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ABSTRACT Industry 4.0 leverages on cyber-physical systems (CPSs) that enable different physical
sensors, actuators, and controllers to be interconnected via switches and cloud computing servers, forming
complex online systems. Protecting these against advanced cyber threats is a primary concern for future
application. Cyberattackers can impair such systems by producing different types of cyber threats, ranging
from network attacks to CPS controller attacks, which could impose catastrophic damage to CPS infrastruc-
ture, companies, governments, and even the general public. This paper proposes a learned monitor, analyze,
plan, execute, and knowledge (MAPE-K) base model as a method for supporting self-adaptation for the
CPSs, ensuring reliability, flexibility, and protection against cyber threats. The model aims to gauge normal
behavior in an industry environment and generate alarms to alert users to any abnormalities or threats. In turn,
our evaluation shows 99.55% accuracy in detecting cyber threats.

INDEX TERMS Legitimate, malicious attacker, monitor, analysis, planning, execution, and knowledge base
model, machine learning.

I. INTRODUCTION
Cyber-physical systems (CPS) have become the backbone
of modern automation and data exchange in manufacturing
technologies, more commonly known as Industry 4.0. This
includes CPSs such as the Internet of Things (IoT), cloud
computing, and cognitive computing. Therefore, protecting
such systems against different types of cyber threats has
become a challenge in the modern industry, wherein data pro-
tection, safety, and security are top priorities [1]. Reliability
and availability of CPS communications, which can be con-
sidered as highly heterogeneous and dynamic, are affected
by numerous threats. Essentially, these communications pro-
vide interconnections between sensors, actuators, and con-
trollers. Within these environments, controllers connect to
switches, which eventually forge links to computing servers.
In this sense, heterogeneous communication networks can be
viewed as the main enabler between operational technology
and information technology (IT) in the next phase of the
industrial revolution.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zonghua Gu.

Moreover, modern industrial systems have evolved into
autonomous IoT and CPS systems that require greater
reliability and availability [2]; however, this has made Indus-
try 4.0 vulnerable to cyberattacks. As a result, the Indus-
try Internet Consortium [3] identified a broad range of
possible weaknesses that may threaten this revolution. For
example, smart sensors, actuators, controllers combined with
programmable logic control (PLC), and servers combined
with control software are just some potential vulnerabilities.
In addition, the National Institute of Standards and Technol-
ogy (NIST) deemed a range of influential factors possible
cyber threats to industry environments, including PLCmanip-
ulation, denial of control actions, and spoofed computing
servers [4]. Cyber threats could also be exposed to different
system layers [5]. Notably, sensor and actuator tiers may be
subject to brute force attacks, while the network tier may be
subject to flooding transmission control protocol (TCP) SYN
attacks (a type of denial-of-service [DoS] attack). Similarly,
the control tier may be threatened by remote users changing
PLC parameters.

Current networking technologies provide great capabil-
ity to detect different types of cyber threats, ranging from
DoS attacks affecting networks, to PLC attacks affecting
CPS controllers. Notably, recent data link technologies have
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led to software running over networks in Industry 4.0 sys-
tems, making them relatively more flexible, powerful, and
operationally simpler. SYN flooding attacks exhaust network
resources, starting from the data link layer, computing server,
memory, router, and finally to end-host resources to exhaust
the backlog of half-open connections corresponding to each
port number for any application in an industrial environ-
ment [6]. The aim is to send a quick spoofed SYN seg-
ment to the server using a spoof IP address, and to refrain
from responding to SYN + ACK segments produced by the
server [7]–[9].

The monitor, analyze, plan, execute, and knowledge
(MAPE-K) model in [10] was used to enable Industry 4.0
to self-adapt, self-heal, self-optimize, self-secure, and gain
self-control [11], [12]. This existing model relies on prede-
fined self-adaptation policies such as event–condition–action
(ECA) policies, goal policies, or utility function policies [13],
which are generated using automated planning. Importantly,
the MAPE-K cannot detect new cyber threats if they are not
predefined in ECA; thus, this represents a major problem for
Industry 4.0.

Therefore, this paper proposes a new control system archi-
tecture and learnedMAPE-Kmodel that can gauge and detect
any cyber threats targeted at CPSs in Industry 4.0. As a result,
such systems will be able to self-predict any threats and
protect themselves against unlawful breaches of data and/or
control parameters, including spoofed SYN flooding attacks.

This paper contributes to the literature by:
• developing a new control system architecture for
Industry 4.0

• developing a learned MAPE-K model based on a sup-
port vector machine–radial basis function (SVM–RBF)
machine learning (ML) method to gauge normal behav-
ior and generate alerts for abnormalities in Indus-
try 4.0 environments.

The remainder of this paper is organized as follows. Section II
provides the related work, while Section III explores Indus-
try 4.0 system architecture. Sections IV and V next present
the evaluation and conclusion, respectively.

II. RELATED WORKS
As CPSs become more intelligent, interconnected, and cou-
pled with physical devices, security grows in concern.
Security-related information is required to build different
activities ranging from security analysis to design secu-
rity control. The scientific community proposed security
approaches based on Reference Architecture Model for
Industry 4.0 (RAMI 4.0) standards [14], which list and cata-
log risk architecture levels, vulnerabilities and security issues
in CPS.

A RAMI 4.0 approach helps CPSs implement a self-
adaptation approach [15] that enables the system to modify
its behavior and achieve its predefined performance objec-
tives [16]. Therefore, the main goal of a self-adaptive system
is to handle unexpected events such as failures, cyber threats,
and undesired changes in the CPS environment. Moreover,

self-adaptive systems can monitor, analyze, and plan for
unexpected events, then autonomously put them in specific
reaction procedures. Various approaches have been used to
implement self-adaptation in control systems, such as [13]
and [11]. The approach in [10] also did this, relative to only
the most essential of functions, as described in the proposed
MAPE-K reference model [17]. This approach investigated
how anomaly detection can be used to support both monitor
and analysis phases in MAPE-K.

An intrusion detection system (IDS) may include
signature(-based) detection (SD), stateful protocol analy-
sis (SPA), and anomaly(-based) detection (AD) [18]. SPA and
SD can only detect known threats using signatures and rules
to describe malicious events mentioned in a blacklist [19],
while AD approaches can detect unknown attacks using
a baseline of normal CPS behavior, known as whitelist-
ing [20]. Indeed, rapid changes in cyber threats demand IDS
self-learning approaches. Finally, AD approaches are self-
learning methods that automatically and autonomously learn
a system’s behavior and adapt relative to these changes —
providing grounds for detecting intruders.

There are three AD self-learning methods: supervised,
semi-supervised, and unsupervised [21]. Unsupervised meth-
ods do not require labeled data and can distinguish between
malicious and honest sources using training data. Semi-
supervised methods are used when training data contain
anomaly-free data only, and supervised methods are used for
training sets containing normal and abnormal data.

An access control list (ACL) or ACL tokens [22]–[24] were
proposed to prevent SYN attackers from placing arbitrary
source addresses in their packets, sending them to different
destinations. In the context of software-defined network-
ing (SDN), [25] provided the SDN with TCP proxy anti-
spoofing techniques to mitigate a spoofed SYN flood attack.
However, this changes the SDN data path by adding and
modifying the data-plane header. Nonetheless, [26] addressed
the analysis and design of TCP handshaking, the process
of forging communication with the server in the industry
field, and found that neither a DoS nor a spoofed SYN flood
attack were of concern. In addition, the implementation of
a handshake modifies data-plane headers by adding logic,
increasing delay and SDN network complexity in the industry
environment. Similarly, [27] explored remotely triggered
black hole (RTBH) filtering as a routing protocol for diverting
DoS attack traffic, while elastic scaling using network func-
tions virtualization (NFV) was proposed in [28]. Meanwhile,
the implementation of an HTTP redirect and TCP reset as a
SYN anti-spoofing approach for Industry 4.0 was described
in [29].

Traceback and pushback are more sophisticated network
methods for tracing spoofed source addresses to detect net-
work attacks [30]–[33]. Traceback focuses on identifying
the source of spoofed addresses; like source address fil-
tering, it does little to avoid attacks. This is unlike DoS
attacks, which use a large number of compromised machines.
As such, traceback methods are invaluable in detecting and
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FIGURE 1. The four-level system architecture for Industry 4.0 control
systems.

mitigating DoS attacks that target industry TCP commu-
nications. Conversely, pushback proposes to overcome the
limitations of traceback in [34], [35], but as it is used for
dynamic traffic filtering, it focuses solely on controlling link
bandwidth and determines whether it is flooded.

Focusing back, AD is a statistical rule-based method of
classifying traffic as either friendly or malicious [36], [37].
In the latter case, malicious attackers may cause a num-
ber of actions such as sending automatic e-mails, raising
alarms, or installing network filters. To alleviate this problem,
the response to spoofed addresses must be fast to avoid
damage or loss of service. For PlanetLab (a test bed for
networking), 10% of its sites were to immediately disconnect
machines due to receiving automated e-mail messages gener-
ated through such AD systems. Therefore, using this method
to mitigate spoofed addresses is insufficient. That said, if
we could start over, how would we redesign the traditional
MAPE-K model to resist cyber attacks within Industry 4.0?

This paper proposes a fully supervised statistical ML to
detect different types of cyber threats in CPSs. All previous
efforts were based on data extracted from sensors, actuators,
and controllers, whereas our solution is grounded on using
fully supervised statistical ML as a method of instructing the
traditionalMAPE-Kmodel to gauge normal system behavior,
while generating alerts upon detecting different cyber threats.
These range from spoofed flooding SYN attacks targeting
computing servers, to those compromising PLC ladder logic.

III. INDUSTRY 4.0 SYSTEM ARCHITECTURE FOR
SELF-ADAPTIVE CPS
This section discusses Industry 4.0 system architecture to
enable and help control CPSs to become self-adaptive
learning systems.

A. INDUSTRY 4.0 CONTROL SYSTEM ARCHETICURE
Fig. 1 describes the proposed control system architecture
for Industry 4.0 using four levels, or components. First, the

FIGURE 2. MAPE-K cycle.

management level provides the means to view and command
automation system data. This level can serve as the opera-
tor workstation or computing server with appropriate soft-
ware. When workstations operate in a stand-alone capacity,
they can connect temporarily in a variety of ways, such as
with a network address translation (NAT) firewall. When
one ormore operator workstations permanently connect to the
system over an Ethernet connection, one acts as the system
server and all others are clients. Meanwhile, integration-level
components are controllers. These intelligent programmable
devices work with the components at the management level to
implement control strategies for an entire CPS facility. Next,
the field controller level sees programmable devices support
a range of applications for field control equipment, such as
central plant and mechanical equipment. Finally, sensors and
actuators include devices such as sensors, which can serve
as both tenant control centers and field service tools. Most
research studies on control systems ignore the fact that the
management level is vulnerable to malicious attacks. Instead,
the literature emphasizes how to mitigate such attacks and
build their approaches based on data extracted from sensors
and actuators levels.

B. INDUSTRY 4.0 SELF-ADAPTIVE CONTROL SYSTEM
Existing industry control systems are self-adaptive and
apply feedback loops, as explained in the MAPE-K model.
Essentially, this configuration integrates computational and
physical components in CPSs and can be considered the cru-
cial reference control model for automatic and self-adaptive
systems [17], as shown in Fig. 2.

The ‘knowledge’ base represents the data related to the
targeted system environment, including software control
parameters, adaptation goals, sensors, and actuator data saved
in the management level (as shown in Fig. 1). The monitoring
phase then contains all the data collected from the sensors and
actuators level, while the analysis phase determines whether
adaptation is required. If so, the planning phase next carries
out the necessary actions following some predefined poli-
cies, which are necessary to achieve CPS system goals. The
final execution phase completes the process and performs
the required actions using actuators. Together, these phases
in the MAPE-K model communicate with each other in the
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knowledge phase using Ethernet technology at the manage-
ment level. These phases can be decentralized throughout
multiple loops in the CPS.

The main function of the monitoring phase is to collect
data from the physical field and forward this information onto
the second phase (analysis). Herein, these data are filtered
to separate the necessary information from the unnecessary
information, and subsequently analyzed to determine if any
adaptation is required. Therefore, if the system is operating
at suboptimal conditions, modification requests are generated
in the analysis phase and delivered to the planning phase.

In the planning phase one or more predefined self-
adaptation policies are selected to generate a required action,
which is forwarded to the execution phase. The type of prede-
fined self-adaptation policies is based on delivered data from
the analysis phase. These policies can be ECA policies, goal
policies, or utility function policies [13], which are generated
using automated planning.

The execution phase next executes actions delivered from
the planning phase using actuators from the sensors and
actuators level (see Fig. 1). Servers at the management level
(as in Fig. 1) can be used to carry out actions from the
planning phase and forwarded to actuators.

Evidently, the MAPE-K model is static in nature and relies
on predefined policies that reside in the planning phase [10].
Therefore, if there are any new malicious attacks not previ-
ously defined in that phase, MAPE-Kwill fail to generate any
actions to protect the CPS system. This can be considered
a crucial deficiency in the current industry’s control system
protection. Moreover, the knowledge, planning, and execu-
tion phases reside in servers or at the management level,
which can also be considered vulnerable to DoS flooding
SYN attacks. According to MAPE-K model design, this
type of model cannot deal with attacks that target high-level
application in a server.

C. INDUSTRY 4.0 SELF-LEARNING ADAPTIVE
CONTROL SYSTEM
As described in Section B, MAPE-K is a self-adaptive model
that relies on predefined policies to alter CPS controls against
uncertain conditions. However, the model is not dynamic and
cannot, therefore, detect new cyber threats if they are not pre-
defined in the planning phase. As it lacks CPS control system
knowledge to adapt in uncertain conditions, this paper pro-
poses aMAPE-Kmodel that understands Industry 4.0 control
systems and automatically adapts itself to detect and mitigate
abnormal behavior. As shown in Fig. 3, this would mean
that in the monitor phase necessary data are collected from
sensors and forwarded to the learning phase. At this point,
a collection of crude information follows are generated by
typical VLX programs as well as numerous attacked VLX
programs. The next step is to extricate positive and negative
feature vectors from this information to perform supervised
learning, which comprises the following steps: (1) settling
a feature vector sort; (2) collecting feature vectors from the
data; and (3) applying a supervised learning calculation.

FIGURE 3. Industry 4.0 self-learning adaptive model.

First, Step (1) (feature vector sort) must be characterized
to suitably speak to objects of the information. That is, for
traces of sensor information, a straightforward feature vector
would comprise of the sensor values at any given time point.
However, for commonplace CPSs, such feature vectors are
both distant and basic, since they do not typify approximately
how the values evolve over time — an inborn portion of
the physical model. A more valuable feature vector would
record the values at fixed time interims, making it conceivable
to memorize designs around how the levels of hot water,
for example, alter over the time series. Within the case of
a hot water system (HWS) test (described in Section IV),
we defined our feature vectors to be of the shape h, h−, where
h denotes the hot water temperature at a certain time and h−

denotes the values of the same water temperature after t time
units; here, t is some settled time interim of a different interval
at which information is logged. The feature vectors are based
on the sliding window strategy commonly utilized for time
series information [38].

Step (2) (collecting feature vectors) next sees the raw
normal and irregular information sorted into positive and neg-
ative feature vectors of the sort chosen in Step (1). Extricating
positive feature vectors from the normal data is direct, but
one can encounter trouble when dealing with their negative
counterparts, in that attacked VLXs are not guaranteed to
be compelling (i.e., able to create information distinguish-
able from typical vectors). Besides, a successfully attacked
VLX may not cause a prompt alter. It is also vital not to
mislabel normal information as abnormal, as additional sift-
ing is required. Likewise, collecting positive feature vectors
is exceptionally basic: all possible pairs of physical states
(h; h−) are extricated from the normal traces. For each
combination (h; h−) extricated from the abnormal traces,
the unmodified test system is run on h for t time units. If the
unmodified test system leads to a state distinguishable from
h−, the initial match is collected as a negative feature vector;
in case it leads to a state that is undefined from h−, it is
disposed of (since the transformation had no effect). In the
case of an HWS, its test system is deterministic, permitting
for this judgment to be made effortlessly.

In Step (3) (learning), once the feature vectors are collected
a statistical ML calculation can be connected to memorize
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TABLE 1. HWS security metrics and learnt adaptive action schedule.

a model. For the HWS test, we applied an SVM as our
supervisedML approach since it is fully automatic, with well-
developed dynamic learning techniques and a good library
(we utilized LIBSVM [39]). Further, SVM has expressive
parts and has regularly and successfully been applied to
time arrangement expectations [40]. Based on the training
data, SVM endeavors to memorize the (obscure) boundary
that separates it. Distinctive classification capacities exist for
expressing this boundary, extending from ones that aim to
discover a simple linear division between the information,
to non-linear solutions based on RBFs (distinctive classifi-
cation functions for HWS are discussed in Section IV). For
the purpose of approving the classifier and evaluating its
generalizability, it is vital to train it as if it were a parcel
of the featured vectors, saving a portion of the information
for testing. We arbitrarily selected 70% of the feature vectors
for the preparatory set, saving the rest for evaluation, and
noted that SVM can battle tomemorize a reasonable classifier
on the off chance that the data were exceptionally lopsided.
For the case of the HWS test, one test system was delegated
for ordinary data, and boundless attacked VLX test systems
were for producing abnormal data. To guarantee its adjust-
ment, we undersampled the negative feature vectors. LetMNo
signify the number of positive feature vectors and MNe the
number of negative feature vectors collected. We parceled
the negative vectors into subsets of measure (MNe = MNo)
(adjusted to the closest numbers) and randomly selected a
feature vector from each one. As result, we can distinguish
an undersampled set of negative feature vectors that was
measuring as the positive set.

The next step was to approve the classifier. At this point,
we had collected typical and irregular data, processed them
into positive and negative vectors, and learnt a classifier by
applying a directed ML approach. This comprised of the
taking after two Steps: (1) applying a standard ML cross-
validation to evaluate how well the classifier summed up; and
(2) applying the sequential Monte Carlo (SMC) method to
determine whether there was factual proof that the classifier
characterized an invariant property of the framework.

Step (1) concerns cross-validation. To begin this pro-
cess, a standard ML k-fold cross-validation (e.g., k = 5)
was applied to survey how well the classifier summed up.
This technique computes the normal exactness of k diverse

classifiers, each obtained by dividing the preparatory set into
k segments, training using k − 1, and approving the remain-
ing fragment (repeating with regard to diverse approval
allotments).

Step (2) next involves measurable demonstrate check-
ing. This is when the validation method applies the SMC,
a standard method for verifying general stochastic frame-
works [41]. The variation utilized observed executions of the
framework (i.e., follows of sensor information), and applied
hypothesis testing to decide whether these implementations
gave factual proof of the learnt demonstrate being an invariant
of the framework. Essentially, the SMC gauges the likelihood
of correctness, rather than ensures it by and large. It is basic to
apply, since it must be able to execute the (unmodified) sys-
tem and collect information follows. It treats the framework
as a dark box and, thus, does not require a show [42].

Given a few classifiers, we applied the SMC to decide
whether it was an invariant of the VLX set points with a
probability more prominent or equivalent to a few edges.
Hence, our model used the learning phase to generate security
metrics (SM) or events after classifying data into positive and
negative categories (see Table 1). It also used the negative data
to generate SMs or alarms to protect and maintain CPS self-
adaptation. It became clear that through a learned MAPE-K
we can teach CPSs how to detect, mitigate, and learn about
attacks that target servers, VLX, sensors, or actuators.

We also propose to apply statistical ML on sensor data,
network IPs and MAC addresses, network TCP traffic, and
a number of trials to access PLC controllers. This also con-
cerned changes in software parameters that control physical
processes to design models that characterize invariant proper-
ties (consistency). Here, conditions have to justify in all states
in such processes controlled by CPSs, and carry out this con-
sistency at runtime. Therefore, we propose statistical ML that
classifies sensor data, network traffic, network IPs, and MAC
addresses into both positive cases (which represent normal
behavior and justify consistency) and negative cases (which
represent abnormal behavior, thus, creating SMs or alarms).

IV. EVALUATION
This section evaluates a proposed solution by applying the
proposal in a real CPS to control the HWS in a smart
building.
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FIGURE 4. HWS architecture.

A. TESTING ENVIRONMEMNT
A real HWS in this paper was used to control water tem-
perature in a building, notably the full operation and design
of the automation system. The HWS consisted of one
pump equipped with dedicated adjustable frequency con-
trollers to adjust speed. Such systems use a chilled water-
flow transmitter, bypass water-flow transmitter, building
hot water temperature sensor, looped pressure differential
sensor, hot water temperature control valve, building-
isolation control valve, and bypass pressure control valve to
adjust the pump speed for measurement and control.

As shown in Fig. 4, our system consisted of Alerton’s
BACtalk with Envision software for management purposes
and to send control signals to the Alerton VLX controller.
Both the workstation and controller interconnected through
a Cisco Catalyst 2960L switch. Pump speed was controlled
using a Alerton VLX controller, as configured by a lap-
top or by opening a hyper-terminal connection using the
Alerton workstation. In addition, the VLX controller inter-
connected with the workstation through a Cisco switch using
a BACnet over IP protocol.

B. HWS PROCESS IN A SMART BUIDLING
1) HEATING SYSTEM CONTROL
The process began by starting the hot water circulation
pump. After five minutes of heating the pump, the boiler’s
self-contained temperature controls were enabled. Following,
the pump was stopped and the boiler disabled when there

FIGURE 5. VLX input and output.

was no longer a demand for heating. The pump continues to
operate for fiveminutes to dissipate residual heat in the boiler.

In our HWS, we represented all input and output logic
points on an operator workstation and VLX controller [43],
as follows:

• Inputs and outputs (analog input [AI], analog out-
put [AO], binary input [BI], and binary output [BO]):
AI and BI are associated with electrical physical inputs
connected to VLX, but AO and BO are associated
with electrical physical outputs connected to the VLX
controller.

• Values (analog value [AV], binary value [BV]): these
values are used as calculated values in VLX or the
operator workstation. Set points, timers, or any virtual
value are not associated with electrical physical inputs or
outputs.

• AV-100 can be interpreted as AI-0 and BO-0 (etc.)
uniformly.

2) SECURITY METRICS OR SYSTEM ALARMS
Alarm indications at the operator’s workstation are specified
for:

1) heatingwater fails (latch alarm and provide reset alarm)
2) heating water pump maintenance (set point adjustable;

500–1500 H)
3) boiler maintenance (set point adjustable; 500–1500 H).

Other indication alarms are included at the operator’s work-
station including indication of HWSS temperature, HWR
temperature, boiler case temperature, outside air temperature,
and boiler-enable status (among others).

Typically, Alerton workstations use Microsoft Visio soft-
ware to configure and manage the VLX controller. This is
programed to enable or disable software logic points such as
BO to start or stop the pump, relying on specific configuration
conditions.

Fig. 5 shows the input of the VLX controller to
control HWS pump speed and maintain the aforementioned
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TABLE 2. SVM-based classifier functions comparison.

HWS processes. Next, the VLX logic is configured and
uploaded using software tools on the Alerton workstation. Its
output can assume both BOs and AOs to enable or disable the
boiler and open or close the valve, respectively (see Fig. 5).
This process reliies on (i) the water level inside the boiler,
(ii) demand from users inside the building, and (iii) the tem-
perature sensors connected to the VLX. HWR and HWSS
sensors, the boiler case, and OSA send their values every sec-
ond to VLX, relying on input values deriving from temper-
ature sensors with the software logic point (AI) on VLX.
As such, the HWS’s three-way valve will NO, NC, or close
when the system’s set point changes (AV-100).

The HWS set point will reach 180.13 ◦F (82.3 ◦C) if the
temperature on the OSA sensor is 68 ◦F (20 ◦C). If the OSA
is lower than 68 ◦F, VLX enables the pump logical point
(BO-0); here, the three-way value will be NO (AO-1) and the
boiler will be enabled (BO-1). This process continues until
the temperature inside the boiler reaches AV-100 (equal to
180.13 ◦F). If the OSA is higher than 68 ◦F, VLX disables
the pump logical point (BO-0); now, the three-way value will
be NC (AO-1) and the boiler will be disabled (BO-1).

Trend logs are used to achieve the first stage in the learned
MAPE-K model (i.e., the monitor phase). By using the statis-
tical ML (SVM), our automation process learns if the logic of
the VLX and workstation are alerted and if there are invari-
ant or consistent conditions; likewise, potential corruption
of either element is also indicated. This can come in the
form of a SYN flooding attack that affects network traffic
and changes the control values on the workstation and VLX.
As such, two types of corruption were examined. The first
was a network attack (e.g., SYN flooding attack), which is
created using the hping3 tool [44] to generate SYN packets
with different variants, such as source IP, source port, and
packets per second (PPS) rates. The second corruption type
concerned changes in VLX control values, which lead to
physical condition variants.

C. NETWORK ATTACK: OPERATOR WORKSTATION
UNDER DoS ATTACKS
In CPSs, intruders aim to target the Cisco switch using
a spoofed SYN attack to connect to the Alerton server,
prompting a server crash. Therefore, it was important to
learn spoofed SYN flooding in our HWS automation pro-
cess to evade this vulnerability. The operator workstation
sends the runtime logs charting network traffic, as well as
the VLX input and output values to another workstation,

whose parameters necessitate a MacBook (Intel) running at
2.20 GHz, with 2.00 GB of RAM. In spoofed SYN flooding
attacks, hping3 is used to send multiple SYN requests to
the server or operator workstation using a remote station to
create a TCP connection, but with different random source
MAC and IP addresses. The main purpose of an intruder is to
flood a server with SYN requests to prompt it or the operator
workstation to crash. Training data pairs (as in Section III-C)
are next created by SVMs as supervised ML. However,
as our first experiment was to determine which of the
SVM-based classification functions — linear, polyno-
mial or RBF — should be used to instil our model with a
high level of accuracy, it proved necessary to first generate
900 TCP requests using hping3 with 101 (or abnormal behav-
ior). For this, we used undersampling to generate feature
vectors, which randomly divided into 70% for training and
30% for testing feature vectors. SVM as a supervised ML
was also implemented by MATLAB 9.1.0 and subsequently
applied to the training vectors to learn three separate linear,
polynomial, and RBF classifier functions.

The first experiment is described in Table 2, which presents
a comparison between linear, polynomial, and RBF classi-
fiers learnt using SVM. ‘Accuracy’ reports how many testing
feature vectors are labeled correctly, and ‘cross-validation
accuracy’ is the average accuracy of five different classifiers
by dividing the training set to five, training four partitions
and validating on the fifth. The benefit of cross-validation
accuracy is that it measures the degree of generalization in our
classifier. Next, ‘sensitivity’ measures the proportion of pos-
itive values, which are correctly labeled, while ‘specificity’
measures the negatives. Across all four measures, the classi-
fier (which has a higher percentage) was superior and, thus,
was selected.

From Table 2, it is clear that the RBF classifier (99%
average) outperformed the other two classifiers (linear and
polynomial, 69–79%). Hence, it is believed that linear and
polynomial classifiers are not sufficient because the TCP
SYN segments, which are beyond the expressiveness of both
types of classifier, correlate.

To assess the effect on accuracy using different round-trip
times (RTT) for each SYN segment feature vector, we deter-
mined the time interval by ϒ (vector interval between the
remote workstation. This creates the hping3 and operator
workstation, or the Alerton server.

In SYN spoofed attacks, source IP addresses are different
and CPU usage is very high. Due to saturation of the Cisco
switch control channel during such instances, the Ethernet
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TABLE 3. Effect of RTT time interval on stability of SVM-RBF classifier.

network becomes vulnerable to DoS attacks, which affect
automation system operations by encouraging the server to
generate more SYN segments in return. As such, a second
experiment warranted application of SVM classifiers on dif-
ferent time intervals using RTT values between the remote
station and the Alerton operator workstation. The remote
station then sent TCP SYN requests with high data rates from
100 kpps to 200 kpps to the Alerton server using hping3.
We measured RTT for segments generated by hping3 and
timed the interval at 40 µs using Wireshark software
(version 2.6.1). Any effects on accuracy were next assessed
using different RTT values in the feature vectors (20 µs and
40 µs). With these, we characterized the effect of spoofed
SYN flooding attacks during both intervals and discov-
ered that attacker behavior was more observable for larger
RTTs, with more spoofed SYN segments received. How-
ever, if the interval was too big, this increased the number
of spoofed SYN segments and strengthened the attackers’
position by sending more spoofed segments, thus, crashing
the server. It became apparent that using an SVM-RBF clas-
sifier to detect attackers in very short time intervals was
crucial. Table 3 represents the comparison between accuracy
and across-validation accuracy using different times, starting
from 20 µs, 25 µs, 30 µs, 35 µs, and 40 µs. SVM-RBF
was used as a classification function and hping3 was used
to generate 900 spoofed SYN segments with spoofed IP
addresses at different time intervals between 20µs and 40µs.
Evident in Table 2, the SVM-RBF classification function was
a more stable measure to detect attackers, especially at 35µs.
Therefore, our model shows high stability and accuracy at
35 µs, which was selected accordingly.

D. ALERTON VLX CONTROLLER UNDER ATTACK
This section characterizes the behavior of any intruders
targeting the VLX ladder logic in our HWS automation
system. Their main goal was to cause damage in the sys-
tem by compromising the values of the AV-100, affecting
BO-0, BO-1, and AO-0 (pump and boiler enable/disable, and
three-way valve control software points [NO, NC, or ‘close’],
respectively) (see Fig. 5). The intruders in the HWS aimed
to increase the speed of the pump to elevate the water level
inside the boiler; this raised the pressure inside the boiler,
causing boiler exposure. In addition, the intruders wished to
enable the boiler and run it for an extended time to increase
water temperature above 180.14 ◦F — the HWS’s (AV-100)
set point.

TABLE 4. Results of detecting VLX attacks.

Moreover, the intruders aimed to change the status of
the three-way valve control from NO to ‘close’ to increase
pump pressure, leading to its exposure. Therefore, the intrud-
ers intended to attack the Alerton vision software operator
workstation to change the VLX control sequences. Attackers
typically use many tools to access and change logic such as
mutant codes [45] or DarkComet [46]. Upon accessing the
HWS automation network, they can subsequently modify the
VLX logic and upload the alerted configuration settings.

VLX monitors temperature input points (AI-3, AI-4) from
temperature transmitter sensors furnished with a domestic
HWS to create alarms and enable or disable the boiler and
pump, or even open or close the three-way valve. If intruders
manage to change the HWS (AV-100 = 180.14 ◦F) set
point, this will lead to a reverse operation of the pump,
boiler, and three-way valve, as shown in Table 1. For exam-
ple, if intruders changed the HWS set point to 140.54 ◦F
this would speed up the pump and enable the boiler for an
extended period, increasing the water temperature above its
normal point. Also, the alarm will take some time to sound,
thus, affecting HWS operation. As a result, water tempera-
ture inside the boiler will overheat and the HWS will not
(and cannot) detect VLX logic changes. Consequently, the
SVM-RBF classifier studies the CPS using HWR and HWSS
sensor readings (which obtain the real and actual values
without any compromised actions) to create security met-
rics SM01, 02, 03, 04, 05, and 06, mapping to actions
LAA01 and 02 (see Table 1).

As such, the final experiment assessed whether the learned
MAPE-K model could detect different types of VLX attacks
by classifying the feature vectors as negative, in case of
attack. In this experiment, we investigated VLX code mod-
ification attacks by randomly changing VLX logic and moni-
toring physical effects in the HWS. There was no benchmark
code to apply for logic modification, so logic in the VLX con-
troller was designated using Alerton vision software. If the
SVM-RBF can generate an alarm relying solely on latter
attack detection, the consistency of the HWS can be regarded
physical proof of the integrity of VLX logic.

Table 4 depicts a list of VLX logic modification attacks
applied for the HWS in the operator workstation; this includes
the results of our consistency attempts at classifying them.
The attacks intended to change logic values for the pump,
boiler, valve, and the software point status (AV-100) to affect
HWS operation. According to Table 4, the SVM-RBF classi-
fier can detect attacks and accurately label the feature vectors
as negative, thus, indicating an attack. If the accuracy is
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higher than 90% (which is very high), an alarmwill sound and
demonstrate accurate detection. Evidently, 18 of 20 mutant
codes affected AV-100, six of eight affected BO-0 and BO-1,
and four of four affected AO-1. It is believed that undetectable
mutants are due to undersampling, which converts logic
values from abnormal to normal.

V. CONCLUSION
CPS is the technical driving force behind transformation in
the production toward digital applications and Industry 4.0.
However, such a system creates a crucial concern regarding
security, detection, and mitigation, as attackers and software
become more intelligent, interconnected, and intertwined
over time. This paper illustrated how CPSs can benefit from
the proposed MAPE-K model to become more self-learned.
Overall, its evaluation on a real HWS system indicated its
capability to detect and mitigate network and VLX attacks
with high accuracy.
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