998.

11. T. Drezner and Z. Drezner. Retail facility location under changing market conditions. IMA

Journal of Management Mathematics, 13(4):283–302, 2002.

12. T. Drezner, Z. Drezner, and P. Kalczynski. Strategic competitive location: improving existing

and establishing new facilities. Journal of the Operational Research Society, 63(12):1720–

1730, 2012.

13. T. Drezner, Z. Drezner, and P. Kalczynski. A leader–follower model for discrete competitive

facility location. Computers & Operations Research, 64:51–59, 2015.

14. Z. Drezner. Competitive location strategies for two facilities. Regional Science and Urban

Economics, 12(4):485–493, 1982.

15. H.A. Eiselt and G. Laporte. Sequential location problems. European Journal of Operational

Research, 96(2):217–231, 1996.

16. H.A. Eiselt, G. Laporte, and J.F. Thisse. Competitive location models: a framework and bib-

liography. Transportation Science, 27(1):44–54, 1993.

17. J. Fernández, P. Fernández, and B. Pelegrín. Estimating actual distances by norm functions:

a comparison between the lk,p,θ -norm and the lb1,b2,θ -norm and a study about the selection of

the data set. Computers and Operations Research, 29(6):609–623, 2002.

18. J. Fernández, B. Pelegrín, F. Plastria, and B. Tóth. Solving a Huff-like competitive location

and design model for profit maximization in the plane. European Journal of Operational

Research, 179(3):1274–1287, 2007.

19. J. Fernández, S. Salhi, and B. G. Tóth. Location equilibria for a continuous competitive facility

location problem under delivered pricing. Computers and Operations Research, 41(1):185–

195, 2014.

20. S.L. Hakimi. On locating new facilities in a competitive environment. European Journal of

Operational Research, 12(1):29–35, 1983.

21. E. Hansen and G. W. Walster. Global optimization using interval analysis. Marcel Dekker,

second revised and expanded edition, 2004.

22. D. L. Huff. A Programmed Solution for Approximating an Optimum Retail Location. Land

Economics, 42(3):293–303, 1966.

23. M. Jelásity. The shape of evolutionary search: Discovering and representing search space

structure. Ph.D. Thesis, Leiden University, 2001.

Huff-like Stackelberg location problems on the plane 39

24. M. Jelásity, P.M. Ortigosa, and I. García. UEGO, An Abstract Clustering Technique for Mul-

timodal Global Optimization. Journal of Heuristics, 7(3):215–233, 2001.

25. Hande Küçükaydin, Necati Aras, and I. Kuban Altinel. A leader-follower game in competitive

facility location. Computers and Operations Research, 39(2):437–448, 2012.

26. H. Kücükaydin, N. Aras, and I.K. Altinel. Competitive facility location problem with attrac-

tiveness adjustment of the follower: A bilevel programming model and its solution. European

Journal of Operational Research, 208(3):206–220, 2011.

27. P.J. Lederer and A.P. Hurter. Competition of firms: discriminatory pricing and location.

Econometrica, 54(3):623–40, 1986.

28. R.G. McGarvey and T.M. Cavalier. Constrained location of competitive facilities in the plane.

Computers and Operations Research, 32:359–378, 2005.

29. T. C. Miller, T. L. Friez, and R. L. Tobin. Equilibrium facility location on networks. Springer,

1996.

30. P.B. Mirchandani and R.L. Francis, editors. Discrete location theory. Wiley-Interscience,

1990.

31. P.M. Ortigosa, I. García, and M. Jelásity. Reliability and performance of UEGO, a clustering-

based global optimizer. Journal of Global Optimization, 19(3):265–289, 2001.

32. F. Plastria. GBSSS, the generalized big square small square method for planar single facility

location. European Journal of Operational Research, 62:163–174, 1992.

33. F. Plastria. Avoiding cannibalization and/or competitor reaction in planar single facility loca-

tion. Journal of the Operations Research Society of Japan, 48:148–157, 2005.

34. F. Plastria and E. Carrizosa. Optimal location and design of a competitive facility. Mathemat-

ical Programming, 100(2):247–265, 2004.

35. J.L. Redondo, J. Fernández, A.G. Arrondo, I. García, and P.M. Ortigosa. Fixed or variable

demand? Does it matter when locating a facility? Omega, 40(1):9–20, 2012.

36. J.L. Redondo, J. Fernández, A.G. Arrondo, I. García, and P.M. Ortigosa. A two-level evo-

lutionary algorithm for solving the facility location and design (1|1)-centroid problem on the

plane with variable demand. Journal of Global Optimization, 56(3):983–1005, 2013.

37. J.L. Redondo, J. Fernández, I. García, and P. M. Ortigosa. Heuristics for the facility location

and design (1|1)-centroid problem on the plane. Computational Optimization and Applica-

tions, 45(1):111–141, 2010.

38. J.L. Redondo, J. Fernández, I. García, and P.M. Ortigosa. Parallel algorithms for continuous

competitive location problems. Optimization Methods & Software, 23(5):779–791, 2008.

39. J.L. Redondo, J. Fernández, I. García, and P.M. Ortigosa. A robust and efficient global opti-

mization algorithm for planar competitive location problems. Annals of Operations Research,

167(1):87–106, 2009.

40. J.L. Redondo, J. Fernández, I. García, and P.M. Ortigosa. Solving the multiple competitive

facilities location and design problem on the plane. Evolutionary Computation, 17(1):21–53,

2009.

41. J.L. Redondo, J. Fernández, I. García, and P.M. Ortigosa. Solving the facility location

and design (1|1)-centroid problem via parallel algorithms. The Journal of Supercomputing,

58(3):420–428, 2011.

42. J.L. Redondo, P.M. Ortigosa, I. García, and J.J. Fernández. Image registration in electron

microscopy. A stochastic optimization approach. Lecture Notes in Computer Science, Pro-

ceedings of the International Conference on Image Analysis and Recognition, ICIAR 2004,

3212(II):141–149, 2004.

43. N. Saidani, F. Chu, and H. Chen. Competitive facility location and design with reactions of

competitors already in the market. European Journal of Operational Research, 219(1):9–17,

2012.

44. M.E. Sáiz, E.M.T. Hendrix, J. Fernández, and B. Pelegrín. On a branch-and-bound approach

for a Huff-like Stackelberg location problem. OR Spectrum, 31:679–705, 2009.

45. D. Serra and C. ReVelle. Facility location: a survey of applications and methods, chapter

Competitive location in discrete space, pages 367–386. Springer, 1995.

46. F.J. Solis and R.J.B. Wets. Minimization by random search techniques. Mathematics of Op-

erations Research, 6(1):19–30, 1981.

40 José Fernández, Juana L. Redondo, Pilar M. Ortigosa and Boglárka G.-Tóth

47. B. Tóth and J. Fernández. Interval methods for single and bi-objective optimization prob-

lems - applied to competitive facility location problems. Lambert Academic Publishing, Saar-

brücken, 2010.

48. B. Tóth, F. Plastria, J. Fernández, and B. Pelegrín. On the impact of spatial pattern, aggrega-

tion, and model parameters in planar Huff-like competitive location and design problems. OR

Spectrum, 31(1):601–627, 2009.

49. B. G. Tóth and K. Kovács. Solving a Huff-like Stackelberg location problem on networks.

Journal of Global Optimization, 64(2):233–257, 2016.

