WCET Analysis in Shared Resources Real-Time Systems
with TDMA Buses

Hamza Rihani
Univ. Grenoble Alpes
F-38000 Grenoble, France
CNRS, VERIMAG, F-38000
Grenoble, France
hamza.rihani@imag.fr

Matthieu Moy
Univ. Grenoble Alpes
F-38000 Grenoble, France
CNRS, VERIMAG, F-38000
Grenoble, France
matthieu.moy@imag.fr

Claire Maiza
Univ. Grenoble Alpes
F-38000 Grenoble, France
CNRS, VERIMAG, F-38000
Grenoble, France
claire.maiza@imag.fr

Sebastian Altmeyer
University of Luxembourg
Luxembourg

sebastian.altmeyer@uni.lu

ABSTRACT

Predictability is an important aspect in real-time and safety-
critical systems, where non-functional properties — such as
the timing behavior — have high impact on the system cor-
rectness. As many safety-critical systems have a growing
performance demand, simple, but outdated architectures are
not sufficient anymore. Instead, multi-core systems are more
and more popular, even in the real-time domain. To combine
the performance benefits of a multi-core architecture with
the required predictability, Time Division Multiple Access
(TDMA) buses are often advocated. In this paper, we are in-
terested in accesses to shared resources in such environments.
Our approach uses SMT (Satisfiability Modulo Theory) to
encode the semantics and execution time of the analyzed
program in an environment with shared resources. We use
an SMT-solver to find a solution that corresponds to the
execution path with correct semantics and maximal execu-
tion time. We propose to model a shared bus with TDMA
arbitration policy. Using examples, we show how the WCET
estimation is enhanced by combining the semantics and the
shared bus analysis in SMT.

1. INTRODUCTION

Time matters in safety-critical real-time systems. The
predictability of these systems is needed in order to guaran-
tee certain security and safety requirements. Determining
Worst-Case Execution Times (WCET) has been the focus
of research in the field of embedded systems. Static analy-
sis methods have been developed to provide safe bound on

'This work has been funded by grant CAPACITE (PIA-FSN2
n°P3425-146798) from the French Ministére de l’économie,
des finances et de l'industrie.

© Owner/Author | ACM 2015. This is the author's version of the work.
It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in:

RTNS 2015, November 04 - 06, 2015, Lille, France
DOI: http://dx.doi.org/10.1145/2834848.2834871

183

Algorithm 1 Example of mutually exclusive paths

1: LOAD ... (1)
2: ... /* 3 cycles */ (2)
3: if ¢ then

4: ... /¥ 5 cycles */ (3)
5: end if

6: if —c then

7 .. /¥ 1cycles */ (4)
8: end if

9: STORE ... (5)

the WCET. The challenge remains in improving the pes-
simistic approaches that over-estimate the execution time
of the analyzed program as well as the analysis time. An
example of such an approach is the Implicit Path Enumer-
ation Technique (IPET). IPET relies on methods such as
Constraint Solving or Integer Linear Programming (ILP).
However, the initial version of this approach does not exclude
some ‘obvious’ infeasible paths in a program, leading to an
over-estimation on the WCET. Algorithm 1 illustrates this
situation.

Simple IPET without infeasible path analysis gives the
longest path {(1), (2), (3), (4), (5)}. However, (3) and
(4) are mutually exclusive i.e., they cannot be part of the
same execution path. The longest path in this case is {(1),
(2), (3), (5)}. Infeasible paths can be excluded in IPET by
adding constraints to the ILP formula [15, 14]. In this paper,
we use another approach with Satisfiability Modulo Theory
(SMT) that allows to encode the program’s semantics and
its execution time.

In a multi-core environment, the longest path does not
necessarily imply the worst-case execution time. The access
time to the shared resource can vary depending on the ar-
bitration policy of the shared bus and the access patterns
in the execution path of the program. In the example of
Algorithm 1, the STORE instruction at (5) can access the
bus at different instants depending on whether the code at
(2) or at (3) is executed. This leads to a variation of the
bus access delay depending on the arbitration policy of the
shared bus. An analysis that does not consider the semantics
together within the micro-architecture analysis would have to



analyze the WCET of the STORE instruction with reduced
information about the possible instants when it is executed,
and may therefore overestimate its execution time.

Henry et al. [9] proposed an SMT-based approach to encode
the analyzed program into SMT expressions in order to
estimate the WCET. An SMT-solver is used to find the
longest feasible path exhibiting the worst-case execution time.
In this paper, we extend this approach to include detailed
architectural information, thus increasing the precision of
the analysis. Our approach encodes parts of the architecture
of the hardware and the program semantics within the same
SMT expression, allowing the SMT solver to prove WCET
bounds that could not be deduced by analyzing both aspects
independently. We focus in this paper on a shared bus
with the arbitration policy Time Division Multiple Access
(TDMA). TDMA is a time triggered arbitration policy that
periodically allocates slots of communication time to each
core.

We assume a Fully Timing Composable system architec-
ture [17] without timing anomalies. A timing anomaly is
a situation where the local worst-case does not necessarily
lead to the global worst-case [16]. We do not support un-
bounded loops or unbounded recursion: the analysis has to
be able to unroll all loops and inline function calls. Note that
this is a common restriction for programs where a formal
WCET analysis is applied. Our implementation is currently
a proof-of-concept to show the feasibility of the approach,
and makes simplifying assumptions: we assume the absence
of cache which means that each load or store instruction
issues an access to the shared bus, and we consider that each
LLVM instruction takes 1 cycle. As future work, we intend
to incorporate static cache and timing analysis tools, such as
OTAWA [2], to include realistic execution time bounds for
the instructions and to model the behavior of local caches.

To sum up, our contribution is a way to encode both the
semantics of the program and a TDMA arbitration policy in
a single SMT expression, and use it to compute a safe bound
on the WCET of the program. The encoding is carefully
optimized to avoid the performance issues of a naive encoding.

The rest of the paper is organized as follows: in Section 2,
we give a background on TDMA buses and the SMT-based
approach for WCET analysis. Section 3 explains how a pro-
gram with accesses to a shared bus with a TDMA arbiter
is modeled using SMT expressions. In Section 4, we evalu-
ate our model using micro-benchmarks, then we apply our
approach to benchmarks taken from real-life applications.
Finally, related work is given in Section 5 and the conclusion
and future work in Section 6. The examples with SMT ex-
pressions given in this paper are expressed in pseudo-code.
In our experiments, we use SMT-LIBv2 [6] which provides
standard descriptions of background theories used in SMT
systems.

2. BACKGROUND

Multi-core platforms offer capabilities that respond to the
growing performance demands of embedded real-time sys-
tems. However, predictability of these architectures remain
a challenge. Shared resources represent the main hot topic
in the predictability of such systems. In this work we are in-
terested in shared buses with Time Division Multiple Access
arbitration policy.

184

offseto

offset
—
eqr  ack; reqz

Core A [ Core B| Core C| Core A| Core B |

acky

T accy .
time

e

-+
slot length o
Period m

Figure 1: Bus arbitration with Time Division Multiple Access
policy seen from the viewpoint of core A

2.1 Time Division Multiple Access (TDMA)

Time Division Multiple Access (TDMA) is an arbitration
policy for shared buses. It allows cores to share a bus by
dividing the accesses into time slots. Cores may receive
different slot lengths or different number of slots in a period
which gives more or less priority to some cores over the others.
In our work we consider a TDMA policy where each core
receives one slot per period. Figure 1 illustrates an example
of a TDMA bus with 3 slots associated to 3 cores. In a period
of time 7, each core receives a slot of length 0. The duration
of an access to the bus is acc. An access cannot be split over
several slots and is processed only if the remaining time in
the slot is sufficient. A request is processed only during its
dedicated slot. reqa.1 is a bus request issued by core A during
its associated communication slot. This request is executed
directly within a time duration acc. reqa.2 is an example of a
request issued outside the allowed communication slot. It is,
thus, stalled until the next slot of core A. Its execution time
is given by T'= 7 — (¢ mod 7)+ acc. Where ¢ is the absolute
time, i.e., starting from the beginning of the execution of the
analyzed program. The best case delay is when the request is
issued during the slot and granted directly. In the worst-case,
the request is issued when there is not enough remaining
time to process it. Hence, the execution delay of a bus access
varies between [ace, T — (0 — acc)].

We define the offset as offset = treq mod 7. treq is the
instant in time when the request is issued. A request is
granted immediately, only if the offset at the issue instant falls
in the communication slot’s interval. Otherwise it is delayed
until the next slot of the core. Expressing the timing of the
bus in offsets simplifies the bus model since the possible values
of the offsets are in [0, 7[. The analyzed program can start at
any offset on the TDMA period. We can indicate an initial
interval or a set of values of offsets in the SMT expressions.
For the simplicity of our proof-of-concept implementation,
we suppose that all programs start initially at offset=0. In a
real application we should consider all possible values of the
offset.

2.2 WCET for TDMA Accesses: an Example

To illustrate the timing behavior of a TDMA bus, consider
Algorithm 2. It is a simple example with two conditions and
two accesses to the shared bus.

We consider each instruction to be executed in 1 processor
cycle and assume that each load and store instructions access
the shared bus. The shared bus has a TDMA period m =
6 and a slot length of 0 = 2 processor cycles. The slot
associated to the core where the analyzed program is running
is [0,2]. A granted access is executed in 1 processor cycle.



Algorithm 2 Example of a code fragment with bus accesses.

1: function exemple(xz,y, flag)
2 if y < 0 then

3 *T < *xT + 1

4: else

5: flag < flag+ 10
6: end if

7 if y > 0 then

8: KT — *xT + 2
9: end if

10: return flag

11: end function

associated slot .

Execution path 1 BUS Execution path 2

bl cmp ... cmp ... bl
2 cycles br ... br ... 2 cycles
b2 load .. (req) add.. b4
7 cycles br ... 2 cycles
4 —
P ... b5
cmp ... 3 cycles
(acc)
br ...
(ack) — =
add ... $ load..(req4acc) b6
br ... add ... 3 cycles
b3 store .. (req) - _._ br ...
5 cycles astore .. (req) b7
] 4 cycle
(acc) X (acc)
(ack) v (ack)
br ... l br ...
b5 D ... ret b8
L —
3 cycles cmp ... WCET = 15 1 cycle
br ...
b8 ret
1 cycle -
WCET = 18 .

Figure 2: WCET of Algorithm 2 (CFG in Figure 3) with a
shared TDMA bus with period 7 = 6 and ¢ = 2

Taking into account the parameters of the bus, a request
emitted at offsets 0 or 1 is granted directly. Otherwise it
is suspended until the next slot. The Control-flow graph
(CFQG) in Figure 3 shows two feasible paths: the first path
(y < 0) {bl, b2, b3, b5, b8} and the second path (y > 0)
{b1, b4, b5, b6, b7, b8}. Figure 2 shows both feasible paths
and their execution times. We suppose that the program
starts at instant ¢ = 0 and offset=0. In the case of the
first execution path, block (2) emits an access request, load
instruction, at offset 2. This request is delayed until the
next slot. The execution time of this path is 18 processor
cycles. The second execution time has 15 processor cycles.
In this case the worst-case execution time of Algorithm 2 is
max(15,18) = 18 processor cycles.

A micro-architectural analysis that does not take the se-
mantics of the program into account would have to consider
the infeasible path {b1, b2, b3, b5, b6} when considering the
load z instruction in block b6. This path would execute the
load instruction with an offset of 5, hence not in the TDMA
slot. As opposed to this, our analysis proves that the access
is in the TDMA slot, and gives a tighter WCET.

185

!

bl: <0
cmp =y
br cmp, b2, b4
/ [ il
b2:
i = load x
j=add i, 2
br b3
b4:
l flagl = add flag 10
b
b3 r bs
store j, x
br b5

~.

b5:

flag2 = phi(flag, flagl)
cmp2 = (y >= 0)

br cmp2, b8, b6

bT7:
store j2, x
br b9

b8:
ret flag2

Figure 3: Control-flow graph of Algorithm 2

2.3 WCET By SMT

Henry et al. [9] demonstrate how to measure the worst-case
execution time using Bounded Model Checking. An SMT
expressions is generated to encode the analyzed program
and its execution time. The expressions mean: “Is there a
path that satisfies the semantics and has an execution time
greater than T'?” The solution of this statement represents
an execution path in the program with a constraint on the
execution time. An SMT-solver is a program used to resolve
the SMT expressions to answer the aforementioned question.
In [9], the authors use a binary search method to find an
upper bound of the execution time and disprove the existence
of a solution with an execution time greater than the WCET.

The semantics of the program can be used in determining
feasible paths. A Boolean variable is assigned to each basic
block and each transition. A basic block b; is executed if any
of its entering transitions is taken, i.e. b; = \/, t_k_i. Note
that loops and recursive function calls are not supported in
this initial work. The compiler must unroll the loops and
inline function calls.

To illustrate the SMT encoding, we use the example of
block (3) from Figure 4. b_3 is a Boolean assigned to block (3).
This basic block is executed if any of the entering transitions
is taken. Let t_1_3 and ¢_2_3 be the Booleans associated to
the transitions from block (1) to (3) and from block (2) to
(3) respectively. The generated SMT expression is:

b8 =(t18V t23)

The outgoing transitions are obtained from the condition
(y < 0). The transition ¢_3_4 is taken when the condition



block(1)
t-1.3
1.3
513\
cmp = (y<0)

br cmp, block(2), block(3)

on

block(3) :

T |

F
t-3.4 t-3-5
c3.4 c3.5
off_3_4 off_3_5
block(4) block(5)

Figure 4: Example of a basic block with a join and a condition

l

block(0):

x1 = load x
x2 = add x1, 1
store x2, x

block(0.1):
x1 = load x
x2 = add x1, 1

store x2, x

Figure 5: Basic blocks are split such that only a single bus
access occurs at the beginning of the block

block(0.2): |

is true. t_3_5 is taken otherwise. This gives the following
expressions:

y-cmp = (y < 0)
t8 4 = (b_8 N\ y_cmp)

t-8.5 = (b_8 N = y_cmp)

3. SMT-BASED ANALYSIS FOR TDMA

In this section, we explain how the SMT model is extended
to encode accesses to a shared bus with TDMA arbitration
policy. In this work we consider the first slot [0, o] to be asso-
ciated to the core on which the analyzed program is executed.
In order to simplify the analysis, we transform the control-
flow graph (CFG) so that the basic blocks access the shared
bus at most once and only at their first instruction. Due to
this, we will refer to the basic blocks in the transformed CFG
simply as blocks. Figure 5 illustrates this transformation:
Considering that load and store instructions access the shared
bus, block(0) is split into block(0.1) and block(0.2). Each
block starts with a load or a store instruction.

We extend the work of [9] to include the model of the
shared bus accesses. This model is given in Section 3.1.
Introducing the access delays implies modifications in the
SMT encoding of the execution time from the previous work.
We explain the timing encoding in presence of bus delays in
Section 3.2.

3.1 Shared Bus Model

Here we explain the SMT model of an access to a shared
bus with a TDMA arbiter. A TDMA arbitration policy is
determined by its period 7 and slot length o. The delay of a

186

bus access at the exit of a block Tz is determined according
to the instant ¢ of the request emission at the entry of the
block Tentry.

A naive implementation of the bus access model computes
first the offset from Tentry, i.e, (Tentry mod 7). Then, it
checks if the offset falls in the communication slot. Algo-
rithm 3 gives the pseudo code of a straightforward encoding
in SMT of the bus access delay. The function tdma_access
takes as argument the time instant of a bus access request
and finds its offset relative to the start of the TDMA pe-
riod. We then check whether the current offset falls in
the allowed communication slot. In this case, the access
request is directly granted and the function returns the
time of the entry plus the access delay and the execution
time of the remaining instructions that do not access the
bus: Tewit = (Tentry + acc + cost). Otherwise, the re-
quest is delayed until the next slot and the function returns
Tewit =T + (Tentry - oﬁsetentry) + acc + cost.

This method raises performance issues for the SMT-
solver, caused by the use of the non-linear operator mod.
Instead of modeling the absolute time through the pro-
gram, we model only the offsets. The offset off is defined
by off = (T mod m). Algorithm 4 gives the definition of
tdma_access that returns the delay after a bus access with
values in the interval [acc, acc + (7 — 0)]. Another function
tdma_offset, given in Algorithm 5, returns the offset after a
bus access with values in the interval [0,c]. Algorithms 4
and 5 are explained in Section 3.2.2.

Algorithm 3 Naive version of tdma_access: returns the
absolute time after a bus access

Require: time: Tepntry, execution time of the block: cost
: offseteyyy < Tentry mod m
¢ if offset,,s,,, < o then
return Teniry + acc + cost
else
return T.,iry + (7 — offsetentry) + acc + cost

1
2
3
4:
5:
6: end if

Algorithm 4 tdma_access: returns the delay after a bus
access

Require: offset offentry, execution time of the block: cost

1: if offentry € [0,0 — acc| then

2: return cost 4 acc

3: else

4: return cost + (7 - offentry) + acc
5: end if

3.2 Timing Encoding

In this section, we explain how the timing is encoded
with SMT. The assumption made previously on the form of
the CFG implies that blocks either access the shared bus
or not. The blocks access the shared bus only at the first
instruction. The timing encoding should take into account
such configuration.

3.2.1 Blocks Without Bus Accesses

The encoding of blocks that do not access the shared bus
comes straightforward from the previous work by Henry
et al. [9]. A variable c_i_j is associated to each transition



Algorithm 5 tdma_offset: returns the offset after a bus
access

Algorithm 6 get offset: returns the offset after a block
without bus accesses

Require: offset offentry, execution time of the block: cost
if offentry € [0,0 — acc| then
new_off < off,,,;,, +acc + (cost mod )
else
new_off +— acc + (cost mod )
end if
if new_off > 7 then
return new_off - 7
else
return new_off
: end if

—_

between blocks ¢ and j. The worst-case execution time of
each block is constant considering our assumption of a fully
timing composable architecture:

c_iij = if tij then wcet; else 0

The expression means: if the transition from block ¢ to block
j is taken, c_i_j is equal to the worst-case execution time of
block i, otherwise it is equal to 0.

The encoding of accesses to the shared TDMA bus requires
knowledge about the offsets. These offsets are computed at
each exit point of a block in the CFG. The function get_offset
in Algorithm 6 is used to find the offset after a block that
does not access the shared bus. This function takes the offset
offentry at the entry of the block and the execution time cost
of the block. The mod operator in line 2 is used to find the
offset after ¢ time. This operator does not cause performance
issues because its operands cost and 7 are known constants.

Let ¢ and j be the indices of two blocks such that block
j is a direct successor to block 7. Let N > 1 the number of
direct predecessor of block i. A first encoding of the offset
between block 7 and block j is the SMT expression:

off-iij = get_offset( (if t_1_i then off-1_i
else if t_2_i then off 2_i
else ...
else if t N_i then off N_i else 0),
weet;)

We refer to this encoding as “if..then..else” encoding be-
low. This expression means that the offset between block
and block j is computed using the offset of the correspond-
ing entering transition in case there are many predecessors.
Another possible encoding (referred to as “sum” encoding)
avoids using the nested if..then..else sequences in the SMT
expression by using a sum instead. We give such encoding
as follows:

off-i = geLqﬁset(ZZjV off-k_i, wcet;)

offuicgy = if i j then off-i else 0

off-i is an intermediate variable to encode the offset at the
exit of block i. off k_i are the offsets associated to the entering
transitions from blocks & to block 7. Only one entry transition
is taken in a specific execution path. Let n be a block in an
execution path P:

t_k_i = false, off k-1 = 0,V k # n.
tki = true, off-k_i € [0, 7[, k=n

187

Require: offset offeniry, execution time of the block cost
: new_off < offentry + (cost mod )
: if new_off > 7 then
return new_off -
else
return new_off

1
2
3
4:
5
6: end if

This means that at most one entering offset is not null which
implies that the sum of all entering offsets equals the offset
at the entry of the block in an execution path. We apply
this to block (3) in Figure 4. wcets is the execution time of
block (3). The offsets off-3-4 and off-3-5 at the exit of block
(3) are encoded by:

off-8 = get_offset((off-2-8 + off-1-3), wcets)
off-8-4 = if t.3_4 then off.-3 else 0

off-8-5 = if t.3_5 then off.3 else 0
3.2.2 Blocks With Bus Accesses

Blocks that access the shared bus should take into ac-
count the delay caused by the arbitration policy. The
function tdma_access in Algorithm 4 returns the execution
time of a block taking into account the offset at its entry
(offentry) and the execution time of the remaining instruc-
tions (cost). In line 1, it checks whether the current off-
set off falls in the communication slot. In this case, the
request is granted and the returned time at the exit of
the block is given by Tezit = acc + cost. In the other case,
Tewit = (1-0ffentry) + acc + cost.

The function tdma_offset, in Algorithm 5, returns the offset
at the exit of a block that accesses the bus. This function
takes as inputs the offset at the entry of the block offeniry
and the execution time cost of the remaining instructions
that do not access the bus. It computes the new offset
at the exit block which is offentry + acc+ cost mod w, if
the offe,¢ry falls in the communication slot, and [0, 0 — acc]
or acc + (cost mod 7) otherwise. Since the offset values
can only be in the interval [0, [, The modulo operation is
computed using if..then..else instructions (see lines 6 to 10)
to avoid the non-linear instruction mod .

The execution time and the offset at the exit of a block
are encoded in a similar way as blocks without accesses to
shared bus. Here is how the functions defined in Figure 4
are used:

ci = tdma_access(SF=" off ki, weet;)
cij = if ti_j then c_i else 0

off-i = tdma_offset(S V=V off ki, weet;)

offrig = if tij then off-i else 0

wecet; is the worst-case execution time of the remaining in-
structions after the instruction that access the shared bus.

3.3 Adding Cuts to the SMT Expression

Experiments show a poor performance of the SMT-solver
while searching for the WCET on the expression without



further optimization. The same issues were observed and
addressed in [9]. cuts are additional clauses that add no
information but allow the SMT-solver to prune a very large
number of partial traces from the decision tree.

Knowing that the offsets can only have the values in [0, 7]
gives straightforward cuts in the case of the “sum” encoding.
Let N be the number of entering transition to block ¢. The
sum Y, off-ki is in the interval [0, 7] since there is at
most one non-zero off-k_i. We add a cut for each block with
at least two entering transition, i.e., with N > 1.

4. IMPLEMENTATION AND EVALUA-
TION

Our implementation relies on PAGALI [10], a tool used for
modeling programs to SMT expressions. It is used by Henry
et al. [9] to estimate the worst-case execution time through
semantic encoding with SMT expressions. PAGAT uses an
intermediate representation based on the CFG obtained from
LLVM?®. Due to this constraint, our tests and proof-of-concept
implementation use the intermediate representation instead
of the executable binary. We explain in Section 6 how a
realistic analysis can be achieved.

Figure 6 shows the work flow of the proof-of-concept. The
source code is compiled with CLANG to generate LLVM
bitcode. A number of optimization passes are then executed.
The interesting pass in our case is the one that transforms
the CFG as discussed in Section 3. PAGAI is then run on
the transformed CFG, which is a bitcode file, to generate the
SMT expressions of the program.

‘We implemented an LLVM optimization pass that trans-
forms the CFG to fit our analysis. It splits blocks before each
instruction accessing the bus, so that each block contains
at most one such instruction, which must be the first of the
block. Figure 3 shown in Section 2.2 is the CFG obtained
after this transformation.

We use the SMT-solver Z3 [7]. Z3 offers a C API that is
used in our binary search program. The SMT-solver parses
the SMT expressions and answers with SAT, UNSAT or,
UNDEF. In case of SAT, the SMT-solver gives a model of
a solution that satisfies the SMT expression. We use this
model to refine the binary search. For example, we look for
an execution time in the interval [Xo, Yo]. The binary search
algorithm checks whether the execution time is greater than
%. If UNSAT is returned, the new search interval is
[Xl =Xo, Y7 = w] If SAT is returned, the SMT-solver
gives a model with an execution time Z € [w, Yo]. The
new search interval in this case is [X1 = Z,Y1 = Yy]. The
search continues until it reaches an interval [X,, Y,] where
Xn =Y.

This approach, when applied to Algorithm 2, gives the
correct and optimal worst-case execution time of 18 processor
cycles after 6 iterations of the binary search. The output of
the binary search is:

Testing wcet >= 0... SAT (value found = 18).

New interval = [18, 73].
Testing wcet >= 46... UNSAT. New interval = [18, 45].
Testing wcet >= 32... UNSAT. New interval = [18, 31].
Testing wcet >= 25... UNSAT. New interval = [18, 24].
Testing wcet >= 21... UNSAT. New interval = [18, 20].

'LLVM is a compilation framework with an intermediate
representation (http://www.llvim.org)

LLVM Comsgiler +

opt. passes

PAGAI

Figure 6: General work flow of the proof-of-concept to gen-
erate SMT expressions

100% access (naive)
-4-100% access
0% access

~le+03

Q@

®

[$)

%)

g

le+01

@

£

E= ‘x“‘

1e-01 Ak
. A
- -7 *
oA bt he A dcbbbtdh
. 100 1000
#basic blocks (log scale)

Figure 7: Comparison of the naive implementation

of tdma_access and the offset-based implementation of
tdma_access

Testing wcet >= 19... UNSAT. New interval = [18, 18].
The maximum value of wcet is 18 .

Computation time is 0.010000s

In the following, we evaluate our model of the shared
TDMA bus. First we propose a micro-benchmark to compare
the results of the naive implementation of tdma_access and
the offset-based implementation. Then we show how the
semantics encoding combined with a TDMA bus model can
enhance the WCET estimation using (i) a toy example to
illustrate the differences and (ii) real-world applications.

4.1 Performance of SMT Encodings for
TDMA

4.1.1 TDMA Functions

We now evaluate the analysis time of our model. A simple
approach is to evaluate the analysis time on a linear path,



i.e. without branches. The blocks are simple and have only
one instruction each. Figure 7 shows a comparison of the
different setups. We compare the naive implementation and
the offset-based implementation of tdma_access on a CFG
that contains only blocks with accesses to the shared bus.
The naive implementation has an exponential growth of
the analysis time. At only 25 blocks, it takes 17656s for
the binary search with the SMT-solver to find the WCET.
Whereas, it takes only 0.44s in the case of the offset-based
implementation. This is mainly due to the non-linear mod

operator used in the naive implementation. The line “0%
access” represents a CFG composed with blocks that do not
access the shared bus which analyze get_offset.

4.1.2  Offset Encoding

Entry

yes

( block A )

g

( block B J

19}
=+
=}
I<

Figure 8: Example of a diamond formula

Entry

Block A

Bloc

)
i

w
S
! g

Figure 9: Example of a program with a loop

We now compare the two encodings explained in sec-
tions 3.2.1 and 3.2.2. Figure 8 shows an example with one if
condition which will generate a “diamond formula” in SMT.
We compare the analysis time of the nested if..then..else
encoding against the sum encoding of an increasing number
of sequences of “diamond formulas” in the analyzed program.
Figure 10 shows the results for execution time of the analysis
when Block A and Block B in Figure 8 access the shared
TDMA bus. Both encodings have almost the same analysis

189

time with a slight advantage of the sum encoding. To investi-
gate further, we analyze the program represented in Figure 9.
The loop bound is 100 iterations which will generate, when
the loop is unrolled, a block with 100 entering transitions.
We analyze programs with N sequences of the same loop.
Figure 11 shows the analysis time of the encodings with N
in {1..10}. The sum encoding shows better performance
than the nested if..then..else encoding. For the rest of the
experiments, we will use the sum encoding.

-4 sum
ite
1000
2 d
®
O
(2]
(o]
) ;
= A
@ 100
[}
E "
10 ¥
10 11 12 13 14 15 16 17 18 19 20

6
#if..then..else

Figure 10: Comparison of nested if..then..else (ite) and sum
encoding of sequences of if..then..else (Figure 8). TDMA bus
(o0 =40, ™ = 160, acc = 10)

-A'sum
ite A
10000 .
) &
< g
3] <
(/2] A'
)] b
Ke) /
—~ 1000 A
@ T
(0] ,A"
E .
= A= A
, A
100/ .
A
1 2 3 4 5 6 7 8 9 10
N

Figure 11: Comparison of nested if..then..else (ite) and sum
encoding of sequences of loops with 100 iterations (Figure 9).
TDMA bus (o = 40, 7 = 160, acc = 10)

4.2 Realistic Benchmarks

4.2.1 Experimental Setup

We evaluate our approach with a subset of the TacleBench?
benchmarks. The benchmarks are compiled with CLANG
3.6 to generate the LLVM bitcode. Loops are unrolled with
an optimization pass of LLVM. The SMT expression is gen-
erated following the work flow in Figure 6. The examples

Zhttp://tacle. knossosnet.gr /activities /taclebench



Name Description #‘LLVM #bus
instr. access

bs Binary search 231 12

insertsort Insertion sort on a 493 65
reversed array

. . Discrete Cosine

jfdctint Transformation 2334 448
Fast Discrete

fdct Cosine Transform 2502 385
Data compression

compressdata | program adopted 674 131
from SPEC95

fly-by-wire | v fy-by-wire 2815 515
software

Table 1: Benchmarks

are illustrated in Table 1 where “#LLVM instr.” refers to
the number of the instructions in the LLVM bitcode after
inlining and unrolling functions and loops. “#bus access”
represent the total number of load and store instructions
since we consider an architecture without a cache memory.
The LLVM bitcode has more instructions compared to the
binary executable. Some load and store instructions in the
LLVM bitcode do not exist in the executable binary which
makes a direct comparison with other approaches irrelevant.
However, our proof of concept allows to demonstrate the
feasibility of the SMT-based approach.

The analysis is run under Linux Debian, on an Intel®
Core® i5-3470 at 3.20 GHz with 8GB of main memory. We
consider each instruction to execute in 1 processor cycle and
the platform has no cache memory.

4.2.2 Results

The TDMA policy statically isolates programs in their
respective slots which means that the analysis for each pro-
gram is independent from the other programs. We therefore
run the analysis for individual programs, but the results hold
in a context where several programs are executed in parallel.

We compare the WCET of the offset-based analysis with
the pessimistic WCET where all accesses to the shared
bus are considered worst-case. This implies that each
load and store instructions have an execution time of
m — o + 2.acc — 1. Similarly to [13], the improvement is
defined as (“WCETpess ?/“WCET"—1).

We analyze different configurations of the TDMA bus.
The results are illustrated in Tables 2, 3, 4, 5, and 6. The
improvements we obtain from the offset-based analysis are
proportional to the slot length and the period of the TDMA
bus. The results also show that the greater the slot length
is, the greater the improvement. This is expected since
more accesses can be executed in the same slot. A greater
TDMA period increases the pessimistic WCET. The highest
improvement is 217.95% of the bs benchmark (231 LLVM
instructions) in Table 5 with 7 = 400 and o = 200.

Table 7 represents the lowest and highest observed analysis
times. The offset encoding increases the analysis time of
programs. The pessimistic WCET of benchmark fly-by-
wire, from the PapaBench suite, is obtained in 4.02 seconds.
The offset-based encoding has an analysis time of 149.01
seconds (m = 400, o = 100, acc = 40). Despite the effort to
linearize the SMT functions used to model the TDMA bus
access, they are still very costly. The analysis time depends
on the number of accesses to the shared bus as well as the

190

number of “diamond formulas” which appears at the encoding
of sequences of if..then..else.

Name WCETpess | WCET | Improvement
bs 328 261 25.67%
insertsort 1331 1313 1.37%
jfdctint 19544 17893 9.22%
fdct 17296 16012 8.01%
compressdata 2650 2275 16.48%
fly-by-wire 6201 5708 8.63%
Table 2: m =40, 0 = 20, acc = 10
Name WCET)ess | WCET | Improvement
bs 448 261 71.64%
insertsort 1951 880 121.70%
jfdctint 28504 13213 115.72%
fdct 24996 11545 116.50%
compressdata 3790 1865 103.21%
fly-by-wire 9061 4312 110.13%
Table 3: m = 80, 0 = 40, acc = 10
Name WCET)ess | WCET | Improvement
bs 928 501 85.22%
insertsort 4431 1760 151.76%
jfdctint 64344 26413 143.60%
fdct 55796 23065 141.90%
compressdata 8350 3705 125.37%
fly-by-wire 20501 8682 136.13%
Table 4: m = 160, o = 40, acc = 10
Name WCET)ess | WCET | Improvement
bs 1768 556 217.95%
insertsort 8771 3263 168.80%
jfdctint 127064 44578 185.03%
fdct 109696 38442 185.35%
compressdata 16330 5799 181.60%
fly-by-wire 10521 14195 185.45%
Table 5: m = 400, o = 200, acc = 40
Name WCET)ess | WCET | Improvement
bs 2368 1251 89.28%
insertsort 11871 6463 83.67%
jfdctint 171864 89288 92.48%
fdct 148196 76842 92.85%
compressdata 22030 12455 76.87%
fly-by-wire 54821 29258 87.37%
Table 6: m = 400, o = 100, acc = 40
Name <40,20,10> | <400,100,40>
bs 0.45 0.98
insertsort 1.37 6.56
jfdctint 44.10 48.54
fdet 41.36 34.57
compressdata 4.66 3.23
fly-by-wire 28.78 149.01
Table 7: Analysis time, in seconds, of the benchmarks with

different configurations of the TDMA bus <m,0,acc>



5. RELATED WORK

Chattopadhyay et al. [5] improves the analysis cost of
loops by aligning each loop head execution with the TDMA
period. A penalty term is added to the WCET of each loop.
This allows a better scaling of the analysis at the cost of the
precision. The approach by Kelter et al. offers a compromise
for loop analysis by modeling the offsets in the TDMA bus
with an ILP problem. The proposed solution gives a tighter
estimation of the WCET compared to the pessimistic ap-
proach. Considering bounded loops, the authors gives two
methods to estimate the WCET in presence of a TDMA bus
with minimal unrolling. The first method unroll the loop
until a fix point of offsets is reached. The second method
uses dynamic flow graphs to model loops.

Schranzhofer et al. [18] propose an efficient analysis of the
worst case response time (WCRT) of a shared TDMA bus.
The proposed framework uses the access model in periodic
tasks to analyze the worst-case response time of the bus and
schedulabitly of tasks. By separating accesses to the bus
and computations, this approach exhibits tighter bounds and
reduces the WCRT.

Other research works were done to improve the WCET
estimation with a shared bus. Gustavsson et al. [8] use timed
automata to model the software and the hardware. An upper
bound on the clock of the timed automata is obtained with
Model Checking tools such as UPPAAL [3]. This approach
suffers from a potential explosion in the number of automata’s
states. Lv et al. [13] propose a better use of timed automata.
With an abstract interpretation of the cache, basic blocks
in the CFG are annotated with cache miss and cache hit.
A model with timed automata is associated according to
the annotations. Arbitration policy of the shared bus is
also modeled with an automata. The results show a better
estimation on the WCET compared with the pessimistic
approaches.

All of the mentioned related works give improvements on
the upper bound of the execution time. However, they only
estimate the WCET considering an already known feasible
path obtained from the semantics. Our approach does both
the infeasible path analysis and the TDMA model in the
same step. Using an SMT expression allows our approach to
consider all feasible path without having to enumerate them
individually. Our approach is more precise, but more costly.
It can be used in a complementary way with other approaches
in a trade-ofl between quality of the results and analysis
time. We discuss possible approaches for loop analysis in
Section 6.2.

6. CONCLUSION

6.1 Summary

We introduce a new approach for WCET analysis of shared
TDMA bus using Satisfiability Modulo Theory (SMT). This
approach takes into account the semantics and the accesses
to a shared TDMA bus to give a tighter estimation of the ex-
ecution time. In our proof-of-concept, we consider a platform
without cache memory which means that all load and store
instructions access the shared bus. We also analyze programs
in the form of LLVM bitcode due to the constraints imposed
by the tool PAGAI This is a limitation of our implementa-
tion, but not of the approach itself: the same approach can
be applied to executable binaries given a generated model in
SMT and with the presence of cache memory. Accesses to

191

EXECUTABLE
CFG

Cache analysis

costs
bus accesses

(EXEC. CFG)

Traceabilit;
match bloc]

ks

costs F
bus accesses

LLVM IR CFG

SMT encoding [« »>Final WCET

Figure 12: General work flow for realistic timing analysis

the bus can be obtained from an analysis of the cache’s state
where a cache miss is considered as an access to the shared
memory through the shared bus.

The naive model of the TDMA bus shows poor perfor-
mance. To overcome the issue, we propose an offset based
model. The micro-benchmarks show a better scalability but
remains exponential. The added cuts on the offsets improve
the analysis time by indicating to the SMT-solver “obvious”
properties.

Finally, we show that the micro-architectural analysis of
the shared TDMA bus, and the semantic analysis can be
combined in one approach using an SMT model. This ap-
proach can achieve a more precise estimation of the WCET
in presence of a shared TDMA bus. The naive encodings
are very costly. We give alternative encodings that reduce
considerably the solving time of the SMT expression.

6.2 Future Work

The current implementation of our approach is a proof
of concept to check its viability and scalability. As such,
taking into account a realistic model for the timing of the
program is left to future works. Considering that each LLVM
instruction takes exactly one cycle is clearly not realistic:
the timing for each block should instead come from a micro-
architectural analysis of the actual binary with a tool like
OTAWA [2]. Keeping the analysis itself on LLVM bitcode
allows exploiting high-level properties of the program that
would be lost at the binary code level, and the SSA form of
the bitcode greatly simplifies the encoding into SMT. As a
consequence, a complete tool for a realistic analysis would
need to work both on the binary code and the LLVM bitcode.
The information obtained on the binary must be mapped to
the LLVM bitcode. One solution to achieve this is through



pattern matching of conditions [4] between the LLVM CFG
and the executable CFG. The overall approach for such an
information flow is described in Figure 12. It has already
been applied to SMT-based WCET analysis in [9]. The idea
of combining high-level semantic information with low-level
binary analysis has also already been applied in e.g. [12, 15].

Similarly, considering LLVM load and store operations
as bus accesses is an oversimplification. Some LLVM load
and store will actually be cache hits and will not access the
bus, and conversely, some operations on LLVM registers will
actually need to access the memory in the real program. The
actual bus accesses must therefore be obtained by a prior
cache analysis on the binary code [1].

Our experiments show scalability issues which is expected
in NP-complete problems. We are considering optimizations
and improvements in the scalability in future work. Our
approach already shows substantial improvements over a
naive encoding, and the results show that we do scale to
reasonably-sized programs. Still, we would probably en-
counter performance issues in the SMT solver to scale if
we try to analyze very large case-studies globally with this
approach. We therefore need an approach that uses our
analysis on reasonably-sized pieces of code extracted from
a possibly larger codebase. One option is to analyze the
program in portions and propagate the obtained results on a
global analysis. For example, considering only a small piece
of code surrounding a bus access may be suflicient to prove
that this access is in the TDMA slot (or to prove a tight
bound on its execution time), and this information can be
injected in a global cheaper analysis. The challenge here is
how one defines the analyzed portions and their sizes.

Loops with a large iteration count, which cannot be un-
rolled completely, could be handled using partial unrolling
with an unroll factor. Loop iterations are then analyzed
separately with updated information on offsets between each
iteration. Kelter et al. [11] already address the loop analysis
with minimum unrolling. The SMT-based approach can be
complementary to include the semantics in the loop body
analysis.

7. REFERENCES

(1] M. Alt, C. Ferdin, F. Martin, and R. Wilhelm. Cache
behavior prediction by abstract interpretation. In
Science of Computer Programming, pages 52—66.
Springer, 1996.

C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.
OTAWA: An open toolbox for adaptive WCET
analysis. In S. Min, R. Pettit, P. Puschner, and

T. Ungerer, editors, Software Technologies for
Embedded and Ubiquitous Systems, pages 35—46.
Springer Berlin Heidelberg, 2010.

[3] G. Behrmann, A. David, and K. G. Larsen. A tutorial
on UPPAAL. In M. Bernardo and F. Corradini, editors,
SEM-RT 2004, number 3185 in LNCS, pages 200-236.
Springer—Verlag, September 2004.

A. Biere, J. Knoop, L. Kovécs, and J. Zwirchmayr. The
auspicious couple: Symbolic execution and WCET
analysis. WCET, 30:53-63, 2013.

S. Chattopadhyay, A. Roychoudhury, and T. Mitra.
Modeling shared cache and bus in multi-cores for
timing analysis. In Proceedings of the 13th
International Workshop on Software and Compilers for

2

[4

5

Embedded Systems, SCOPES ’10, pages 6:1-6:10, New
York, USA, 2010. ACM.

[6] R. C. David. The SMT-LIBv2 Language and Tools: A
Tutorial, March 2013.

[7] L. De Moura and N. Bjgrner. Z3: An efficient smt
solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pages 337-340, Berlin,
Heidelberg, 2008. Springer-Verlag.

[8] A. Gustavsson, A. Ermedahl, B. Lisper, and

P. Pettersson. Towards WCET Analysis of Multicore

Architectures Using UPPAAL. In B. Lisper, editor,

WCET 2010, volume 15 of OpenAccess Series in

Informatics (OASIcs), pages 101-112. Schloss

Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

J. Henry, M. Asavoae, D. Monniaux, and C. Maiza.

How to compute worst-case execution time by

optimization modulo theory and a clever encoding of

program semantics. In Proceedings of the 2014

SIGPLAN/SIGBED Conference on Languages,

Compilers and Tools for Embedded Systems, LCTES

'14, pages 43-52, New York, NY, USA, 2014. ACM.

[10] J. Henry, D. Monniaux, and M. Moy. Pagai: A path
sensitive static analyser. Electron. Notes Theor.
Comput. Sci., 289:15-25, Dec. 2012.

[11] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay,
and A. Roychoudhury. Static analysis of multi-core
tdma resource arbitration delays. Real-Time Syst.,
50(2):185-229, Mar. 2014.

[12] H. Li, I. Puaut, and E. Rohou. Traceability of flow
information: Reconciling compiler optimizations and
wcet estimation. In Proceedings of the 22nd
International Conference on Real-Time Networks and
Systems, page 97. ACM, 2014.

[13] M. Lv, W. Yi, N. Guan, and G. Yu. Combining
abstract interpretation with model checking for timing
analysis of multicore software. In Proceedings of the
2010 31st IEEE Real-Time Systems Symposium, RTSS
’10, pages 339-349, Washington, DC, USA, 2010. IEEE
Computer Society.

[14] P. Raymond. A general approach for expressing
infeasibility in implicit path enumeration technique. In
International Conference on Embedded Software
(EMSOFT 2014), New Dehli, India, oct 2014.

[15] P. Raymond, C. Maiza, C. Parent-Vigouroux,

F. Carrier, and M. Asavoae. Timing analysis
enhancement for synchronous program. Real-Time
Systems, pages 1-29, 2015.

[16] J. Reineke and R. Sen. Sound and efficient WCET
analysis in the presence of timing anomalies. In WCET
2009, page 101, 2009.

[17] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm,

I. Polian, J. Eisinger, and B. Becker. A definition and
classification of timing anomalies. WCET, 4, 2006.

[18] A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing
analysis for tdma arbitration in resource sharing
systems. RTAS ’10, pages 215-224, Washington, DC,
USA, 2010. IEEE Computer Society.

[9

192



