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Abstract
Diarylethene-derived molecules alter their electronic structure upon transformation between the open and closed forms of the

diarylethene core, when exposed to ultraviolet (UV) or visible light. This transformation results in a significant variation of elec-

trical conductance and vibrational properties of corresponding molecular junctions. We report here a combined experimental and

theoretical analysis of charge transport through diarylethene-derived single-molecule devices, which are created using the mechani-

cally controlled break-junction technique. Inelastic electron tunneling (IET) spectroscopy measurements performed at 4.2 K are

compared with first-principles calculations in the two distinct forms of diarylethenes connected to gold electrodes. The combined

approach clearly demonstrates that the IET spectra of single-molecule junctions show specific vibrational features that can be used

to identify different isomeric molecular states by transport experiments.
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Introduction
Molecular junctions hold promise for the realization of novel

miniaturized electronic circuits [1-6] as well as for thermo-

electric energy conversion devices [7-10]. Optoelectronic prop-

erties of several species of photochromic molecules in single-

molecule junctions with gold electrodes have been investigated

extensively to understand the mechanisms of charge transport

and optical switching [11-16]. Among the photochromic mole-

cules, diarylethene derivatives are particularly promising

because of the negligible change of molecular length between

the two isomers (i.e., open and closed forms) and the possibili-

ty for further chemical functionalization [13,14]. The isomeriza-

tion upon illumination with appropriate wavelengths tunes the

electronic structure of the molecules, including the energy of

the highest occupied molecular orbital (HOMO) and the lowest

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OPUS Augsburg

https://core.ac.uk/display/286890138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.beilstein-journals.org/bjnano/about/openAccess.htm
mailto:elke.scheer@uni-konstanz.de
https://doi.org/10.3762%2Fbjnano.8.261


Beilstein J. Nanotechnol. 2017, 8, 2606–2614.

2607

Figure 1: (a) Structures of the open and closed forms of difurylethene-thio-methyl (C5F-ThM) molecules, which switch states under the illumination
with UV and visible light. Shown at the bottom is a scanning electron microscopy image of a MCBJ device. (b) Variation of UV–visible absorption
spectra under UV light irradiation (wavelength of 313 nm with an intensity of ca. 0.15 mW/cm−2) as a function of illumination time. The black curve cor-
responds to the open form, the red one to the closed form. (c) Conductance traces recorded while breaking C5F-ThM molecular junctions, containing
the open form (black) and the closed form (red). Curves are shifted along the displacement axis for clarity. (d) Conductance histograms constructed
from around 1000 curves of breaking and forming processes. The lowest conductances for the open and closed forms are (1.4 ± 1.0) × 10−7 G0 and
(8.3 ± 4.5) × 10−7 G0, respectively. Histogram curves of both forms (black and red lines) are displaced along the counts axis for better visibility. The
inset shows the corresponding conductance histograms after subtracting the exponential backgrounds indicated by green dashed lines in the main
panel.

unoccupied molecular orbital (LUMO) and their coupling to

electrodes. This behavior results in a change of the charge trans-

port properties of the corresponding molecular junctions, most

prominently of the electrical conductance. Furthermore, the

vibrational eigenmodes of both isomers will be different. To

study the vibrational properties of molecular junctions, IET

spectroscopy [4,17] was introduced, which is an electronic

spectroscopy method applicable at low temperatures. IET mea-

surements are capable of identifying the component molecules

and are sensitive to the contact geometry, including molecular

configurations and electrode–molecule couplings [18-20].

However, to understand the vibrational features of molecules

measured by the IET spectroscopy technique, it is often essen-

tial to compare the experimental findings with theoretical

predictions for the IET spectra. The reason is that IET spectros-

copy is not subject to rigorous selection rules [21] in contrast

for instance to optical vibrational spectroscopy methods such as

infrared or Raman spectroscopy.

In this study, we investigate both elastic and inelastic charge

transport through single-molecule junctions of a bis(furanyl-

methanthiol)ethene with a fluorinated cyclopentene bridging

unit (C5F-ThM; for nomenclature see [22]). Experimentally

measured electrical conductance and IET spectra are compared

with first-principles calculations in open and closed forms of

the photochromic molecule. For both isomeric molecular states,

the features observed in the IET spectra are assigned with the

help of computations that take the electron-vibration (EV) cou-

pling into account.

Results and Discussion
The C5F-ThM photochromic molecule, used in this work, is

illustrated in Figure 1a with its reaction schematics, when

exposed to ultraviolet or visible light. The synthesis method was

presented previously [22]. Upon illumination with light of suit-

able wavelength, the central carbon–carbon bond of the

difurylethene switching core is either formed or broken, result-
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ing in a change of the molecular orbitals. As can be seen in

Figure 1b, we measured the absorption spectra of C5F-ThM

molecules, while illuminating with UV light (313 nm) for dif-

ferent illumination times. The absorption band of the closed

form extends to a higher wavelength (around 550 nm) than

those of the open form (around 380 nm), suggesting that the

closed form has a smaller HOMO–LUMO gap. The closed form

exhibits delocalized orbitals, leading to a π-conjugated current

path across the molecule. In the open form, the conjugated

system is split into two tunnel-coupled halves. The molecules

are switched to either the open or the closed form in ethanol and

are subsequently assembled on gold-patterned MCBJ samples

[14]. The acetyl (COCH3, denoted as Ac) groups are cleaved off

by adding a droplet of ammonium hydroxide (NH4OH), result-

ing in a thiol (SH) group, before assembly on the metal sur-

faces of the sample. The MCBJ sample preparation [14] is as

follows. Polyimide is spin-coated to be 2 μm in thickness on a

softly polished bronze wafer (200 μm in thickness, CuSn6), and

then the polyimide on the wafer is annealed for 6 hours at

430 °C in vacuum (10−5 mbar). Subsequently, the electron

beam lithography is performed with a double layer of electron

beam resists (copolymer/PMMA). After developing the resists,

Au of around 70 nm in thickness is deposited, the electron-

beam mask is lifted off in warm acetone, and then the poly-

imide layer is partially etched away (thickness reduction of ca.

700 nm) by employing O2 plasma in a reactive ion etcher to

form a freestanding bridge, as shown in Figure 1a.

After mounting the MCBJ sample, which is covered with C5F-

ThM molecules either in the open or the closed form, charge

transport measurements were performed at low temperature

(4.2 K) in a custom-made vacuum insert equipped with a MCBJ

system [14,15,23]. The sample space of the cryostat is evacu-

ated to 10−5 mbar, and then a small amount of He gas is injected

as exchange gas. After cooling down the cryostat, the breaking

process of the sample is carried out by the breaking mechanics,

controlled by a DC motor and a differential screw. The low-bias

conductance is measured by a sub-femtoamp source-meter

(Keithley 6430) operating with an automatic variable gain pre-

amplifier, while controlling the nanogap distance and thereby

breaking and forming Au–Au contacts. In order to measure IET

spectra, a DC bias, added to an AC modulation of 8 mV (root

mean square) at a frequency of 317 Hz, is swept at a 1 mV/s

rate using a low-noise DC source (Yokogawa 7651). Finally,

the signals are amplified by a low-noise current amplifier

(Ithaco 1211) and recorded with a lock-in amplifier (SRS 830).

When stretching an Au nanobridge, a single-atom contact of Au

forms with high probability. The single-atom contact is signaled

by an electrical conductance G close to 1 G0, where G0 = 2e2/h

is the quantum of conductance. As shown in Figure 1c, upon

further stretching of the junction the atomic contact breaks, and

molecules can be trapped between the separated electrodes

showing molecular conductance plateaus. The plateau with the

lowest conductance indicates a single-molecule junction, before

also the metal–molecule–metal contact breaks, as indicated by a

sudden drop of the conductance to below 10−8 G0. This

breaking process is reversed by closing the junction until

Au–Au contacts form again. The breaking and forming pro-

cesses are repeated roughly 1000 times to find the most prob-

able single-molecule conductance. We note that the plateaus are

well developed with a rather constant conductance upon

stretching in the closed form, while they are shallow and

declined in the open form. We attribute this difference to the

flexible structure in the open form that enables a larger varia-

tion of contact geometries, resulting in a larger variation of

conductance values [14,24,25].

The statistical conductance histogram is shown in Figure 1d.

For both forms there is only one well developed maximum,

each superimposed on a background of increasing height for de-

creasing G values as typical for molecular junctions [1]. How-

ever, for the open form two features are discernable at higher

conductance values. From the examples of conductance traces

shown in Figure 1c it becomes clear that multiple steps occur

within the individual opening processes. These multiple steps

might originate from multi-molecule contacts as well as from a

single-molecule junction that adopts different configurations

upon stretching. We assume that the most elongated junctions

with the lowest conductance values correspond to the molecule

being completely stretched and suspended between the elec-

trodes, i.e., being connected to gold through the sulfur binding

groups. Hence, the most probable conductance is found to be

(1.4 ± 1.0) × 10−7 G0 and (8.3 ± 4.5) × 10−7 G0 for the open and

closed form, respectively, based on a Lorentzian fit [14]. The

conductance peaks are better visible, when an exponential back-

ground is subtracted, as shown in the inset of Figure 1d. The

peak positions are slightly modified by this procedure, but

remain in the given error margins. From the most probable

conductance values we derive a conductance switching ratio be-

tween the open and closed form of 5.9 ± 5.3 times using error

propagation to determine the error for the switching ratio. The

lower conductance for the open form is expected due to the

breaking of π-conjugation in the C5F-ThM molecules [14]. The

overall magnitude of the conductance of both the open and the

closed form is rather small. This can be attributed to the pres-

ence of sp3 hybridized methylene groups, isolating the π-system

and the thiol anchor groups. These act as efficient tunneling

barriers for the electronic transport. Furthermore, the relatively

small difference in conductance of the open and the closed form

is understandable from the presence of these alkyl tunneling

barriers that limit the total conductance in the closed form and
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Figure 2: (a) The geometric structure used in the DFT calculations is displayed for the open and closed forms of Au-C5F-ThM-Au junctions. (b) The
computed transmission curves for the open (black) and the closed form (red). (c) The wavefunction of the dominant transmission eigenchannel for
electrons coming in from the left side for the open (left) and the closed form (right). Red and turquois indicate different signs of the wavefunction.

in a simplistic picture might be considered as series resistances.

Yet, the variation of contact geometries must be taken into

account. From the measurements at room temperature on

difurylethenes with more complex [24] but conjugated side

chains, it was concluded that the open form may adapt more

easily to the interelectrode gap distance, such that its conduc-

tance is optimized, while in the closed form the junctions might

be distorted leading to a smaller conductance than in an ideal

geometry. As a result, the conductance ratios between the open

and the closed forms would be relatively small.

For a better understanding, we performed computations based

on density functional theory (DFT) for charge transport through

C5F-ThM molecular junctions. DFT, as implemented in the

TURBOMOLE software package [26], was employed for the

calculations using the exchange-correlation functional PBE [27-

30] and the def-SV(P) [31,32] basis set, which is of split-

valence quality with polarization functions on all non-hydrogen

atoms [20]. To model charge transport through the junctions,

either the open or closed form of the C5F-ThM molecule was

connected to two Au clusters of 53 atoms to the left and the

right side of the molecule, as shown in Figure 2a. The clusters

resemble ideal Au <111> pyramids and represent the tips of the

semi-infinite Au electrodes. In our case, the <111> direction

coincides with the transport direction. There are various possi-

bilities to bind the molecule to both electrodes [33]. In this

work, the so-called “top position” is assumed, where each S

linker atom of the molecule is connected to the topmost Au

atom at the tip of the Au pyramids at both sides via a single

covalent bond. We follow [33] to construct the junction geome-

tries. First, we connect the molecule to one electrode, optimize

the structure and then add the other electrode symmetrically.

After connecting the molecule to the gold pyramids, those two

gold layers that are closest to the molecule on each side are

relaxed, while the other parts of the gold pyramids are kept

fixed. This leads to approximate equilibrium geometries of the

C5F-ThM single-molecule junctions with regard to the separa-

tion between the Au electrodes.

Having determined the junction geometries, we computed the

elastic transmission functions of the single-molecule junctions

for the open and closed molecular forms, as shown in Figure 2b.

Since it is known that DFT with semilocal exchange-correla-

tion functionals, as used here, tends to underestimate the

HOMO–LUMO gaps of molecules and does not capture

nonlocal surface polarization effects that are essential for an

accurate description of metal–molecule level alignments, we

use here the so-called DFT+Σ method [34,35]. By adding a self-

energy correction, the DFT+Σ approach aims at improving the

DFT-based energy levels of the molecules and has been re-



Beilstein J. Nanotechnol. 2017, 8, 2606–2614.

2610

ported to lead to a better agreement between experimental and

theoretical conductance values [34]. Details regarding our

DFT+Σ implementation can be found in [34,36]. In Figure 2b,

the differences of the transmission functions of the two forms

are clearly visible, and the transmission at the Fermi energy

τ(EF) is found to be 2.17 × 10−6 and 2.9 × 10−4 for the open and

the closed form, respectively. Further, the computed transmis-

sion functions indicate that the transport is strongly off-reso-

nant and that the HOMO energy is closer to the Fermi energy

than the LUMO level, as typical for sulfur anchoring groups

[37].

In Figure 2c, we show the wavefunctions of the dominant

eigenchannel at EF for the closed and open forms for electrons

that enter from the left side. The electric transport mainly

proceeds through the π-electron system of C5F-ThM in both

cases, as is visible from the different signs of the wavefunc-

tions at the two sides of planes through the pentagonal carbon-

based rings. For the closed form, the eigenchannel extends

through the whole molecule from the left to the right. However,

the π–π coupling between the rings is suppressed for the open

form. In this case, the molecular orbitals localize on the left and

right side. The incoming electron waves from the left lead

couple through the sulfur atom into the π-electron system of the

left side, but in the middle of the molecule at the core unit re-

sponsible for switching they are back-reflected. This largely

suppresses the transmission, showing up in a low amplitude of

the wavefunction that arrives on the right electrode.

Let us now discuss in more detail the results of Figure 2. For the

isolated C5F-ThM molecules with SH termination, we find

HOMO–LUMO gaps of 1.3 and 2.8 eV in the closed and open

forms, respectively. They are corrected to 5.2 and 6.7 eV, if we

use the DeltaSCF method [38]. As visible also from Figure 2b,

the gaps are reduced to 4.2 and 5.8 eV in the molecular junc-

tions due to image charge effects by the DFT+Σ approach. The

consistently larger gap for the open form as compared to the

closed one is in agreement with the conclusions from the

absorption spectroscopy in Figure 1b.

Considering the shape of the transmission functions in both mo-

lecular forms in Figure 2b, it is clear that τ(EF) cannot simply

be described by approximating the HOMO resonance with a

Lorentzian, as assumed in the single-level model [37]. This is

due to the contribution of other orbitals, involving mainly the

sulfur anchors that lead to the faint bump at around 1.1 eV

above the Fermi energy in both forms. The HOMO energy of

the closed form is positioned around 1.3 eV away from EF,

while this difference amounts to 1.6 eV in the open state. These

values are both larger than the experimentally determined

values of E0 of 0.54 ± 0.11 eV for the closed form and

0.86 ± 0.14 eV for the open form. They were extracted previ-

ously [14] from the analysis of current–voltage characteristics

based on the two-parameter single-level model, where E0 speci-

fies the position of an effective level with regard to the Fermi

energy and Γ is the level broadening. Although the E0 values in

the experiments are clearly smaller than the theoretically pre-

dicted differences of the closest molecular resonance, the

HOMO level, to the Fermi energy, the trend of a decreasing E0

for the transition from the open to the closed state is well repro-

duced. A similar comparison can be made for the lifetime

broadening Γ. It was determined to be (6.3 ± 1.2) × 10−4 eV for

the closed form and (4.0 ± 1.0) × 10−4 eV for the open state. An

analysis of the width of the computed HOMO resonance yields

around 7 × 10−3 eV and 10−3 eV, respectively. Again the larger

broadening of the HOMO level in the closed form as compared

to the open one in the theory is in line with the increased effec-

tive level broadening Γ, determined from the current−voltage

measurements.

Further discrepancies arise, if we quantitatively compare experi-

mentally measured and theoretically predicted conductances. As

stated above (see Figure 2), the predictions for the zero-temper-

ature linear-response conductance of the closed and open forms

are 2.9 × 10−4 G0 and 2.17 × 10−6 G0, respectively. The values

for the most probable single-molecule conductance, as extracted

from the conductance histograms, are (8.3 ± 4.5) × 10−7 G0 and

(1.4 ± 1.0) × 10−7 G0 instead (see Figure 1). The conductance

values obtained from the computations are hence larger than

those deduced from the experiments by a factor of around 16

for the open and 349 for the closed form. Such deviations can

appear, because the precise contact geometry in the experi-

ments may be different than assumed in the computations. As

argued for molecules of the same class measured at room tem-

perature [24], it is reasonable to assume that geometrical

constraints may affect the rigid closed form more than the flex-

ible open form, thereby suppressing the conductance of the

closed form more efficiently. Another explanation would be

uncertainties with regard to level positions in our DFT-based

procedure. In pure DFT calculations, i.e., without the correc-

tions of the DFT+Σ method, we find that the HOMO level of

the closed form is positioned right at the Fermi energy, as typi-

cally the case for large conjugated molecules, while for the

open form the HOMO resonance is located around 0.2 eV

below EF. The pinning of the HOMO level at EF for the closed

form may lead to enhanced uncertainties with regard to the de-

scription of the level alignment in this molecular state with its

extended conjugated electron system as compared to the open

form with its interrupted π system. Although the DFT+Σ

method applied here is supposed to reduce level-alignment and

band-gap errors, they might not be completely lifted in the

closed form. Another important uncertainty, this time on the ex-
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Figure 3: Experimentally measured IET spectra (gray) are displayed for (a) the open and (b) the closed form. For each form twelve curves were aver-
aged (solid black line) and the average was symmetrized (pink-dotted line), using the function y = [f(x) − f(−x)]/2. (c) Averaged and symmetrized IET
spectra for the open (black) and the closed (red) form, displayed only in the positive bias range. The IET spectrum of the closed form is magnified by
a factor of 2. (d) Theoretically computed IET spectra for the open (upper panel, black) and closed (lower panel, red) form. Each mode, indicated with
Roman numerals, is listed in Table 1.

perimental side, stems from the interpretation of particular

peaks in the conductance histograms. We consistently assign

the peak with the lowest conductance as originating from the

single-molecule junction. However, the fact that several peaks

are observed may also indicate that single-molecule junctions

with different conductance values, depending on the geometry,

exist.

Subsequently, we measured IET spectra for the two different

forms of C5F-ThM molecular junctions and compared them

with computed IET spectra, as shown in Figure 3. The excita-

tions of molecular vibrations appear as peaks in the second de-

rivative of current–voltage characteristics (in the positive bias

regime) and can be detected using the lock-in technique

[15,19,20]. In this study, the second derivative (d2I/dV2) is

measured simultaneously with the differential conductance

(dI/dV) by means of two lock-in amplifiers. The second deriva-

tive is normalized with dI/dV to compensate for the conduc-

tance change. Thus the IET spectroscopy amplitude is defined

as (d2I/dV2)/(dI/dV) [19]. IET measurements were performed,

when the samples exhibit single-molecule junctions, as signaled

by conductance values in the lowest conductance plateau. As

can be seen in Figure 3a and 3b, twelve IET spectra were

measured on open and closed forms, respectively, and the

curves were averaged to yield the black-solid lines. This aver-

aging procedure is performed, since the recording of IET spec-

tra for the low-conducting C5F-ThM is very challenging. We

note also that the individual spectra have been recorded for dif-

ferent breaking events and thus correspond to different contact

and electrode geometries. Finally, the averaged IET spectra are

symmetrized using the function y = [f(x) − f(−x)]/2, since the

vibronic excitations are expected to show antisymmetric fea-

tures in the IET spectra with respect to bias reversal [15]. This

results in the pink-dotted curves. The good agreement between

the averaged and the symmetrized data shows that the spectra

for both forms are mainly antisymmetric. This corroborates that

the observed features are indeed caused by inelastic excitations,

because other phenomena like, e.g., conductance fluctuations
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would give rise to no particular symmetry [39]. The pro-

nounced peaks and dips in the IET spectra at positive and nega-

tive bias are caused by inherent molecular vibrations. In

Figure 3c, the averaged IET spectra of both open and closed

forms are presented for positive bias. Vibrational peaks are

especially noticeable between 100 and 250 mV, which is

considered to be the “fingerprint regime” of molecular junc-

tions. At lower bias, contributions by the electrodes may domi-

nate. In the closed form, peaks appear blue shifted compared to

the open form. Considering the scaling factor of 2 for the closed

form in Figure 1c, the amplitudes of the modes in the open form

are higher than in the closed one at all energies.

To elucidate the origin of the different IET spectra in the two

forms, we have computed the inelastic transport of the opti-

mized geometries shown in Figure 2a. For the theoretical de-

scription of the IET spectra, the vibrational modes and the EV

coupling constants were evaluated using DFT [40]. Inelastic

charge transport is then determined in the experimentally rele-

vant limit of weak EV coupling, as described in [40] and [41],

by treating inelastic interactions due to the EV coupling at the

level of the so-called lowest-order expansion (LOE) [40].

Instead of using the DFT effective single-particle Hamiltonian

directly, we replace it with the one obtained from the DFT+Σ

procedure to better describe quasiparticle level positions in the

molecular junctions and to reproduce the elastic transport of

Figure 2 in the regime of vanishing EV couplings [42]. In the

calculations of the theoretical IET spectra we assume the wide-

band limit [43], a temperature of 4.2 K and a vibrational broad-

ening of 1 meV. The latter parameter takes into account that

IET signals acquire an intrinsic line-width due to a finite tem-

perature and finite lifetime of the vibrational modes. Further-

more, we broaden the spectra by the experimental AC excita-

tion of 8 mV. The computed IET spectra for both forms are

presented in Figure 3d, and they are seen to be distinct in both

forms. We note that typically several vibrational modes contrib-

ute to a peak in the IET signals, and an approximate character is

assigned to those vibrational modes that are responsible for the

peaks in the spectra, as shown in Table 1. The most pro-

nounced difference between the IET spectra is predicted at

around 365 mV, where the intensity of the C–H stretching mode

(mode VIII in Table 1) for the open form vanishes for the

closed form. This voltage range was, however, not explored in

the experiments due to the enhanced noise in the higher bias

regime. In between 100 and 250 mV the vibrational modes of

these two isomers appear at slightly different energies, but the

major difference are the intensities of the modes. In the closed

form, the C–H bending (III) and C–F stretching (IV) modes are

blue-shifted, whereas the other modes are slightly red-shifted.

While the intensity of the C–O stretching mode (V) is high in

the open form, it is small in the closed form. The opposite holds

for the C–C stretching mode (VII), which is stronger in the

closed than in the open form. A detailed analysis reveals that

the modes involving the atoms of the central ring that opens and

closes upon photoreaction lie around 190 meV. It can be ex-

pected that the IET peaks related to these modes are reduced in

amplitude in the open form of C5F-ThM.

Table 1: Approximate vibrational mode assignment for the theoretical-
ly computed IET spectra of Au-C5F-ThM-Au molecular junctions.

Mode Description Peak position (mV)
open form closed form

I: ν(Au–S) Au–S stretching 24; 45 21
II: ν(C–S) C–S stretching 80 78
III: γ(C–H) C–H bending 102 119
IV: ν(C–F) C–F stretching 125 146
V: ν(C–O) C–O stretching 156 154
VI: γ(C–H) C–H bending 173 168
VII: ν(C–C) C–C stretching 194 185
VIII: ν(C–H) C–H stretching 365 –

The comparison of the theoretically computed IET spectra with

the measured ones is not easy due to the rather broad peak fea-

tures found in the experiments. We want to stress again the

challenge to record these spectra for such low-conducting mole-

cules, requiring an averaging procedure over several spectra, as

explained above. Both experimental and theoretical results

show, however, that IET spectra can distinguish between the

different states of the functional molecular switching core

through the different vibrational properties of either the open or

closed form.

Conclusion
We have studied the elastic and inelastic charge transport be-

havior of difurylethene-derived single-molecule junctions at

low temperatures both experimentally and theoretically. We

have found that the HOMO is much closer to the Fermi energy

than the LUMO, but the energy-dependent transmission still

suggests that the single-level toy model is not straightforwardly

applicable. Based on the position of the HOMO level and its

broadening in the transport calculations, we have nevertheless

argued that experimental trends of an effective level that is

better aligned with the metal’s Fermi energy and better coupled

to the electronic states of the electrodes, when going from the

open to the closed molecular state, are consistent with theoreti-

cal expectations. These trends naturally result in a higher elec-

trical conductance of the closed form, as observed both experi-

mentally and theoretically. In this context, we have also seen

that the HOMO–LUMO gap in the closed form is smaller than

in the open one. Quantitatively, theory and experiment differ by

one order of magnitude in the conductance of the open form but
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two orders in the closed one, which requires further investiga-

tions. Points to examine are the accuracy of theoretically de-

scribed level alignments for molecules with extended π-elec-

tron systems and ideally a representative ensemble of junction

geometries as well as the possibility of the existence of several

single-molecule junction geometries with differing conduc-

tance. Finally, we have performed an IET spectroscopy study

and have shown that different IET spectra are obtained experi-

mentally and theoretically for open and closed forms. IET spec-

troscopy can hence be used to distinguish between different mo-

lecular “on” and “off” states by means of their vibrational fea-

tures. These findings advance the development of functional

molecular electronics and prove at the same time that IET spec-

troscopy is a valuable technique to probe the isomeric states of

individual molecules.
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