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Polygenic burden associated to oligodendrocyte
precursor cells and radial glia influences the
hippocampal volume changes induced by aerobic
exercise in schizophrenia patients
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Abstract
Hippocampal volume decrease is a structural hallmark of schizophrenia (SCZ), and convergent evidence from
postmortem and imaging studies suggests that it may be explained by changes in the cytoarchitecture of the cornu
ammonis 4 (CA4) and dentate gyrus (DG) subfields. Increasing evidence indicates that aerobic exercise increases
hippocampal volume in CA subfields and improves cognition in SCZ patients. Previous studies showed that the effects
of exercise on the hippocampus might be connected to the polygenic burden of SCZ risk variants. However, little is
known about cell type-specific genetic contributions to these structural changes. In this secondary analysis, we
evaluated the modulatory role of cell type-specific SCZ polygenic risk scores (PRS) on volume changes in the CA1, CA2/
3, and CA4/DG subfields over time. We studied 20 multi-episode SCZ patients and 23 healthy controls who performed
aerobic exercise, and 21 multi-episode SCZ patients allocated to a control intervention (table soccer) for 3 months.
Magnetic resonance imaging-based assessments were performed with FreeSurfer at baseline and after 3 months. The
analyses showed that the polygenic burden associated with oligodendrocyte precursor cells (OPC) and radial glia (RG)
significantly influenced the volume changes between baseline and 3 months in the CA4/DG subfield in SCZ patients
performing aerobic exercise. A higher OPC- or RG-associated genetic risk burden was associated with a less pronounced
volume increase or even a decrease in CA4/DG during the exercise intervention. We hypothesize that SCZ cell type-
specific polygenic risk modulates the aerobic exercise-induced neuroplastic processes in the hippocampus.

Introduction
Hippocampal volume decrease has been consistently

reported in first- and multi-episode schizophrenia (SCZ)
(e.g., refs. 1–4). This structural change has been associated
with psychopathological severity and cognitive deficits in

SCZ patients5–11. Despite the relevance of both negative
and cognitive symptoms for disability and functional
recovery12, to date pharmacological strategies have shown
little success in the management of these symptoms13–15.
An increasing body of evidence indicates that aerobic

exercise as an add-on strategy may help to improve these
disability-related symptoms in SCZ patients16–18. Studies
in the general population reported the beneficial effects of
physical activity on cognitive performance and brain
structure and function19–21, and two recent meta-analyses
of these studies provided remarkable evidence that aerobic
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exercise, including moderate-intensity continuous train-
ing, increases hippocampal volumes22,23. These results
suggest that neuroplastic processes in this brain region
could drive symptom improvement in SCZ patients.
The first study to investigate the effects of aerobic

exercise on brain structure in SCZ was performed in a
small sample of multi-episode patients and reported an
increase in hippocampal volume after 3 months of aerobic
endurance training24. Subsequent studies with similar
designs could not replicate these structural findings16–18,
however, although they did observe beneficial effects on
patients’ global functioning17 and training-related volume
increases of the left superior, middle, and inferior anterior
temporal gyri16. The type, intensity, and duration of the
exercise intervention may explain the differences in the
results of the aforementioned studies, at least in part25–27.
Recently, a study with a design that closely resembled the
methodology of the above-mentioned first study in SCZ24

replicated the positive effects of aerobic exercise on hip-
pocampal volume in chronic SCZ patients28.
Imaging studies that used automatic methods for hip-

pocampus subfield segmentation recently revealed that
cornu ammonis (CA) regions CA1–4 and the dentate
gyrus (DG) show more volume reduction than other
hippocampal regions in both first-episode and chronic
SCZ; the reductions are larger in the left hemisphere and
correlated to cognitive deficits29–32. Postmortem studies
from our group confirmed these volumetric changes in
the anterior and posterior hippocampus and provided
clues to understand the cytoarchitecture of these changes.
We observed a decreased number of oligodendrocytes in
the left and right CA4 (posterior hippocampus) and left
CA4 (anterior hippocampus) and fewer neurons in the left
DG33,34. Moreover, the number of oligodendrocytes cor-
related with the volume of CA434, and the reduction in
the number of oligodendrocytes in the left CA4 was more
pronounced in patients with definitive cognitive deficits35.
It is unknown, however, whether the number of oligo-
dendrocyte precursor cells (OPCs) or mature oligoden-
drocytes is reduced. Impaired differentiation of OPCs has
been hypothesized in SCZ36 and represents an interesting
field for functional studies with patient-derived induced
pluripotent stem cells37. Radial glia (RG) cells are the
common progenitors of neurons and oligodendrocytes,
and during development they give rise to neurons and glia
cells38. In the hippocampus and cortex of adult mouse
brains, they retain the capacity to differentiate to neurons,
astrocytes, and also oligodendrocytes39. Late descendants
of RG persist in the subventricular zone (SVZ) of the
lateral ventricle and the subgranular zone (SGZ) of the
DG of the hippocampus, giving rise to adult neurogenesis
and gliogenesis38. Direct evidence of hippocampal neu-
rogenesis in adult humans remains difficult to capture and
has even been questioned40. However, a recent study

identified thousands of immature neurons in the DG of
healthy individuals up to the ninth decade of life, pro-
viding direct evidence of neurogenesis in adults41.
The aforementioned cellular findings likely support the

evidence of subfield-specific effects of exercise. In first
place, physical activity induces a volume increase in the
left CA subregions and shows a trend for inducing a
volume increase in the left CA4/DG42. In another study,
molecular, functional, and structural evidence from animal
models indicated that exercise induces neuroplastic pro-
cesses in the brain, particularly in the hippocampus43–51.
Finally, in a recent MRI/histological study in mice, physical
exercise led to an increase in gray matter volume in the
hippocampal DG and CA1–3 subfields, along with an
increase in neurogenesis in the DG52. Taken together,
these results provide mechanistic insight into the neuro-
plastic processes in specific areas of the hippocampus that
may link physical exercise to clinical improvement in SCZ.
Recent genome-wide association studies (GWASs)

indicate a large genetic overlap between SCZ risk and
hippocampal volume53. These results converge with pre-
vious evidence that a higher polygenic SCZ risk burden is
associated with reduced hippocampal volumes in at-risk
individuals and first-episode and chronic SCZ patients4,54.
Moreover, previous work from our group showed that
polygenic SCZ risk modulates the effect of aerobic exer-
cise in the CA4/DG region55. However, little is known
about the biological processes, cellular pathways, or cell
types underlying the corresponding polygenic risk.
In a recent single-cell RNAseq study, Skene et al. were

able to map genomic SCZ risk loci onto expression pro-
files of specific brain cell types; this mapping indicated
that neuronal and OPC-enriched transcripts are asso-
ciated with risk loci56. Here, we present a secondary
analysis that leverages the cell type-specific expression
profiles derived from the study by Skene et al. to generate
cell type-specific polygenic risk score (PRS) in our sample.
Given the previous postmortem evidence of decreased
oligodendrocyte or OPC numbers in hippocampal sub-
fields in SCZ33,34, our analysis focused on the polygenic
burden associated with different stages in the develop-
ment of oligodendrocytes57,58, i.e., RG (PRSRad), OPCs
(PRSOPC), and mature oligodendrocytes (PRSOli). Our aim
was to investigate whether cell type-specific SCZ PRS
related to RG, OPCs, or mature oligodendrocytes are
associated with volume changes in CA1, CA2/3, and CA4/
DG subfields in multi-episode SCZ patients and healthy
controls after 3 months of aerobic exercise.

Patients and methods
Participants
The sample analyzed in this study has been described in

detail elsewhere17,18 and is the same as was previously
used to determine the influence of SCZ PRS on brain
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structure55. Briefly, the original study recruited 20 multi-
episode SCZ patients and 23 healthy controls in an
aerobic exercise intervention group and 21 multi-episode
SCZ patients in a table soccer (control intervention)
group. It also included a cognitive remediation inter-
vention for all participants. SCZ patients were recruited
in the Department of Psychiatry and Psychotherapy of
the University Medical Center Goettingen. Healthy con-
trols, who had no past or current illness, were matched
for age, sex, and handedness. The study protocol was
approved by the ethics committee of the University
Medical Center Goettingen. All participants provided
written informed consent prior to inclusion in the study,
and the study was conducted according to the Declara-
tion of Helsinki. The trial is registered at www.clin-
icaltrials.gov (NCT01776112).

Endurance training, table soccer
In each group, the intervention consisted of three 30-

min sessions per week and lasted 3 months. Endurance
training was conducted on bicycle ergometers at an
individually defined intensity that was gradually increased
until blood lactate concentrations of 2 mmol/l were
reached, in accordance with the continuous training
method (e.g., ref. 59). The training parameters blood lac-
tate concentration, heart rate, and exhaustion according
to the Borg scale were monitored60. The SCZ patients
allocated to the non-endurance intervention had table
soccer for the same amount of time. More details on the
intervention protocols can be found elsewhere17,18.

Magnetic resonance imaging acquisition
MRI data were acquired at baseline (V1) and after

3 months (V3) in a whole-body 3.0 Tesla MRI Scanner
(Magnetom TIM Trio, Siemens Healthcare, Erlangen,
Germany) with an 8-channel head coil. Small cushions
were used between the head coil and the individuals’
heads to minimize head movements. The 3D anatomical
images were acquired with a T1-weighted magnetization-
prepared rapid gradient echo (MP-RAGE) sequence with
a field-of-view of 256 mm and an isotropic spatial reso-
lution of 1.0 × 1.0 × 1.0 mm³ (TR= 2250ms, echo time=
3.26 ms, inversion time= 900 ms, flip angle 9°, number of
slices= 176). All images were quality controlled by a
board-certified radiologist and subsequently anonymized
to blind the participants’ identities.

Image processing
Automated hippocampal segmentation was performed

with the FreeSurfer version 5.3.0 software package
(http://surfer.nmr.mgh.harvard.edu). The longitudinal
processing stream was used for automatic subcortical
segmentation, and hippocampal subfield volumes were
computed from T1-weighted images61. An unbiased

within-subject template space and image62 was created by
robust, inverse consistent registration63. Processing steps
involved skull stripping, Talairach transforms, atlas
registration, and spherical surface maps. Parcellations
were initialized with common information from the
within-subject template, which significantly increased
reliability and statistical power61. The longitudinal pro-
cessed images were used to calculate the CA1, CA2/3,
and CA4/DG hippocampal subfield volumes for each
participant64. We performed a correction for the indivi-
dual intracranial volume (ICV) with the proportions
method, in which each T1 volume is divided by the
participant’s ICV and multiplied by the average ICV of all
participants65.

Genotyping and quality control
DNA from all participants was genotyped with the Infi-

nium PsychArray (Illumina, San Diego, USA). Quality
control steps (inclusion thresholds: SNP call rate >98%,
subject call rate >98%, Hardy-Weinberg equilibrium >0.001,
heterozygosity rate within three standard deviations) were
performed with PLINK 1.9 (www.cog-genomics.org/plink/
1.9/)66. An identity-by-state (IBS) matrix was calculated to
estimate the relationship between the samples and showed
that the study samples were not related.
Ancestry differences between the study participants

were modeled with the EIGENSOFT package (SmartPCA)
by using a principal component analysis based on a
pruned subset of ~50,000 autosomal SNPs, after exclud-
ing regions with a high linkage disequilibrium67. All par-
ticipants clustered to HapMap3 Caucasian reference
populations, so none of them was excluded. We extracted
the first two ancestry principal components to correct for
the potential effects of population substructure in all
downstream analyses.

Imputation
Genotype imputation was performed with IMPUTE2/

SHAPEIT by using its pre-phasing and imputation pipe-
line68,69. The 1000 Genomes Project dataset (Phase 3
integrated variant set) was used as the reference panel.
Genetic variants with a poor imputation quality (INFO <
0.7) were removed. After all quality control steps, 20
multi-episode SCZ patients and 20 healthy controls from
the aerobic exercise intervention groups and 16 multi-
episode SCZ patients from the table soccer group were
included in the genetic study.

Calculation of cell type-specific PRS
Discovery sample: Summary statistics from the most

recent SCZ GWAS, which was performed in a sample of
40,675 cases and 64,643 healthy controls, were used to
ascertain risk variants/alleles, their p values, and asso-
ciated odds ratios70.
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Definition of oligodendrocyte lineage gene sets: The top
5% specifically expressed genes in mouse radial glia-like
cells (Rad), OPCs, and mature oligodendrocytes (Oli), as
published in the recent single-cell RNAseq study men-
tioned above56, constituted the gene sets used to calculate
PRS specific for these cell types (Supplementary Table 1).
These gene sets had a certain degree of overlap: Rad-
OPC, 17.2%; OPC-Oli, 19.9%; and Rad-Oli, 3.2%.
Target sample: Three different PRS were generated

exclusively on the basis of the genetic variants in the genes
(±10 kb) that constitute the radial glia (PRSRad), OPCs
(PRSOPC), and mature oligodendrocyte (PRSOli) gene sets.
A clumping procedure was carried out (--clump-kb 500,
--clump-r2 0.1) on the basis of the variants of each gene
set. PRS were calculated by multiplying the imputation
dosage for each risk allele by the log(Odds Ratio) for each
genetic variant. The resulting values were summed to
obtain an individual estimate of the cell type-specific SCZ
genetic burden in each individual across ten p-value
thresholds (5 × 10−8, 1 × 10−6, 1 × 10−4, 1 × 10−3, 0.01,
0.05, 0.1, 0.2, 0.5, 1).

Statistical analyses of PRS effects on hippocampal volume
changes
For each of the imaging variables under study, the

baseline values (V1) were subtracted from the values at
3 months (V3), and the resulting differences were stan-
dardized. The Kolmogorov-Smirnov test found no sig-
nificant deviations from a normal distribution for the
hippocampal volume changes in CA1, CA2/3, and CA4/
DG. The effect of PRS on volume changes in CA1, CA2/3,
and CA4/DG was ascertained by univariate linear
regression in R 3.5.071. Age, sex, height, handedness, and
the first two ancestry principal components were used as
covariates in all genetic association analyses. We per-
formed all analyses separately for SCZ patients perform-
ing aerobic exercise, SCZ patients playing table soccer,
and healthy controls (who also performed aerobic exer-
cise) to identify differences between the three groups. To
address potential type I errors, we determined statistical
significance after a permutation-based resampling proce-
dure. Briefly, empirical adjusted p values (Padj) were
determined through permutation testing of 10,000 simu-
lations with lmPerm package72. These Padj were obtained
by permuting the values of the dependent variables in
each of the tested models. Plots were generated with the
ggplot2 package73.

Results
SCZ endurance training group
In the SCZ patients performing aerobic exercise, after

correction (Padj < 0.05) the PRSOPC was significantly
associated with volume changes in the left CA4/DG
subfield, with an optimal threshold identified at p= 0.01

(Supplementary Fig. 1 and Supplementary Table 2). At all
significant thresholds, high PRSOPC genetic risk burden
was associated with less pronounced volume increase or
even a decrease over time in the left CA4/DG (Fig. 1).
PRSRad analysis in this group showed a similar direction

of the genetic effects, but in this case changes associated
with genetic load were observed in both the left and right
CA4/DG subfields (Supplementary Fig. 1 and Supple-
mentary Table 2). The optimal thresholds were 5 × 10−8

(left) and 0.05 (right), and a high PRSRad genetic load was
associated with a less pronounced volume increase or a
decrease after exercise in left and right CA4/DG subfields
(Fig. 2).
The study of the effects of PRSOli did not show any

consistent effects in any of the subfields analyzed (Sup-
plementary Figs. 1–3). Likewise, PRSOPC and PRSRad did
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Fig. 1 Scatterplot showing the relationship between the optimal
(p-value threshold= 0.01) oligodendrocyte precursor polygenic score
(PRSOPC; x-axis, standardized) and the change from baseline (V1) in the
volume of the left hippocampal subfields CA4/dentate gyrus after
3 months of aerobic exercise (V3) (y-axis, corrected residuals). Positive
values in the y-axis indicate a gain in volume after 3 months; and
positive values in the x-axis, a higher genetic risk burden. Also shown
are regression line and 95% confidence intervals based on the
predicted means from the regression line
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not influence volumes changes in the CA1 or CA2/
3 subfields (Supplementary Figs. 2,3).

Healthy controls endurance training group
In the group of healthy controls performing the exercise

intervention, the only polygenic effect observed was an
influence of PRSRad on volume changes after exercise in
the left CA1 and left CA2/3 regions at several thresholds
(Padj < 0.05) (Supplementary Figs. 2, 3). In both left sub-
fields, a high PRSRad genetic load was associated with a
less pronounced volume increase or a decrease after
exercise (data not shown).

SCZ table soccer group
In the group of SCZ patients performing the control

intervention (table soccer), we found no consistent
polygenic effects for any of the PRS in any of the hip-
pocampal subfields (Supplementary Figs. 1–3). The
only effects observed were single-threshold associa-
tions of PRSOPC with left and right CA4/DG volume
changes, with opposite directions in the left and right
hemispheres.

Discussion
Our results suggest that the beneficial effects of exercise

in SCZ patients might be modulated by cell type-specific
differential polygenic risk. Our approach builds upon
previous studies by our group: in brains from SCZ
patients, we observed a reduced number of oligoden-
drocytes in the left CA4 region in stereological post-
mortem studies33,34 and, in the same samples, showed a
reduction (p < 0.10) in the density of oligodendrocyte
transcription factor (OLIG)1-positive cells by immuno-
histochemistry35. OLIG1-specific antibodies are known to
stain precursor forms and mature oligodendrocyte
populations, and OLIG1 is needed for progenitor devel-
opment and repair of myelin74. The above findings led us
to hypothesize that the decreased number of oligoden-
drocytes in the left CA4 region indicates a disturbed
regenerative process75.
Our group was the first to establish the role of SCZ PRS

in changes in left hippocampal subfields after sustained
aerobic exercise55. Here, we extend these results and show
that SCZ polygenic risk for certain cell types of the glial/
oligodendrocyte lineage exerts a modulatory effect on the
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Fig. 2 Scatterplot showing the relationship between the optimal (p-value threshold= 5 × 10-8 [left] and 0.05 [right]) radial glia cells-like polygenic
score (PRSRad; x-axis, standardized) and the change from baseline (V1) in the volume of the left and right hippocampal subfields CA4/dentate gyrus
after 3 months of aerobic exercise (V3) (y-axis, corrected residuals). Positive values in the y-axis indicate a gain in volume after 3 months; and positive
values in the x-axis, a higher genetic risk burden. Also shown are regression line and 95% confidence intervals based on the predicted means from
the regression line
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CA4/DG volume changes promoted by exercise. In our
study, polygenic risk associated to mature oligoden-
drocytes does not have any influence on these effects. This
suggests that the mechanism of action of these genetic
modulatory effects likely involves neuroplastic processes
involving gliogenesis (and potentially neurogenesis), or
that at least these effects are more important that the ones
related to mature oligodendrocytes. Of note, a recent
study in an animal model of toxin-induced demyelination
showed that exercise enhances oligodendrogenesis and
remyelination and increases the proportion of remyeli-
nated axons76.
OPCs derived from RG cells display a widespread dis-

tribution in mammalian brains and serve as a source of
myelinating oligodendrocytes. Recent studies have pro-
vided compelling evidence that immature OPCs can dif-
ferentiate to myelinating OPCs77,78. They likely represent
the cellular substrate underlying different forms of adult
plasticity and form a homeostatic network capable of
reacting to many types of injury79. Moreover, it is known
that OPCs and oligodendrocytes not only generate myelin
but also provide trophic support to axons of principal
neurons80,81. Also, parvalbuminergic interneurons are
myelinated in the cortex and hippocampus of mice and
humans, and a dysfunctional cross-talk between these
cells and oligodendrocytes has been suggested to con-
tribute to the cellular pathology of SCZ82. It may thus be
possible that disturbed oligodendrocyte development
leads to dysfunctions in interneurons, which is a highly
replicated finding in SCZ83.
On the basis of our findings, we hypothesize that high

PRSOPC and PRSRad interfere with neuroplastic changes
triggered by aerobic exercise in SCZ patients and that
these cell-specific PRS may lead to failed regeneration
mechanisms in the hippocampus. An important propor-
tion of the variation on the hippocampus volume change
triggered by exercise is explained by these polygenic
estimates (optimal R² ~ 0.40 for PRSOPC and PRSRad).
However not all variation is explained by them and fur-
ther studies are warranted to characterize the contribu-
tion of polygenic risk associated to neurons, astrocytes or
microglia to such volumetric changes in these patients.
We could show that these effects are dependent on the

disease status and the type of intervention. Our data
indicate that in healthy controls PRS influence the effects
of exercise in CA1 and CA2/3 subfields, but not in CA4/
DG. Moreover, we did not detect an effect in SCZ patients
playing table soccer (control intervention), supporting the
notion that the corresponding PRS are relevant for the
effects of aerobic exercise on brain structure.
Our results suggest that genetics may shed some light

on the conflicting evidence of the effects of aerobic
exercise on hippocampal volume and cognitive function
in SCZ16–18,24,26,27,84. Here, the individual load of SCZ

genetic risk seems to modulate the effects of aerobic
exercise. This genetic risk-driven modulation fits with the
evidence of high heritability for the total hippocampus
and its subfields85–87 and with a recent study showing a
clear overlap between genetic factors related to SCZ risk
and hippocampal volume53. Moreover, a recent study of
brain imaging phenotypes that used the UK Biobank
cohort found that genes associated with brain develop-
ment and plasticity tend to be associated with mental
disorders, including SCZ and severe depression, while
genes coding for iron-related proteins tend to be asso-
ciated with neurodegenerative diseases, such as Alzhei-
mer's disease88.
Our study also has some limitations. First, the modest

sample size of the original study warrants replication of
our findings in independent samples of SCZ patients who
perform the same aerobic exercise intervention protocols
and are assessed with the same instruments. Second, a
randomization procedure was not used to allocate the
SCZ patients to the endurance training augmented with
cognitive remediation or table soccer augmented with
cognitive remediation group, which may have led to
potential selection bias and baseline differences in psy-
chopathology and dose of antipsychotic medication17,18.
Third, our exploratory analyses could not detect any effect
of PRS on psychopathology, cognition or functioning in
our samples (data not shown), probably due to a limited
sample size with low power to detect these genetic
influences on behavioral outcomes. Finally, in order to
confirm the relatively high R2 estimates in the present
study, replication studies are warranted in larger and
independent samples.
We conclude that a high polygenic burden may influ-

ence neuroplastic processes in the hippocampus during
aerobic exercise in SCZ. We propose a gene × environ-
ment interaction in which the genetic load influences the
effects of the intervention on neuroplastic processes via
dysfunctions in RG and OPCs. Identifying the cell types
that drive clinical improvement during aerobic exercise
will provide mechanistic insight into the underlying bio-
logical processes that direct hippocampal plasticity.
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