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Abstract

Background Cancer cachexia represents a central obstacle in medical oncology as it is associated with poor therapy response
and reduced overall survival. Systemic inflammation is considered to be a key driver of cancer cachexia; however, clinical stud-
ies with anti-inflammatory drugs failed to show distinct cachexia-inhibiting effects. To address this contradiction, we investi-
gated the functional importance of innate immune cells for hepatocellular carcinoma (HCC)-associated cachexia.

Methods A transgenic HCC mouse model was intercrossed with mice harbouring a defect in myeloid cell-mediated inflam-
mation. Body composition of mice was analysed via nuclear magnetic resonance spectroscopy and microcomputed tomogra-
phy. Quantitative PCR was used to determine adipose tissue browning and polarization of adipose tissue macrophages. The
activation state of distinct areas of the hypothalamus was analysed via immunofluorescence. Multispectral immunofluores-
cence imaging and immunoblot were applied to characterize sympathetic neurons and macrophages in visceral adipose tissue.
Quantification of pro-inflammatory cytokines in mouse serum was performed with a multiplex immunoassay. Visceral adipose
tissue of HCC patients was quantified via the L3 index of computed tomography scans obtained during routine clinical care.
Results We identified robust cachexia in the HCC mouse model as evidenced by a marked loss of visceral fat and lean mass.
Computed tomography-based analyses demonstrated that a subgroup of human HCC patients displays reduced visceral fat mass,
complementing the murine data. While the myeloid cell-mediated inflammation defect resulted in reduced expression of pro-
inflammatory cytokines in the serum of HCC-bearing mice, this unexpectedly did not translate into diminished but rather en-
hanced cachexia-associated fat loss. Defective myeloid cell-mediated inflammation was associated with decreased macrophage
abundance in visceral adipose tissue, suggesting a role for local macrophages in the regulation of cancer-induced fat loss.
Conclusions Myeloid cell-mediated inflammation displays a rather unexpected beneficial function in a murine HCC model.
These results demonstrate that immune cells are capable of protecting the host against cancer-induced tissue wasting, adding
a further layer of complexity to the pathogenesis of cachexia and providing a potential explanation for the contradictory re-
sults of clinical studies with anti-inflammatory drugs.
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Introduction

Cachexia is a multifactorial metabolic syndrome characterized
by weight loss due to depletion of muscle with or without
loss of fat.> Systemic inflammation, insulin resistance, en-
hanced muscle protein breakdown, and sympathetic nervous
system activation are hallmarks of cachexia. A plethora of dis-
eases are associated with cachexia, for example, chronic in-
fections (HIV and tuberculosis), chronic heart failure,
chronic obstructive lung disease, and chronic kidney failure.?
The most common association, however, exists between ca-
chexia and cancer, where it can occur in up to 80% of cases.>
Cancer-associated cachexia (CAC) goes along with
unfavourable prognosis and plays a causal role in up to 20%
of cancer-related deaths.® CAC is unresponsive to nutritional
support, and while a lot of progress has been made in the
past years regarding the mechanisms of CAC, an effective
treatment option is still missing.

Patients suffering from hepatocellular carcinoma (HCC)
typically show loss of muscle mass and strength (termed
sarcopenia), resulting in frailty and debilitating physical weak-
ness.? In addition, cachexia is a common characteristic of HCC
patients, which not only reduces the quality of life but also—
together with sarcopenia—impacts significantly on overall
prognosis® and clinical decision making: Mortality of HCC pa-
tients after intra-arterial therapy® and liver transplantation’
as well as dose-limiting toxicities of sorafenib,® which is the
gold standard oral treatment for non-resectable HCC, are in-
dependently predicted by sarcopenia. Taken together, ca-
chexia and sarcopenia are of pivotal importance for both
patients (quality of life and prognosis) and clinicians (progres-
sion and treatment decision).

Against this background, a better understanding of the
molecular and cell biological mechanisms that govern HCC-
associated sarcopenia and cachexia is urgently needed. As
cachexia is a multifactorial syndrome affecting various organs
and cellular systems, this can only be achieved by using
in vivo model systems that recapitulate the syndrome as a
whole.® With respect to HCC-associated cachexia, the most
widely applied system is the rat ascites hepatoma Yoshida
AH-130 model. This is characterized by a hypercatabolic state
and marked depletion of both skeletal muscle and adipose
tissue.’®* While the Yoshida AH-130 model is certainly of
great value, especially for the identification of potential
cachexia-inhibiting drugs,*>*® a better understanding of the
pathogenesis of HCC-associated cachexia is limited by the
absence of a practicable murine model system. Intercrossing
such a mouse model with conventional or cell type-specific
knockout mice would enable researchers to address a
number of hypotheses and would undoubtedly result in a
much better understanding of the molecular and cell
biological mechanisms that govern HCC-associated
cachexia.*

Here, we describe a robust cachexia phenotype in a trans-
genic murine HCC model. Intercrosses with mice harbouring
defective myeloid cell-mediated inflammation unexpectedly
resulted in enhanced cachexia-associated loss of adipose tis-
sue even though systemic levels of pro-inflammatory cyto-
kines were lower in the knockout mice. Furthermore, we
present experimental data arguing for a protective role of
macrophages in the context of CAC-associated fat loss. Taken
together, our results challenge the general understanding of
pro-inflammatory cytokines as causal agents of CAC and es-
tablish a functional importance of macrophages in the setting
of CAC-associated fat loss that has not been previously
appreciated.

Materials and methods
Animals

Hepatocyte-specific expression of the SV40 large T
oncoprotein in ASV-B mice was achieved by the antithrombin
Il promoter.'® Only male mice develop tumours as the trans-
gene is located on the Y chromosome. ASV-B mice (pure
C57BL/6J background) were further crossed with mice with
both alleles of HifIa gene flanked by loxP sites at exon 2
(Hif1a +7/+%). Myeloid cell-specific knockout of HifZa was
achieved by breeding ASV-B male HifZa +7/+ mice with female
Hif1a +/+ mice expressing Cre recombinase driven by the
lysozyme M promoter. In our study, we used male ASV-B/
Hif1a +/+5 mice, additionally positive for Cre expression
(ASV-B/LysCre+/Hif1a +7/+%), as knockouts (named ASV-B
Hif1a™) and Cre-negative littermates as wild type (WT).
C57BL/6J male mice were used as controls. All animals were
maintained in a specific pathogen-free facility. Mice were
given water and standard rodent chow ad libitum and
were kept at constant room temperature with a 12 h
light/dark cycle. All experiments were approved by local au-
thorities (LAGESO Berlin and LANUV Recklinghausen,
Germany) and conducted in accordance with the national
and institutional guidelines for care, welfare, and treatment
for animals.

Organ harvest

ASV-B mice were sacrificed at the age of 12, 16, and 18 weeks.
Sixteen-week-old C57BL/6J male mice were used as control
for tissue weights. Blood serum, liver, epididymal white adi-
pose tissue (eWAT), skeletal muscle (gastrocnemius, soleus,
tibialis anterior, and extensor digitorum longus), and heart
were collected and weighed after sacrifice.
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Body weight and composition

Chow and water were quantified in each cage on the first and
the last day of each week, and consumed amounts were cal-
culated and expressed per week. Body weight was measured
once per week. Body composition was analysed via nuclear
magnetic resonance (NMR) spectroscopy device EchoMRI-
700™ (Echo Medical Systems, Houston, TX, USA) once a week
to measure total body fat and lean mass.

In vivo microcomputed tomography imaging

In vivo microcomputed tomography (1CT) imaging of normal
C57BL/6, ASV-B WT, and ASV-B Hif1a™ mice was performed
using a dual-energy gantry-based flat-panel pCT scanner
(TomoScope 30s Duo, CT Imaging, Erlangen, Germany). The
dual-energy X-ray tubes of the uCT were operated at voltages
of 40 and 65 kV with currents of 1.0 and 0.5 mA, respectively.
To cover the entire mouse, three sub-scans were performed,
each of which acquired 720 projections with 1032 x 1012
pixels during one full rotation with durations of 90 s. Animals
were sacrificed just before imaging. After acquisition, volu-
metric data sets were reconstructed using a modified
Feldkamp algorithm with a smooth kernel at an isotropic
voxel size of 35 um. The fat-containing tissue regions, which
appear hypo-intense in the uCT data, were segmented using
an automated segmentation method with interactive correc-
tion of segmentation errors.*® The volumetric fat percentage
was computed as the ratio of (subcutaneous and visceral) fat
volume to the entire body volume.

RNA isolation and quantitative PCR

Total RNA from snap-frozen eWAT of 16-week-old animals
was isolated using NucleoZOL (Macherey Nagel, Diren,
Germany), and reverse transcription was performed using
Maxima Reverse Transcriptase together with Oligo (dT)18
Primers, Random Hexamer Primers, and dNTP Mix (Thermo
Fisher Scientific, Langerwehe, Germany). Quantitative real-
time PCR was performed using Applied Biosystems 7500
Real-Time PCR System in 96-well format, each reaction con-
taining 15 ng cDNA, 0.3 uM specific primer, and 1x Power
SYBR Green Master Mix reagent (Applied Biosystems,
Bleiswijk, The Netherlands). Primers for Ucp1, Pgcla, Pparg,
Prdm 16, Cidea, and Mrc1 were chosen from published litera-
ture.r”*® Primers against B2m (F: 5’-TTCTGGTGCTTGTCTCACT
GA-3’, R: 5-CAGTATGTTCGGCTTCCCATTC-3’), Argl (F: 5'-
CTCCAAGCCAAAGTCCTTAGAG-3’, R: 5-AGGAGCTGTCATTA
GGGACATC-3’), Clec10a (F: 5’-GGCACAAAACCCAGCAAGAC-
3’, R: 5-TGGGACCAAGGAGAGTGCTA-3’), Il10 (F: 5'-GCTCTT
ACTGACTGGCATGAG-3’, R: 5'-CGCAGCTCTAGGAGCATGTG-
3’), Tnfa (F: 5’-CCATTCCTGAGTTCTGCAAAGG-3’, R: 5'-AGGT

AGGAAGGCCTGAGATCTTATC-3'), Azgpl (F: 5-ACACTACAG
GGTCTCACACCT-3’, R: 5-TCGCTGCACGTAGACCTTTT-3'), Lipe
(F: 5-TGTCACGCTACACAAAGGCT-3’, R: 5’-GGTCACACTGA
GGCCTGTC-3’), and HifZa (F: 5’-GCTTCTGTTATGAGGCTCACC-
3’, R: 5’-ATGTCGCCGTCATCTGTTAG-3’) were selected to span
exon borders and were validated according to the MIQE
guidelines.’® Relative mRNA expressions were calculated
using the comparative delta-CT method and normalized to
B2m.

Cytokine measurement

Blood was collected from sacrificed mice via inferior vena
cava using a 22 G needle and transferred to serum-gel Z tubes
(Sarstedt, Germany), allowed to clot for 30 min at room tem-
perature and centrifuged at 10 000 g for 5 min. The serum
was collected and stored frozen until use. To detect
interleukin-1 beta (II-1pB), interleukin-6 (lI-6), and tumour ne-
crosis factor-alpha (Tnf-a) simultaneously, Bio-Plex Pro"
mouse cytokine Th17 panel A 6-Plex kit (Bio-Rad, Germany)
was used according to the manufacturer’s instructions. Sam-
ples were diluted at 1:2, and the fluorescence measurement
of the beads was performed with the Qiagen LiquiChip 200
workstation (Hilden, Germany). Cytokine concentrations
were calculated using Bio-Plex Manager software (Bio-Rad,
Hercules, CA, USA).

Immunohistochemistry and tissue analysis

Mice were sacrificed, and tissues were fixed in 10% formalin
overnight, followed by dehydration and embedding in paraf-
fin. For histopathological evaluation, 2-um-thick eWAT or
liver sections were stained with haematoxylin and eosin. For
adipose tissue, pictures of representative areas from each
section in x200 magnification were taken, and Adiposoft soft-
ware was used to calculate cell size of 35 images per group in
total. Minimal 20 pm and maximum 100 um thresholds were
set for automated measurement of adipocyte diameter
followed by manual correction. A frequency distribution was
calculated for each group. Total adipocyte number within
the distribution was subsequently calculated, and the fre-
quency was converted to a percentage of total adipocytes
counted. For analyses of tumour areas, haematoxylin and eo-
sin stained sections of ASV-B livers were used. Two tissue sec-
tions per mouse were used for evaluation. Images were taken
using Axiocam 506 mono (Carl Zeiss), and tumour areas were
quantified by Imagel.

Immunohistochemistry of murine hypothalamus

Free-floating coronal brain sections of 40 um thickness were
cut on a microtome (Leica VT1200) and stored in 0.02 M
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PBS + 0.09% sodium azide until staining. For c-Fos
immunolabelling, we used a modified version of a published
protocol.?° Slices containing the arcuate nucleus (ARC) were
blocked and permeabilized in 0.02 M PBS + 0.3% Triton X-
100 + 5% normal goat serum (NGS, Jackson
ImmunoResearch) for 60 min. The slices were incubated in
rabbit polyclonal anti-cfos-antibody (1:10 000, Synaptic Sys-
tems, #226003) in PBS + 0.3% Triton X-100 + 3% NGS for five
nights at 4°C. After three washes in PBS + 0.3% Triton, brains
were incubated with goat secondary antibodies raised against
rabbit, conjugated to Alexa Fluor 488 (1:500, Invitrogen,
#A11034) in PBS + 0.3% Triton X-100 + 3% NGS for 60—
90 min at room temperature. To visualize nuclei, 4,6-
diamidin-2-phenylindol (DAPI, 1:10 000) was added for
5 min to one of the final three washing steps in PBS. Sections
were mounted on glass slides (Menzel Glaser), embedded in
fluorescence mounting medium (Dako), and covered with
glass cover slips (Menzel Glaser). Brain sections were imaged
using confocal laser scanning microscopy (Zeiss, LSM700), op-
erated by ZEN 2011 SP3 (Zeiss). Images were taken using a
20x Plan-Neofluar objective (NA 0.5) using the same imaging
parameters for all images. Optical sections (thickness: 9.8 pm
in 488 channel, 9.9 um in DAPI channel) were acquired in
5 um steps from each hemisphere of the ARC. All image anal-
ysis was carried out in Imagel) (https://imagej.net) using cus-
tom macros. One optical section located in the middle of each
brain slice was extracted, and brightness and contrast were
adjusted with the same parameters for all images to improve
visibility. Putative c-Fos positive cells were counted manually
in the Alexa 488 channel using the Cell Counter plugin
(https://imagej.net/Cell_Counter) by an observer blind to
the experimental groups. Data from two staining experiments
were taken together, and least four ARC hemispheres from
two to three brain sections were analysed per animal.

Triglyceride measurement

Blood samples were collected from sacrificed animals as de-
scribed for cytokine measurements. The mice were fed ad
libitum; blood samples were collected during the day,
followed by serum separation. Triglycerides in serum samples
were measured in the central biochemistry laboratory of the
Institute for Laboratory Animal Science, University Hospital
RWTH Aachen.

Ex vivo lipolysis

Gonadal fat pads were excised from mice, cut into 20 mg
pieces, and incubated at 37°C in Krebs—Ringer solution
pH 7.4, containing 12 mM HEPES, 4.9 mM KCl, 121 mM NaCl,
1.2 mM MgS0O,, 0.33 mM CaCl,, 3.5% (w/v) fatty acid-free
BSA, and 0.1% (w/v) glucose. No stimulation was performed.

Released glycerol was measured from supernatants after 4 h
incubation using the Glycerol Colorimetric Assay Kit
(Cayman), and tissue weights were used for normalization.

Isolation and stimulation of bone marrow-derived
macrophages

Bone marrow was collected from tibiae and femurs of 8- to
11-week-old WT and Hif1a"'® mice. Red blood cells were
lysed with ACK buffer in flushed marrows, and cells were
seeded on cell culture plates in Roswell Park Memorial
Institute (RPMI) supplemented with 10% fetal bovine serum
(FBS), 100 U/mL penicillin, and 100 pg/mL streptomycin.
After overnight incubation, non-attached cells were collected
and cultured in RPMI supplemented with 20% FBS and 30%
L929-conditioned medium for 1 week. Differentiated bone
marrow-derived macrophages (BMDMs) were stimulated
for 48 h with lipopolysaccharide (LPS) (100 ng/mL, Sigma
Aldrich) and interferon (IFN)-y (20 ng/mL) for classical
activation and with IL-4 (20 ng/mL, both from eBioscience)
for alternative activation of macrophages. Media were
collected from polarized macrophages and used for catechol-
amine measurement.

Catecholamine measurement

Catecholamine amounts were measured with high-
performance liquid chromatography (HPLC). Snap-frozen
eWAT samples were thawed and sonicated in 0.3 M
perchloric acid for 30 s on ice (200 uL/0.1 g tissue). Samples
were centrifuged at 7600 g for 10 min at 1°C. Supernatants,
cleaned from residue, were collected and used for HPLC mea-
surements. Cell culture media collected from BMDMs were
directly injected into the system. All measurements were per-
formed by a service laboratory with special expertise in HPLC
(Laboratory for Stress Monitoring, Hardegsen, Germany).

Western blotting

Fifty milligrams of e WAT samples were homogenized in 100 pL
RIPA buffer containing 10 mM Tris—HCI (pH 7.5), 150 mM NacCl,
0.25% sodium dodecyl sulfate (SDS), 1% sodium deoxycholate,
1% NP40, 2 mM phenylmethylsulfonylfluorid (PMSF), 1 mM
dithiothreitol (DTT), 10 mM NaF, 1 mM NasO4 and 2 uM
leupeptin, and 4.4 x 10~* TIU/mg aprotinin. After sonication,
the homogenates were centrifuged for 15 min at 12 000 g at
4°C, and supernatants were collected. Total protein content
was measured by Lowry assay (DC Protein Assay, Bio-Rad). Forty
micrograms of protein were separated via SDS-polyacrylamide
gel electrophoresis (PAGE) and transferred to a nitrocellulose
membrane. The membrane was incubated overnight with
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tyrosine hydroxylase (TH) antibody (Millipore, AB152) in 5% milk
to 0.05% TBS-Tween 20 (1:1000), and B-actin antibody (Sigma,
A5441) (1:5000) was used as a loading control. Membranes
were developed using enhanced chemiluminescence reagent
(PerkinElmer, Life Sciences) and visualized by ChemoCam
Imager (INTAS, Gottingen, Germany).

Immunofluorescence staining and quantification

Paraffin sections from eWAT with a thickness of 2 um were
deparaffinized and rehydrated according to standard protocols.
Sections were re-fixed by 10 min incubation in 3.5% formalin,
and antigen retrieval was performed by 15 min of cooking at
110°C in Dako target retrieval solution in the Decloaking
Chamber (Biocare Medical, Berlin, Germany). After 10 min of
blocking in Dako antibody diluent, sections were incubated with
F4/80 (eBioscience #14—-4801) antibody in a 1:2000 dilution for
30 min followed by ImmPRESS anti-rat 1gG (Vector) incubation
for 20 min. For permanent labelling of F4/80 with a fluorescent
tag, sections were treated with Opal 570 (Opal 4-colour IHC kit,
PerkinElmer, 1:50 in amplification reagent) for 10 min.
Subsequently, the antibodies were detached from sections by
microwave cooking in AR6 buffer (Opal 4-colour IHC Kkit,
PerkinElmer), whereas the Opal fluorophore remained fixed to
the tissue. For staining of a second marker, sections were
directly processed further, and the described procedure was re-
peated. Briefly, sections were blocked again and incubated with
anti-TH (Millipore #AB152, 1:5000), anti-Ki-67 (Cell Signaling
#12202, 1:3000), or anti-Ym-1 (Stemcell Tech. #60130, 1:5000).
Following anti-rabbit IgG treatment, antigens were labelled with
Opal 520 (Opal 4-colour IHC kit, PerkinElmer, 1:100 in amplifica-
tion reagent). After microwave treatment, nuclei were stained
with spectral DAPI (PerkinElmer) for 5 min. Tissue sections were
covered with Vectashield HardSet antifade mounting medium
(Vector Laboratories). Fluorescent signals were detected,
separated, and recorded using the Vectra 3.0 multiplex imaging
system (PerkinElmer). Quantification of signals was performed
via inForm automated image analysis software (PerkinElmer).

L3 visceral adipose tissue index analysis of HCC
patients

Computed tomography scans (performed maximally 6 weeks
before surgery) obtained from routine clinical work from 63
HCC patients without liver cirrhosis of the Department of
General, Transplantation, and Visceral Surgery at the Univer-
sity Hospital RWTH Aachen were scheduled for body compo-
sition analysis following ethics approval of the local
authorities. Patients’ age ranged from 21 to 86 years (mean
68), 45% were female and 55% male, body mass index ranged
from 17.7 to 36.3 kg/m? (mean 26), and T stage was 34% T1,
30% T2, 26% T3, and 10% T4. CT scans were selected and

analysed by a single investigator in a blinded approach and
anonymized format using Slice-O-matic software, version
5.0 (Tomovision, Montreal, QC, Canada). The third lumbar
vertebra (L3) was used as a standard landmark to measure
tissue cross-sectional area in cm? as previously reported.21
In short, visceral adipose tissue (VAT) was identified and
quantified on CT images using predefined Hounsfield unit
ranges (—150 to —50 Hounsfield unit). Values were corrected
for height to calculate the L3 VAT index in cm?/m?, providing
good estimates of total body VAT mass.?* We considered our
cohort too small for cut-point analysis by optimal stratifica-
tion and therefore determined cut-off values based on
tertiles stratified by sex. Determining the cut-off at a tertile
enables comparison between groups with a relatively
low/high value to be compared with the rest of the group
while not forcing subjects with a value around the cut-off
value in a low or high category.?? Cut-off values were set at
the lowest tertile for all body composition variables.
Twenty-two cases were excluded due to no CT scan being
available (n = 10), bad quality of the CT scan (n = 5), and L3
not being visible on the scan (n = 7). Consequently, 41 pa-
tients became eligible for analysis. The study was approved
by the local ethics committee (EK 343/15) and was conducted
in accordance to the principles of the Declaration of Helsinki
and ‘good clinical practice’ guidelines.

Statistical analysis

The statistical analyses of animal data were carried out with
Student’s t-test or by one-way analysis of variance, followed
by appropriate corrections or post hoc tests as indicated in
the figure legends. Statistical analyses were carried out with
GraphPad Prism 6 software (GraphPad, CA, USA). Patient
data were analyzed with Fisher’s exact test in SPSSv25
(IBM, New York, USA) software. Data are presented as mean
and standard error of the mean (SEM), and the asterisks in
the graphs indicate statistically significant changes with P
values: P < 0.05, P < 0.01, and ""P < 0.001.

Results

ASV-B mice display robust cancer-associated
cachexia

The transgenic ASV-B mouse line is a well-established HCC
model based on hepatocyte-specific expression of the SV40
large T oncogene.’® In this model, mice develop dysplastic
hepatocytes at 8, hepatic adenomas at 12, and HCCs at
16 weeks of age.?®> We initially evaluated the HCC progression
by measuring liver weight in different age groups. As shown
in Figure 1A, liver weight of ASV-B mice strongly increased
with age compared with tumour-free C57BL/6J controls
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(16 weeks old), reflecting tumour progression. Rather
unexpectedly, this pronounced increase of liver mass did
not affect total body weight. In fact, ASV-B mice were even
slightly lighter than tumour-free C57BL/6J mice between 12
and 18 weeks of age (Figure 1B). Food and water intake were
not different between control and HCC-bearing mice, ruling
out a functional relevance of anorexia in this setting (Figure
1C). Altogether, the observed phenotype led us to consider
tissue wasting and cachexia in the course of ASV-B tumour
formation. To address this, we initially evaluated the mass
of different skeletal muscle regions. As can be seen in Figure
1D, tumour-bearing mice showed a significant decrease in
mass of gastrocnemius, tibialis anterior, and extensor digitorum
longus muscle over time. Furthermore, heart weight was
diminished in ASV-B compared with tumour-free mice in all
age groups (Figure 1D). Along with the muscle wasting, we
observed a striking loss of adipose tissue in tumour-bearing
mice. Measurement of gonadal fat depots revealed that fat loss
started at 12 weeks of age and continued throughout tumour
progression (Figure 1E). A representative image of an ASV-B
mouse at the age of 16 weeks shows visibly smaller gonadal
fat depots and clear tumour nodules in the massively enlarged
liver (Figure 1F). The loss of adipose tissue and muscle mass
illustrates the development of CAC in ASV-B mice.

Defective myeloid cell-mediated inflammation
unexpectedly aggravates loss of adipose tissue in
hepatocellular carcinoma-bearing mice

Systemic inflammation is widely appreciated as a driving
force of cachexia.>* Myeloid cells, for example, granulocytes,
monocytes, and macrophages, are the chief cellular effectors
of the innate immune system and centrally involved in
cancer-associated inflammation.?® Earlier work by us and
others has identified the hypoxia-inducible transcription fac-
tor HIF-1 as an essential regulator of myeloid cell-mediated
inflammation.?® We sought to investigate the functional im-
portance of myeloid cells for the pathogenesis of CAC in
ASV-B mice. To this end, we intercrossed ASV-B mice with
myeloid cell-specific HifIa knockout mice (termed ASV-B/
Hif1a™<, knockout efficiency is shown in Supporting Informa-
tion, Figure S1) and analysed body weight and body composi-
tion. As can be seen in Figure 2A, ASV-B/Hif1aM® mice
displayed a non-significant tendency for higher body weight
than WT mice (termed ASV-B WT). Body composition analysis
by NMR spectroscopy showed a lower amount of total body
fat in ASV-B/Hif1a™ mice, again without reaching statistical
significance (Figure 2B). In addition to NMR analyses, in vivo
LCT imaging of mice was performed to visualize and quantify
body composition. Two-dimensional cross-sectional images
and three-dimensional volume renderings of segmented
bones, lungs, liver, and fat were obtained. In Figure 2C, rep-
resentative puCT images display fat loss in all depots as well

as liver enlargement in tumour-bearing mice. Quantification
of the volume analysis indicated a significant decrease of fat
amount in ASV-B mice compared with controls (Figure 2D).
The total fat amount in ASV-B/Hif1a™® mice tended to be
lower than in ASV-B WT mice (significance level of 0.05, Fig-
ure 2D), which is consistent with the obtained NMR body
composition results. Of note, skeletal muscle and heart
weight did not differ between ASV-B WT and ASV-B/Hif1a™¢
mice (Figure S2). Taken together, the defective myeloid cell-
mediated inflammation did not result in reduced CAC but un-
expectedly aggravated the CAC-associated fat loss.

Visceral adipose tissue of ASV-B mice displays
typical cachexia-associated changes

We sought to identify the mechanisms underlying the loss of
VAT in ASV-B mice and addressed the hypothesis that en-
hanced lipid mobilization takes place in HCC-bearing
mice.?””?® To this end, we quantified the cell size of adipo-
cytes in eWAT and could show substantial cell shrinking be-
tween control and ASV-B mice (Figure 3A). ASV-B/Hif1a™¢
mice had a higher frequency of smaller adipocytes
(<1500 pmz) and lower frequency of larger adipocytes
(1500-4000 umz) than ASV-B WT mice (statistically significant
at 2000 umz) (Figure S3). It recently became clear that white
adipose tissue (WAT) is able to switch to a thermogenic fat-
burning phenotype (termed ‘browning’).?° This process was
found to contribute to the increased energy expenditure typ-
ical for cachexia in different mouse models of cancer ca-
chexia.”®?° We found significantly elevated mRNA levels of
various browning marker genes in WAT of ASV-B mice in com-
parison with tumour-free controls (Figure 3B), demonstrating
WAT browning in this HCC model. Of note, myeloid cell-
specific deletion of HifZa did not impact on browning marker
gene expression in WAT (Figure 3B). Next, we focused on li-
polysis of adipose tissue and performed an ex vivo lipolysis as-
say from eWAT. This assay allowed us to measure the
secretion of glycerol from eWAT explants and demonstrated
that ASV-B/Hif1a™® mice mobilize fat more efficiently than
ASV-B WT mice (Figure 3C). Finally, we checked whether se-
rum levels of triglycerides were increased. Here, under ad
libitum food intake conditions, triglyceride levels were found
elevated in ASV-B mice compared with controls. However,
ASV-B WT and Hif1a™ mice exhibited similar triglyceride
levels (Figure 3D).

Neither tumour load, pro-inflammatory cytokine
expression, nor hypothalamic activation underlie
the enhanced fat loss in ASV-B/Hif1aM¢ mice

Having confirmed the unexpected aggravation of cancer-
associated VAT loss in ASV-B/Hif1a™ mice, we next sought

Journal of Cachexia, Sarcopenia and Muscle 2019; 10: 1128-1142
DOI: 10.1002/jcsm.12450



1134 Macrophages and liver cancer cachexia

Figure 1 Characterization of cachexia in ASV-B mice. (A) Liver weight and (B) total body weight of C57BL/6 and ASV-B mice (n = 8 per group) were
measured at the indicated time points. (C) Food and water intake were measured weekly from 8 to 18 weeks of age in control (n = 3) and ASV-B
(n = 8) mice. (D) Different muscle parts (GC, gastrocnemius; TA, tibialis anterior; EDL, extensor digitorum longus) were dissected and weighed for
C57BL/6 mice (n = 3) and ASV-B mice at the indicated time points (n = 8, 5, and 4 in 12, 16, and 18 weeks, respectively). (E) The gonadal fat pad
was removed and measured at (n = 8 per group) at the same time points used in (D). Data represent means with SEM. P < 0.05; “p < 0.01;
"'p < 0.001 according to two-way analysis of variance (A), one-way analysis of variance followed by Tukey post hoc test (B, D, E), or unpaired Stu-
dent’s t-test (C). Panel (F) shows a general view of the abdominal cavity (above) and the resected livers (below) of control and ASV-B mice at the
16 week time point.
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to identify the underlying mechanism(s). One obvious expla-
nation would be an effect of the myeloid cell-specific HifZa
deletion on HCC formation, as we have observed for intesti-
nal tumours.>® However, neither pCT-based quantification
of liver volume (Figure 4A), gross liver weight, nor histology-
based measurements of tumour load (Figure 4B) displayed a

difference between WT and ASV-B/Hif1aM® mice. As the hy-
pothalamus is able to control lipid uptake and mobilization
in WAT,>® we analysed the activation state of neurons in
the nucleus arcuatus (ARC) of the hypothalamus.>® Figure
4C shows the number of c-Fos positive (+) cells in the ARC,
reflecting the level of recent neuronal activation. The
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Figure 2 Myeloid cell-specific HifZa knockout mice show aggravated fat loss in ASV-B mice. (A) Body weight of ASV-B wild type (WT) (n = 8) and
Hif1a™¢ (n = 6) mice over time. (B) Weekly follow-up nuclear magnetic resonance analysis (n = 7 per group) for body fat quantification. (C)
Microcomputed tomography (1CT) imaging at 14-week-old C57BL/6, ASV-B WT, and ASV-B/Hif1a'" mice; upper panel shows representative two-di-
mensional cross-sectional nCT images in transversal planes of the abdomen of one representative mouse from each group (subcutaneous and visceral
fat tissue is indicated in blue and green, respectively). Lower panel, representative images of three-dimensional volume renderings of segmented
bones (white), lungs (pink), liver (brown), and fat (blue/green) upon in vivo uCT imaging, scale bar 1 cm. (D) Quantification of fat volume via pCT im-
aging (n = 3 per group). Data show means with SEM. P< 0.05; “p< 0.01; "

P < 0.001 according to two-way analysis of variance (A, B) and one-way
analysis of variance followed by Tukey post hoc test (D).
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numbers of c-Fos+ cells in HCC-bearing mice are significantly
increased, arguing for an elevated activation of the ARC. As
the sympathetic nervous system has been shown to mediate
the effects of the hypothalamus on WAT,?® we measured cat-
echolamine levels in peripheral fat tissue and found a signifi-
cant increase in ASV-B compared with tumour-free mice
(results for noradrenaline shown in Figure 4D, adrenaline
was not detectable). Again, myeloid cell-specific HifZa dele-
tion remained without a significant effect in these experi-
ments. In adipose tissue, macrophages were suggested as
an alternative source of catecholamines,'” although contra-
dictory findings were published in later reports.>* Of note,

we were not able to detect noradrenaline or adrenaline in su-
pernatants from BMDMs from WT and Hif1a™ mice, arguing
that macrophages are not a likely source for catecholamines
in adipose tissue. Next, we stained eWAT for TH, a marker
of sympathetic neurons, the cells that synthesize catechol-
amines in their axons. Quantitative differences were ob-
served neither between control and ASV-B mice nor
between ASV-B WT and Hif1a™ mice (Figure 4E and 4F). Fi-
nally, we determined serum levels of pro-inflammatory cyto-
kines, which have been shown in numerous studies to be
positively associated with cachexia.®>3® TNF-q, IL-6, and IL-
1B are the best studied pro-inflammatory cytokines among
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Figure 3 Lipolysis and browning occur in adipose tissue of ASV-B mice. (A) Adipocyte cell size analysis in 16-week-old C57BL/6 (n = 5), ASV-B wild type
(WT) (n = 4), and ASV-B/Hif1a"' (n = 4) mice. Representative haematoxylin and eosin images of epididymal white adipose tissue (eWAT) of 16-week-
old mice (right side), scale bars 50 pm. (B) mRNA levels of browning marker genes (UcpZ, Ppargcla, Pparg, Prdm16, and Cidea) as determined by quan-
titative PCR in e WAT of 16-week-old C57BL/6 (n = 3), ASV-B WT (n = 3), and ASV-B/HiflaMC (n = 4) mice. (C) Glycerol release from eWAT of 16-week-old
C57BL/6 (n = 4), ASV-B WT (n = 3), and ASV—B/HiflaNIc (n = 3) mice as measured via ex vivo lipolysis assay for 2 h. (D) Triglyceride levels in serum of
C57BL/6 (n = 3), ASV-B WT (n=9), and ASV-B/Hif1a™¢ (n =9) mice. Data show means with SEM. P< 0.05; “p< 0.01; "'p < 0.001 according to one-

way analysis of variance followed by Tukey post hoc test.
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these, and they can be secreted by macrophages.?* ASV-B WT
mice showed significantly increased serum levels of 1I-6, 1I-1f3,
and Tnf-a compared with tumour-free control mice (Figure
4G). What is more, serum levels of 1I-1B were significantly re-
duced, while IL-6 and TNF-a showed a tendency for decrease
in ASV-B/Hif1aM® mice. Collectively, these results suggest a
functional interplay of pro-inflammatory cytokines and the
hypothalamus-peripheral sympathetic nervous system axis
in regulating tumour-associated lipolysis in ASV-B mice.

Abundance of adipose tissue macrophages is
controlled by Hif1a

Macrophages have been shown to be important for adipose
tissue homeostasis and can be recruited to and accumulate
in adipose tissue after lipolysis, where they take part in local
lipid regulation.®” Against this background, we characterized
different biological aspects of adipose tissue macrophages
(ATM) in ASV-B mice. As it was shown that alternatively
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Figure 4 Analysis of potential mechanisms for enhanced fat loss in ASV—B/Hh‘la'VIC mice. (A) Liver volume calculation using microcomputed tomography
images (n = 3 per group). (B) Livers were weighed at indicated time points (n =7, 4, and 4 at 12, 16, and 18 weeks, respectively), and tumour area assessment
was performed at 16-week-old ASV-B wild type (WT) and Hif1a™ mice (n = 3 per group). (C) Number of c-Fos+ cells in arcuate nucleus (ARC) of the
hypothalamus of C57BL/6 (n = 2), ASV-B WT (n = 5), and ASV-B/Hifla'VIC (n = 3) mice at 16 weeks of age. (D) Noradrenalin levels in epididymal white adipose
tissue (eWAT) of 16-week-old C57BL/6 (n = 3), ASV-B WT (n = 5), and ASV-B/Hif1a"' (n = 4) mice. (E) (left) Representative images of immunofluorescence
staining of tyrosine hydroxylase (TH) in eWAT from C57BL/6 (n = 5), ASV-B WT (n = 4), and ASV-B/Hif1a™"® (n =5) mice, scale bars 50 pm; (right) quantification
of staining, stained cells calculated as relative percentage of all counted cells. (F) Western blot of TH in eWAT from 16 weeks old ASV-B mice. (G) Serum
inflammatory cytokine levels in control (n = 8), ASV-B WT (n = 11), and Hif1a™ (n = 8) mice. Data show means with SEM. P < 0.05; P < 0.01;

P

P < 0.001 according to one-way analysis of variance followed by Tukey post hoc test (A, B, C, D, E, G) and unpaired Student’s t-test (B, F).
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activated macrophages predominate under conditions of lipid
mobilization,*® we decided to analyse macrophage polariza-
tion in our model. We applied different experimental ap-
proaches, none of which showed a significant effect of
Hif1a deletion on polarization of ATM (Figure 5A and 5B).
Next, we determined ATM abundance via immunohistochem-
istry against F4/80. Interestingly, while a significant increase
in ATM number was noted in ASV-B WT animals, this was
completely inhibited upon HifZa deletion (Figure 5C). Finally,
we sought to address a possible contribution of ATM prolifer-
ation in our setting. As can be seen in Figure 5D, loss of Hif1a
resulted in a significant decrease of Ki67-positive ATMs, argu-
ing for a functional importance of HIF-1a for ATM prolifera-
tion that has not been previously appreciated.

Quantification of visceral adipose tissue in HCC
patients

The robust fat loss of ASV-B mice raised the question about
the relevance of this phenotype for the human situation. To
this end, we made use of a cohort of HCC patients (n = 41;
patient characteristics are given in Materials and methods
section) without underlying liver cirrhosis as the ASV-B model
is also not associated with hepatic fibrosis.® Interestingly,
34% of the patients indeed displayed low VAT as determined
by the L3 VAT index (Figure 6). Low L3 VAT index was signif-
icantly associated with low body mass index (P < 0.001),
young age (P = 0.017), and female sex (P = 0.027), while no
association was found with tumour stage.

Discussion

Clinical care of patients with HCC is characterized by various
challenging obstacles. Co-morbidities of chronic liver disease,
limited resectability due to cirrhosis-associated reduction of
functional liver reserve, and the stout therapy resistance of
HCC are among the most widely recognized impediments.
For the longest time, the frailty and pronounced muscle
weakness that characterizes the majority of HCC patients re-
ceived much less attention. This has significantly changed in
recent years as reports were published from independent
groups about the important role of sarcopenia and cachexia
in predicting both clinical course and response to therapy of
HCC patients.*3°™*! Cachexia is widely considered to be a
multifactorial syndrome with various manifestations through-
out the whole body. The causal pathogenesis of cachexia is
very complex and involves a plethora of organs, cell types,
hormones, cytokines/chemokines, growth factors, and inter-
organ crosstalks.**** To better understand the molecular
and cell biological mechanisms that govern cachexia, model

systems are needed that recapitulate the syndrome on a
whole organism level.**

Here, we identify a robust cachexia phenotype in the well-
established ASV-B mouse HCC model.** Various characteristic
aspects of cachexia were noted in ASV-B mice, for example,
loss of skeletal and heart muscle as well as adipose tissue
mass over time, enhanced pro-inflammatory cytokine expres-
sion in blood, anaemia (Figure S4), and weight loss. While a
number of animal models are available to study CAC,*® only
one is widely used with respect to HCC-associated CAC: the
rat ascites hepatoma Yoshida AH-130 model.*’” This model
proved of great value to test the anti-cachexia efficacy of var-
ious agents in vivo. However, it does not adequately mirror
the pathogenesis of HCC as its heterotopic nature does not
reflect the liver micro-environment. Furthermore, the AH-
130 cells have been established more than 60 years ago,*®
and it is reasonable to assume that since then, they have ac-
quired a lot of additional changes with unknown relevance
for HCC pathogenesis. Recently, it was reported by the group
of Erwin Wagner that 50% of mice harbouring di-ethyl-nitro-
samine-induced HCCs developed signs of cachexia at 16—
18 months of age.?® While this is a very interesting finding
that significantly expands the models available to study
HCC-associated CAC, the long time spans in combination with
a penetrance of 50% are surely obstacles against widespread
use of this model. Against this background, it is important to
note that in ASV-B mice, we were able to detect signs of ca-
chexia with 100% penetrance as early as 12 weeks of age. We
therefore consider the ASV-B model to be a powerful addi-
tion to the available methodology enabling a better under-
standing of the mechanistic underpinnings that underlie
HCC-associated CAC.

Loss of adipose tissue is a well-known aspect of CAC and
has been noted in animal models as well as samples from pa-
tients with various types of cancer.* It has been reported
that adipose tissue loss precedes muscle wasting®° and that
inhibition of the former is able to slow down the latter.** Re-
duced peripheral fat content in CAC can be the result of three
different processes in adipocytes: lipid uptake, intracellular
de novo lipogenesis, and lipid release.® Our finding of VAT
wasting in ASV-B mice is well in line with various other mu-
rine CAC models*® and also with the rat hepatoma Yoshida
AH-130 model.* To the best of our knowledge, we are the
first to report a functional significance of macrophages for
HCC-associated fat loss. Intercrosses of ASV-B with mice
showing defective myeloid cell-mediated inflammation
resulted in aggravated fat loss. Via immunohistochemistry,
we could show greater macrophage abundance in adipose
tissue from WT tumour-bearing mice, while this phenotype
was completely inhibited in knockout mice. This led us to
hypothesize that HCC-induced adipose tissue mobilization
results in macrophage influx, ultimately inhibiting lipid re-
lease. This would be well in line with earlier reports showing
macrophage-mediated suppression of lipid mobilization from
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Figure 5 Macrophage phenotype and proliferation in visceral adipose tissue. (A) (left) Representative images of F4/80 and Ym-1 immunofluorescence
in epididymal white adipose tissue (eWAT) from ASV-B wild type (WT) (n = 4) and Hif1a™¢ (n =5) mice, scale bars 50 pm; (right) quantification of F4/80/
Ym-1 double staining, stained cells calculated as relative percentage to all counted cells. (B) mRNA expression analysis of markers for classically (Tnfa,
Nos2, and Cd274) and alternatively (Arg1, Mrc1, Clec10a, and Il-10) activated macrophages in e WAT from 16 weeks old ASV-B WT (n = 4) and Hif1a™'¢
(n = 5) mice. (C) (left) Representative images of immunofluorescence staining of F4/80 in eWAT from C57BL/6 (n = 5), ASV-B WT (n = 4), and ASV-B/
Hif1a™'¢ (n = 5) mice, scale bars 50 um; (right) quantification of staining, positive stained cells calculated as relative percentage of all counted cells. (D)
(left) Representative images of immunofluorescence staining of F4/80 and Ki67 in e WAT from C57BL/6 (n = 6), ASV-B WT (n = 4), and ASV-B/Hif1a™'®
(n =5) mice, scale bars 50 um; (right) quantification of staining, double positive stained cells calculated as relative percentage of all counted cells. Data

show means with SEM. P < 0.05; “p<o0.01 according to unpaired Student’s t-test (A, B) and one-way analysis of variance followed by Tukey post hoc
test (C, D).
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Figure 6 A subgroup of human hepatocellular carcinoma (HCC) patients
shows a reduced amount of visceral adipose tissue (VAT). Distribution
of 41 patients according to L3 VAT index that was calculated from com-
puted tomography images of patients. The patient group was divided into
tertiles for L3 VAT index, and the lower tertile was compared with the
medium/high tertile. The low tertile L3 VAT index was defined by a cut-
off value of 35.

200-
&
£
N - ([ ]
,_E, 150
L .. Y
X
S 100- o
£ e 14
= @ o
< 504 "
o 000% °
-l %8000
0 e .
Low Medium/high
HCC patients

adipose tissue in response to fasting and pharmacologically
induced lipid release in mice.3” Greater macrophage numbers
have also been reported in adipose tissue of patients with
CAC,>* underscoring the need to better understand the func-
tional significance of these cells for cancer cachexia.

To analyse the role of macrophages for HCC-associated ca-
chexia, we made use of a mouse model displaying a defect in
myeloid cell-mediated inflammation.?® This is achieved by
conditional deletion of HifZa in cells of late myeloid differen-
tiation via the Cre/loxP system.> HifZa encodes for the tran-
scription factor hypoxia-inducible factor lo (HIF-1a), the
principle mediator of the cellular response to hypoxia.>*
HIF-1a target genes control virtually every aspect of the hyp-
oxic response, for example, erythropoiesis, angiogenesis, glu-
cose metabolism, and cell cycle modifications. Inactivation of
Hifla in myeloid cells severely impairs energy generation,
leading to robustly compromised cellular function and defec-
tive myeloid cell-mediated inflammation.?® Our finding of re-
duced macrophage abundance in adipose tissue during HCC-
associated cachexia is well in line with earlier findings by us
and others, demonstrating impaired chemotaxis and migra-
tion of HifZa-deficient macrophages, neutrophils, and eosino-
phils in a wide range of underlying pathologies.?®>* One
limitation of our study is that we were not able to identify
the origin of ATM. The pool of resident ATMs is composed
of cells that developed from yolk sac-derived progenitors
and from monocyte precursors, respectively.>® To clearly dif-
ferentiate between these, lineage tracing methodology has to
be applied, which was out of the scope of the current project.

In addition, the important question as to the molecular stim-
uli that attract macrophages to adipose tissue in HCC-bearing
mice remains to be addressed in the future. Published work
points towards adipocyte-secreted chemokines, for example,
MCP-1/CCL2, and free fatty acids.>’°® Of note, expression of
the MCP-1 receptor CCR2 on monocytes®’ and signal trans-
duction induced by TLR4,°® the putative cellular receptor for
free fatty acids,®® are strongly influenced by HIF-10, poten-
tially explaining the reduced macrophage abundance in adi-
pose tissue upon HifZa deletion. In addition to macrophage
abundance, our results show reduced proliferation of ATM
in conditional HifZa knockout mice. While local proliferation
of macrophages has been shown in adipose tissue inflamma-
tion associated with obesity,®® we are the first to report local
macrophage proliferation in the setting of CAC-associated fat
loss. Furthermore, a functional role of HIF-1a for macrophage
proliferation has thus far only been reported for bovine mac-
rophages after infection with the parasite Theileria
annulata®® and not for murine cells. Admittedly, the percent-
age of local macrophages that proliferate is rather small.
Hence, the functional significance of this observation for
CAC-induced lipolysis remains elusive and needs to be vali-
dated in future studies. In recent years, hypoxia and
hypoxia-associated pathways, for example, tissue vasculariza-
tion, emerged as important aspects of various adipose tissue
pathologies, most prominently obesity-associated inflamma-
tion.®? The intriguing question whether adipose tissue hyp-
oxia is of functional relevance for lipolysis in ASV-B mice
was out of the scope of the current project and is currently
being investigated by us.

In line with the mouse model data, we were able to show
that a subgroup of HCC patients displays a reduced amount
of VAT. This strongly suggests that HCC is also capable of in-
ducing fat mobilization from peripheral stores in human pa-
tients. To prove this convincingly, one would have to
perform longitudinal patient studies, that is, analysing the
same patient at different stages of disease progression, a
venture out of scope of the current project. In other cancer
types, for example, pancreatic adenocarcinoma, adipose tis-
sue loss is a well-known phenomenon with clinical relevance
as it is able to predict survival.®® The functional importance of
adipose tissue loss for the clinical course of HCC needs to be
addressed by future studies with larger patient cohorts. In
light of the leading role of adipose tissue loss for the se-
quence of events characterizing cancer cachexia,'* a better
understanding of the mechanisms driving HCC-associated
fat mobilization is warranted.
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row-derived macrophages isolated from WT and Hif1a™M¢
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