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Abstract
We present a study on the effect of reverberation on acoustic-
linguistic recognition of non-prototypical emotions during
child-robot interaction. Investigating the well-defined Inter-
speech 2009 Emotion Challenge task of recognizing negative
emotions in children’s speech, we focus on the impact of artifi-
cial and real reverberation conditions on the quality of linguistic
features and on emotion recognition accuracy. To maintain ac-
ceptable recognition performance of both, spoken content and
affective state, we consider matched and multi-condition train-
ing and apply our novel multi-stream automatic speech recog-
nition system which outperforms conventional Hidden Markov
Modeling. Depending on the acoustic condition, we obtain
unweighted emotion recognition accuracies of between 65.4 %
and 70.3 % applying our multi-stream system in combination
with the SimpleLogistic algorithm for joint acoustic-linguistic
analysis.
Index Terms: child-robot interaction, affective computing,
acoustic-linguistic emotion recognition, reverberation

1. Introduction
Aiming to make human-machine communication more human-
like, speech interfaces have emerged as a natural and easy-to-
use input modality and are increasingly employed for a vari-
ety of applications including human-robot interaction, dialogue
systems, voice command applications, virtual agents, and com-
puter games. In addition to the spoken content, also paralin-
guistic and affective information can be automatically extracted
from the speech signal. Thus, strategies towards automatic
emotion recognition (AER) have attracted a lot of attention in
recent years and are beginning to be used, e. g., for socially
competent human-robot interaction [1].

While past research on AER has mostly been restricted to
prototypical, acted, and speaker dependent emotion recognition,
the focus of today’s research is on speaker independence and on
affective state estimation from non-prototypical, spontaneous
speech as it is needed for real-life applications [2]. Reflecting
these challenging conditions, which typically lead to recogni-
tion accuracies that are lower than those reported for prototyp-
ical emotions, the Interspeech 2009 Emotion Challenge [3] has
been organized to define unified system training and test condi-
tions involving spontaneous emotion recognition during child-
robot interaction. Yet, one simplification of the Emotion Chal-
lenge task that might not necessarily hold for real-life systems
is the restriction to speech captured by close-talk microphones.
Thus, the effect of speech signal distortions caused by rever-
beration or background noise has been largely neglected in the
Emotion Challenge – and generally in the field of speech-based

emotion recognition. Only a few studies address the topic of
noise robust AER, e. g., [4]. The impact of reverberation on
AER from acoustic cues has been investigated in [5].

In this paper, we extend our recent research on affect
recognition from reverberated speech [5] to systems that ap-
ply both, acoustic and linguistic features obtained via an au-
tomatic speech recognition (ASR) module. We examine how
different microphones and room acoustics affect the quality of
the ASR output on the one hand, and the accuracy of combined
acoustic-linguistic emotion recognition on the other hand. To
this end, we consider emotional child-robot interaction speech
as contained in the FAU Aibo Emotion Corpus [6] in combi-
nation with different artificial and real reverberation conditions.
Furthermore, we investigate matched, mismatched, and multi-
condition training to increase the robustness of our proposed
recognition engine. To further boost recognition performance
and robustness, we employ our recently proposed multi-stream
ASR system [7] which exploits context-sensitive phoneme es-
timates generated by a bidirectional Long Short-Term Memory
(BLSTM) recurrent neural network [8]. The concept of BLSTM
was shown to lead to enhanced ASR accuracies in challenging
emotional speech scenarios [9, 10].

Our paper is structured as follows: Section 2 provides an
overview over the FAU Aibo Emotion Corpus, Section 3 out-
lines the applied acoustic and linguistic features, and Section 4
briefly reviews the principle of our multi-stream ASR decoder.
We describe our experiments in Section 5 before concluding in
Section 6.

2. The FAU Aibo Emotion Corpus
The German FAU Aibo Emotion Corpus [6] with 8.9 hours of
spontaneous, emotionally colored children’s speech comprises
recordings of 51 children at the age of 10 to 13 years from
two different schools. Speech was transmitted with a wireless
head set (UT 14/20 TP SHURE UHF-series with microphone
WH20TQG) and recorded with a DAT-recorder. The sampling
rate of the signals is 48 kHz; quantization is 16 bit. The data is
downsampled to 16 kHz.

The children were given five different tasks where they
had to direct Sony’s dog-like robot Aibo to certain objects and
through a given ‘parcours’. The children were told that they
could talk to Aibo the same way as to a real dog. However, Aibo
was remote-controlled and followed a fixed, pre-determined
course of actions, which was independent of what the child was
actually saying. At certain positions Aibo disobeyed in order to
elicit negative forms of emotions. The corpus is annotated by
five human labelers on the word level using 11 emotion cate-
gories that have been chosen prior to the labeling process by it-
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Table 1: Segmental acoustic features: low-level descriptors
(LLD) and functionals. For details, see [3].

LLD (16 · 2) Functionals (12)
(∆) ZCR mean
(∆) RMS Energy standard deviation
(∆) F0 kurtosis, skewness
(∆) HNR extremes: value, rel. position, range
(∆) MFCC 1-12 linear regression: offset, slope, MSE

eratively inspecting the data. The units of analysis are not single
words, but semantically and syntactically meaningful chunks
(2.66 words per chunk on average, cf. [6]). Heuristic algorithms
are used to map the decisions of the five human labelers on the
word level onto a single emotion label for the whole chunk. The
emotional states that can be observed in the corpus are rather
non-prototypical, emotion-related states than ‘pure’ emotions.
Mostly, they are characterized by low emotional intensity.

3. Feature Extraction
3.1. Acoustic Features

We extracted a set of 384 segmental acoustic features suited
for static chunk-level classification, exactly corresponding to
those used for the Interspeech 2009 Emotion Challenge base-
line (Classifier Sub-Challenge) [2], including MFCC, prosodic,
and voice quality features (Table 1). In fact, none of the Chal-
lenge participants could outperform the baseline features in the
Feature Sub-Challenge [2].

3.2. Linguistic Features

To create linguistic features for early fusion with the chunk-
level acoustic features, we converted the chunk-level ASR re-
sults, i. e., the reclassification of the training set, and the recog-
nition of the test set, into a vector space representation by form-
ing Bag-of-Words (BoW) vectors counting term frequencies.
The components of the BoW vectors represent all words occur-
ring in the reclassification of the training set by the ASR engine.
As a result, the BoW feature space differs among training con-
ditions. The BoW size ranges from 198 (training on room mi-
crophone data) to 379 (multi-condition training) since we inten-
tionally do not use the ground truth transcriptions available in
the FAU Aibo Emotion Corpus for building linguistic features,
both to enforce realism, and to adapt to typical ASR confusions
in the varying acoustic conditions.

4. Multi-Stream BLSTM-HMM
We implemented and evaluated two different ASR systems for
linguistic feature generation: a standard single-stream Hid-
den Markov Model (HMM) system applying cross-word tri-
phone acoustic models (see Section 5.3) and the multi-stream
BLSTM-HMM system introduced in [7]. The multi-stream ap-
proach has shown enhanced recognition performance in chal-
lenging ASR conditions involving spontaneous, emotionally
colored, and noisy speech. Our multi-stream decoder simul-
taneously models continuous MFCC observations and discrete
context-sensitive phoneme estimates generated by a bidirec-
tional Long Short-Term Memory recurrent neural network as
two independent data streams. Details on the system architec-
ture can be found in [7].

5. Experiments and Results
5.1. Interspeech 2009 Emotion Challenge Task

Along the lines of the Interspeech 2009 Emotion Challenge [3],
the complete corpus is used for the experiments reported in this
paper (i. e., not just chunks containing prototypical emotions).
Yet, due to technical problems with the video camera record-
ing the reverberated ‘room microphone’ data (see Section 5.2),
only 17 076 of the 18 216 chunks could be used. The training
set comprised 9 190 chunks and the test set consisted of 7 886
chunks. We considered the 2-class problem with the two main
classes negative valence (NEG) and the default state idle (IDL,
i. e. neutral) as defined for the Interspeech 2009 Emotion Chal-
lenge. A summary of this challenge is given in [2].

As the children of one school were used for training and
the children of the other school for testing, the partitions fea-
ture speaker independence, which is needed in most real-life
settings, but can have a considerable impact on classification
accuracy. Furthermore, this partitioning provides realistic dif-
ferences between the training and test data on the acoustic level
due to the different room characteristics (see Section 5.2). Fi-
nally, it ensures that the classification process cannot adapt to
socio-linguistic or other specific behavioral cues. Note that – as
it is typical for realistic data – the two emotion classes are highly
unbalanced (5 642 NEG-chunks vs. 11 434 IDL-chunks).

5.2. Acoustic Conditions

The data which was used for the Interspeech 2009 Emotion
Challenge was recorded with a close-talk microphone (see Sec-
tion 2) and will be called ‘close-talk’ (CT) in the following.
Additionally, during creation of the FAU Aibo Emotion Cor-
pus, the experiment was filmed with a video camera for docu-
mentary purposes. The child was not facing the microphone,
and the camera was approximately 3 m away from the child.
Thus, the audio channel of the videos is reverberated and con-
tains background noises, e. g., the noise of Aibo’s movements.
While the recordings for the training set took place in a normal,
rather reverberant class room, the recording room for the test set
was a recreation room, equipped with curtains and carpets, i. e.,
with more favorable acoustic conditions. Thus, the data set pro-
vides realistic differences between training and test data on the
acoustic level. This version will be called ‘room microphone’
(RM).

Another version [11] of the corpus was created using ar-
tificial reverberation: The data of the close-talk version was
convolved with 12 different impulse responses recorded in a
different room using multiple speaker positions (four positions
arranged equidistantly on one of three concentric circles with
the radii r ∈ {60 cm, 120 cm, 240 cm}) and alternating echo
durations T60 ∈ {250 ms, 400 ms} spanning 180◦. The train-
ing and test set were evenly split in twelve parts, of which each
was reverberated with a different impulse response, to enforce
a roughly equal distribution of the impulse responses among
the training and test set instances. This version will be called
‘close-talk reverberated’ (CTRV).

5.3. ASR Configuration and Training

The acoustic feature vectors processed by the ASR system con-
sisted of cepstral mean normalized MFCC coefficients 1 to 12,
log. energy, as well as first and second order delta coefficients.
The framewise BLSTM phoneme predictor of the multi-stream
system was trained on forced aligned (framewise) phoneme tar-
gets of the FAU Aibo Emotion Corpus training set. According
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Table 2: Single-stream HMM: ASR word accuracies for differ-
ent training and test conditions. The best result per test condi-
tion is highlighted.

word accuracy [%] test condition
training condition CT CTRV RM mean
CT 85.28 79.21 28.66 64.38
CTRV 82.86 82.03 48.82 71.24
RM 13.35 33.78 53.00 33.38
CT + CTRV + RM 83.05 81.11 61.21 75.12

Table 3: Multi-stream BLSTM-HMM: ASR word accuracies for
different training and test conditions. The best result per test
condition is highlighted.

word accuracy [%] test condition
training condition CT CTRV RM mean
CT 87.03 80.48 43.97 70.49
CTRV 85.33 84.52 56.83 75.56
RM 25.77 49.79 57.82 44.46
CT + CTRV + RM 83.76 82.13 63.90 76.60

to our past experience [7], we chose three hidden layers of size
56, 150, and 56, respectively, to model 53 German phonemes as
well as silence, short pause, and non-verbal events. All other
parameters of the multi-stream ASR system, such as the stream
weight of the BLSTM phoneme prediction feature stream, were
configured as in [7].

The underlying HMM system applied phoneme models
consisting of three emitting states (left-to-right HMMs) with
eight Gaussian mixtures. Initial monophones HMMs were
mapped to tied-state cross-word triphone models with shared
state transition probabilities. Both, acoustic models and a back-

Table 4: Unweighted accuracies (UA) for acoustic, linguistic,
and combined acoustic-linguistic classification of the test set
by feature-level fusion with BoW vectors from the single-stream
HMM speech recognizer. The best result per test condition is
highlighted.

UA [%] test condition
training condition CT CTRV RM mean

acoustic
CT 67.90 53.99 59.83 60.57
CTRV 59.97 67.22 60.27 62.48
RM 66.32 63.03 64.96 64.77
CT + CTRV + RM 68.20 66.24 60.40 64.95

linguistic (single-stream HMM)
CT 64.76 64.92 54.67 61.45
CTRV 63.59 63.15 58.05 61.59
RM 55.47 58.06 60.20 57.91
CT + CTRV + RM 63.38 62.99 60.29 62.22

acoustic + linguistic (single-stream HMM)
CT 70.08 59.27 60.94 63.43
CTRV 60.28 68.55 62.44 63.76
RM 65.86 63.58 65.41 64.95
CT + CTRV + RM 68.92 67.96 62.48 66.46

off bigram language model were trained on the training set of
the FAU Aibo Emotion Corpus.

5.4. ASR Results

Tables 2 and 3 show the word accuracies (WA) when apply-
ing standard triphone acoustic models and the multi-stream
BLSTM-HMM approach, respectively. We consider four dif-
ferent ASR training conditions: training on data recorded by
the close-talk microphone (CT), artificially reverberated data
(CTRV), data recorded by the room microphone (RM), and all
data (CT + CTRV + RM). Accuracies are consistently higher for
the multi-stream model with performance gains of up to 16 %
(absolute) when training on RM data and testing on CTRV data.
This indicates that BLSTM context modeling within the multi-
stream technique leads to higher robustness with respect to dif-
ferent reverberation conditions. However, also for ‘friendly’
scenarios, e. g, training and testing on data recorded by close-
talk microphones, the multi-stream model prevails over stan-
dard HMMs (word accuracy of 87.03 % vs. 85.28 %). These
accuracies are notably higher than those reported in [12], for ex-
ample. As expected, matched condition training performs best,
with the exception that RM data is best recognized using mod-
els trained on data reflecting all three acoustic conditions. Gen-
erally, multi-condition training leads to high accuracies for all
test conditions and achieves the best average ASR performance
(WA of 76.6 % for the multi-stream model).

5.5. AER Classification Strategy

To investigate the impact of ASR performance on emotion
recognition, we evaluated linguistic and joint acoustic-linguistic
analysis by early feature-level fusion using the SimpleLogis-
tic algorithm [13] implemented in the Weka toolkit [14]. It
is based on boosting of one-dimensional regression functions,
thereby implicitly performing a feature relevance analysis and
selection. This technique seems to be particularly suited for
feature-level fusion dealing with varying reliability of features
according to acoustic conditions. The number of boosting iter-
ations was cross-validated on the training set, using the default
parameters in the Weka toolkit for straightforward reproducibil-
ity. Since the class distribution in the training set of the FAU
Aibo Emotion Corpus is heavily unbalanced, we applied the
Synthetic Minority Oversampling Technique (SMOTE).

Table 5: Unweighted accuracies (UA) for linguistic and
acoustic-linguistic classification of the test set by feature-level
fusion with BoW vectors from the multi-stream BLSTM-HMM
speech recognizer. The best result per test condition is high-
lighted.

UA [%] test condition
training condition CT CTRV RM mean

linguistic (multi-stream HMM)
CT 65.21 64.53 56.54 62.10
CTRV 63.90 63.58 58.74 62.07
RM 56.44 59.96 60.64 59.01
CT + CTRV + RM 64.07 63.28 60.44 62.60

acoustic + linguistic (multi-stream HMM)
CT 70.32 59.34 62.19 63.95
CTRV 60.34 68.61 63.05 64.00
RM 65.80 64.05 65.43 65.09
CT + CTRV + RM 69.16 67.84 62.96 66.65
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5.6. AER Results and Discussion

In Table 4, we present the unweighted accuracies (UA) for
emotion recognition by BoW linguistic features obtained from
single-stream HMM ASR, both with and without acoustic fea-
tures. For reference, we also show the results by acoustic fea-
tures only. For CT, CTRV, and multi-condition training, these
are similar to the ones obtained by Support Vector Machines
(SVM) in [5]; for RM training however, the SimpleLogistic
classifier yields a significant (p < 0.005) performance gain
over SVM in the CT (66.32 vs. 61.61 % UA) and RM (64.96 vs.
62.72 % UA) test cases. Best average performance is achieved
by multi-condition training (64.95 % UA).

Furthermore, linguistic features on their own deliver re-
markable performance: When using ASR features from CT
data for training, 64.76 % and 64.92 % UA are achieved in
the CT and CTRV test conditions, respectively. Overall, a
strong correlation with the word accuracies from Table 2 can be
seen, with multi-condition training showing best average per-
formance (62.22 % UA) once more.

Finally, by fusion of acoustic and linguistic information a
significant (p < 0.005) performance improvement over acous-
tic features, from 67.90 % to 70.08 % UA is observed for
matched condition CT training and testing. While in RM test-
ing, the clean acoustic-linguistic classifier prevails over both
pure acoustic and linguistic analysis (60.94 % UA vs. 59.83 %
and 54.67 %, respectively), this is not the case for CTRV test-
ing, where a drop in performance (59.27 % vs. 64.92 % UA)
compared to linguistic features is observed, which is arguably
caused by the poor performance of acoustic features in that par-
ticular setup (53.99 % UA). Remarkably, on average over all
test conditions, fused acoustic-linguistic analysis using multi-
condition training (66.46 % UA) considerably outperforms lin-
guistic (62.22 %) and acoustic analysis (64.95 % UA). The best
performance on RM, i. e., realistically reverberated, data is
obtained by fused acoustic-linguistic analysis trained on RM
(65.41 % UA) – note that this is not matched condition training
in a strict sense, since the training and test set were recorded in
different acoustic settings (see Section 5.2). This suggests that
whenever the acoustic conditions that the emotion classifier has
to face are known to a certain degree (corresponding to CT and
CTRV testing), multi-condition training is most promising; for
unknown conditions (RM testing), training on realistically re-
verberated data is to be preferred, even if that data does not
exactly match the acoustic conditions to be faced.

Table 5 shows the results for linguistic and acoustic-
linguistic AER when applying the multi-stream BLSTM-HMM
speech recognizer for linguistic feature generation. For almost
all training and test conditions, we observe higher accuracies
than for the recognition engine using conventional HMM ASR.
Trends are similar to those in Table 4, i. e., matched condition
training performs best while multi-condition training leads to
the best average accuracy.

6. Conclusion
We analyzed the effect of reverberation on automatic speech and
emotion recognition in a child-robot interaction scenario involv-
ing spontaneous speech and non-prototypical emotions. Re-
verberation tends to degrade acoustic, linguistic, and combined
acoustic-linguistic emotion recognition performance, however,
the usage of reverberated training material can largely compen-
sate the decrease of both, speech and emotion recognition ac-
curacy. Multi-condition training leads to good performance for

all reverberation conditions and reaches accuracies comparable
to matched condition training. This shows that including rever-
berated data in the training set leads to more robust models –
even if the training conditions do not exactly match the acoustic
conditions during testing. Applying a multi-stream BLSTM-
HMM ASR system, acoustic-linguistic AER accuracies of up
to 70.3 % can be obtained for the recognition of negative emo-
tions, which corresponds to results that were previously only
reported for the fusion of multiple recognition engines [12].

Future research should focus on the combination of multi-
condition training and speech feature enhancement.
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